WorldWideScience

Sample records for berkelium phosphides

  1. New berkelium isotope: 242Bk

    International Nuclear Information System (INIS)

    A new isotope of berkelium, 242Bk, was produced with a cross section of approx. 10 μb in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7 +- 1.3 minutes. The branching ratio for this isotope for alpha decay is less than 1% and that for spontaneous fission is less than 0.03%. 2 figures, 2 tables

  2. Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state.

    Science.gov (United States)

    Silver, Mark A; Cary, Samantha K; Johnson, Jason A; Baumbach, Ryan E; Arico, Alexandra A; Luckey, Morgan; Urban, Matthew; Wang, Jamie C; Polinski, Matthew J; Chemey, Alexander; Liu, Guokui; Chen, Kuan-Wen; Van Cleve, Shelley M; Marsh, Matthew L; Eaton, Teresa M; van de Burgt, Lambertus J; Gray, Ashley L; Hobart, David E; Hanson, Kenneth; Maron, Laurent; Gendron, Frédéric; Autschbach, Jochen; Speldrich, Manfred; Kögerler, Paul; Yang, Ping; Braley, Jenifer; Albrecht-Schmitt, Thomas E

    2016-08-26

    Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f(7) configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium's only available isotope, (249)Bk, has hindered in-depth studies of the element's coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison. We demonstrate that berkelium's complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium's multiconfigurational ground state. PMID:27563098

  3. Fatal aluminium phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Meena Mahesh Chand

    2015-06-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law.

  4. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  5. Gold phosphide complexes

    OpenAIRE

    2007-01-01

    The vast majority of gold complexes with five group-element donor ligands contain tertiary phosphines, although compounds with amine, arsine or stibine ligands are also known. Although phosphide ligands, which are formed by deprotonation of non-tertiary phosphines, are closely related to the former, they have been employed to a lesser extent, mainly due to their lower stability. Thus, the chemistry of phosphido-bridged derivatives of the main group elements1-3 or transition metals4-6 has been...

  6. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  7. Phosphide poisoning: a review of literature.

    Science.gov (United States)

    Bumbrah, Gurvinder Singh; Krishan, Kewal; Kanchan, Tanuj; Sharma, Madhulika; Sodhi, Gurvinder Singh

    2012-01-10

    Metal phosphides in general and aluminium phosphide in particular are potent insecticides and rodenticides. These are commercially used for protection of crops during storage, as well as during transportation. However, these are highly toxic substances. Their detrimental effects may range from nausea and headache to renal failure and death. It is, therefore, pertinent to ensure their circumspect handling to avoid poisoning episodes. Its poisoning has a high mortality and recent years have seen an increase in the number of poisoning cases and deaths caused by suicidal ingestion. Yet due to their broad spectrum applications, these chemicals cannot be written off. The present communication reviews the various aspects of toxicity associated with metal phosphides.

  8. Can Ni phosphides become viable hydroprocessing catalysts?

    Energy Technology Data Exchange (ETDEWEB)

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  9. A successful management of aluminum phosphide intoxication

    OpenAIRE

    Moazezi, Zoleika; Abedi, Seyed Hassan

    2011-01-01

    Background: Aluminum Phosphide or rice tablet is one of the most common pesticides which leads to accidental or intentional acute intoxication and finally death. In this paper, we describe a successful management of intoxication with rice tablet in a young girl.

  10. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    NARCIS (Netherlands)

    Assali, S.; Zardo, I.; Plissard, S.; Kriegner, D.; Verheijen, M.A.; Bauer, G.; Meijerink, A.; Belabbes, A.; Bechstedt, F.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a di

  11. Comment on " An update on toxicology of aluminum phosphide "

    Directory of Open Access Journals (Sweden)

    Omid Mehrpour

    2012-10-01

    Full Text Available I read with interest the recent published article by Dr Moghadamnia titled "An update on toxicology of aluminum phosphide". Since aluminum phosphide (AlP poisoning is an important medical concern in Iran, I have had the opportunities to work and publish many papers in this regard. I would like to comment on that paper.

  12. Microwave-assisted synthesis of transition metal phosphide

    Science.gov (United States)

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  13. Synthesis, characterization and properties of hollow nickel phosphide nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ni Yonghong; Tao Ali; Hu Guangzhi; Cao Xiaofeng; Wei Xianwen; Yang Zhousheng [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China)

    2006-10-14

    Nickel phosphide (Ni{sub 12}P{sub 5}) hollow nanospheres with a mean diameter of 100 nm and a shell thickness of 15-20 nm have been successfully prepared by a hydrothermal-microemulsion route, using NaH{sub 2}PO{sub 2} as a phosphorus source. XRD, EDS (HR)TEM, SEM and the SAED pattern were used to characterize the final product. Experiments showed that the as-prepared nickel phosphide hollow nanospheres could selectively catalytically degrade some organic dyes such as methyl red and Safranine T under 254 nm UV light irradiation. At the same time, the nickel phosphide hollow nanospheres showed a stronger ability to promote electron transfer between the glass-carbon electrode and adrenalin than nickel phosphide honeycomb-like particles prepared by a simple hydrothermal route. A possible formation process for nickel phosphide hollow nanospheres was suggested based on the experimental results.

  14. Chemical vapour deposition of metal oxides and phosphides.

    OpenAIRE

    Binions, R.

    2006-01-01

    This thesis investigates the deposition of thin films of main group metal phosphide and main group metal oxide compounds on glass substrates by the use of dual source atmospheric pressure chemical vapour deposition. Binary phosphide systems with tin, germanium, silicon, antimony, copper or boron have been examined. Binary oxide systems of gallium, antimony, tin or niobium have also been investigated. Additionally these systems were deposited on gas sensor substrates and evaluated as metal oxi...

  15. Modeling of Etching Nano-surfaces of Indium Phosphide

    Directory of Open Access Journals (Sweden)

    S.L. Khrypko

    2015-03-01

    Full Text Available This paper describes a mechanism for obtaining a regular porous structure InP, which is to use the method of photoelectrochemical etching. Through the use of simulation etching at the nanoscale, it is possible to get a regular uniform grid of nanopores on the surface of indium phosphide, which allows us to understand the mechanisms and the establishment of technological regimes anodic structures indium phosphide to produce a variety of devices.

  16. A Clinical Study of aluminium Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    S.K. Gupta,Annil Mahajan,Ajay Gupta

    2002-04-01

    Full Text Available Thc present prospectiYe study 01'56 cases ofAlwniniwn Phosphide (ALP poisoning in Gov!. MedicalCollcge Hospital Jammu. found out the prevalence of Deliberate self-poisoning self (DSP andaccidental ingestion in young population in age group of 16-30 years. Male-female ratio ",as 1.03: 1.00;ha' ing marital discord and family quarrels as prominent predisposing factors. The majority of patientshad gastrointestinal (GIT symptoms (73.2%, cardiac arrthymias (62.5% and shock (53.3%. Thccommoncst clectrocardiographic (ECG abnormalities were tachycardia (96%, atrial fibrillation(58% and venticular-ectopic (VE beats (59%. The management was supportive in the fonn ofstomach wash, intra"enous (IN fluids. dopamine, hydrocortisone, sodabicarbonate and assisted"entilation in intensiYe care unit (lCU setting

  17. Successful management of zinc phosphide poisoning.

    Science.gov (United States)

    Shakoori, Vahid; Agahi, Mahsa; Vasheghani-Farahani, Maryam; Marashi, Sayed Mahdi

    2016-06-01

    Zinc phosphide (Zn2P3) rodenticide, is generally misused intentionally for suicidal purpose in Iran. For many years, scientists believe that liberation of phosphine (PH3) on contact with acidic content of the stomach is responsible for clinical presentations. However, relatively long time interval between ingestion of Zn2P3 and presentation of its systemic toxicity, and progression of acute liver failure could not be explained by the current opinion. Hence, an innovative theory intended that phosphonium, as an intermediate product will create and pass through the stomach, which then will reduce to produce PH3in the luminal tract. Here, we present a case of massive Zn2P3 poisoning. In our case, we used repeated doses of castor oil to induce bowel movement with an aim of removing unabsorbed toxin, which was proved by radiography. Interestingly, the patient presents only mild symptoms of toxicity such as transient metabolic acidosis and hepatic dysfunction. PMID:27390464

  18. Cavity optomechanics in gallium phosphide microdisks

    CERN Document Server

    Mitchell, Matthew; Barclay, Paul E

    2013-01-01

    Gallium phosphide microdisk optical microcavities with intrinsic quality factors > 280,000 and mode volumes < (10 lambda/n)^3 are demonstrated, and their nonlinear and optomechanical properties are studied. For optical intensities up to 350,000 intracavity photons, optical loss within the microcavity is observed to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two photon absorption is not significant. Optomechanical coupling between several mechanical resonances and the optical modes of the microdisk is observed, and an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g_0~80 kHz is measured for the 488 MHz mechanical fundamental radial breathing mode.

  19. An Update on Toxicology of Aluminum Phosphide

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moghhadamnia

    2012-09-01

    Full Text Available Aluminum phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the "rice tablet". AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposes and also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC, glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  20. An update on toxicology of aluminum phosphide

    Directory of Open Access Journals (Sweden)

    Moghadamnia Ali

    2012-09-01

    Full Text Available Abstract Aluminum phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the “rice tablet”. AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC, glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  1. Fabrication challenges for indium phosphide microsystems

    International Nuclear Information System (INIS)

    From the inception of III–V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device. (topical review)

  2. Fabrication challenges for indium phosphide microsystems

    Science.gov (United States)

    Siwak, N. P.; Fan, X. Z.; Ghodssi, R.

    2015-04-01

    From the inception of III-V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device.

  3. Acute aluminium phosphide poisoning, what is new?

    Directory of Open Access Journals (Sweden)

    Yatendra Singh

    2014-01-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide that is commonly used for grain preservation. AlP has currently generated interest with increasing number of cases in the past four decades because of its increased use for agricultural and nonagricultural purposes, and also its easy availability in the markets has led to its increased misuse to commit suicide. Ingestion is usually suicidal in intent, uncommonly accidental and rarely homicidal. The poison affects all systems, shock, cardiac arrhythmias with varied ECG changes and gastrointestinal features being the most prominent. Diagnosis is made on the basis of clinical suspicion, a positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination of coconut oil and sodium bicarbonate, administration of charcoal and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Unfortunately, the lack of a specific antidote Results in very high mortality and the key to treatment lies in rapid decontamination and institution of resuscitative measures. This article aims to identify the salient features and mechanism of AlP poisoning along with its management strategies and prognostic variables.

  4. A Suicide Attempt Using Zinc Phosphide (A Case Study

    Directory of Open Access Journals (Sweden)

    Aysenur Sumer Coskun

    2013-10-01

    Full Text Available Zinc phosphide is a toxin that is added to wheat for use in rodent control and is the active ingredient of rodenticide. A 17 year-old male attempted suicide by drinking pesticide [Zinc PHOSPHIDE (Zn3P2] and was subsequently admitted to the emergency department: the patient’s general condition was poor, he was unconscious and vomiting, the skin had a garlic odor and advanced acidosis was present. The patient was treated symptomatically, followed by mechanical ventilation, and was transferred to a psychiatric clinic on the fifth day.

  5. Carbon phosphide monolayers with superior carrier mobility

    Science.gov (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  6. Manganese phosphide thin films and nanorods grown on gallium phosphide and on glass substrates

    Science.gov (United States)

    Nateghi, N.; Lambert-Milot, S.; Ménard, D.; Masut, R. A.

    2016-05-01

    We report a simple and fast route to grow ferromagnetic manganese phosphide polycrystalline films and nanorods on GaP and on glass substrates using metalorganic vapor phase deposition. Increasing the growth temperature (≥600 °C) and growth time (≥30 min) results in nucleation of secondary MnP crystals on the primary grains. The secondary crystals grow faster along a specific direction of orthorhombic MnP (c-axis) and form long rods (up to ~10 μm) whose diameters are in the nanoscale (20-100 nm). The nanorods can be easily detached from the glass substrate. The films exhibit ferromagnetic behavior with a range of transition temperatures, depending on the growth conditions.

  7. Successful outcome in managing of aluminum phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Samad Shams Vahdati

    2015-06-01

    Full Text Available Aluminum phosphide (ALP is a potent lethal substance, that use for agriculture purpose, as a pesticide. this substance may use for suicide, and it will kill the patient rapidly. we want to report a patient who use ALP for suicide purpose and was managed quickly in the emergency department and he became alive.

  8. Optical properties of strained wurtzite gallium phosphide nanowires

    NARCIS (Netherlands)

    Greil, J.; Assali, S.; Isono, Y.; Belabbes, A.; Bechstedt, F.; Valega MacKenzie, F.O.; Silov, A.Yu.; Bakkers, E.P.A.M.; Haverkort, J.E.M.

    2016-01-01

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet cle

  9. Responses of Siberian ferrets to secondary zinc phosphide poisoning

    Science.gov (United States)

    Hill, E.F.; Carpenter, J.W.

    1982-01-01

    The hazard of operational-type applications of zinc phosphide (Zn3P2) on a species closely related to the black-footed ferret (Mustela nigripes), was evaluated by feeding 16 Siberian ferrets (M. eversmanni) rats that had been killed by consumption of 2% zinc phosphide treated bait or by an oral dose of 40, 80, or 160 mg of Zn3P2. All ferrets accepted rats and a single emesis by each of 3 ferrets was the only evidence of acute intoxication. All ferrets learned to avoid eating gastrointestinal tracts of the rats. Subacute zinc phosphide toxicity in the ferrets was indicated by significant decreases (18-48%) in hemoglobin, increases of 35-91 % in serum iron, and elevated levels of serum globulin, cholesterol, and triglycerides. Hemoglobin/iron, urea nitrogen/creatinine, and albumin/globulin ratios also were altered by the treatments. This study demonstrated that Siberian ferrets, or other species with a sensitive emetic reflex, are afforded a degree of protection from acute zinc phosphide poisoning due to its emetic action. The importance of toxicity associated with possible respiratory, liver, and kidney damage indicated by altered blood chemistries is not known.

  10. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    Science.gov (United States)

    Bosco, Jeffrey Paul

    The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an ``earth-abundant'' solar absorber, we find zinc phosphide (α-Zn 3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>10. 4cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P 2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn 3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P 2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found. The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P 2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are

  11. Acute Anterolateral Myocardial Infarction Due to Aluminum Phosphide Poisoning

    OpenAIRE

    Bita Dadpour; Zohre Oghabian

    2013-01-01

    Aluminum phosphide (AlP) is a highly effective rodenticide which is used as a suicide poison. Herein, a 24 year-old man who’d intentionally ingested about 1liter of alcohol and one tablet of AlP is reported. Acute myocardial infarction due to AlP poisoning has been occurred secondary to AIP poisoning. Cardiovascular complications are poor prognostic factors in AlP poisoning

  12. Acute Anterolateral Myocardial Infarction Due to Aluminum Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Bita Dadpour

    2013-08-01

    Full Text Available Aluminum phosphide (AlP is a highly effective rodenticide which is used as a suicide poison. Herein, a 24 year-old man who’d intentionally ingested about 1liter of alcohol and one tablet of AlP is reported. Acute myocardial infarction due to AlP poisoning has been occurred secondary to AIP poisoning. Cardiovascular complications are poor prognostic factors in AlP poisoning

  13. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    Science.gov (United States)

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.

  14. Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined.The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feed-stock.The TiO2,γ-Al2O3 supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni (3%-5%),Co (5%-7%) and V (1%-3%) could increase dispersivity of the W species and the BET surface area of the WP/γ-Al2O3 catalyst.The WP/γ-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/γ-Al2O3 catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/γ-Al2O3 catalyst.In general,a support or promoter in the WP/γ-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.

  15. Gallium Phosphide as a material for visible and infrared optics

    Directory of Open Access Journals (Sweden)

    Václavík J.

    2013-05-01

    Full Text Available Gallium phosphide is interesting material for optical system working in both visible and MWIR or LWIR spectral ranges. Number of a material available for these applications is limited. They are typically salts, fluorides or sulphides and usually exhibit unfavorable properties like brittleness; softness; solubility in water and small chemical resistance. Although GaP has do not offer best optical parameters excels over most other material in mechanical and chemical resistance. The article describes its most important characteristics and outlines some applications where GaP should prove useful.

  16. Novel, High Activity Hydroprocessing Catalysts: Iron Group Phosphides

    OpenAIRE

    Wang, Xianqin

    2002-01-01

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and Ni2P, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts...

  17. Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars

    OpenAIRE

    Tu, Bor-An Clayton

    2013-01-01

    This thesis presents a new strategy to fabricate nanostructured indium phosphide and cadmium sulfide photovoltaics. The cells are formed by chemical bath deposition (electroless deposition) of cadmium sulfide onto indium phosphide nanopillar arrays grown by selective-area metalorganic chemical vapor deposition. Characterizations through electrical and optical measurements show that the devices consisting of p-InP core and CdS shell have a conversion efficiency, open circuit voltage, short cir...

  18. Aluminum Phosphide; the Most Fatal Rodenticide and Fungicide

    International Nuclear Information System (INIS)

    Introduction: Aluminum phosphide (AP) is a fumigate agent, which is also used to control rodents and pests in grain storage facilities. This agent is commonly used in low income and agricultural communities. AP is easily available, cheap and highly toxic. Ingestion of even half a fresh tablet invariably results in death. Its suicidal or accidental poisoning is a medical emergency, while in some low income countries it reaches to more than two third of poisoning deaths. Methods: PubMed was systematically searched (December 2006) for articles related to aluminium phosphide poisoning. 24 articles were finally included. Mechanism of action; AP on exposure to moisture, liberates highly toxic gas, phosphine. In animal and human models AP rapidly inhibits cytochrome-c oxidase leading to inhibition of mitochondrial oxidative phosphorylation and inhibits mitochondrial respiration and has cytotoxic action. Clinical Findings: Initial findings of intoxication may be nonspecific and transient. The symptoms may resolve within several hours after removal from exposure. It, however, produces phosphine gas, which is a mitochondrial poison. Its manufacturing and application pose risks of inhalation of phosphine. CNS; GCS is fine at the beginning. Biochemistry; Metabolic acidosis and liver dysfunction are reported. Shock is frequent. Respiratory Tract; Acute dyspnoea, hypotension, bradycardia and other signs of intoxication were also stated. Gastrointestinal; Reported short-segment esophageal strictures in the upper and mid esophagus, successfully managed by endoscopic dilatation. In sub-chronic use, degenerative changes in liver, heart and kidney of rabbits are reported. Cardiovascular; The ECG abnormalities are common and include hypotension, bradycardia, ST-T changes, Supraventricular tachycardia, ventricular ectopics, life threatening ventricular tachycardia, ventricular fibrillation, atrial flutter/fibrillation, variable degrees of heart block and toxic myocarditis. Haematologic

  19. Detection of Aluminium Phosphide and Zinc Phosphide by X-Ray Diffraction%X射线衍射法检测磷化铝磷化锌

    Institute of Scientific and Technical Information of China (English)

    马健; 王力春; 郭东东; 罗敬锋; 张忠

    2011-01-01

    Aluminium phosphide and zinc phosphide are detected by X-ray diffractometer and the powder of aluminium phoshphide and zinc phosphide is analyzed.Compared with traditional methods,the x-ray diffraction method has many advantages such as simplicity,high precision and reliability and is one of several nondestructive analysis techniques.%用X射线衍射仪检测磷化铝和磷化锌,并对磷化铝和磷化锌粉末进行分析,发现较之传统检测方法,其结果更可靠,操作更简便,且能得到样品的某些晶体参数,是仅有的几个无损分析技术之一。

  20. Zinc phosphide intoxication of wild turkeys (Meleagris gallopavo).

    Science.gov (United States)

    Poppenga, Robert H; Ziegler, Andre F; Habecker, Perry L; Singletary, Don L; Walter, Mark K; Miller, Paul G

    2005-01-01

    Zinc phosphide (Zn3P2) is a rodenticide used to control a variety of small mammal species. It is available over-the-counter or as a restricted-use pesticide depending on how it is to be applied. The toxicity of Zn3P2 is dependent on the species exposed, whether the animal is able to vomit or not, and whether it is ingested on a full or empty stomach. Nontarget species can be exposed through inadvertent or intentional product misapplication. In this article we describe four mortality events in which wild turkeys (Meleagris gallopavo) were believed to have been intoxicated following the ingestion of baits containing Zn3P2.

