WorldWideScience

Sample records for berkelium

  1. Discovery of Isotopes of the Transuranium Elements with 93 <= Z <= 98

    CERN Document Server

    Fry, C

    2012-01-01

    One hundred and five isotopes of the transuranium elements neptunium, plutonium, americium, curium, berkelium and californium have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas

    2012-03-01

    This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

  3. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Phuoc [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State; Mcintyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  4. PROCEEDINGS OF THE SYMPOSIUM COMMEMORATING THE 25th ANNIVERSARY OF ELEMENTS 97 and 98 HELD ON JAN. 20, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.; Street Jr., Kenneth; Thompson, Stanley G.; Ghiorso, Albert

    1976-07-01

    This volume includes the talks given on January 20, 1975, at a symposium in Berkeley on the occasion of the celebration of the 25th anniversary of the discovery of berkelium and californium. Talks were given at this symposium by the four people involved in the discovery of these elements and by a number of people who have made significant contributions in the intervening years to the investigation of their nuclear and chemical properties. The papers are being published here, without editing, in the form in which they were submitted by the authors in the months following the anniversary symposium, and they reflect rather faithfully the remarks made on that occasion.

  5. Nuclear fission and the transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  6. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-09-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  7. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. [Lawrence Berkeley Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Chemistry; Smith, B.F. [Los Alamos National Lab., NM (United States)

    1991-11-01

    The first measurements of distribution coefficients (K{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}`s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}`s for these actinides are about a factor of 5 to 10 greater than the K{sub d}`s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}`s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand.

  8. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry); Smith, B.F. (Los Alamos National Lab., NM (United States))

    1991-11-01

    The first measurements of distribution coefficients (K{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}'s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}'s for these actinides are about a factor of 5 to 10 greater than the K{sub d}'s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}'s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand.

  9. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-Dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and Tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. [Lawrence Berkeley Lab., CA (United States); Smith, B.F. [Los Alamos National Lab., NM (United States)

    1992-07-01

    The first measurements of distribution coefficients (k{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}`s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}`s for these actinides are about about a factor of 10 greater than the K{sub d}`s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}`s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand. 9 refs., 2 figs., 1 tab.

  10. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  11. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  12. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A. [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  13. Transuranium Processing Plant semiannual report of production, status, and plans for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    King, L.J.; Bigelow, J.E.; Collins, E.D.

    1976-10-01

    Between July 1, 1975, and December 31, 1975, maintenance was conducted at TRU for a period of three months, 295 g of curium oxide (enough for approximately 26 HFIR targets) were prepared, 100 mg of high-purity /sup 248/Cm, were separated from /sup 252/Cf that had been purified during earlier periods, 11 HFIR targets were fabricated, and 28 product shipments were made. No changes were made in the chemical processing flowsheets normally used at TRU during this report period. However, three equipment racks were replaced (with two new racks) during this time. In Cubicle 6, the equipment replaced was that used to decontaminate the transplutonium elements from rare earth fission products and to separate curium from the heavier elements by means of the LiCl-based anion-exchange process. In Cubicle 5, the equipment used to separate the transcurium elements by high-pressure ion exchange and to purify berkelium by batch solvent extraction was replaced. Two neutron sources were fabricated, bringing the total fabricated to 79. One source that had been used in a completed project was returned to the TRU inventory and is available for reissue. Three sources, for which no further use was foreseen, were processed to isolate and recover the ingrown /sup 248/Cm and the residual /sup 252/Cf. Eight pellets, each containing 100 ..mu..g of high-purity /sup 248/Cm were prepared for irradiation in HFIR to study the production of /sup 250/Cm. The values currently being used for transuranium element decay data and for cross-section data in planning irradiation-processing cycles, calculating production forecasts, and assaying products are tabulated.

  14. Actinide Production in the Reaction of Heavy Ions withCurium-248

    Energy Technology Data Exchange (ETDEWEB)

    Moody, K.J.

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z = 91) to mendelevium (Z = 101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of {sup 248}Cm with {sup 18}O, {sup 86}Kr and {sup 136}Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from {sup 48}Ca and {sup 238}U bombardments of {sup 248}Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like {sup 136}Xe and {sup 238}U the new species {sup 248}Am, {sup 249}Am and {sup 247}Pu should be produced with large cross sections from a {sup 248}Cm target. A preliminary, unsuccessful attempt to isolate {sup 247}Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from {sup 251}Bk decay, necessary for calculating the {sup 251}Bk cross section, are also determined.

  15. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  16. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  17. Especially for High School Teachers

    Science.gov (United States)

    Howell, J. Emory

    2000-01-01

    Ideas and Resources in This Issue This issue contains a broad spectrum of topics of potential interest to high school teachers, including chemical safety, history, demonstrations, laboratory activities, electrochemistry, small group learning, and instructional software. In his report on articles published recently in The Science Teacher, Steve Long includes annotated references from that journal, and also from JCE, that provide timely and practical information (pp 21-22). The chemical significance of several anniversaries that will occur in the year 2000 are discussed in an article by Paul Schatz (pp 11-14). Scientists and inventors mentioned include Dumas, W√∂hler, Goodyear, Joliot-Curie, Krebs, Pauli, Kjeldahl, and Haworth. Several discoveries are also discussed, including development of the voltaic pile, the use of chlorine to purify water, and the discovery of element 97, berkelium. This is the fourth consecutive year that Schatz has written an anniversaries article (1-3). Although most readers probably do not plan to be teaching in the years 2097-3000, these articles can make a nice addition to your file of readily available historical information for use now in meeting NSES Content Standard G (4). In contrast to the short historical summaries, an in-depth account of the work of Herman Boerhaave is provided by Trinity School (NY) teacher Damon Diemente. You cannot recall having heard of Boerhaave? Diemente explains in detail how Boerhaave's scientific observations, imperfect though they were, contributed significantly to the understanding of temperature and heat by scientists who followed him. Chemical demonstrations attract the interest of most of us, and Kathy Thorsen discusses several that appeared in Chem 13 News during the past year (pp 18-20). Included are demonstrations relating to LeCh√Ętelier's principle, electronegativity, and the synthesis and reactions of carbon monoxide. Ideas for investigating the hydrophobic nature of Magic Sand are given in JCE