WorldWideScience

Sample records for bernstein wave studies

  1. Electron Bernstein Wave Studies in MST

    Science.gov (United States)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Almagri, Abdulgader; Chapman, Brett; Dubois, Ami; Goetz, John; McCollam, Karsten

    2015-11-01

    The RFP plasma is inaccessible to ECRH, requiring the electron Bernstein wave (EBW) for edge localized heating and current drive. MST is capable of generating RFPs or overdense tokamaks with Bt(0) ~ 0.08-0.14T in which a 5.55 GHz RF source (450kW, 2ms pulse) can heat at fundamental and harmonic EC resonances. The design of a suitable antenna is challenging in the RFP due to a magnetic field geometry that requires a low-field-side launch. The small vacuum gap between the close-fitting conducting shell and plasma leads to substantial antenna-plasma interaction. A minimized port hole size is required to limit error fields. Even so the port hole induced magnetic field perturbation in the antenna near-field that affects the mode conversion process and introduces EC resonances. A 5cm diameter cylindrical antenna centered in 5cm and 11cm diameter portholes is used. A multi-chord time-resolved x-ray detector and GENRAY ray tracing verifies EBW heating at higher harmonics in an MST tokamak with 10-40keV detected x-ray energies. Evidence of RF-induced emission from absorption at higher harmonics (4th / 5th) in low current RFP discharges has been observed. Simultaneous reflected power changes correspond to termination of x-ray emission indicating power limits. Work supported by USDOE.

  2. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  3. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  4. Observations of Obliquely Propagating Electron Bernstein Waves

    DEFF Research Database (Denmark)

    Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.;

    1981-01-01

    Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....

  5. Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles

    CERN Document Server

    Heeter, R F

    1999-01-01

    In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...

  6. Weakly relativistic dispersion of Bernstein waves

    Science.gov (United States)

    Robinson, P. A.

    1988-01-01

    Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.

  7. Design of an RF System for Electron Bernstein Wave Studies in MST

    Science.gov (United States)

    Kauffold, J. X.; Seltzman, A. H.; Anderson, J. K.; Nonn, P. D.; Forest, C. B.

    2010-11-01

    Motivated by the possibility of current profile control a 5.5GHz RF system for EBW is being developed. The central component is a standard radar Klystron with 1.2MW peak power and 4μs typical pulse length. Meaningful experiments require RF pulse lengths similar to the characteristic electron confinement times in MST necessitating the creation of a power supply providing 80kV at 40A for 10ms. A low inductance IGBT network switches power at 20kHz from an electrolytic capacitor bank into the primary of a three-phase resonant transformer system that is then rectified and filtered. The system uses three magnetically separate transformers with microcrystalline iron cores to provide suitable volt-seconds and low hysteresis losses. Each phase has a secondary with a large leakage inductance and a parallel capacitor providing a boost ratio greater than 60:1 with a physical turns ratio of 13.5:1. A microprocessor feedback control system varies the drive frequency around resonance to regulate the boost ratio and provide a stable output as the storage bank discharges. The completed system will deliver RF to the plasma boundary where coupling to the Bernstein mode and subsequent heating and current drive can occur.

  8. On the convective properties of magnetospheric Bernstein waves

    Science.gov (United States)

    Barbosa, D. D.

    1980-01-01

    Recent plasma wave observations made by the ISEE and GEOS satellites of the electrostatic cyclotron harmonic waves have been consistent with and organized very well within the theoretical framework of Bernstein waves excited in magnetospheric plasma. Attention is given to an examination of a number of effects that result simply from the convective properties of Bernstein waves in a magnetospheric plasma environment. The roles of wave trapping in plasma density depressions and partial trappings near the magnetic equator are discussed. Certain future wave observations are suggested that can improve the understanding of this magnetospheric wave phenomenon.

  9. Ion Bernstein waves in a magnetic reconnection region

    Science.gov (United States)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K. H.; Motschmann, U.; Comisel, H.

    2015-12-01

    Four-dimensional energy spectra and a diagram for dispersion relations are determined for the first time in a magnetic reconnection region in the magnetotail using the four-point magnetometer data from the Cluster mission on a spatial scale of 200 km, about 0.1 ion inertial lengths. The energy spectra are anisotropic with an extension in the perpendicular direction and axially asymmetric with respect to the mean magnetic field. The dispersion diagram for the waves in the quasi-perpendicular directions in the plasma rest frame is in reasonably good agreement with the ion Bernstein waves particularly at the second harmonic of the proton gyro-frequency. Perpendicular-propagating ion Bernstein waves likely exist in an outflow region of magnetic reconnection. We discuss the causality of the Bernstein waves with magnetic reconnection with an estimate of the anomalous resistivity, and propose an observationally-driven model of turbulent magnetic reconnection.

  10. Electron-Bernstein Waves in Inhomogeneous Magnetic Fields

    DEFF Research Database (Denmark)

    Armstrong, R. J.; Frederiksen, Å.; Pécseli, Hans

    1984-01-01

    The propagation of small amplitude electron-Bernstein waves in different inhomogeneous magnetic field geometries is investigated experimentally. Wave propagation towards both cut-offs and resonances are considered. The experimental results are supported by a numerical ray-tracing analysis. Spatial...

  11. Bernstein wave aided laser third harmonic generation in a plasma

    Science.gov (United States)

    Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok

    2016-09-01

    The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.

  12. Electron Bernstein waves emission in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Regana, J M; Cappa, A; Castejon, F; Ros, A [Laboratorio Nacional de Fusion, CIEMAT, 28040, Madrid (Spain); Caughman, J B O; Rasmussen, D A; Wilgen, J B [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Tereshchenko, M, E-mail: josemanuel.garcia@ciemat.es [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-06-15

    Taking advantage of the electron Bernstein waves heating system of the TJ-II stellarator, an electron Bernstein emission (EBE) diagnostic was installed. Its purpose is to investigate the B-X-O radiation properties in the zone where optimum theoretical electron Bernstein wave (EBW) coupling is predicted. An internal movable mirror shared by both systems allows us to collect the EBE radiation along the same line of sight that is used for EBW heating. The theoretical EBE has been calculated for different orientations of the internal mirror using the TRUBA code as the ray tracer. A comparison with experimental data obtained in NBI discharges is carried out. The results provide valuable information regarding the experimental O-X-mode conversion window expected in the EBW heating experiments. Furthermore, the characterization of the radiation polarization shows evidence of the underlying B-X-O conversion process.

  13. Ion Bernstein waves in the magnetic reconnection region

    Science.gov (United States)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.

    2016-01-01

    Four-dimensional energy spectra and a diagram for dispersion relations are determined for the first time in a magnetic reconnection region in the magnetotail using data from four-spacecraft measurements by the Cluster mission on a spatial scale of 200 km, about 0.1 ion inertial lengths. The energy spectra are anisotropic with an extension in the perpendicular direction and axially asymmetric with respect to the mean magnetic field. The dispersion diagram in the plasma rest frame is in reasonably good agreement with the ion Bernstein waves at the second and higher harmonics of the proton gyrofrequency. Perpendicular-propagating ion Bernstein waves likely exist in an outflow region of magnetic reconnection, which may contribute to bifurcation of the current sheet in the outflow region.

  14. Electron Bernstein waves emission in the TJ--II Stellarator

    CERN Document Server

    García-Regaña, J M; Castejón, F; Caughman, J B O; Tereshchenko, M; Ros, A; Rasmussen, D A; Wilgen, J B

    2010-01-01

    Taking advantage of the electron Bernstein waves heating (EBWH) system of the TJ--II stellarator, an electron Bernstein emission (EBE) diagnostic was installed. Its purpose is to investigate the B--X--O radiation properties in the zone where optimum theoretical EBW coupling is predicted. An internal movable mirror shared by both systems allows us to collect the EBE radiation along the same line of sight that is used for EBW heating. The theoretical EBE has been calculated for different orientations of the internal mirror using the TRUBA code as ray tracer. A comparison with experimental data obtained in NBI discharges is carried out. The results provide a valuable information regarding the experimental O--X mode conversion window expected in the EBW heating experiments. Furthermore, the characterization of the radiation polarization shows evidence of the underlying B--X--O conversion process.

  15. Electron Bernstein Wave Emission and Mode Conversion Physics on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Diem, S J; Caughman, J B; Efthimion, P; Kugel, H; LeBlanc, B P; Preinhaelter, J; Sabbagh, S A; Urban, J

    2008-05-21

    NSTX is a spherical tokamak (ST) that operates with ne up to 1020 m-3 and BT less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for Te measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local Te measurements in the ST. Practically, a robust Te(R,t) EBE diagnostic requires EBW transmission efficiencies of > 90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While Te(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge ne scale length resulted in > 20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency 2 during H-modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H-modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when Te < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H-modes have shown that evaporated lithium can increase Te inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  16. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    CERN Document Server

    Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...

  17. Superthermal electrons and Bernstein waves in Jupiter's inner magnetosphere

    Science.gov (United States)

    Barbosa, D. D.; Kurth, W. S.

    1980-01-01

    A theoretical model for generation of banded electrostatic emissions by low density, superthermal electrons is developed for application to Jupiter's magnetosphere. The model employs a power law form for the energy dependence and a loss cone pitch angle distribution of the superthermals to drive convective instability of Bernstein modes. A direct correspondence between spectral features of the 3/2 band and resonant superthermal electrons is found. The concept of a critical flux of resonant electrons able to provide 10 e-foldings of electric field amplification yields an explicit relation in terms of the background thermal electron pressure. This result is used to construct a theoretical/empirical model of thermal electron density and temperature from 6-20 Jupiter radii in the Jovian magnetosphere which suggests that the electron temperature is less than the ion temperature which is approximately equal to 10 times the electron temperature in this region. Finally, wave ray paths are computed for propagation in the magnetic equator and in the magnetic meridional plane of a dipole magnetic field. These ray paths suggest that intense wave activity is tightly confined to a small latitudinal extent, less than + or - approximately 4 deg, about the magnetic equator.

  18. Measurements of Intrinsic Ion Bernstein Waves in a Tokamak by Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Stejner Pedersen, Morten; Bindslev, Henrik;

    2011-01-01

    In this Letter we report measurements of collective Thomson scattering (CTS) spectra with clear signatures of ion Bernstein waves and ion cyclotron motion in tokamak plasmas. The measured spectra are in accordance with theoretical predictions and show clear sensitivity to variation in the density...

  19. Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2008-03-01

    Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.

  20. Residual Bernstein-Greene-Kruskal-like waves after one-dimensional electron wave breaking in a cold plasma.

    Science.gov (United States)

    Verma, Prabal Singh; Sengupta, Sudip; Kaw, Predhiman

    2012-07-01

    A one-dimensional particle in cell simulation of large amplitude plasma oscillations is carried out to explore the physics beyond wave breaking in a cold homogeneous unmagnetized plasma. It is shown that after wave breaking, all energy of the plasma oscillation does not end up as random kinetic energy of particles, but some fraction, which is decided by Coffey's wave breaking limit in warm plasma, always remains with two oppositely propagating coherent Bernstein-Greene-Kruskal like modes with supporting trapped particle distributions. The randomized energy distribution of untrapped particles is found to be characteristically non-Maxwellian with a preponderance of energetic particles.

  1. Observation of Bernstein Waves Excited by Newborn Interstellar Pickup Ions in the Solar Wind

    Science.gov (United States)

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Gary, S. Peter; Murphy, Neil; Gray, Perry C.; Burlaga, Leonard F.

    2012-01-01

    A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.

  2. OBSERVATION OF BERNSTEIN WAVES EXCITED BY NEWBORN INTERSTELLAR PICKUP IONS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A. [Physics Department, Space Science Center, University of New Hampshire, Durham, NH (United States); Peter Gary, S. [Los Alamos National Laboratory, Los Alamos, NM (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA (United States); Gray, Perry C. [P.O. Box 790, Los Alamos, NM (United States); Burlaga, Leonard F., E-mail: cjl46@unh.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: pgary@lanl.gov, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: Perry.Gray@dtra.mil, E-mail: lburlagahsp@verizon.net [NASA/Goddard Space Flight Center, Geospace Physics Laboratory, Code 673, Greenbelt, MD 20771 (United States)

    2012-02-01

    A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.

  3. Study on the Third Type of Bernstein S. N. Interpolation Process%第三型Bernstein S.N.插值过程

    Institute of Scientific and Technical Information of China (English)

    袁学刚; 何甲兴

    2001-01-01

    Bernstein S.N.问题做了进一步讨论,利用两点修正的方法构造了算子Pn(f;x),并得到了较好的结果。%In this paper, Bernstein S. N. problem is studied in a deeper step and a new operator Pn (f;x) is constructed by the method of two revised zero nodes and better results are achieved.

  4. X-ray analysis of electron Bernstein wave heating in MST

    Science.gov (United States)

    Seltzman, A. H.; Anderson, J. K.; DuBois, A. M.; Almagri, A.; Forest, C. B.

    2016-11-01

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  5. Antenna system analysis and design for automatic detection and real-time tracking of electron Bernstein waves in FTU

    Science.gov (United States)

    Bin, W.; Alessi, E.; Bruschi, A.; D'Arcangelo, O.; Figini, L.; Galperti, C.; Garavaglia, S.; Granucci, G.; Moro, A.

    2014-05-01

    The algorithm for the automatic control of the new front steering antenna of the Frascati Tokamak Upgrade device has been improved, in view of forthcoming experiments aimed at testing the mode conversion of electron cyclotron waves at a frequency of 140 GHz. The existing antenna system has been prepared to provide two-point real-time measurements of electron Bernstein waves and to allow real-time tracking of the optimal conversion region. This required an accurate analysis of the antenna to minimize the risk of a mechanical damage of the movable launching mirrors, when accessing the high toroidal launching angles needed for this kind of experiment. A detailed description is presented of the work carried out to safely reach and validate the desired range of steering angles, which include the region of interest, and a technique is proposed to track and chase the correct line of sight for electron Bernstein waves detection during the shot.

  6. Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R. W. [CompX, Del Mar, CA (United States)

    2009-11-12

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over

  7. Excitation of ion Bernstein waves as the dominant parametric decay channel in direct X-B mode conversion for typical spherical torus

    Science.gov (United States)

    Abbasi, Mustafa; Sadeghi, Yahya; Sobhanian, Samad; Asgarian, Mohammad Ali

    2016-03-01

    The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high- β regimes, in which the usual EC ordinary (O) and extraordinary (X) modes are cut off. As it was recently investigated the existence of EBWs at nonlinear regime thus the next step would be the probable nonlinear phenomena study which are predicted to be occurred within the high levels of injected power. In this regard, parametric instabilities are considered as the major channels for losses at the X-B conversion. Hence, we have to consider their effects at the UHR region which can reduce the X-B conversion efficiency. In the case of EBW heating (EBH) at high power density, the nonlinear effects can arise. Particularly at the UHR position, the group velocity is strongly reduced, which creates a high energy density and subsequently a high amplitude electric field. Therefore, a part of the input wave can decay into daughter waves via parametric instability (PI). Thus, via the present research, the excitations of ion Bernstein waves as the dominant decay channels are investigated and also an estimate for the threshold power in terms of experimental parameters related to the fundamental mode of instability is proposed.

  8. Observation of Electron Bernstein Wave Heating in the MST Reversed Field Pinch

    Science.gov (United States)

    Seltzman, Andrew; Anderson, Jay; Dubois, Ami; Almagri, Abdulgader; Nonn, Paul; McCollam, Karsten; Chapman, Brett; Goetz, John; Forest, Cary

    2016-10-01

    We report the first observation of electron Bernstein wave heating in the MST RFP. Similar to a high density stellarator, the RFP is inaccessible to electromagnetic ECRH. The plasma current and |B|operating range of MST allows a 5.5 GHz RF source (100kW, 4ms pulse) to heat on the fundamental and up to 4th harmonic EC resonances. With an x-ray diagnostic most sensitive to edge electrons located +12 degrees toroidally from the antenna, the measured emission is a strong function of predicted heating inside versus outside the Bt =0 reversal layer of the RFP. Measured during a scan of plasma current, distinct edges in a plot of emissivity versus predicted deposition layer align with the deposition layers crossing of this reversal layer and confirm EBW heating on the fundamental through 4th EC harmonic. Additional confirmation of the absorption location has been demonstrated by using auxiliary poloidal current drive to reduce electron diffusion rates and sweep the location of the Bt =0 surface across a static RF absorption location in RFP discharges. In these discharges EBW enhancement of the 15-40keV x-ray energies has been observed. Work supported by USDOE.

  9. Unstable whistlers and Bernstein waves within the front of supercritical perpendicular shocks

    Science.gov (United States)

    Muschietti, Laurent; Lembege, Bertrand

    2016-04-01

    In supercritical shocks a significant fraction of ions is reflected at the steep shock ramp and carries a considerable amount of energy. The existence of reflected ions enables streaming instabilities to develop which are excited by the relative drifts between the populations of incoming ions, reflected ions, and electrons. The processes are fundamental to the transformation of directed kinetic energy into thermal energy, a tenet of shock physics. We model the particle distributions as a broad electron population and two ion populations, namely a core and a beam (representing the reflected ions) in order to investigate the kinetic instabilities possible under various wave propagation angles. Recently, assuming the ion beam is directed along the shock normal at 90° to the magnetic field Bo, we analyzed the linear dispersion properties by computing the full electromagnetic dielectric tensor [Muschietti and Lembege, AGU Fall meeting 2015]. Three types of waves were shown to be unstable: (1) Oblique whistlers with wavelengths about the ion inertia length which propagate toward upstream at angles about 50° to the magnetic field. Frequencies are a few times the lower-hybrid. The waves share many similarities to the obliquely propagating whistlers measured in detail by Polar [Hull et al., JGR 117, 2012]. (2) Quasi-perpendicular whistlers with wavelength covering a fraction of the electron inertia length which propagate toward downstream at angles larger than 80° to Bo. Frequencies are close to the lower-hybrid. (3) Bernstein waves with wavelengths close to the electron gyroradius which propagate toward upstream at angles within 5° of perpendicular to the magnetic field. Frequencies are close to the electron cyclotron. The waves have similarities to those reported by Wind and Stereo [Breneman et al., JGR 118, 2013; Wilson et al., JGR 115, 2010]. We will present electromagnetic 1D3V PIC simulations with predetermined propagation angles which illustrate the three types

  10. On the multistream approach of relativistic Weibel instability. II. Bernstein-Greene-Kruskal-type waves in magnetic trapping

    Energy Technology Data Exchange (ETDEWEB)

    Ghizzo, A. [Institut Jean Lamour UMR 7163, Université de Lorraine, BP 239 F-54506 Vandoeuvre les Nancy (France)

    2013-08-15

    The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.

  11. Bernstein-type approximations of smooth functions

    Directory of Open Access Journals (Sweden)

    Andrea Pallini

    2007-10-01

    Full Text Available The Bernstein-type approximation for smooth functions is proposed and studied. We propose the Bernstein-type approximation with definitions that directly apply the binomial distribution and the multivariate binomial distribution. The Bernstein-type approximations generalize the corresponding Bernstein polynomials, by considering definitions that depend on a convenient approximation coefficient in linear kernels. In the Bernstein-type approximations, we study the uniform convergence and the degree of approximation. The Bernstein-type estimators of smooth functions of population means are also proposed and studied.

  12. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G.; Di Giugno, R.; Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F. P. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Celona, L.; Gammino, S.; Lanaia, D.; Ciavola, G. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Di Bartolo, F. [Universita di Messina, Ctr. da Papardo-Sperone, 98100 Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); IET-Institute of Energy Technology, LEC-Laboratory for Energy Conversion, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electrons will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.

  13. Measurement of the Electron Bernstein Wave Emission with One of the Power Transmission Lines for ECH in LHD%Measurement of the Electron Bernstein Wave Emission with One of the Power Transmission Lines for ECH in LHD

    Institute of Scientific and Technical Information of China (English)

    Hiroe IGAMI; Hiroshi IDEI; Shin KUBO; Yasuo YOSHIMURA; Takashi SHIMOZUMA; Hiromi TAKAHASHI

    2011-01-01

    Possibility of the measurement of radiated waves derived from the thermally emitted electron Bernstein wave (EBW) is numerically investigated based on the assumption of the super dense core (SDC) plasma generated in LHD. EBW that is thermally emitted in the electron cyclotron resonance (ECR) layer may couple with the electromagnetic wave and be emitted to the vacuum via the EBW-extraordinary-ordinary (B-X-O) mode conversion process. We consider the use of one of the transmission lines for electron cyclotron heating (ECH) in LHD as a receiving system of the emission. It is derived that the waves in the fundamental cyclotron frequency range are emitted as the EBW near their upper hybrid resonance (UHR) layer outside the last close flux surface (LCFS). On the other hand, waves in the second harmonics cyclotron frequency range are emitted in the core region. It means that successful measurement of waves of the second harmonic frequency range emitted from extremely high dense core plasma with setting an aim angle for receiving indicates a possibility of the second harmonic ECH by EBW in the core region with setting the same aim angle and the same polarization for launching.

  14. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  15. A note on Bernstein-Jordan Algebras(2)

    OpenAIRE

    Miyamoto, Kohei

    2003-01-01

    As a contribution of the problem of classifying all Bernstein algebras, we attempt to describe the posibility of u-part decomposition of Bernstein-Jordan algebras in terms of the direct product of Bernstein algebras and study some conditions for a Bernstein-Jordan algebra to be u-part decomposable.

  16. Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves.

    Science.gov (United States)

    Yamaguchi, Yoshiyuki Y

    2011-07-01

    Traveling clusters are ubiquitously observed in the Hamiltonian mean-field model for a wide class of initial states, which are not predicted to become spatially inhomogeneous states by nonequilibrium statistical mechanics and by nonlinear Landau damping. To predict such a cluster state from a given initial state, we combine nonequilibrium statistical mechanics and a construction method of Bernstein-Greene-Kruskal (BGK) waves with the aid of phenomenological assumptions. The phenomenological theory is partially successful, and the theoretically constructed cluster states are in good agreement with N-body simulations. Robustness of the theory is also discussed for unsuccessful initial states.

  17. Bernstein, Educational Change, and Gendered Language

    Science.gov (United States)

    Cook-Gumperz, Jenny

    2009-01-01

    This paper focuses on a little known Bernstein concept of "gender codes" developed in the study of schooling, suggesting that schools transmit hidden gender messages though a range of semiotic devices. Initially, the paper shows how Bernstein's 1970s' research provided a novel way of looking at some critical issues current in educational…

  18. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. I. Linear theory

    Science.gov (United States)

    Sun, Jicheng; Gao, Xinliang; Chen, Lunjin; Lu, Quanming; Tao, Xin; Wang, Shui

    2016-02-01

    Ion Bernstein modes, also known as magnetosonic waves in the magnetospheric community, are considered to play an important role in radiation belt electron acceleration. The detailed properties of perpendicular magnetosonic waves excited in the inner magnetosphere by a tenuous proton ring distribution are investigated in a two series paper with a combination of the linear theory and one-dimensional particle-in-cell simulations. Here, in this paper, we study the properties of the excited magnetosonic waves under different plasma conditions with the linear theory. When the proton to electron mass ratio or the ratio of the light speed to the Alfven speed is small, the excited magnetosonic waves are prone to having a discrete spectrum with only several wave modes. With the increase of the proton to electron mass ratio or the ratio of the light speed to the Alfven speed, the lower hybrid frequency also increases, which leads to the increase of both the number and frequency of the excited wave modes. Meanwhile, the growth rate of these wave modes also increases. When the proton to electron mass ratio or the ratio of the light speed to the Alfven speed is sufficiently large, the spectrum of the excited magnetic waves becomes continuous due to the overlapping of the adjacent wave modes. The increase of the density of the protons with the ring distribution can also result in the increase of the growth rate, which may also change the discrete spectrum of the excited waves to a continuous one, while the increase of the ring velocity of the tenuous proton ring distribution leads to a broader spectrum, but with a smaller growth rate.

  19. On the Relevance of Bernstein for German-Speaking Switzerland

    Science.gov (United States)

    Bolander, Brook

    2009-01-01

    This article assesses the relevance of Basil Bernstein for German-speaking Switzerland. It argues that Bernstein is potentially relevant for German-speaking Switzerland in light of contemporary studies which highlight a connection between social background and differential school achievement. After contextualising Bernstein's theoretical outlook…

  20. Electron Bernstein wave heating and emission measurement through the very narrow O-X-B mode conversion window in the LHD

    Energy Technology Data Exchange (ETDEWEB)

    Igami, H.; Shimozuma, T.; Yoshimura, Y.; Takahashi, H.; Nishiura, M.; Seki, T.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki (Japan); Kubo, S. [National Institute for Fusion Science, Toki, Japan and Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Ogasawara, S.; Makino, R. [Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Idei, H. [Research Institute for Applied Mechanics, Kyusyu Univ., Kasuga (Japan); Nagasaki, K. [Institute of Advanced Energy, Kyoto Univ., Uji (Japan)

    2014-02-12

    In the large helical device (LHD), the theoretically predicted width of the ordinary-extraordinary-electron Bernstein wave (O-X-B) mode conversion (MC) window is comparable to the beam width and the power deposition is located in the off-axis region if the 77GHz fundamental electron cyclotron (EC) wave of is launched from an existing horizontal port antenna. In the experiment, the actual MC window location was looked for with changing the aiming. The effective aiming with that the increase of the stored energy was observed was two degrees apart from the location of the theoretical MC window at a maximum. Measurement of the waves originated from the thermally emitted EBW and radiated via the B-X-O mode conversion process is effective to improve the accuracy of the theoretical prediction with comparison between the theoretical and the experimental results. The theoretical prediction suggests that the width of the MC window of the fundamental 77GHz EC wave can be expanded if the lower port antenna is used. On the other hand, the MC window of the second harmonic 154GHz EC wave is blocked by horizontal port wall if another horizontal port antenna is used. It is required to move the final mirror of the quasi-optical antenna toward the plasma surface. Focusing of the beam at the plasma cutoff is (PC) also necessary for the effective mode conversion.

  1. Understanding the growth rate patterns of ion Bernstein instabilities driven by ring-like proton velocity distributions

    Science.gov (United States)

    Min, Kyungguk; Liu, Kaijun

    2016-04-01

    Fast magnetosonic waves in Earth's inner magnetosphere, which have as their source ion Bernstein instabilities, are driven by hot proton velocity distributions (fp) with ∂fp(v⊥)/∂v⊥>0. Two typical types of distributions with such features are ring and shell velocity distributions. Both have been used in studies of ion Bernstein instabilities and fast magnetosonic waves, but the differences between instabilities driven by the two types of distributions have not been thoroughly addressed. The present study uses linear kinetic theory to examine and understand these differences. It is found that the growth rate pattern is primarily determined by the cyclotron resonance condition and the structure of the velocity distribution in gyroaveraged velocity space. For ring-driven Bernstein instabilities, as the parallel wave number (k∥) increases, the discrete unstable modes approximately follow the corresponding proton cyclotron harmonic frequencies while they become broader in frequency space. At sufficiently large k∥, the neighboring discrete modes merge into a continuum. In contrast, for shell-driven Bernstein instabilities, the curved geometry of the shell velocity distribution in gyroaveraged velocity space results in a complex alternating pattern of growth and damping rates in frequency and wave number space and confines the unstable Bernstein modes to relatively small k∥. In addition, when k∥ increases, the unstable modes are no longer limited to the proton cyclotron harmonic frequencies. The local growth rate peak near an exact harmonic at small k∥ bifurcates into two local peaks on both sides of the harmonic when k∥ becomes large.

  2. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Science.gov (United States)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-07-01

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  3. The Use and Value of Bernstein's Work in Studying (In)Equalities in Undergraduate Social Science Education

    Science.gov (United States)

    McLean, Monica; Abbas, Andrea; Ashwin, Paul

    2013-01-01

    This paper illustrates how critical use of Basil Bernstein's theory illuminates the mechanisms by which university knowledge, curriculum and pedagogy both reproduce and interrupt social inequalities. To this end, empirical examples are selected from the findings of the ESRC-funded project "Pedagogic Quality and Inequality in University First…

  4. Generalized -Bernstein-Schurer Operators and Some Approximation Theorems

    Directory of Open Access Journals (Sweden)

    M. Mursaleen

    2013-01-01

    Full Text Available We study statistical approximation properties of -Bernstein-Shurer operators and establish some direct theorems. Furthermore, we compute error estimation and show graphically the convergence for a function by operators and give its algorithm.

  5. Re-Examining Bernstein: From Peer-Group Ways of Speaking to "Schriftsprache"--A Study of Turkish-German "Hauptschule" Students in Mannheim

    Science.gov (United States)

    Keim, Inken

    2009-01-01

    This paper begins by looking at responses to Bernstein in Germany in the 1970s that criticized his notions of class difference in sociolinguistic codes. As part of a re-examination of Bernstein's ideas, the paper goes on to look at the current communicative situation in German education where urban schools have many second-generation immigrant…

  6. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    Science.gov (United States)

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-01

    A ring-like proton velocity distribution with ∂fp(v⊥)/∂v⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernstein instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T⊥/T|| for a general ring-like proton distribution with a fixed ring speed of 2vA, where vA is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T⊥/T||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as T⊥/T|| ≳ 3. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.

  7. Studies on seismic waves

    Institute of Scientific and Technical Information of China (English)

    张海明; 陈晓非

    2003-01-01

    The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.

  8. ON LIMITING PROPERTIES OF BERNSTEIN-TROTTER TYPE OPERATOR

    Institute of Scientific and Technical Information of China (English)

    ZengXiaoming; LinLu

    1994-01-01

    In this paper ,a class of Bernstein-Trotter type operator and its limiting properties are studied. By using both the limiting theorem and P. Le' vy continuity theorem on probability theory, a theorem of convergence is obtained. The result in [1] is included.

  9. Re-Reading and Rehabilitating Basil Bernstein

    Science.gov (United States)

    Bolander, Brook; Watts, Richard J.

    2009-01-01

    This article constitutes a re-reading of and an attempt to rehabilitate Basil Bernstein, both of which are important in light of the interpretation of Bernstein as a proponent of the verbal deficit view, and the general discrediting of his work on social class differences in the British educational system, as related to what he later called…

  10. AN APPLICATION OF BERNSTEIN-DURRMEYER OPERATORS

    Institute of Scientific and Technical Information of China (English)

    Baohuai Sheng; Chunping Zhang

    2007-01-01

    In the present paper, we find that the Bernstein-Durrmeyer operators, besides their better applications in approximation theory and some other fields, are good tools Bernstein-Durrmeyer operators a sequence of translation network operators is constructed and its degree of approximation is dealt.

  11. Oblique Bernstein Mode Generation Near the Upper-hybrid Frequency in Solar Pre-flare Plasmas

    Science.gov (United States)

    Kryshtal, A.; Fedun, V.; Gerasimenko, S.; Voitsekhovska, A.

    2015-11-01

    We study analytically the generation process of the first harmonics of the pure electron weakly oblique Bernstein modes. This mode can appear as a result of the rise and development of a corresponding instability in a solar active region. We assume that this wave mode is modified by the influence of pair Coulomb collisions and a weak large-scale sub-Dreicer electric field in the pre-flare chromosphere near the footpoints of a flare loop. To describe the pre-flare plasma we used the model of the solar atmosphere developed by Fontenla, Avrett, and Loeser ( Astrophys. J. 406, 319, 1993). We show that the generated first harmonic is close to the upper-hybrid frequency. This generation process begins at the very low threshold values of the sub-Dreicer electric field and well before the beginning of the preheating phase of a flare. We investigate the necessary conditions for the existence of non-damped first harmonics of oblique Bernstein waves with small amplitudes in the flare area.

  12. Basil Bernstein: Agency, Structure and Linguistic Conception of Class

    Science.gov (United States)

    Best, Shaun

    2007-01-01

    The paper outlines an interpretation of Bernstein's contribution to the sociology of education that stands in contrast to the common interpretations of Bernstein's work. It is commonly assumed that Bernstein constructed a simplistic "deficit model" of educational failure, or alternatively, that Bernstein was a structuralist who did not give any…

  13. Bernstein: Prelude, Fugue and Riffs / Michel Parouty

    Index Scriptorium Estoniae

    Parouty, Michel

    1998-01-01

    Uuest heliplaadist "Bernstein: Prelude, Fugue and Riffs. Facsimile. West Side Story - Symphonic Dances. Divertimento. City of Birmingham Symphony Orchestra / Paavo Järvi" Virgin Classics VC5 45295-2 (68 minutes:DDD)

  14. Bernstein: Prelude, Fugue and Riffs / Edward Greenfield

    Index Scriptorium Estoniae

    Greenfield, Edward

    1998-01-01

    Uuest heliplaadist "Bernstein: Prelude, Fugue and Riffs. Facsimile. West Side Story - Symphonic Dances. Divertimento. City of Birmingham Symphony Orchestra / Paavo Järvi. Virgin Classics VC5 45295-2 (68 minutes:DDD)

  15. Transfinite diameter of Bernstein sets in

    Directory of Open Access Journals (Sweden)

    Bialas-Cież Leokadia

    2002-01-01

    Full Text Available Let be a compact set in satisfying the following generalized Bernstein inequality: for each such that , for each polynomial of degree where is a constant independent of and , is an infinite set of natural numbers that is also independent of and . We give an estimate for the transfinite diameter of the set : For satisfying the usual Bernstein inequality (i.e., , we prove that

  16. BXO mode-converted electron Bernstein emission diagnostic (invited)

    Science.gov (United States)

    Volpe, F.; Laqua, H. P.

    2003-03-01

    Electron temperature profiles at densities above the electron cyclotron emission (ECE) cutoff are measured at the W7-AS stellarator by a novel diagnostic based on black body emission and Bernstein-extraordinary-ordinary mode conversion of electron Bernstein waves (EBWs). The radiation is collected along a special oblique line of sight by an antenna with gaussian optics. This was optimized for maximal conversion efficiency and minimal Doppler broadening by means of EBW ray tracing calculations in full stellarator geometry. The elliptical O-mode polarization detected along the oblique line of sight is changed into a linear polarization by a broadband quarter wave shifter, namely an elliptical waveguide. The signal is spectrum analyzed by an heterodyne radiometer and temperature profiles are derived from spectra by means of ray tracing. The diagnostic was applied to measurements of edge-localized modes to illustrate its advantages in terms of spatial and temporal resolution. Moreover, for the first time, the heat wave propagation method for the determination of local heat transport coefficients was extended beyond the ECE cutoff density by combining EBW emission measurements at the first harmonic (f=66-78 GHz) with modulated EBW heating at the second harmonic (140 GHz).

  17. Derivatives of Multivariate Bernstein Operators and Smoothness with Jacobi Weights

    Directory of Open Access Journals (Sweden)

    Jianjun Wang

    2012-01-01

    Full Text Available Using the modulus of smoothness, directional derivatives of multivariate Bernstein operators with weights are characterized. The obtained results partly generalize the corresponding ones for multivariate Bernstein operators without weights.

  18. Pedagogic Governance: Theorising with/after Bernstein

    Science.gov (United States)

    Singh, Parlo

    2017-01-01

    Researchers interested in new modes of social control and regulation through pedagogic means have increasingly drawn on Bernstein's theories of social control through pedagogic means and the emergence of a totally pedagogised society. This article explores this aspect of the Bernsteinian theoretical project by extrapolating and contrasting…

  19. Ion Bernstein instability dependence on the proton-to-electron mass ratio: Linear dispersion theory

    Science.gov (United States)

    Min, Kyungguk; Liu, Kaijun

    2016-07-01

    Fast magnetosonic waves, which have as their source ion Bernstein instabilities driven by tenuous ring-like proton velocity distributions, are frequently observed in the inner magnetosphere. One major difficulty in the simulation of these waves is that they are excited in a wide frequency range with discrete harmonic nature and require time-consuming computations. To overcome this difficulty, recent simulation studies assumed a reduced proton-to-electron mass ratio, mp/me, and a reduced light-to-Alfvén speed ratio, c/vA, to reduce the number of unstable modes and, therefore, computational costs. Although these studies argued that the physics of wave-particle interactions would essentially remain the same, detailed investigation of the effect of this reduced system on the excited waves has not been done. In this study, we investigate how the complex frequency, ω = ωr+iγ, of the ion Bernstein modes varies with mp/me for a sufficiently large c/vA (such that ωpe2/Ωe2≡(me/mp)(c/vA)2≫1) using linear dispersion theory assuming two different types of energetic proton velocity distributions, namely, ring and shell. The results show that low- and high-frequency harmonic modes respond differently to the change of mp/me. For the low harmonic modes (i.e., ωr˜Ωp), both ωr/Ωp and γ/Ωp are roughly independent of mp/me, where Ωp is the proton cyclotron frequency. For the high harmonic modes (i.e., Ωp≪ωr≲ωlh, where ωlh is the lower hybrid frequency), γ/ωlh (at fixed ωr/ωlh) stays independent of mp/me when the parallel wave number, k∥, is sufficiently large and becomes inversely proportional to (mp/me)1/4 when k∥ goes to zero. On the other hand, the frequency range of the unstable modes normalized to ωlh remains independent of mp/me, regardless of k∥.

  20. Numerical and Analytical Calculation of Bernstein Resonances in a Non-Uniform Cylindrical Plasma

    Science.gov (United States)

    Walsh, D. K.; Dubin, D. H. E.

    2016-10-01

    This poster presents theory and numerical predictions of electrostatic Bernstein modes in a cylindrical non-neutral plasma column with multiple ion species. These modes propagate radially across the column until they are reflected when their frequency matches the local upper hybrid frequency, setting up an internal normal mode on the column, and also mode-coupling to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Using our linear Vlasov code discussed last year, we present several numerical results at various magnetic fields, eilθ-dependencies, and plasma profiles in order to make quantitative predictions of future cyclotron wave experiments. These results are compared to the semi-analytic WKB theory in order to determine under what conditions Bernstein waves are measurable at the wall. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451.

  1. [Recontextualization of nursing clinical simulation based on Basil Bernstein: semiology of pedagogical practice].

    Science.gov (United States)

    dos Santos, Mateus Casanova; Leite, Maria Cecília Lorea; Heck, Rita Maria

    2010-12-01

    This is an investigative case study with descriptive and participative character, based on an educational experience with the Simulation in Nursing learning trigger. It was carried out during the second semester of the first cycle of Faculdade de Enfermagem (FEN), Universidade Federal de Pelotas (UFPel). The aim is to study the recontextualization of pedagogic practice of simulation-based theories developed by Basil Bernstein, an education sociologist, and to contribute with the improvement process of education planning, and especially the evaluation of learning trigger. The research shows that Bernstein's theory is a powerful tool semiotic pedagogical of practices which contributes to the planning and analysis of curricular educational device.

  2. A Bernstein type inequality associated with wavelet bi-frame decomposition

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Wang

    2016-10-01

    Full Text Available Abstract Bernstein inequality is an essential inequality for Besov spaces. Smoothness based approaches are widely used in establishing the inequality. Yet, despite numerous studies over the last two decades, there is still little research focusing on decay-based approaches. However, motivating authors to establish inequality poses challenges, many of which can be overcome by means of the completeness of wavelet bi-frames in Lebesgue spaces and the stability of wavelet coefficients. The research has shown how wavelets with decay conditions enable descriptions of Lebesgue spaces, and in particular, the Bernstein inequality.

  3. CONVERGENCE ARTE FOR INTERATES OF q-BERNSTEIN POLYNOMIALS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Recently, q-Bernstein polynomials have been intensively investigated by a number of authors. Their results show that for q ≠ 1, q-Bernstein polynomials possess of many interesting properties. In this paper, the convergence rate for iterates of both q-Bernstein when n →∞ and convergence rate of Bn(f,q;x) when f ∈ Cn-1[0, 1], q →∞ are also presented.

  4. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations

    Science.gov (United States)

    Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Tao, Xin; Wang, Shui

    2016-02-01

    In this paper, we perform one-dimensional particle-in-cell simulations to investigate the properties of perpendicular magnetosonic waves in a plasma system consisting of three components: cool electrons, cool protons, and tenuous ring distribution protons, where the waves are excited by the tenuous proton ring distribution. Consistent with the linear theory, the spectra of excited magnetosonic waves can change from discrete to continuous due to the overlapping of adjacent unstable wave modes. The increase of the proton to electron mass ratio, the ratio of the light speed to the Alfven speed, or the concentration of protons with a ring distribution tends to result in a continuous spectrum of magnetosonic waves, while the increase of the ring velocity of the tenuous proton ring distribution leads to a broader one, but with a discrete structure. Moreover, the energization of both cool electrons and protons and the scattering of ring distribution protons due to the excited magnetosonic waves are also observed in our simulations, which cannot be predicted by the linear theory. Besides, a thermalized proton ring distribution may lead to the further excitation of several lower discrete harmonics with their frequencies about several proton gyrofrequencies.