  1. Band structures in silicene on monolayer gallium phosphide substrate

    Science.gov (United States)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  2. Nanoimprinted DWDM laser arrays on indium phosphide substrates

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Nørregaard, Jesper; Mironov, Andrej;

    2014-01-01

    Dense wavelength division multiplexing lasers play a major role in today's long-haul broadband communication. Typical distributed feedback laser cavities consist of long half-pitch gratings in InGaAsP on InP substrates with grating periods of around 240 nm. The lasers include a quarter wavelength...... shift in the grating, and are single mode with high side-mode suppression. Typically, such lasers are patterned using e-beam lithography (EBL). We present a fabrication method based on patterning by thermal nanoimprint lithography, which is potentially less costly and faster than EBL. Thermal...... nanoimprint lithography of laser gratings raises two types of challenges: (1) The imprint process itself is delicate due to the mechanical fragility of indium phosphide substrates and the thermal mismatch between the substrate and the silicon stamp. (2) The subsequent processing puts requirements on the...

  3. Indium Phosphide-Based Semiconductor Nanocrystals and Their Applications

    Directory of Open Access Journals (Sweden)

    Paul Mushonga

    2012-01-01

    Full Text Available Semiconductor nanocrystals or quantum dots (QDs are nanometer-sized fluorescent materials with optical properties that can be fine-tuned by varying the core size or growing a shell around the core. They have recently found wide use in the biological field which has further enhanced their importance. This review focuses on the synthesis of indium phosphide (InP colloidal semiconductor nanocrystals. The two synthetic techniques, namely, the hot-injection and heating-up methods are discussed. Different types of the InP-based QDs involving their use as core, core/shell, alloyed, and doped systems are reviewed. The use of inorganic shells for surface passivation is also highlighted. The paper is concluded by some highlights of the applications of these systems in biological studies.

  4. AC surface photovoltage of indium phosphide nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J.; Kobayashi, Nobuhiko P. [California Univ., Santa Cruz, CA (United States). Baskin School of Engineering; California Univ., Santa Cruz, CA (US). Nanostructured Energy Conversion Technology and Research (NECTAR); NASA Ames Research Center, Moffett Field, CA (United States). Advanced Studies Laboratories

    2012-06-15

    Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5-14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. (orig.)

  5. Optical properties of indium phosphide nanowire ensembles at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J; Onishi, Takehiro; Kobayashi, Nobuhiko P [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz-NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2010-09-03

    Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.

  6. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    Science.gov (United States)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  7. Synthesis and catalytic activity of the metastable phase of gold phosphide

    Science.gov (United States)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.; Alia, Shaun M.; Pivovar, Bryan S.; Vasquez, Yolanda

    2016-10-01

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.

  8. Synthesis and Catalytic Activity of the Metastable Phase of Gold Phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.; Alia, Shaun M.; Pivovar, Bryan S.; Vasquez, Yolanda

    2016-10-01

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.

  9. THE STUDY OF MOLYBDENUM PHOSPHIDE AS CATALYST FOR SIMULTANEOUS HDN,HDS AND HDY

    Institute of Scientific and Technical Information of China (English)

    ZHAOTian-bo; LIFeng-yan; SUNGui-da; LICui-qing

    2003-01-01

    Transition-metal molybdenum phosphides were prepared by direct reduction of an amorphous phosphate precursor in hydrogen at relatively low temperature(650℃).XRD(X-ray diffraction analysis)measurements showed that pure molybdenum phosphide formed after the reduction with H2.The reactivity was determined in a continuous-flow microreactor at a H2 pressure of 3.0 MPa.A sample of prepared molybdenum phosphide catalyst diluted with γ-Al2O3(20% phosphate precursor)was used for simultaneuous HDN(Hydrodenitrogenation),HDS (Hydrodesulfurization and HDY)Hydrogenation of aromatics).The influences of space velocity,flow rate of hydrogen,reaction time and temperature on hydrotreating performance were studied.Pyridine,thiophene and cyclohexene were used as model compunds,their contents were respectively 5%,5% and 20%,Cyclohexane was used as the solvent.

  10. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  11. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires

    KAUST Repository

    Greil, J.

    2016-06-08

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material.

  12. V18P9C2. A complex phosphide carbide

    International Nuclear Information System (INIS)

    V18P9C2 crystallizes in the orthorhombic space group Pmma with the lattice parameters a = 17.044(3), b = 3.2219(7), and c = 13.030(2) Aa, Z = 2. The crystal structure is composed of 19 symmetry-independent atoms. The crystal structure is considered as a network formed by the transition metal atoms exhibiting cubic, trigonal prismatic, and octahedral voids centered by V, P, and C atoms, respectively. Vice versa, the V and P atoms form a three-dimensional network. The two CV6 octahedra are edge- and corner-connected to chains running parallel to [010]. The five unique P atoms are trigonal prismatically coordinated by V atoms with one to three faces capped again by a V atom. The V atoms have mainly cubic environments formed solely by V or by V and P atoms. V18P9C2 exhibits some structural relations to other compounds of the ternary system V-P-C as well as to other intermetallic phases. Despite the low carbon content, V18P9C2 is considered as a ternary compound rather than an interstitially stabilized (binary) phosphide in view of its special structural features.

  13. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires.

    Science.gov (United States)

    Greil, J; Assali, S; Isono, Y; Belabbes, A; Bechstedt, F; Valega Mackenzie, F O; Silov, A Yu; Bakkers, E P A M; Haverkort, J E M

    2016-06-01

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material. PMID:27175743

  14. Severe myocardial depression in a patient with aluminium phosphide poisoning: A clinical, electrocardiographical and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Shah Viral

    2009-01-01

    Full Text Available Aluminium phosphide poisoning is very common in India. It is one of the most fatal poisons. The clinical spectrum of poisoning varies depending upon the dosage and duration of consumption. The main effect of the poison is due to the release of phosphine which inhibits cytochrome oxidase and thereby hampers cellular oxygen utilization. Almost any organ can be affected by aluminium phosphide poisoning. We report a case where the heart was the predominantly affected organ. We describe the clinical symptoms and signs and their correlation with electrocardiographic and histopathological examinations.

  15. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    Science.gov (United States)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  16. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution.

    Science.gov (United States)

    Read, Carlos G; Callejas, Juan F; Holder, Cameron F; Schaak, Raymond E

    2016-05-25

    Transition metal phosphides recently have been identified as promising Earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Here, we present a general and scalable strategy for the synthesis of transition metal phosphide electrodes based on the reaction of commercially available metal foils (Fe, Co, Ni, Cu, and NiFe) with various organophosphine reagents. The resulting phosphide electrodes were found to exhibit excellent electrocatalytic HER and OER performance. The most active electrodes required overpotentials of only -128 mV for the HER in acid (Ni2P), -183 mV for the HER in base (Ni2P), and 277 mV for the OER in base (NiFeP) to produce operationally relevant current densities of 10 mA cm(-2). Such HER and OER performance compares favorably with samples prepared using significantly more elaborate and costly procedures. Furthermore, we demonstrate that the approach can also be utilized to obtain highly active and conformal metal phosphide coatings on photocathode materials, such as highly doped Si, that are relevant to solar fuels production. PMID:27156388

  17. Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution.

    Science.gov (United States)

    Xiong, Dehua; Wang, Xiaoguang; Li, Wei; Liu, Lifeng

    2016-07-01

    Iron phosphide (FeP) nanorods have been fabricated by a facile hydrothermal synthesis of iron oxyhydroxide precursors, followed by a convenient phosphorization process. The FeP nanorods dispersed on carbon fiber paper current collectors exhibit outstanding catalytic activity and excellent long-term stability toward the oxygen evolution reaction (OER). PMID:27333123

  18. Quantum dot infrared photodetectors based on indium phosphide

    International Nuclear Information System (INIS)

    The subject of this work is a systematic study of quantum dot infrared photodetectors based on indium-phosphide substrate by means of various spectroscopic and electronic measurement methods in order to understand the physical and technological processes. This enables a concise definition of strategies in order to realize next generation devices in this material system and to gain overall progress in the research field of quantum dot infrared photodetectors. The interpretation of the experimental results is supported by analytical and numerical simulations. The samples, grown by collaboration partners, were characterized using differential transmission and fast Fourier transform infrared spectroscopy, with a special emphasis on the latter one. Therefore, samples both in wedged waveguide geometry and samples with gold coated mesa structures have been processed. A large part of the discussion is dedicated to the current voltage characteristic of the devices, due to its large importance for device optimization, i.e. the reduction of the dark current plays a crucial role in the research field of high temperature infrared photon-detection. Further, results of photoluminescence measurements, performed by collaboration partners, have been used in order to attain a more complete picture of the samples' electronic band structure and in order to obtain complementary information with respect to other measurement methods applied within the experimental work and the simulation of the structures. In agreement to the simulations, a photocurrent response was observed at 6 and at 12 μm up to a temperature of 80 K, depending on the samples' design. The principle of parameter scaling was applied to the samples, in order to assign physical effects either to details in the samples' design or to technological quality aspects, i.e. the doping level and the thickness of the capping layer was varied. In addition to that a quantum well was introduced within a series of samples in order to

  19. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    Science.gov (United States)

    Lobisser, Evan

    Indium phosphide heterojunction bipolar transistors are able to achieve higher bandwidths at a given feature size than transistors in the Silicon material system for a given feature size. Indium phosphide bipolar transistors demonstrate higher breakdown voltages at a given bandwidth than both Si bipolars and field effect transistors in the InP material system. The high bandwidth of InP HBTs results from both intrinsic material parameters and bandgap engineering through epitaxial growth. The electron mobility in the InGaAs base and saturation velocity in the InP collector are both approximately three times higher than their counterparts in the SiGe material system. Resistance of the base can be made very low due to the large offset in the valence band between the InP emitter and the InGaAs base, which allows the base to be doped on the order of 1020 cm-3 with negligible reduction in emitter injection efficiency. This thesis deals with type-I, NPN dual-heterojunction bipolar transistors. The emitters are InP, and the base is InGaAs. There is a thin (˜ 10 nm) n-type InGaAs "setback" region, followed by a chirped superlattice InGaAs/InAlAs grade to the InP collector. The setback, grade, and collector are all lightly doped n-type. The emitter and collector are contacted through thin (˜ 5 nm) heavily doped n-type InGaAs layers to reduce contact resistivity. The primary focus of this work is increasing the bandwidth of InP HBTs through the proportional scaling of the device dimensions, both layer thicknesses and junction areas, as well as the reduction of the contact resistivities associated with the transistor. Essentially, all RC time constants and transit times must be reduced by a factor of two to double a transistor's bandwidth. Chapter 2 describes in detail the scaling laws and design principles for high frequency bipolar transistor design. A low-stress, blanket sputter deposited composite emitter metal process was developed. Refractory metal base contacts were

  20. Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J.; Wrobel, J.M.; Brzezinka, K.-W.; Esser, N.; Kautek, W

    2002-12-30

    Surface modification and ablation of crystalline indium phosphide was performed with single and double 130 fs pulses from a Ti:sapphire laser. The morphological features resulting from laser processing, have been investigated by means of micro Raman spectroscopy as well as by optical, atomic force and scanning electron microscopy. The studies indicate amorphous, ablated and recrystallized zones on the processed surface. In the single-pulse irradiation experimentsveral different threshold fluences could be assigned to the processes of melting, ablation and polycrystalline resolidification. Residual stress has been detected within the irradiated areas. Double-pulse exposure experiments have been analyzed in order to clarify the effect of cumulative damage in the ablation process of indium phosphide.

  1. Hepatotoxicity due to zinc phosphide poisoning in two patients: role of N-acetylcysteine.

    Science.gov (United States)

    Oghabian, Zohreh; Afshar, Arefeh; Rahimi, Hamid Reza

    2016-08-01

    Zinc phosphide (Zn3P2/ZnP) is used as a rodenticide. The most common signs of toxicity are nausea, vomiting, hypotension, and metabolic acidosis; patients presenting such signs are referred to the emergency department (ED) of the hospitals. Therefore, this study aimed to report two cases of hepatotoxicity following accidental and intentional ZnP poisoning and successful management with N-acetylcysteine (NAC). PMID:27525081

  2. Phosphide residue exposure as the cause of serum vitamin depletion in female Wistar rats

    Directory of Open Access Journals (Sweden)

    Ayobola Abolape Iyanda

    2013-04-01

    Full Text Available Background: Synthetic chemical preservatives have received much negative publicity in recent time, some of which include insect resistance and misapplication of fumigants as well as a myriad of clinical conditions that have been associated with grain consumption. Aluminum phosphide is widely employed for the fumigation of grains meant for both international and local markets. Although its manufacturers have discouraged contamination of grains with spent or unspent phosphide residue, contamination still does occur especially among many illiterate cowpea merchants. The objective of this study is to determine the impact of phosphide residue contaminated cowpea on serum vitamin levels. Methods: Female Wistar rats were divided into 3 experimental groups with each group consisting of 6 rats. They were fed unfumigated (control, fumigated-contaminated (group 1 and fumigated but uncontaminated (group 2 cowpea. Results: Vitamin analysis using high performance liquid chromatography technique showed significant differences in the levels of niacin, folic acid, thiamine, riboflavin, and vitamins A, C, D and E; but pantothenic acid and pyridoxine were not significantly different in group 1 rats compared with control. Moreover, compared with control none of the vitamins were significantly different in rats in group 2. Conclusion: Cowpea is a source of many vitamins among the teeming poor in many part of the developing world; therefore there is need to ensure its proper fumigation. The results of this study suggest that although proper phosphide fumigation of cowpea may not alter serum vitamin levels but improper handling of the fumigation process may result in vitamin depletion. [J Exp Integr Med 2013; 3(2.000: 159-163

  3. Plain abdominal radiography: A powerful tool to prognosticate outcome in patients with zinc phosphide poisoning

    International Nuclear Information System (INIS)

    Aim: To evaluate the clinical features of zinc phosphide poisoning and to investigate whether outcome could be prognosticated based on abdominal radiography on presentation. Materials and methods: All zinc phosphide-poisoned patients who were referred to Loghman-Hakim Hospital between March 2011 and September 2013 were retrospectively reviewed. Data regarding patients' demographic characteristics, characteristics of the poisoning, abdominal radiography results, and patients' outcome were recorded. Results: In 102 patients, the most common presenting signs/symptoms were nausea and vomiting (60%). Four patients died and another seven had developed complications during their hospitalization (metabolic acidosis, liver abnormalities, or acute renal failure). Nineteen patients had radio-opaque abdominal radiographs, nine of whom had died or developed complications (p = 0.001). Plain abdominal radiography had a sensitivity and specificity of 81% and 89% in predicting the patients' death or further development of complications. The positive and negative predictive values were 47% and 97%, respectively. Conclusion: Plain abdominal radiography is a very good tool for prognostication in patients with zinc phosphide poisoning. Immediate abdominal radiography can help stratify patients into high- or low-risk groups and determine treatment strategies. - Highlights: • ZP poisoning may cause severe symptoms or death although less frequent compared to ALP. • ZP-poisoned patients may deteriorate within the first 72 hours post-ingestion. • Abdominal radiography is a good tool to predict death/complications in these patients

  4. Acetaminophen and zinc phosphide for lethal management of invasive lizards Ctenosaura similis

    Institute of Scientific and Technical Information of China (English)

    Michael L. AVERY; John D. EISEMANN; Kandy L. KEACHER; Peter J. SAVARIE

    2011-01-01

    Reducing populations of invasive lizards through trapping and shooting is feasible in many cases but effective integrated management relies on a variety of tools,including toxicants.In Florida,using wild-caught non-native black spiny-tailed iguanas Ctenosaura similis,we screened acetaminophen and zinc phosphide to determine their suitability for effective population management of this prolific invasive species.Of the animals that received acetaminophen,none died except at the highest test dose,240 mg per lizard,which is not practical for field use.Zinc phosphide produced 100% mortality at dose levels as little as 25 mg per lizard,equivalent to about 0.5% in bait which is lower than currently used in commercial baits for eommensal rodent control.We conclude that zinc phosphide has potential as a useful tool for reducing populations of invasive lizards such as the black spiny-tailed iguana provided target-selective delivery methods are developed [Current Zoology 57 (5):625-629,2011].

  5. Field evaluation of phostoxin and zinc phosphide for the control of zoonotic cutaneous leishmaniasis in a hyperendemic area, central Iran

    Directory of Open Access Journals (Sweden)

    A.A. Akhavan

    2014-12-01

    Full Text Available Background & objectives: ZCL is a growing threat in many rural areas of Iran which involves 17 out of 31 provinces. This study was conducted from April to November 2011 for evaluation of the efficacy of phostoxin and zinc phosphide against rodents. Methods: Rodent control operations were carried out using phostoxin and zinc phosphide. To evaluate the effect of rodent control operation on the main vector density, an entomological survey was carried out. The effects of the operation on the disease incidence were also evaluated. Results: After intervention, the reduction rate of rodent burrows was 32.68% in the village treated with phostoxin and 58.14% in the village treated with zinc phosphide. The number of rodent holes in the control area showed 6.66-fold increase at the end of the study. The incidence of the disease decreased to 19.23 and 11.40 in areas treated with phostoxin and zinc phosphide, respectively. A total of 4243 adult sandflies were collected and identified. The most common and dominant species was Phlebotomus papatasi. In the village treated with phostoxin, the density of P. papatasi in outdoors was lower than indoors. Nevertheless, the density of P. papatasi in the village treated with zinc phosphide was higher in outdoors. Interpretation & conclusion: It is concluded that phostoxin is less effective and has low safety in comparison with zinc phosphide, so that this rodenticide can be used only in special situations such as lack or ineffective rodenticides and only in the colonies far from human and animal dwelling places in small scales.

  6. Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C.; Podolskiy, V. A. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Hoffman, A. J. [Department of Electrical Engineering, University of Notre Dame, South Bend, Indiana 46556 (United States)

    2014-03-31

    We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.

  7. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    Science.gov (United States)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  8. Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide

    Science.gov (United States)

    Wei, Qun; Yan, Haiyan; Zhu, Xuanmin; Lin, Zhengzhe; Yao, Ronghui

    2016-01-01

    Structural, mechanical, and electronic properties of orthorhombic rhenium phosphide (Re2P) are systematically investigated by using first principles calculations. The elastic constants and anisotropy of elastic properties are obtained. The metallic character of Re2P is demonstrated by density of state calculations. The quasi-harmonic Debye model is applied to the study of the thermodynamic properties. The thermal expansion, heat capacities, and Grüneisen parameter on the temperature and pressure have been determined as a function of temperature and pressure in the pressure range from 0 to 100 GPa and the temperature range from 0 to 1600 K.

  9. A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting.

    Science.gov (United States)

    Yan, Ya; Xia, Bao Yu; Ge, Xiaoming; Liu, Zhaolin; Fisher, Adrian; Wang, Xin

    2015-12-01

    The design of cheap and efficient water splitting systems for sustainable hydrogen production has attracted increasing attention. A flexible electrode, based on carbon cloth substrate and iron phosphide nanotubes coated with an iron oxide/phosphate layer, is shown to catalyze overall water splitting. The as-prepared flexible electrode demonstrates remarkable electrocatalytic activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) at modest overpotentials. The surface iron oxide/phosphate, which is formed in situ, is proposed to improve the HER activity by facilitating the water-dissociation step and serves directly as the catalytically-active component for the OER process. PMID:26493157

  10. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks

    Science.gov (United States)

    Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.

    2016-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.

  11. Theoretical investigations on the elastic and thermodynamic properties of rhenium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qun; Zhu, Xuanmin; Lin, Zhengzhe; Yao, Ronghui [Xidian Univ., Xi' an (China). School of Physics and Optoelectronic Engineering; Yan, Haiyan [Baoji Univ. of Arts and Sciences (China). Dept. of Chemistry and Chemical Engineering

    2016-04-01

    Structural, mechanical, and electronic properties of orthorhombic rhenium phosphide (Re{sub 2}P) are systematically investigated by using first principles calculations. The elastic constants and anisotropy of elastic properties are obtained. The metallic character of Re{sub 2}P is demonstrated by density of state calculations. The quasi-harmonic Debye model is applied to the study of the thermodynamic properties. The thermal expansion, heat capacities, and Grueneisen parameter on the temperature and pressure have been determined as a function of temperature and pressure in the pressure range from 0 to 100 GPa and the temperature range from 0 to 1600 K.

  12. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    Science.gov (United States)

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.

  13. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution

    OpenAIRE

    Bao, Xiao-Qing; Cerqueira, M.F.; Alpuim, P.; Liu, Lifeng

    2015-01-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. L. F. Liu acknowledges the financial support by the FCT Investigator grant (IF/01595/2014).

  14. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    Science.gov (United States)

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. PMID:26050844

  15. Solution-based synthesis and purification of zinc tin phosphide nanowires.

    Science.gov (United States)

    Sheets, Erik J; Balow, Robert B; Yang, Wei-Chang; Stach, Eric A; Agrawal, Rakesh

    2015-12-01

    The solution-based synthesis of nanoscale earth-abundant semiconductors has the potential to unlock simple, scalable, and tunable material processes which currently constrain development of novel compounds for alternative energy devices. One such promising semiconductor is zinc tin phosphide (ZnSnP2). We report the synthesis of ZnSnP2 nanowires via a solution-liquid-solid mechanism utilizing metallic zinc and tin in decomposing trioctylphosphine (TOP). Dried films of the reaction product are purified of binary phosphide phases by annealing at 345 °C. Tin is removed using a 0.1 M nitric acid treatment leaving pure ZnSnP2 nanowires. Diffuse reflectance spectroscopy indicates ZnSnP2 has a direct bandgap energy of 1.24 eV which is optimal for solar cell applications. Using a photoelectrochemical cell, we demonstrate cathodic photocurrent generation at open circuit conditions from the ZnSnP2 nanowires upon solar simulated illumination confirming p-type conductivity. PMID:26530669

  16. Structural stability and mutual transformations of molybdenum carbide, nitride and phosphide

    International Nuclear Information System (INIS)

    Graphical abstract: Both Mo2C and Mo2N can be transformed to MoP, whereas the reverse changes are inviable, which is used to develop a promising and practical pathway for preparing MoP nanoparticles. Highlights: → Mo carbide, nitride and phosphide are prepared. → The structural stability increases in the order of Mo2N 2C 2C and Mo2N can be transformed to MoP, whereas the reverse changes are inviable. → This study develops a promising and practical pathway for preparing MoP nanoparticles. -- Abstract: The structural stability and transformations of Mo carbide, nitride and phosphide were investigated under various atmosphere conditions by X-ray diffraction (XRD). The results indicated that the order of structural stability of these Mo-based compounds was as follows: Mo2N 2C 2C and Mo2N can be transformed to MoP, whereas the reverse transformations did not occur. Noticeably, compared with those Mo sources containing oxygen, the use of Mo2C/Mo2N as Mo-source can produce finely dispersed MoP nanoparticles by the temperature-programmed reaction (TPR) method. The result was probably due to the fact that lower-levels H2O generated during synthesis process can avoid strong hydrothermal sintering. The influence of formation energy had been considered and was found to relate to the structural stability and transformations of these Mo-based compounds.

  17. Structure characterization and strain relief analysis in CVD growth of boron phosphide on silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoliang [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Abbott, Julia K.C.; Brasfield, John D. [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States); Liu, Peizhi [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Dale, Alexis [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States); Duscher, Gerd [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rack, Philip D. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Feigerle, Charles S., E-mail: cfeigerl@tennessee.edu [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States)

    2015-02-01

    Highlights: • Crystalline boron phosphide was grown on vicinal 4H (0 0 0 1)-SiC surfaces. • The microstructure evolution of defects generated at the interface was characterized by transmission electron microscopy. • The evolution of lattice distortion and strain are determined. - Abstract: Boron phosphide (BP) is a material of interest for development of a high-efficiency solid-state thermal neutron detector. For a thick film-based device, microstructure evolution is key to the engineering of material synthesis. Here, we report epitaxial BP films grown on silicon carbide with vicinal steps and provide a detailed analysis of the microstructure evolution and strain relief. The BP film is epitaxial in the near-interface region but deviates from epitaxial growth as the film develops. Defects such as coherent and incoherent twin boundaries, dislocation loops, stacking faults concentrate in the near-interface region and segment this region into small domains. The formation of defects in this region do not fully release the strain originated from the lattice mismatch. Large grains emerge above the near-interface region and grain boundaries become the main defects in the upper part of the BP film.

  18. Determination of indium in zinc phosphide samples by isotope dilution method

    International Nuclear Information System (INIS)

    A method of indium determination by isotope dilution method using substoichiometry principle has been developed. The addition of insufficient quantities of EDTA reagent for extraction of the determined element is the essence of the method. A column with AV-17 anionite was used for separation of indium complexonate, charged positively from the part of the determined indium, not bound with the complexonate. For analyses a radioactive sup(115m)In isotope was used, which is formed in the course of Cd irradiation by neutron flux of 1.2 1013 n/cm2 in the nuclear reactor. A means of obtaining sup(115m)In generator with high specific radioactivity (without carrier) was described. The developed method was applied for analysis of semiconducting material of zinc phosphide, alloyed by indium

  19. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents.

    Science.gov (United States)

    Oghabian, Zohreh; Mehrpour, Omid

    2016-08-01

    Aluminium phosphide (AlP) is used to protect stored grains from rodents. It produces phosphine gas (PH3), a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-year-old male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols. PMID:27606117

  20. Synthesis of the titanium phosphide telluride Ti 2PTe 2: A thermochemical approach

    Science.gov (United States)

    Philipp, Frauke; Schmidt, Peer; Milke, Edgar; Binnewies, Michael; Hoffmann, Stefan

    2008-04-01

    The phosphide telluride Ti 2PTe 2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti 2PTe 2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti 2PTe 2(s) decomposes to Ti 2P (s) and Te 2(g) in six consecutive steps. The growth of single crystals of Ti 2PTe 2 is thermodynamically described as a chemical vapour transport with TiCl 4(g) acting as the transport agent.

  1. Aluminum phosphide poisoning: Possible role of supportive measures in the absence of specific antidote

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Agrawal

    2015-01-01

    Full Text Available Aluminum phosphide (ALP poisoning is one of the major causes of suicidal deaths. Toxicity by ALP is caused by the liberation of phosphine gas, which rapidly causes cell hypoxia due to inhibition of oxidative phosphorylation, leading to circulatory failure. Treatment of ALP toxicity is mainly supportive as there is no specific antidote. We recently managed 7 cases of ALP poisoning with severe hemodynamic effects. Patients were treated with supportive measures including gastric lavage with diluted potassium permanganate, coconut oil and sodium-bicarbonate first person account should be avoided in a scientific paper. Intravenous magnesium sulfate, proper hemodynamic monitoring and vasopressors. Four out of 7 survived thus suggesting a role of such supportive measures in the absence of specific antidote for ALP poisoning.

  2. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.; Hahn, Christopher; Deutsch, Todd G.; Jaramillo, Thomas F.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  3. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Zohreh Oghabian

    2016-08-01

    Full Text Available Aluminium phosphide (AlP is used to protect stored grains from rodents. It produces phosphine gas (PH3, a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-yearold male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols.

  4. Effect of InAlAs window layer on efficiency of indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide bandgap, lattice-matched indium aluminum arsenide (In(0.52)Al(0.48)As) window layer on the performance of InP solar cells was investigated by using the numerical code PC-1D. The p(+)n InP solar cell performance improved significantly with the use of the window layer. No improvement was seen for the n(+)p InP cells. The cell results were explained by the band diagram of the heterostructure and the conduction band energy discontinuity. The calculated current voltage and internal quantum efficiency results clearly demonstrated that In(0.52)Al(0.48)As is a very promising candidate for a window layer material for p(+)n InP solar cells.

  5. Effect of InAlAs window layer on the efficiency of indium phosphide solar cells

    Science.gov (United States)

    Jain, R. K.; Landis, G. A.

    1991-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide-bandgap lattice-matched indium aluminum arsenide (In0.52Al0.48As) window layer on the performance of InP solar cells was investigated using a numerical code PC-1D. The p(+)n InP solar cell performance improves significantly with the use of a window layer. No improvement is seen for n(+)p InP cells. Cell results are explained by the band diagram of the heterostructure and the conduction-band energy discontinuity. The calculated I-V and internal quantum efficiency results clearly demonstrate that In0.52Al0.48As is a promising candidate as a window layer material for p(+)n InP solar cells.

  6. Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide

    Indian Academy of Sciences (India)

    Salah Daoud; Kamel Loucif; Nadhira Bloud; Noudjoud Lebgaa; Laarbi Belagraa

    2012-07-01

    In this paper we present the results obtained from first-principles calculations of the effect of hydrostatic pressure on the strucural, elastic and electronic properties of (B3) boron phosphide, using the pseudopotential plane-wave method (PP-PW) based on density functional theory within the Teter and Pade exchange-correlation functional form of the local density approximation (LDA). The lattice parameter, molecular and crystal densities, near-neighbour distances, independent elastic constant, bulk modulus, shear modulus, anisotropy factor and energy bandgaps of (B3) BP under high pressure are presented. The results showed a phase transition pressure from the zinc blende to rock-salt phase at around 1.56 Mbar, which is in good agreement with the theoretical data reported in the literature.

  7. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Guo-An; Wang, Chiu-Yen; Chang, Wei-Chung; Tuan, Hsing-Yu

    2016-09-27

    Phosphorus-rich transition metal phosphide CuP2 nanowires were synthesized with high quality and high yield (∼60%) via the supercritical fluid-liquid-solid (SFLS) growth at 410 °C and 10.2 MPa. The obtained CuP2 nanowires have a high aspect ratio and exhibit a single crystal structure of monoclinic CuP2 without any impurity phase. CuP2 nanowires have progressive improvement for semiconductors and energy storages compared with bulk CuP2. Being utilized for back-gate field effect transistor (FET) measurement, CuP2 nanowires possess a p-type behavior intrinsically with an on/off ratio larger than 10(4) and its single nanowire electrical transport property exhibits a hole mobility of 147 cm(2) V(-1) s(-1), representing the example of a CuP2 transistor. In addition, CuP2 nanowires can serve as an appealing anode material for a lithium-ion battery electrode. The discharge capacity remained at 945 mA h g(-1) after 100 cycles, showing a good capacity retention of 88% based on the first discharge capacity. Even at a high rate of 6 C, the electrode still exhibited an outstanding result with a capacity of ∼600 mA h g(-1). Ex-situ transmission electron microscopy and CV tests demonstrate that the stability of capacity retention and remarkable rate capability of the CuP2 nanowires electrode are attributed to the role of the metal phosphide conversion-type lithium storage mechanism. Finally, CuP2 nanowire anodes and LiFePO4 cathodes were assembled into pouch-type lithium batteries offering a capacity over 60 mA h. The full cell shows high capacity and stable capacity retention and can be used as an energy supply to operate electronic devices such as mobile phones and mini 4WD cars. PMID:27603024

  8. Zinc phosphide toxicities among patients of the University of Benin Teaching Hospital, Benin city, Nigeria: A 10 year experience

    Directory of Open Access Journals (Sweden)

    S E Aghahowa

    2012-01-01

    Full Text Available Background: Due to the poor success rate associated with zinc phosphide ingestion, it became necessary to assess the incidence. Objective: To assess the incidence of zinc phosphide toxicities reported between June 2000 and June 2009 in the University of Benin Teaching Hospital, Benin City, Nigeria. Material and Method : Data were sourced from the archives of casualties of zinc phosphide poisoning. These were entered into a generated case data form after obtaining an ethical permission. Results: All the ages of the 23 casualties reported were within 37.74±13.20 years. The male-female ratio was 4.75:1. Nineteen [78.26%] died after reporting 13.52±11.34 hours following single ingestion. Twenty cases were due to suicidal tendencies; the most common reason given was because of frustration in life related to marital affairs. Among the three unintentional, two were accidental while the other was due to assassination. Postmortem was refused in all the patients that died. One attempted herbal medication. Oil and milk were the most frequent solvents used at home as first-aid care therapy. Three were unintentional. Nine came with empty sachets and containers brought by relatives. Sodium chloride intravenous infusion was the most frequently used. Duration of hospitalization was 13.38±15.60 hours. Intravenous ciprofloxacin and metronidazole were the most common antibiotics used. Oxygen was instituted in 78.26% of the victims during respiratory distress. One ate meal prepared from poisoned rodent and died after reporting. One had alcohol along with the Zinc Phosphide ingestion. Nine were reported at the drug and poison information centre. Conclusion: Attention is needed by all for proper regulation in the handling of poisons and related substances to reduce burden minimally.

  9. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro [University of California, Santa Cruz (United States). Baskin School of Engineering; NASA Ames Research Center, Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz, Moffett Field, CA (United States); Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Logeeswaran, V.J.; Islam, M.S. [University of California Davis, Electrical and Computer Engineering, Davis, CA (United States)

    2009-06-15

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  10. A preliminary identification of insect successive wave in Egypt on control and zinc phosphide-intoxicated animals in different seasons

    Directory of Open Access Journals (Sweden)

    Marah Mohammad Abd El-Bar

    2016-09-01

    Full Text Available The presented study aimed primarily to document a baseline data of the decay process of rabbits and guinea pigs and their associated arthropod fauna, which are placed in an urban city: El Abbassyia, Cairo Governorate, Egypt, during winter and summer seasons, and to compare these data with the corresponding figure for zinc phosphide-intoxicated carrions. Generally, control rabbits and control guinea pigs were faster in their decay comparing the corresponding figure of the zinc phosphide–intoxicated group. A delay in colonization of insects was noticed either in the winter season for both groups, or additionally for the zinc phosphide groups. The associated insect fauna was represented in 6 orders, 20 families, and 36 genera and species. Necrophagous arthropods that supported decomposition of carcasses were mainly of orders Diptera and Coleoptera. Calliphoridae was the first insect family that colonized the different carcasses. The mean numbers of control immature dipterous maggots and similarly, the control coleopteran larvae significantly exceeded the corresponding mean numbers for the zinc phosphide-intoxicated groups in both winter and summer seasons in either rabbits or guinea pig groups. Moreover, the mean numbers of dipterous maggots or coleopteran larvae of rabbits significantly surpassed the corresponding figures for guinea pigs in both seasons. This study may add as a reference for the succession wave arthropod fauna in Cairo Governorate in winter and summer seasons. Moreover, it is the first record of the arthropod successive wave on zinc phosphide–intoxicated remains.

  11. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  12. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    Science.gov (United States)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-01

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B0 = 174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grüneisen parameters of the TO and LO modes of zinc-blende structure, γGTO= 1.26 and γGLO= 1.13, just like in the case of other AIIIBV diamond-like phases, for which γGTO> γGLO≅ 1. We also established that the pressure dependence of the effective electro-optical constant α is responsible for a strong change in relative intensities of the TO and LO modes from ITO/ILO ˜ 0.25 at 0.1 MPa to ITO/ILO ˜ 2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.

  13. Planar array antenna with director on indium phosphide substrate for 300GHz wireless link

    Science.gov (United States)

    Kanaya, Haruichi; Oda, Tomoki; Iizasa, Naoto; Kato, Kazutoshi

    2016-02-01

    This paper presents a design and fabrication of 1 x 4 one-sided directional slot array antenna with director metal layer on indium phosphide (InP) substrate for 300 GHz wireless link. The floating metal and polyimide dielectric layer are stacked on InP. Antenna is designed on the top metal layer. By optimizing the length of the bottom floating metal layer, one-sided directional radiation can be realized. The branched coplanar wave guide (CPW) transmission line is connected to each antenna element with the same electrical length. The size of the 1 x 4 array antenna is 2,550 µm x 1,217 µm x 18 µm. In order to enhance the gain of forward direction, director metal layer is placed over 83 µm from top metal layer. Simulated realized gain in peak direction of our antenna is 9.23 dBi. The measured center frequency is almost the same as that of the simulation results.

  14. Direct Band Gap Gallium Antimony Phosphide (GaSbxP(1-x)) Alloys.

    Science.gov (United States)

    Russell, H B; Andriotis, A N; Menon, M; Jasinski, J B; Martinez-Garcia, A; Sunkara, M K

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP(1-x) alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP(1-x). Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP(1-x) nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  15. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1-x) Alloys

    Science.gov (United States)

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-02-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1-x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1-x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1-x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields.

  16. CVD growth and properties of boron phosphide on 3C-SiC

    Science.gov (United States)

    Padavala, Balabalaji; Frye, C. D.; Wang, Xuejing; Raghothamachar, Balaji; Edgar, J. H.

    2016-09-01

    Improving the crystalline quality of boron phosphide (BP) is essential for realizing its full potential in semiconductor device applications. In this study, 3C-SiC was tested as a substrate for BP epitaxy. BP films were grown on 3C-SiC(100)/Si, 3C-SiC(111)/Si, and 3C-SiC(111)/4H-SiC(0001) substrates in a horizontal chemical vapor deposition (CVD) system. Films were produced with good crystalline orientation and morphological features in the temperature range of 1000-1200 °C using a PH3+B2H6+H2 mixture. Rotational twinning was absent in the BP due to the crystal symmetry-matching with 3C-SiC. Confocal 3D Raman imaging of BP films revealed primarily uniform peak shift and peak widths across the scanned area, except at defects on the surface. Synchrotron white beam X-ray topography showed the epitaxial relationship between BP and 3C-SiC was (100) BP||(100) 3C-SiC and (111) BP||(111) 3C-SiC. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis indicated residual tensile strain in the films and improved crystalline quality at temperatures below 1200 °C. These results indicated that BP properties could be further enhanced by employing high quality bulk 3C-SiC or 3C-SiC epilayers on 4H-SiC substrates.

  17. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.

    Science.gov (United States)

    Kornienko, Nikolay; Gibson, Natalie A; Zhang, Hao; Eaton, Samuel W; Yu, Yi; Aloni, Shaul; Leone, Stephen R; Yang, Peidong

    2016-05-24

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%. PMID:27124203

  18. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    Science.gov (United States)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  19. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    Science.gov (United States)

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations. PMID:26711014

  20. Effect of heat-treatment on the surface properties of gallium phosphide nanosolids by Raman spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaochun; YUE Longyi; GUO Jingkang

    2006-01-01

    Raman spectra of gallium phosphide (GaP) nanosolids (unheated and heat-treated at 598 and 723 K, respectively)were investigated. It was observed that both the longitudinal optical mode (LO) and the transverse optical mode (TO) displayed an asymmetry on the low-wavenumber side. The scattering bands were fitted to a sum of four Lorentzians which were assigned to the LO mode, surface phonon mode, TO mode, and a combination of Ga-O-P symmetric bending and sum band formed from the X-point TA + LA phonons, respectively. Analysis of the characteristic of surface phonon mode revealed that the surface phonon peak of the GaP nanosolids could be confirmed. In the infrared spectrum of the GaP nanoparticles, we observed the bands on account of symmetric stretching and bending of PO2, as well as stretching of Ga-O.The Raman scattering intensity arising from the Ga-O-P linkages increased as increasing the heat-treatment temperature.