  5. Study on wave rotor refrigerators

    Institute of Scientific and Technical Information of China (English)

    Yuqiang DAI; Dapeng HU; Meixia DING

    2009-01-01

    As a novel generation of a rotational gas wave machine, the wave rotor refrigerator (WRR) is an unsteady flow device used for refrigeration, in whose passages pressured streams directly contact and exchange energy due to the movement of pressure waves. In this paper, the working mechanism and refrigeration principle are inves-tigated based on the one-dimensional unsteady flow theory.A basic limitation on main structural parameters and operating parameters is deduced and the wave diagram of WRR to guide designing is sketched. The main influential factors are studied through an experiment. In the DUT Gas Wave Refrigeration Studying and Development Center (GWRSDC) lab, the isentropic efficiency can now reach about 65%. The results show that the WRR is a feasible and promising technology in pressured gas refrigeration cases.

  6. Bernstein's "Codes" and the Linguistics of "Deficit"

    Science.gov (United States)

    Jones, Peter E.

    2013-01-01

    This paper examines the key linguistic arguments underpinning Basil Bernstein's theory of "elaborated" and "restricted" "codes". Building on a review of selected highlights from the collective critical response to Bernstein, the paper attempts to clarify the relationship of the theory to "deficit" views…

  7. EQUIVALENT THEOREMS ON SIMULTANEOUS APPROXIMATION BY COMBINATIONS OF BERNSTEIN OPERATORES

    Institute of Scientific and Technical Information of China (English)

    Li Cheng; Linsen Xie

    2006-01-01

    In this paper we give equivalent theorems on simultaneous approximation for the combinations of Bernstein operators by r-th Ditzian-Totik modulus of smoothness ωτψλ (f, t)(0 ≤λ≤ 1). We also investigate the relation between the derivatives of the combinations of Bernstein operators and the smoothness of derivatives of functions.

  8. Patriotism, Peace and Poverty : Reply to Bernstein and Varden

    NARCIS (Netherlands)

    Kleingeld, Pauline

    2014-01-01

    In this essay I reply to Alyssa Bernstein and Helga Varden’s comments on my book, Kant and Cosmopolitanism. In response to Bernstein, I argue that Kant’s opposition to the coercive incorporation of states into an international federation should be interpreted as permitting no exceptions. In response

  9. Numerical solution of stochastic SIR model by Bernstein polynomials

    Directory of Open Access Journals (Sweden)

    N. Rahmani

    2016-01-01

    Full Text Available In this paper, we present numerical method based on Bernstein polynomials for solving the stochastic SIR model. By use of Bernstein operational matrix and its stochastic operational matrix we convert stochastic SIR model to a nonlinear system that can be solved by Newton method. Finally, a test problem of SIR model is presented to illustrate our mathematical findings.

  10. Millimeter Wave Alternate Route Study.

    Science.gov (United States)

    1981-04-01

    A0-AI02 303 HARRIS CORP MELBOURNE FL GOVERNMENT COMMUNICATION ST--ETC FIG 17/2.1 MILLIMETER WAVE ALENT ROUTE STUDT.(U) APR W C ADAMS J J PAN, W C...481-487. 4-7 abm ADAOO0 303 HARRIS CORP MELBOURNE FL GOVERNMENT COMMUNICATION S -ETC F/G 17/2.1 MILLIMETER WAVE ALTERNATE ROUTE STUDY.(U) APR 81 W C...7-21L’j r AD-A102 303 HARRIS CORP MELBOURNE FL GOVERNMENT COMMUNICATION ST--ETC F/A 17/2.1 MILLIMETER WAVE ALTERNATE ROUTE STUDY(U) APR 81 W C ADAMS

  11. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  12. Derivatives of Bernstein- Kantorovich Operators and Smoothness%Bernstein-Kantorovich算子导数与光滑性

    Institute of Scientific and Technical Information of China (English)

    蒋红标

    2003-01-01

    借助于r-阶古典光滑模ωr(f,t),研究了Bernstein-Kantorovich算子导数与它所逼近函数光滑性之间的关系,得到了Bernstein-Kantorovich算子导数与r-阶古典光滑模ωr(f,t)的等价定理.

  13. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current situ...... situation, and proposes a number of activities in order to improve the buoyancy regulation system. This work was performed under EU ENERGIE contract no. ENK5-CT-2002-00603, and is a contribution to WP 2.3/2.4 and D40/D41....

  14. Simplified Storm Surge Simulations Using Bernstein Polynomials

    Science.gov (United States)

    Beisiegel, Nicole; Behrens, Jörn

    2016-04-01

    Storm surge simulations are vital for forecasting, hazard assessment and eventually improving our understanding of Earth system processes. Discontinuous Galerkin (DG) methods have recently been explored in that context, because they are locally mass-conservative and in combination with suitable robust nodal filtering techniques (slope limiters) positivity-preserving and well-balanced for the still water state at rest. These filters manipulate interpolation point values in every time step in order to retain the desirable properties of the scheme. In particular, DG methods are able to represent prognostic variables such as the fluid height at high-order accuracy inside each element (triangle). For simulations that include wetting and drying, however, the high-order accuracy will destabilize the numerical model because point values on quadrature points may become negative during the computation if they do not coincide with interpolation points. This is why the model that we are presenting utilizes Bernstein polynomials as basis functions to model the wetting and drying. This has the advantage that negative pointvalues away from interpolation points are prevented, the model is stabilized and no additional time step restriction is introduced. Numerical tests show that the model is capable of simulating simplified storm surges. Furthermore, a comparison of model results with third-order Bernstein polynomials with results using traditional nodal Lagrange polynomials reveals an improvement in numerical convergence.

  15. MULTIVARIATE WEIGHTED BERNSTEIN-TYPE INEQUALITY AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Cao Feilong; Lin Shaobo

    2012-01-01

    Bernstein inequality played an important role in approximation theory and Fourier analysis.This article first introduces a general system of functions and the socalled multivariate weighted Bernstein,Nikol'skiǐ,and Ul'yanov-type inequalities.Then,the relations among these three inequalities are discussed.Namely,it is proved that a family of functions equipped with Bernstein-type inequality satisfies Nikol'skiǐ-type and Ul'yanov-type inequality.Finally,as applications,some classical inequalities are deduced from the obtained results.

  16. Examining the Bernstein global optimization approach to optimal power flow problem

    Science.gov (United States)

    Patil, Bhagyesh V.; Sampath, L. P. M. I.; Krishnan, Ashok; Ling, K. V.; Gooi, H. B.

    2016-10-01

    This work addresses a nonconvex optimal power flow problem (OPF). We introduce a `new approach' in the context of OPF problem based on the Bernstein polynomials. The applicability of the approach is studied on a real-world 3-bus power system. The numerical results obtained with this new approach for a 3-bus system reveal a satisfactory improvement in terms of optimality. The results are found to be competent with generic global optimization solvers BARON and COUENNE.

  17. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.;

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......)] to gain new understanding into the nature of FWMC in tokamaks. The massively-parallel-processor version of TORIC is also now capable of running with sufficient resolution to model planned lower hybrid range of frequencies experiments in the Alcator C-Mod. (C) 2004 American Institute of Physics....

  18. Numerical study of airflow over breaking waves

    Science.gov (United States)

    Yang, Zixuan; Shen, Lian

    2016-11-01

    We present direct numerical simulation (DNS) results on airflow over breaking waves. Air and water are simulated as a coherent system. The initial condition for the simulation is a fully-developed turbulent airflow over strongly-forced steep waves. The airflow is driven by a shear stress at the top. The effects of the initial wave steepness and wave age are studied systematically. Because wave breaking is an unsteady process, we use ensemble averaging of a large number of runs to obtain turbulent statistics. Simulation results show that the airflow above does not see the wave trough during wave breaking. Vortex structures at different stages of wave breaking are analyzed based on a linear stochastic estimation method. It is found that the wave breaking alters the pattern of vortex structures.

  19. Proofs of the Cantor-Bernstein theorem a mathematical excursion

    CERN Document Server

    Hinkis, Arie

    2013-01-01

    This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schröder, Bernstein, Borel, Zermelo, Poincaré, Russell, Peano, the Königs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos’ celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly an...

  20. Interpolation and Convergence of Bernstein-Bézier Coefficients

    Institute of Scientific and Technical Information of China (English)

    Feng Jun LI

    2011-01-01

    In this paper,two ways of the proof are given for the fact that the Berustein-Bézier coefficients (BB-coefficients) of a multivariate polynomial converge uniformly to the polynomial under repeated degree elevation over the simplex.We show that the partial derivatives of the inverse Bernstein polynomial An(g) converge uniformly to the corresponding partial derivatives of g at the rate 1/n.We also consider multivariate interpolation for the BB-coefficients,and provide effective interpolation formulas by using Bernstein polynomials with ridge form which essentially possess the nature of univariate polynomials in computation,and show that Bernstein polynomials with ridge form with least degree can be constructed for interpolation purpose,and thus a computational algorithm is provided correspondingly.

  1. Music on the Move: Methodological Applications of Bernstein's Concepts in a Secondary School Music Context

    Science.gov (United States)

    McPhail, Graham J.

    2016-01-01

    In 2002 Parlo Singh outlined Bernstein's theory of the pedagogic device, elaborating the potential in Bernstein's complex theoretical framework for empirical research. In particular, Singh suggests that Bernstein's concepts provide the means of making explicit the macro and micro structuring of knowledge into pedagogic communication. More…

  2. A reappraisal of ocean wave studies

    Science.gov (United States)

    Yuan, Yeli; Huang, Norden E.

    2012-11-01

    A reappraisal of wave theory from the beginning to the present day is made here. On the surface, the great progress in both theory and applications seems to be so successful that there would be no great challenge in wave studies anymore. On deeper examination, we found problems in many aspects of wave studies starting from the definition of frequency, the governing equations, the various source functions of wave models, the directional development of wind wavefield, the wave spectral form and finally the role of waves as they affect coastal and global ocean dynamics. This is a call for action for the wave research community. For future research, we have to consider these problems seriously and also to examine the basic physics of wave motion to determine their effects on other ocean dynamic processes quantitatively, rather than relying on parameterization in oceanic and geophysical applications.

  3. Langmuir wave filamentation in the kinetic regime

    CERN Document Server

    Silantyev, Denis A; Rose, Harvey A

    2016-01-01

    Nonlinear Langmuir wave in the kinetic regime $k\\lambda_D\\gtrsim0.2$ has a transverse instability, where $k$ is the wavenumber and $\\lambda_D$ is the Debye length. The nonlinear stage of that instability development leads to the filamentation of Langmuir waves. Here we study the linear stage of transverse instability of both Bernstein-Greene-Kruskal (BGK) modes and dynamically prepared BGK-like initial conditions to find the same instability growth rate suggesting the universal mechanism for the kinetic saturation of stimulated Raman scatter in laser-plasma interaction experiments. Multidimensional Vlasov simulations results are compared to the theoretical predictions.

  4. Reminiscences on the study of wind waves.

    Science.gov (United States)

    Mitsuyasu, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena.

  5. A laboratory study of breaking waves

    Directory of Open Access Journals (Sweden)

    Jaros³aw Têgowski

    2004-09-01

    Full Text Available This paper deals with some aspects of the wave-breaking phenomenon. The objectives were to study wave-breaking criteria, and the probability of whitecap coverage under fully controlled wave conditions. An additional task was to in vestigate the characteristic spectral features of the noise produced by breaking waves and the acoustic energy generated during wave breaking events. A controlled experiment was carried out in the Ocean Basin Laboratory at MARINTEK, Trondheim (Norway. Waves were generated by a computer-controlled multi-flap wave maker, which reproduced a realistic pattern of the sea surface for the prescribed spectra. Using wave staff recordings and photographic techniques, correlations between the breaking parameters and the radiated acoustic emissions were established.

  6. Approximation of Bernstein-Bezier Operators%算子Bernstein-Bezier的一个逼近定理

    Institute of Scientific and Technical Information of China (English)

    王瑶准

    2015-01-01

    本文章以光滑模和K泛函为工具,结合Bernstein多项式的性质及广义的Bernstein-Bezie的逼近定理,讨论了修正的Bernstein-Bezier算子在连续区间C[0,1]上的逼近性质,并得到该算子的点态逼近正定理,丰富了Bernstein算子和Bezier算子的逼近理论.

  7. Some Preserved Properties for Modified Bernstein-Durrmeyer Operators%修正的Bernstein-Durrmeyer算子的若干保持性质

    Institute of Scientific and Technical Information of China (English)

    马月梅

    2005-01-01

    修正的Bernstein-Durrmeyer算子既具有一些与Bernstein算子相似的性质,同时也具有Bernstein-Durrmeyer算子的一些性质.研究了修正的Bernstein-Durrmeyer算子的特性,得到相应原函数的单调性、凸性、Hw类的保持性质.所得结果类似于所对应的Bernstein算子的结果.

  8. Reminiscences on the study of wind waves

    OpenAIRE

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Resear...

  9. Contesting Reform: Bernstein's Pedagogic Device and Madrasah Education in Singapore

    Science.gov (United States)

    Tan, Charlene

    2010-01-01

    This paper highlights the active role played by various pedagogic agents in contesting the state educational reforms for madrasahs in Singapore. Drawing upon Basil Bernstein's pedagogic device, the paper identifies tensions and challenges that arise from the attempts by the state to implement curriculum reforms. The paper contends that the stakes…

  10. New Bernstein type inequalities for polynomials on ellipses

    Science.gov (United States)

    Freund, Roland; Fischer, Bernd

    1990-01-01

    New and sharp estimates are derived for the growth in the complex plane of polynomials known to have a curved majorant on a given ellipse. These so-called Bernstein type inequalities are closely connected with certain constrained Chebyshev approximation problems on ellipses. Also presented are some new results for approximation problems of this type.

  11. Pointwise Approximation Theorems for Combinations and Derivatives of Bernstein Polynomials

    Institute of Scientific and Technical Information of China (English)

    Lin Sen XIE

    2005-01-01

    We establish the pointwise approximation theorems for the combinations of Bernstein polynomials by the rth Ditzian-Totik modulus of smoothness ωγφ(f, t) where φ is an admissible step-weight function. An equivalence relation between the derivatives of these polynomials and the smoothness of functions is also obtained.

  12. Pointwise Approximation for the Iterated Boolean Sums of Bernstein Operators

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-yan; LI Cui-xiang; YAO Qiu-mei

    2013-01-01

    In this paper,with the help of modulus of smoothness ω2r(4)(f,t),we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator Bnn and obtain direct and inverse theorems when 1-1/r ≤ λ ≤ 1,r ∈ N.

  13. Gravitational-wave Mission Study

    Science.gov (United States)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  14. Invertibility of random submatrices via the Non-Commutative Bernstein Inequality

    CERN Document Server

    Chrétien, Stéphane

    2011-01-01

    Let $X$ be a $n\\times p$ matrix. We provide a detailed study of the quasi isometry property for random submatrices of $X$ obtained by uniform column sampling. The analysis relies on a tail decoupling argument with explicit constants and a recent version of the Non-Commutative Bernstein inequality (NCBI) [14]. Our results complement those obtained in [13] for the moments of submatrices. They also generalize and improve on those in [2], which are based on a Non-Commutative Kahane- Kintchine inequality (NCKI).

  15. Bernstein Series Solution of a Class of Lane-Emden Type Equations

    Directory of Open Access Journals (Sweden)

    Osman Rasit Isik

    2013-01-01

    Full Text Available The purpose of this study is to present an approximate solution that depends on collocation points and Bernstein polynomials for a class of Lane-Emden type equations with mixed conditions. The method is given with some priori error estimate. Even the exact solution is unknown, an upper bound based on the regularity of the exact solution will be obtained. By using the residual correction procedure, the absolute error can be estimated. Also, one can specify the optimal truncation limit n which gives a better result in any norm. Finally, the effectiveness of the method is illustrated by some numerical experiments. Numerical results are consistent with the theoretical results.

  16. Full-wave Feasibility Study of Magnetic Diagnostic based on O-X Mode Conversion and Oblique Reflectometry Imaging

    Science.gov (United States)

    Volpe, F. A.; Choi, M.; Patel, Y.; Meneghini, O.

    2013-10-01

    We present initial two-dimensional full-wave modeling of an innovative diagnostic of the magnetic field vector as a function of the minor radius in the pedestal region. An angularly broad millimeter-wave beam of ordinary (O) polarization is obliquely injected in the magnetized plasma; part of it converts in the extraordinary (X) mode at the O-mode cutoff, the rest is reflected. The reflected beam pattern, measured with an array of receivers, contains information on the angular-dependent mode conversion, which contains information on the magnetic pitch angle at the cutoff. Measurements at various frequencies provide radially resolved measurements of pitch angle. The new technique proposed does not require the plasma to be an overdense emitter of Electron Bernstein Waves and is applicable whenever reflectometry is applicable. Simulations performed with the finite-element COMSOL Multiphysics code in ``DIII-D-like'' plasma slabs confirmed the presence of a minimum in reflectivity of an externally injected O-mode beam. The dependence of such reflectivity ``hole'' upon magnetic field is under study. Future inclusion of toroidal ripple, density and magnetic fluctuation effects, as well as possible extensions to a fully three-dimensional diagnostic of the magnetic field will be discussed. Current address: Imsol-X.

  17. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    Science.gov (United States)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  18. The Schroder-Bernstein property for a-saturated models

    CERN Document Server

    Goodrick, John

    2012-01-01

    A first-order theory T has the Schr\\"oder-Bernstein (SB) property if any pair of elementarily bi-embeddable models are isomorphic. We prove that T has an expansion by constants that has the SB property if and only if T is superstable and non-multidimensional. We also prove that among superstable theories T, the class of a-saturated models of T has the SB property if and only if T has no nomadic types.

  19. Study of Linear and Nonlinear Wave Excitation

    Science.gov (United States)

    Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick

    2013-10-01

    We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.

  20. Approximation by Chebyshevian Bernstein Operators versus Convergence of Dimension Elevation

    KAUST Repository

    Ait-Haddou, Rachid

    2016-03-18

    On a closed bounded interval, consider a nested sequence of Extended Chebyshev spaces possessing Bernstein bases. This situation automatically generates an infinite dimension elevation algorithm transforming control polygons of any given level into control polygons of the next level. The convergence of these infinite sequences of polygons towards the corresponding curves is a classical issue in computer-aided geometric design. Moreover, according to recent work proving the existence of Bernstein-type operators in such Extended Chebyshev spaces, this nested sequence is automatically associated with an infinite sequence of Bernstein operators which all reproduce the same two-dimensional space. Whether or not this sequence of operators converges towards the identity on the space of all continuous functions is a natural issue in approximation theory. In the present article, we prove that the two issues are actually equivalent. Not only is this result interesting on the theoretical side, but it also has practical implications. For instance, it provides us with a Korovkin-type theorem of convergence of any infinite dimension elevation algorithm. It also enables us to tackle the question of convergence of the dimension elevation algorithm for any nested sequence obtained by repeated integration of the kernel of a given linear differential operator with constant coefficients. © 2016 Springer Science+Business Media New York

  1. Study on Solitary Waves of a General Boussinesq Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we employ the bifurcation method of dynamical systems to study the solitary waves and periodic waves of a generalized Boussinesq equations. All possible phase portraits in the parameter plane for the travelling wave systems are obtained. The possible solitary wave solutions, periodic wave solutions and cusp waves for the general Boussinesq type fluid model are also investigated.

  2. 关于加权的Bernstein-Markov型不等式%The Weighted Bernstein-Markov Inequality

    Institute of Scientific and Technical Information of China (English)

    逯文鸣; 赵易

    2010-01-01

    假设函数f在端点处具有奇性,该文针对此类函数定义了一类修正的Bernstein算子,并在此基础上给出了修正的Bernstein算子的加权Bernstein-Markov型不等式,此类不等式推广了数学工作者们的结论.

  3. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Science.gov (United States)

    Meneghini, Orso; Volpe, Francesco A.

    2016-11-01

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  4. The Functional-Analytic Properties of the Limit q-Bernstein Operator

    Directory of Open Access Journals (Sweden)

    Sofiya Ostrovska

    2012-01-01

    Full Text Available The limit q-Bernstein operator Bq, 0Bernstein operator has been widely under scrutiny, and it has been shown that Bq is a positive shape-preserving linear operator on C[0,1] with ∥Bq∥=1. Its approximation properties, probabilistic interpretation, eigenstructure, and impact on the smoothness of a function have been examined. In this paper, the functional-analytic properties of Bq are studied. Our main result states that there exists an infinite-dimensional subspace M of C[0,1] such that the restriction Bq|M is an isomorphic embedding. Also we show that each such subspace M contains an isomorphic copy of the Banach space c0.

  5. Wave particle interactions in the high-altitude polar cusp: a Cluster case study

    Directory of Open Access Journals (Sweden)

    B. Grison

    2005-12-01

    Full Text Available On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation the high-altitude (10 RE cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame. Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected.

  6. Effective action approach to wave propagation in scalar QED plasmas

    CERN Document Server

    Shi, Yuan; Qin, Hong

    2016-01-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...

  7. Basil Bernstein's Theory of the Pedagogic Device and Formal Music Schooling: Putting the Theory into Practice

    Science.gov (United States)

    Wright, Ruth; Froehlich, Hildegard

    2012-01-01

    This article describes Basil Bernstein's theory of the pedagogic device as applied to school music instruction. Showing that educational practices are not personal choices alone, but the result of socio-political mandates, the article traces how education functions as a vehicle for social reproduction. Bernstein called this process the…

  8. Basil Bernstein and Emile Durkheim: Two Theories of Change in Educational Systems

    Science.gov (United States)

    Cherkaoui, Mohamed

    1977-01-01

    Attempts to draw out parallels and differences between Emile Durkheim's and Basil Bernstein's theories of educational systems and highlights Bernstein's reformulation of certain features of Durkheim's thought. Focuses on the role of the school, curriculum change, and social conflict. (Author/RK)

  9. Lp APPROXIMATION BY GENERAL BERNSTEIN-DURRMEYER OPERATOR DEFINED ON SIMPLEX

    Institute of Scientific and Technical Information of China (English)

    Cao Feilong

    2004-01-01

    As a generalization of the Bernstein-Durrmeyer operators defined on the simplex, a class of general Bernstein- Durrmeyer operators is introduced. With the weighted moduli of smoothness as a metric, we prove a strong direct theorem and an inverse theorem of weak type for these operators by using a decomposition way. From the theorems the characterization of Lp approximation behavior is derived.

  10. Experimental Study of Wave Breaking on Gentle Slope

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    -An experimental study of regular wave and irregular wave breaking is performed on a gentle slope of 1:200. In the experiment, asymmetry of wave profile is analyzed to determine its effect on wave breaker indices and to explain the difference between Goda and Nelson about the breaker indices of regular waves on very mild slopes. The study shows that the breaker index of irregular waves is under less influence of bottom slope i, relative water depth d/ L0 and the asymmetry of wave profile than that of regular waves. The breaker index of regular waves from Goda may be used in the case of irregular waves, while the coefficient A should be 0.15. The ratio of irregular wavelength to the length calculated by linear wave theory is 0.74. Analysis is also made on the waveheight damping coefficient of regular waves after breaking and on the breaking probability of large irregular waves.

  11. Numerical Wave Flume Study on Wave Motion Around Submerged Plates

    Institute of Scientific and Technical Information of China (English)

    齐鹏; 侯一筠

    2003-01-01

    Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.

  12. Bernstein-Fan算子的推广及其逼近等价定理%The Approximation Theorem of a Generalization of the Bernstein-Fan Operator

    Institute of Scientific and Technical Information of China (English)

    黄朝霞

    2002-01-01

    Bernstein-Fan算子进行推广,并在此基础上进一步探讨其一致收敛性以及导数与连续模之间的关系.%On the basis of the Bernstein-Fan operator, a generalization is given. Its uniform convergence and the relationship between continuous model and derivative are discussed.

  13. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    Science.gov (United States)

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  14. CFD study of the overtopping discharge of the Wave Dragon wave energy converter

    DEFF Research Database (Denmark)

    Eskilsson, K.; Palm, J.; Kofoed, Jens Peter

    2015-01-01

    The Wave Dragon is a floating Wave Energy Converter (WEC) working by the overtopping principle. The overtopping discharge has been determined by model scale experiments in wave basins. In the present study we numerically simulate the overtopping behavior of the Wave Dragon device using a VOFbased...

  15. Bernstein e a classe média

    Directory of Open Access Journals (Sweden)

    Sally Power

    2008-12-01

    Full Text Available This paper explores Basil Bernstein’s insights into education and social class, and in particular the relevance of his work for understanding the British middle class. Bernstein is one of the few sociologists of education to recognise and explore differences and tensions within the middle class. We begin by exploring some of the influences of Bernstein’s theorization of social class in general, and outline his main ideas on the relationship between the middle class and education in particular. We then examine the relevance of his work for research on education and middle-class differentiation through drawing on data from our ‘Destined for Success’ project. This project traced the educational biographies of 300 young men and women from the beginning of their promising educational secondary school career to their mid-twenties. We argue that the distinctive dispositions and orientations of the ‘new’ and ‘old’ middle class proposed by Bernstein are evident within parental preferences for types of school, processes of student engagement and, ultimately, differentiated middle-class identities.

  16. Numerical and Analytical Calculation of Bernstein Mode Resonances in a Non-Uniform Cylindrical Plasma

    Science.gov (United States)

    Walsh, Daniel K.; Dubin, Daniel H. E.

    2015-11-01

    This poster presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on FLR effects to propagate radially across the column until they are reflected when their frequency matches the local upper hybrid frequency, setting up an internal normal mode on the column, and also mode-coupling to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, will be presented and compared to an analytic WKB theory. A previous version of the theory expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently its frequency predictions are shifted with respect to the numerical results. A new version of the WKB theory uses the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The eventual goal is to compare the theory to recent experiments that have observed these waves in pure electron and pure ion plasmas. Supported by National Science Foundation Grant PHY-1414570.

  17. Numerical method of studying nonlinear interactions between long waves and multiple short waves

    Institute of Scientific and Technical Information of China (English)

    Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei

    2009-01-01

    Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.

  18. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  19. A teoria de Basil Bernstein: alguns aspectos fundamentais

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2007-12-01

    Full Text Available The article begins with a reference to the pieces of work that Basil Bernstein considered to have been the landmarks of the evolution of his thought. This is followed by a detailed description of the two models that contain the main concepts of his theory – Model of Cultural Reproduction and Transformation and Model of Pedagogic Discourse – where the theoretical meaning of these models and concepts is explained and where are given some examples of how to put them into practice at the level of pedagogic texts and contexts. The article also includes the most recent developments of Bernstein’s thought by explaining his ideas about the forms discourses can take – Vertical and Horizontal Discourses. Finally, Bernstein’s theory is approached within the framework of the empirical research, highlighting his epistemological positioning and explicating the methodological model that he suggested should be the driving force of any theory.

  20. Integration of posture and movement: contributions of Sherrington, Hess, and Bernstein.

    Science.gov (United States)

    Stuart, Douglas G

    2005-01-01

    Neural mechanisms that integrate posture with movement are widespread throughout the central nervous system (CNS), and they are recruited in patterns that are both task- and context-dependent. Scientists from several countries who were born in the 19th century provided essential groundwork for these modern-day concepts. Here, the focus is on three of this group with each selected for a somewhat different reason. Charles Sherrington (1857-1952) had innumerable contributions that were certainly needed in the subsequent study of posture and movement: inhibition as an active coordinative mechanism, the functional anatomy of spinal cord-muscle connectivity, and helping set the stage for modern work on the sensorimotor cortex and the corticospinal tract. Sadly, however, by not championing the work of his trainee and collaborator, Thomas Graham Brown (1882-1965), he delayed progress on two key motor control mechanisms: central programming and pattern generation. Walter Hess (1881-1973), a self-taught experimentalist, is now best known for his work on CNS coordination of autonomic (visceral) and emotional behavior. His contributions to posture and movement, however, were also far-reaching: the coordination of eye movements and integration of goal-directed and "framework" (anticipatory set) motor behavior. Nikolai Bernstein (1896-1966), the quintessence of an interdisciplinary, self-taught movement neuroscientist, made far-reaching contributions that were barely recognized by Western workers prior to the 1960s. Today, he is widely praised for showing that the CNS's hierarchy of control mechanisms for posture and movement is organized hand-in-hand with distributed and parallel processing, with all three subject to evolutionary pressures. He also made important observations, like those of several previous workers, on the goal focus of voluntary movements. The contributions of Sherrington, Hess, and Bernstein are enduring. They prompt thought on the philosophical axioms that

  1. On the Fermionic -adic Integral Representation of Bernstein Polynomials Associated with Euler Numbers and Polynomials

    Directory of Open Access Journals (Sweden)

    Ryoo CS

    2010-01-01

    Full Text Available The purpose of this paper is to give some properties of several Bernstein type polynomials to represent the fermionic -adic integral on . From these properties, we derive some interesting identities on the Euler numbers and polynomials.

  2. Bernstein dual-Petrov-Galerkin method: application to 2D time fractional diffusion equation

    CERN Document Server

    Jani, Mostafa; Babolian, Esmail

    2016-01-01

    In this paper, we develop a dual-Petrov-Galerkin method using Bernstein polynomials. The method is then implemented for the numerical simulation of the two-dimensional subdiffusion equation. The method is based on a finite difference discretization in time and a spectral method in space utilizing a suitable compact combinations of dual Bernstein basis as the test functions and the Bernstein polynomials as the trial ones. We derive the exact sparse operational matrix of differentiation for the dual Bernstein basis which provides a matrix-based approach for spatial discretization of the problem. It is also shown that the proposed method leads to banded linear systems. Finally some numerical examples are provided to show the efficiency and accuracy of the method.

  3. Some approximation properties of ( p , q $(p,q$ -Bernstein operators

    Directory of Open Access Journals (Sweden)

    Shin Min Kang

    2016-06-01

    Full Text Available Abstract This paper is concerned with the ( p , q $(p,q$ -analog of Bernstein operators. It is proved that, when the function is convex, the ( p , q $(p,q$ -Bernstein operators are monotonic decreasing, as in the classical case. Also, some numerical examples based on Maple algorithms that verify these properties are considered. A global approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem are proved.

  4. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves.

    Science.gov (United States)

    Declercq, Nico Felicien

    2014-02-01

    When a bounded beam is incident on an immersed plate Lamb waves or Rayleigh waves can be generated. Because the amplitude of a bounded beam is not constant along its wave front, a specific beam profile is formed that influences the local efficiency of energy conversion of incident sound into Lamb waves or Rayleigh waves. Understanding this phenomenon is important for ultrasonic immersion experiments of objects because the quality of such experiments highly depends on the amount of energy transmitted into the object. This paper shows by means of experiments based on monochromatic Schlieren photography that the area within the bounded beam responsible for Lamb wave generation differs from that responsible for Rayleigh wave generation. Furthermore it provides experimental verification of an earlier numerical study concerning Rayleigh wave generation.

  5. Experimental study of three-wave interactions among capillary-gravity surface waves

    CERN Document Server

    Haudin, Florence; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-01-01

    In propagating wave systems, three or four-wave resonant interactions constitute a classical non-linear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave-trains and we study their interaction. Using two optical methods, a local one (Laser Doppler Vibrometry) and a spatio-temporal one (Diffusive Light Photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wavenumber. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly non-linear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave-trains. Finally, we discuss the relevance of three-w...

  6. Thermoelectric studies of charge density wave dynamics.

    Science.gov (United States)

    McDonald, Ross; Harrison, Neil; Singleton, John

    2008-03-01

    The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For charge density wave systems, this metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system towards thermal equilibrium, via a phason avalanche orthogonal to the sample surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B > 30 T) of the organic charge transfer salt α-(BEDT-TTF)2KHg(SCN)4, thus provides a measure of the phason thermopower.

  7. Study of Novel Slow Wave Circuit for Miniaturized Millimeter Wave Helical Traveling Wave Tube

    Science.gov (United States)

    Li, Bin; Zhu, Xiaofang; Liao, Li; Yang, Zhonghai; Zeng, Baoqing; Yao, Lieming

    2006-07-01

    Two kinds of novel helical slow wave circuit, supported by Chemical Vapor Deposition (CVD) diamond, are presented. They are applying in miniaturized millimeter wave helical traveling wave tube. Cold test characteristic of these circuits are simulated by MAFIA code. Higher performances are achieved with smaller size, compared with conventional circuit supported by BeO rods. The nonlinear analysis is implemented by Beam and Wave Interaction (BWI) module, which is a part of TWTCAD Integrated Framework. Results have been found to be consistent with the expectation. It should be wider apply in microwave and millimeter wave vacuum electronic devices.

  8. Experimental study of parametric subharmonic instability for internal waves

    CERN Document Server

    Bourget, Baptiste; Joubaud, Sylvain; Odier, Philippe

    2013-01-01

    Internal waves are believed to be of primary importance as they affect ocean mixing and energy transport. Several processes can lead to the breaking of internal waves and they usually involve non linear interactions between waves. In this work, we study experimentally the parametric subharmonic instability (PSI), which provides an efficient mechanism to transfer energy from large to smaller scales. It corresponds to the destabilization of a primary plane wave and the spontaneous emission of two secondary waves, of lower frequencies and different wave vectors. Using a time-frequency analysis, we observe the time evolution of the secondary waves, thus measuring the growth rate of the instability. In addition, a Hilbert transform method allows the measurement of the different wave vectors. We compare these measurements with theoretical predictions, and study the dependence of the instability with primary wave frequency and amplitude, revealing a possible effect of the confinement due to the finite size of the be...

  9. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  10. Study of interaction between shock wave and unsteady boundary layer

    Institute of Scientific and Technical Information of China (English)

    董志勇; 韩肇元

    2003-01-01

    This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wave interaction with an unsteady boundary layer induced by another shock wave and a rarefaction wave. So it is different from the interaction of a stationary shock wave with steady boundary layer, also different from the interaction of a reflected moving shock wave at the end of a shock tube with unsteady boundary layer induced by an incident shock. Geometrical shock dynamics is used for the theoretical analysis of the shock wave-unsteady boundary layer interaction, and a double-driver shock tube with a rarefaction wave bursting diaphragm is used for the experimental investigation in this work.

  11. Experimental studies on wave interactions of partially perforated wall under obliquely incident waves.

    Science.gov (United States)

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  12. Numerical study on wave dynamics and wave-induced bed erosion characteristics in Potter Cove, Antarctica

    Science.gov (United States)

    Lim, Chai Heng; Lettmann, Karsten; Wolff, Jörg-Olaf

    2013-12-01

    Wave generation, propagation, and transformation from deep ocean over complex bathymetric terrains to coastal waters around Potter Cove (King George Island, South Shetland Islands, Antarctica) have been simulated for an austral summer month using the Simulating Waves Nearshore (SWAN) wave model. This study aims to examine and understand the wave patterns, energy fluxes, and dissipations in Potter Cove. Bed shear stress due to waves is also calculated to provide a general insight on the bed sediment erosion characteristics in Potter Cove.A nesting approach has been implemented from an oceanic scale to a high-resolution coastal scale around Potter Cove. The results of the simulations were compared with buoy observations obtained from the National Data Buoy Center, the WAVEWATCH III model results, and GlobWave altimeter data. The quality of the modelling results has been assessed using two statistical parameters, namely the Willmott's index of agreement D and the bias index. Under various wave conditions, the significant wave heights at the inner cove were found to be about 40-50 % smaller than the ones near the mouth of Potter Cove. The wave power in Potter Cove is generally low. The spatial distributions of the wave-induced bed shear stress and active energy dissipation were found to be following the pattern of the bathymetry, and waves were identified as a potential major driving force for bed sediment erosion in Potter Cove, especially in shallow water regions. This study also gives some results on global ocean applications of SWAN.

  13. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010.......This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010....

  14. A case study of gravity waves in noctilucent clouds

    Directory of Open Access Journals (Sweden)

    P. Dalin

    2004-06-01

    Full Text Available We present a case study of a noctilucent cloud (NLC display appearing on 10-11 August 2000 over Northern Sweden. Clear wave structures were visible in the clouds and time-lapse photography was used to derive the parameters characterising the gravity waves which could account for the observed NLC modulation. Using two nearby atmospheric radars, the Esrange MST Radar data and Andoya MF radar, we have identified gravity waves propagating upward from the upper stratosphere to NLC altitudes. The wave parameters derived from the radar measurements support the suggestion that gravity waves are responsible for the observed complex wave dynamics in the NLC.

  15. The Convergence in Distribution Problems of the Random Bernstein Polynomial%随机Bernstein多项式的依分布收敛问题

    Institute of Scientific and Technical Information of China (English)

    于巍; 许爽爽; 姜雪

    2013-01-01

    利用随机的Bernstein多项式研究随机逼近问题具有一定的意义.借助弱收敛的概念,从分布函数的角度,讨论了随机Bernstein多项式依分布收敛问题.同时,与依概率收敛结果相比较,以此说明Bernstein多项式序列依分布收敛适用的范围更广.%It is very meaningful for studying the approximation problem of the random Bernstein polynomial.In this paper,the convergence in distribution problems of the random Bernstein polynomial is discussed in use of the weak convergence.Comparing with the convergence in probability,the convergence in distribution is more useful.

  16. Uncertainty Quantification for Polynomial Systems via Bernstein Expansions

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2012-01-01

    This paper presents a unifying framework to uncertainty quantification for systems having polynomial response metrics that depend on both aleatory and epistemic uncertainties. The approach proposed, which is based on the Bernstein expansions of polynomials, enables bounding the range of moments and failure probabilities of response metrics as well as finding supersets of the extreme epistemic realizations where the limits of such ranges occur. These bounds and supersets, whose analytical structure renders them free of approximation error, can be made arbitrarily tight with additional computational effort. Furthermore, this framework enables determining the importance of particular uncertain parameters according to the extent to which they affect the first two moments of response metrics and failure probabilities. This analysis enables determining the parameters that should be considered uncertain as well as those that can be assumed to be constants without incurring significant error. The analytical nature of the approach eliminates the numerical error that characterizes the sampling-based techniques commonly used to propagate aleatory uncertainties as well as the possibility of under predicting the range of the statistic of interest that may result from searching for the best- and worstcase epistemic values via nonlinear optimization or sampling.

  17. MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation

    Directory of Open Access Journals (Sweden)

    Howard Daniel

    2006-01-01

    Full Text Available Stochastic Bernstein (SB approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned (for constant or tuned with evolutionary computation (for .

  18. The experimental study of interaction between shock wave and turbulence

    Institute of Scientific and Technical Information of China (English)

    ZHAO YuXin; YI ShiHe; HE Lin; CHENG ZhongYu; TIAN LiFeng

    2007-01-01

    The interaction between shock wave and turbulence has been studied in supersonic turbulent mix layer wind tunnel. The interaction between oblique shock wave and turbulent boundary layer and the influence of large vortex in mix layer on oblique shock wave have been observed by NPLS technique. From NPLS image, not only complex flow structure is observed but also time-dependent supersonic flow visualization is realized. The mechanism of interaction between shock wave and turbulence is discussed based on high quality NPLS image.

  19. Numerical Study on Breaking Criteria for Solitary Waves

    Institute of Scientific and Technical Information of China (English)

    Chung-ren CHOU; Ruey-syan SHIH; John Z. YIM

    2003-01-01

    Studies of the breaking criteria for solitary waves on a slope are presented in this paper. The boundary element method is used to model the processes of shoaling and breaking of solitary waves on various slopes. Empirical formulae that can be used to characterize the breaking of solitary waves are presented. These include the breaking index, the wave height, the water depth, and the maximum particle velocity at the point of breaking. Comparisons with the results of other researches are given.

  20. Computational and theoretical study of the wave-particle interaction of protons and waves

    Energy Technology Data Exchange (ETDEWEB)

    Moya, P.S.; Munoz, V. [Chile Univ., Santiago (Chile). Dept. de Fisica; Vinas, A.F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Heliophysics Science Div.; Valdivia, J.A. [Chile Univ., Santiago (Chile). Dept. de Fisica; Centro para el Desarrollo de la Nanociencia y Nanotecnologia, CEDENNA (Chile); CEIBA complejidad, Bogota (Colombia)

    2012-11-01

    We study the wave-particle interaction and the evolution of electromagnetic waves propagating through a plasma composed of electrons and protons, using two approaches. First, a quasilinear kinetic theory has been developed to study the energy transfer between waves and particles, with the subsequent acceleration and heating of protons. Second, a one-dimensional hybrid numerical simulation has been performed, with and without including an expanding-box model that emulates the spherical expansion of the solar wind, to investigate the fully nonlinear evolution of this wave-particle interaction. Numerical results of both approaches show that there is an anisotropic evolution of proton temperature. (orig.)