  1. Physical properties of new cerium palladium phosphide with C6Cr23-type structure

    Directory of Open Access Journals (Sweden)

    T. Abe

    2014-01-01

    Full Text Available We have found that a cerium palladium phosphide crystallizes into a C6Cr23-type structure with atomic disorder. Prepared polycrystalline samples show a homogeneity range in the ternary Ce–Pd–P phase diagram. The physical properties of the highest-quality sample of Ce2.4Pd20.7P5.9 were investigated by measuring the magnetization, electrical resistivity and specific heat. No pronounced phase transition was observed down to 0.5 K. The Kondo screening of localized 4f electrons in metallic Ce2.4Pd20.7P5.9 appears to be weaker than that in the isostructural compounds of Ce3Pd20Si6 and Ce3Pd20Ge6. By a comparative study of Ce2.4Pd20.7P5.9 and Ce3Pd20X6 (X = Si, Ge, the competition between the Kondo temperature and ordering temperatures including the quadrupolar ordering temperature is briefly discussed.

  2. Size-dependent magnetic and electrocatalytic properties of nickel phosphide nanoparticles

    Science.gov (United States)

    Pan, Yuan; Lin, Yan; Liu, Yunqi; Liu, Chenguang

    2016-03-01

    Nickel phosphide (Ni2P) nanoparticles (NPs) with different sizes were synthesized via thermal decomposition of bis(triphenylphosphine)nickel dichloride precursor in the presence of oleylamine. The size of the as-synthesized Ni2P NPs could easily be controlled by increasing the reaction temperature from 300 to 340 °C. The structure and morphology were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). Then the influences of the size of the Ni2P NPs on the magnetic and electrocatalytic properties were investigated systematically. The results indicate that the as-synthesized Ni2P NPs exhibit ferromagnetic characteristic at 5 K. The Ni2P NPs with small size exhibit superparamagnetism and the larger size exhibit ferromagnetic characteristic at 300 K. The blocking temperature, saturation magnetization, remanent magnetization and coercivity increased significantly with the increase of size of Ni2P NPs, indicating the strong size effect of Ni2P NPs for magnetic properties. Electrochemical tests indicate that the catalytic activity can be enhanced by decreasing the size of Ni2P NPs. Due to the larger electrochemical active surface area and higher electrical conductivity, the Ni2P NPs with small size exhibit higher electrocatalytic activity. This work suggests that the size of Ni2P NPs is an important factor to affect the magnetic and electrocatalytic properties.

  3. V{sub 18}P{sub 9}C{sub 2}. A complex phosphide carbide

    Energy Technology Data Exchange (ETDEWEB)

    Boller, Herbert [Linz Univ. (Austria). Inst. fuer Anorganische Chemie; Effenberger, Herta [Wien Univ. (Austria). Inst. fuer Mineralogie und Kristallographie

    2016-08-01

    V{sub 18}P{sub 9}C{sub 2} crystallizes in the orthorhombic space group Pmma with the lattice parameters a = 17.044(3), b = 3.2219(7), and c = 13.030(2) Aa, Z = 2. The crystal structure is composed of 19 symmetry-independent atoms. The crystal structure is considered as a network formed by the transition metal atoms exhibiting cubic, trigonal prismatic, and octahedral voids centered by V, P, and C atoms, respectively. Vice versa, the V and P atoms form a three-dimensional network. The two CV{sub 6} octahedra are edge- and corner-connected to chains running parallel to [010]. The five unique P atoms are trigonal prismatically coordinated by V atoms with one to three faces capped again by a V atom. The V atoms have mainly cubic environments formed solely by V or by V and P atoms. V{sub 18}P{sub 9}C{sub 2} exhibits some structural relations to other compounds of the ternary system V-P-C as well as to other intermetallic phases. Despite the low carbon content, V{sub 18}P{sub 9}C{sub 2} is considered as a ternary compound rather than an interstitially stabilized (binary) phosphide in view of its special structural features.

  4. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    Science.gov (United States)

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-01

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h. PMID:27064172

  5. Theoretical investigation of indium phosphide buried ring resonators for new angular velocity sensors

    Science.gov (United States)

    Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario Nicola

    2013-02-01

    Here, we report the guidelines to be followed to optimize the design of a new angular velocity sensor based on an indium phosphide (InP) ring resonator. Optical properties of InP ring resonators have been investigated together with some significant physical effects for improving the sensor sensitivity. Three-dimensional algorithms have been utilized for the theoretical estimation of the waveguide loss. An optimized waveguide with propagation loss <0.3 dB/cm and a ring resonator with a quality factor of 1.5×106 have been designed. Performance of angular velocity sensors based on InP low-loss ring resonators has been estimated and discussed. Resolution of 10 deg/h and bias drift in the range of 0.1 to 0.3 deg/h have been evaluated for a fully integrated optical gyro including an InGaAsP/InP optical cavity having a footprint less than 24 cm2.

  6. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Density functional study of the group II phosphide semiconductor compounds under hydrostatic pressure

    International Nuclear Information System (INIS)

    The full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method, as implemented in the suite of software WIEN2k, has been used to systematically investigate the structural and electronic properties of the group II phosphide semiconductor compounds M3P2 (M = Be, Mg and Ca). The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). Internal parameters were optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The structural parameters, bulk modules, cohesive energy, band structures and density of states have been calculated and compared to the available experimental and theoretical results. These compounds are predicted to be semiconductors with the direct band gap of about 1.60, 2.55 and 2.62 eV for Be3P2, Mg3P2 and Ca3P2, respectively. The effects of hydrostatic pressure on the behavior of band parameters such as band gap, valence bandwidths and anti-symmetric gap (the energy gap between two parts of the valence bands) are investigated using both GGA96 and EV-GGA. The contribution of s, p and d orbitals of different atoms to the density of states is discussed in detail

  8. Synthesis of the titanium phosphide telluride Ti2PTe2: A thermochemical approach

    International Nuclear Information System (INIS)

    The phosphide telluride Ti2PTe2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti2PTe2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti2PTe2(s) decomposes to Ti2P(s) and Te2(g) in six consecutive steps. The growth of single crystals of Ti2PTe2 is thermodynamically described as a chemical vapour transport with TiCl4(g) acting as the transport agent. - Graphical abstract: Oxygen partial pressure and electrochemical potential above the oxides of titanium, tellurium and phosphorus calculated at 1000 K, marked: level of equalisation of oxygen partial pressure

  9. Controlled synthesis and magnetic properties of iron-cobalt-phosphide nanorods.

    Science.gov (United States)

    Yang, Weiwei; Wu, Xiaoming; Yu, Yongsheng; Yang, Chunhui; Xu, Shichong; Li, Haibo

    2016-09-28

    A simple one-step solution-phase synthesis of iron-cobalt-phosphide ((Fe1-xCox)2P) nanorods (NRs) is reported in this paper. Through the control of the amount of Co in the samples, the crystal structure of (Fe1-xCox)2P NRs changes from a pure Fe-rich hexagonal Fe2P type structure to a mixture of Fe-rich hexagonal Fe2P and Co-rich orthorhombic Co2P type structures. These samples show superparamagnetic behavior at room temperature and ferromagnetic properties at 10 K. When the Co composition is 0.09, the (Fe0.91Co0.09)2P sample has the highest coercivity around 5.74 kOe at 10 K. The current route provides a new and general chemical method for tunable preparation of (Fe1-xCox)2P (x materials without rare-earth or noble metals. PMID:27602987

  10. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.

    Science.gov (United States)

    Kornienko, Nikolay; Gibson, Natalie A; Zhang, Hao; Eaton, Samuel W; Yu, Yi; Aloni, Shaul; Leone, Stephen R; Yang, Peidong

    2016-05-24

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%.

  11. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    Science.gov (United States)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-06-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula.

  12. ROLE OF C AND P SITES ON THE CHEMICAL ACTIVITY OF METAL CARBIDE AND PHOSPHIDES: FROM CLUSTERS TO SINGLE-CRYSTAL SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; VINES, F.; LIU, P.; ILLAS, F.

    2007-07-01

    Transition metal carbides and phosphides have shown tremendous potential as highly active catalysts. At a microscopic level, it is not well understood how these new catalysts work. Their high activity is usually attributed to ligand or/and ensemble effects. Here, we review recent studies that examine the chemical activity of metal carbide and phosphides as a function of size, from clusters to extended surfaces, and metal/carbon or metal/phosphorous ratio. These studies reveal that the C and P sites in these compounds cannot be considered as simple spectators. They moderate the reactivity of the metal centers and provide bonding sites for adsorbates.

  13. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Hannes [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany); ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Ohrdes, Tobias [Institute for Solar Energy Research Hamelin (ISFH), 31860 Emmerthal (Germany); Dastgheib-Shirazi, Amir [Div. Photovoltaics, Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Puthen-Veettil, Binesh; König, Dirk [ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Altermatt, Pietro P. [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2014-01-28

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl{sub 3} diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)–(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher V{sub oc}. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  14. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    Science.gov (United States)

    Wagner, Hannes; Ohrdes, Tobias; Dastgheib-Shirazi, Amir; Puthen-Veettil, Binesh; König, Dirk; Altermatt, Pietro P.

    2014-01-01

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl3 diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)-(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher Voc. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  15. Elevated Carboxyhaemoglobin Concentrations by Pulse CO-Oximetry is Associated with Severe Aluminium Phosphide Poisoning.

    Science.gov (United States)

    Mashayekhian, Mohammad; Hassanian-Moghaddam, Hossein; Rahimi, Mitra; Zamani, Nasim; Aghabiklooei, Abbas; Shadnia, Shahin

    2016-09-01

    In pulse CO-oximetry of aluminium phosphide (ALP)-poisoned patients, we discovered that carboxyhaemoglobin (CO-Hb) level was elevated. We aimed to determine whether a higher CO level was detected in patients with severe ALP poisoning and if this could be used as a prognostic factor in these patients. In a prospective case-control study, 96 suspected cases of ALP poisoning were evaluated. In the ALP-poisoned group, demographic characteristics, gastric and exhalation silver nitrate test results, average CO-Hb saturation, methaemoglobin saturation, and blood pressure and blood gas analysis until death/discharge were recorded. Severely poisoned patients were defined as those with systolic blood pressure ≤80 mmHg, pH ≤7.2, or HCO3 ≤15 meq/L or those who died, while patients with minor poisoning were those without any of these signs/symptoms. A control group (37 patients) was taken from other medically ill patients to detect probable effects of hypotension and metabolic acidosis on CO-Hb and methaemoglobin saturations. Of 96 patients, 27 died and 37 fulfilled the criteria for severe poisoning. All patients with carbon monoxide saturation >18% met the criteria to be included in the severe poisoning group and all with a SpCO >25% died. Concerning all significant variables in univariate analysis of severe ALP toxicity, the only significant variable which could independently predict death was carbon monoxide saturation. Due to high mortality rate and need for intensive care support, early prediction of outcome is vital for choosing an appropriate setting (ICU or ordinary ward). CO-oximetry is a good diagnostic and prognostic factor in patients with ALP poisoning even before any clinical evidence of toxicity will develop. PMID:26899262

  16. Hydroxyethyl Starch Could Save a Patient With Acute Aluminum Phosphide Poisoning.

    Science.gov (United States)

    Marashi, Sayed Mahdi; Nasri Nasrabadi, Zeynab; Jafarzadeh, Mostafa; Mohammadi, Sogand

    2016-07-01

    A 40-year-old male patient with suicidal ingestion of one tablet of aluminium phosphide was referred to the department of toxicology emergency of Baharloo Hospital, Tehran, Iran. The garlic odor was smelled from the patient and abdominal pain and continuous vomiting as well as agitation and heartburn were the first signs and symptoms. Systolic and diastolic blood pressures at the arrival time were 95 and 67 mmHg, respectively. Gastric lavage with potassium permanganate (1:10,000), and 2 vials of sodium bicarbonate through a nasogastric tube was started for the patient and the management was continued with free intravenous infusion of 1 liter of NaCl 0.9% serum plus NaHCO3, hydrocortisone acetate (200 mg), calcium gluconate (1 g) and magnesium sulfate (1 g). Regarding the large intravenous fluid therapy and vasoconstrictor administering (norepinephrine started by 5 µg/min and continued till 15 µg/min), there were no signs of response and the systolic blood pressure was 49 mmHg. At this time, hydroxyethyl starch (HES) (6% hetastarch 600/0.75 in 0.9% sodium chloride) with a dose of 600 cc in 6 hours was started for the patient. At the end of therapy with HES, the patient was stable with systolic and diastolic blood pressure of 110 and 77 mmHg, respectively. He was discharged on the 6th day after the psychological consultation, with normal clinical and paraclinical examinations. This is the first report of using HES in the management of AlP poisoning and its benefit to survive the patient. PMID:27424021

  17. A simplified acute physiology score in the prediction of acute aluminum phosphide poisoning outcome

    Directory of Open Access Journals (Sweden)

    Shahin Shadnia

    2010-01-01

    Full Text Available Background : Aluminum phosphide (AlP is used as a fumigant. It produces phosphine gas, which is a mitochondrial poison. Unfortunately, there is no known antidote for AlP intoxication, and also, there are few data about its prognostic factors. AIMS: The aim of this study was to determine the impact of the Simplified Acute Physiology Score II (SAPS II in the prediction of outcome in patients with acute AlP poisoning requiring admission to the Intensive Care Unit (ICU. Materials and Methods : This was a prospective study in patients with acute AlP poisoning, admitted to the ICU over a period of 12 months. The demographic data were collected and SAPSII was recorded. The patients were divided into survival and non-survival groups due to outcome. Statistical Analysis : The data were expressed as mean ± SD for continuous or discrete variables and as frequency and percentage for categorical variables. The results were compared between the two groups using SPSS software. Results : During the study period, 39 subjects were admitted to the ICU with acute AlP poisoning. All 39 patients required endotracheal intubation and mechanical ventilation in addition to gastric decontamination with sodium bicarbonate, permanganate potassium, and activated charcoal, therapy with MgSO 4 and calcium gluconate and adequate hydration. Among these patients, 26 (66.7% died. SAPSII was significantly higher in the non-survival group than in the survival group (11.88 ± 4.22 vs. 4.31 ± 2.06, respectively (P < 0.001. Conclusion : SAPSII calculated within the first 24 hours was recognized as a good prognostic indicator among patients with acute AlP poisoning requiring ICU admission.

  18. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides.

    Science.gov (United States)

    Muthuswamy, Elayaraja; Brock, Stephanie L

    2010-11-17

    Unexpected reactivity on the part of oxide nanoparticles that enables their transformation into phosphides or sulfides by solution-phase reaction with trioctylphosphine (TOP) or sulfur, respectively, at temperatures of ≤370 °C is reported. Impressively, single-phase phosphide products are produced, in some cases with controlled anisotropy and narrow polydispersity. The generality of the approach is demonstrated for Ni, Fe, and Co, and while manganese oxides are not sufficiently reactive toward TOP to form phosphides, they do yield MnS upon reaction with sulfur. The reactivity can be attributed to the small size of the precursor particles, since attempts to convert bulk oxides or even particles with sizes approaching 50 nm were unsuccessful. Overall, the use of oxide nanoparticles, which are easily accessed via reaction of inexpensive salts with air, in lieu of organometallic reagents (e.g., metal carbonyls), which may or may not be transformed into metal nanoparticles, greatly simplifies the production of nanoscale phosphides and sulfides. The precursor nanoparticles can easily be produced in large quantities and stored in the solid state without concern that "oxidation" will limit their reactivity.

  19. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Science.gov (United States)

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically.

  20. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Science.gov (United States)

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically. PMID:25250976

  1. Mössbauer Spectroscopy Investigation and Hydrodesulfurization Properties of Iron–nickel Phosphide Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaudette, Amy F.; Burns, Autumn W.; Hayes, John R.; Smith, Mica C.; Bowker, Richard H.; Seda, Takele; Bussell, Mark E.

    2010-05-25

    Unsupported and silica-supported FexNi2-xPy catalysts having a range of metal compositions (0 < x 6 2.0) were investigated using Mössbauer spectroscopy, and the results correlated with the surface and hydrodesulfurization (HDS) properties of the supported catalysts. Mössbauer spectroscopy permits determination of the relative site occupancy of Fe atoms in tetrahedral (M(1)) and pyramidal (M(2)) sites in the FexNi2-xPy materials. Fe atoms preferentially occupy M(2) sites for materials with significant Fe contents (x > ~0.60), but the Fe site preference reverses as the Fe content decreases (x < ~0.60). Similar occupation trends are observed for the unsupported and silica-supported FexNi2-xPy materials. Thiophene HDS measurements of the FexNi2-xPy/SiO2 catalysts revealed catalysts with high Fe contents (0.80 6 x 6 2.00) to have low activities, while the activities of Ni-rich catalysts increased dramatically with increased Ni content (0.03 6 x 6 0.60). The highest HDS activity was measured for a catalyst having a nominal precursor composition of Fe0.03Ni1.97P2.00/SiO2; this catalyst was 40% more active than a optimized nickel phosphide catalyst prepared from a precursor having a nominal composition of Ni2.00P1.60/SiO2. The 25 wt.% Fe0.03Ni1.97P2.00/SiO2 catalyst also had a dibenzothiophene HDS activity just over 10% higher than that of the 25 wt.% Ni2.00P1.60/SiO2 catalyst at 548 K. The trend of increasing HDS activity for the FexNi2-xPy/ SiO2 catalysts correlates with preferential Fe occupation of M(1) sites (and, therefore, Ni occupation of M(2) sites). Supported by X-ray photoelectron spectroscopy and oxygen chemisorption measurements, we conclude that the high activity of Ni-rich FexNi2-xPy/SiO2 catalysts can be traced to a high surface density of Ni in M(2) sites that are resistant to site blockage due to S incorporation.

  2. Aluminum phosphide poisoning known as rice tablet: A common toxicity in North Iran

    Directory of Open Access Journals (Sweden)

    A Hosseinian

    2011-01-01

    Full Text Available Background: Aluminum phosphide (ALP is a highly effective insecticide and rodenticide used frequently to protect stored grain. Acute poisoning with this compound is common in some countries including India and Iran, and is a serious health problem. Aim: The objective of this study was to survey ALP poisoning locally known as "Rice Tablet" and the outcome in a referral poisoning hospital in Mazandaran province, northern part of Iran. Materials and Methods: The study was a cross-sectional study from March 2007 to February 2008. Records of all patients admitted and hospitalized to a referral teaching hospital during the 2 year period were collected. Information including gender, age, cause of toxicity, amount of AIP consumed, route of exposure, time between exposure and hospital admission, signs and symptoms of toxicity at admission, therapeutic intervention, laboratory tests, and outcome were extracted from the patients′ notes. Patients who died and survived were compared using appropriate statistical tests. Results: During the two-year period, 102 patients, 46 men and 56 women with mean (±SD age 28.5 ± 12.4 year were admitted with ALP poisoning. The most common signs and symptoms at admission were nausea (79.4%, vomiting (76.5%, and abdominal pain (31.4%. 41.1% of the patients showed metabolic acidosis. Suicidal intention was the most common cause of poisoning (97% leading to 19 (18.6% deaths. Compared with the patients who survived, those who died had taken higher amount of ALP tablet (2.2 ± 2.4 vs. 1.4 ± 1.0, P < 0.05, had poor liver function test (P < 0.0001 and severe metabolic acidosis (pH: 7.17 ± 0.19 vs. 7.33 ± 0.08, P < 0.0001. Conclusion: ALP poisoning is a common toxicity in Iran causing high morality. This is a serious health problem in agricultural region where ALP is readily available. Withdrawal of ALP tablet from the market and introduction of safer products as rodenticides and insecticides is recommended.

  3. Structure and magnetic properties of ternary phosphides and carbides of the rare-earth and transition metals

    International Nuclear Information System (INIS)

    The focal point of this study was the analysis of the magnetic properties of the ternary phosphides. To obtain a comprehensive idea, as many phosphides as possible as well as a few ternary carbides have been synthesized and structurally or magnetically characterized. The susceptibility measurements with the Faraday scale have been completed when required by spectroscopic analyses according to MOESSBAUER, by the determination of the electrical conductivity, by the examination as to the superconductivity and the determination of the magnetic order by neutron diffraction. Compounds of type: AFe2P2 (A=Ca, Pr, Eu); ACo2P2 (A=Ca, Sr, La-Nd, Sm, Eu, Th, U); ANi2P2 (A=Ca, La-Nd, Sm-Yb); A2Fe12P7 (A=Y, Ce, Pr, Nd, Sm-Lu, Th); A2Co12P7 (A=Ca, Sc, Ti, Y, Zr, Ce, Pr, Nd, Sm-Lu, Hf, Th, U); AFe5P3 (A=Er, Tm); ACo5P3 (A=Y, Nd, Sm, Tb, Dy, Tm, Yb); AFe4P12 (A=Pr, Nd, Sm, Eu); ACo8P5 (A=La, Pr, Eu); SmFeP, LnCoP, Eu0,19Co4P12, HoCo3P2; A8Rh5C12 (A=Gd, Tb, Dy, Ho, Er, Tm, Y); A2Cr2C3 (A=Y, Tb-Tm), NdNi2C2, ErMoC2, UCr4C4, UW4C4. (orig./MM)

  4. Comparative Study on the Effectiveness of Coumavec® and Zinc Phosphide in Controlling Zoonotic Cutaneous Leishmaniasis in a Hyperendemic Focus in Central Iran

    Directory of Open Access Journals (Sweden)

    A Veysi

    2012-06-01

    Full Text Available Background: Zoonotic cutaneous leishmaniasis (ZCL is an increasing health problems in many rural areas of Iran. The aim of this study was to introduce a new alternative rodenticide to control the reservoirs of ZCL, its effect on the vector density and the incidence of the disease in hyperendemic focus of Esfa­han County, central Iran.Methods: The study was carried out from January 2011 to Janu­ary 2012. In intervention areas, rodent control operation was conducted using zinc phosphide or Coumavec®. Active case findings were done by house-to-house visits once every season during 2011–2012. To evaluate the effect of rodent control operation on the vector density, sand flies were collected twice a month using sticky traps.Results: The reduction rate of rodent holes in intervention areas with Coumavec® and zinc phosphide were 48.46% and 58.15% respectively, whereas in control area results showed 6.66 folds intensification. The Incidence of ZCL significantly reduced in the treated areas. Totally, 3200 adult sand flies were collected and identified in the inter­vention and control areas. In the treated area with zinc phosphide, the density of Phlebotomus papatasi was higher in outdoors in contrast with the treated area by Coumavec® which the density of the sand fly was higher in indoors. Conclusion: Both rodenticides were effective on the incidence of ZCL and the population of the reservoirs as well. Coumavec® seems to be effective on the outdoor density of the vector. This combination of rodenticide-insecticide could be a suitable alternative for zinc phosphide while bait shyness or behavioral resistance is occurred.

  5. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    Energy Technology Data Exchange (ETDEWEB)

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  6. 磷化钼作为同时加氢脱氮、脱硫和降烯烃催化剂的研究%THE STUDY OF MOLYBDENUM PHOSPHIDE AS CATALYST FOR SIMULTANEOUS HDN, HDS AND HDY

    Institute of Scientific and Technical Information of China (English)

    赵天波; 李凤艳; 孙桂大; 李翠清

    2003-01-01

    Transition-metal molybdenum phosphides were prepared by direct reduction of an amorphous phosphate precursor in hydrogen at relatively low temperature (650 ℃). XRD (X-ray diffraction analysis) measurements showed that pure molybdenum phosphide formed after the reduction with H2. The reactivity was determined in a continuous-flow microreactor at a H2 pressure of 3.0 MPa. A sample of prepared molybdenum phosphide catalyst diluted with γ-Al2O3 (20% phosphate precursor) was used for simultaneous HDN (Hydrodenitrogenation), HDS (Hydrodesulfurization) and HDY(Hydrogenation of aromatics). The influences of space velocity, flow rate of hydrogen, reaction time and temperature on hydrotreating performance were studied. Pyridine, thiophene and cyclohexene were used as model compounds, their contents were respectively 5%, 5% and 20%. Cyclohexane was used as the solvent.

  7. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Motahareh Soltani

    2016-08-01

    Full Text Available Objectives: Aluminium phosphide (AlP is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3, a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01. Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01. A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  8. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    Science.gov (United States)

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  9. Lattice-mismatched In(0.40)Al(0.60)As window layers for indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Landis, Geoffrey A.; Wilt, David M.; Flood, Dennis J.

    1993-01-01

    The efficiency of indium phosphide (InP) solar cells is limited by its high surface recombination velocity (approximately 10(exp 7) cm/s). This might be reduced by a wide-bandgap window layer. The performance of InP solar cells with wide-bandgap (1.8 eV) lattice-mismatched In(0.40)Al(0.60)As as a window layer was calculated. Because the required window layer thickness is less than the critical layer thickness, growth of strained (pseudomorphic) layers without interfacial misfit dislocations should be possible. Calculations using the PC-lD numerical code showed that the efficiencies of baseline and optimized p(+)n (p-on-n) cells are increased to more than 22 and 24 percent, (air mass zero (AMO), 25 C), respectively for a lattice-mismatched In(0.40)Al(0.60)As window layer of 10-nm thickness. Currently, most cell development work has been focused on n(+)p (n-on-p) structures although comparatively little improvement has been found for n(+)p cells.

  10. Hydrazine-Assisted Formation of Indium Phosphide (InP-Based Nanowires and Core-Shell Composites

    Directory of Open Access Journals (Sweden)

    David Jishiashvili

    2012-12-01

    Full Text Available Indium phosphide nanowires (InP NWs are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.

  11. Molecular fingerprint-region spectroscopy from 5-12 \\mu m using an orientation-patterned gallium phosphide optical parametric oscillator

    CERN Document Server

    Maidment, Luke; Reid, Derryck T

    2016-01-01

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 \\mu m with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  12. Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator.

    Science.gov (United States)

    Maidment, Luke; Schunemann, Peter G; Reid, Derryck T

    2016-09-15

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation-patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 μm with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard. PMID:27628372

  13. Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator.

    Science.gov (United States)

    Maidment, Luke; Schunemann, Peter G; Reid, Derryck T

    2016-09-15

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation-patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 μm with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  14. Electron-phonon superconductivity in the ternary phosphides Ba M2P2 (M =Ni,Rh,and Ir)

    Science.gov (United States)

    Karaca, Ertuǧrul; Tütüncü, H. M.; Srivastava, G. P.; Uǧur, S.

    2016-08-01

    Ab initio plane-wave pseudopotential calculations of electronic and vibrational properties have been carried out for the ternary phosphides Ba M2P2 (M =Ni,Rh and Ir) with a ThCr2Si2 -type structure. The calculated electronic results show the metallic character of Ba M2P2 , and the plots of total and partial density of states of Ba M2P2 exhibit strong hybridization between the d states of the M atom and the p states of the P atom below the Fermi energy. Differences in the phonon spectrum and density of states both in the acoustical and optical ranges for these compounds are presented and discussed. The Eliashberg spectral function for these compounds has been calculated by using a linear response approach based on the density functional theory. By integrating the Eliashberg spectral function, the average electron-phonon coupling parameter (λ ) is determined to be 0.61 for BaNi2P2 , 0.55 for BaIr2P2 , and 0.43 for BaRh2P2 . Using the calculated values of λ and the logarithmically averaged phonon frequency ωln the superconducting critical temperature (Tc) values for BaNi2P2,BaIr2P2 , and BaRh2P2 are obtained to be 2.80, 1.97, and 0.70 K, respectively, which compare very well with their experimental values of 3.0, 2.1, and 1.0 K.

  15. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.

    Science.gov (United States)

    Lee, Yoon Cheol; Han, Dong-Wook; Park, Mihui; Jo, Mi Ru; Kang, Seung Ho; Lee, Ju Kyung; Kang, Yong-Mook

    2014-06-25

    We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the electrospinning technique. These dense and thick carbon layers prevented not only electrolyte penetration into the inner LiFePO4 nanofibers but also facile Li ion transport at the electrode/electrolyte interface. In contrast, the existing strong interactions between the carbon and oxygen atoms on the surface of the pristine LiFePO4/C nanofibers were weakened or partly broken by the adhesion of phosphorus, thereby improving Li ion migration through the thick carbon layers on the surfaces of the LiFePO4 nanofibers. As a result, the phosphidated LiFePO4/C nanofibers have a higher initial discharge capacity and a greatly improved rate capability when compared with pristine LiFePO4/C nanofibers. Our findings of high Li ion transport induced by phosphidation can be widely applied to other carbon-coated electrode materials. PMID:24786736

  16. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  17. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Kristen [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-18

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  18. Effect of multilayer structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide.

    Science.gov (United States)

    Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling

    2016-06-28

    Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP. PMID:27250915

  19. Proposing Boric Acid as an Antidote for Aluminium Phosphide Poisoning by Investigation of the Chemical Reaction Between Boric Acid and Phosphine

    Directory of Open Access Journals (Sweden)

    Motahareh Soltani

    2013-01-01

    Full Text Available Aluminium phosphide (AlP is a storage fumigant pesticide, which is used to protect stored grains especially from insects and rodents. It releases phosphine (PH3 gas, a highly toxic mitochondrial poison, in contact with moisture, particularly if acidic. Although the exact mechanism of action is unknown so far, the major mechanism of PH3 toxicity seems to be the inhibition of cytochrome-c oxidase and oxidative phosphorylation which eventually results in adenosine triphosphate (ATP depletion and cell death. Death due to AlP poisoning seems to be as a result of myocardial damage. No efficient antidote has been found for AlP poisoning so far, and unfortunately, most of the poisoned human cases die. PH3, like ammonia (NH3, is a Lewis base with a lone-pair electron. However, boric acid (B(OH3 is a Lewis acid with an empty p orbital. It is predicted that lone-pair electron from PH3 is shared with the empty p orbital from B(OH3 and a compound forms in which boron attains its octet. In other words, PH3 is trapped and neutralised by B(OH3. The resulting polar reaction product seems to be excretable by the body due to hydrogen bonding with water molecules. The present article proposes boric acid as a non-toxic and efficient trapping agent and an antidote for PH3 poisoning by investigating the chemical reaction between them.

  20. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Kristen [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-19

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  1. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    Science.gov (United States)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  2. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  3. An Improved Study of Electronic Band Structure and Optical Parameters of X-Phosphides (X--B, AL, Ga, In) by Modified Becke-Johnson Potential%An Improved Study of Electronic Band Structure and Optical Parameters of X-Phosphides (X--B, AL, Ga, In) by Modified Becke-Johnson Potential

    Institute of Scientific and Technical Information of China (English)

    Masood Yousaf; M.A. Saeed; R. Ahmed; M.M. Alsardia; Ahmad Radzi Mat Isa; A. Shaari

    2012-01-01

    We report the electronic band structure and optical parameters of X-Phosphides (X=B, AI, Ga, In) by first-principles technique based on a new approximation known as modified Becke-Johnson (roB J). This potential is considered more accurate in elaborating excited states properties of insulators and semiconductors as compared to LDA and GGA. The present calculated band gaps values of BP, AlP, GaP, and InP are 1.867 eV, 2.268 eV, 2.090 eV, and 1.377 eV respectively, which are in close agreement to the experimental results. The band gap values trend in this study is as: E9 (mBJ-GGA/LDA) 〉 E9 (GGA) 〉 Eg (LDA). Optical parametric quantities (dielectric constant, refractive index, reflectivity and optical conductivity) which based on the band structure are aiso presented and discussed. BP, AlP, GaP, and InP have strong absorption in between the energy range 4-9 eV, 4-7 ev, 3-7 eV, and 2-7 eV respectively. Static dielectric constant, static refractive index and coefficient of reflectivity at zero frequency, within mBJ-GGA, are also calculated. BP, AIP, GaP, and InP show significant optical conductivity in the range 5.2-10 eV, 4.3-8 eV, 3.5- 7.2 eV, and 3.2-8 eV respectively. The present study endorses that the said compounds can be used in opto-electronic applications, for different energy ranges.

  4. Oxidation-reduction properties of americium, curium, berkelium, californium, einsteinium and fermium, and thermodynamic consequences for the 5f series

    International Nuclear Information System (INIS)

    The amalgamation of 5f elements from Am to Fm has been studied by using 241Am, 244Cm, 249Bk, 249Cf, 252Cf, 253Es, 254Es, 252Fm and 255Fm with two electrochemical methods, radiocoulometry and radiopolarography, perfectly adapted to investigate extremely diluted solutions when the concentration of electroactive species is as low as 10-16M. The theory of radiocoulometry has been developed in the general cases of reversible and irreversible electrode process. It has been used to interpret the experimental data on the kinetic curves of amalgamation, and to estimate the standard rate constant of the electrode process in complexing medium (citric). On the other hand the radiopolarographic method has been applied to study the mechanism of reduction at the dropping mercury electrode of cations M3+ in aqueous medium to the metal M with formation of amalgam. The results are exploited into two directions: 1- Acquisition of some data concerning the oxidation-reduction properties of elements from Am to Fm. Therefore the standard electrode E0 [M(III-0)] potentials for Bk, Cf and Es, and the standard electrode E0 [M(II-0)] potential for Fm are estimated and the relative stability of each oxidation state (from II to VII) of 5f elements is discussed; 2- Acquisition of unknown thermodynamic data on transcalifornium elements. Correlations between 4f and 5f elements are precised and some divergences appear for the second half of 4f and 5f series (i.e. for 65<=Z<=71 and 97<=Z<=103)

  5. [Suicide attempt with aluminum phosphide poisoning].

    Science.gov (United States)

    Reyna-Medina, Mauricio; Vázquez-de Anda, Gilberto Felipe; García-Monroy, Jesús; Valdespino-Salinas, Eduardo Alfredo; Vicente-Cruz, Dante Carlos

    2013-01-01

    Introducción: la tentativa suicida con el fumigante denominado fosfuro de aluminio tiene elevada mortalidad. El objetivo fue determinar la frecuencia del consumo de fosfuro de aluminio por tentativa suicida. Métodos: estudio retrospectivo de serie de casos, realizado en el Hospital General de Tejupilco durante los años 2009 a 2011. De 32 pacientes con tentativa suicida, solo se incluyeron 18 que utilizaron fosfuro de aluminio. El riesgo de rescate se calificó de acuerdo con la escala de Weisman. Resultados: de los 18 pacientes suicidas que utilizaron fosfuro de aluminio, 83 % era del sexo femenino (n = 15) y la edad media era de 17.7 ± 4.4 años, 89 % (n = 16) tenía = 23 años de edad y 89 % (n = 16) cursaba con depresión. El motivo detonante del intento suicida fue el abandono de la pareja en 56 % (n = 10). La letalidad del fosfuro de aluminio fue de 78 % (n = 14). Las defunciones sucedieron en 4 ± 2 horas. Conclusiones: el fosfuro de aluminio es el tóxico más usado con intención suicida en el medio rural; su uso predomina en las mujeres abandonadas por su pareja y se relaciona con depresión emocional y seguridad de morir.

  6. Efficient water reduction with gallium phosphide nanowires

    NARCIS (Netherlands)

    Standing, A.; Assali, S.; Gao, L.; Verheijen, M.A.; Van Dam, D.; Cui, Y.; Notten, P.H.L.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new m

  7. Cleavage Luminescence from Cleaved Indium Phosphide

    International Nuclear Information System (INIS)

    We outline the experiments performed to gain further information about the structure and properties of cleaved InP surfaces. The experiments involved detecting the luminescence produced after cleaving thin InP plates within a high vacuum, by a process of converting the luminescence to an electrical signal which could be amplified and measured accurately. The experimental results show that the detected luminescence durations from cleaved InP are usually only about 10μs. It is believed that this time represents the time of travel of the crack with the actual recombination time being much shorter. Strong signals could also be picked up from cleaved InP in air

  8. 磷化铝中毒抑制大鼠胆碱酯酶及阿托品和氯解磷啶的作用%Cholinesterase inhibition by aluminium phosphide poisoning in rats and effects of atropine and pralidoxime chloride

    Institute of Scientific and Technical Information of China (English)

    Shivani MHrRA; Sharda Shah PESHIN; Shyam Bala LALL

    2001-01-01

    AIM: To investigate the cholinesterase inhibition and effect of atropine and pralidoxime (PAM) treatment on the survival time in the rat model of aluminium phosphide (ALP) poisoning. METHODS: The rats were treated with AlP (10 mg/kg; 5.55×LD50; ig) and the survival time was noted. The effect of atropine (1 mg/kg, ip) and PAM (5 mg/kg, ip) was noted on the above. Atropine and PAM were administered 5 min after AlP. Plasma cholinesterase levels were measured spectrophotometrically in the control and AlP treated rats 30 min after administration. RESULTS: Treaanent with atropine and PAM increased the survival time by 2.5 fold (1.4 h ±0.3 h vs 3.4 h±2.5 h, P<0.01) in9 out of 15 animals and resulted in total survival of the 6 remaining animals. Plasma cholinesterase levels were inhibited by 47%, (438±74) U/L in AlP treated rats as compared tocontrol (840±90) U/L (P<0.01). CONCLUSION: This preliminary study concludes that AlP poisoning causes cholinesterase inhibition and responds to treatment with atropine and PAM.

  9. Electroreflectance of indium gallium arsenide phosphide lattice matched to indium phosphide

    International Nuclear Information System (INIS)

    We report the first systematic measurement of the electroreflectance spectra of In/sub u/Ga/sub 1-u/P/sub v/As/sub 1-v/ over the range of compositions that lattice-match InP substrates, at room temperature and for energies between 0.7 and 3.5 eV. Analysis of the spectra has enabled us to determine the composition dependence of E0, E0+Δ0, E1, E1+Δ1, Δ0, and Δ1. Experimentally determined values of E0, E0+Δ0, and m*/m0 have been used to predict the values of the g factors for these compounds

  10. Effect of N-acetylcysteine and L-NAME on aluminium phosphide induced cardiovascular toxicity in rats%N-乙酰半胱氨酸和L-NAME对磷化铝诱导的大鼠心血管毒性的作用

    Institute of Scientific and Technical Information of China (English)

    Archana AZAD; Shyam Bala LALL; Shivani MITTRA

    2001-01-01

    AIM: To investigate the protective effects of N-acetyl- cysteine (NAC) and Nω-Nitro-L-arginine methyl ester (L-NAME) on aluminium phosphide (AlP) poisoning induced hemodynamic changes, myocardial oxygen free radical injury and on survival time in rats. METH- ODS: AlP (12.5 mg/kg) was administered intragastri cally under urethane anaesthesia. The effect of pre- and post-treatment with NAC and L-NAME alone and in combination was studied on haemodynamic parameters [blood pressure (BP), heart rate (HR), and electrocar- diogram (ECG) ] and biochemical parameters ( malonyl- dialdehyde, catalase, and glutathione peroxidase). RE SULTS: AlP caused significant hypotension, tachycar dia, ECG abnormalities, and finally marked bradycardia. The mean survival time was (90 ± 10) min. There was significant increase in myocardial malonyldialdehyde (MDA), and decrease in catalase and glutathione peroxi dase (GSH Px) levels. NAC infusion (6.25 mg·kg-1· min-1, iv for 30 min) caused insignificant hemodynamic and biochemical changes. Pre- and post-treatment of NAC with AlP significantly increased the survival time, stabilized BP, HR, and ECG, decreased MDA and in creased GSH Px levels compared to AlP group. L- NAME infusion ( 1 mg· kg- 1· min- 1, iv for 60 min) as such caused significant rise in BP but precipitated ECG abnormalities. Pre- and post-treatment of L-NAME with AlP neither improved the survival time nor the biochemi cal parameters despite significant rise in BP. Co-admin- istration of both the drugs with AlP worsened the hemo dynamic and biochemical parameters with reduction in the survival time as compared to AlP. CONCLUSION: NAC increased the survival time by reducing myocardial oxidative injury whereas L-NAME showed no such pro tective effects in rats exposed to AlP.