  1. Wave Energy Study in China: Advancements and Perspectives

    Institute of Scientific and Technical Information of China (English)

    游亚戈; 郑永红; 沈永明; 吴必军; 刘荣

    2003-01-01

    The history and current status of research and development of wave energy in the world is briefly introduced. The main problems existing in these studies are pointed out. The description is focused on the current status and the advancements achieved in China. After analysis of the wave energy resources and practical situations in China, it is pointed out that the studies on wave energy should be not only concentrated on the conversion efficiency and costs of wave energy devices, but also focused on the technology of independent operation and stable output of electricity. Finally, the perspectives of application of wave energy in China are discussed.

  2. Wave Prediction Model To Study On The Wave Height Variation In Terengganu Coast Of Malaysia

    Directory of Open Access Journals (Sweden)

    Nur Amalina Abdul Latif

    2015-08-01

    Full Text Available Abstract In this study the significant wave height at the Terengganu and the change of wave height at Kuala Terengganu to Merang shoreline were simulated by using the 2D Near-Shore Wave 2D NSW model. The significant wave height by the 2D NSW model at Kuala Terengganu to Merang shoreline from 2008-2012 were simulated. The model was forced by ECMWF European Centre for Medium Range Weather Forecast data. The simulated significant wave height by the 2D NSW model at Airport Kuala Terengganu AWAC station was compared with the observed significant wave height. The mean annual significant wave height indicate the higher wave height with average mean value in a range of 1.08-1.10 m in Kuala Terengganu to Batu Rakit area and lower in Merang area with average mean value in a range of 0.74 m. The detailed 5 years simulation period demonstrates that the strong variability of wave height exists during North-East monsoon. The findings of this study could be useful for the erosive calculation shoreline protection and coastal zone management activities.

  3. Wave refraction studies off Agonda beach (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumar, V.; Pathak, M.C.; Kotnala, K.L.

    Analysis of wave refraction and longshore current has been carried out for a narrow strip off the shores of Agonda (Goa, India). Zones with high wave energy and rip currents have been demarcated. It is found from the analysis that the southern part...

  4. Asymmetry of wind waves studied in a laboratory tank

    Science.gov (United States)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  5. Asymmetry of wind waves studied in a laboratory tank

    Directory of Open Access Journals (Sweden)

    I. A. Leykin

    1995-01-01

    Full Text Available Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves. At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976. The phase shift between o. harmonics is found and shown to increase with the asymmetry of the waves.

  6. Experimental Study of the Weptos Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    This paper presents the power performance results of the experimental study of the WEPTOS wave energy converter (WEC). This novel device combines an established and efficient wave energy absorbing mechanism with an adjustable structure that can regulate the amount of incoming wave energy and reduce...... loads in extreme wave conditions. This A-shaped floating structure absorbs the energy in the waves through a multitude of rotors, the shape of which is based on the renowned Salter’s Duck. These rotors pivot around a common axle, one for each leg of the structure, to which the rotors transfer...... the absorbed wave energy and which is connected to a common power take off system (one for each leg). The study investigates the performance of the device in a large range of wave states and estimates the performance in terms of mechanical power available to the power take off system of the WEPTOS WEC for two...

  7. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    Science.gov (United States)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  8. NASA's Gravitational - Wave Mission Concept Study

    Science.gov (United States)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  9. Theoretical study of pair density wave superconductors

    Science.gov (United States)

    Zheng, Zhichao

    In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the

  10. Experimental study on the wave loads of twin-plate breakwater under oblique waves

    Institute of Scientific and Technical Information of China (English)

    GU Qian; HUANG Guoxing; ZHANG Ningchuan; LI Longxiang; SHAO Zhongan

    2016-01-01

    In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate widthB/L, wave heightHs/D and incident angleθ0 on the wave forces were analyzed and discussed. The results showed that: (1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles (θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases. (2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves. (3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater. This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.

  11. Comparing different approaches to visualizing light waves: An experimental study on teaching wave optics

    Science.gov (United States)

    Mešić, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-06-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented by sinusoidal curves. The second teaching approach includes representing light waves by a series of static images, showing the oscillating electric field vectors at characteristic, subsequent instants of time. Within the third approach phasors are used for visualizing light waves. A total of N =85 secondary school students were randomly assigned to one of the three teaching approaches, each of which lasted a period of four class hours. Students who learned with phasors and students who learned from the series of static images outperformed the students learning according to the conventional approach, i.e., they showed a much better understanding of basic wave optics, as measured by a conceptual survey administered to the students one week after the treatment. Our results suggest that visualizing light waves with phasors or oscillating electric field vectors is a promising approach to developing a deeper understanding of wave optics for students enrolled in conceptual level physics courses.

  12. Bernstein and the Explanation of Social Disparities in Education: A Realist Critique of the Socio-Linguistic Thesis

    Science.gov (United States)

    Nash, Roy

    2006-01-01

    Can an explanation of the origins of social disparities in educational achievement be assisted by a critical examination of Bernstein's sociology? This central question is approached by a consideration of the status of Bernstein's socio-linguistic thesis. The focus is on the nature of the explanations provided. The paper asks: What is the…

  13. Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions

    Directory of Open Access Journals (Sweden)

    M.H.T. Alshbool

    2017-01-01

    Full Text Available An algorithm for approximating solutions to fractional differential equations (FDEs in a modified new Bernstein polynomial basis is introduced. Writing x→xα(0<α<1 in the operational matrices of Bernstein polynomials, the fractional Bernstein polynomials are obtained and then transformed into matrix form. Furthermore, using Caputo fractional derivative, the matrix form of the fractional derivative is constructed for the fractional Bernstein matrices. We convert each term of the problem to the matrix form by means of fractional Bernstein matrices. A basic matrix equation which corresponds to a system of fractional equations is utilized, and a new system of nonlinear algebraic equations is obtained. The method is given with some priori error estimate. By using the residual correction procedure, the absolute error can be estimated. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.

  14. Hybrid Bernstein Block-Pulse Functions Method for Second Kind Integral Equations with Convergence Analysis

    Directory of Open Access Journals (Sweden)

    Mohsen Alipour

    2014-01-01

    Full Text Available We introduce a new combination of Bernstein polynomials (BPs and Block-Pulse functions (BPFs on the interval [0, 1]. These functions are suitable for finding an approximate solution of the second kind integral equation. We call this method Hybrid Bernstein Block-Pulse Functions Method (HBBPFM. This method is very simple such that an integral equation is reduced to a system of linear equations. On the other hand, convergence analysis for this method is discussed. The method is computationally very simple and attractive so that numerical examples illustrate the efficiency and accuracy of this method.

  15. On Bernstein type inequalities and a weighted Chebyshev approximation problem on ellipses

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    A classical inequality due to Bernstein which estimates the norm of polynomials on any given ellipse in terms of their norm on any smaller ellipse with the same foci is examined. For the uniform and a certain weighted uniform norm, and for the case that the two ellipses are not too close, sharp estimates of this type were derived and the corresponding extremal polynomials were determined. These Bernstein type inequalities are closely connected with certain constrained Chebyshev approximation problems on ellipses. Some new results were also presented for a weighted approximation problem of this type.

  16. Code switching and sexual orientation: a test of Bernstein's sociolinguistic theory.

    Science.gov (United States)

    Lumby, M E

    1976-01-01

    Bernstein's theory was tested in the homosexual's "closed" community to determine code-switching ability and its relationship to jargon. Subjects told a story based on homoerotic photographs where knowledge of sexual orientation was varied. Rather than finding the restricted code associated with in-group communication, an analysis of data trends (since all hypotheses were rejected) suggests that homosexual hemophyly encouraged elaboration, and status differentiation resulted in a more restricted code. Story length was the most significant variable across groups. Some of Bernstein's theoretical explanations require modification to account for subjects' behavior in stigmatized social groups.

  17. APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES

    Institute of Scientific and Technical Information of China (English)

    Chunping Zhang; Baohuai Sheng; Zhixiang Chen

    2008-01-01

    The paper is related to the norm estimate of Mercer kernel matrices.The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on[0,1]×[0,1]based on the Bernstein-Durrmeyer operator kernel ale obtained,with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2-norm for general Mercer kernel matrices on[0,1]×[0,1]are provided.

  18. A critique of Bernstein's beyond objectivism and relativism: science, hermeneutics, and praxis.

    Science.gov (United States)

    Matusitz, Jonathan; Kramer, Eric

    2011-06-01

    This analysis comments on Bernstein's lack of clear understanding of subjectivity, based on his book, Beyond Objectivism and Relativism: Science, Hermeneutics, and Praxis. Bernstein limits his interpretation of subjectivity to thinkers such as Gadamer and Habermas. The authors analyze the ideas of classic scholars such as Edmund Husserl and Friedrich Nietzsche. Husserl put forward his notion of transcendental subjectivity and phenomenological ramifications of the relationship between subjectivity and objectivity. Nietzsche referred to subjectivity as "perspectivism," the inescapable fact that any and all consciousnesses exist in space and time. Consciousness is fundamentally constituted of cultural, linguistic, and historical dimensions.

  19. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation

    Science.gov (United States)

    Mendoza-Torres, F.; Diaz-Viera, M. A.

    2015-12-01

    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  20. Theoretical Study on Standing Wave Thermoacoustic Engine

    Science.gov (United States)

    Kalra, S.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    Applications of thermoacoustic engines are not limited to driving pulse tube cryocoolers. The performance of a thermoacoustic engine is governed by various design parameters like type of resonator, stack geometry, frequency, type of working gas etc. and various operating parameters like heat input, charging pressure etc. It is very important to arrive at an optimum configuration of the engine for which a theoretical model is required. In the present work, a theoretical analysis, based on linear acoustic theory of a standing wave type half wavelength thermoacoustic engine is carried out using DeltaEC software. The system dimensions like length of resonator, stack, hot and cold heat exchangers are fixed with a helium-argon mixture as the working gas and a parallel plate type stack. Later on, two plate spacings, corresponding to helium-argon mixture and nitrogen gas, are used for carrying out analysis with helium, argon, nitrogen, carbon dioxide and helium-argon mixture as working gases of the system. The effect of charging pressure on the performance of the system is studied in terms of resonating frequency, onset temperature, pressure amplitude, acoustic power and efficiency. The conclusions derived from the analysis are reported in the paper.

  1. Shock Wave Observation in Narrow Tubes for a Parametric Study on Micro Wave Rotor Design

    Institute of Scientific and Technical Information of China (English)

    Koji Okamoto; Mikiya Araki

    2008-01-01

    Wave rotor is expected to improve the performance of micro gas turbines drastically. In the wave rotor design, the rotor speed is determined principally by the tube length. Therefore, a longer tube is preferable for miniaturized wave rotors to avoid the difficulty in bearings and lubrication system, while it may yield thicker wall boundary layer, shock wave dissipation and so on. In the present study, an experimental apparatus was built to visualize the wave rotor internal flow dynamics in a narrow tube by schlieren method and Laser Doppler Anemometry. In addition, different lengths of the tube were adopted and compared to investigate the effect of wall friction. Finally, 2D numerical simulation was performed and the results were compared with those of experiments.

  2. Simulating and understanding sand wave variation: A case study of the Golden Gate sand waves

    Science.gov (United States)

    Sterlini, F.; Hulscher, S.J.M.H.; Hanes, D.M.

    2009-01-01

    In this paper we present a detailed comparison between measured features of the Golden Gate sand wave field and the results of a nonlinear sand wave model. Because the Golden Gate sand waves exhibit large variation in their characteristics and in their environmental physics, this area gives us the opportunity to study sand wave variation between locations, within one well-measured, large area. The nonlinear model used in this paper is presently the only tool that provides information on the nonlinear evolution of large-amplitude sand waves. The model is used to increase our understanding of the coupling between the variability in environmental conditions and the sand wave characteristics. Results show that the model is able to describe the variation in the Golden Gate sand waves well when both the local oscillating tidal current and the residual current are taken into account. Current and water depth seem to be the most important factors influencing sand wave characteristics. The simulation results give further confidence in the underlying model hypothesis and assumptions. Copyright 2009 by the American Geophysical Union.

  3. Lamb wave Shearwave dispersion ultrasound Vibrometry (SDUV) validation study.

    Science.gov (United States)

    Nenadic, Ivan; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F

    2010-01-01

    Our group has been investigating the use of Shearwave Dispersion Ultrasound Vibrometry (SDUV) for quantifying viscoelasticity of the myocardium. The primary aim of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave model in the heart. The Lamb wave SDUV method was used to measure shear wave velocity dispersion of gelatin and urethane rubber plates in the range 40-500 Hz and estimate the material properties. A finite element model (FEM) of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of viscoelasticity. The FEM wave velocity dispersion data were in excellent agreement with the theoretical predictions. Elasticity and viscosity of urethane and gelatin obtained using the Lamb wave SDUV and embedded sphere methods agree within one standard deviation.

  4. Tracer Studies In A Laboratory Beach Subjected To Waves

    Science.gov (United States)

    This work investigated the washout of dissolved nutrients from beaches due to waves by conducting tracer studies in a laboratory beach facility. The effects of waves were studied in the case where the beach was subjected to the tide, and that in which no tidal action was present...

  5. Test particle study of Landau damping of steepening magnetosonic waves

    Science.gov (United States)

    Matsumoto, H.; Barnes, A.

    1982-01-01

    A test particle study of Landau damping of steepening large-amplitude magnetosonic waves is made. Motions of test particles in a model of a steepening large-amplitude magnetosonic wave are traced. The kinetic energy change of the ensemble of test particles is computed to estimate the effective Landau damping rate of the magnetosonic wave. The numerical results are compared with the linear kinetic theory of Landau damping and interpreted in terms of a simple physical picture for particle trapping.

  6. Experimental study of breaking and energy dissipation in surface waves

    Science.gov (United States)

    Ruiz Chavarria, Gerardo; Le Gal, Patrice; Le Bars, Michael

    2014-11-01

    We present an experimental study of the evolution of monochromatic waves produced by a parabolic wave maker. Because of the parabolic shape of the wave front, the waves exhibit spatial focusing and their amplitude dramatically increases over distances of a few wavelengths. Unlike linear waves, the amplitude of the free surface deformation cannot exceed a certain threshold and when this happens the waves break. In order to give a criterion for the appearance of breaking, we calculate the steepness defined as ɛ = H/ λ (where H is the wave height and λ their wavelength) for waves of frequencies in the range 4-10 Hz. We found that wave breaking develops when ɛ attains approximately a value of 0.10. We also evaluate the lost of energy carried by the waves during their breaking by a detailed and accurate measurement of their amplitude using an optical Fourier transform profilometry. G. Ruiz Chavarria acknowledges DGAPA-UNAM by support under Project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  7. Study of the relationship between non-dimensional roughness length and wave age, effected by wave directionality

    Indian Academy of Sciences (India)

    Naoya Suzuki; Naoto Ebuchi; Chaofang Zhao; Isao Watabe; Yasuhiro Sugimori

    2002-09-01

    Relationship between the non-dimensional roughness length and inverse of wave age has been discussed without consideration of wave directions, though wind wave field consists of various directional component waves. In this study we observe wave heights by an array of four wave gauges at the Hiratsuka Tower of (Independent Administrative Institution) National Research Institute for Earth Science and Disaster Prevention (NIED), Japan, and discuss the effect of wave directionality. As a result, the data sets were classified into two different groups according to the directional wave spectrum distribution. In case 1 only swell and wind waves exist and in case 2 there exist wave components from several directions. It is shown that the case of multiple- directional component waves (case 2) may affect the non-dimensional roughness length and friction velocity.

  8. Experimental Study on A Pendulum Wave Energy Converter

    Institute of Scientific and Technical Information of China (English)

    QIU Shou-qiang; YE Jia-wei; WANG Dong-jiao; LIANG Fu-lin

    2013-01-01

    Many of the existing wave energy converters (WEC) are of oscillating water column (OWC) and point absorber (PA) types.Fewer references have been published in public on the pendulum type WEC.A series of experimental tests on a bottom-hinged pendulum WEC model are carried out and some results are revealed in the present study.The purpose of this paper is to present a detailed description of the tests.It is found that wave energy conversion efficiency varies with the applied damping and wave conditions.In addition,special attention is given to the effect of the water ballast on the efficiency of the wave energy converter.It is demonstrated that the ballast plays an important role in energy extraction.Better understanding on how the performance of the device is influenced by damping,wave height,wave period and ballast is shown.

  9. Data Quality Studies of Enhanced Interferometric Gravitational Wave Detectors

    CERN Document Server

    McIver, Jessica

    2012-01-01

    Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contains a high rate of noise transients from the environment, the detector hardware, and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches.

  10. Gravity wave reflection: Case study based on rocket data

    Science.gov (United States)

    Wüst, Sabine; Bittner, Michael

    2008-03-01

    Since gravity waves significantly influence the atmosphere by transporting energy and momentum, it is important to study their wave spectrum and their energy dissipation rates. Besides that, knowledge about gravity wave sources and the propagation of the generated waves is essential. Originating in the lower atmosphere, gravity waves can move upwards; when the background wind field is equal to their phase speed a so-called critical layer is reached. Their breakdown and deposition of energy and momentum is possible. Another mechanism which can take place at critical layers is gravity wave reflection. In this paper, gravity waves which were observed by foil chaff measurements during the DYANA (DYnamics Adapted Network for the Atmosphere) campaign in 1990 in Biscarrosse (44°N, 1°W)--as reported by Wüst and Bittner [2006. Non-linear wave-wave interaction: case studies based on rocket data and first application to satellite data. Journal of Atmospheric and Solar-Terrestrial Physics 68, 959-976]--are investigated to look for gravity wave reflection processes. Following nonlinear theory, energy dissipation rates according to Weinstock [1980. Energy dissipation rates of turbulence in the stable free atmosphere. Journal of the Atmospheric Sciences 38, 880-883] are calculated from foil chaff cloud and falling sphere data and compared with the critical layer heights. Enhanced energy dissipation rates are found at those altitudes where the waves' phase speed matches the zonal background wind speeds. Indication of gravity wave trapping is found between two altitudes of around 95 and 86 km.

  11. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com

    2009-05-11

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  12. Bernstein Revisited: The Recontextualisation of Equity in Contemporary Australian School Education

    Science.gov (United States)

    Loughland, Tony; Sriprakash, Arathi

    2016-01-01

    This article draws on the sociology of Basil Bernstein to show how his detailed theories of "recontextualisation" and the "pedagogic device" provide useful analytic levers to examine the politics of educational change. We focus on recent policy developments that have significantly impacted Australian school education: the…

  13. On the Effects of Social Class on Language Use: A Fresh Look at Bernstein's Theory

    Science.gov (United States)

    Aliakbari, Mohammad; Allahmoradi, Nazal

    2014-01-01

    Basil Bernstein (1971) introduced the notion of the Restricted and the Elaborated code, claiming that working-class speakers have access only to the former but middle-class members to both. In an attempt to test this theory in the Iranian context and to investigate the effect of social class on the quality of students language use, we examined the…

  14. When Is a Bernstein-bezier Curve the Graph of a Function?

    Science.gov (United States)

    Mclaughlin, H. W.

    1985-01-01

    The question of determining when a Bernstein-Bezier cubic curve in the plane can be represented as the graph of function in some fixed orthogonal coordinate system is considered. The notion of a curve being monotone in a given direction is introduced to aid in the analysis.

  15. General Theorizing on Language, Society, and Education: Basil Bernstein, Goldilocks, and/or the Energizer Bunny

    Science.gov (United States)

    Erickson, Frederick

    2009-01-01

    After briefly outlining Bernstein's personal and educational history, the paper goes on to review the scope of his work over the past 30 years, his theoretical contribution and his position among colleagues in the post-WWII era of British sociology. There follows a more detailed examination of the main tenets of his theory, pointing out that…

  16. Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We establish Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces. These inequalities can be applied to some important operators in Fourier analysis, such as the Bochner-Riesz multiplier over the critical index, the generalized Bochner-Riesz mean and the generalized Able-Poisson operator.

  17. David, Mr Bear and Bernstein: Searching for an Equitable Pedagogy through Guided Group Work

    Science.gov (United States)

    Boyle, Bill; Charles, Marie

    2012-01-01

    The authors' experiences of observing teaching and learning in schools have led them to become concerned at the dominant paradigm of a "pedagogy of poverty" at the expense of a "pedagogy of plenty". Bernstein's theory of power and control of education knowledge is overtly practised in classrooms globally. This is evidenced in…

  18. Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval

    Science.gov (United States)

    Alford, John A., II

    2012-01-01

    We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.

  19. The Importance of Voice in Supervision: A Response to Ellis and Robbins (1993) and Bernstein (1993).

    Science.gov (United States)

    Twohey, Denise

    1993-01-01

    Comments two responses to author's article "Listening for the Voices of Care and Justice in Counselor Supervision" (Twohey and Volker, 1993). Responds to Ellis and Robbins (1993) by clarifying perspective on relationship between moral decision making and supervision. Takes issue with Bernstein's (1993) comments about superiority of instrumental…

  20. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    Science.gov (United States)

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  1. Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces

    Institute of Scientific and Technical Information of China (English)

    XIE LinSen; LAN JiaCheng; LAN SenHua; YAN DunYan

    2009-01-01

    We establish Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces.These inequalities can be applied to some important operators in Fourier analysis,such as the Bochner-Riesz multiplier over the critical index,the generalized Bochner-Riesz mean and the generalized Able-Poisson operator.

  2. A Systematic Study on Scaling Law of Spiral Waves

    Institute of Scientific and Technical Information of China (English)

    ShufengBAI; QiOUYANG

    1999-01-01

    The study of spiral waves in the Belousov-Zhabotinsky (BZ) reaction has generated fruitful results since the invention of the open spatial reactor.However,some theories are only unsubstantiated and need additional verifications.Our experimental results give a new scaling law of simple and quasi-periodic spiral waves,providing corroborations for some theories and challenge some others.

  3. Experimental Study of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study on the power conversion capabilities and structural loads of the WEPTOS wave energy converter. The investigation focuses mainly at identifying the performance of the WEPTOS prototype in a wide range of production wave states and at the moo...

  4. Theoretical study of the anisotropic diffraction of light waves by acoustic waves in lithium niobate crystals.

    Science.gov (United States)

    Rouvaen, J M; Waxin, G; Gazalet, M G; Bridoux, E

    1990-03-20

    The anisotropic diffraction of light by high frequency longitudinal ultrasonic waves in the tangential phase matching configuration may present some definite advantages over the same interaction using transverse acoustic waves. A systematic search for favorable crystal cuts in lithium niobate was worked out. The main results of this study are reported here; they enable the choice of the best configuration for a given operating center frequency.

  5. Solid-State Millimeter-Wave Source Study: A Study of Two Novel Concepts for Generation of CW Millimeter Waves.

    Science.gov (United States)

    1981-09-01

    AD-AI13 460 ROCKWELL INTERNATIONJAL DOWNEY CA SATEL ITE SYSTEMS DIV F/6 9/ SOLID-STATE MILLIMETER-WAVE SOURCE STUDY : A STUDY OF TWO NOVEL -- ETC(U...NA[ B11RIA ~ H ,A DR’ ’. 7.4 C79-606.12/501 SOLID-STATE MILLIMETER-WAVE SOURCE STUDY : A STUDY OF TWO NOVEL CONCEPTS FOR GENERATION OF CW MILLIMETER...ACCESSION NO, IENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Solid State Millimeter-Wave Source Study : A Study Final

  6. Numerical study on water waves and wave-induced longshore currents in Obaköy coastal water

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; LYU Yigang; SHEN Yongming

    2014-01-01

    In this paper, the water waves and wave-induced longshore currents in Obaköy coastal water which is lo-cated at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical re-sults. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.

  7. Analytical Study of Electromagnetic Wave in Superlattice

    Institute of Scientific and Technical Information of China (English)

    LINChang; ZHANGXiu-Lian

    2004-01-01

    The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in supedattices.

  8. Analytical Study of Electromagnetic Wave in Superlattice

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2004-01-01

    The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in superlattices.

  9. Cyclotron waves in a non-neutral plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  10. Studies of Gravity Wave Propagation in the Middle Atmosphere.

    Science.gov (United States)

    2014-09-26

    34 . . . . . • * * . , . • :’ . . . , ",.,,- -. ’’’ " . ’-- o p - %"""" * " AFOSR.TR. 85-0505 physical dynamics,inc. PD-NW-85-330R L n STUDIES OF GRAVITY WAVE PROPAGATION IN...8217.. , .,- - -. ( %’. , .;: :..............,....... .-... . ~.b .. .. - ..... ,......... ..-. ....-.. PD-NW-85-330R STUDIES OF GRAVITY WAVE PROPAGATION...Include SewftY CsuiclUon STUDIES OF GRAVITY WAVE PROPAGATION IN THE MIDD E 12. PERSONAL AUTHORE) TMOPHU. r Timothy J. Dunkerton a13a. TYPE OF REPORT I3k

  11. Recontextualização da simulação clínica em enfermagem baseada em Basil Bernstein: semiologia da prática pedagógica Recontextualización de la simulación de enfermería clínica basada en Basil Bernstein: la semiología de la práctica pedagógica Recontextualization of Nursing clinical simulation based on Basil Bernstein: semiology of pedagogical practice

    Directory of Open Access Journals (Sweden)

    Mateus Casanova dos Santos

    2010-12-01

    Full Text Available O presente artigo é um estudo de caso investigativo de caráter participante e descritivo, a partir da vivência pedagógica no disparador de aprendizagem Simulação em Enfermagem, do segundo semestre do primeiro ciclo da graduação da Faculdade de Enfermagem (FEn da Universidade Federal de Pelotas (UFPel, onde se desenvolve a simulação clínica de semiologia e semiotécnica em Enfermagem. O objetivo é estudar a recontextualização da prática pedagógica da Simulação com base em teorizações do sociólogo da educação Basil Bernstein, contribuindo para o processo de aperfeiçoamento do planejamento de ensino e, especialmente, da avaliação deste disparador de aprendizagem. A partir das reflexões deste estudo, observa-se a teorização de Bernstein como uma potente ferramenta semiológica das práticas pedagógicas, a qual contribui para o planejamento e análise do dispositivo pedagógico curricular.Este artículo es un caso de estudio de carácter descriptivo y de investigación participante, desde la experiencia educativa de aprendizaje en el gatillo Simulación en Enfermería, de la segunda mitad del primer ciclo de la Escuela Enfermería (FEN de la Universidade Federal de Pelotas (UFPel donde se desarrolla la simulación de la semiología clínica y la semiótica en Enfermería. El objetivo es estudiar la recontextualización de la práctica pedagógica de teorías basadas en la simulación del sociólogo de la educación Basil Bernstein, contribuyendo al proceso de mejora de la educación, planificación y aprendizaje, especialmente la evaluación de gatillo. De las reflexiones de este estudio, existe la teoría de Bernstein como una poderosa herramienta de semiótica prácticas pedagógicas, lo que contribuye a la planificación y el análisis de dispositivos educativos curriculares.This article is a case study of investigative and descriptive participant character, from the educational experience of learning in the trigger

  12. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  13. Generation of magnetosonic waves over a continuous spectrum

    Science.gov (United States)

    Chen, Lunjin; Sun, Jicheng; Lu, Quanming; Gao, Xinliang; Xia, Zhiyang; Zhima, Zeren

    2016-02-01

    Magnetosonic waves, also known as equatorial noise emission, were found to have discrete frequency structures, which is consistent with instability caused by proton ring distribution. Nonetheless, nondiscrete structure, i.e., a broadband spectrum over a continuous frequency range, has been reported. We investigate the question whether proton ring distribution can generate nondiscrete spectra for perpendicularly propagating magnetosonic waves. We propose discrete and nondiscrete characteristics of the local instability for explaining the observation of discrete, continuous, and mixed spectra. The criterion for transition from discrete and continuous instability is given, γ >˜ Ωh/2, where γ is wave growth rate and Ωh is proton cyclotron frequency. The condition is verified by particle-in-cell simulation using more realistic electron-to-proton mass ratio and speed of light than in previous studies. Such criterion of generating a continuous spectrum can be tested against simultaneous in situ measurement of wave and particle. We also find that the modes at low Ωh harmonics, including the fundamental Ωh, can be still excited through nonlinear wave-wave coupling, even when they are neutral modes (γ = 0) according to the linear kinetic theory. Comparison with magnetosonic waves in cold plasma limit and electromagnetic ion Bernstein mode is also discussed.

  14. Bernstein-Kantorovich算子线性组合同时逼近的等价定理%Equivalent theorems on simultaneous approximation by combinations of Bernstein-Kantorovich operators

    Institute of Scientific and Technical Information of China (English)

    程丽

    2010-01-01

    利用r阶Ditzian-Totik光滑模ωrφλ(f,t)(0≤λ≤1)给出了关于Bernstein-Kantorovich算子线性组合同时逼近的等价定理;同时研究了Bernstein-Kantorovich算子的高阶导数与所逼近函数高阶导数的光滑性之间的关系.

  15. 关于函数及其导数用Bernstein-Durrmeyer算子的同时逼近%On the Simultaneous Approximation of Functions and TheirDerivatives by the Bernstein-Durrmeyer Operators

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using the pointwise modulus of continuity, wediscussed the simultaneous approximation for Bernstein-Durrmeyeroperators. The results include the results on functions of boundedvariation and continuous functions.%本文利用点态连续模研究了Bernstein-Durrmeyer算子的同时逼近,推广了关于有界变差函数和连续函数的结果.

  16. Numerical study of pollutant movement in waves and wave-induced long-shore currents in surf zone

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; SHEN Yongming; QIU Dahong

    2008-01-01

    Water waves,wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation,the shallow water equation,as well as the pollutant movement equation,and the nu- merical results have also been validated by experimental data.It is shown that the long-shore current velocity and wave set-up in- crease with the increasing incident wave amplitude and slope steepness of the shore plane;the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane.In surf zones,the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.

  17. Formal Verification of Full-Wave Rectifier: A Case Study

    CERN Document Server

    Lata, Kusum

    2009-01-01

    We present a case study of formal verification of full-wave rectifier for analog and mixed signal designs. We have used the Checkmate tool from CMU [1], which is a public domain formal verification tool for hybrid systems. Due to the restriction imposed by Checkmate it necessitates to make the changes in the Checkmate implementation to implement the complex and non-linear system. Full-wave rectifier has been implemented by using the Checkmate custom blocks and the Simulink blocks from MATLAB from Math works. After establishing the required changes in the Checkmate implementation we are able to efficiently verify the safety properties of the full-wave rectifier.

  18. Wave propagation in a chiral fluid an undergraduate study

    CERN Document Server

    Garel, T

    2003-01-01

    We study the propagation of electromagnetic waves in a chiral fluid, where the molecules are described by a simplified version of the Kuhn coupled oscillator model. The eigenmodes of Maxwell's equations are circularly polarized waves. The application of a static magnetic field further leads to a magnetochiral term in the index of refraction of the fluid, which is independent of the wave polarization. A similar result holds when absorption is taken into account. Interference experiments and photochemical reactions have recently demonstrated the existence of the magnetochiral term. The comparison with Faraday rotation in an achiral fluid emphasizes the different symmetry properties of the two effects.

  19. 用Bernstein型算子刻划Besov空间%The Description of Besov Spaces with Bernstein Type Operators

    Institute of Scientific and Technical Information of China (English)

    陈文忠; 盛保怀

    2000-01-01

    利用包括Bernstein算子,Bernstein-Kantorovic算子以及Bernstein-Durrmeyer算子的Bernstein型算子刻划由DeVore-Yu Xiangming引入的一类Besov空间,并运用K-泛函与内插空间之间的内在联系,建立刻划这类Besov空间特征的等价定理.

  20. Experimental and theoretical study of Rayleigh-Lamb wave propagation

    Science.gov (United States)

    Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.

    1990-01-01

    Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.

  1. Andrew Bernstein, Modern Passings. Death Rites, Politics and Social Change in Imperial Japan

    OpenAIRE

    Duteil-Ogata, Fabienne

    2010-01-01

    Andrew Bernstein, historien américain nous présente ici une étude portant sur une période charnière de l’histoire des funérailles au Japon : celle qui débute avec l’ère Meiji (1868-1912) et prend fin en 1945, la période du shintô d’État. Basé sur un travail minutieux de dépouillement de la presse nationale et locale, des archives officielles et des archives des premières sociétés de pompes funèbres, A. Bernstein nous montre comment, durant cette période, les funérailles n’échappent pas au pro...

  2. The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Trigub, R M [Donetsk National University, Donetsk (Ukraine)

    2013-12-31

    The paper concerns the approximation properties of the Bernstein-Stechkin summability method for trigonometric Fourier series. The Jackson-Stechkin theorem is refined. Moreover, for any continuous periodic function not only is the exact upper estimate for approximation found, a lower estimate of the same order is also put forward. To do this special moduli of smoothness and the K-functional are introduced. Bibliography: 16 titles.

  3. NUMERICAL STUDY ON EFFECT OF WAVING BED ON THE SURFACE WAVE

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-ren; CHENG You-liang; WANG Song-ling

    2006-01-01

    The effect of the waving bed on the surface wave was investigated. The wave equation was reduced from the potential flow theory with the perturbation technique, and then was solved by using the pseudo-spectral method. The waterfall of the surface wave was simulated with the Matlab. It is shown that for the waving bed, an additional harmonic wave appears on the surface together with the solitary wave existing for the non-waving bed, and two kinds of waves do not interfere with each other. With the development of time, the waveform for the waving bed is kept invariable, and just the amplitude is reduced gradually. Wave-breaking phenomenon for the non-waving bed does not appear, so the waving bed seems useful to prevent the breaking of the wave.

  4. Comparative Study of Turbines for Wave Energy Conversion

    Institute of Scientific and Technical Information of China (English)

    Hideaki Maeda; Toshiaki Setoguchi; Manabu Takao; Keita Sakurada; Tae-Ho Kin; Kenji Kaneko

    2001-01-01

    The objective of this paper is to compare the performances of the turbines, which could be used for wave energy conversion in the near future, under various irregular wave conditions. The turbines included in the paper are as follows: (a) Wells turbine with guide vanes; (b) impulse turbine with self-pitch-controlled guide vanes; (c) impulse turbine with fixed guide vanes. In this study, experimental investigations were carried out to clarify the performances of the turbines under steady flow conditions, and then a numerical simulation was used for predicting the performances under irregular wave conditions with various significant wave heights. As a result, it was found that the running and starting characteristics of the impulse turbines could be superior to those of the Wells turbine.

  5. An Experimental and Computational Study of Breaking Wave Impact Forces

    CERN Document Server

    Fu, Thomas C; Brewton, Susan; Brucker, Kyle A; Dommermuth, Douglas G

    2014-01-01

    The impact forces generated by the impact of a breaking wave are poorly understood. These impulsive hydrodynamic loads to a ship's hull are of short duration relative to ship motions and buoyant wave loads and often result in extremely high pressures. The physics of breaking waves is a poorly understood, complex, multiphase phenomenon involving violent jet sprays, strong free-surface turbulence, air entrainment and bubble generation, all of which interact with the flow field and the adjacent structure. This paper will describe a set of experiments that were performed, at the Naval Surface Warfare Center, Carderock Division (NSWCCD), in 2006, to measure the hydrodynamic loads of regular nonbreaking and focused breaking waves on a 0.305 m x 0.305 m (1.0 ft x 1.0 ft) square plate and discuss the results of this study. The paper will also discuss Computational Fluid Dynamics (CFD) code predictions of breaking waves and wave impact loads. The CFD code utilized in this study is Numerical Flow Analysis (NFA).

  6. On the Acceleration Problem of q-Bernstein Polynomials%关于q-Bernstein多项式的加速问题

    Institute of Scientific and Technical Information of China (English)

    云连英; 项雪艳; 王慧

    2008-01-01

    In this paper,we investigate not only the acceleration problem of the q-Bernstein polynomials Bn(f,q;x)to B∞(f,q;x)but also the convergence of their iterated Boolean sum.Using the methods of exact estimate and theories of modulus of smoothness,we get the respective estimates of the convergence rate,which suggest that q-Bernstein polynomials have the similar answer with the classical Bernstein polynomials to these two problems.

  7. A Numerical Study on Wave-Mud Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dao-hua; NG Chiu-on

    2006-01-01

    Presented in this paper is a numerical study on the interaction of progressive waves propagating in a body of water overlying a layer of viscous fluid mud on the bottom, with emphasis placed on the induced oscillatory motion of the water-mud interface. The fully nonlinear Navier-Stokes equations with the complete set of viscous boundary conditions are solved numerically by a finite difference method that is based on a time-dependent boundary-fitted curvilinear coordinate system, for the simulation of wave motion in the two-layer viscous fluid system. Waves of moderate wavelength are generated in the upper water layer by a numerical flap-type wavemaker. The dynamic pressure due to the surface wave is transmitted downward onto the lower layer, generating wave motion on the interface. On mimicking some reported experimental conditions, the ratio of interfacial to surface wave amplitudes is evaluated and the results are found to compare more favorably with the experimental data than the prediction by a linear theory.

  8. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  9. Spectral Broadening of Ion Bernstein Wave Due to Parametric Decay Instabilities

    Science.gov (United States)

    Gan, Chun-Yun; Xiang, Nong; Yu, Zhi

    2016-08-01

    Not Available Supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC No 11261140328 and NRF No 2012K2A2A6000443), the National Magnetic Confinement Fusion Science Program of China under Grant No 2013GB111002, the National Natural Science Foundation of China under Grant Nos 11175212 and 11475220, and the Program of Fusion Reactor Physics and Digital Tokamak with the Chinese Academy of Sciences ‘One-Three-Five’ Strategic Planning.

  10. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  11. STUDY OF SWEPT SHOCK WAVE AND BOUNDARY LAYER INTERACTIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonalanalysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussedin detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.

  12. Space-Based Gravitational-wave Mission Concept Studies

    Science.gov (United States)

    Livas, Jeffrey C.

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).

  13. Wave-Structure Interactions on Point Absorbers - an experimental study

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller

    , unwanted cross waves, reflected waves and other disturbances may affect the results when comparing experiments with other experiments and numerical models. Methods are presented that reduces the influences in these comparisons. This includes work in determining the waves in the tanks accurately. 5...... used in the case studies is a pitching point absorber (Wavestar). The central part of the thesis deals with the challenges, choices, and experi- ences gained during the Ph.D. The more in-depth technical details and results are presented in peer-reviewed publications and technical reports. The chal...... models. Using a modification by Faltinsen to take into account the relative motion of the device, the contributions from drag, excitation and body motion are determined. 2: Determining the peak pressure on the surface on the device during extreme events and in freak conditions. A great deal of work has...

  14. Riding the Wave: A Self-Portrait Study

    Science.gov (United States)

    Skophammer, Karen

    2009-01-01

    Creating a self-portrait of having fun "riding a wave" is a very enlightening and engaging experience for students of all ages, but the author's second-graders had an especially wonderful time with this art experience. To begin the unit of study, the author and her students looked at self-portraits created by Vincent van Gogh, Rembrandt,…

  15. A COMPARATIVE STUDY OF SPECTRAL METHODS WITH SEA WAVE DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two spectral methods are used to study sea wave data.Firstly, the estimated results calculated by the sequency spectrum method and frequency spectrum method are compared, and then the differences between the two methods are discussed.Furthermore, compared with frequency spectral analysis, sequency spectral analysis has many advantages: faster calculating speed, convenient use and high distinguishability.

  16. Experimental Study on a Rotor for WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study of the power conversion capabilities of one single rotor of the WEPTOS wave energy converter. The investigation focuses mainly on defining the optimal weight distribution in the rotor in order to improve the hydraulic performance through...

  17. Laboratory Study on the Interaction Between Regular Obliquely Incident Waves and Vertical Walls

    Institute of Scientific and Technical Information of China (English)

    李玉成; 董国海; 孙昭晨; 徐双全; 毛恺; 牛恩宗

    2001-01-01

    The characteristics of wave forces are studied based on physical model tests with regular waves. The ratio ofobliquely incident wave forces to normally incident wave forces on unit length of a vertical wall is related with variousfactors. A linear reduction of the mean force of obliquely incident waves is confirmed with an increase in the relativecaisson length. Also the characteristics of reflection coefficient of diagonal waves are discussed.

  18. Experimental study on a wide range of wave and current conditions of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the results of an experimental study that was performed on small scale model that was a replication of the full-scale Weptos WEC intended for DanWEC. The tests were performed in the circular basin at FloWave at Edinburgh University in October 2014. The laboratory facilities had...... the capabilities to have simultaneously currents and waves from any possible direction and also to produce advanced wave specifications....