  11. Third-Order Nonlinear Optical Susceptibility of Indium Phosphide Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Li; WANG Dong; CHEN Guang-De; LIU Hui

    2007-01-01

    InP nanocrystals synthesized by refluxing and annealing of organic solvent are determined from XRD measurements to have an average granularity of 25 nm. The nonlinear optical properties of the InP nanocrystals studied by using laser Z-scan technique with 50ps pulses at 532nm are found to reveal strong nonlinear optical properties and two-photon absorption phenomenon. Also, the nonlinear absorption coefficient, the nonlinear refractive index and the third-order nonlinear optical susceptibility are determined by experiments, in which the nonlinear refractive index is three orders of magnitude larger than that of bulk InP.

  12. Spectroscopic properties of colloidal indium phosphide quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  13. Room temperature particle detectors based on indium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Yatskiv, R., E-mail: yatskiv@ufe.c [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 18251 Praha 8 (Czech Republic); Grym, J.; Zdansky, K. [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 18251 Praha 8 (Czech Republic); Pekarek, L. [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 18251 Praha 8 (Czech Republic); Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Praha 8 (Czech Republic)

    2010-01-01

    A study of electrical properties and detection performance of particle detectors based on bulk InP and semiconducting LPE layers operated at room temperature is presented. Bulk detectors were fabricated on semi-insulating InP crystals grown by liquid-encapsulated Czochralski (LEC) technique. High purity InP layers of both n- and p-type conductivity were used to fabricate detector structures with p-n junction. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from {sup 241}Am source at room temperature. Better noise properties were achieved for detectors with p-n junctions due to better quality contacts on p-type layers.

  14. Room temperature particle detectors based on indium phosphide

    Science.gov (United States)

    Yatskiv, R.; Grym, J.; Zdansky, K.; Pekarek, L.

    2010-01-01

    A study of electrical properties and detection performance of particle detectors based on bulk InP and semiconducting LPE layers operated at room temperature is presented. Bulk detectors were fabricated on semi-insulating InP crystals grown by liquid-encapsulated Czochralski (LEC) technique. High purity InP layers of both n- and p-type conductivity were used to fabricate detector structures with p-n junction. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from 241Am source at room temperature. Better noise properties were achieved for detectors with p-n junctions due to better quality contacts on p-type layers.

  15. Room temperature particle detectors based on indium phosphide

    International Nuclear Information System (INIS)

    A study of electrical properties and detection performance of particle detectors based on bulk InP and semiconducting LPE layers operated at room temperature is presented. Bulk detectors were fabricated on semi-insulating InP crystals grown by liquid-encapsulated Czochralski (LEC) technique. High purity InP layers of both n- and p-type conductivity were used to fabricate detector structures with p-n junction. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from 241Am source at room temperature. Better noise properties were achieved for detectors with p-n junctions due to better quality contacts on p-type layers.

  16. Hydrodechlorination of polychlorinated molecules using transition metal phosphide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia, J.A.; Infantes-Molina, A., E-mail: ainfantes@uma.es; Rodríguez-Castellón, E.

    2015-10-15

    Highlights: • Ni{sub 2}P catalyst is much more active than CoP one for Cl-removal. • Benzene is the main reaction product for Ni{sub 2}P catalyst. • The activity followed the order ClB > 1,4-DClB ≈ 1,2,4-TClB > 1,3-DClB > 1,2-DClB for Ni{sub 2}P. • The activity followed the order ClB > 1,4-DClB > 1,3-DClB > 1,2-DClB > 2,4-TClB for CoP. • Active phase dispersion, P-concentration on the surface and H-species on the surface explain the results. - Abstract: Ni{sub 2}P and CoP catalysts (5 wt.% of metal) supported on a commercial SiO{sub 2} were tested in the gas phase catalytic hydrodechlorination (HDCl) of mono (chlorobenzene-ClB) and polychlorobenzenes (PCBs) (1,2- dichlorobenzene (1,2-DClB), 1,3-dichlorobenzene (1,3-DClB), 1,4-dichlorobenzene (1,4-DClB), and 1,2,4-trichlorobenzene (1,2,4-TClB)) at atmospheric pressure. It was investigated how the number and position of chlorine atoms in the molecule influence the HDCl activity. The prepared catalysts were characterized by X-ray diffraction (XRD), CO chemisorption, N{sub 2} adsorption–desorption at −196 °C, and X-ray photoelectron spectroscopy (XPS). Characterization results indicated better active phase dispersion and greater amount of P on the Ni{sub 2}P catalyst surface. Catalytic results showed that the Ni{sub 2}P was more active and stable in this type of reactions. The hydrodechlorination activity decreased by increasing the number of chlorine atoms in the molecule and chlorine substituents in close proximity. The observed trend in the HDCl activity was: ClB > 1,4-DClB > 1,3-DClB > 1,2-DClB > 1,2,4-TClB. The exception was the catalytic response after 24 h on stream observed for the Ni{sub 2}P in the HDCl reaction of 1,2,4-TClB, which was equal to that observed for the 1,4-DClB molecule, and also yielding benzene as the main reaction product.

  17. Observation of Weyl nodes and Fermi arcs in tantalum phosphide.

    Science.gov (United States)

    Xu, N; Weng, H M; Lv, B Q; Matt, C E; Park, J; Bisti, F; Strocov, V N; Gawryluk, D; Pomjakushina, E; Conder, K; Plumb, N C; Radovic, M; Autès, G; Yazyev, O V; Fang, Z; Dai, X; Qian, T; Mesot, J; Ding, H; Shi, M

    2016-01-01

    A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with non-zero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only a single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs. PMID:26983910

  18. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... agricultural commodities as follows: Commodity Parts per million Alfalfa, forage 0.2 Alfalfa, hay 0.2 Barley... Expiration/Revocation Date Alfalfa, forage 1.0 12/31/05 Alfalfa, hay 1.0 12/31/05 Clover, forage 0.1...

  19. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Science.gov (United States)

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  20. A Semiconductor Under Insulator Technology in Indium Phosphide

    CERN Document Server

    Mnaymneh, Khaled; Frédérick, Simon; Lapointe, Jean; Poole, Philip J; Williams, Robin L

    2012-01-01

    This Letter introduces a Semiconductor-Under-Insulator (SUI) technology in InP for designing strip waveguides that interface InP photonic crystal membrane structures. Strip waveguides in InP-SUI are supported under an atomic layer deposited insulator layer in contrast to strip waveguides in silicon supported on insulator. We show a substantial improvement in optical transmission when using InP-SUI strip waveguides interfaced with localized photonic crystal membrane structures when compared with extended photonic crystal waveguide membranes. Furthermore, SUI makes available various fiber-coupling techniques used in SOI, such as sub-micron coupling, for planar membrane III-V systems.

  1. Strongly-guided indium phosphide/indium gallium arsenic phosphide Mach-Zehnder modulator for optical communications

    Science.gov (United States)

    Betty, Ian Brian

    2006-12-01

    The development of strongly-guided InP/In1-x GaxAsyP 1-y based Mach-Zehnder optical modulators for 10Gb/s telecommunications is detailed. The modulators have insertion losses including coupling as low as 4.5dB, due to the incorporation of monolithically integrated optical mode spot-size converters (SSC's). The modulators are optimized to produce system performance that is independent of optical coupling alignment and for wavelength operation between 1525nm and 1565nm. A negatively chirped Mach-Zehnder modulator design is demonstrated, giving optimal dispersion-limited reach for 10Gb/s ON/OFF-keying modulation. It is shown that the optical system performance for this design can be determined from purely DC based optical measurements. A Mach-Zehnder modulator design invoking nearly no transient frequency shifts under intensity modulation is also presented, for the first time, using phase-shifter implementations based on the Quantum-Confined-Stark-Effect (QCSE). The performance impact on the modulator from the higher-order vertical and lateral waveguide modes found in strongly-guided waveguides has been determined. The impact of these higher-order modes has been minimized using the design of the waveguide bends, MMI structures, and doping profiles. The fabrication process and optical design for the spot-size mode converters are also thoroughly explored. The SSC structures are based on butt-joined vertically tapered passive waveguide cores within laterally flared strongly-guided ridges, making them compatible with any strong-guiding waveguide structure. The flexibility of the SSC process is demonstrated by the superior performance it has also enabled in a 40Gb/s electro-absorption modulator. The presented electro-absorption modulator has 3.6dB fiber-to-fiber insertion loss, polarization dependent loss (PDL) of only 0.3dB over 15dB extinction, and low absolute chirp (|alpha H| < 0.6) over the full dynamic range.

  2. Use of trioctylphosphine oxide for transplutonium element extraction and purification

    International Nuclear Information System (INIS)

    Investigated was extraction of tri-valent curium, berkelium, californium, einsteinium as well as cerium and europium with trioctylphosphin oxide from lactic acid solutions, containing DTPA and aluminium nitrate depending on the aluminium nitrate and TOPO concentrations and nitric acid solutions of variable concentration as well. Under optimum conditions of extraction chromatography of berkelium studied was the distribution of cobalt, nickel, chromium, iron, aluminium, titanium, zirconium and niobium ions, and the coefficients of berkelium purification from cations investigated were determined. The effect of weight quantities of cation impurities on extraction chromatographic yield of berkelium has been investigated. Examples of practice application of the extraction chromatography with the use of TOPO are given

  3. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods.

    Science.gov (United States)

    Wang, Fudong; Buhro, William E

    2007-11-21

    Colloidal InP quantum rods (QRs) having controlled diameters and lengths are grown by the solution-liquid-solid method, from Bi nanoparticles in the presence of hexadecylamine and other conventional quantum dot surfactants. These quantum rods show band-edge photoluminescence after HF photochemical etching. Photoluminescence efficiency is further enhanced after the Bi tips are selectively removed from the QRs by oleic acid etching. The QRs are anisotropically 3D confined, the nature of which is compared to the corresponding isotropic 3D confinement in quantum dots and 2D confinement in quantum wires. The 3D-2D rod-wire transition length is experimentally determined to be 25 nm, which is about 2 times the bulk InP exciton Bohr radius (of approximately 11 nm).

  4. Gallium phosphide as a new material for anodically bonded atomic sensors

    Directory of Open Access Journals (Sweden)

    Nezih Dural

    2014-08-01

    Full Text Available Miniaturized atomic sensors are often fabricated using anodic bonding of silicon and borosilicate glass. Here we describe a technique for fabricating anodically bonded alkali-metal cells using GaP and Pyrex. GaP is a non-birefringent semiconductor that is transparent at alkali-metal resonance wavelengths, allowing new sensor geometries. GaP also has a higher thermal conductivity and lower He permeability than borosilicate glass and can be anodically bonded below 200 °C, which can also be advantageous in other vacuum sealing applications.

  5. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight has demonstrated highly-uniform APD arrays based on the highly sensitive InGaAs/InP material system. These results provide great promise for achieving the...

  6. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.;

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination.......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...

  7. Sea urchin-like cobalt-iron phosphide as an active catalyst for oxygen evolution reaction

    Science.gov (United States)

    Mendoza-Garcia, Adriana; Su, Dong; Sun, Shouheng

    2016-02-01

    Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm-2 at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER.Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm-2 at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08763e

  8. Efficient Water Splitting Catalyzed by Cobalt Phosphide-Based Nanoneedle Arrays Supported on Carbon Cloth.

    Science.gov (United States)

    Wang, Peng; Song, Fang; Amal, Rose; Ng, Yun Hau; Hu, Xile

    2016-03-01

    Efficient and low-cost electrocatalysts for water splitting are essential for solar fuel production. Herein, we report that nanoarrays of CoP supported on carbon cloth are an efficient bifunctional catalyst for overall water splitting. The catalyst exhibits remarkable activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media, delivering a current density of 10 mA cm(-2) at an overpotential of 281 mV for OER and 95 mV for HER. During electrocatalysis, the surface of the CoP catalyst was covered with a layer of CoOx , which was the active species. However, the CoP core and the nanoarray morphology contributed significantly to the activity. PMID:26811938

  9. Emission channeling studies of Indium Phosphide at low temperatures at CERN-ISOLDE

    CERN Document Server

    Amorim, Lígia Marina; Wahl, Ulrich

    $^{111}$In radioactive atoms were implanted into a single crystal of InP. After annealing for lattice recovery of implantation defects, the lattice site location of $^{111}$In/$^{111}$Cd was studied with the emission channeling technique, from room temperature ( 300K) down to 50K at CERN-ISOLDE. This work aims to test a recently developed cooling station for emission channeling experiments. InP is a material with a relatively low Debye temperature, where significant changes of atomic vibrations are expected with temperature, thus providing an ideal test ground of the effects, which can be expected to influence the data, i.e., de-channeling from lattice vibration and changes of the root mean square displacement (r.m.s.) of the atomic position of the probe atom. In the future we intend to apply these studies to monitor individual impurities or lattice constituents, with temperature, upon phase transitions as well as studying lattice sites of dopants implanted at low temperature.

  10. Electrochemical Etching of Indium Phosphide Surfaces Studied by Voltammetry and Scanned Probe Microscopes

    OpenAIRE

    Kaneshiro, Chinami; Sato, Taketomo; Hasegawa, Hideki

    1999-01-01

    Using voltammetry, X-ray photoemission spectroscopy (XPS), in situ electrochemical scanning tunneling microscopy (STM), ex situ atomic force microscopy (AFM) and scanning electron microscope (SEM) measurements, electrochemical etching modes for n-InP surfaces were investigated and optimized for uniform and controlled etching in an HCl electrolyte. The voltammograms indicated the presence of active and passive regions. The surfaces obtained in the active region were clean and featureless with ...

  11. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Science.gov (United States)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E.; Sorokin, M.; Facsko, S.; Trautmann, C.

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV 129Xe(33-40)+ and with various swift heavy ions (SHI) of 30 MeV I9+ and 374 MeV-2.2 GeV 197Au25+. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  12. Synthesis of Indium Nitride Epitaxial Layers on a Substrate of Porous Indium Phosphide

    Directory of Open Access Journals (Sweden)

    J.A. Suchikova

    2015-10-01

    Full Text Available The paper presents a technique to obtain InN films on porous InP substrates by radical-beam gettering epitaxy. According to the results of the Auger spectroscopy, InN film thickness ranged from 100 nm to 0.5 microns depending on the etching conditions.

  13. Absorption and fluorescence spectra of gallium phosphide(GaP) nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YUE Long-yi; ZHANG Zhao-chun; CHEN Xu

    2006-01-01

    The optical absorption spectrum ranging from 200 to 800 nm and fluorescence spectra ranging from 300 to 650 nm of GaP nanoparticles at room temperature were reported. From the optical absorption spectrum it is inferred that the GaP nanoparticles exhibit a direct transition of about 410 nm (3.02 eV) and an indirect transition around 480 nm (2.58 eV). In addition, an absorption peak at about 308 nm (4.02 eV) corresponding to the direct transition at higher energy was observed. The absorption peak was attributed to the transition from the spin-orbit-split valence band to the lowest conduction band along the A direction. By observing the fluorescence of the GaP nanoparticles, it follows that multiple emission bands corresponding to the violet, blue, and yellow light are shown peaking at about 400.4-414.1 nm (3.097-2.994 eV), 450.1-466.8 nm (2.755-2.656 eV), and 582.4 nm (2.129 eV),respectively. The violet and blue light emissions are ascribed to the direct and indirect transitions from conduction band to valence band of the GaP nanoparticles. As to the weak yellow emission, it may be attributed to the radiative recombination from defect centers. The spin-orbit-splitting of the GaP nanoparticles is determined as about 100 meV.

  14. Emission bands of phosphorus and calculation of band structure of rare earth phosphides

    International Nuclear Information System (INIS)

    The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band

  15. DWDM laser arrays fabricated using thermal nanoimprint lithography on Indium Phosphide substrates

    DEFF Research Database (Denmark)

    Smistrup, K.; Nørregaard, J.; Mironov, A.;

    P and Si have different thermal expansion coefficients, so temperatures must be kept low in order to maintain the designed pitches in the final devices. The imprinting was performed using NILT’s CNI tool. The imprint resist used was mr-I7020E spun to a thickness of 160 nm. Imprint pressure, temperature...... by including a lambda quarter shift at the center of the grating. The need for phase shifts and multiple wavelengths eliminates some lithography methods such as holography. Typically, these lasers are produced by e-beam lithography (EBL). We present a production method based on thermal nanoimprint lithography...... during the imprint process and the narrow temperature window for imprint and separation (80°C and 55°C) ensures minimal issues with thermal mismatch between the InP substrate and the Si stamp. The imprinted InP wafers were processed in NeoPhotonics standard process line to create working lasers...

  16. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  17. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a monolithically integrated FPA of densely packed APDs (70-um pitch) operating at or around 1500 nm wavelength that is suitable for the...

  18. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    Science.gov (United States)

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an InP cell as the active layer in a monolithically integrated module. Importantly, TF-VLS growth avoids the hobbles of traditional growth: the epitaxial wafer substrate, low utilization efficiency of expensive metalorganic precursors, and high capital depreciation costs due to low throughput. Production costs are projected to be 0.76/W(DC) for the benchmark case of 12% efficient modules and would decrease to 0.40/W(DC) for the long-term potential case of 24% efficient modules.

  19. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.

  20. Controlled Synthesis of Uniform Cobalt Phosphide Hyperbranched Nanocrystals Using Tri- n -octylphosphine Oxide as a Phosphorus Source

    KAUST Repository

    Zhang, Haitao

    2011-01-12

    A new method to produce hyperbranched Co 2P nanocrystals that are uniform in size, shape, and symmetry was developed. In this reaction tri-n-octylphosphine oxide (TOPO) was used as both a solvent and a phosphorus source. The reaction exhibits a novel monomer-saturation-dependent tunability between Co metal nanoparticle (NP) and Co 2P NP products. The morphology of Co 2P can be controlled from sheaflike structures to hexagonal symmetric structures by varying the concentration of the surfactant. This unique product differs significantly from other reported hyperbranched nanocrystals in that the highly anisotropic shapes can be stabilized as the majority shape (>84%). This is the first known use of TOPO as a reagent as well as a coordinating background solvent in NP synthesis. © 2011 American Chemical Society.

  1. Indium phosphide quantum dots in GaP and in In 0.48 Ga 0.52 P

    OpenAIRE

    Hatami, Fariba

    2002-01-01

    Im Rahmen dieser Arbeit wurden selbstorganisierte, verspannte InP-Quantenpunkte mittels Gasquellen-Molekularstrahlepitaxie hergestellt und deren strukturelle und optische Eigenschaften untersucht. Die Quantenpunkte wurden sowohl in InGaP-Matrix gitterangepasst auf GaAs-Substrat als auch in GaP-Matrix auf GaP-Substrat realisiert. Die starke Gitterfehlanpassung von 3,8% im InP/InGaP- bzw. 7,7% im InP/GaP-Materialsystem ermöglicht Inselbildung mittels des Stranski-Krastanow-Wachstumsmodus: Ab e...

  2. Influence of 2 MeV electrons irradiation on gallium phosphide light-emitting diodes reverse currents

    International Nuclear Information System (INIS)

    Results of reverse electrophysical characteristics study of red and green LED's, initial and irradiated with 2 MeV electrons were given. It was found that reverse current was predominantly caused by carriers tunneling at Urev <- 9 V, and by the avalanche multiplication at Urev >- 13 V, in the range U = 9-13 V both mechanisms are available. Current increase at high voltage areas (Urev > 19 V) is limited by the base resistance of diode. In the case of significant reverse currents (I > 1 mA) irradiation of diodes leads to the shift of reverse current-voltage characteristics into the high voltages direction

  3. Indium phosphide-lattice-matched, long-wavelength vertical-cavity surface-emitting lasers for optical fiber communications

    Science.gov (United States)

    Nakagawa, Shigeru

    2001-12-01

    The purpose of this dissertation is to realize reliable and practical long-wavelength vertical-cavity surface- emitting lasers (VCSELs) for real optical fiber communications. The approach is to deploy all-lattice- matched structures on InP, which have been already proven to provide high performance, reliability, low cost, and high manufacturability by GaAs-based shorter-wavelength (850-980 nm) VCSELs. AlGaAsSb is a promising material to implement highly reflecting distributed Bragg reflectors (DBRs) which are lattice-matched to InP. However, the high operating voltage and high thermal impedance caused by the AlGaAsSb/AlAsSb DBRs result in the large temperature rise, preventing CW operation. The primary advance in this dissertation is a double- intracavity contacted structure. This structure allows generated heat and injected current to bypass the Sb- based mirrors, reducing the temperature increase. The device has demonstrated excellent performance such as high maximum output power (>1 mW at 20°C and >100 μW at 80°C) and high maximum operation temperature (88°C) for the 8 μm aperture. The InP-lattice- matched VCSEL fully benefits from the double-intracavity contacted structure in terms of the device temperature, since the measured operating voltage and thermal impedance are comparable with the GaAs-lattice-matched structures. There are several parameters to be improved for the higher temperature and higher output operation. The low injection efficiency results from the small overlap of optical mode and current density profile, which will be increased using two separate oxide apertures for current and optical confinements. The relatively low characteristic temperature of the injection efficiency and threshold current must be improved by optimizing the material quality of the active region.

  4. Determination of volatile, toxic hydrogen phosphides in the sediments of the Elbe river, the Elbe estuaries and the Heligoland Bay

    International Nuclear Information System (INIS)

    The distribution and concentraion of phosphines in the sediments of the Elbe river were determined by selective preparation and analysis. The concentration of phosphines in one kilogram wet sediment was in the range of 0.1 to 57 n g with the bulking, anaerobic mud from harbors having the highest and the sandy, aerobic sediments having the lowest concentrations. Phosphines in fluvial sediments were detected successfully for the first time applying the method described. (orig.)

  5. Antiphase domain tailoring for combination of modal and 4¯ -quasi-phase matching in gallium phosphide microdisks.

    Science.gov (United States)

    Guillemé, P; Vallet, M; Stodolna, J; Ponchet, A; Cornet, C; Létoublon, A; Féron, P; Durand, O; Léger, Y; Dumeige, Y

    2016-06-27

    We propose a novel phase-matching scheme in GaP whispering-gallery-mode microdisks grown on Si substrate combining modal and 4¯ -quasi-phase-matching for second-harmonic-generation. The technique consists in unlocking parity-forbidden processes by tailoring the antiphase domain distribution in the GaP layer. Our proposal can be used to overcome the limitations of form birefringence phase-matching and 4¯ -quasi-phase-matching using high order whispering-gallery-modes. The high frequency conversion efficiency of this new scheme demonstrates the competitiveness of nonlinear photonic devices monolithically integrated on silicon. PMID:27410613

  6. Chemical mechanical polishing of Indium phosphide, Gallium arsenide and Indium gallium arsenide films and related environment and safety aspects

    Science.gov (United States)

    Matovu, John Bogere

    As scaling continues with advanced technology nodes in the microelectronic industry to enhance device performance, the performance limits of the conventional substrate materials such as silicon as a channel material in the front-end-of-the-line of the complementary metal oxide semiconductor (CMOS) need to be surmounted. These challenges have invigorated research into new materials such as III-V materials consisting of InP, GaAs, InGaAs for n-channel CMOS and Ge for p-channels CMOS to enhance device performance. These III-V materials have higher electron mobility that is required for the n-channel while Ge has high hole mobility that is required for the p-channel. Integration of these materials in future devices requires chemical mechanical polishing (CMP) to achieve a smooth and planar surface to enable further processing. The CMP process of these materials has been associated with environment, health and safety (EH&S) issues due to the presence of P and As that can lead to the formation of toxic gaseous hydrides. The safe handling of As contaminated consumables and post-CMP slurry waste is essential. In this work, the chemical mechanical polishing of InP, GaAs and InGaAs films and the associated environment, health and safety (EH&S) issues are discussed. InP removal rates (RRs) and phosphine generation during the CMP of blanket InP films in hydrogen peroxide-based silica particle dispersions in the presence and absence of three different multifunctional chelating carboxylic acids, namely oxalic acid, tartaric acid, and citric acid are reported. The presence of these acids in the polishing slurry resulted in good InP removal rates (about 400 nm min-1) and very low phosphine generation (surfaces (0.1 nm RMS surface roughness). The optimized slurry compositions consisting of 3 wt % silica, 1 wt % hydrogen peroxide and 0.08 M oxalic acid or citric acid that provided the best results on blanket InP films were used to evaluate their planarization capability of patterned InP-STI structures of 200 mm diameter wafers. Cross sectional scanning electron microscope (SEM) images showed that InP in the shallow trench isolation structures was planarized and scratches, slurry particles and smearing of InP were absent. Additionally, wafers polished at pH 6 showed very low dishing values of about 12-15 nm, determined by cross sectional SEM. During the polishing of blanket GaAs, GaAs RRs were negligible with deionized water or with silica slurries alone. They were relatively high in aq. solutions of H2O2 alone and showed a strong pH dependence, with significantly higher RRs in the alkaline region. The addition of silica particles to aq. H2O2 did not increase the GaAs RRs significantly. The evolution of arsenic trihydride (AsH3) during the dissolution of GaAs in aq. H2O2 solution was similarly higher in the basic pH range than in neutral pH or in the acidic pH range. However, no AsH3 was measured during polishing, evidently because of the relatively high water solubility of AsH3. The work done on InGaAs polishing shows that InGaAs RR trends are different from those observed for InP or GaAs. InGaAs RRs at pH 2 are higher than those at pH 10 and highest at pH 4. Dissolution rates (DRs), Fourier Transform Infrared Spectroscopy (FTIR), contact angles, X-Ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence Spectroscopy (XRF), zeta potential measurements and calculated Gibbs free energy changes of the reactions involved during polishing and gas formation were used to discuss the observed RRs and hydride gas generation trends and to propose the reaction pathways involved in the material removal and in hydride gas generation mechanisms.

  7. Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Mao-Sung; Wu, Jia-Fang

    2013-12-01

    A Ni2P nanolayer with porous nanospheres was directly coated on fluorine-doped tin oxide glass by pulse-reverse deposition as a low-cost counter electrode catalyst for dye-sensitized solar cells, and the photoelectron conversion efficiency of the cell was increased to 7.32% by using a porous nanosphere catalyst due to the significantly improved ion transport.

  8. Low-temperature properties of rare-earth and actinide iron phosphide compounds MFe4P/sub 12/ (M = La, Pr, Nd, and Th)

    International Nuclear Information System (INIS)

    The low-temperature properties of MFe4P/sub 12/ (M = La, Pr, Nd, and Th) single crystals have been studied by means of electrical-resistivity, magnetization, specific-heat, and magnetoresistivity measurements. Superconductivity among these compounds is known to occur only in LaFe4P/sub 12/, which has a superconducting transition temperature T/sub c/ of ∼4 K. The compounds PrFe4P/sub 12/ and NdFe4P/sub 12/ display features that suggest the occurrence of antiferromagnetic ordering below ∼6.2 K and ferromagnetic ordering below ∼2 K, respectively. Isothermal magnetization curves for PrFe4P/sub 12/ below 6 K reveal a spin-flop or metamagnetic transition

  9. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    Science.gov (United States)

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-05-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g‑1 at a current density of 100 mA g‑1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour.

  10. Discovery of Isotopes of the Transuranium Elements with 93 <= Z <= 98

    CERN Document Server

    Fry, C

    2012-01-01

    One hundred and five isotopes of the transuranium elements neptunium, plutonium, americium, curium, berkelium and californium have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  11. Effect of calcination conditions on the properties of a new tungsten phosphide catalyst for hydroprocessing%焙烧条件对新型磷化钨催化剂加氢活性的影响

    Institute of Scientific and Technical Information of China (English)

    宋亚娟; 李翠清; 孙桂大; 黄顺贤

    2006-01-01

    以磷酸氢二铵和偏钨酸铵为原料,用不同条件焙烧处理的方法制备了一系列负载型和非负载型磷化钨(WP)催化剂.并对合成的催化剂进行了BET和XRD表征,并以噻吩、吡啶和环己烷混合溶液为模型化合物,对WP催化剂的噻吩加氢脱硫(HDS)和吡啶加氢脱氮(HDN)活性进行了评估,着重考察了WP催化剂前体的焙烧温度和焙烧时间等制备条件对催化剂结构和加氢精制催化活性的影响.

  12. Neutron multiplicities for the transplutonium nuclides

    International Nuclear Information System (INIS)

    This paper continues, with respect to the transplutonium nuclides, earlier efforts to collate and evaluate data from the scientific literature on the prompt neutron multiplicity distribution from fission and its first moment = ΣnuPnu. The isotopes considered here for which P/sub nu/ and or data (or both) were found in the literature are of americium (Am), curium (Cm), berkelium (Bk), californium (Cf), einsteinium (Es), fermium (Fm), and nobelium (No)

  13. A terminal molybdenum arsenide complex synthesized from yellow arsenic.

    Science.gov (United States)

    Curley, John J; Piro, Nicholas A; Cummins, Christopher C

    2009-10-19

    A terminal molybdenum arsenide complex is synthesized in one step from the reactive As(4) molecule. The properties of this complex with its arsenic atom ligand are discussed in relation to the analogous nitride and phosphide complexes. PMID:19764796

  14. Window structure for passivating solar cells based on gallium arsenide

    Science.gov (United States)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  15. Low Cost Automated Module Assembly for 180 GHz Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Emergence of Indium Phosphide IC's has made possible devices operating at frequencies up to 200GHZ and beyond. Building modules using these devices opens a goldmine...

  16. Rice tablet: An overview to common material in Iran

    Directory of Open Access Journals (Sweden)

    Hassan Amiri

    2016-05-01

    Full Text Available Rice tablets or Aluminum phosphide (ALP poisoning is one of the most lethal poisoning cases in the country, leading to high mortality, especially in youths every year. The management of aluminum phosphide poisoning remains purely supportive because no specific antidote exists. Although in various studies mortality rates has been reported ranged 40-80%. In many cases it marked too late, suspected to consume of Botanical rice tablets (garlic compound and caused delay in aggressive treatment. Aluminium phosphide, is an effective insecticide and rodenticide, which is used widely in the storage place and transportation of grain as a fumigant to control rodents and pests. For many years, Aluminum and zinc phosphide have been strong insecticides and rodenticides, which are cheap and effective, and their residues are not toxic

  17. Composition containing transuranic elements for use in the homeopathic treatment of aids

    Energy Technology Data Exchange (ETDEWEB)

    Lustig, D.

    1996-04-18

    A homeopathic remedy consisting of a composition containing one or more transuranic elements, particularly plutonium, for preventing and treating acquired immunodeficiency syndrome (AIDS) in humans, as well as seropositivity for human immunodeficiency virus (HIV). Said composition is characterized in that it uses any chemical or isotopic form of one or more transuranic elements (neptunium, plutonium, americium, curium, berkelium, californium or einsteinium), particularly plutonium, said form being diluted and dynamized according to conventional homeopathic methods, particularly the so-called Hahnemann and Korsakov methods, and provided preferably but not exclusively in the form of lactose and/or saccharose globules or granules impregnated with the active principle of said composition. (author).

  18. TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas

    2012-03-01

    This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

  19. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Phuoc [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State; Mcintyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  20. Composition containing transuranic elements for use in the homeopathic treatment of aids

    International Nuclear Information System (INIS)

    A homeopathic remedy consisting of a composition containing one or more transuranic elements, particularly plutonium, for preventing and treating acquired immunodeficiency syndrome (AIDS) in humans, as well as seropositivity for human immunodeficiency virus (HIV). Said composition is characterized in that it uses any chemical or isotopic form of one or more transuranic elements (neptunium, plutonium, americium, curium, berkelium, californium or einsteinium), particularly plutonium, said form being diluted and dynamized according to conventional homeopathic methods, particularly the so-called Hahnemann and Korsakov methods, and provided preferably but not exclusively in the form of lactose and/or saccharose globules or granules impregnated with the active principle of said composition. (author)

  1. PROCEEDINGS OF THE SYMPOSIUM COMMEMORATING THE 25th ANNIVERSARY OF ELEMENTS 97 and 98 HELD ON JAN. 20, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.; Street Jr., Kenneth; Thompson, Stanley G.; Ghiorso, Albert

    1976-07-01

    This volume includes the talks given on January 20, 1975, at a symposium in Berkeley on the occasion of the celebration of the 25th anniversary of the discovery of berkelium and californium. Talks were given at this symposium by the four people involved in the discovery of these elements and by a number of people who have made significant contributions in the intervening years to the investigation of their nuclear and chemical properties. The papers are being published here, without editing, in the form in which they were submitted by the authors in the months following the anniversary symposium, and they reflect rather faithfully the remarks made on that occasion.

  2. 补药控制偏高磷化氢浓度熏蒸锈赤扁谷盗生产试验%FIELD TRAIL OF CRYPTOLESTES FERRUGINEUS (STEPHENS)FUMIGATED WITH HIGHER LEVEL OF PHOSPHINE CONCENTRATION MAINTAINED BY ALUMINIUM PHOSPHIDE SUPPLEMENT

    Institute of Scientific and Technical Information of China (English)

    黄子法; 王殿轩; 汪灵广; 王公勤

    2012-01-01

    The field trial of phosphine fumigation was carried out that was focus on the Cryptolestes ferrugineus (Stephens)control completely in a horizontal storage of paddy rice, in which the population of the insect was similarly high both monitored by the method of sieving and light trap attracting. The gastightness of the warehouse was 30 seconds of half time decreased from 500 Pa to 250 Pa. The results involved in that the phosphine concentration reached to 130-170 mL/m3 in 20h after aluminium powder and tablet application. The peak concentration, 800 mL/m3 was monitored in three days. And then the concentration went down quickly. The maintaining time of phosphine was six days above 400 mL/m3, nine days in 300-400 mL/m3, seven days in 200?00 mL/m3. Total time of more than 300 mL/m3 was 15 days. Through the process of phosphine concentration maintaining the insect population was killed fully and successfully.%针对灯光诱捕和取样检查都发现锈赤扁谷盗发生数量较多的储藏稻谷,实仓进行了补充施药控制偏高磷化氢浓度杀虫试验,试验仓房的气密性为500 Pa正压半衰期为30 s.试验结果为:在粮面施用磷化铝粉剂和通风口施用磷化铝片剂后,环流20 h仓内磷化氢浓度可达130 mL/m3~170 mL/m3,施药3d后两种剂型药剂都达到了释放磷化氢的高峰(800 mL/m3),随后磷化氢浓度较快地下降.通过分别2次补充施药后,保持磷化氢浓度在400 mL/m3以上的时间达6d,300 mL/m~400 mL/m3的时间达9d,200 mL/m3~300 mL/m3的时间7d.试验仓熏蒸中磷化氢控制偏高浓度(大于300 mL/m3)的时间达到了15 d.在此偏高浓度下,9d后大部分害虫死亡,整个熏蒸过程实现了完全杀死锈赤扁谷盗.

  3. Towards a monolithically integrated III–V laser on silicon: optimization of multi-quantum well growth on InP on Si

    International Nuclear Information System (INIS)

    High-quality InGaAsP/InP multi-quantum wells (MQWs) on the isolated areas of indium phosphide on silicon necessary for realizing a monolithically integrated silicon laser is achieved. Indium phosphide layer on silicon, the pre-requisite for the growth of quantum wells is achieved via nano-epitaxial lateral overgrowth (NELOG) technique from a defective seed indium phosphide layer on silicon. This technique makes use of epitaxial lateral overgrowth (ELOG) from closely spaced (1 µm) e-beam lithography-patterned nano-sized openings (∼300 nm) by low-pressure hydride vapor phase epitaxy. A silicon dioxide mask with carefully designed opening patterns and thickness with respect to the opening width is used to block the defects propagating from the indium phosphide seed layer by the so-called necking effect. Growth conditions are optimized to obtain smooth surface morphology even after coalescence of laterally grown indium phosphide from adjacent openings. Surface morphology and optical properties of the NELOG indium phosphide layer are studied using atomic force microscopy, cathodoluminescence and room temperature µ-photoluminescence (µ-PL) measurements. Metal organic vapor phase epitaxial growth of InGaAsP/InP MQWs on the NELOG indium phosphide is conducted. The mask patterns to avoid loading effect that can cause excessive well/barrier thickness and composition change with respect to the targeted values is optimized. Cross-sectional transmission electron microscope studies show that the coalesced NELOG InP on Si is defect-free. PL measurement results indicate the good material quality of the grown MQWs. Microdisk (MD) cavities are fabricated from the MQWs on ELOG layer. PL spectra reveal the existence of resonant modes arising out of these MD cavities. A mode solver using finite difference method indicates the pertinent steps that should be adopted to realize lasing. (invited paper)

  4. Strained quantum well photovoltaic energy converter

    Science.gov (United States)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  5. Photonic crystal cavity-assisted upconversion infrared photodetector.

    Science.gov (United States)

    Gan, Xuetao; Yao, Xinwen; Shiue, Ren-Jye; Hatami, Fariba; Englund, Dirk

    2015-05-18

    We describe an upconversion infrared photodetector assisted by a gallium phosphide photonic crystal nanocavity directly coupled to a silicon photodiode. The strongly cavity-enhanced second harmonic signal radiating from the gallium phosphide membrane can thus be efficiently collected by the silicon photodiode, which promises a high photoresponsivity of the upconversion detector as 0.81 A/W with the coupled power of 1W. The integrated upconversion photodetector also functions as a compact autocorrelator with sub-ps resolution for measuring pulse width and chirp.

  6. An atomic beam source for actinide elements: concept and realization

    International Nuclear Information System (INIS)

    For ultratrace analysis of actinide elements and studies of their atomic properties with resonance ionization mass spectroscopy (RIMS), efficient and stable sources of actinide atomic beams are required. The thermodynamics and kinetics of the evaporation of actinide elements and oxides from a variety of metals were considered, including diffusion, desorption, and associative desorption. On this basis various sandwich-type filaments were studied. The most promising system was found to consist of tantalum as the backing material, an electrolytically deposited actinide hydroxide as the source of the element, and a titanium covering layer for its reduction to the metal. Such sandwich sources were experimentally proven to be well suited for the production of atomic beams of plutonium, curium, berkelium and californium at relatively low operating temperatures and with high and reproducible yields. (orig.)

  7. Nuclear fission and the transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  8. Production of transuranium elements

    International Nuclear Information System (INIS)

    The Radiochemical Engineering Development Center (REDC) has the programmatic responsibility for the Department of Energy's Transuranium Element Program. Principle elements from the program are einsteinium, berkelium, and fermium. Targets containing curium oxide mixed with aluminum powder are fabricated by the REDC and irradiated in the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor. Following an irradiation period of 6-12 months, targets are returned to the REDC for chemical processing. Processing operations consists of aluminum dejacketing in a caustic-nitrate solution, filtration, acid dissolution, solvent extraction, anion exchange, and finally a cation exchange to recover the actinides. The processing operations take place in heavily shielded hot cell facilities and all operations are carried out remotely. The chemistry for the separations has been well established over the 26-yr. operating life of the facility

  9. Manufacture and characterization of an extrinsic elementary fiber-optical sensor for temperature measurement; Herstellung und Charakterisierung eines extrinsischen faseroptischen Elementarsensors zur Temperaturmessung

    Energy Technology Data Exchange (ETDEWEB)

    Trautner, Ralph [Fachhochschule Regensburg (Germany); Schmauss, Bernhard [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Hochfrequenztechnik; Shamonin, Mikhail [Fachhochschule Regensburg (Germany). Sensorik, Messtechnik und elektromagnetische Metamaterialien

    2008-07-01

    Manufacture and characterization of an elementary fiber-optical sensor for temperature measurement is presented. The prism-shaped head of the sensor consisting of indium phosphide uses the temperature dependency of the absorption edge. The dimensions of the prism require a manufacturing method bridging fine mechanics and microsystems technology. (orig.)