  19. Bernstein-Type and Steckin-Type Inequality(I)%Bernstein型不等式与Steckin型不等式

    Institute of Scientific and Technical Information of China (English)

    林绍波; 曹飞龙

    2009-01-01

    Bernstein and Steckin inequalities play an important role in approximation theory.For example,Bernstein inequality is the main tool to prove the Inverse Theorem and Embedding Theorem.This paper establishes the relation between weighted Bernstein-type inequality and Steckin-type inequality in a general system of multivariate function.%Bernstein不等式在三角多项式逼近中起着非常重要的作用,比如它是证明逼近论逆定理即Steckin不等式的主要工具.文章建立了多维加权Bernstein型不等式与Steckin型不等式的关系,并进一步给出若干应用.

  20. On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution

    Directory of Open Access Journals (Sweden)

    Alan Stark

    2012-01-01

    Full Text Available Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed.

  1. PAC-Bayes-Bernstein Inequality for Martingales and its Application to Multiarmed Bandits

    CERN Document Server

    Seldin, Yevgeny; Auer, Peter; Laviolette, François; Shawe-Taylor, John

    2011-01-01

    We combine PAC-Bayesian analysis with a Bernstein-type inequality for martingales to obtain a result that makes it possible to control the concentration of multiple (possibly uncountably many) simultaneously evolving and interdependent martingales. We apply this result to derive a regret bound for the multiarmed bandit problem. Our result forms a basis for integrative simultaneous analysis of exploration-exploitation and model order selection trade-offs. It also opens a way for applying PAC-Bayesian analysis in other fields, where sequentially dependent samples and limited feedback are encountered.

  2. Transport Implementation of the Bernstein-Vazirani Algorithm with Ion Qubits

    CERN Document Server

    Fallek, Spencer; McMahon, Brian; Maller, Kara; Brown, Kenneth; Amini, Jason

    2016-01-01

    Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture relies upon ion transport and can readily be expanded to larger systems. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.

  3. Transport implementation of the Bernstein-Vazirani algorithm with ion qubits

    Science.gov (United States)

    Fallek, S. D.; Herold, C. D.; McMahon, B. J.; Maller, K. M.; Brown, K. R.; Amini, J. M.

    2016-08-01

    Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture takes advantage of the ion transport capabilities of such a trap. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.

  4. Morita invariance of the filter dimension and of the inequality of Bernstein

    OpenAIRE

    Bavula, V.V.; Hinchcliffe, V.

    2006-01-01

    It is proved that the filter dimenion is Morita invariant. A direct consequence of this fact is the Morita invariance of the inequality of Bernstein: if an algebra $A$ is Morita equivalent to the ring $\\CD (X)$ of differential operators on a smooth irreducible affine algebraic variety $X$ of dimension $n\\geq 1$ over a field of characteristic zero then the Gelfand-Kirillov dimension $ \\GK (M)\\geq n = \\frac{\\GK (A)}{2}$ for all nonzero finitely generated $A$-modules $M$. In fact, a more strong ...

  5. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  6. Remote pipeline assessment and condition monitoring using low-frequency axisymmetric waves: a theoretical study of torsional wave motion

    Science.gov (United States)

    Muggleton, J. M.; Rustighi, E.; Gao, Y.

    2016-09-01

    Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n = 0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s = 1, fluid- dominated wave; and the s = 2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s = 0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low- frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed.

  7. Global particle in cell simulation of radio frequency waves in tokamak ∖fs20

    Science.gov (United States)

    Kuley, Animesh; Lin, Z.; Bao, J.; Lau, C.; Sun, G. Y.

    2016-10-01

    We are looking into a new nonlinear kinetic simulation model to study the radio frequency heating and current drive of fusion plasmas using toroidal code GTC. In this model ions are considered as fully kinetic (FK) particles using Vlasov equation and the electrons are treated as drift kinetic (DK) particles using drift kinetic equation. We have benchmarked this numerical model to verify the linear physics of normal modes, conversion of slow and fast waves and its propagation in the core region of the tokamak using the Boozer coordinates. In the nonlinear simulation of ion Bernstein wave (IBW) in a tokamak, parametric decay instability (PDI) is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasi-mode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity. Finally, in the electromagnetic LH simulation, nonlinear wave trapping of electrons is verified and plasma current is nonlinearly driven. Presently we are working on the development of new PIC simulation model using cylindrical coordinates to address the RF wave propagation from the edge of the tokamak to the core region and the parametric instabilities associated with this RF waves. We have verified the cyclotron integrator using Boris push method.

  8. Effective-action approach to wave propagation in scalar QED plasmas

    Science.gov (United States)

    Shi, Yuan; Fisch, Nathaniel J.; Qin, Hong

    2016-07-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly interpret diagnostic results in laser plasma experiments.

  9. Study Pelamis system to capture energy of ocean wave

    CERN Document Server

    Gobato, Ricardo; Fedrigo, Desire Francine Gobato

    2015-01-01

    Over the years, energy has become vital for humans, enabling us to comfort, leisure, mobility and other factors. The quest for cheap energy sources, renewable and clean has grown in recent years, mainly for the reduction of effects that comes degrading nature, allowing scientists and engineers to search for new technologies. Many energy sources have been researched for proper funding where some stand out for their ease of obtaining, by other low cost and others by being renewable. The main objective of this work is to study one of these energy sources - wave energy, whose capture is still in development. This energy comes from the waves of the sea and is 100% renewable and with minimal environmental impact when compared to hydro, nuclear, coal, thermal, etc. The system studied here is the Pelamis system.

  10. Studying wave optics in exoplanet microlensing light curves

    CERN Document Server

    Mehrabi, Ahmad

    2012-01-01

    We study the wave optics feature of the gravitational microlensing by a binary system composed of parent star and a planet. In the binary system, near the caustic lines multiple images play the role of secondary sources for the observer, in analogy to the double slit Young's experiment. In the case of having coherent wave fronts from the source on the lens plane, images can produce diffraction pattern on the observer plane. For the binary lensing system we have two modes of close and wide images around the planet and lens star and these images can produce two different types of fringes with the high and low frequencies on the observer plane. By taking into account the finite size of the source star, enhancements in the diffraction fringes get dimmer. For the observational prospects, we study this effect for the SKA project in the case of resonance and the high magnification exoplanet channels. This method can partially break degeneracies between the lens parameters.

  11. Extracting the QCD Cutoff Parameter Using the Bernstein Polynomials and the Truncated Moments

    Directory of Open Access Journals (Sweden)

    A. Mirjalili

    2014-01-01

    Full Text Available Since there are not experimental data over the whole range of x-Bjorken variable, that is, 0Bernstein polynomials. As a result, Bernstein averages which are related to different orders of the truncated Mellin moment are obtained. These averaged quantities can be considered as the constructed experimental data. By accessing the sufficient experimental data we can do the fitting more precisely. We do the fitting at leading order and next-to-leading order approximations to extract the QCD cutoff parameter. The results are in good agreement with what is being expected.

  12. Erstnachweis von Taiwania, Cryptomeria und Liquidambar aus dem Bitterfelder und Baltischen Bernstein

    Directory of Open Access Journals (Sweden)

    H. Jähnichen

    1998-01-01

    Full Text Available Aus dem untermiozänen Bernstein von Bitterfeld (Sachsen-Anhalt werden erstmalig ein strukturzeigender Zweig von Taiwania schaeferi, ein isoliertes Nadel-Fragment von Cryptomeria sp. sowie ein Fruchtstand von Liquidambar europaea beschrieben. Außerdem muß “Widdringtonites oblongifolius” (Goeppert & Menge Caspary & Klebs 1906/07 pro parte aus dem obereozänen Baltischen Bernstein nach morphologisch-anatomischen Merkmalskomplexen ebenfalls zu Taiwania schaeferi gestellt werden. “Enormicutis eoconferta” — aff. Cryptomeria spec. (Schneider 1986 aus der obereozänen Braunkohle von Nordwestsachsen muß nach morphologisch-anatomischen Details zu Athrotaxis couttsiae (Heer Gardner revidiert werden. First record of Taiwania, Cryptomeria and Liquidambar from Bitterfeld and Baltic amber A structure-bearing twig of Taiwania schaeferi, an isolated needle-fragment of Cryptomeria spec. as also an aggregate fruit of Liquidambar europaea are firstly described from the Lower Miocene amber of Bitterfeld (Saxony-Anhalt. Moreover “Widdringtonites oblongifolius” (Goeppert & Menge Caspary & Klebs 1906/07 p.p. from the Upper Eocene Baltic amber after morphological-anatomical features must be also assigned to Taiwania schaeferi. “Enormicutis eoconferta” — aff. Cryptomeria sp. (Schneider 1986 from the Upper Eocene brown-coal of North Western Saxony after morphological-anatomical details must be revised to Athrotaxis couttsiae (Heer Gardner. doi:10.1002/mmng.19980010112

  13. A Study on Kinematics Characteristics of Freak Wave

    Institute of Scientific and Technical Information of China (English)

    CUI Cheng; ZHANG Ning-chuan; ZUO Shu-hua; FANG Zhuo

    2013-01-01

    Based on the 3rd-order Stokes wave theory,the speed of freak waves is formulated in terms of the period and the wave height.Finite modified wave steepness gives rise to a significant enhancement of the nonlinear contributions to the freak wave speed in comparison with the 3rd-order Stokes wave theory.For a fix modified wave steepness,the estimated amplification of the nonlinear contributions due to the deviation from the 3rd-order Stokes wave theory is 0.22~0.99.In addition,the velocity and acceleration fields are also documented in detail.In the present simulation,the horizontal velocities are smaller than the wave speed,and the freak wave exhibits a maximal horizontal velocity up to 37% of the wave speed and a maximal vertical acceleration up to about 20% of the gravitational acceleration.

  14. An experimental study of wave coupling in gravity surface wave turbulence

    Science.gov (United States)

    Aubourg, Quentin; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2016-11-01

    Weak turbulence is a theoretical framework aimed at describing wave turbulence (in the weakly nonlinear limit) i.e. a statistical state involving a large number of nonlinearly coupled waves. For gravity waves at the surface of water, it provides a phenomenology that may describe the formation of the spectrum of the ocean surface. Analytical predictions of the spectra are made based on the fact that energy transfer occurs through 4-wave coupling. By using an advanced stereoscopic imaging technique, we measure in time the deformation of the water surface. We obtain a state of wave turbulence by using two small wedge wavemakers in a 13-m diameter wavetank. We then use high order correlator (bi- and tri-coherence) in order to get evidence of the active wave coupling present in our system as used successfully for gravity-capillary wave turbulence. At odds with the weak turbulence theory we observe 3-wave interaction involving 2 quasi linear wave and a bound wave whose frequency lies on the first harmonics of the linear dispersion relation. We do not observe 4-wave coupling within the accuracy of our measurement. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 647018-WATU).

  15. Experimental study on the wave loads on a rotor of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    Experimental tests have been performed to investigate the wave load on the rotor in design wave conditions. These wave loads should give an indication of the required structural strength around the rotors as well as for other equipment such as the bearings. During the lab tests, the wave loads have...... been measured for the following configurations: • Head and beam seas (wave coming from the front and the side) • For three different submergence levels • For three different dispositions of the rotor (free to rotate, and fixed at 50° and 90°) Based on this results, an estimation of the maximum wave...... loads has been made on the maximum wave loads at the DanWEC test site....

  16. An Experimental Study on A Trapezoidal Pendulum Wave Energy Converter in Regular Waves

    Institute of Scientific and Technical Information of China (English)

    王冬姣; 邱守强; 叶家玮

    2015-01-01

    Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0-1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.

  17. Computational study on full-wave inversion based on the acoustic wave-equation; Onkyoha hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Sassa, K. [Kyoto University, Kyoto (Japan); Uesaka, S. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-01

    The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.

  18. Study on pile drivability with one dimensional wave propagation theory

    Institute of Scientific and Technical Information of China (English)

    陈仁朋; 王仕方; 陈云敏

    2003-01-01

    Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a concrete pile for a given ram mass, cushion stiffness, and pile impedance. The kinematic equation of pile toe was established and solved based on wave equation theory. The movements of the pile top and pile toe were presented, which clearly showed the dynamic displacement, including rebound and penetration of pile top and toe. A parametric study was made with a full range of practical values of ram weight, cushion stiffness, dropheight, and pile impedance. Suggestions for optimizing the parameters were also presented. Comparisons between the results obtained by the present solution and in-situ measurements indicated the reliability and validity of the method.

  19. A study on compressive shock wave propagation in metallic foams

    Science.gov (United States)

    Wang, Zhihua; Zhang, Yifen; Ren, Huilan; Zhao, Longmao

    2010-02-01

    Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau, which makes it widely applicable in the design of structural crashworthiness. However, in some experimental studies, stress enhancement has been observed when the specimens are subjected to intense impact loads, leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model, a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived, where an explicit integration algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses, considerable energy is dissipated during the progressive collapse of foam cells, which then reduces the crush of objects. When the pulse is sufficiently high, on the other hand, stress enhancement may take place, especially in the heterogeneous foams, where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material, amplitude and period of the pulse, as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.

  20. How to Use a Candle to Study Sound Waves

    Science.gov (United States)

    Carvalho, P. Simeão; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.

    2013-01-01

    It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow"…

  1. Study of detonation wave contours in EFP warhead

    Directory of Open Access Journals (Sweden)

    Xu-dong Zu

    2016-04-01

    The results show that the planar detonation wave do better than the conical detonation and the spherical detonation wave in increasing the length–diameter ratio of explosively-formed projectiles (EFP and keep the nose of EFP integrated. The detonation wave can increase the length–diameter ratio of EFP when the wave shaper has the suitable thickness.

  2. Changes in the Classification and Framing of Education in Britain, 1950s to 2000s: An Interpretive Essay after Bernstein

    Science.gov (United States)

    Grace, Gerald

    2008-01-01

    Using the concepts of classification and framing and other relevant writings by Basil Bernstein, an attempt will be made to construct a theorised account of changes in the socio-political context of education in Britain; of the mode of governance in education and of the constructs and practice of educational leadership from the 1950s to the…

  3. The Social Construction of Time in Contemporary Education: Implications for Technology, Equality and Bernstein's "Conditions for Democracy"

    Science.gov (United States)

    Leaton Gray, Sandra

    2017-01-01

    This article discusses how the introduction of technology has led to a fundamental shift in the relationship between education and time. As a means of analysing the extent of such changes on pupils from different backgrounds, I use Bernstein's "conditions for democracy" as a framework for evaluating the impact new understandings of time…

  4. A Computerizable Iterative-Algorithmic Quadrature Operator Using an Efficient Two-Phase Modification of Bernstein Polynomial

    Directory of Open Access Journals (Sweden)

    M. Raghunadh Acharya

    2009-12-01

    Full Text Available A new quadrature formula has been proposed which uses modified weight functions derived from those of ‘Bernstein Polynomial’ using a ‘Two-Phase Modification’ therein. The quadrature formula has been compared empirically with the simple method of numerical integration using the well-known “Bernstein Operator”. The percentage absolute relative errors for the proposed quadrature formula and that with the “Bernstein Operator” have been computed for certain selected functions, with different number of usual equidistant node-points in the interval of integration~ [0, 1]. It has been observed that both of the proposed modified quadrature formulae, respectively after the ‘Phase-I’ and after the ‘Phases-I & II’ of these modifications, produce significantly better results than that using, simply, the “Bernstein Operator”. Inasmuch as the proposed “Two-Phase Improvement” is available iteratively again-and-again at the end of the current iteration, the proposed improvement algorithm, which is ‘Computerizable’, is an “Iterative-Algorithm”, leading to more-and-more efficient “Quadrature-Operator”, till we are pleased!

  5. Exact Values of Bernstein -Widths for Some Classes of Periodic Functions with Formal Self-Adjoint Linear Differential Operators

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2008-01-01

    Full Text Available Abstract We consider the classes of periodic functions with formal self-adjoint linear differential operators , which include the classical Sobolev class as its special case. With the help of the spectral of linear differential equations, we find the exact values of Bernstein -width of the classes in the for .

  6. Gravitational wave memory: A new approach to study modified gravity

    Science.gov (United States)

    Du, Song Ming; Nishizawa, Atsushi

    2016-11-01

    It is well known that two types of gravitational wave memory exist in general relativity (GR): the linear memory and the nonlinear, or Christodoulou, memory. These effects, especially the latter, depend on the specific form of the Einstein equation. It can then be speculated that, in modified theories of gravity, the memory can differ from the GR prediction and provides novel phenomena to study these theories. We support this speculation by considering scalar-tensor theories, for which we find two new types of memory: the T memory and the S memory, which contribute to the tensor and scalar components of a gravitational wave, respectively. Specifically, the former is caused by the burst of energy carried away by scalar radiation, while the latter is intimately related to the no scalar hair property of black holes in scalar-tensor gravity. We estimate the size of these two types of memory in gravitational collapses and formulate a detection strategy for the S memory, which can be singled out from tensor gravitational waves. We show that (i) the S memory exists even in spherical symmetry and is observable under current model constraints, and (ii) while the T memory is usually much weaker than the S memory, it can become comparable in the case of spontaneous scalarization.

  7. Experimental study of A0 Lamb wave tomography

    Energy Technology Data Exchange (ETDEWEB)

    Seher, Matthias, E-mail: m.lowe@imperial.ac.uk; Huthwaite, Peter, E-mail: m.lowe@imperial.ac.uk; Lowe, Michael, E-mail: m.lowe@imperial.ac.uk; Cawley, Peter, E-mail: m.lowe@imperial.ac.uk [Department of Mechanical Engineering, Imperial College London, SW7 2AZ, London (United Kingdom)

    2015-03-31

    Corrosion damage in inaccessible regions presents a significant challenge to the petrochemical industry, and determining the remaining wall thickness is important to establish the remaining service life. Guided wave tomography is one solution and involves transmitting Lamb waves through the area of interest and using the received signals to reconstruct the remaining wall thickness. This avoids the need to access all points on the surface, making the technique well suited to inspection beneath supports. For this purpose a tomography system for pipe inspections is developed using low frequency A0 Lamb waves that are excited and detected with two arrays of electromagnetic acoustic transducers (EMATs). Two different defect depths are considered with different contrasts relative to the nominal wall thickness and in a first step, the repeatability of the measurements is demonstrated. Due to the limited view array configuration, the maximum depth of the reconstruction underestimates the true depth. In a second experimental study, the influence of a pipe clamp on the thickness reconstruction is considered, representing an inspection problem with restricted access. Preliminary results have shown that the maximum defect depth is further underestimated when compared to the thickness reconstructions without the clamp. However, it is possible to detect the defect underneath the clamp for all conducted experiments.

  8. 关于Bernstein-Kantorovich算子的Steckin-Marchaud型不等式%Steckin-Marchaud-type Inequalities in Connection with Bernstein-Kantorovich Polynomials

    Institute of Scientific and Technical Information of China (English)

    郭顺生; 刘丽霞; 宋占杰

    2000-01-01

    The purpose of this paper is to introduce ω2(x)3(f, t)z,β, and use it to prove the Steckin-Marchaud-type inequalities for Bernstein-Kantorovich Polynomials:ω2(x)3{f,(ψ)1-2(x)/√n}α1β≤C1/0#(x)∑3-2≤│B:f-f│0 where 0≤λ≤1, 0≤α≤2, 0≤β≤2, n∈N.(ψ)(x)=√x(1-x),│f │0=SUP r∈(0,1)││(ψ)(x)x(2-3)-θf(x)││,B(x)n(f,x)=n∑2-0Pn,n(x)(n+1)x-1√x+1 (x)/(n+1)f(t)dt,P0,i(x)={n k}xk(1-x)n-k,ω23(ψ)(f,t)α,β=SUP α<4≤1││(ψ)(2-α)(1-x)-θ(x)△kx1f(x)│,x,x ±h(ψ)2∈[0,1]│,and △2h(ψ)2f(x)=f(x+h(ψ)2)-2f(x)+f(x-h(ψ)2).

  9. Experimental study on the standing-wave tube with tapered section and its extremely nonlinear standing-wave field

    Institute of Scientific and Technical Information of China (English)

    MIN Qi; YIN Yao; LI Xiaodong; LIU Ke

    2011-01-01

    A standing-wave tube with tapered section (STTS) was evolved from a standingwave tube with abrupt section (STAS) whose abrupt section was replaced with tapered section. The research was intended to compare the acoustic properties and the extremely nonlinear pure standing waves of STTS with those of STAS. The acoustic properties of the STTS were studied with transfer matrix. It was proved, like the STAS, that the STTS was dissonant standingwave tube. With its dissonant property, the 181 dB extremely nonlinear pure standing wave was obtained in the STTS excited at its first resonance frequency. Then the comparative experimental studies on the saturation properties of the extremely nonlinear standing waves were carried out in the STTS and the STAS with the same length. It was found that the STTS could suppress the harmonics and meanwhile reduce energy loss of the standing wave more effectively. Compared with the STAS, under the same voltage of loudspeaker, the STTS obtained a higher extremely nonlinear pure standing wave. Moreover, it was found for the STTS that the third harmonic of the third resonance frequency was close to the seventh resonance frequency of sound source impedance, to which the valley value of the sound pressure level transfer function corresponded. Because of this, the third harmonic increased rapidly with the increase of fundamental wave and tended to saturate.

  10. A study of rain effects on radar scattering from water waves

    Science.gov (United States)

    Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George

    1988-01-01

    Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.

  11. Daniel Frandji, Philippe Vitale, Actualité de Basil Bernstein. Savoir, pédagogie et société

    OpenAIRE

    Giraud, Frédérique

    2011-01-01

    Des travaux de Basil Bernstein, ce sont les premiers, notamment les études réunies dans Langages et classes sociales, qui sont les plus connus. Si l'on sait que la question clef dans ce travail est de comprendre comment se produisent les inégalités scolaires statistiquement observées, dans une perspective sociolinguistique, on ignore le plus souvent que Bernstein a étendu son domaine d'investigation empirique au procès social d'apprentissage dans son ensemble. Actualité de Basil Bernstein. S...

  12. Theoretical and Experimental Study on the Acoustic Wave Energy After the Nonlinear Interaction of Acoustic Waves in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    兰朝凤; 李凤臣; 陈欢; 卢迪; 杨德森; 张梦

    2015-01-01

    Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves’ amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.

  13. A study on compressive shock wave propagation in metallic foams

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau,which makes it widely applicable in the design of structural crashworthiness. However,in some experimental studies,stress enhancement has been observed when the specimens are subjected to intense impact loads,leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model,a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived,where an explicit integra-tion algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses,considerable energy is dissipated during the progressive collapse of foam cells,which then reduces the crush of objects. When the pulse is sufficiently high,on the other hand,stress enhancement may take place,especially in the heterogeneous foams,where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material,amplitude and period of the pulse,as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.

  14. Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Tsurutani, B. T.

    1989-01-01

    Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.

  15. Comparative study on spreading function for directional wave spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.S.; Anand, N.M.; Nayak, B.U.

    -dimensional wave energy S(f) and the directional spreading function D(f, theta). This paper reviews various spreading functions proposed in the past for estimating the directional wave energy and presents their application to the Indian wave condition. It is found...

  16. Study on gas and wave in a receiving tube

    Institute of Scientific and Technical Information of China (English)

    Dapeng Hu; Shengtao Chen; Jun Yang; Zuzhi Chen; Yuqiang Dai; Che Zhu; Runjie Liu

    2008-01-01

    The gas and wave's motion in a receiving tube are investigated numerically and experimentally in the present paper. The results show that, velocity of the contact face rises rapidly as gas is injected into the receiving tube, and then drops sharply after a steady propagation. However, velocity of the wave in the tube is almost linear and the wave can be reflected at the close end of the receiving tube. With increasing of inlet pressure, velocity of the wave and steady velocity of contact face also increase. There is obvious thermal effect as the wave sweeps the gas.The reflected wave can heat the exhausting gas in the open end. As an absorber, an expander and a shrink in the tube can almost completely absorb the reflected wave.

  17. Tidal and gravity waves study from the airglow measurements at Kolhapur (India)

    Indian Academy of Sciences (India)

    R N Ghodpage; Devendraa Siingh; R P Singh; G K Mukherjee; P Vohat; A K Singh

    2012-12-01

    Simultaneous photometric measurements of the OI 557.7 nm and OH (7, 2) band from a low latitude station, Kolhapur (16.8°N, 74.2°E) during the period 2004–2007 are analyzed to study the dominant waves present in the 80–100 km altitude region of the atmosphere. The nocturnal intensity variations of different airglow emissions are observed using scanning temperature controlled filter photometers. Waves having period lying between 2 and 12 hours have been recorded. Some of these waves having subharmonic tidal oscillation periods 4, 6, 8 and 12 hours propagate upward with velocity lying in the range 1.6–11.3 m/s and the vertical wave length lying between 28.6 and 163 kms. The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application of these waves in studying the thermal structure of the region is discussed.

  18. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  19. Gravitational Wave Memory: A New Approach to Study Modified Gravity

    CERN Document Server

    Du, Song Ming

    2016-01-01

    It is well known that two types of gravitational wave memory exist in general relativity (GR): the linear memory and the non-linear, or Christodoulou memory. These effects, especially the latter, depend on the specific form of Einstein equation. It can then be speculated that in modified theories of gravity, the memory can differ from the GR prediction, and provides novel phenomena to study these theories. We support this speculation by considering scalar-tensor theories, for which we find two new types of memory: the T memory and the S memory, which contribute to the tensor and scalar components of gravitational wave, respectively. In particular, the former is caused by the burst of energy carried away by scalar radiation, while the latter is intimately related to the no scalar hair property of black holes in scalar-tensor gravity. We estimate the size of these two types of memory in gravitational collapses, and formulate a detection strategy for the S memory, which can be singled out from tensor gravitation...

  20. Model Study of Wave Overtopping of Marine Structure for a Wide Range of Geometric Parameters

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2000-01-01

    The objective of the study described in this paper is to enable estimation of wave overtopping rates for slopes/ramps given by a wide range of geometric parameters when subjected to varying wave conditions. To achieve this a great number of model tests are carried out in a wave tank using irregular...

  1. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to deter

  2. Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere

    Institute of Scientific and Technical Information of China (English)

    SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye

    2006-01-01

    @@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.

  3. Results of an Experimental Study of the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Espedal, J.

    2010-01-01

    This paper presents the results of the first experimental study of the Langlee wave energy converter (WEC), a semi-submerged oscillating wave surge converter. Its design extracts the energy from the surge motion of the waves through two pairs of working flaps, called water wings, which are placed...

  4. Infragravity-wave dynamics in a barred coastal region, a numerical study

    NARCIS (Netherlands)

    Rijnsdorp, D.P.; Ruessink, G.; Zijlema, M.

    2015-01-01

    This paper presents a comprehensive numerical study into the infragravity-wave dynamics at a field site, characterized by a gently sloping barred beach. The nonhydrostatic wave-flow model SWASH was used to simulate the local wavefield for a range of wave conditions (including mild and storm conditio

  5. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check...

  6. An experimental study of evaporation waves in a superheated liquid

    Science.gov (United States)

    Hill, Larry G.

    1990-01-01

    Evaporation waves in superheated liquids are studied using a rapid-depressurization facility consisting of a vertical glass test cell situated beneath a large, low-pressure reservoir. The objective of this study is to learn more about the physical mechanisms of explosive boiling (of which an evaporation wave is a specific example), as well as properties of the flow it produces.The test cell is initially sealed from the reservoir by a foil diaphragm, and is partially filled with a volatile liquid (Refrigerant 12 or 114). An experiment is initiated by rupturing the diaphragm via a pneumatically driven cutter. The instrumentation consists of fast-response pressure measurements, high-speed motion pictures, and spark-illuminated still photographs. The liquid temperature is typically 20°C; the liquid superheat is controlled by setting the reservoir pressure to values between vacuum and 1 atm. The pressures subsequent to depressurization are very much less than the critical pressure, and the initial temperatures are sufficiently low that, although the test liquid is highly superheated, the superheat limit is not approached. Evaporation waves in which bubble nucleation within the liquid column is suppressed entirely are considered almost exclusively.When the diaphragm is ruptured, the liquid pressure drops to virtually the reservoir value within a few milliseconds. Provided that the liquid superheat so obtained is sufficiently high, the free surface then erupts in a process known as explosive boiling, which is characterized by violent, fine-scale fragmentation of the superheated liquid and extremely rapid evaporation. The explosive boiling process proceeds as a "wavefront" into the liquid column, producing a highspeed, two-phase flow that travels upward into the low-pressure reservoir, emptying the test cell in a few hundred milliseconds. The speed of the wavefront varies between 0.2 and 0.6 m/s, depending on run conditions; the corresponding two-phase flow varies between

  7. A study on the Antarctic circumpolar wave mode-A coexistence system of standing and traveling wave

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Antarctic circumpolar wave (ACW) has become a focus of the air-sea coupled Southern Ocean study since 1996, when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic Circumpolar Current (ACC). In order to analyze the mechanism of discontinuity along the latitudinal propagation, a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing wave in the southern Indian Ocean is proposed in this paper. Based on the ideal wave principle, the average wave parameters of ACW is achieved using a non-linear approximation method, by which we find that the standing part and the traveling part possess similar radius frequency, proving their belonging to an integral system. We also give the latitudinal distribution of wave speed with which we could tell the reason for steady propagation during the same period. The spatial distribution of the propagation reveals complex process with variant spatial and temporal scales-The ENSO scale oscillation greatly impacts on the traveling process, while the result at the south of Australia indicates little connection between the Indian Ocean and the Pacific, which may be blocked by the vibration at the west of the Pacific. The advective effect of ACC on the propagation process should be examined clearly through dynamical method.

  8. Wave Basin Experiments with Large Wave Energy Converter Arrays to Study Interactions between the Converters and Effects on Other Users in the Sea and the Coastal Area

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    Experiments have been performed in the Shallow Water Wave Basin of DHI (Hørsholm, Denmark), on large arrays of up to 25 heaving point absorber type Wave Energy Converters (WECs), for a range of geometric layout configurations and wave conditions. WEC response and modifications of the wave field...... are located within and around the WEC array. Wave conditions studied include regular, polychromatic, long- and short-crested irregular waves. A rectilinear arrangement of WEC support structures is employed such that several array configurations can be studied. In this paper, the experimental arrangement...

  9. Assessing the first wave of epidemiological studies of nanomaterial workers

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing, E-mail: shliou@nhri.org.tw [National Health Research Institutes, National Institute of Environmental Health Sciences (China); Tsai, Candace S. J. [Colorado State University, Department of Environmental and Radiological Health Science (United States); Pelclova, Daniela [Charles University in Prague, Department of Occupational Medicine, First Faculty of Medicine (Czech Republic); Schubauer-Berigan, Mary K.; Schulte, Paul A. [National Institute for Occupational Safety and Health (United States)

    2015-10-15

    The results of early animal studies of engineered nanomaterials (ENMs) and air pollution epidemiology suggest that it is important to assess the health of ENM workers. Initial epidemiological studies of workers’ exposure to ENMs (<100 nm) are reviewed and characterized for their study designs, findings, and limitations. Of the 15 studies, 11 were cross-sectional, 4 were longitudinal (1 was both cross-sectional and longitudinal in design), and 1 was a descriptive pilot study. Generally, the studies used biologic markers as the dependent variables. All 11 cross-sectional studies showed a positive relationship between various biomarkers and ENM exposures. Three of the four longitudinal studies showed a negative relationship; the fourth showed positive findings after a 1-year follow-up. Each study considered exposure to ENMs as the independent variable. Exposure was assessed by mass concentration in 10 studies and by particle count in six studies. Six of them assessed both mass and particle concentrations. Some of the studies had limited exposure data because of inadequate exposure assessment. Generally, exposure levels were not very high in comparison to those in human inhalation chamber studies, but there were some exceptions. Most studies involved a small sample size, from 2 to 258 exposed workers. These studies represent the first wave of epidemiological studies of ENM workers. They are limited by small numbers of participants, inconsistent (and in some cases inadequate) exposure assessments, generally low exposures, and short intervals between exposure and effect. Still, these studies are a foundation for future work; they provide insight into where ENM workers are experiencing potentially adverse effects that might be related to ENM exposures.

  10. Excitation of electrostatic waves in the electron cyclotron frequency range during magnetic reconnection in laboratory overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahata, A., E-mail: kuwahata@ts.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Igami, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawamori, E. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Inomoto, M.; Ono, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-10-15

    We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.

  11. Experimental study on modulational instability and evolution of crescent waves

    Directory of Open Access Journals (Sweden)

    Ya-long ZHOU

    2012-12-01

    Full Text Available A series of experiments on the instability of steep water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-II instability, the initial two-dimensional steep wave trains evolved into three-dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolution of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.

  12. NUMERICAL STUDY OF SOLITARY WAVE FISSION OVER AN UNDERWATER STEP

    Institute of Scientific and Technical Information of China (English)

    LU Ji; YU Xi-ping

    2008-01-01

    Solitary wave fission over an underwater step is numerically investigated. The numerical model is based on the enhanced Boussinesq equations, which appropriately represent both the nonlinearity and dispersivity of surface water waves. The finite difference method defined on the staggered grid in space with an implicit scheme for time stepping is employed for the numerical solution of the governing equations. It is demonstrated that Boussinesq type equations, though they are vertically integrated, can describe the details of the solitary wave fission process with very good accuracy. Numerical results of the reflected and transmitting wave heights, the number of solitons emitted from the transmitting wave and their amplitudes all agree very well with the analytical solution derived from KdV equation by virtue of a linear long wave approximation in the vicinity of the underwater step.

  13. Experimental Study on Silt Incipient Motion Under Wave Action

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion was determined, and a relation between the shear stress and bulk density of silt was established. Results indicate that the critical shear stress depends on the structure of the silt itself, related to the tightness between the grains (or bulk density). Exterior condition is only an external cause of silt incipient motion, and the critical shear stress for the incipient motion is the token of exterior condition.

  14. Studies on Nematic Liquid Crystal Using Spin Wave Theory

    Institute of Scientific and Technical Information of China (English)

    LIUJian-Jun; LIUXiao-Jing; SHENMan; YANGGuo-Chen

    2004-01-01

    A spin wave theory is proposed to study nematic liquid crystals. Since the orientation of the molecular long axis and the angular momentum of the molecule rotating around its long axis have the same direction, operators can be introduced to research the nematic liquid crystal. By transforming the intermolecular interaction potential,the Hamiltonian of the system has the same form as that of the ferromagnetic substance. The relation of the order parameters to the reduced temperature can be obtained. It is in good agreement with the experimental results in the low temperature region. In the high temperature region close to the transition point, by using the Hamiltonian, the transition point can be obtained, which is near to the Maier-Saupe's result.

  15. Electron plasma wave filamentation in the kinetic regime

    Science.gov (United States)

    Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis

    2016-10-01

    We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.

  16. Study of Ocean Bottom Interactions with Acoustic Waves by a New Elastic Wave Propagation Algorithm and an Energy Flow Analysis Technique

    Science.gov (United States)

    2016-06-07

    imaging to study the wave / sea -bottom interaction, energy partitioning, scattering mechanism and other problems that are crucial for many ocean bottom...Study Of Ocean Bottom Interactions With Acoustic Waves By A New Elastic Wave Propagation Algorithm And An Energy Flow Analysis Technique Ru-Shan Wu...elastic wave propagation and interaction with the ocean water and ocean bottom environment. The method will be applied to numerical simulations and

  17. Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

    Directory of Open Access Journals (Sweden)

    Mahmoud Paripour

    2014-08-01

    Full Text Available In this paper, the Bernstein polynomials are used to approximatethe solutions of linear integral equations with multiple time lags (IEMTL through expansion methods (collocation method, partition method, Galerkin method. The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is carried out

  18. TIPS Evaluation Project Retrospective Study: Wave 1 and 2.

    Science.gov (United States)

    Hubbard, Susan M.; Mulvey, Kevin P.

    2003-01-01

    Measured substance abuse treatment professionals' knowledge, attitudes, and practices regarding the Treatment Improvement Protocol (TIP) series and the 28 TIPs. Results for 3,267 respondents in wave 1 and 1,028 in wave 2 indicate that almost half of all professionals were aware of the TIPs. Attitudes toward TIPs were positive, but professionals…

  19. FOUR-WAVE MIXING STUDIES OF IONS IN SOLIDS

    OpenAIRE

    Powell, R.; Suchocki, A.; Durville, F.; Gilliland, G.; Behrens, E.; Quarles, G.; BOULON, G.

    1987-01-01

    The laser technique of four-wave mixing is useful in both optical device applications and for characterizing fundamental properties of optical materials. This paper gives an overview of the theory and experimental technique of four-wave mixing, and presents examples of using this technique as a spectroscopic tool and of forming optical devices.

  20. A preliminary study on the intensity of cold wave storm surges of Laizhou Bay

    Science.gov (United States)

    Li, Xue; Dong, Sheng

    2016-12-01

    Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and flat topography. In order to evaluate the intensity of cold wave storm surge, the hindcast of marine elements induced by cold waves in Laizhou Bay from 1985 to 2004 is conducted using a cold wave storm surge-wave coupled model and the joint return period of extreme water level, concomitant wave height, and concomitant wind speed are calculated. A new criterion of cold wave storm surge intensity based on such studies is developed. Considering the frequency of cold wave, this paper introduces a Poisson trivariate compound reconstruction model to calculate the joint return period, which is closer to the reality. By using the newly defined cold wave storm surge intensity, the `cold wave grade' in meteorology can better describe the severity of cold wave storm surges and the warning level is well corresponding to different intensities of cold wave storm surges. Therefore, it provides a proper guidance to marine hydrological analysis, disaster prevention and marine structure design in Laizhou Bay.

  1. Experimental Study on the Effects of A Breakwater on Wave Field Characteristics

    Institute of Scientific and Technical Information of China (English)

    尹彰; 周宗仁; 黄伟柏

    2000-01-01

    Studies on the possible effects of a detached breakwater on the characteristics of the wave field are carried out experimentally. A serpentine wave generator is used to generate both uni- and multi-directional waves. Characteristics of the wave fields analyzed here include the wave field directionality, and the probability distributions of surface elevations and of the wave heights. Owing to the presence of the breakwater, waves outside the harbour are found to be reflected with, however, concentrated energy within the harbour entrance. In general wave heights can be approximated with a Rayleigh distribution, with occasional deviations from the theory. This occurs more frequently for waves with higher peak frequency values than for those with lower values both for uni- and multi-directional waves. Surface elevations can be approximated with the Gaussian model although the Edgeworth′s form of the type A Gram-Charlier series expansions would yield better fits. Wave directionality is found to have no discernible effects on the statistical characteristics of the wave field.

  2. EXPERIMENTAL STUDY ON WAVE ENERGY DISSIPATION AND COHESIVE SEDIMENT TRANSPORT IN SILT COAST

    Institute of Scientific and Technical Information of China (English)

    Shixiong HU; Onyx WAI

    2001-01-01

    The interaction between the wave and fluid mud layer plays an important role in the development of silt coast. Sediment is essentially transported in the form of rheological flow of mud layer under the wave action, and on the other hand, the fluid mud layer damps the wave considerably. This paper studies the laws of wave energy dissipation and mud bed deformation, and the movement of mud layer through laboratory experiments. The results show that the wave energy dissipation follows an exponential law along the propagation distance. The bulk density of the mud layer affects the rate of the wave energy dissipation greatly. The wave damping coefficient (Ki) is a fuction of the mud density affected greatly by the relative wave height (H/h).Analysis also indicates that the mud density affect the rate of mud transport and the moving velocity (Vmax) of the surface mud is inversely proportional to the mud density. Both the relative wave height (H/h) and wave-damping coefficient (Ki) are proportional to the Vmax. Analysis also shows that the mud transport rate (Tr) is proportional to the wave damping rate (1-H0/H15), the relative wave height (H/h),and inversely proportional to the volume concentration (Cv) and dimensionless coefficient of H/gT2.

  3. Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study

    NARCIS (Netherlands)

    Grisouard, N.; Staquet, C.; Gerkema, T.

    2011-01-01

    Oceanic observations from western Europe and the south-western Indian ocean have provided evidence of the generation of internal solitary waves due to an internal tidal beam impinging on the pycnocline from below - a process referred to as 'local generation' (as opposed to the more direct generation

  4. Pc5 waves generated by substorm injection: a case study

    Directory of Open Access Journals (Sweden)

    N. A. Zolotukhina

    2008-07-01

    Full Text Available We analyzed the spectral-polarized characteristics of Pc5 ULF waves observed on 17 September 2000 after the 03:20:25 UT substorm onset with the satellites GOES 8 and 10 located east and west of the onset location. In the course of the event, the wave polarization changed from mixed (between toroidal and poloidal to poloidal, and then to mixed again. The hodogram of magnetic field oscillations rotated counterclockwise at GOES 8, and clockwise at GOES 10. It is suggested that the satellites detected the waves generated by the substorm injected clouds of the charged particles drifting in the magnetosphere in the opposite azimuthal directions: GOES 8 (located east of the substorm onset detected the wave generated by an electron cloud, and GOES 10 (west of the onset detected the wave generated by a positive ion cloud. This interpretation is confirmed by the energetic particles data recorded by LANL satellites.

  5. Analytical Study on Wave Diffraction from a Vertical Circular Cylinder in Front of Orthogonal Vertical Walls

    Institute of Scientific and Technical Information of China (English)

    NING Dezhi; TENG Bin; SONG Xiangqun

    2005-01-01

    In this paper, the principle of mirror image is used to transform the problem of wave diffraction from a circular cylinder in front of orthogonal vertical walls into the problem of diffraction of four symmetric incident waves from four symmetrically arranged circular cylinders, and then the eigenfunction expansion of velocity potential and Grafs addition theorem are used to give the analytical solution to the wave diffraction problem. The relation of the total wave force on cylinder to the distance between the cylinder and orthogonal vertical walls and the incidence angle of wave is also studied by numerical computation.

  6. Experimental study on subharmonic and ultraharmonic acoustic waves in water-saturated sandy sediment.

    Science.gov (United States)

    Kim, Byoung-Nam; Lee, Kang Il; Yoon, Suk Wang

    2007-04-01

    Experimental observations of the subharmonic and ultraharmonic acoustic waves in water-saturated sandy sediment are reported in this paper. Acoustic pressures of both nonlinear acoustic waves strongly depend on the driving acoustic pressure at a transducer. The first ultraharmonic wave reaches a saturation value as the driving acoustic pressure increases. The acoustic pressure levels of both nonlinear acoustic waves exhibit some fluctuations in comparison with that of the primary acoustic wave as the receiving distance of hydrophone increases in sediment. The subharmonic and the ultraharmonic phenomena in this study show close resemblance to those produced in bubbly water.

  7. Study of Wave Conditions at Kvitsøy Prototype Location of Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Guinot, Florent

    This report presents the results of a study of the wave conditions at the planned location of the prototype of the wave energy converter (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs.......This report presents the results of a study of the wave conditions at the planned location of the prototype of the wave energy converter (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs....

  8. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.

    Science.gov (United States)

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok

    2013-11-01

    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  9. Wavenumber shift due to nonlinear plasma and wave interaction

    Science.gov (United States)

    Gan, Chunyun; Xiang, Nong; Yu, Zhi; Yang, Youlei; Ou, Jing

    2016-06-01

    Wavenumber shift of the ion Bernstein wave has been observed in the particle-in-cell simulations when the input power of the injected wave is sufficiently large. It is demonstrated that the increase of the total kinetic energy of ions, including both the thermal energy related to the random thermal motion and the oscillation energy due to the coherent motion with the wave, gives rise to such change of the wavenumber. However, the velocity distribution function of the ions can approximately be fitted as a Maxwellian distribution function, and thus, the linear dispersion relation still holds, provided that the initial ion temperature is replaced by the effective temperature measured in the simulation.

  10. Wave Energy, Lever Operated Pivoting Float LOPF Study

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed......The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg...... for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency...

  11. Experimental study of the formation of steep waves and breakers

    Directory of Open Access Journals (Sweden)

    Stanis³aw R. Massel

    2001-09-01

    Full Text Available Breaking waves (whitecaps are one of the most important and least understood processes associated with the evolution of the surface gravity wave field in the open sea. This process is the principal means by which energy and momentum are transferred away from a developing sea. However, an estimation of the frequency of breaking waves or the fraction of sea surface covered by whitecaps and the amount of dissipated energy induced by breaking is very difficult to carry out under real sea conditions. A controlled experiment, funded by the European Commission under the Improving Human Potential Access Infrastructures programme, was carried out in the Ocean Basin Laboratory at MARINTEK, Trondheim (Norway. Simulation of random waves of the prescribed spectra by wave makers provided a very realistic pattern of the sea surface. The number of breaking waves was estimated by photographing the sea surface and recording the noise caused by the breaking waves. The experimental data will serve for calibration of the theoretical models of the sea surface fraction related to the whitecaps.

  12. Study and verification on dispersion coefficient in wave field

    Institute of Scientific and Technical Information of China (English)

    SHEN LiangDuo; ZOU ZhiLi

    2012-01-01

    Transport and diffusion caused by coastal waves have different characteristics from those induced by flows.Through solving the vertical diffusion equation by an analytic method,this paper infers a theoretical formula of dispersion coefficient under the combined action of current and waves.It divides the general dispersion coefficient into six parts,including coefficients due to tidal current,Stokes drift,wave oscillation and interaction among them.It draws a conclusion that the contribution of dispersive effect induced by coastal waves is mainly produced by Stokes drift,while the contributions to time-averaged dispersion coefficient due to wave orbital motion and interaction between current and waves are very small.The results without tidal current are in agreement with the numerical and experimental results,which proves the correctness of the theoretical derivation.This paper introduces the variation characteristics of both the time-averaged and oscillating dispersion coefficients versus relative water depth,and demonstrates the physical implications of the oscillating mixing coefficient due to waves.We also apply the results to the costal vertical circulation and give its characteristics compared to Stokes drift.

  13. Numerical study of electromagnetic waves generated by a prototype dielectric logging tool

    Science.gov (United States)

    Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.

    2004-01-01

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  14. Experimental Study of a Multi Level Overtopping Wave Power Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Hald, Tue; Frigaard, Peter Bak

    2002-01-01

    Results of experimental investigations of a floating wave energy device called Power Pyramid is presented. The Power Pyramid utilizes reservoirs in multiple levels when capturing wave overtopping and converting it into electrical energy. The effect of capturing the overtopping in multiple levels......, compared to only one level, has been evaluated experimentally. From the experimental results, and the performed optimizations based on these, it has been found that the efficiency of a wave power device of the overtopping type can be increased by as much as 76 % by using 5 levels instead of 1. However...

  15. Row Sampling for Matrix Algorithms via a Non-Commutative Bernstein Bound

    CERN Document Server

    Magdon-Ismail, Malik

    2010-01-01

    We focus the use of \\emph{row sampling} for approximating matrix algorithms. We give applications to matrix multipication; sparse matrix reconstruction; and, \\math{\\ell_2} regression. For a matrix \\math{\\matA\\in\\R^{m\\times d}} which represents \\math{m} points in \\math{d\\ll m} dimensions, all of these tasks can be achieved in \\math{O(md^2)} via the singular value decomposition (SVD). For appropriate row-sampling probabilities (which typically depend on the norms of the rows of the \\math{m\\times d} left singular matrix of \\math{\\matA} (the \\emph{leverage scores}), we give row-sampling algorithms with linear (up to polylog factors) dependence on the stable rank of \\math{\\matA}. This result is achieved through the application of non-commutative Bernstein bounds. We then give, to our knowledge, the first algorithms for computing approximations to the appropriate row-sampling probabilities without going through the SVD of \\math{\\matA}. Thus, these are the first \\math{o(md^2)} algorithms for row-sampling based appro...

  16. On the Effects of Social Class on Language Use: A Fresh Look at Bernstein's Theory

    Directory of Open Access Journals (Sweden)

    Mohammad Aliakbari

    2014-06-01

    Full Text Available Basil Bernstein (1971 introduced the notion of the Restricted and the Elaborated code, claiming that working-class speakers have access only to the former but middle-class members to both. In an attempt to test this theory in the Iranian context and to investigate the effect of social class on the quality of students language use, we examined the use of six grammatical categories including noun, pronoun, adjective, adverb, preposition and conjunction by 20 working-class and 20 middle-class elementary students. The results of Chi-square operations at p<.05 corroborated Bernstein’s theory and showed that working- class students were different from middle-class ones in their language use. Being consistent with Bernstein’s theory, the results obtained for the use of personal pronouns indicated that middle-class students were more person-oriented and working-class ones more position-oriented. Findings, thus, call for teachers' deliberate attention to learners’ sociocultural variation to enhance mutual understanding and pragmatic success.

  17. Steckin-Marchaud-type Inequalities in Connection with Bernstein-Kantorovich Polynomials

    Institute of Scientific and Technical Information of China (English)

    郭顺生; 刘丽霞; 宋占杰

    2000-01-01

    The purpose of this paper is to introduce ω2φλ(f, t )α.β, and use it to prove the Steckin-Marchaud-type inequalities for Bernstein-Kantorovich Polynomials: ω2φλ(f,φ1-λ(x)/√n)α,β≤C1/n∑k=1n‖Bk*f-f‖0. where 0≤λ≤1,0<a<a,0≤β≤2,n∈N, φ(x)=√x(1-x),‖f‖0=sup x∈(0,1){|φ(x)α(λ-1)-βf(x)|},Bn*(f,x)=∑k=0n Pn,k(x)(n+1)∫k/n-1k+1/n+1f(t)dt, Pn,k(x)=(n k)xk(1-x)n-k, ω2φλ(f,t)α,β=sup0<h≤t{|φ(2-α)(1-λ)-β(x)△hφ2λf(x)|,x,x±hφλ∈[0,1]},and △hφ2λf(x)=f(x+hφλ)-2f(x)+f(x-hφλ).

  18. Concept Study of Foundation Systems for Wave Energy Converters

    DEFF Research Database (Denmark)

    Molina, Salvador Devant; Vaitkunaite, Evelina; Ibsen, Lars Bo

    Analysis of possible foundation solution for Wave Energy Converters (WEC) is presented by investigating and optimizing novel foundation systems recently developed for offshore wind turbines. Gravity based, pile and bucket foundations are innovative foundation systems that are analyzed. Concept...

  19. Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    CERN Document Server

    Hild, S; Acernese, F; Amaro-Seoane, P; Andersson, N; Arun, K; Barone, F; Barr, B; Barsuglia, M; Beker, M; Beveridge, N; Birindelli, S; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Bulik, T; Calloni, E; Cella, G; Mottin, E Chassande; Chelkowski, S; Chincarini, A; Clark, J; Coccia, E; Colacino, C; Colas, J; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S; Danzmann, K; De Salvo, R; Dent, T; De Rosa, R; Di Fiore, L; Di Virgilio, A; Doets, M; Fafone, V; Falferi, P; Flaminio, R; Franc, J; Frasconi, F; Freise, A; Friedrich, D; Fulda, P; Gair, J; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Glampedakis, K; Gräf, C; Granata, M; Grote, H; Guidi, G; Gurkovsky, A; Hammond, G; Hannam, M; Harms, J; Heinert, D; Hendry, M; Heng, I; Hennes, E; Hough, J; Husa, S; Huttner, S; Jones, G; Khalili, F; Kokeyama, K; Kokkotas, K; Krishnan, B; Li, T G F; Lorenzini, M; Lück, H; Majorana, E; Mandel, I; Mandic, V; Mantovani, M; Martin, I; Michel, C; Minenkov, Y; Morgado, N; Mosca, S; Mours, B; Müller-Ebhardt, H; Murray, P; Nawrodt, R; Nelson, J; Oshaughnessy, R; Ott, C D; Palomba, C; Paoli, A; Parguez, G; Pasqualetti, A; Passaquieti, R; Passuello, D; Pinard, L; Plastino, W; Poggiani1, R; Popolizio, P; Prato, M; Punturo, M; Puppo, P; Rabeling, D; Rapagnani, P; Read, J; Regimbau, T; Rehbein, H; Reid, S; Ricci, F; Richard, F; Rocchi, A; Rowan, S; Rüdiger, A; Santamaría, L; Sassolas, B; Sathyaprakash, B; Schnabel, R; Schwarz, C; Seidel, P; Sintes, A; Somiya, K; Speirits, F; Strain, K; Strigin, S; Sutton, P; Tarabrin, S; Thüring, A; Brand, J van den; van Veggel, M; Broeck, C van den; Vecchio, A; Veitch, J; Vetrano, F; Vicere, A; Vyatchanin, S; Willke, B; Woan, G; Yamamoto, K

    2010-01-01

    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.

  20. Sensitivity studies for third-generation gravitational wave observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hild, S; Abernathy, M; Barr, B; Beveridge, N [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Amaro-Seoane, P [Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1, D-14476 Potsdam (Germany); Andersson, N [University of Southampton, Southampton SO17 1BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Mottin, E Chassande [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris, Universite Denis Diderot, Paris VII (France); Beker, M [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Birindelli, S [Universite Nice ' Sophia-Antipolis' , CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: stefan.hild@glasgow.ac.uk [Astronomical Observatory, University of warsaw, Al Ujazdowskie 4, 00-478 Warsaw (Poland)

    2011-05-07

    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.

  1. Comparative Study between Slow Shock Wave Lithotripsy and Fast Shock Wave Lithotripsy in the Management of Renal Stone

    Directory of Open Access Journals (Sweden)

    AKM Zamanul Islam Bhuiyan

    2013-01-01

    Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A

  2. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Science.gov (United States)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  3. Study on wave energy resource assessing method based on altimeter data—A case study in Northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    WAN Yong; ZHANG Jie; MENG Junmin; WANG Jing; DAI Yongshou

    2016-01-01

    Wave energy resource is a very important ocean renewable energy. A reliable assessment of wave energy resources must be performed before they can be exploited. Compared with wave model, altimeter can provide more accuratein situ observations for ocean wave which can be as a novel method for wave energy assessment. The advantage of altimeter data is to provide accurate significant wave height observations for wave. In order to develop characteristic and advantage of altimeter data and apply altimeter data to wave energy assessment, in this study, we established an assessing method for wave energy in local sea area which is dedicated to altimeter data. This method includes three parts including data selection and processing, establishment of evaluation indexes system and criterion of regional division. Then a case study of Northwest Pacific was performed to discuss specific application for this method. The results show that assessing method in this paper can assess reserves and temporal and spatial distribution effectively and provide scientific references for the siting of wave power plants and the design of wave energy convertors.

  4. Wave energy, lever operated pivoting float LOPF study

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, L.

    2012-11-01

    The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency, produce 610 MWh/y (609.497 kWh/y) with an average power output of 69.6 kW, which requires a generator capacity of 700 kW. It is expected the generator efficiency can be increased to 90% in the future. More specific calculations (from EnergiNet) show that with one generator of 695 kW the expected power production is 585 MWh/y; with a generator of 250 kW and 100 kW, the expected power production is 481 MWh/y and 182 MWh/y respectively. In addition there are several areas for future improvements for increased power production. (Author)

  5. A Study of the Weak Shock Wave Propagating over a Porous Wall/Cavity System

    Institute of Scientific and Technical Information of China (English)

    H.D.KIM; S.J.JUNG; T.AOKI; T.SETOGUCHI

    2005-01-01

    The present computational study addresses the attenuation of the shock wave propagating in a duct, using a porous wall/cavity system. In the present study, a weak shock wave propagating over the porous wall/cavity system is investigated with computational fluid dynamics. A total variation diminishing scheme is employed to solve the unsteady, two-dimensional, compressible, Navier-Stokes equations. The Mach number of an initial shock wave is changed in the range from 1.02 to 1.12. Several different types of porous wall/cavity systems are tested to investigate the passive control effects. The results show that wall pressure strongly fluctuates due to diffraction and reflection processes of the shock waves behind the incident shock wave. From the results, it is understood that for effective alleviation of tunnel impulse waves, the length of the perforated region should be sufficiently long.

  6. Integrability: mathematical methods for studying solitary waves theory

    Science.gov (United States)

    Wazwaz, Abdul-Majid

    2014-03-01

    In recent decades, substantial experimental research efforts have been devoted to linear and nonlinear physical phenomena. In particular, studies of integrable nonlinear equations in solitary waves theory have attracted intensive interest from mathematicians, with the principal goal of fostering the development of new methods, and physicists, who are seeking solutions that represent physical phenomena and to form a bridge between mathematical results and scientific structures. The aim for both groups is to build up our current understanding and facilitate future developments, develop more creative results and create new trends in the rapidly developing field of solitary waves. The notion of the integrability of certain partial differential equations occupies an important role in current and future trends, but a unified rigorous definition of the integrability of differential equations still does not exist. For example, an integrable model in the Painlevé sense may not be integrable in the Lax sense. The Painlevé sense indicates that the solution can be represented as a Laurent series in powers of some function that vanishes on an arbitrary surface with the possibility of truncating the Laurent series at finite powers of this function. The concept of Lax pairs introduces another meaning of the notion of integrability. The Lax pair formulates the integrability of nonlinear equation as the compatibility condition of two linear equations. However, it was shown by many researchers that the necessary integrability conditions are the existence of an infinite series of generalized symmetries or conservation laws for the given equation. The existence of multiple soliton solutions often indicates the integrability of the equation but other tests, such as the Painlevé test or the Lax pair, are necessary to confirm the integrability for any equation. In the context of completely integrable equations, studies are flourishing because these equations are able to describe the

  7. The study and applications of photochemical-dynamical gravity wave model Ⅱ-- The effects of stable gravity wave on chemical species distribution in mesosphere

    Institute of Scientific and Technical Information of China (English)

    XU; Jiyao(徐寄遥); MA; Ruiping(马瑞平); A.K.Smith

    2002-01-01

    A nonlinear, compressible, non-isothermal gravity wave model that involves photochemistry is used to study the effects of gravity wave on atmospheric chemical species distributions in this paper. The changes in the distributions of oxygen compound and hydrogen compound density induced by gravity wave propagation are simulated. The results indicate that when a gravity wave propagates through a mesopause region, even if it does not break, it can influence the background distributions of chemical species. The effect of gravity wave on chemical species at night is larger than in daytime.

  8. Study on Correlation and Quantitative Error Estimation Method Among the Splitting Shear Wave Identification Methods

    Institute of Scientific and Technical Information of China (English)

    Liu Xiqiang; Zhou Huilan; Li Hong; Gai Dianguang

    2000-01-01

    Based on the propagation characteristics of shear wave in the anisotropic layers, thecorrelation among several splitting shear-wave identification methods hasbeen studied. Thispaper puts forward the method estimating splitting shear-wave phases and its reliability byusing of the assumption that variance of noise and useful signal data obey normaldistribution. To check the validity of new method, the identification results and errorestimation corresponding to 95% confidence level by analyzing simulation signals have beengiven.

  9. Multi-layer Study of Wave Propagation in Sunspots

    Science.gov (United States)

    Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.

    2010-10-01

    We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I λ10,827 and the He I λ10,830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line of sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed nonlinearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I λ10,830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified atmosphere with radiative losses according to Newton's cooling law to the phase spectra and derive the difference in the formation height of the spectral lines. We show that the linear model describes well the wave propagation up to the formation height of Ca II H, where nonlinearities start to become very important.

  10. Dividing to unveil protein microheterogeneities: traveling wave ion mobility study.

    Science.gov (United States)

    Halgand, F; Habchi, Johnny; Cravello, Laetitia; Martinho, Marlène; Guigliarelli, Bruno; Longhi, Sonia

    2011-10-01

    Overexpression of a protein in a foreign host is often the only route toward an exhaustive characterization, especially when purification from the natural source(s) is hardly achievable. The key issue in these studies relies on quality control of the purified recombinant protein to precisely determining its identity as well as any undesirable microheterogeneities. While standard proteomics approaches preclude unbiased search for modifications, the optional technique of top-down tandem mass spectrometry (MSMS) requires the use of highly accurate and highly resolved experiments to reveal subtle sequence modifications. In the present study, the top-down MSMS approach combined with traveling wave ion mobility (TWIM) separation was evaluated for its ability to achieve high sequence coverage and to reveal subtle microheterogeneities that were hitherto only accessible with Fourier-transform ion cyclotron resonance-MS instruments. The power of this approach is herein illustrated in an in-depth analysis of both the wild type and K496C variant of the recombinant X domain (XD; aa's 459-507) of the measles virus phosphoprotein expressed in Escherichia coli . Using top-down MSMS combined with TWIM, we show that XD samples occasionally exhibit a microheterogeneity that could not be anticipated from the nucleotide sequence of the encoding constructs and that likely reflects a genetic drift, neutral or not, occurring during expression. In addition, a 1-oxyl-2,2,5,5-tetramethyl-δ3-pyrroline-3-methyl methanethiosulfonate nitroxide probe that was grafted onto the K496C XD variant was shown to undergo oxidation and/or protonation in the electrospray ionization source, leading to artifactual mass increases.

  11. Intercellular ultrafast Ca(2+) wave in vascular smooth muscle cells: numerical and experimental study.

    Science.gov (United States)

    Quijano, J C; Raynaud, F; Nguyen, D; Piacentini, N; Meister, J J

    2016-08-10

    Vascular smooth muscle cells exhibit intercellular Ca(2+) waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca(2+) wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca(2+) wave and it was suggested to be the result of the interplay between membrane potential and Ca(2+) dynamics which depended on influx of extracellular Ca(2+), cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca(2+) wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca(2+) wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca(2+) wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca(2+) waves in smooth muscle cells.

  12. A Study of the Impulse Wave Discharged from the Exits of Two Parallel Tubes

    Institute of Scientific and Technical Information of China (English)

    Yong-Hun Kweon; Heuy-Dong Kim; Toshiaki Setoguchi; Toshiyuki Aoki

    2003-01-01

    The twin impulse wave leads to very complicated flow fields, such as Mach stem, spherical waves, and vortex ring. The twin impulse wave discharged from the exits of the two tubes placed in parallel is investigated to understand the detailed flow physics associated with the twin impulse wave, compared with those in a single impulse wave. In the current study, the merging phenomena and propagation characteristics of the impulse waves are investigated using a shock tube experiment and by numerical computations. The Harten-Yee's total variation diminishing (TVD) scheme is used to solve the unsteady two-dimensional compressible Euler equations. The Mach number Ms of incident shock wave is changed below 1.5 and the distance between two-parallel tubes, L/d,is changed from 1.2 to 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. The results obtained show that on the symmetric axis between two-parallel tubes, the peak pressure produced by the twin impulse waves and its location strongly depend upon the distance between two-parallel tubes, L/d and the incident shock Mach number,Ms. The predicted Schlieren images represent the measured twin-impulse wave with a good accuracy.

  13. Seismic wave propagation modeling in porous media for various frequencies: A case study in carbonate rock

    Science.gov (United States)

    Nurhandoko, Bagus Endar B.; Wardaya, Pongga Dikdya; Adler, John; Siahaan, Kisko R.

    2012-06-01

    Seismic wave parameter plays very important role to characterize reservoir properties whereas pore parameter is one of the most important parameter of reservoir. Therefore, wave propagation phenomena in pore media is important to be studied. By referring this study, in-direct pore measurement method based on seismic wave propagation can be developed. Porosity play important role in reservoir, because the porosity can be as compartment of fluid. Many type of porosity like primary as well as secondary porosity. Carbonate rock consist many type of porosity, i.e.: inter granular porosity, moldic porosity and also fracture porosity. The complexity of pore type in carbonate rocks make the wave propagation in these rocks is more complex than sand reservoir. We have studied numerically wave propagation in carbonate rock by finite difference modeling in time-space domain. The medium of wave propagation was modeled by base on the result of pattern recognition using artificial neural network. The image of thin slice of carbonate rock is then translated into the velocity matrix. Each mineral contents including pore of thin slice image are translated to velocity since mineral has unique velocity. After matrix velocity model has been developed, the seismic wave is propagated numerically in this model. The phenomena diffraction is clearly shown while wave propagates in this complex carbonate medium. The seismic wave is modeled in various frequencies. The result shows dispersive phenomena where high frequency wave tends to propagate in matrix instead pores. In the other hand, the low frequency waves tend to propagate through pore space even though the velocity of pore is very low. Therefore, this dispersive phenomena of seismic wave propagation can be the future indirect measurement technology for predicting the existence or intensity of pore space in reservoir rock. It will be very useful for the future reservoir characterization.

  14. RAYLEIGH WAVE STUDIES OF CATHODIC H-CHARGING OF Fe

    OpenAIRE

    Lunarska, E.; Fiore, N.

    1981-01-01

    The attenuation of 2-6 MHz Rayleigh waves /RW/ was measured in sheet samples of Fe which were undergoing electrolytic charging with H. The cathodic polarization and As2O3 addition into electrolyte were found to effect the attenuation and velocity of the surface waves. The attenuation changes were retarded by the deposition of a thin /2µm/ layer of Cu on the Fe surface, with the Cu acting as a H-permeation barrier. The decrease in attenuation was caused by the entry of H into solid solution at...

  15. Experimental Study on Shock Wave Structures in Constant-area Passage of Cold Spray Nozzle

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Kazuyasu MATSUO

    2007-01-01

    Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.

  16. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  17. Novel Acoustic Wave Microsystems for Biophysical Studies of Cells

    Science.gov (United States)

    Senveli, Sukru Ufuk

    Single cell analysis is an important topic for understanding of diseases. In this understanding, biomechanics approach serves as an important tool as it relates and connects the mechanical properties of biological cells with diseases such as cancer. In this context, analysis methods based on ultrasonics are promising owing to their non-invasive nature and ease of use. However, there is a lack of miniature systems that provide accurate ultrasonic measurements on single cancer cells for diagnostic purposes. The platform presented in this study exploits high frequency acoustic interaction and uses direct coupling of Rayleigh type SAWs with various samples placed inside microcavities to analyze their structural properties. The samples used are aqueous glycerin solutions and polystyrene microbeads for demonstrating proper system operation, and lead up to biological cells. The microcavity is instrumental in trapping a predetermined volume of sample inside and facilitating the interaction of the surface waves with the sample in question via a resonance condition. Ultimately, the resultant SAW reaching the output transducer incurs a phase delay due to its interaction with the sample in the microcavity. The system operates in a different manner compared to similar systems as a result of multiple wave reflections in the small volume and coupling back to the piezoelectric substrate. The proposed microsystem was first analyzed using finite element methods. Liquid and solid media were modeled by considering frequency dependent characteristics. Similarly, mechanical behavior of cells with respect to different conditions is considered, and biological cells are modeled accordingly. Prototype devices were fabricated on quartz and lithium niobate in a cleanroom environment. Process steps were optimized separately for devices with microcavities. Precise fabrication, alignment, and bonding of PDMS microchannels were carried out. Soft microprobes were fabricated out of SU-8, a

  18. A study of body-to-surface wave conversion associated with deep earthquakes

    Science.gov (United States)

    Shen, Z.; Ni, S.

    2015-12-01

    Understanding converted surface waves is helpful because they could improve the accuracy of earthquake location if the exacted scattered point is known as well as serve to image shallow structures with dispersion features. Previous studies have reported a few observations of body-to-surface-wave conversion associated with deep earthquakes. For example, Wagner and Langston used coda intensity analysis and f-k analysis to confirm a P-to-Rg wave and performed forward modeling with T-matrix method demonstrating that a 1km relief was responsible for the observed body-to-surface wave scattering. Moreover, Furumura et al. observed unusual Rayleigh waves converted from S wave observed at Australia with deep earthquakes occurred along Kermadec-Tonga trench and a 2D Pseudospetral method is adopted to illustrate that the Rayleigh waves could be explained by ridge structures. Both T-matrix and pseudospetral algorithms are based on numerical methods. However, we lack a theory to study the mechanism of those surface waves quantitatively. For instance, the relationship between the topography with the dominate frequency of converted surface waves could be resolved thoroughly with a theoretical approach. From this perspective, we carried out a theoretical method to calculate the converted Rayleigh wave with surface topography. During the calculation, a homogeneous half space medium is assumed and the path of the converted phase is divided into two segments. Firstly, we will introduce our theoretical method in detail and a comparison of our results and SEM results will be presented to verify our methods. Secondly, the topography effect and the transfer efficiency of P and S wave will be examined quantitatively with different source mechanisms. Then, we will report an observation of unusual large amplitude surface waves transferred from body waves at local stations. Our preliminary result shows that those anomalous waves are identified as Rayleigh wave and are probably generated by

  19. Experimental and numerical studies of terahertz surface waves on a thin metamaterial film

    CERN Document Server

    Reinhard, Benjamin; Beigang, Rene; Rahm, Marco

    2009-01-01

    We present experimental and numerical studies of localized terahertz surface waves on a subwavelength-thick metamaterial film consisting of in-plane split-ring resonators. A simple and intuitive model is derived that describes the propagation of surface waves as guided modes in a waveguide filled with a Lorentz-like medium. The effective medium model allows to deduce the dispersion relation of the surface waves in excellent agreement with the numerical data obtained from 3-D full-wave calculations. Both the accuracy of the analytical model and the numerical calculations are confirmed by spectroscopic terahertz time domain measurements.

  20. A histomorphometric study of necrotic femoral head in rabbits treated with extracorporeal shock waves

    Science.gov (United States)

    Ma, Huan-Zhi; Zhou, Dong-Sheng; Li, Dong; Zhang, Wei; Zeng, Bing-Fang

    2017-01-01

    [Purpose] This study aimed to determine the effectiveness and mechanisms of extracorporeal shock wave therapy in the treatment of femoral head osteonecrosis. [Subjects and Methods] Histomorphometric analysis of necrotic femoral head in rabbits treated with shock waves was performed. Bilateral osteonecrosis of femoral heads was induced with methylprednisolone and lipopolysaccharide in eight rabbits. The left limb (study side) received shock waves to the femoral head. The right limb (control side) received no shock waves. Biopsies of the femoral heads were performed at 12 weeks after shock wave therapy. [Results] Necrotic femoral heads treated with shock waves, compared with controls, had higher bone volume per tissue volume, trabecular thickness, trabecular number, osteoblast surface/bone surface, osteoid surface/bone surface, osteoid thickness, mineralizing surface/bone surface, mineralizing apposition rate, and bone formation rate. However, trabecular separation was lower in shock wave-treated femoral heads than in controls. Eroded surface/bone surface and osteoclast surface/bone surface did not differ significantly between groups. [Conclusion] The bone mass of necrotic femoral heads treated with shock waves increases. Extracorporeal shock wave may promote bone repair in necrotic femoral heads through the proliferation and activation of osteoblasts. PMID:28210032

  1. A Study of Uranus' Bow Shock Motions Using Langmuir Waves

    Science.gov (United States)

    Xue, S.; Cairns, I. H.; Smith, C. W.; Gurnett, D. A.

    1996-01-01

    During the Voyager 2 flyby of Uranus, strong electron plasma oscillations (Langmuir waves) were detected by the plasma wave instrument in the 1.78-kHz channel on January 23-24, 1986, prior to the inbound bow shock crossing. Langmuir waves are excited by energetic electrons streaming away from the bow shock. The goal of this work is to estimate the location and motion of Uranus' bow shock using Langmuir wave data, together with the spacecraft positions and the measured interplanetary magnetic field. The following three remote sensing analyses were performed: the basic remote sensing method, the lag time method, and the trace-back method. Because the interplanetary magnetic field was highly variable, the first analysis encountered difficulties in obtaining a realistic estimation of Uranus' bow shock motion. In the lag time method developed here, time lags due to the solar wind's finite convection speed are taken into account when calculating the shock's standoff distance. In the new trace-back method, limits on the standoff distance are obtained as a function of time by reconstructing electron paths. Most of the results produced by the latter two analyses are consistent with predictions based on the standard theoretical model and the measured solar wind plasma parameters. Differences between our calculations and the theoretical model are discussed.

  2. A STUDY OF VELOCITY FIELD IN SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Searching ships on the ocean with the technique of the oceanic remote sensing, one must be requensted to know not only the amplitude of ship waves, but also horizontal velocities. In this article Lighthill’s two-stage scheme was employed to change the integral expressions into algebraic expressions for the velocity components, so the obtained results are very succinct.

  3. A mechanism study of sound wave-trapping barriers.

    Science.gov (United States)

    Yang, Cheng; Pan, Jie; Cheng, Li

    2013-09-01

    The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.

  4. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  5. Simulation study of acoustic wave propagation in ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mohite-Patil, T.B; Saran, A.K; Sawant, S.R.; Chile, R.H; Mohite-Patil, T.T.

    Many reports are available on the sound attenuation and speed in the deep ocean, as a function of different ingredients of sea. The absorption and speed of sound waves are related to the change in sound speed, depth, salinity, temperature, PH...

  6. Multi-layer study of wave propagation in sunspots

    CERN Document Server

    Felipe, T; Collados, M; Beck, C

    2010-01-01

    We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I 10827 and the He I 10830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line-of-sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed non-linearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I 10830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified at...

  7. Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    ..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics

  8. Influences on water-hammer wave shape: an experimental study

    Science.gov (United States)

    Traudt, T.; Bombardieri, C.; Manfletti, C.

    2016-09-01

    Water-hammer phenomena are of strong interest in a number of different industrial fields, amongst which the space industry. Here the priming of feedlines during start-up of an engine as well as the rapid closing of valves upon shutdown may lead to pressure peaks symptomatic of a water-hammer wave. Test benches used to conduct tests on future as well as current engines are also sensitive to water-hammer waves traveling along their feedlines. To enhance the understanding of water-hammer, we investigated different configurations and their influence on the wave shape in the frequency domain. The configurations feature a coiled pipe setup with a support structure and without a support structure. Two other phenomena will be presented. We found a beat phenomenon which is likely to be the so called Poisson-coupling beat. Finally we will show that the second water-hammer peak can reach pressures a lot higher than the first peak by additive interference of the primary and secondary water-hammer wave.

  9. Experimental Study for the Different Methods of Generating Millimeter Waves

    Directory of Open Access Journals (Sweden)

    Aamer Jamal Albaghdadi

    2014-08-01

    Full Text Available In this paper a analytical comparison and experimental implementation of different methods used in generating a low phase noise millimeter wave signals is presented. Four techniques were experimented and compared, Multiplication, phase lock loop (PLL, Injection locking (IL, and Injection locking with phase lock loop (ILPLL. The comparison and experimental results of a laboratory discussed.

  10. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    HU RuiFeng; CAO BingYang

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  11. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  12. Experimental and numerical study of wave-induced backfilling beneath submarine pipelines

    DEFF Research Database (Denmark)

    Bayraktar, Deniz; Ahmad, Joseph; Eltard-Larsen, Bjarke

    2016-01-01

    This paper presents results of complementary experimental and numerical studies involving wave-induced backfilling of current-generated scour holes beneath submarine pipelines. The laboratory experiments are conducted in a wave-plus-current flume, utilizing Laser Doppler Anemometry to measure...

  13. A Physical Study of Converted Wave AVO in a Fractured Reservoir

    Science.gov (United States)

    Chang, C. H.; Chang, Y. F.; Tsao, H. C.; Chang, J. W.

    2015-12-01

    Benefiting by the multicomponent seismic acquisition and processing techniques, the applications of converted waves in petroleum exploration is thus highlighted. A converted (C-) wave is initiated by a downward traveling P-wave that is converted on reflection to upcoming S-waves. Ascribing to its origins, C-wave takes the behaviors of P- and S-wave and becomes as one of the popular seismic attributes in the studies of a fractured reservoir. Making use of the scaled physical model, we aim on inspecting the azimuthal Amplitude Variation with Offset (AVO) of C-wave in a reservoir of vertically aligned fractures. In order to facilitate the objective of this study, reflection experiments were carried out on the orthogonal plane of a Horizontal Transversely Isotropic (HTI) model which is created to simulate a fractured reservoir. In laboratory manipulation, acoustic energy is triggered by a P-type transducer and the reflected energy is received an S-type transducer to detect the reflected energy, i.e. C-waves, originating by mode conversion. From fracture strike to facture normal, end-on shooting reflections were acquired from seven different directions. The angular interval in between the successive observation is 15 degrees. While viewing into the reflection profiles, events of P-, C1- and C2-waves can be readily identified. In the acquired profiles, the P-wave AVO is clearly observed and the phenomenon of C-wave splitting is revealed by the separation of traveltime-distance curves of C1- and C2-waves. However, it is aware of that the C-wave amplitudes are not simply varied or attenuated with offset in each observation. The complicated behaviors of C-wave AVO could be caused by the amount of energy, which is incident angle dependent, in reflected S-waves. Hence, our results indicate that the azimuthal C-wave AVO might not be a reliable seismic signature which can be used to delineate the fracture orientation of a fractured reservoir.

  14. Computational study on full-wave inversion based on the elastic wave-equation; Dansei hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, S. [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T.; Sassa, K. [Kyoto University, Kyoto (Japan)

    1997-05-27

    Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.

  15. Numerical Study of Submerged Vertical Plane Jets Under Progressive Water Surface Waves

    Institute of Scientific and Technical Information of China (English)

    DAI Hui-chao; WANG Ling-ling

    2005-01-01

    When wastewater is discharged into a coastal area through an outfall system, it will always be subjected to the action of waves. It is important to study and quantify the mixing of the discharge with the ambient water so that accurate environmental impact assessment can be made for such discharge conditions. The present work aims to study the phenomenon of a plane jet discharged into water environment with regular waves. A 3D numerical model based on the full Navier-Stokes equations (NSE) in the σ-coordinate is developed to study the present problem. Turbulence effects are modeled by a subgrid-scale (SGS) model using the concept of large eddy simulation (LES). The operator splitting method is used to solve the modified NSE. The model has been applied to the simulation of three different cases of submerged plane jets with surface waves: jet with strong waves, jet with weak waves and jet without waves. Numerical results show that the waves enhance the mixing of the jet with the ambient fluid, and cause a periodic deflection of the jet. The size of the re-circulation is about 1.5~2.4 depth of water. The velocity profile of the jet is self-similar in the zone of established flow for both the pure jet and jet in wave circumstances. The spreading characteristic constant α is 0.100 and 0.105 for pure momentum jets with Re numbers 1025 and 2050. The value of α increases from 0.130 to 0.147 for a jet in weak and strong wave circumstances, showing that waves have an obvious effect on the mixing and dilution properties of jets. Numerical results are in good agreement with the experimental data for the cases of pure jets and jets with waves.

  16. The Bernstein Operational Matrices for Solving the Fractional Quadratic Riccati Differential Equations with the Riemann-Liouville Derivative

    Directory of Open Access Journals (Sweden)

    Dumitru Baleanu

    2013-01-01

    Full Text Available We obtain the approximate analytical solution for the fractional quadratic Riccati differential equation with the Riemann-Liouville derivative by using the Bernstein polynomials (BPs operational matrices. In this method, we use the operational matrix for fractional integration in the Riemann-Liouville sense. Then by using this matrix and operational matrix of product, we reduce the problem to a system of algebraic equations that can be solved easily. The efficiency and accuracy of the proposed method are illustrated by several examples.

  17. O dilema da Social-Democracia (2 - Reforma e Revolução: Bernstein, Rosa Luxemburgo e Karl Kautsky

    Directory of Open Access Journals (Sweden)

    Antonio Ozaí da Silva

    2011-03-01

    Full Text Available

    Análise do Bernstein-Debatte”, os argumentos revisionistas e a crítica de Rosa Luxemburgo e Karl Kautsky e os rumos da social-democracia alemã entre a prática reformista e a retórica revolucionária. 

  18. O dilema da Social-Democracia (2) - Reforma e Revolução: Bernstein, Rosa Luxemburgo e Karl Kautsky

    OpenAIRE

    Antonio Ozaí da Silva

    2011-01-01

    Análise do Bernstein-Debatte”, os argumentos revisionistas e a crítica de Rosa Luxemburgo e Karl Kautsky e os rumos da social-democracia alemã entre a prática reformista e a retóric...

  19. Pilot Study on the Nano-Composites Coats of Radar Wave's Absorption

    Institute of Scientific and Technical Information of China (English)

    HU Chuan-xin; ZhANG Lei; GAN Ai-feng; LI Wan-zhi; LIANG Wen-ting; ZHANG Chen-jia

    2004-01-01

    This thesis mainly introduced the guiding principle and physical model of the research on the nano-composites coats of radar wave's absorption, and then studied the qualitative analysis of the performance ameliorating of radar wave's absorption composite coats. And on the basis of the optimum design of multilayer wave's absorption materials, two new kinds of radar wave's absorption composite coats have been made, which are composed of nano-composites hydroxyl iron powder and hollow micro-sphere. The research indicated that the surface-density of these two new composite coats is less than 3.5 Kg/m2.The coats' thickness is about 1 mm. And the waves absorption capability is above the level of 5 db, in the range of 3 ~ 18GHz. Therefore the wave's absorption performance of these two new coats is better than nano-crystalloid in low frequency area. The pilot study has proved that the nano-composites coat's performance of radar wave's absorption excels the ordinary radar wave's absorption coats, so it needs to be further studied.

  20. Study of equatorial Kelvin waves using the MST radar and radiosonde observations

    Directory of Open Access Journals (Sweden)

    P. Kishore

    2005-06-01

    Full Text Available In this paper an attempt has been made to study equatorial Kelvin waves using a high power coherent VHF radar located at Gadanki (13.5° N, 79.2° E, a tropical station in the Indian sub-continent. Simultaneous radiosonde observations taken from a nearby meteorological station located in Chennai (13.04° N, 80.17° E were also used to see the coherence in the observed structures. These data sets were analyzed to study the mean winds and equatorial waves in the troposphere and lower stratosphere. Equatorial waves with different periodicities were identified. In the present study, particular attention has been given to the fast Kelvin wave (6.5-day and slow Kelvin wave (16-day. Mean zonal wind structures were similar at both locations. The fast Kelvin wave amplitudes were somewhat similar in both observations and the maximum amplitude is about 8m/s. The phase profiles indicated a slow downward progression. The slow Kelvin wave (16-day amplitudes shown by the radiosonde measurements are a little larger than the radar derived amplitudes. The phase profiles showed downward phase progression and it translates into a vertical wavelength of ~10-12km. The radar and radiosonde derived amplitudes of fast and slow Kelvin waves are larger at altitudes near the tropopause (15-17km, where the mean wind attains westward maximum.

  1. Laser-generated acoustic wave studies on tattoo pigment

    Science.gov (United States)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  2. Numerical study of surface water waves generated by mass movement

    Science.gov (United States)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45° slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly\\vadjust{\

  3. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  4. Study of nonlinear waves in astrophysical quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M.R.; Mamun, A.A., E-mail: rasel.plasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2015-10-01

    The nonlinear propagation of the electron acoustic solitary waves (EASWs) in an unmagnetized, collisionless degenerate quantum plasma system has been investigated theoretically. Our considered model consisting of two distinct groups of electrons (one of inertial non-relativistic cold electrons and other of inertialess ultrarelativistic hot electrons) and positively charged static ions. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method and numerically examined to identify the basic features (speed, amplitude, width, etc.) of EASWs. It is shown that only rarefactive solitary waves can propagate in such a quantum plasma system. It is found that the effect of degenerate pressure and number density of hot and cold electron fluids, and positively charged static ions, significantly modify the basic features of EASWs. It is also noted that the inertial cold electron fluid is the source of dispersion for EA waves and is responsible for the formation of solitary structures. The applications of this investigation in astrophysical compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are briefly discussed. (author)

  5. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  6. Experimental study of wave impact on the nearshore structures during extreme coastal floods

    Science.gov (United States)

    Sriram, Venkatachalam; Didenkulova, Ira; Pelinovsky, Efim; Rodin, Artem; Didenkulov, Oleg; Sergeeva, Anna; Nair Vishnu, Reghunathan; Sundar, Vallam; Annamalaisamy Sannasiraj, Sannasi

    2016-04-01

    We study the dynamics of strongly nonlinear waves in the coastal zone and their impact on coasts during flash floods and tsunami. For this we use analytical theory of strongly nonlinear wave propagation along the slope and compare it with the data of experiments carried out in shallow water flume of IIT Madras (72 m long, 2 m wide and up to 2 m deep). Different kinds of waves like elongated solitons, N-waves are simulated and its run-up and impact force on the idealized structure on the slope are evaluated. Different numerical models (CLAWPACK, pseudospectral code for solving nonlinear evolutional equations and FNPT model) areused to describe strongly nonlinear waves along the slope. Results of numerical simulations are compared with predictions of analytical theory and with the data of experiments. The results presented here are the preliminary results obtained within DST - RFBR joint project "Impact of waterborne debris on the nearshore structures during extreme coastal floods".

  7. Experimental Study on Local Scour Around A Large Circular Cylinder Under Irregular Waves

    Institute of Scientific and Technical Information of China (English)

    周益人; 陈国平

    2004-01-01

    A series of physical model tests are conducted for local scour around a circular cylinder of a relatively large diameter (0.15 < D/L < 0.5) under the action of irregular waves. The laws of change of the topography around the cylinder are systematically studied. The effects of wave height, wave period, water depth, sediment grain size and cylinder diameter are taken into account. The mechanism of formation of the topography around the cylinder is analyzed. A detailed analysis is given to bed sediment grain size, and it is considered that the depth of scour around the cylinder under wave action is not inversely proportional to the sediment grain diameter. On such a basis, an equation is proposed for calculation of the maximum depth of scour around a cylinder as well as its position under the action of irregular waves.

  8. Studies of high latitude mesospheric turbulence by radar and rocket. I - Energy deposition and wave structure

    Science.gov (United States)

    Goldberg, R. A.; Fritts, D. C.; Chou, H.-G.; Schmidlin, F. J.; Barcus, J. R.

    1988-01-01

    The origin of wintertime mesospheric echoes observed with the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska, was studied by probing the mesosphere with in situ rocket measurements during echo occurrences in the early spring, 1985. Within the height range 65-75 km, the structure of the large scale wave field was identified. In this region, a gravity wave with a vertical wavelength of about 2 km was found superimposed on a wave with a larger amplitude and a vertical wavelength of about 6.6 km. Because of the close correlation between the smaller amplitude wave and the modulation observed in the S/N profiles, it is concluded that the smaller wave was dominant in generating turbulence within the middle atmosphere.

  9. A Computer Simulation Study of Anatomy Induced Drift of Spiral Waves in the Human Atrium

    Directory of Open Access Journals (Sweden)

    Sanjay R. Kharche

    2015-01-01

    Full Text Available The interaction of spiral waves of excitation with atrial anatomy remains unclear. This simulation study isolates the role of atrial anatomical structures on spiral wave spontaneous drift in the human atrium. We implemented realistic and idealised 3D human atria models to investigate the functional impact of anatomical structures on the long-term (∼40 s behaviour of spiral waves. The drift of a spiral wave was quantified by tracing its tip trajectory, which was correlated to atrial anatomical features. The interaction of spiral waves with the following idealised geometries was investigated: (a a wedge-like structure with a continuously varying atrial wall thickness; (b a ridge-like structure with a sudden change in atrial wall thickness; (c multiple bridge-like structures consisting of a bridge connected to the atrial wall. Spiral waves drifted from thicker to thinner regions and along ridge-like structures. Breakthrough patterns caused by pectinate muscles (PM bridges were also observed, albeit infrequently. Apparent anchoring close to PM-atrial wall junctions was observed. These observations were similar in both the realistic and the idealised models. We conclude that spatially altering atrial wall thickness is a significant cause of drift of spiral waves. PM bridges cause breakthrough patterns and induce transient anchoring of spiral waves.

  10. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    Science.gov (United States)

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  11. Experimental study on interference effect of rarefaction wave on laminar propagating flame

    Institute of Scientific and Technical Information of China (English)

    SUN Jinhua; LIU Yi; WANG Qingsong; CHEN Peng

    2005-01-01

    In order to study the interference effect of rarefaction wave on the laminar flame propagating structure and pressure characteristics of methane-air mixture, a small scale combustion chamber has been built. The techniques of high speed Schlieren photograph, pressure measurement and so on, are used to study the influence of rarefaction wave on the laminar flame propagating through methane-air mixture. The results show that, after the rarefaction wave acts on the propagation laminar flame, the laminar combustion is fully transformed into turbulent combustion just during several milliseconds, which leads to a sharp increase in the burning surface area and the pressure rise rate.

  12. Studies of High-Frequency Seismic Wave Propagation.

    Science.gov (United States)

    1991-03-29

    00).00 39󈧇𔃿 1~ 117𔃿 8󈧵" USSR stations Kararalinsk (KKL) 49󈧘’ 75O23’ Bayan"a (BAY) 50󈧵’ 75033’ Karas (K.SU) 49󈧽’ 81905’ U S stations Derep...1985; Peacock et al., 1988; Sax age et al., 1989; Savage et al., 1990; Aster et al., 1990; Gledhill, 1990). Malin et al. (1988) examined shear-wave...other networks (e.g., Savage et al., 1989, 1990; Gledhill, 1990). The Sfast direction at KNW-AZ and KNW-BH is approximately consistent with the

  13. Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas

    Science.gov (United States)

    Fried, B. D.; Banos, A., Jr.; Kennel, C. F.

    1973-01-01

    Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.

  14. Raman spectroscopy studies of spin-wave in V2O3 thin films

    Science.gov (United States)

    Chen, Xiang-Bai; Kong, Meng-Hong; Choi, Jeong-Yong; Kim, Hyun-Tak

    2016-11-01

    We present studies of the enhancement of spin-wave intensity and thickness dependence of spin-wave frequency in V2O3 thin films using Raman spectroscopy. Our results show that the intensity of spin-wave at ~450 cm-1 can be enhanced with a 633 nm laser rather than a 514 nm laser. The enhancement of spin-wave intensity is due to a resonance effect correlated with the on-site V 3d-3d Coulomb energy. A thickness dependence study shows that as the film thickness increases, the frequency of spin-wave at ~450 cm-1 has a redshift, while the frequency of the A g phonon at ~525 cm-1 has negligible shift. In comparison to the thickness dependence of the XRD results, we conclude that the spin-wave at ~450 cm-1 in V2O3 exists in the basal a-b plane, and the Raman study of the spin-wave provides a sensitive method for investigating the lattice and/or structure properties of crystals.

  15. Simulation Study of the Relationship between Partial Discharge and Ultrahigh-Frequency Electromagnetic Wave in GIS

    Directory of Open Access Journals (Sweden)

    Wang Jiang

    2014-03-01

    Full Text Available When partial discharge occurs in Gas Insulated Switchgear (GIS with insulation defects, Ultrahigh-Frequency (UHF electromagnetic wave up to several MHz and GHz will be exited and propagate inside GIS cavity. This study, based on the propagation theory of electromagnetic waves in coaxial waveguide, performs simulation analysis of the relationship between PD pulse form and the exited UHF electromagnetic wave using Finite-Deferential Time-Domain (FDTD algorithm. First, we study the relationship of partial discharge magnitude and electric field strength of electromagnetic wave. It is found that the changes of partial discharge magnitude have little effect on electric field strength of electromagnetic wave at certain variation rate of PD pulse current. Next, we examine the relationship of variation rate of PD pulse current to electric field strength of electromagnetic wave. It is pointed out that, at a certain partial discharge magnitude, the two are approximately linearly related. Finally, we study the impact of variation rate of PD pulse current on higher mode components. Variation coefficient is used to analyze the proportion of higher mode components in electromagnetic wave. The proportion of higher mode components increases with increasing variation rate of PD pulse current.

  16. Numerical Study of Stratified Charge Combustion in Wave Rotors

    Science.gov (United States)

    Nalim, M. Razi

    1997-01-01

    A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.

  17. Origin of the waves in ‘A case-study of mesoscale spectra of wind and temperature, observed and simulated’: Lee waves from the Norwegian mountains

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Hahmann, Andrea N.

    2012-01-01

    This note uses SAR images, satellite cloud pictures and point measurements together with simulations using the Weather Research and Forecasting (WRF) model to identify the origin of the gravity waves over Denmark on 6 November 2006, studied recently. The wave characteristics, concerning their ini...... the Norwegian mountains. Copyright © 2011 Royal Meteorological Society...

  18. Sounding-Rocket Studies of Langmuir-Wave Microphysics in the Auroral Ionosphere

    Science.gov (United States)

    Dombrowski, Micah P.

    Since their discovery in laboratory plasmas in the 1920s, Langmuir waves have been observed to be ubiquitous in plasma environments, particularly in space plasmas. From the greater solar wind to planetary foreshocks and the auroral ionosphere, Langmuir waves are a key factor mediating electron temperature, and controlling electron beam propagation and beam-plasma energy transfer. Because they are so important, Langmuir waves in the space environment have been intensively investigated; however, there remain two challenging types of experiments that are relatively lacking: three-dimensional measurements of Langmuir-wave fields, and measurements of Langmuir wave-electron correlations. This thesis works on filling these two gaps, plus development of new Langmuir-wave instrumentation. The CHARM-II wave-particle Correlator instrument was designed to study the energy transfer between electron beams and plasmas via the sorting of incoming particles by concurrent Langmuir-wave phase, allowing for direct observation of electron bunching. Data from the CHARM-II sounding rocket comprises the first such observations with statistical levels of events, revealing an association between the polarity of the resistive component of the electron phase-bunching and changes in the electron flux at the associated energy, such that a negative resistive component goes with an increase in electron flux, and vice versa, effectively showing energy flow from the beam to the waves, and subsequent enhancements of wave damping. Surprisingly, the results also show comparable amounts of resistive and reactive activity. A test-particle simulation was developed to confirm the details of the theoretical explanation for the observed effect. A three-dimensional Langmuir-wave receiver flown on the TRICE sounding rocket mission reveals the beat signature of the amplitude-modulated 'bursty' form of Langmuir waves which has been observed in many environments. An analysis of the three-dimensional data shows

  19. Study on estimate method of wave velocity and quality factor to fault seals

    Institute of Scientific and Technical Information of China (English)

    LI Zhensheng; LIU Deliang; LIU Bo; YANG Qiang; LI Jingming

    2005-01-01

    Based on ultrasonic test of fault rocks, the responses for wave velocity and quality factor (Q value) to lithology, porosity and permeability of fault rocks and mechanical property of faults are studied. In this paper, a new quantitative estimate method of fault seals is originally offered. The conclusions are as follows: (1) Wave velocity and Q value increase and porosity decreases with the increase in stress perpendicular to joint; (2) In compressive and compresso-shear fault rocks that are obviously anisotropic compared with their original rocks, the wave velocity and Q value are greater in the direction parallel with foliation, and usually less perpendicular to it. In tensile and tenso-shear fault rocks that are not obviously anisotropic, the wave velocity and Q value are under that of original rocks; (3) In foliated fault rocks, the direction with minimal wave velocity and Q value is the best direction for sealing; on the contrary it is the best for flowing; (4) Structural factures develop mainly along foliation, the minimal wave velocity and Q value reflect the flowing capacity in parallel direction to foliation, and the maximal wave velocity as well as Q value reflect the sealing capacity in normal direction to foliation. The new estimate method is based upon contrast of wave velocity and Q value between fault rocks and their original rocks, and is divided into three parts that are respectively to identify rock's lithology, to judge mechanic property of faults and to Judge sealing capacity of faults. Although there is vast scale effect between ultrasonic wave and seismic wave, they have similar regularity of response to fabric and porosity of faults. This research offers new application for seismic data and petrophysical basis for seismological estimation of fault seals. The estimate precision will be improved with the enhancement of three-dimensional seismic prospecting work.

  20. An Experimental and Numerical Study of Long Wave Run-Up on a Plane Beach

    Directory of Open Access Journals (Sweden)

    Ulrike Drähne

    2015-12-01

    Full Text Available This research is to facilitate the current understanding of long wave dynamics at coasts and during on-land propagation; experimental and numerical approaches are compared against existing analytical expressions for the long wave run-up. Leading depression sinusoidal waves are chosen to model these dynamics. The experimental study was conducted using a new pump-driven wave generator and the numerical experiments were carried out with a one-dimensional discontinuous Galerkin non-linear shallow water model. The numerical model is able to accurately reproduce the run-up elevation and velocities predicted by the theoretical expressions. Depending on the surf similarity of the generated waves and due to imperfections of the experimental wave generation, riding waves are observed in the experimental results. These artifacts can also be confirmed in the numerical study when the data from the physical experiments is assimilated. Qualitatively, scale effects associated with the experimental setting are discussed. Finally, shoreline velocities, run-up and run-down are determined and shown to largely agree with analytical predictions.

  1. Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation

    Science.gov (United States)

    Mironov, A. K.; Krasheninnikov, S. Yu.; Maslov, V. P.; Zakharov, D. E.

    2016-07-01

    An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.

  2. Study on S wave velocity structure beneath part stations in Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    张学民; 束沛镒; 刁桂苓

    2003-01-01

    Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.

  3. A Study of Energy Conversion Efficiency of a Savonius Type Wave Energy Converter System

    Science.gov (United States)

    Tutar, Mustafa; Erdem, Ceyhan

    In the present study, two-dimensional, two-phase and turbulent flow around a horizontal axis 3-bladed Savonius rotor is considered. Numerical wave tank (NWT) simulations based on FVM/FDM technique in association with volume of fluid (VOF) element method are performed for specified values of wave heights for no-rotor flow case. Once validated against the theoretical data, the numerical simulations are extended to investigate the overall performance of the turbine over a very large range of wave height conditions for the rotor-flow case.

  4. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  5. Elastic properties of amorphous thin films studied by Rayleigh waves

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; Rubin, J.B.

    1993-08-01

    Physical vapor deposition in ultra-high vacuum was used to co-deposit nickel and zirconium onto quartz single crystals and grow amorphous Ni{sub 1-x}Zr{sub x} (0.1 < x < 0.87) thin film. A high-resolution surface acoustic wave technique was developed for in situ measurement of film shear moduli. The modulus has narrow maxima at x = 0. 17, 0.22, 0.43, 0.5, 0.63, and 0.72, reflecting short-range ordering and formation of aggregates in amorphous phase. It is proposed that the aggregates correspond to polytetrahedral atom arrangements limited in size by geometrical frustration.

  6. Knowledge Distribution and Power Relations in HIV-Related Education and Prevention for Gay Men: An Application of Bernstein to Australian Community-Based Pedagogical Devices

    Science.gov (United States)

    McInnes, David; Murphy, Dean

    2011-01-01

    This paper seeks to make a theoretical and analytic intervention into the field of HIV-related education and prevention by applying the pedagogy framework of Basil Bernstein to a series of pedagogical devices developed and used in community-based programmes targeting gay men in Australia. The paper begins by outlining why it is such an…

  7. Studies on atmospheric gravity wave activity in the troposphere and lower stratosphere over a tropical station at Gadanki

    Directory of Open Access Journals (Sweden)

    I. V. Subba Reddy

    2005-11-01

    Full Text Available MST radars are powerful tools to study the mesosphere, stratosphere and troposphere and have made considerable contributions to the studies of the dynamics of the upper, middle and lower atmosphere. Atmospheric gravity waves play a significant role in controlling middle and upper atmospheric dynamics. To date, frontal systems, convection, wind shear and topography have been thought to be the sources of gravity waves in the troposphere. All these studies pointed out that it is very essential to understand the generation, propagation and climatology of gravity waves. In this regard, several campaigns using Indian MST Radar observations have been carried out to explore the gravity wave activity over Gadanki in the troposphere and the lower stratosphere. The signatures of the gravity waves in the wind fields have been studied in four seasons viz., summer, monsoon, post-monsoon and winter. The large wind fluctuations were more prominent above 10 km during the summer and monsoon seasons. The wave periods are ranging from 10 min-175 min. The power spectral densities of gravity waves are found to be maximum in the stratospheric region. The vertical wavelength and the propagation direction of gravity waves were determined using hodograph analysis. The results show both down ward and upward propagating waves with a maximum vertical wave length of 3.3 km. The gravity wave associated momentum fluxes show that long period gravity waves carry more momentum flux than the short period waves and this is presented.

  8. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C.; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L.; Miller, Richard S.

    2014-09-01

    A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies.

  9. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.;

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  10. A Study on Parametric Wave Estimation Based on Measured Ship Motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Iseki, Toshio

    2011-01-01

    The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics of the param......The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics...... of the parametric model are discussed by considering the results of a similar estimation concept based on Bayesian modelling. The purpose of the latter comparison is not to favour the one estimation approach to the other but rather to highlight some of the advantages and disadvantages of the two approaches....

  11. Parametric Study of Two-Body Floating-Point Wave Absorber

    Institute of Scientific and Technical Information of China (English)

    Atena Amiri; Roozbeh Panahi; Soheil Radfar

    2016-01-01

    In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter’s efficiency when considering specific conditions.

  12. NUMERICAL STUDIES OF INTERNAL SOLITARY WAVE GENERATION AND EVOLUTION BY GRAVITY COLLAPSE

    Institute of Scientific and Technical Information of China (English)

    LIN Zhen-hua; SONG Jin-bao

    2012-01-01

    In this study,an analysis on the internal wave generation via the gravity collapse mechanism is carried out based on the theoretical formulation and the numerical simulation.With the linear theoretical model,a rectangle shape wave is generated and propagates back and forth in the domain,while a two-dimensional non-hydrostatic numerical model could reproduce all the observed phenomena in the laboratory experiments conducted by Chen et al.(2007),and the related process realistically.The model results further provide more quantitative information in the whole domain,thus allowing an in depth understanding of the corresponding internal solitary wave generation and propagation.It is shown that the initial type of the internal wave is determined by the relative height between the perturbation and the environmental density interface,while the final wave type is related to the relative height of the upper and lower layers of the environmental fluid.The shape of the internal wave generated is consistent with that predicted by the KdV and EKdV theories if its amplitude is small,as the amplitude becomes larger,the performance of the EKdV becomes better after the wave adjusts itself to the ambient stratification and reaches an equilibrium state between the nonlinear and dispersion effects.The evolution of the mechanical energy is also analyzed.

  13. Analytical Study for Stress Wave Interaction with Rock Joints Having Unequally Close-Open Behavior

    Science.gov (United States)

    Li, J. C.; Zhao, X. B.; Li, H. B.; Chai, S. B.; Zhao, Q. H.

    2016-08-01

    Stress wave interaction with rock joints during wave propagation is usually dependent on the dynamic response of the joints. During wave propagation, joints may be closed and open under the effects of the stress wave and the in situ stress. A joint in nature can only resist load during close process. In this paper, the close and open behaviors of rock joints are considered to be different. The joints are assumed to be linearly elastic in close status but turn into free surfaces in open status. Wave propagation equation across joints with unequally close-open behavior is first derived and expressed as a time-differential form based on the displacement discontinuity method. SHPB test recording is then adopted to verify the present approach, which is also compared with the results from existing methods for joints with equally close-open behavior. Next, analysis is conduced for wave propagation across a single joint and a set of parallel joints with unequally close-open behavior, respectively. From the analysis, effects of unequally close-open behavior of a joint on wave propagation and the dynamic response of the joint are studied finally.

  14. Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves

    Institute of Scientific and Technical Information of China (English)

    尹则高; 梁丙臣; 王乐

    2013-01-01

    The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.

  15. Refined Study of ECR Wave Propagation and Absorption in the Weakly Relativistic Plasma

    Institute of Scientific and Technical Information of China (English)

    SHIBingren; LONGYongxin

    2001-01-01

    The ECR wave heating is now a routine method for plasma heating and profile control in fusion devices and also in plasma applications. Theoretical study of ECR wave propagation and absorption began very early in 1950's. Basic theoretical work had accomplished in 1970~1980. For toroidal devices like the tokamak, the fundamental O-mode and X-mode with nearly perpendicular propagation were used very often. For pure O-mode and X-mode with kx=O,

  16. Experimental study of mechanical properties of liquids under shock wave loading

    Science.gov (United States)

    Bannikova, I. A.; Uvarov, S. V.; Zubareva, A. N.; Utkin, A. V.; Naimark, O. B.

    2016-11-01

    Glycerol and silicone oil were studied experimentally under shock-wave loading conditions at different temperatures and strain rates. It was found that the temperature has a significant influence on the spall strength of glycerol near the point of phase transition and weak influence on the spall strength of silicone oil. The spall strength of the silicone oil does not depend on the strain rate also. Dynamic viscosity of glycerol measured at the wave front found to be strain rate sensitive.

  17. Experimental study of mountain lee—waves by means of satellite photographs and aircraft measurements

    OpenAIRE

    Cruette, Denise

    2011-01-01

    This paper is a summary of a Ph.D. Thesis1 which was a systematic study of the influence of various meteorological factors on the occurrence and characteristics of mountain waves, more specifically of lee-waves of great horizontal extent. The data used are, beside classical meteorological informations, that given by satellite pictures completed by quasi-simultaneous measurements from planes or gliders. The analysis of many satellite pictures received at the french station of Lannion (Brittany...

  18. A numerical coupled model for studying air-sea-wave interaction

    Science.gov (United States)

    Ly, Le Ngoc

    1995-10-01

    A numerical coupled model of air-sea-wave interaction is developed to study the influence of ocean wind waves on dynamical, turbulent structures of the air-sea system and their impact on coupled modeling. The model equations for both atmospheric and oceanic boundary layers include equations for: (1) momentum, (2) a k-ɛ turbulence scheme, and (3) stratification in the atmospheric and oceanic boundary layers. The model equations are written in the same form for both the atmosphere and ocean. In this model, wind waves are considered as another source of turbulent energy in the upper layer of the ocean besides turbulent energy from shear production. The dissipation ɛ at the ocean surface is written as a linear combination of terms representing dissipation from mean flow and breaking waves. The ɛ from breaking waves is estimated by using similarity theory and observed data. It is written in terms of wave parameters such as wave phase speed, height, and length, which are then expressed in terms of friction velocity. Numerical experiments are designed for various geostrophic winds, wave heights, and wave ages, to study the influence of waves on the air-sea system. The numerical simulations show that the vertical profiles of ɛ in the atmospheric and oceanic boundary layers (AOBL) are similar. The magnitudes of ɛ in the oceanic surface zone are much larger than those in the atmospheric surface zone and in the interior of the oceanic boundary layer (OBL). The model predicts ɛ distributions with a surface zone of large dissipation which was not expected from similarity scaling based on observed wind stress and surface buoyancy. The simulations also show that waves have a strong influence on eddy viscosity coefficients (EVC) and momentum fluxes, and have a dominated effect on the component of fluxes in the direction of the wind. The depth of large changes in flux magnitudes and EVC in the ocean can reach to 10-20 m. The simulations of surface drift currents confirm that

  19. APPLICATION OF MAXIMUM ENTROPY PRINCIPLE METHOD TO THE STUDY OF WAVE CLIMATE STATISTICAL CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    XU Fu-min; XUE Hong-chao

    2004-01-01

    the study of wave statistical properties.

  20. Studies of dissipative standing shock waves around black holes

    CERN Document Server

    Das, Santabrata; Mondal, Soumen

    2009-01-01

    We investigate the dynamical structure of advective accretion flow around stationary as well as rotating black holes. For a suitable choice of input parameters, such as, accretion rate ($\\dot {\\cal M}$) and angular momentum ($\\lambda$), global accretion solution may include a shock wave. The post shock flow is located at few tens of Schwarzchild radius and it is generally very hot and dense. This successfully mimics the so called Compton cloud which is believed to be responsible for emitting hard radiations. Due to the radiative loss, a significant energy from the accreting matter is removed and the shock moves forward towards the black hole in order to maintain the pressure balance across it. We identify the effective area of the parameter space ($\\dot {\\cal M} - \\lambda$) which allows accretion flows to have some energy dissipation at the shock $(\\Delta {\\cal E})$. As the dissipation is increased, the parameter space is reduced and finally disappears when the dissipation is reached its critical value. The d...

  1. EXPERIMENTAL STUDY ON TOTAL UPLIFT FORCES OF WAVES ON HORIZONTAL PLATES

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi-ren; CHEN Guo-ping; WANG Deng-ting

    2004-01-01

    The total uplift forces of waves acting on hori zontal plates are the important basis for the design of maritime hollow-trussed structures. In this paper, an experimental study on the total uplift forces of waves on horizontal plates was conducted by a series of model tests. The results show that the maximum total uplift forces do not necessarily occur with the maximum impact pressure intensity synchronously.On the basis of the test results, formation mechanism of the total uplift forces of waves as well as its influencing factors were analyzed in detail, and an equation for calculation of the maximum total uplift forces of waves on plates was put forward. Lots of test data shows the present equation is in good agreement with the test results.

  2. Numerical study on maximum rebound ratio in blasting wave propagation along radian direction normal to joints

    Institute of Scientific and Technical Information of China (English)

    LEI Wei-dong; TENG Jun; HEFNY A; ZHAO Jian; GUAN Jiong

    2006-01-01

    In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points between the two adjacent joints in the joint set is controlled by superposition of the multiple transmitted and the reflected waves, measured by the maximum rebound ratio. Parametric studies on the maximum rebound ratio along the radian direction normal to the joints were performed in universal distinct element code. The results show that the maximum rebound ratio is influenced by three factors, i.e., the normalized normal stiffness of joints, the ratio of joint spacing to wavelength and the joint from which the wave rebounds. The relationship between the maximum rebound ratio and the influence factors is generalized into five charts. Those charts can be used as the prediction model for estimating the maximum rebound ratio.

  3. A Comparative Experimental Study of Wave Forces on a Vertical Cylinder in Long-Crested and Short-Crested Seas

    DEFF Research Database (Denmark)

    Frigaard, Peter; Burcharth, Hans F.

    1988-01-01

    An experimental study is carried out to investigate the wave forces on a slender cylinder. Special attention is given to the wave forces in the surface zone and correlation of forces along the cylinder. The experiments consider the effects of both long and short-crested irregular waves....

  4. Experimental study on phosphorus release from sediments of shallow lake in wave flume

    Institute of Scientific and Technical Information of China (English)

    SUN; Xiaojing; ZHU; Guangwei; LUO; Liancong

    2006-01-01

    Influence of wave on sediment resuspension and nutrients release from sediments, collected from Lake Taihu and Lake Chaohu, was studied in flume experiments. Under strong-wave conditions, concentrations of suspended solids (SS), total phosphorus (TP) and dissolved total phosphorus (DTP) in overlying water were increased significantly following the sediments re-suspension. During the experiments on sediments of Lake Taihu and Lake Chaohu, TP concentrations increased 6 times and 3 times, and DTP concentration increased 100% and 70% more than it in presuspension, respectively. Concentration of soluble reactive phosphorus (SRP) of experiment on sediment of Lake Taihu increased 25%. During the massive sediment suspension, the dissolved phosphorus in pore water and much of the phosphorus adsorbed by the sediment particles were released into overlying water. The phenomena in this wave flume experiment are quite similar to the situation observed in situ of Lake Taihu. The critical wave stresses of sediment re-suspension are nearly equal. The change of concentrations of SS, TP, and SRP was the same as that in situ situation.This study showed that concentrations of TP and SRP in lake water could be increased significantly by wave disturbance. Phosphorus release was significantly enhanced by wave disturbance at the beginning of massive sediment re-suspension, but decreased later.

  5. Study on the storm surges induced by cold waves in the Northern East China Sea

    Science.gov (United States)

    Mo, Dongxue; Hou, Yijun; Li, Jian; Liu, Yahao

    2016-08-01

    Cold wave, a kind of severe weather system, can bring strong wind and induce significant sea level rise to the Northern East China Sea. Based on CFSR data, the study shows the monthly distributions of invaded days and the spatiotemporal distributions of cold-wave wind direction and wind speed. A three-dimensional numerical model (ROMS) was developed to study storm surges induced by cold waves. The role of wind direction, wind speed, wind duration, extratropical cyclone and tide-surge interaction is investigated by conducting different sensitivity experiments. The results indicate that storm surges mainly happen at the coasts perpendicular to the wind directions. Surge range and time lag are related to the geometry of the basin and the continental shelf. The response of the sea-level fluctuations to cold wave indicates that there is a positive correlation between crests and wind speed, a negative correlation between troughs and wind speed, but no obvious correlations to wind duration. Coupled weather cold waves, which yield a larger range and a multi-peak structure of surges, can be classified according to cold wave tracks and extratropical cyclones. The tide-surge interaction has an obvious and different effect on the magnitudes and phases of storm surges for different tidal stages.

  6. Numerical and Experimental Study on Contact Face and Shock Wave Motion in the Receiving Tube of Gas Wave Refrigerator

    Institute of Scientific and Technical Information of China (English)

    Dapeng HU; Shengtao CHEN; Hu LIU; Zuzhi CHEN; Che ZHU

    2006-01-01

    The contact face and shock wave motion in an open ends receiving tube of gas wave refrigerator are investigated numerically and experimentally.The results show that,velocity of the contact face rises rapidly as gas is injected into the receiving tube,and drops sharply after a steady propagation.However,velocity of the shock wave in the tube is almost linear.With increasing of inlet pressure,velocity of the shock wave and steady velocity of contact face also increase.In addition,time and distance of contact face propagation in the receiving tube become longer.

  7. Wave-particle resonance condition test for ion-kinetic waves in the solar wind

    Science.gov (United States)

    Narita, Y.; Marsch, E.; Perschke, C.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.

    2016-04-01

    Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ion-kinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1 AU (astronomical unit).

  8. Wave-particle resonance condition test for ion-kinetic waves in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Y. [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.; Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Marsch, E. [Kiel Univ. (Germany). Inst fuer Experimentelle und Angewandte Physik; Perschke, C. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Glassmeier, K.H. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Max-Planck-Institut fuer Sonnensystemforschung, Goettingen (Germany); Motschmann, U. [Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Deutsches Zentrum fuer Luft- und Raumfahrt, Berlin (Germany). Inst. fuer Planetenforschung; Comisel, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Institute for Space Sciences, Bucharest-Magurele (Romania)

    2016-08-01

    Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ionkinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1AU (astronomical unit).

  9. EXPERIMENTAL STUDY ON DAM-BREAK FLOOD WAVES OVER MOVABLE BED CHANNEL

    Institute of Scientific and Technical Information of China (English)

    J.B.LEAL; R.L.FERREIRA; A.B.FRANCO; A.H.CARDOSO

    2002-01-01

    This paper presents the results of an experimental study focused on the propagation of dam-break flow waves over movable beds.Tests consisted in the sudden opening of a vertical lift-gate which separated initial water and sediment levels upstream and downstream of the gate.They allowed the simulation of the following initial conditions: with or without initial bed-step at the gate cross-section; with or without water downstream of the gate; with or without sediments downstream of the gate.Test results were used to discuss the influence of the movable bed on the celerity of the wave-fronts,as well as on the downstream wave-front height.The total volume of dislodged sediments was also assessed.Some important conclusions were achieved: i) the movable bed does not affect the upstream wave-front celerity but it affects the celerity of the downstream wave-front; ii) the experimental celerities show some disagreement with the analytical solutions; iii) the existence of an initial bed-step at the lift-gate cross-section influences the downstream wave-front propagation,including the water depth.

  10. A TWT upgrade to study wave-particle interactions in plasma

    Science.gov (United States)

    Doveil, Fabrice; Caetano de Sousa, Meirielen; Guyomarc'h, Didier; Kahli, Aissa; Elskens, Yves

    2015-11-01

    Beside industrial applications, Traveling Wave Tubes (TWT) are useful to mimic and study wave-particle interaction in plasma. We upgraded a TWT, whose slow wave structure is a 4 m long helix (diameter 3.4 cm, pitch 1 mm) of Be-Cu wire (diameter 0.6 mm) wrapped in insulating tape. The helix is inserted in a vacuum glass tube. At one end, an electron gun produces a beam propagating along the helix, radially confined by a constant axial magnetic field. Movable probes, capacitively coupled to the helix through the glass tube, launch and monitor waves generated by an arbitrary waveform generator at a few tens of MHz. At the other end of the helix, a trochoidal analyzer allows to reconstruct the electron distribution functions of the beam after its self-consistent interaction with the waves. Linear properties of the new device will be reported. The measured coupling coefficients of each probe with the helix are used to reconstruct the growth and saturation of a launched wave as it interacts with the electron beam. J-B. Faure and V. Long are thanked for their efficient help in designing and using a new way to build the helix.

  11. Study of Atomization of a Water Jet by High-Intensity Aerial Ultrasonic Waves

    Science.gov (United States)

    Ito, Youichi

    2001-05-01

    An experimental study has been carried out on the atomization of a water jet by aerially radiating it with high-intensity ultrasonic waves. A sound source that enables the linear generation of high-intensity aerial ultrasonic waves (frequency: approximately 20 kHz) is combined with a cylindrical reflection plate in order to create a standing-wave sound field. An attempt has been made to atomize a water jet of 1 mm diameter by passing it through the above sound field at a velocity of approximately 30 m/s. It has been clarified that nodes of sound pressure in the standing-wave sound field are effective for the atomization of a water jet. In addition, the atomizing phenomenon of a water jet has been observed precisely. The relation between the intensity of sound waves required for atomization and the radiation duration has also been clarified. Even the radiation of sound waves for only 2 ms atomizes water. This suggests that a very fast water jet at 300-500 m/s might be atomized.

  12. Numerical Study of A Round Buoyant Jet Under the Effect of JONSWAP Random Waves

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-ping; LI Chi-wai; ZHANG Chang-kuan; XU Zhen-shan

    2012-01-01

    This paper presents a numerical study on the hydrodynamic behaviours of a round buoyant jet under the effect of JONSWAP random waves.A three-dimensional large eddy simulation (LES) model is developed to simulate the buoyant jet in a stagnant ambient and JONSWAP random waves.By comparison of velocity and concentration fields,it is found that the buoyant jet exhibits faster decay of centedine velocity,wider lateral spreading and larger initial dilution under the wave effect,indicating that wave dynamics improves the jet entrainment and mixing in the near field,and subsequently mitigate the jet impacts in the far field.The effect of buoyancy force on the jet behaviours in the random waves is also numerically investigated.The results show that the wave effect on the jet entrainment and mixing is considerably weakened under the existence of buoyancy force,resulting in a slower decay rate of centerline velocity and a narrower jet width for the jet with initial buoyancy.

  13. Comparative Study of Electromagnetic Waves at the Bow Shocks of Venus and Earth

    Science.gov (United States)

    Wei, Hanying; Russell, Christopher T.; Strangeway, Robert J.; Schwartz, Steven J.; Zhang, Tielong

    2016-04-01

    Although the solar interactions with Venus and Earth are quite different in many ways, they both have bow shocks formed upstream of the planet where the solar wind decelerates from a super- to sub- magnetosonic flow. In the upstream foreshock region, there is abundant wave activity generated by the shock or by the back-streaming ions and electrons from the shock. In the downstream magnetosheath region, there is also abundant wave activity either locally generated by the heated electrons or ions from the shock or transported from the shock or foreshock regions by the solar wind. The magnetometers of Venus Express and Magnetospheric Multiscale missions both occasionally record 128 Hz data during their shock crossing, which allow us the search for and analyze waves at such high frequencies. We have found short-duration wave bursts around both Venus and Earth bow shocks, with certain similarities. These waves are mostly quasi-perpendicular propagating and have amplitude and occurrence rate decreasing with distance from the bow shock. In this paper we perform statistical and comparative studies on wave properties to understand their generation mechanisms and their effects to the shock or magnetosheath plasmas.

  14. Report on the FY 1986 Activities of the Defense Science Study Group. Volume 1.

    Science.gov (United States)

    1987-05-01

    Agency Daniel Alpert Director, Center for Advanced Studies, 0 University of Illinois Richard B. Bernstein Professor of Chemistry, University of...Cafeteria System Challenges in Space Access Systems 1:30- 2:15 p.m. Aerospace Plane Concepts and Larry Hunt, Technologies NASA Langley ,,A 2:15- 3:00 p.m...on November 8, 1986 0-0 Dr. Daniel Alpert Director, Center for Advanced Study -, University of Illinois Professor Richard Bernstein University of

  15. Technical and economic feasibility study of a Frond type wave power generator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This report describes the first stage of the development of a Frond type wave generator by the Engineering Business (EB) in collaboration with the University of Lancaster Engineering Department. The EB Frond concept is a sea-bed reacting, surging machine consisting of a near-surface collector mounted on an arm pivoted near the seabed. The study had six main elements (investigation, physical and mathematical modelling, site characterisation, design review and cost study). The investigation phase involved a study of wave properties and behaviour, while physical models were tested in a wave tank. A mathematical model was developed and used to assess the design's power output. The characteristics of a suitable site for EB Frond generators were determined and the process of identifying possible sites for a demonstrator machine was begun. The mechanical and system arrangement of the design were evaluated and modified. The effects of varying the installation's input parameters (e.g. wave environment factors) were examined using an energy cost model whose output is energy production and cost. It was concluded that the Frond principle was technically viable though there were some remaining engineering and other application problems. Cost modelling suggested that the EB Frond system had potential for long-term commercial prospects. The report recommends the construction and testing of an intermediate scale model with more realistic wave conditions.

  16. Analytical and experimental study on wave propagation problems in orthotropic media

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Wave propagation problems in orthotropic media are studiedjointly by analytical and experimental methods in this paper. Dynamic orthotropic photoelasticity, which studies experimentally the dynamic behavior of orthotropic materials on a macroscopic scale by employing orthotropic birefringent materials, is established. A dynamic stress-optic law for orthotropic birefringent materials is postulated and practical methods of calibrating dynamic mechanical constants and dynamic stress-fringe values are proposed. Meanwhile, time domain boundary element method (BEM) for wave propagation in orthotropic media, is also presented based on the theory of elastodynamics. A scheme of stress calculations that is necessary for strength analysis is established. The paper stresses on the applications in wave propagation problems in orthotropic media by demonstrating three examples. The semi-infinite orthotropic plates with and without a circular hole modeled by a unidirectional fiber-reinforced composite under impact loading are analyzed. Time histories of birefringent fringe orders or stresses for specific points of the plates are obtained respectively from the two methods and compared with each other. Based on the above comparative study, the dynamic response of an underground workshop under seismic waves is studied by time domain BEM. The responses of displacements and stresses are solved. The effects of angle and frequency of incident waves and the degree of media anisotropy on dynamic response of the underground workshop are investigated.

  17. Study of atmospheric gravity waves and infrasonic sources using the USArray Transportable Array pressure data

    Science.gov (United States)

    Hedlin, Michael; de Groot-Hedlin, Catherine; Hoffmann, Lars; Alexander, M. Joan; Stephan, Claudia

    2016-04-01

    The upgrade of the USArray Transportable Array (TA) with microbarometers and infrasound microphones has created an opportunity for a broad range of new studies of atmospheric sources and the large- and small-scale atmospheric structure through which signals from these events propagate. These studies are akin to early studies of seismic events and the Earth's interior structure that were made possible by the first seismic networks. In one early study with the new dataset we use the method of de Groot-Hedlin and Hedlin (2015) to recast the TA as a massive collection of 3-element arrays to detect and locate large infrasonic events. Over 2,000 events have been detected in 2013. The events cluster in highly active regions on land and offshore. Stratospherically ducted signals from some of these events have been recorded more than 2,000 km from the source and clearly show dispersion due to propagation through atmospheric gravity waves. Modeling of these signals has been used to test statistical models of atmospheric gravity waves. The network is also useful for making direct observations of gravity waves. We are currently studying TA and satellite observations of gravity waves from singular events to better understand how the waves near ground level relate to those observed aloft. We are also studying the long-term statistics of these waves from the beginning of 2010 through 2014. Early work using data bandpass filtered from 1-6 hr shows that both the TA and satellite data reveal highly active source regions, such as near the Great Lakes. de Groot-Hedlin and Hedlin, 2015, A method for detecting and locating geophysical events using clusters of arrays, Geophysical Journal International, v203, p960-971, doi: 10.1093/gji/ggv345.

  18. Conference "Internet, Web, What's next?" on 26 June 1998 at CERN: Mark Bernstein, Vice President of CNN Interactive, describes the impact of the Web on world media and predicts what we can expect as the next developments

    CERN Multimedia

    1998-01-01

    Conference "Internet, Web, What's next?" on 26 June 1998 at CERN: Mark Bernstein, Vice President of CNN Interactive, describes the impact of the Web on world media and predicts what we can expect as the next developments

  19. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    Science.gov (United States)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic

  20. Studies on a surface acoustic wave (SAW) dosimeter sensor for organophosphorous nerve agents

    NARCIS (Netherlands)

    Nieuwenhuizen, M.S.; Harteveld, J.L.N.

    1997-01-01

    As a follow-up of previous work on a Surface Acoustic Wave (SAW) sensor for nerve agents, irreversible response effects have been studied in more detail. Surface analytical studies indicated that degradation products are responsible for the effects observed. In addition it was tried to explore these

  1. Jacobi-Bernstein基变换矩阵的一些性质%Some Properties of Jacobi-Bernstein Basis Transformation Matrices

    Institute of Scientific and Technical Information of China (English)

    白鸿武; 叶正麟; 王树勋; 王烈

    2009-01-01

    In computer-aided design,transformations among different forms of curves and surfaces are often required to carry out operations of degree-reduction of curves and surfaces and data exchanging between different geometric modeling systems.The errors of these transformations would depend on the condition numbers of the corresponding transformation matrices.For this reason,we studied some properties of Jacobi-Bernstein basis transformation matrices related to their condition numbers,and by computing the infinite norms of the transformation matrices and their inverse matrices,we obtained explicit upper bounds to these condition numbers.An example of applications of these condition numbers in CAGD was also provided.%在计算机辅助设计中,经常需要不同形式的曲线、曲面之间的变换,以完成曲线、曲面的降阶以及不同几何造型系统之间数据交换的操作,而这些变换的误差将依赖于相应变换矩阵的条件数.由于这个原因,我们研究了Jacobi-Bernstein矩阵的与其条件数相关的若干性质,而且通过计算变换矩阵与逆变换矩阵的无穷范数我们以显形式给出了这些条件数的上界.我们还给出了这些条件数在CAGD中的应用实例.

  2. A Variable-resolution Surface Wave Dispersion Study of Eurasia, North Africa, and Surrounding Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2005-03-21

    This paper presents the results of a large-scale study of surface wave dispersion performed across Eurasia and North Africa. Improvements were made to previous surface wave work by enlarging the study region, increasing path density, improving spatial resolution, and expanding the period range. This study expands the coverage area northwards and eastwards relative to a previous dispersion analysis, which covered only North Africa and the Middle East. We have significantly increased the number of seismograms examined and group velocity measurements made. We have now made good quality dispersion measurements for about 30,000 Rayleigh wave and 20,000 Love wave paths, and have incorporated measurements from several other researchers into the study. A conjugate gradient method was employed for the group velocity tomography, which improved the inversion from the previous study by adopting a variable smoothness. This technique allows us to go to higher resolution where the data allow without producing artifacts. The current results include both Love and Rayleigh wave inversions across the region for periods from 7 to 100 seconds at 1{sup o} resolution. Short period group velocities are sensitive to slow velocities associated with large sedimentary features such as the Caspian Sea, West Siberian Platform, Mediterranean Sea, Bay of Bengal, Tarim Basin, and Persian Gulf. Intermediate periods are sensitive to differences in crustal thickness, such as those between oceanic and continental crust or along orogenic zones and continental plateaus. At longer periods, fast velocities are consistently found beneath cratons while slow upper mantle velocities occur along rift systems, subduction zones, and collision zones such as the Tethys Belt. We have compared the group velocities at various periods with features such as sediment thickness, topographic height, crustal thickness, proximity to plate boundaries, lithospheric age and lithospheric thickness, and find significant

  3. Application of Maximum Entropy Principle to Studying the Distribution of Wave Heights in A Random Wave Field

    Institute of Scientific and Technical Information of China (English)

    周良明; 郭佩芳; 王强; 杜伊

    2004-01-01

    Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh form, involves two parameters: the average wave height H and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.

  4. Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere

    Science.gov (United States)

    Pandey, R. S.; Kaur, Rajbir

    2015-10-01

    Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.

  5. Algebraic method for constructing singular steady solitary waves: A case study

    CERN Document Server

    Clamond, Didier; Galligo, André

    2016-01-01

    This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equations with surface tension, because it provides a tractable model that, in the same time, is not too simple so the interest of the method can be emphasised. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of Physics. In capillary-gravity regime, there are two kinds of localised infinitely smooth travelling wave solutions -- solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, the "zoology" of solutions becomes much richer and the main goal of this study is to provide a complete classification of such singular localised solutions using the methods of the effective Algebraic Geometry.

  6. Study on 3D simulation of wave fields in acoustic reflection image logging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guided waves and therefore difficult to be clearly identified. To improve the downhole tool design and develop more sophisticate data processing and interpretation algorithms,studies on precisely numerical modeling of the wave fields in the acoustic reflection imaging logging are neces-sary and critical. This paper developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid and PML absorbing boundary to simulate the acoustic wave fields in isotropic and anisotropic formations. Applications of this scheme to the typical cases of isotropic and anisot-ropic formations and comparison with the results from published analytical solutions have demon-strated the validation and efficiency of the scheme. Higher accuracy and lower computation cost (3.5 times faster than the conventional schemes) have been achieved with this scheme for modeling such a complex wave fields of 60 dB dynamic range with higher frequency (10 kHz). This simulating program provides a quantitative analytical means for studying acoustic reflection imaging tool and development of the data processing and interpretation methods.

  7. The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme

    Institute of Scientific and Technical Information of China (English)

    Rui-Jie Wang; Kun Xu

    2012-01-01

    Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS).The numerical calculations are carried out for a wide range of wave oscillating frequencies.The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency.The simulation covers the flow regime from the continuum to free molecule one.The treatment of the oscillating wall boundary condition and the methods for evaluating the absorption coefficient and sound wave speed are presented in detail.The simulation results from the UGKS are compared to the Navier-Stokes solutions,the direct simulation Monte Carlo (DSMC) simulation,and experimental measurements.Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32.The current study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.

  8. STUDY ON RECTANGULAR WAVEGUIDE GRATING SLOW-WAVE STRUCTURE WITH COSINE-SHAPED GROOVES

    Institute of Scientific and Technical Information of China (English)

    Lu Zhigang; Wei Yanyu; Gong Yubin; Wu Zhoumiao; Wang Wenxiang

    2007-01-01

    This paper focuses on a new rectangular waveguide grating Slow-Wave Structure(SWS)with cosine-shaped grooves and studies the propagation characteristics of the wave in the SWS.By using the approximate field-matching conditions,the dispersion equation and the coupling impedance of this circuit are obtained.The dispersion curves and coupling impedances of the fundamental wave are calculated and the influences of the various geometrical dimensions are discussed.The results show that the bandwidth of the cosine-shaped groove SWS is much wider than that of rectangular-shaped groove one.And reducing the groove width can broaden the frequency-band and decrease the phase-velocity,while increment of the groove-depth can also decrease phase-velocity.For above cases,the coupling impedance is more than 16Ω.The present analysis will be helpful on further study and design of the RF systems used in millimeter wave Traveling Wave Tube(TWT).

  9. Algebraic method for constructing singular steady solitary waves: a case study

    Science.gov (United States)

    Clamond, Didier; Dutykh, Denys; Galligo, André

    2016-07-01

    This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equation with surface tension, because it provides a tractable model that, at the same time, is not too simple, so interest in the method can be emphasized. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of physics. In capillary-gravity regime, there are two kinds of localized infinitely smooth travelling wave solutions-solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, then the `zoology' of solutions becomes much richer, and the main goal of this study is to provide a complete classification of such singular localized solutions using the methods of the effective algebraic geometry.

  10. Molecular dynamics study of accelerated ion-induced shock waves in biological media

    CERN Document Server

    de Vera, Pablo; Currell, Fred J; Solov'yov, Andrey V

    2016-01-01

    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which lies beyond the possibilities of the analytical model.

  11. Studies of Elastic Waves in Ethylene Propylene Rubber Using Acoustic Emission Sensor

    Science.gov (United States)

    Takaoka, Masanori; Sakoda, Tatsuya; Otsubo, Masahisa; Akaiwa, Shigeru; Iki, Masatoshi; Nakano, Shigeharu

    The aim of our study is to investigate the relationship between lowering of the insulation performance of cross-linked polyethylene (CV) cable and partial discharges (PDs) followed by the dielectric breakdown and to establish a diagnostic technique using an acoustic emission (AE) sensor. In this study, we focused on characterization of AE signals detected from ethylene propylene rubbers (EPRs) used as insulating materials of CV cables. Elastic waves with various frequencies were added to the surface of the EPR, and then characteristics of the detected AE signals due to the elastic waves propagated in the EPR were evaluated. We showed characteristics of Lamb waves whose low frequency components around 100 kHz were large and their small attenuation characteristics.

  12. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  13. Clinical management and burden of bipolar disorder: a multinational longitudinal study (WAVE-bd Study

    Directory of Open Access Journals (Sweden)

    Moreno-Manzanaro Miriam

    2011-04-01

    Full Text Available Abstract Background Studies in bipolar disorder (BD to date are limited in their ability to provide a whole-disease perspective - their scope has generally been confined to a single disease phase and/or a specific treatment. Moreover, most clinical trials have focused on the manic phase of disease, and not on depression, which is associated with the greatest disease burden. There are few longitudinal studies covering both types of patients with BD (I and II and the whole course of the disease, regardless of patients' symptomatology. Therefore, the Wide AmbispectiVE study of the clinical management and burden of Bipolar Disorder (WAVE-bd (NCT01062607 aims to provide reliable information on the management of patients with BD in daily clinical practice. It also seeks to determine factors influencing clinical outcomes and resource use in relation to the management of BD. Methods WAVE-bd is a multinational, multicentre, non-interventional, longitudinal study. Approximately 3000 patients diagnosed with BD type I or II with at least one mood event in the preceding 12 months were recruited at centres in Austria, Belgium, Brazil, France, Germany, Portugal, Romania, Turkey, Ukraine and Venezuela. Site selection methodology aimed to provide a balanced cross-section of patients cared for by different types of providers of medical aid (e.g. academic hospitals, private practices in each country. Target recruitment percentages were derived either from scientific publications or from expert panels in each participating country. The minimum follow-up period will be 12 months, with a maximum of 27 months, taking into account the retrospective and the prospective parts of the study. Data on demographics, diagnosis, medical history, clinical management, clinical and functional outcomes (CGI-BP and FAST scales, adherence to treatment (DAI-10 scale and Medication Possession Ratio, quality of life (EQ-5D scale, healthcare resources, and caregiver burden (BAS scale

  14. "Magneto-elastic" waves in an anisotropic magnetised plasma

    CERN Document Server

    Del Sarto, Daniele; Tenerani, Anna

    2015-01-01

    The linear waves that propagate in a two fluid magnetised plasma allowing for a non-gyrotropic perturbed ion pressure tensor are investigated. For perpendicular propagation and perturbed fluid velocity a low frequency (magnetosonic) and a high frequency (ion Bernstein) branch are identified and discussed. For both branches a comparison is made with the results of a kinetic Vlasov treatment. For the low frequency branch we show that a consistent expansion procedure allows us to recover the correct expression of the FLR corrections to the magnetosonic dispersion relation in agreement with Mikhailovskii and Smoliakov, Soviet Phys., JETP, 11, 1469 (1985).

  15. ‘Magneto-elastic’ waves in an anisotropic magnetised plasma

    Science.gov (United States)

    Del Sarto, D.; Pegoraro, F.; Tenerani, A.

    2017-04-01

    The linear waves that propagate in a two fluid magnetised plasma allowing for a non-gyrotropic perturbed ion pressure tensor are investigated. For perpendicular propagation and perturbed fluid velocity a low frequency (magnetosonic) and a high frequency (ion Bernstein) branch are identified and discussed. For both branches a comparison is made with the results of a truncated Vlasov treatment. For the low frequency branch we show that a consistent expansion procedure allows us to recover the correct expression of the finite Larmor radius corrections to the magnetosonic dispersion relation.

  16. Experimental study on waves propagation over a coarse-grained sloping beach

    Science.gov (United States)

    Hsu, Tai-Wen; Lai, Jian-Wu

    2013-04-01

    This study investigates velocity fields of wave propagation over a coarse-grained sloping beach using laboratory experiments. The experiment was conducted in a wave flume of 25 m long, 0.5 m wide and 0.6 m high in which a coarse-grained sloping 1:5 beach was placed with two layers ball. The glass ball is D=7.9 cm and the center to center distance of each ball is 8.0 cm. The test section for observing wave and flow fields is located at the middle part of the flume. A piston type wave maker driven by an electromechanical hydraulic serve system is installed at the end of the flume. The intrinsic permeability Kp and turbulent drag coefficient Cf were obtained from steady flow water-head experiments. The flow velocity was measured by the particle image velocimeter (PIV) and digital image process (DIP) techniques. Eleven fields of view (FOVS) were integrated into a complete representation including the outer, surf and swash zone. Details of the definition sketch of the coarse-grained sloping beach model as well as experimental setup are referred to Lai et al. (2008). A high resolution of CCD camera was used to capture the images which was calibrated by the direct linear transform (DCT) algorithm proposed by Abed El-Aziz and Kar-Ara (1971). The water surface between the interface of air and water at each time step are calculated by Otsu' (1978) detect algorithm. The comparison shows that the water surface elevation observed by integrated image agrees well with that of Otsu' detection results. For the flow field measurement, each image pair was cross correlated with 32X32 pixel inter rogation window and a half overlap between adjacent windows. The repeatability and synchronization are the key elements for both wave motion and PIV technique. The wave profiles and flow field were compared during several wave periods to ensure that they can be reproduced by the present system. The water depth is kept as a constant of h=32 cm. The incident wave conditions are set to be wave

  17. Wave propagation against current : a study of the effects of vertical shears of the mean current on the geometrical focusing of water waves

    Science.gov (United States)

    Charland, Jenna; Touboul, Julien; Rey, Vincent

    2013-04-01

    Wave propagation against current : a study of the effects of vertical shears of the mean current on the geometrical focusing of water waves J. Charland * **, J. Touboul **, V. Rey ** jenna.charland@univ-tln.fr * Direction Générale de l'Armement, CNRS Délégation Normandie ** Université de Toulon, 83957 La Garde, France Mediterranean Institute of Oceanography (MIO) Aix Marseille Université, 13288 Marseille, France CNRS/INSU, IRD, MIO, UM 110 In the nearshore area, both wave propagation and currents are influenced by the bathymetry. For a better understanding of wave - current interactions in the presence of a 3D bathymetry, a large scale experiment was carried out in the Ocean Basin FIRST, Toulon, France. The 3D bathymetry consisted of two symmetric underwater mounds on both sides in the mean wave direction. The water depth at the top the mounds was hm=1,5m, the slopes of the mounds were of about 1:3, the water depth was h=3 m elsewhere. For opposite current conditions (U of order 0.30m/s), a huge focusing of the wave up to twice its incident amplitude was observed in the central part of the basin for T=1.4s. Since deep water conditions are verified, the wave amplification is ascribed to the current field. The mean velocity fields at a water depth hC=0.25m was measured by the use of an electromagnetic current meter. The results have been published in Rey et al [4]. The elliptic form of the "mild slope" equation including a uniform current on the water column (Chen et al [1]) was then used for the calculations. The calculated wave amplification of factor 1.2 is significantly smaller than observed experimentally (factor 2). So, the purpose of this study is to understand the physical processes which explain this gap. As demonstrated by Kharif & Pelinovsky [2], geometrical focusing of waves is able to modify significantly the local wave amplitude. We consider this process here. Since vertical velocity profiles measured at some locations have shown significant

  18. Kinetic full wave analyses of O-X-B mode conversion of EC waves in tokamak plasmas

    Science.gov (United States)

    Fukuyama, Atsushi; Khan, Shabbir Ahmad; Igami, Hiroe; Idei, Hiroshi

    2016-10-01

    For heating and current drive in a high-density plasma of tokamak, especially spherical tokamak, the use of electron Bernstein waves and the O-X-B mode conversion were proposed and experimental observations have been reported. In order to evaluate the power deposition profile and the current drive efficiency, kinetic full wave analysis using an integral form of dielectric tensor has been developed. The incident angle dependence of wave structure and O-X-B mode conversion efficiency is examined using one-dimensional analysis in the major radius direction. Two-dimensional analyses on the horizontal plane and the poloidal plane are also conducted, and the wave structure and the power deposition profile are compared with those of previous analyses using ray tracing method and cold plasma approximation. This work is supported by JSPS KAKENHI Grant Number JP26630471.

  19. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  20. Study and Application of Polarographic Catalytic Wave of Chlordiazepoxide in the Presence of Persulfate

    Institute of Scientific and Technical Information of China (English)

    GUO,Wei(过玮); LIN,Hong(林洪); LIU,Li-Min(刘利民); GUO,Zhi-An(郭治安); SONG,Jun-Feng(宋俊峰)

    2002-01-01

    Polarographic catalytic wave of chlordiazepoxide in the presence of K2S2O8 was studied in aqueous and DMF/H2O mixed solutions. The results showed that a single reduction wave in alkaline medium was the reduction of the N= C bond in 1,2-position of chlordiazepoxide via an intermediate free radical in two one-electron successive additions. When K2S2O8 was present,the free radical of the N = C bond was oxidized to regenerate the original, producing a parallel catalytic wave of chlordiazepoxide. It was determined that the apparent rate constant kfof the oxidation reaction was 3.2 × 103 mol-1@L@s-1. Using the catalytic wave the trace of chlordiazepoxide can be determined by linear-potential scan polarography. In NH3/NH4Cl (pH10.2 ± 0.1, 0.12 mol/L)/K2S2O8 (0.016 mot/L) supporting electrolyte, the second-order derivative peak current of the catalytic wave was rectilinear to chlordiazepoxide concentration in the range of 3.20 × 10-8-1.60 × 10-7, 1.60×10-7-1.44 × 10-6 and 1.44 × 10-6-1.44 × 10-5 mol/L, respectively. The limit of detection was 9.0× 10-9 mol/L.

  1. Numerical study of the KP equation for non-periodic waves

    CERN Document Server

    Kao, Chiu-Yen

    2010-01-01

    The Kadomtsev-Petviashvili (KP) equation describes weakly dispersive and small amplitude waves propagating in a quasi-two dimensional situation. Recently a large variety of exact soliton solutions of the KP equation has been found and classified. Those soliton solutions are localized along certain lines in a two-dimensional plane and decay exponentially everywhere else, and they are called line-soliton solutions in this paper. The classification is based on the far-field patterns of the solutions which consist of a finite number of line-solitons. In this paper, we study the initial value problem of the KP equation with V- and X-shape initial waves consisting of two distinct line-solitons by means of the direct numerical simulation. We then show that the solution converges asymptotically to some of those exact soliton solutions. The convergence is in a locally defined $L^2$-sense. The initial wave patterns considered in this paper are related to the rogue waves generated by nonlinear wave interactions in shall...

  2. Wave Transformation in a Multi-Bar Surf Zone: Case Study of Lubiatowo (Poland)

    Science.gov (United States)

    Lan, Yuan-Jyh; Hsu, Tai-Wen; Ostrowski, Rafał; Szmytkiewicz, Marek

    2016-06-01

    The paper presents results of field and theoretical investigations of wave transformation in the surf zone near the IBW PAN Coastal Research Station in Lubiatowo (Poland, the south Baltic Sea). The study site displays multi-bar cross-shore profiles that intensively dissipate wave energy, mostly induced by breaking. The main field data comprise wave heights and cross-shore bathymetric profiles.Wave transformation is modelled theoretically by two approaches, namely the IBW PAN phase-averaged wave transformation model and the approach based on the hydraulic jump model, developed by Hsu & Lai (2009) for hydrological situations encountered under the actual conditions of two field campaigns - in 1987 and 1996. Discrepancies between the measured data and the model results are discussed. In general, the model results are in good agreement with the in-situ observations. The comparison of the field data with the computational results concerns a part of the surf zone between about 5 m water depth and the first nearshore stable bar, where the depth amounts to ca. 1.2 m.

  3. Experimental study of periodic linear internal waves transform at the shelf edge

    Science.gov (United States)

    Shishkina, Olga; Litvin, Alexander; Vladimirova, Eleonora; Ivanov, Dmitry; Ivanov, Vladlen

    2010-05-01

    The report contains results of the experimental study of the fine structure of hydrophysical processes of internal waves transform in the shelf zone observed within a thin thermocline. A series of experiments was performed in the stratified tank with its overall dimensions L*B*H = 2.15*0.15*0.35 m where the model of the shelf has been installed. The shadowgraph IAB-455 as well as the multidot spatial system of 40 thermocouples were used for distance and contact measurements. Methods of a digital video fixation of shadow pictures of currents in the thermally stratified liquid, as well as methods of the statistical analysis of non-stationary hydrodynamic processes were applied. As a result of the series of experiments it was revealed that interaction of internal waves in the pycnocline with the shelf model leads to transformation of the internal waves, formation of currents of vortical and turbulent character and water mass mixture. The observations concern a case of creation of a package of five periodic internal waves made in the pycnocline by a submerged wave-maker. Acknowledgement: this work is supported through NWO-RFBR Project (Code: 047.017.2006.003).

  4. Study of guided wave transmission through complex junction in sodium cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Elie, Q.; Le Bourdais, F.; Jezzine, K.; Baronian, V. [Non Destructive Testing Department at the French Atomic Energy Commission (CEA), Saclay, 91191 Gif sur Yvette CEDEX, (France)

    2015-07-01

    Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presented in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)

  5. Study of metalloproteins using continuous wave electron paramagnetic resonance (EPR).

    Science.gov (United States)

    Gambarelli, Serge; Maurel, Vincent

    2014-01-01

    Electron paramagnetic resonance (EPR) is an invaluable tool when studying systems with paramagnetic centers. It is a sensitive spectroscopic method, which can be used with dilute samples in aqueous buffer solutions. Here, we describe the basic procedure for recording an X-band EPR spectrum of a metalloprotein sample at low temperature. We also discuss basic optimization techniques to provide spectra with a high signal to noise ratio and minimum distortion.

  6. Study of transient wave propagation in plates using double pulse TV holography

    OpenAIRE

    Lopes, H.; Guedes, R. M.; M. A. P. Vaz; Rodrigues, J.D.

    2004-01-01

    This work presents a numerical and experimental study of the transient response of an isotropic plate. A low mass impact is used to generate the bending wave propagation. Displacements due to the bending wave propagation were assessed using an out-of-plane double pulse TV holography set-up. A PZT transducer is used to record the impact force and its temporal evolution. A novel experimental technique is presented for determination of the stress field in the plate using the out-of-plane ...

  7. Numerical study of Anderson localization of terahertz waves in disordered waveguides

    CERN Document Server

    Lapointe, C P; Enderli, F; Feurer, T; Skipetrov, S E; Scheffold, F

    2014-01-01

    We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO$_{3}$ waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.

  8. Study of laser-induced plasma shock waves by the probe beam deflection technique

    Institute of Scientific and Technical Information of China (English)

    Yan Qian; Jian Lu; Xiaowu Ni

    2009-01-01

    Laser probe beam deflection technique is used for the analysis of laser-induced plasma shock waves in air and distilled water.The temporal and spatial variations of the parameters on shock fronts are studied as funotions of focal lens position and laser energy.The influences of the characteristics of media are investigated on the well-designed experimental setup.It is found that the shock wave in distilled water attenuates to an acoustic wave faster than in air under the same laser energy.Good agreement is obtained between our experimental results and those attained with other techniques.This technique is versatile,economic,and simple to implement,being a pronmising diagnostic tool for pulsed laser processing.

  9. Experimental study of tsunami-type waves impact on soil at foundations of offshore gravity platforms

    Directory of Open Access Journals (Sweden)

    N.D. Belyaev

    2014-10-01

    Full Text Available Scouring, caused by waves, currents and races of ship propellers, has been a subject of theoretical investigations, physical modeling in hydraulic laboratories and full-scale experiments in several countries. The results reported on these tests usually recommend formulas and diagrams to determine water velocities that can be used to estimate the risk of scouring and design the required protection measures. The results of the physical modeling of interaction of long tsunami-type waves with an offshore gravity platform are presented in this article. The reaction of seabed soil to wave impact at the platform foundation has been studied and the obtained results have been analyzed. Conclusions about changes in the seabed profile, density of the top layers of the seabed soil and their influence on the platform stability have been made.

  10. Study on Propagation Characteristics of Plasma Surface Wave in Medium Tube

    Institute of Scientific and Technical Information of China (English)

    WANG Shiqing; YAN Zelin; LI Wenzhong; LIU Jian; LI Jian; XU Lingfei

    2008-01-01

    Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa-gation were numerically simulated. The results show that, the properties of plasma with higher density and .lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 1017 m-3 and the medium radius between 11 mm and 19 mm.

  11. Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae

    CERN Document Server

    Iwakami, Wakana; Yamada, Shoichi

    2013-01-01

    The systematic research of flow patterns behind the accretion shock wave is conducted using three-dimensional hydrodynamics simulations for core-collapse supernovae in this study. Changing the accretion rate and neutrino luminosity, the steady solutions of the one-dimensional irrotational accretion flow passing through the spherical shock wave are evolved by imposing a random perturbation with 1% amplitude at the onset of the simulations. Depending on the accretion rate and neutrino luminosity, various flow patterns appear behind the shock wave. We classified them into the three fundamental flow patterns: (1) sloshing motion, (2) spiral motion, (3) multiple high-entropy bubbles, and the two anomalous flow patterns: (4) spiral motion with buoyant bubbles, and (5) spiral motion with pulsating rotational velocity. The sloshing and spiral motions tend to be dominant in the higher accretion rate and lower neutrino luminosity, and the generations of multiple buoyant bubbles tend to prevail in the lower accretion ra...

  12. Study on Polarographic Absorption Wave of Soluble Porphyrin Copper Complex

    Institute of Scientific and Technical Information of China (English)

    HE; YuFeng

    2001-01-01

    The porphyrins is a kind of sensitive color-producing reagent. However, its selectivity is low. If the porphyrin is used in polarographic analysis, the selectivity and sensitivity can be improved. Copper is one of the most important trace element in human and mammalian body. The polarographic method is a kind of important method in determination of metal ion [1]. In this paper, meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) is used as the soluble ligand. The polarographic absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin complex with copper ion has been studied.  ……

  13. Study on Polarographic Absorption Wave of Soluble Porphyrin Copper Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The porphyrins is a kind of sensitive color-producing reagent. However, its selectivity is low. If the porphyrin is used in polarographic analysis, the selectivity and sensitivity can be improved. Copper is one of the most important trace element in human and mammalian body. The polarographic method is a kind of important method in determination of metal ion [1]. In this paper, meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) is used as the soluble ligand. The polarographic absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin complex with copper ion has been studied.

  14. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    Science.gov (United States)

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  15. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study

    DEFF Research Database (Denmark)

    Varga, Edina T; Terney, Daniella; Atkins, Mary D

    2011-01-01

    Cathodal transcranial direct current stimulation (tDCS) decreases cortical excitability. The purpose of the study was to investigate whether cathodal tDCS could interrupt the continuous epileptiform activity. Five patients with focal, refractory continuous spikes and waves during slow sleep were ...

  16. Study on 660-nm quasi-continuous-wave intracavity frequency-doubled Nd:YAG laser

    Institute of Scientific and Technical Information of China (English)

    Tao Wang(王涛); Jianquan Yao(姚建铨); Baigang Zhang(张百钢); Guiyan Zang(臧贵艳); Peng Wang(王鹏); Yizhong Yu(于意仲)

    2003-01-01

    A quasi-continuous-wave intracavity frequency-doubled Nd:YAG laser which operates at 660 nm is studied.By using a flat-flat laser cavity, 2 Kr-lamps, KTP crystal and an acousto-optically Q-switch, 2-W outputpower at 660 nm is obtained. The relationship between laser cavity length and output power is analyzed.

  17. Theoretical Studies of Laws Nanostructuring and Heterogeneous Hardening of Steel Samples by Wave Intensive Plastic Deformation

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2015-12-01

    Full Text Available Theoretical studies and calculations, allowing to define the required parameters of the wave deformation hardening, are performed in order to obtain heterogeneous hardened surface layer in steel samples. The conditions for the effective use of impact energy for elastic-plastic deformation of the processed material and the establishment of a deep hardened surface layer are revealed.

  18. A Longitudinal Study of Unemployment Insurance Exhaustees: Final Report on Waves 1 and 2.

    Science.gov (United States)

    Nicholson, Walter; Corson, Walter

    The study reports the results of a two-wave longitudinal interview of over 2,000 individuals who exhausted their unemployment insurance (UI) benefits in October 1974. The interviews were conducted at the time of exhaustion and four months later in Atlanta, Baltimore, Chicago, and Seattle. UI exhaustees are a relatively representative cross-section…

  19. New numerical tools to study waves and instabilities of flowing plasmas

    NARCIS (Netherlands)

    Beliën, A.J.C.; Botchev, M.A.; Goedbloed, J.P.; Holst, van der B.; Keppens, R.

    2002-01-01

    Studying plasma waves and instabilities is an indispensable part of present thermonuclear fusion and astrophysical magnetohydrodynamics (MHD). Up till recently, spectral analysis was mostly restricted to static plasmas. However, the assumption of a static plasma is unrealistic not only for astrophys

  20. Experimental Study and Numerical Modeling of Wave Induced Pore Pressure Attenuation Inside a Rubble Mound Breakwater

    DEFF Research Database (Denmark)

    Troch, Peter; Rouck, Julien De; Burcharth, Hans Falk

    2003-01-01

    The main objective of this paper is to study the attenuation of the wave induced pore pressures inside the core of a rubble mound breakwater. The knowledge of the distribution and the attenuation of the pore pressures is important for the design of a stable and safe breakwater. The pore pressure...

  1. Relations Among Positive Parenting, Children's Effortful Control, and Externalizing Problems: A Three-Wave Longitudinal Study

    Science.gov (United States)

    Eisenberg, Nancy; Zhou, Qing; Spinrad, Tracy L.; Valiente, Carlos; Fabes, Richard A.; Liew, Jeffrey

    2005-01-01

    In a 3-wave longitudinal study (with assessments 2 years apart) involving 186 early adolescents (M ages of approximately 9.3, 11.4, and 13.4), the hypothesis that parental warmth/positive expressivity predicts children's effortful control (EC) (a temperamental characteristic contributing to emotion regulation) 2 years later, which in turn predicts…

  2. The New Wave of Childhood Studies: Breaking the Grip of Bio-Social Dualism?

    Science.gov (United States)

    Ryan, Kevin William

    2012-01-01

    The article takes as its starting point a new wave of researchers who use concepts such as "hybridity" and "multiplicity" in a bid to move the study of childhood beyond the strictures of what Lee and Motzkau call "bio-social dualism", whereby the division between the "natural child" of developmental psychology and the "social child" of…

  3. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  4. Syndromic surveillance and heat wave morbidity: a pilot study based on emergency departments in France

    Directory of Open Access Journals (Sweden)

    Filleul Laurent

    2009-02-01

    Full Text Available Abstract Background The health impacts of heat waves are serious and have prompted the development of heat wave response plans. Even when they are efficient, these plans are developed to limit the health effects of heat waves. This study was designed to determine relevant indicators related to health effects of heat waves and to evaluate the ability of a syndromic surveillance system to monitor variations in the activity of emergency departments over time. The study uses data collected during the summer 2006 when a new heat wave occurred in France. Methods Data recorded from 49 emergency departments since July 2004, were transmitted daily via the Internet to the French Institute for Public Health Surveillance. Items collected on patients included diagnosis (ICD10 codes, outcome, and age. Statistical t-tests were used to compare, for several health conditions, the daily averages of patients within different age groups and periods (whether 'on alert' or 'off alert'. Results A limited number of adverse health conditions occurred more frequently during hot period: dehydration, hyperthermia, malaise, hyponatremia, renal colic, and renal failure. Over all health conditions, the total number of patients per day remained equal between the 'on alert' and 'off alert' periods (4,557.7/day vs. 4,511.2/day, but the number of elderly patients increased significantly during the 'on alert' period relative to the 'off alert' period (476.7/day vs. 446.2/day p Conclusion Our results show the interest to monitor specific indicators during hot periods and to focus surveillance efforts on the elderly. Syndromic surveillance allowed the collection of data in real time and the subsequent optimization of the response by public health agencies. This method of surveillance should therefore be considered as an essential part of efforts to prevent the health effects of heat waves.

  5. Linear spin-wave study of a quantum kagome ice

    Science.gov (United States)

    Owerre, S. A.; Burkov, A. A.; Melko, Roger G.

    2016-04-01

    We present a large-S study of a quantum spin ice Hamiltonian, introduced by Huang et al. [Phys. Rev. Lett. 112, 167203 (2014), 10.1103/PhysRevLett.112.167203], on the kagome lattice. This model involves a competition between the frustrating Ising term of classical kagome ice, a Zeeman magnetic field h , and a nearest-neighbor transverse spin-flip term SixSjx-SiySjy . Recent quantum Monte Carlo (QMC) simulations by Carrasquilla et al. [Nat. Commun. 6, 7421 (2015), 10.1038/ncomms8421], uncovered lobes of a disordered phase for large Ising interaction and h ≠0 —a putative quantum spin liquid phase. Here, we examine the nature of this model using large-S expansion. We show that the ground state properties generally have the same trends with those observed in QMC simulations. In particular, the large-S ground state phase diagram captures the existence of the disordered lobes.

  6. Voronovskaya-Type Formulas for ω, q-Bernstein Polynomials%ω,q-Bernstein多项式的Voronovskaya-型公式

    Institute of Scientific and Technical Information of China (English)

    江海新; 吴芸

    2013-01-01

    讨论了ω,q-Bernstein多项式的Voronovskaya-型公式及其收敛的饱和性.给出了当0<q<1,0≤ω≤1,f∈C1[0,1]时ω,q-Bernstein多项式的Voronovskaya-型公式.如果0<ω,q<1,f∈C1[0,1],则ω,q-Bernstein多项式的收敛阶为o(qn)当且仅当f(1-qk-1)-f(1-qk)/(1-qk-1)-(1-qk)=f'(1-qk),k=1,2,....还证明了如果f在[0,1]是凸的或者在(-ε,1+ε)(ε>0)解析,则ω,q-Bernstein多项式的收敛阶为o(qn)当且仅当f是线性函数.%We discuss Voronovskaya-type formulas and saturation of convergence for ω,q-Bernstein polynomials. We give explicit formulas of Voronovskaya-type for ω,q-Bernstein polynomials for 0 0, then the rate of convergence for ω, q-Bernstein polynomials is o(qn) if and only if / is linear.

  7. Free Surface Waves And Interacting Bouncing Droplets: A Parametric Resonance Case Study

    KAUST Repository

    Borja, Francisco J.

    2013-07-01

    Parametric resonance is a particular type of resonance in which a parameter in a system changes with time. A particularly interesting case is when the parameter changes in a periodic way, which can lead to very intricate behavior. This di↵ers from periodic forcing in that solutions are not necessarily periodic. A system in which parametric resonance is realized is when a fluid bath is shaken periodically, which leads to an e↵ective time dependent gravitational force. This system will be used to study the onset of surface waves in a bath with non-uniform topography. A linear model for the surface waves is derived from the Euler equations in the limit of shallow waves, which includes the geometry of the bottom and surface tension. Experiments are performed to compare with the proposed model and good qualitative agreement is found. Another experiment which relies on a shaking fluid bath is that of bouncing fluid droplets. In the case of two droplets the shaking allows for a larger bouncing droplet to attract a smaller moving droplet in a way that creates a bound system. This bound system is studied and shows some analogous properties to quantum systems, so a quantum mechanical model for a two dimensional atom is studied, as well as a proposed model for the droplet-wave system in terms of equations of fluid mechanics.

  8. An experimental study of shock wave propagation through a polyester film

    Science.gov (United States)

    Eliasson, Veronica; Jeon, Hongjoo

    2016-11-01

    A polyester film is available in a variety of uses such as packaging, protective overlay, barrier protection, and other industrial applications. In the current study, shock tube experiments are performed to study the influence of a polyester film on the propagation of a planar shock wave. A conventional shock tube is used to create incident shock Mach numbers of Ms = 1.34 and 1.46. A test section of the shock tube is designed to hold a 0.009 mm, 0.127 mm, 0.254 mm, or 0.508 mm thick polyester film (Dura-Lar). High-temporal resolution schlieren photography is used to visualize the shock wave mitigation caused by the polyester film. In addition, four pressure transducers are used to measure the elapsed time of arrival and overpressure of the shock wave both upstream and downstream of the test section. Results show that the transmitted shock wave in the polyester film is clearly observed and the transmitted shock Mach number is decreased by increasing film thickness. This study is supported by the National Science Foundation under Grant No. CBET-1437412.

  9. On a new scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an extraordinary wave in the inhomogeneous plasma of magnetic traps

    Science.gov (United States)

    Gusakov, E. Z.; Popov, A. Yu.; Irzak, M. A.

    2016-10-01

    The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.

  10. A study of seismic wave propagation in heterogeneous crust

    Science.gov (United States)

    Akerberg, Peeter Michael

    Three different aspects of estimating properties from seismic data are treated in this thesis: (1) Deterministic processing of a high resolution shallow seismic data set with good geologic control, (2) traveltime estimation from complicated models described statistically, and (3) estimation of a the vertical autocorrelation length of such models. The first part of this thesis is the processing and interpretation of a shallow seismic dataset collected in an open pit copper mine near Tyrone, New Mexico. The seismic image is compared with the outcrop in the open pit mine wall along which the seismic line was collected, and with drill data obtained from the mine operators. Specific features imaged by the experiment include the base of the overlaying sediment, the base of the leached capping, and fractures and shear zones that control local ground water flow. The features in the migrated section compare well with outcrop and drill data. The second part of the thesis studies the systematic bias of velocities estimated from first arrival travel times measured from a class of very complicated velocity models. Traveltimes were computed for statistically described velocity models with anisotropic von Karman correlation functions. The results of a finite difference eikonal solver, corresponding to very small wavelength experiments, are compared to results from picking first arrivals of full wavefield finite difference simulations. The eikonal solver results show the largest systematic bias, corresponding to the ray theoretical limit, and the results from the full wavefield experiments are smaller, but with very similar dependence on aspect ratio of the anisotropic correlation function. The third part defines two methods to obtain the vertical correlation length from seismic data approximated by the primary reflectivity series, which conventionally is used as the ideal result of seismic imaging. The first method is based on fitting a theoretical power spectrum based on the

  11. Experimental and computational studies on complex spiral waves in 2-D cardiac substrates

    Science.gov (United States)

    Bursac, Nenad

    2005-03-01

    A variety of chemical and biological nonlinear excitable media including heart tissue can support stable, self-organized waves of activity in a form of rotating single-arm spirals. In the heart tissue, stable single-arm spirals can underlie highly periodic activity such as monomorphic ventricular tachycardia (VT), while unstable spirals that continuously form and break up are shown to underlie aperiodic and lethal heart activity, namely fibrillation. Although fast pacing from a point in the heart is commonly used to terminate VT, it can occasionally yield a transient or stable acceleration of tachicardia rate and/or fibrillation. In this study we tested the effect of rapid point pacing on sustained spiral waves in the uniformly anisotropic cultures of cardiac myocytes. In 15/79 cultures, rapid pacing induced a stable formation of multiple bound spiral waves (a complex spiral) and acceleration of overall excitation rate in the tissue, as assessed by pseudo ECG (pECG). The level of rate acceleration correlated with the number of rotating waves. Further rapid point pacing decelerated, terminated, or further accelerated the complex spiral activity via a change in the number of coexisting rotating waves. The dynamic restitution analysis revealed no alternans in action potential duration in any of the cultures. Stable formation of complex spirals was accomplished only in the cultures that showed relatively broad and steep impulse wavelength and conduction velocity restitutions. A necessary condition for rate acceleration in a medium with monotonic restitution is that the rate of rotation of a single spiral wave is significantly lower than maximum sustainable rate of excitation in the medium. Preliminary data in a homogeneous medium using 3-variable Fenton-Karma (FK) based model of cardiac tissue suggest that decrease of fast inward current (excitability) can shift the spiral rate away from the break point on the restitution curve, enabling a necessary condition for rate

  12. Comparison study on spherical wave superposition method and spherical wave source boundary point method for realizing nearfield acoustic holography

    Institute of Scientific and Technical Information of China (English)

    BI Chuanxing; CHEN Xinzhao; ZHOU Rong; CHEN Jian

    2005-01-01

    In the light of the concept of spherical wave source, the theoretical model of nearfield acoustic holography (NAH) based on the spherical wave superposition method (SWSM), including reconstruction of expansion coefficients, prediction of acoustic field, error sensitivity analysis, regularization method and a searching method with dual measurement surfaces for determining the optimal number of expansion terms, is established. Subsequently, the spherical wave source boundary point method (SWSBPM) and its application in the NAH are introduced briefly. Considering the similarity of the SWSM and the SWSBPM for realizing the NAH, they are compared. The similarities and differences of the two methods are illuminated by a rigorous mathematical justification and two experiments on a single source and two coherent sources in the semi-free acoustic field. And, the superiority of the NAH based on the SWSBPM is demonstrated.

  13. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  14. Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere: a CLUSTER case study

    Directory of Open Access Journals (Sweden)

    S. Schäfer

    2007-05-01

    Full Text Available Oscillating magnetic field lines are frequently observed by spacecraft in the terrestrial and other planetary magnetospheres. The CLUSTER mission is a very suitable tool to further study these Alfvén waves as the four CLUSTER spacecraft provide for an opportunity to separate spatial and temporal structures in the terrestrial magnetosphere. Using a large scaled configuration formed by the four spacecraft we are able to detect a poloidal Ultra-Low-Frequency (ULF pulsation of the magnetic and electric field in order to analyze its temporal and spatial structures. For this purpose the measurements are transformed into a specific field line related coordinate system to investigate their specific amplitude pattern depending on the path of the CLUSTER spacecraft across oscillating field lines. These measurements are then compared with modeled spacecraft observations across a localized poloidal wave resonator in the dayside plasmasphere. A detailed investigation of theoretically expected poloidal eigenfrequencies allows us to specify the observed 16 mHz pulsation as a third harmonic oscillation. Based on this we perform a case study providing a clear identification of wave properties such as an spatial scale structure of about 0.67 RE, the azimuthal wave number m≈30, temporal evolution, and energy transport in the detected ULF pulsations.

  15. Computational study of shock waves propagating through air-plastic-water interfaces

    CERN Document Server

    Del Razo, Mauricio J

    2015-01-01

    The following study is motivated by experimental studies in traumatic brain injury (TBI). Recent research has demonstrated that low intensity non-impact blast wave exposure frequently leads to mild traumatic brain injury (mTBI); however, the mechanisms connecting the blast waves and the mTBI remain unclear. Collaborators at the Seattle VA Hospital are doing experiments to understand how blast waves can produce mTBI. In order to gain insight that is hard to obtain by experimental means, we have developed conservative finite volume methods for interface-shock wave interaction to simulate these experiments. A 1D model of their experimental setup has been implemented using Euler equations for compressible fluids. These equations are coupled with a Tammann equation of state (EOS) that allows us to model compressible gas along with almost incompressible fluids or elastic solids. A hybrid HLLC-exact Eulerian-Lagrangian Riemann solver for Tammann EOS with a jump in the parameters has been developed. The model has sho...

  16. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  17. A Particle-in-Cell Simulation Study on Harmonic Waves Excited by Electron Beams in Unmagnetized Plasmas

    Institute of Scientific and Technical Information of China (English)

    Jun Guo

    2016-01-01

    The excitation of harmonic waves by an electron beam is studied with electrostatic simulations.The results suggest that the harmonic waves are excited during the linear stage of the simulation and are developed in the nonlinear stage.First,the Langmuir waves (LWs) are excited by the beam electrons.Then the coupling of the forward propagating LWs and beam modes will excite the second harmonic waves.The third harmonic waves will be produced if the lower velocity side of the beam still has a positive velocity gradient.The beam velocity decreases at the same time,which provides the energy for wave excitation.We find that it is difficult to excite the harmonic waves with the increase of the thermal velocity of the beam electrons.The beam electrons will be heated after waves are excited,and then the part of the forward propagating LWs will turn into electron acoustic waves under the condition with a large enough intensity of beam electrons.Moreover,the action of ions hardly affects the formation of harmonic waves.

  18. 查尔斯·伯恩斯坦:挑战诗的理念%Charles Bernstein: Against the Idea of Poetry

    Institute of Scientific and Technical Information of China (English)

    利维·莱托

    2007-01-01

    This article is a foreword to a collection of poems and essays by Charles Bernstein in Finnish translation. The author, smartly and humorously, introduces his personal connection to Bernstein, via whom he was brought to a larger new poetry community. To the author, Bernstein's poetry is wildly individual, anti-communal, and against the very idea of poetry. The fruitful way to approach most of Charles Bernstein's poems is to see them as interventions in the field of poetry, as they always react against a particular idealization. Directly related to his two great fellow-Americans, Walt Whitman and Allen Ginsberg, Bernstein's poetry has a note of certain generalized, but always intellectually controlled sorrow. Having a constant feature of Bernsteinian prosody, his later poems are prevalent with a sense of transcendental utopianism.%本文是芬兰语版《伯恩斯坦诗文选集》前言,作者简要介绍了他个人与美国语言派诗人伯恩斯坦的交往及由此他步入的广阔的新诗领域.作者认为,伯恩斯坦的诗独具个性,一反常规,是对传统诗歌理念的反叛.要欣赏伯恩斯坦的诗最有效的方法是将他的诗看成是诗歌领域的干预活动,因为他的诗从来就是对某一理想化的诗歌范式的反动.伯恩斯坦的诗歌与惠特曼和金斯堡的诗有着直接的关联,但他的诗有着伯恩斯坦式的特别韵律,内蕴了一丝总被理智钳制的忧伤.他最近的诗还弥漫着一种超验的乌托邦情怀.

  19. [Positive rolandic sharp waves, periventricular ischemia and neurologic outcome. Prospective study in 66 premature infants].

    Science.gov (United States)

    Marret, S; Jeannot, E; Parain, D; Samson-Dollfus, D; Fessard, C

    1989-04-01

    A prospective study concerning 66 prematures born after 32 weeks of gestation showed a 33% incidence of positive rolandic sharp waves (PRSW) on EEGs. The results showed a good sensitivity (Se = 95%) and specificity (Sp = 93%) of PRSW for the diagnosis of periventricular ischemia with motor sequelae. A PRSW frequency higher than one per minute and its persistence on 2 successive EEGs constitutes an indication of severity of the lesions. This study emphasizes the necessity of several EEG recordings in prematures.

  20. Effect of urine pH on the effectiveness of shock wave lithotripsy: A pilot study

    OpenAIRE

    Ahmad Majzoub; Ammar Al-Ani; Tawiz Gul; Hatem Kamkoum; Khalid Al-Jalham

    2016-01-01

    Aim: Shock wave lithotripsy (SWL) is a well-established modality in the treatment of urolithiasis. Studying the effect of urine pH on SWL success is appealing as pH can be manipulated before SWL to insure a better outcome. Materials and Methods: This is a prospective study performed at a tertiary medical center. Patients presenting to the SWL unit with a single renal stone

  1. Family Cohesion and Romantic and Sexual Initiation: A Three Wave Longitudinal Study.

    OpenAIRE

    van der Graaf, H.; Schoot, A.G.J. van de; Woertman, L.; Hawk, S.T.; Meeus, Wim

    2011-01-01

    Although the relation between family relationships and the timing of sexual debut has been the focus of many studies, research on mediating factors is scarce. This study examines whether low levels of family cohesion result in an earlier onset of romantic and sexual experiences, and whether the link between family cohesion and an early sexual debut is mediated by early romantic initiation. A longitudinal sample of 314 adolescent girls and 222 boys, aged 12–17 at Wave 1, completed questionnair...

  2. Human Emotion Detection via Brain Waves Study by Using Electroencephalogram (EEG

    Directory of Open Access Journals (Sweden)

    W.O. A.S. Wan Ismail

    2016-12-01

    Full Text Available Human emotion is very difficult to determine just by looking at the face and also the behavior of a person. This research was conducted to detect or identify human emotion via the study of brain waves. In addition, the research aims to develop computer software that can detect human emotions quickly and easily. This study aims at EEG signals of relationship and human emotions. The main objective of this recognition is to develop "mind-implementation of Robots". While the research methodology is divided into four; (i both visibility and EEG data were used to extract the date at the same time from the respondent, (ii the process of complete data record includes the capture of images using the camera and EEG, (iii pre-processing, classification and feature extraction is done at the same time, (iv the features extracted is classified using artificial intelligence techniques to emotional faces. Researchers expect the following results; (i studies brain waves for the purpose of emotions, (ii the study of human emotion with facial emotions and to relate the brain waves, (iii. In conclusion, this study is very useful for doctors in hospitals and police departments for criminal investigation. As a result of this study, it also helps to develop a software package.

  3. Hertzian impact: experimental study of the force pulse and resulting stress waves.

    Science.gov (United States)

    McLaskey, Gregory C; Glaser, Steven D

    2010-09-01

    Ball impact has long been used as a repeatable source of stress waves in solids. The amplitude and frequency content of the waves are a function of the force-time history, or force pulse, that the ball imposes on the massive body. In this study, Glaser-type conical piezoelectric sensors are used to measure vibrations induced by a ball colliding with a massive plate. These measurements are compared with theoretical estimates derived from a marriage of Hertz theory and elastic wave propagation. The match between experiment and theory is so close that it not only facilitates the absolute calibration the sensors but it also allows the limits of Hertz theory to be probed. Glass, ruby and hardened steel balls 0.4 to 2.5 mm in diameter were dropped onto steel, glass, aluminum, and polymethylmethacrylate plates at a wide range of approach velocities, delivering frequencies up to 1.5 MHz into these materials. Effects of surface properties and yielding of the plate material were analyzed via the resulting stress waves and simultaneous measurements of the ball's coefficient of restitution. The sensors are sensitive to surface normal displacements down to about +/-1 pm in the frequency range of 20 kHz to over 1 MHz.

  4. Preliminary study on the effect of stiffness on lamb wave propagation in bovine corneas.

    Science.gov (United States)

    Zhang, Xin-Yu; Yin, Yin; Guo, Yan-Rong; Diao, Xian-Fen; Chen, Xin

    2013-01-01

    The viscoelastic properties of human cornea could provide valuable information for various clinical applications. Particularly, it will be helpful to achieve a patient-specific biomechanical optimization in LASIK refractive surgery, early detection of corneal ecstatic disease or improved accuracy of intraocular pressure (IOP) measurement. However, there are few techniques that are capable of accurately assessing the corneal elasticity in situ in a nondestructive fashion. In order to develop a quantitative method for assessing both elasticity and viscosity of the cornea, we use ultrasound radiation force to excite Lamb waves in cornea, and a pulse echo transducer to track the tissue vibration. The fresh postmortem bovine eyes were treated via collagen cross-linking to make the cornea stiff. The effect of stiffness was studied by comparing the propagation of Lamb waves in normal and treated corneas. It was found that the waveform of generated Lamb waves changed significantly due to the increase in higher modes in treated corneas. This result indicated that the generated waveform was a complex of multiple harmonics and the varied stiffness will affect the energy distribution over different components. Therefore, it is important for assessing the viscoelastic properties of the cornea to know the components of Lamb wave and calculate the phase velocity appropriately.

  5. Computer simulation study of surface wave dynamics at the crystal--melt interface

    CERN Document Server

    Benet, Jorge; Sanz, Eduardo

    2014-01-01

    We study, by means of computer simulations, the crystal-melt interface of three different systems: hard-spheres, Lennard Jones and the TIP4P/2005 water model. In particular, we focus on the dynamics of surface waves. We observe that the processes involved in the relaxation of surface waves are characterized by distinct time scales: a slow one related to the continuous recrystallization and melting, that is governed by capillary forces; and a fast one which we suggest to be due to a combination of processes that quickly cause small perturbations to the shape of the interface (like e. g. Rayleigh waves, subdiffusion, or attachment/detachment of particles to/from the crystal). The relaxation of surface waves becomes dominated by the slow process as the wavelength increases. Moreover, we see that the slow relaxation is not influenced by the details of the microscopic dynamics. In a time scale characteristic for the diffusion of the liquid phase, the relaxation dynamics of the crystal-melt interface of water is ar...

  6. Numerical study of heterogeneous mean temperature and shock wave in a resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Takeru [Department of Mechanical Engineering, Osaka University, Suita 565-0871 (Japan)

    2015-10-28

    When a frequency of gas oscillation in an acoustic resonator is sufficiently close to one of resonant frequencies of the resonator, the amplitude of gas oscillation becomes large and hence the nonlinear effect manifests itself. Then, if the dissipation effects due to viscosity and thermal conductivity of the gas are sufficiently small, the gas oscillation may evolve into the acoustic shock wave, in the so-called consonant resonators. At the shock front, the kinetic energy of gas oscillation is converted into heat by the dissipation process inside the shock layer, and therefore the temperature of the gas in the resonator rises. Since the acoustic shock wave travels in the resonator repeatedly over and over again, the temperature rise becomes noticeable in due course of time even if the shock wave is weak. We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional Navier-Stokes equations with a finite difference method. In this case, the heat conduction across the boundary layer on the wall of resonator causes a spatially heterogeneous distribution of mean (time-averaged) gas temperature.

  7. Numerical and experimental studies of delamination detection in short fiber reinforced composites using Lamb waves

    Science.gov (United States)

    Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw

    2016-04-01

    The aim of this paper is to present aspects of Lamb wave propagation in randomly oriented short fiber reinforce composites with delamination. Prediction of elastic constants is based on mechanics of composites, rule of mixture and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Piezoelectric excitation as well as glue layer are taken into account. Complex full wave field includes multiple reflections at short fibers. This wave pattern is also obtained by the use of laser vibrometry confirming good quality of the model. Further studies are related to symmetrical and non-symmetrical delamination in respect to the thickness of the composite plate. Square delamination of the side length 10 mm is investigated. It has been found that reflections from delamination are mostly superimposed with reflections coming from short fibers. Hence, delamination detection by direct analysis of wave propagation pattern on the surface of the plate is ineffective. However, adaptive wavenumber filtering method overcome these difficulties and enables not only to detect the delamination but also is helpful for delamination size estimation. Moreover, the method is more effective if the full wavefield measurements are acquired on the surface of the plate which is closer to the delamination.

  8. Study of Bridging of the Spectral Gap in the Lower Hybrid Wave Current Drive in the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    WANG Mao; DING Bojiang; XU Handong; ZHAO Lianmin; LIU Liang; LIN Shiyao; XU Ping; SUN Youwen; HU Huaichuan; YANG Yong; JIA Hua; WANG Xiaojie; WANG Dongxia; QIN Yongliang; FENG Jianqiang; LIU Fukun; SHAN Jiafang; ZHAO Yanping; HT-7 team

    2009-01-01

    An additional lower hybrid wave (LHW) with a higher refractive index(N//)was investigated in the HT-7 tokamak to bridge the spectral gap.It was found that the spectral gap between the wave and the electrons in the outer region was bridged by the additional wave with a higher N// spectrum.The results showed that the sawteeth oscillation was suppressed by launching the additional wave,and that the power deposition profile was moved outwards and the current profile was broadened due to the application of the additional wave.Our study indicates that the spectral gap may be bridged by an additional wave with a higher N// spectrum in the outer region.

  9. Systematic Study of Rogue Wave Probability Distributions in a Fourth-Order Nonlinear Schr\\"odinger Equation

    CERN Document Server

    Ying, L H

    2012-01-01

    Nonlinear instability and refraction by ocean currents are both important mechanisms that go beyond the Rayleigh approximation and may be responsible for the formation of freak waves. In this paper, we quantitatively study nonlinear effects on the evolution of surface gravity waves on the ocean, to explore systematically the effects of various input parameters on the probability of freak wave formation. The fourth-order current-modified nonlinear Schr\\"odinger equation (CNLS4) is employed to describe the wave evolution. By solving CNLS4 numerically, we are able to obtain quantitative predictions for the wave height distribution as a function of key environmental conditions such as average steepness, angular spread, and frequency spread of the local sea state. Additionally, we explore the spatial dependence of the wave height distribution, associated with the buildup of nonlinear development.

  10. A new type of polarographic catalytic wave of organic compound——Studies on the polarographic catalytic wave of medroprogesterone acetate in the presence of KIO3

    Institute of Scientific and Technical Information of China (English)

    亢晓峰; 宋俊峰

    1999-01-01

    The polarographic behavior and catalytic wave mechanism of medroprogesterone acetate (MPA) were studied in both aqueous and DMF media. In 0.2 mol/L acetic acid-sodium acetate (pH 5.0) buffer solution, the C=C bond of MPA first undergoes le, lH+ reduction to form protonated free radical HMPA(?), the further reduction of HMPA(?) in le, 1H+ process is simultaneous with the dimerization reaction between HMPA(?) and neutral molecular MPA. In DMF media containing 0.1 mol/L tetrabutylammonium tetrafluoborate (TBA·BF4), the C=C bond of MPA shows two le, 1H+ reduction waves, which are ascribed to the reduction of MPA and free radical MPA, respectively. Here, no dimerization reaction occurs. These processes produce the reduction wave of MPA. In the presence of oxidant KIO3, a polarographic catalytic wave of MPA is observable due to a chemical reaction between HMPA(?) or MPA(?) and KIO3 as well as its intermediate species to regenerate MPA. The catalytic wave, which is caused by the reduction of organic com

  11. Study of Signal Processing Algorithm in the Receiving End of Through-the-Earth Communications of Elastic Wave

    Institute of Scientific and Technical Information of China (English)

    Yin-jing GUO; Jun YANG; Wei-tao MU; Geng CHEN

    2010-01-01

    In the research of elastic wave signal detection algorithm,a method based on adaptive wavelet analysis and segmentation threshold processing of the channel noise removal methods is suggested to overcome the effect of noise,which is produced by absorption loss,scattering loss,reflection loss and multi-path effect during the elastic wave in the transmission underground.The method helps to realize extraction and recovery of weak signal of elastic wave from th multi-path channel,and simulation study is carried out about wavelet de-noising effects of the elastic wave and obtained satisfactory resuits.

  12. Harmonics Effect on Ion-Bulk Waves in CH Plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $kBernstein-Greene-Kruskal-like waves with harmonics superposition. Only when the wave number $k$ of IBk waves satisfies $k_{lor}/2\\lesssim k\\leq k_{lor}$, can a large-amplitude and mono-frequency IBk wave be excited. These results give a guidance for a novel scattering mechanism related to IBk waves in the field of laser plasma interaction.

  13. Controlling spiral wave with target wave in oscillatory systems

    Institute of Scientific and Technical Information of China (English)

    Liu Fu-Cheng; Wang Xiao-Fei; Li Xue-Chen; Dong Li-Fang

    2007-01-01

    Spiral waves have been controlled by generating target waves with a localized inhomogeneity in the oscillatory medium. The competition between the spiral waves and target waves is discussed. The effect of the localized inhomogeneity size has also been studied.

  14. Experimental study of an optimised Pyramid wave-front sensor for Extremely Large Telescopes

    Science.gov (United States)

    Bond, Charlotte Z.; El Hadi, Kacem; Sauvage, Jean-François; Correia, Carlos; Fauvarque, Olivier; Rabaud, Didier; Lamb, Masen; Neichel, Benoit; Fusco, Thierry

    2016-07-01

    Over the last few years the Laboratoire d'Astrophysique de Marseille (LAM) has been heavily involved in R&D for adaptive optics systems dedicated to future large telescopes, particularly in preparation for the European Extremely Large Telescope (E-ELT). Within this framework an investigation into a Pyramid wave-front sensor is underway. The Pyramid sensor is at the cutting edge of high order, high precision wave-front sensing for ground based telescopes. Investigations have demonstrated the ability to achieve a greater sensitivity than the standard Shack-Hartmann wave-front sensor whilst the implementation of a Pyramid sensor on the Large Binocular Telescope (LBT) has provided compelling operational results.1, 2 The Pyramid now forms part of the baseline for several next generation Extremely Large Telescopes (ELTs). As such its behaviour under realistic operating conditions must be further understood in order to optimise performance. At LAM a detailed investigation into the performance of the Pyramid aims to fully characterise the behaviour of this wave-front sensor in terms of linearity, sensitivity and operation. We have implemented a Pyramid sensor using a high speed OCAM2 camera (with close to 0 readout noise and a frame rate of 1.5kHz) in order to study the performance of the Pyramid within a full closed loop adaptive optics system. This investigation involves tests on all fronts, from theoretical models and numerical simulations to experimental tests under controlled laboratory conditions, with an aim to fully understand the Pyramid sensor in both modulated and non-modulated configurations. We include results demonstrating the linearity of the Pyramid signals, compare measured interaction matrices with those derived in simulation and evaluate the performance in closed loop operation. The final goal is to provide an on sky comparison between the Pyramid and a Shack-Hartmann wave-front sensor, at Observatoire de la Côte d'Azur (ONERA-ODISSEE bench). Here we

  15. A numerical study of mountain waves in the upper troposphere and lower stratosphere

    Directory of Open Access Journals (Sweden)

    A. Mahalov

    2011-02-01

    Full Text Available A numerical study of mountain waves in the Upper Troposphere and Lower Stratosphere (UTLS is presented for two Intensive Observational Periods (IOPs of the Terrain-induced Rotor Experiment (T-REX. The simulations use the Weather Research and Forecasting (WRF model and a microscale model that is driven by the finest WRF nest. During IOP8, the simulation results reveal presence of perturbations with short wavelengths in zones of strong vertical wind shear in the UTLS that cause a reversal of momentum fluxes. The spectral properties of these perturbations and the attendant vertical profiles of heat and momentum fluxes show strong divergence near the tropopause indicating that they are generated by shear instability along shear lines locally induced by the primary mountain wave originating from the lower troposphere. This is further confirmed by results of an idealized simulation initialized with the temperature and wind profiles obtained from the microscale model. For IOP6, we analyse distributions of O3 and CO observed in aircraft measurements. These show small scale fluctuations with amplitudes and phases that vary along the path of the flight. Comparison between these fluctuations and the observed vertical velocity show that the behavior of these short fluctuations is due not only to the vertical motion, but also to the local mean vertical gradients where the waves evolve, which are modulated by larger variations. The microscale model simulation results shows favorable agreement with in situ radiosonde and aircraft observations. The high vertical resolution offered by the microscale model is found to be critical for resolution of smaller scale processes such as formation of inversion layer associated with trapped lee waves in the troposphere, and propagating mountain waves in the lower stratosphere.

  16. Laboratory Studies of Steep and Breaking Deep Water Waves in a Convergent Channel

    Science.gov (United States)

    2015-05-28

    the " young " wave regime. For wave steepnesses between 0.3 < ak < 0.38 the wave profiles became increasingly asymmetric with a steep forward face...Wave Characteristics " Young " waves-symmetric about the crest; Stokes’ fifth-order theory applies. 0.3<akɘ.38 "Pre-breaking" waves-asymmetric waves...careful dynamic calibrations of the offending device. The experiments were conducted at seven wave periods and at a variety of wavemaker strokes as

  17. Extracorporeal shock-wave treatment for tennis elbow. A randomised double-blind study.

    Science.gov (United States)

    Melikyan, E Y; Shahin, E; Miles, J; Bainbridge, L C

    2003-08-01

    The efficacy of extracorporeal shock-wave therapy for tennis elbow was investigated using a single fractionated dosage in a randomised, double-blind study. Outcomes were assessed using the Disabilities of Arm, Shoulder and Hand questionnaire, measurements of grip strength, levels of pain, analgesic usage and the rate of progression to surgery. Informed consent was obtained before patients were randomised to either the treatment or placebo group. In the final assessment, 74 patients (31 men and 43 women) with a mean age of 43.4 years (35 to 71), were included. None of the outcome measures showed a statistically significant difference between the treatment and control groups (p > 0.05). All patients improved significantly over time, regardless of treatment. Our study showed no evidence that extracorporeal shock-wave therapy for tennis elbow is better than placebo.

  18. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    a slowing of the formation of polar mesospheric summer echoes (PMSE and noctilucent clouds (NLC. This was suggested to be due to enhanced planetary wave activity in the Southern Hemisphere and a surprising degree of inter-hemispheric coupling. The winter program was designed to study the upward propagation and penetration of mountain waves from northern Scandinavia into the MLT at a site favored for such penetration. As the major response was expected to be downstream (east of Norway, these motions were measured with similar rocket sequences to those used in the summer campaign, but this time at Esrange. However, a major polar stratospheric warming just prior to the rocket launch window induced small or reversed stratospheric zonal winds, which prevented mountain wave penetration into the mesosphere. Instead, mountain waves encountered critical levels at lower altitudes and the observed wave structure in the mesosphere originated from other sources. For example, a large-amplitude semidiurnal tide was observed in the mesosphere on 28 and 29 January, and appears to have contributed to significant instability and small-scale structures at higher altitudes. The resulting energy deposition was found to be competitive with summertime values. Hence, our MaCWAVE measurements as a whole are the first to characterize influences in the MLT region of planetary wave activity and related stratospheric warmings during both winter and summer.

  19. Studies on Three-Dimensional Dynamic Evolution of Filaments and Coronal EUV Waves

    Science.gov (United States)

    Li, T.

    2014-01-01

    In recent years, it becomes a popular topic to explore various solar eruptive activities in three-dimensional space. The main reason is that three-dimensional evolution of eruptive activities reflects their true physical processes, which is of great importance to understand the occurrence and evolution of various activities. Filament eruption and coronal mass ejection (CME) are two important solar activities. Coronal EUV wave is a phenomenon associated with CME, and the study of coronal EUV wave provides important clues for understanding CME entirely. Since previous observations are from one single viewpoint, the studies of filament eruption and coronal EUV wave are two-dimensional, and suffer from the projection effect. Recently, the multi-viewpoint and high-quality observations from the STEREO and SDO provide us a good opportunity to investigate the three-dimensional evolution of filament eruption and coronal EUV wave. We make full use of the advantages of current observations from STEREO and SDO, and study in detail the three-dimensional shape and evolution of filament eruption, the interaction of coronal EUV waves with coronal structures, and so on. The novel results of our study are listed as below. Using the two-viewpoint observations from the STEREO, we reconstruct two eruptive filaments, locate their positions in three-dimensional space, investigate their true dynamic evolution, and display the evolution of reconstructed filaments seen from different viewpoints with a new visualization method. For the first time, we analyze the true kinematic characteristics of different parts of the filament, and find that the highest part corresponds to the largest velocity during the early phase, which is implied to be the initially perturbed location; afterwards, other parts of the filament move the fastest, which should be accelerated by some mechanisms. With the increasing separation angle between the two STEREO satellites, the reconstruction becomes more difficult

  20. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study

    DEFF Research Database (Denmark)

    Varga, Edina T; Terney, Daniella; Atkins, Mary D;

    2011-01-01

    Cathodal transcranial direct current stimulation (tDCS) decreases cortical excitability. The purpose of the study was to investigate whether cathodal tDCS could interrupt the continuous epileptiform activity. Five patients with focal, refractory continuous spikes and waves during slow sleep were...... recruited. Cathodal tDCS and sham stimulation were applied to the epileptic focus, before sleep (1 mA; 20 min). Cathodal tDCS did not reduce the spike-index in any of the patients....

  1. A Feasibility Study for Life Signs Monitoring via a Continuous-Wave Radar

    Directory of Open Access Journals (Sweden)

    Francesco Soldovieri

    2012-01-01

    Full Text Available We present a feasibility study for life signs detection using a continuous-wave radar working in the band around 4 GHz. The data-processing is carried out by using two different data processing approaches, which are compared about the possibility to characterize the frequency behaviour of the breathing and heartbeat activity. The two approaches are used with the main aim to show the possibility of monitoring the vital signs activity in an accurate and reliable way.

  2. Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boldyrev, Stanislav; Perez, Jean Carlos

    2013-11-29

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the

  3. Theoretical and Experimental Studies of Wave Impact underneath Decks of Offshore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Baarholm, Rolf Jarle

    2001-07-01

    The main objective of this thesis has been to study the phenomenon of water impact underneath the decks of offshore platforms due to propagating waves. The emphasis has been on the impact loads. Two theoretical methods based on two-dimensional potential theory have been developed, a Wagner based method (WBM) and a nonlinear boundary element method (BEM). A procedure to account for three-dimensional effects is suggested. The deck is assumed to be rigid. Initial studies of the importance of hydroelasticity for wave loads on an existing deck structure have been performed. For a given design wave, the local structural responses were found to behave quasi-static. Global structural response has not been studied. In the Wagner based method gravity is neglected and a linear spatial distribution of the relative impact velocity along the deck is assumed. The resulting boundary value problem is solved analytically for each time step. A numerical scheme for stepping the wetted deck area in time is presented. The nonlinear boundary element method includes gravity, and the exact impact velocity is considered. The incident wave velocity potential is given a priori, and a boundary value problem for the perturbation velocity potential associated with the impact is defined. The boundary value problem is solved for each time step by applying Green's second identity. The exact boundary conditions are imposed on the exact boundaries. A Kutta condition is introduced as the fluid flow reaches the downstream end of the deck. At present, the BEM is only applicable for fixed platform decks. To validate the theories, experiments have been carried out in a wave flume. The experiments were performed in two-dimensional flow condition with a fixed horizontal deck at different vertical levels above the mean free surface. The vertical force on the deck and the wetting of the deck were the primary parameters measured. Only regular propagating waves were applied. When a wave hits the deck, the

  4. An experimental study on runup of two solitary waves on plane beaches

    Institute of Scientific and Technical Information of China (English)

    XUAN Rui-tao; WU Wei; LIU Hua

    2013-01-01

    Experiments of the runup of two solitary waves on a plane beach are carried out in a wave flume.The two solitary waves with the same amplitude and the crest separating distances are generated by using an improved wave generation method.It is found that,with regard to the two solitary waves with same wave amplitude,the runup amplification of the second wave is less than that of the first wave if the relative crest separating distance is reduced to a certain threshold value.The rundown of the first solitary wave depresses the maximum runup of the second wave.If the leading solitary wave is of relatively smaller amplitude for the two solitary waves,the runup amplification is affected by the overtaking process of two solitary waves.It turns out that the runup amplification of the second wave is larger than that of the first wave if the similarity factor is approximately larger than 15,which means the larger wave overtakes the smaller one before the waves runup on a beach.

  5. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    Science.gov (United States)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and

  6. Coastal flooding: impact of waves on storm surge during extremes - a case study for the German Bight

    Science.gov (United States)

    Staneva, Joanna; Wahle, Kathrin; Koch, Wolfgang; Behrens, Arno; Fenoglio-Marc, Luciana; Stanev, Emil V.

    2016-11-01

    This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. A coupled high-resolution modelling system is used to simulate wind waves, the water level and the three-dimensional hydrodynamics. The models used are the wave model WAM and the circulation model GETM. The two-way coupling is performed via the OASIS3-MCT coupler. The effects of wind waves on sea level variability are studied, accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model is significantly enhanced during extreme storm events when considering wave-current interaction processes. This wave-dependent approach yields a contribution of more than 30 % in some coastal areas during extreme storm events. The contribution of a fully three-dimensional model compared with a two-dimensional barotropic model showed up to 20 % differences in the water level of the coastal areas of the German Bight during Xaver. The improved skill resulting from the new developments justifies further use of the coupled-wave and three-dimensional circulation models in coastal flooding predictions.

  7. NUMERICAL STUDY OF THE INFLUENCE OF WAVES AND TIDE-SURGE INTERACTION ON TIDE-SURGES IN THE BOHAI SEA

    Institute of Scientific and Technical Information of China (English)

    尹宝树; 侯一筠; 程明华; 苏京志; 林明祥; 李明悝; M.I.El-Sabh

    2001-01-01

    Abstract The author's combined numerical model consisting of a third generation shallow water wave model and a 3-D tide-surge model with wave-dependent surface wind stress were used to study the influence of waves on fide-surge motion. For the typical weather case, in this study, the magnitude and mechanism of the influence of waves on tide-surges in the Bohai Sea were revealed for the first time. The results showed that although consideration of the wave-dependent surface wind stresses raise slightly the traditional surface wind stress, due to the accumulated effects, the computed results are improved on the whole. Storm level maximum modulation can reach 0.4 m. The results computed by the combined model agreed well with the measured data.

  8. NUMERICAL STUDY OF THE INFLUENCE OF WAVES AND TIDE- SURGE INTERACTION ON TIDE-SURGES IN THE BOHAI SEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The author's combined numerical model consisting of a third generation shallow water wave model and a 3-D tide-surge model with wave-dependent surface wind stress were used to study the influence of waves on tide-surge motion. For the typical weather case, in this study, the magnitude and mechanism of the influence of waves on tide-surges in the Bohai Sea were revealed for the first time. The results showed that although consideration of the wave-dependent surface wind stresses raise slightly the traditional surface wind stress, due to the accumulated effects, the computed results are improved on the whole. Storm level maximum modulation can reach 0.4 m. The results computed by the combined model agreed well with the measured data.

  9. System design and optimization study of axial flow turbine applied in an overtopping wave energy convertor

    Indian Academy of Sciences (India)

    Yuquan Zhang; Yuan Zheng; Chunxia Yang; Yantao Zhu; Xin Zhang

    2015-12-01

    The axial flow turbine applied in an overtopping wave energy convertor can continuously provide power with high efficiency and reliably. To study the rules between parameters of the turbine and flows, three different types of turbines with complete 3D flow-channel models were designed and optimized. It appears that diameter of the runner, flow rates, number of guide vanes and shape of outflow passage have a considerable impact on the performance of the whole convertor. The turbine with a diameter of 0.8 m, flow rate of 0.5 m3/s, double guide vanes and bent section in outflow passage shows the best comprehensive performance. Moreover, the results of the experiments indicate that the output power can be enhanced by increasing the wave overtopping rate.

  10. An experimental study on the coalescence process of binary droplets in oil under ultrasonic standing waves.

    Science.gov (United States)

    Luo, Xiaoming; Cao, Juhang; He, Limin; Wang, Hongping; Yan, Haipeng; Qin, Yahua

    2017-01-01

    The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time.

  11. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  12. Heritability of Tpeak-Tend Interval and T-wave Amplitude: A Twin Study

    DEFF Research Database (Denmark)

    Haarmark, Christian; Kyvik, Kirsten O; Vedel-Larsen, Esben;

    2011-01-01

    BACKGROUND: -Tpeak-Tend interval (TpTe) and T-wave amplitude (Tamp) carry diagnostic and prognostic information regarding cardiac morbidity and mortality. Heart rate and QT interval are known to be heritable traits. The heritability of T-wave morphology parameters such as TpTe and Tamp is unknown....... TpTe and Tamp were evaluated in a large sample of twins. METHODS AND RESULTS: -Twins from the GEMINAKAR study (611 pairs, 246 monozygotic, 365 dizygotic, aged 38±11 years, 49 % men) who had an ECG performed during 1997-2000 were included. Tamp was measured in leads V1 and V5. Duration variables (RR...... are heritable ECG parameters....

  13. Distribution of Action Potential Duration and T-wave Morphology: a Simulation Study

    CERN Document Server

    Ryzhii, Elena; Wei, Daming

    2009-01-01

    The results of a simulation study of the action potential duration (APD) distribution and T-wave morphology taking into account the midmyocardial cells (M-cells) concept are described. To investigate the effect of M-cells we present a computer model in which ion channel action potential formulations are incorporated into three-dimensional whole heart model. We implemented inhomogeneous continuous action potential duration distribution based on different distributions of maximal slow delayed rectifier current conductance. Using the proposed action potential distribution procedure midmural zeniths with longest action potential length were created as islands of model cells in the depth of thickest areas of ventricular tissue. Different spatial functions on layer indexes were simulated and their influences on electrocardiogram waveforms were analyzed. Changing parameters of ion channel model we varied duration of minimal and maximal action potential and investigated T-wave amplitude, Q-Tpeak and QT intervals vari...

  14. Numerical Study for Hysteresis Phenomena of Shock Wave Reflection in Overexpanded Axisymmetric Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi

    2006-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.

  15. Longitudinal acoustic waves in layered media: Comparative study of Raman scattering and reflection delay time

    Energy Technology Data Exchange (ETDEWEB)

    El Boudouti, E H; Zelmat, R; Bailich, R [LDOM, Departement de Physique, Faculte des Sciences, Universite Mohamed I, 60000 Oujda (Morocco); Hassouani, Y El [Universite de Bordeaux, Laboratoire de Mecanique Physique, Talence F-33405 (France); Djafari-Rouhani, B, E-mail: elboudouti@yahoo.f [Institut d' Electronique, de Microelectronique et de Nanotechnologie, UMR CNRS 8520, UFR de Physique, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2010-03-01

    Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/Ge{sub x}Si{sub 1-x}, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.

  16. Experimental Study on the Characteristics of Liquid Layer and Disturbance Waves in Horizontal Annular Flow

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow.To resolve this issue,using five parallel-wire conductance probes,time records of local liquid film thickness at five circumferential positions were collected.The characteristics of circumferential liquid film thickness profiles and its variation with gas and liquid velocities were obtained.The basic features of probability distribution function,probability density function,auto-correlation,cross-correlation and power spectrum density function of the disturbance waves in annular flow were studied respectively.The characterstics of circumferential profiles of disturbance waves and its variation with gas and liquid velocities were presented.

  17. Study of Wave and Tide Influence on Slope Stability of the Navigation Channel of Tianjin Port

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Tianjin Port is the largest man-made port in China. Since the navigation channel of the Tianjin Port is constructed by dredging, a very important problem, as many people concerned, is the submarine slope stability. As the environment on land is different from that in submarine, it is necessary to evaluate the influence of the environmental loading, such as wave and tide, on the stability of navigation channel slope. In the present study, based on the observed results, the characteristics of the navigation channel slope are summarized, and the causes of creating the special slope shape are analyzed. The roles of waves and tides are evaluated, and failure mechanics are discussed to helq us predict what will happen in the future.

  18. Correlation of liquefaction resistance with shear wave velocity based on laboratory study using bender element

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-guo; CHEN Yun-min; KE Han

    2005-01-01

    Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, incorporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measurements. Although in the range of Vs1>200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.

  19. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  20. Parametric Study of Defect Detection in Pipes with Bend Using Guided Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Jack Tan Jin

    2016-01-01

    Full Text Available The propagation behaviour of guided ultrasonic waves in a steel pipe with welded bend is studied by finite element simulation. The effectiveness of the longitudinal L(0,2 and torsional T(0,1 guided waves in detecting circumferential cut near the weld is investigated. In order to identify the presence of the defect, the reflection strength due to the cut is studied. The geometry of the weld is constructed based on common V-bevel butt joints and the anisotropy of the 316L stainless steel weld is included to correctly predict the scattering of ultrasonic waves. The finite element model is built to allow high accuracy. Detection of small circumferential cut (up to 60° circumferential extent can be achieved with longitudinal L(0,2 mode. Detection of moderate to large circumferential cut can be achieved by torsional T(0,1 or longitudinal L(0,2 modes, with T(0,1 mode preferred due to its less mode conversion to higher order modes.