  10. All-optical signal processing at 10 GHz using a photonic crystal molecule

    Energy Technology Data Exchange (ETDEWEB)

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo, E-mail: alfredo.derossi@thalesgroup.com [Thales Research and Technology, 1 Avenue A. Fresnel, 91767 Palaiseau (France); Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy); Ménager, Loic [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France); Peter Reithmaier, Johann [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2013-11-04

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  11. InP-based two-dimensional photonic crystals filled with polymers

    CERN Document Server

    Van der Heijden, R W; Snijders, J A P; Van der Heijden, R W; Karouta, F; Nötzel, R; Salemink, H W M; Kjellander, B K C; Bastiaansen, C W M; Broer, D J; Van der Drift, E

    2006-01-01

    Polymer filling of the air holes of Indium Phosphide based two-dimensional photonic crystals is reported. After infiltration of the holes with a liquid monomer and solidification of the infill in situ by thermal polymerization, complete filling is proven using scanning electron microscopy. Optical transmission measurements of a filled photonic crystal structure exhibit a redshift of the air band, confirming the complete filling.

  12. Rague-Like FeP Nanocrystal Assembly on Carbon Cloth: An Exceptionally Efficient and Stable Cathode for Hydrogen Evolution

    KAUST Repository

    Yang, Xiulin

    2015-05-25

    There is a strong demand to replace expensive Pt catalysts with cheap metal sulfides or phosphides for hydrogen generation in water electrolysis. The earth-abundant Fe can be electroplated on carbon cloth (CC) to form high surface area rague-like FeOOH assembly. Subsequent gas phase phosphidation converts the FeOOH to FeP or FeP2 and the morphology of the crystal assembly is controlled by the phosphidation temperature. The FeP prepared at 250 oC presents lower crystallinity and those prepared at higher temperatures 400 oC and 500 oC possess higher crystallinity but lower surface area. The phosphidation at 300 oC produces nanocrystalline FeP and preserves the high-surface area morphology; thus it exhibits the highest HER efficiency in 0.5 M H2SO4; i.e. the required overpotential to reach 10 and 20 mA/cm2 is 34 and 43 mV respectively. These values are lowest among the reported non-precious metal phosphides on CC. The Tafel slope for the FeP prepared at 300 oC is around 29.2 mV/dec comparable to that of Pt/CC, indicating that the hydrogen evolution for our best FeP is limited by Tafel reaction (same as Pt). Importantly, the FeP/CC catalyst exhibits much better stability in a wide range working current density (up to 1 V/cm2), suggesting that it is a promising replacement of Pt for HER.

  13. Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors

    Science.gov (United States)

    Cumming, A. V.; Craig, K.; Martin, I. W.; Bassiri, R.; Cunningham, L.; Fejer, M. M.; Harris, J. S.; Haughian, K.; Heinert, D.; Lantz, B.; Lin, A. C.; Markosyan, A. S.; Nawrodt, R.; Route, R.; Rowan, S.

    2015-02-01

    Thermal noise associated with the dielectric optical coatings used to form the mirrors of interferometric gravitational wave detectors is expected to be an important limit to the sensitivity of future detectors. Improvements in detector performance are likely to require coating materials of lower mechanical dissipation. Typically, current coatings use multiple alternating layers of ion-beam-sputtered amorphous silica and tantalum pentoxide (doped with titania). We present here measurements of the mechanical dissipation of promising alternative crystalline coatings that use multi-layers of single crystal gallium phosphide (GaP) and aluminium gallium phosphide (AlGaP) that are epitaxially grown and lattice matched to a silicon substrate. Analysis shows that the dissipation of the crystalline coating materials appears to be significantly lower than that of the currently used amorphous coatings, potentially enabling a reduction of coating thermal noise in future gravitational wave detectors.

  14. Intoxication of nontarget wildlife with rodenticides in northwestern Kansas.

    Science.gov (United States)

    Ruder, Mark G; Poppenga, Robert H; Bryan, John A; Bain, Matt; Pitman, Jim; Keel, M Kevin

    2011-01-01

    The perception of prairie dogs (Cynomys spp.) both as a nuisance species and a keystone species presents a significant challenge to land, livestock, and wildlife managers. Anticoagulant and nonanticoagulant rodenticides are commonly employed to control prairie dog populations throughout their range. Chlorophacinone, and to a lesser extent zinc phosphide, are widely used in northwestern Kansas for controlling black-tailed prairie dog (Cynomys ludovicianus) populations. Although zinc phosphide poisoning of gallinaceous birds is not uncommon, there are few published accounts of nontarget chlorophacinone poisoning of wildlife. We report three mortality events involving nontarget rodenticide poisoning in several species, including wild turkeys (Meleagris gallopavo), a raccoon (Procyon lotor), and an American badger (Taxidea taxus). This includes the first documentation of chlorophacinone intoxication in wild turkeys and an American badger in the literature. The extent of nontarget poisoning in this area is currently unknown and warrants further investigation.

  15. Contribution à l'étude de l'épitaxie par jets moléculaires à grande échelle de semi-conducteurs phosphorés

    OpenAIRE

    Dhellemmes, Sébastien

    2006-01-01

    The increase of the components frequencies strengthens the interest for phosphorus containing semiconductors. The development of phosphorus solid sources with valve and cracker enables to consider industrial prospects for Molecular Beam Epitaxy (MBE), which is competed by chemical vapour deposition. It is the objective of the joint laboratory “P-Taxy” between Riber and IEMN, in which this work has been prepared.Several aspects of MBE of phosphides have been studied in a large volume reactor. ...

  16. NREL Spurred the Success of Multijunction Solar Cells (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Many scientists once believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. However, researchers at the National Renewable Energy Laboratory (NREL) thought differently, and they employed GaInP in a material combination that allowed the multijunction cell to flourish. The multijunction cell is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic products.

  17. Enhancement of the Zero Phonon Line emission from a Single NV-Center in a Nanodiamond via Coupling to a Photonic Crystal Cavity

    CERN Document Server

    Wolters, Janik; Kewes, Güter; Nüsse, Nils; Schoengen, Max; Döscher, Henning; Hannappel, Thomas; öhel, Bernd L; Barth, Michael; Benson, Oliver

    2010-01-01

    Using a nanomanipulation technique a nanodiamond with a single nitrogen vacancy center is placed directly on the surface of a gallium phosphide photonic crystal cavity. A Purcell-enhancement of the fluorescence emission at the zero phonon line (ZPL) by a factor of 12.1 is observed. The ZPL coupling is a first crucial step towards future diamond-based integrated quantum optical devices.

  18. Hybrid Photonic Integration on a Polymer Platform

    OpenAIRE

    Ziyang Zhang; David Felipe; Vasilis Katopodis; Panos Groumas; Christos Kouloumentas; Hercules Avramopoulos; Jean-Yves Dupuy; Agnieszka Konczykowska; Alberto Dede; Antonio Beretta; Antonello Vannucci; Giulio Cangini; Raluca Dinu; Detlef Schmidt; Martin Moehrle

    2015-01-01

    To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard), which provides flexible optical input/ouptut interfaces (I/Os) that allow robust coupling of indium phosphide (InP)-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This ...

  19. Double moiré structured illumination microscopy with high-index materials.

    Science.gov (United States)

    Blau, Yochai; Shterman, Doron; Bartal, Guy; Gjonaj, Bergin

    2016-08-01

    Structured illumination microscopy utilizes illumination of periodic light patterns to allow reconstruction of high spatial frequencies, conventionally doubling the microscope's resolving power. This Letter presents a structured illumination microscopy scheme with the ability to achieve 60 nm resolution by using total internal reflection of a double moiré pattern in high-index materials. We propose a realization that provides dynamic control over relative amplitudes and phases of four coherently interfering beams in gallium phosphide and numerically demonstrate its capability. PMID:27472592

  20. Superconductivity theory applied to the periodic table of the elements

    Science.gov (United States)

    Elifritz, Thomas Lee

    1995-01-01

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition is applied to the periodic table of the elements, in order to isolate the essential features of of high temperature superconductivity and to predict its occurrence with the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  1. Comparison of the performance of cop-coated and pt-coated radial junction n+p-silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g)

    DEFF Research Database (Denmark)

    Roske, Christopher W.; Popczun, Eric J.; Seger, Brian;

    2015-01-01

    The electrocatalytic performance for hydrogen evolution has been evaluated for radial-junction n+p-Si microwire (MW) arrays with Pt or cobalt phosphide, CoP, nanoparticulate catalysts in contact with 0.50 M H2SO4(aq). The CoP-coated (2.0 mg cm-2) n+p-Si MW photocathodes were stable for over 12 h ...

  2. Synthesis and structural characterization of CsNiP crystal

    Indian Academy of Sciences (India)

    G S Gopalakrishna; B H Doreswamy; M J Mahesh; M Mahendra; M A Sridhar; J Shashidhara Prasad; K G Ashamanjari

    2004-02-01

    CsNiP crystals were synthesized by hydrothermal technique and characterized by the X-ray diffraction method. This alkaline transition metal phosphide crystallizes in the hexagonal system with space group P6$_3/mmc$ and cell parameters, = 7.173(2) Å, = 5.944(9) Å, = 264.87(7) Å3 and = 2. The final residual factor is 1 = 0.0362 for 206 reflections with > 2().

  3. Laboratory trials of seven rodenticides for use against the cotton rat (Sigmodon hispidus).

    OpenAIRE

    Gill, J. E.; Redfern, R.

    1980-01-01

    The efficacy of seven rodenticides for use against Sigmodon hispidus was investigated in the laboratory. The poisons (warfarin, coumatetralyl, difenacoum, brodifacoum, bromadiolone, calciferol and zinc phosphide) were all toxic at the concentrations normally used against Rattus rattus and R. norvegicus and all were palatable. Trials are now needed to confirm the efficacy of these poisons in the field, but it seems likely that, if used in suitable bait formulations, they would all be useful fo...

  4. Laboratory trials of seven rodenticides for use against the cotton rat (Sigmodon hispidus).

    Science.gov (United States)

    Gill, J E; Redfern, R

    1980-12-01

    The efficacy of seven rodenticides for use against Sigmodon hispidus was investigated in the laboratory. The poisons (warfarin, coumatetralyl, difenacoum, brodifacoum, bromadiolone, calciferol and zinc phosphide) were all toxic at the concentrations normally used against Rattus rattus and R. norvegicus and all were palatable. Trials are now needed to confirm the efficacy of these poisons in the field, but it seems likely that, if used in suitable bait formulations, they would all be useful for the practical control of S. hispidus. PMID:7462594

  5. Laboratory test of seven rodenticides for the control of Mastomys natalensis.

    Science.gov (United States)

    Gill, J E; Redfern, R

    1979-10-01

    Laboratory feeding tests were carried out to assess the efficacy of seven rodenticides against Mastomys natalensis. The poisons (warfarin, coumatetralyl, difenacoum, brodifacoum, bromadiolone, calciferol and zinc phosphide) were all toxic at the concentrations normally used against Rattus norvegicus (Berk.), although several were unpalatable. Trials are now needed to demonstrate the relative efficacy of these poisons in the field, but it is likely that, given suitable bait formulations, they would all be useful as practical control agents. PMID:489963

  6. Superconductivity theory applied to the periodic table of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Elifritz, T.L. [Information Corporation, Madison, WI (United States)

    1994-12-31

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  7. Performance of a Double Gate Nanoscale MOSFET (DG-MOSFET) Based on Novel Channel Materials

    OpenAIRE

    Rakesh Prasher; Devi Dass; Rakesh Vaid

    2013-01-01

    In this paper, we have studied a double gate nanoscale MOSFET for various channel materials using simulation approach. The device metrics considered at the nanometer scale are subthreshold swing (SS), drain induced barrier lowering (DIBL), on and off current, carrier injection velocity (vinj), etc. The channel materials studied are Silicon (Si), Germanium (Ge), Gallium Arsenide (GaAs), Zinc Oxide (ZnO), Zinc Sulfide (ZnS), Indium Arsenide (InAs), Indium Phosphide (InP) and Indium Antimonide (...

  8. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  9. SEM-EDX analysis of an unknown "known" white powder found in a shipping container from Peru

    Science.gov (United States)

    Albright, Douglas C.

    2009-05-01

    In 2008, an unknown white powder was discovered spilled inside of a shipping container of whole kernel corn during an inspection by federal inspectors in the port of Baltimore, Maryland. The container was detained and quarantined while a sample of the powder was collected and sent to a federal laboratory where it was screened using chromatography for the presence of specific poisons and pesticides with negative results. Samples of the corn kernels and the white powder were forwarded to the Food and Drug Administration, Forensic Chemistry Center for further analysis. Stereoscopic Light Microscopy (SLM), Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX), and Polarized Light Microscopy/Infrared Spectroscopy (PLM-IR) were used in the analysis of the kernels and the unknown powder. Based on the unique particle analysis by SLM and SEM as well as the detection of the presence of aluminum and phosphorous by EDX, the unknown was determined to be consistent with reacted aluminum phosphide (AlP). While commonly known in the agricultural industry, aluminum phosphide is relatively unknown in the forensic community. A history of the use and acute toxicity of this compound along with some very unique SEM/EDX analysis characteristics of aluminum phosphide will be discussed.

  10. Novel preparation of highly dispersed Ni2P embedded in carbon framework and its improved catalytic performance

    Science.gov (United States)

    Wang, Shan; Wang, Kang; Wang, Xitao

    2016-11-01

    Highly dispersed Ni2P embedded in carbon framework with different phosphidation temperature was prepared through carbonizing Ni-alginate gel and followed by phosphidation with PPh3 in liquid phase. The significant effects of phosphidation temperature on Ni2P particle size and catalytic properties for isobutane dehydrogenation to isobutene were investigated. The results showed that Ni2P catalyst derived from the Ni-alginate gel (Ni2P-ADC), consisting of Ni2P particles embedded in carbon walls, possessed smaller particle size and more active site compared with Ni2P catalyst supported on active carbon (Ni2P/AC) prepared by impregnation method. The Ni2P-ADC catalyst phosphorized at 578 K for 3 h exhibited the highest catalytic performance, with the corresponding selectivity of isobutene approaching 89% and conversion approaching 15% after reaction for 4.5 h at 833 K, whereas Ni2P/AC catalyst prepared by impregnation method displays a much lower catalytic activity. The improved catalytic performance of the Ni2P-ADC can be ascribed to the smaller and highly dispersed Ni2P particles incorporated into carbon framework resulting from Ni-alginate gel.

  11. Proposing an Antidote for Poisonous Phosphine in View of Mitochondrial Eectrochemistry Facts

    Directory of Open Access Journals (Sweden)

    Mohammad Abdollahi

    2012-01-01

    Full Text Available Metal phosphides in general are potent pesticides that are a common cause of human poisoning. Various salts of phosphides produce highly toxic phosphine in exposure to gastric acid that results in multi-organ damage and death. There is no antidote for phosphine poisoning and most of human poisoned cases do not survive. All we know so far is that phosphine is a mitochondrial toxin that inhibits cellular respiration and induces oxidative stress. Mechanistically, phosphine as a reducing agent interacts with metal ion cofactors at the active site of enzymes and inhibits key enzymes such as cytochrome C oxidase that lead to inhibition of mitochondrial respiration. Phosphine (E0 = −1.18 V as a reducing agent gives electrons to cytochrome C oxidase (E0 = +0.29 V. Metal phosphides with lower reduction potential are stronger electron donors and thus stronger poisons. Our hypothesis is that if an electron receiver stronger than cytochrome C oxidase is used then it would compete with cytochrome C oxidase in interaction with phosphine. This competition might prevent or reduce the inhibition of cellular respiration. This idea can be tested in an animal model of phosphine toxicity by monitoring cardiovascular state and measuring the cardiac mitochondrial function.

  12. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation

    KAUST Repository

    Yang, Xiulin

    2015-07-01

    There exists a strong demand to replace expensive noble metal catalysts with cheap metal sulfides or phosphides for hydrogen evolution reaction (HER). Recently metal phosphides such as NixP, FeP and CoP have been considered as promising candidates to replace Pt cathodes. Here we report that the nanocrystalline CoP nanosheet assembly on carbon cloth can be formed by a two-step process: electrochemical deposition of Co species followed by gas phase phosphidation. The CoP catalyst in this report exhibits a Tafel slope of 30.1mV/dec in 0.5M H2SO4 and 42.6mV/dec in 1M KOH. The high HER performance of our CoP catalysts is attributed to the rugae-like morphology which results in a high double-layer capacitance and high density of active sites, estimated as 7.77×1017sites/cm2. © 2015 Elsevier Ltd.

  13. Ab initio investigations of the electronic structures and chemical bonding in LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [CNRS, ICMCB, UPR 9048, F‐33600 Pessac (France); Université de Bordeaux, ICMCB, UPR 9048, F‐33600 Pessac (France); Al-Alam, Adel; Ouaini, Naïm [Université Saint-Esprit de Kaslik (USEK), Groupe OCM (Optimization et Caractérisation des Matériaux), CSR-USEK, CNRS-L, Jounieh (Lebanon); Pöttgen, Rainer, E-mail: pottgen@uni-muenster.de [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, D-48149 Münster (Germany)

    2013-06-15

    The electronic structures of the metal-rich phosphides LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7} were studied by DFT calculations. Both phosphides consist of three-dimensional [Co{sub 6}P{sub 4}] and [Co{sub 12}P{sub 7}] polyanionic networks which leave hexagonal channels for the lithium atoms. COOP data show strong Co–P and Co–Co bonding within the polyanions. The lithium atoms have trigonal prismatic phosphorus coordination. Total energy calculations indicate stability upon de-lithiation towards the Co{sub 6}P{sub 4} and Co{sub 12}P{sub 7} substructures - Graphical abstract: The cobalt–phosphorus networks in LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}. - Highlights: • Chemical bonding resolved in the metal-rich phosphides LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}. • Strong covalent Co–P bonding character in the [Co{sub 6}P{sub 4}] and [Co{sub 12}P{sub 7}] substructures. • Total energy calculations indicate stability of the de-lithiated substructures.

  14. CLINICAL STUDY OF ACUTE POISONING: A RETROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Praveen

    2014-11-01

    Full Text Available : OBJECTIVES: To determine the common agents, clinical features and outcomes of acute poisoning. MATERIALS AND METHODS: A retrospective study of patients of acute poisoning of more than 14 years age admitted through emergency with a history of intentional, self-inflicted and suicidal poisoning in SRMS-IMS from Jan 2010 to Dec 2012. RESULTS: A total of 58 cases were included with a common age of affection 16 to 25 years and male to female ratio 1.63: 1. Poisoning cases occur throughout the year with maximum prevalence in May and minimum in June. Organophosphorus was the most common poison followed by aluminium phosphide. Vomiting was the most common symptoms followed by altered sensorium. 70.68% patients were discharged, 20.68% expired and 8.62% left against medical advice. Aluminium phosphide was the most common toxin consumed by dead patients. CONCLUSION: Acute poisoning is commonly affecting young population and is caused by variety of toxin. High mortality is associated with aluminum phosphide.

  15. The effect of phosphorus on the radiation induced microstructure of stabilized austenitic stainless steels

    International Nuclear Information System (INIS)

    This paper deals with the correlation of irradiation behavior and microstructural evolution of mono-(Ti) and multi-(Ti,Nb,V) stabilized type 316 stainless steels with different phosphorus levels. These steels, in the 20% cold worked condition, were irradiated between 400 and 5000C up to 100 dpa in Phenix reactor as stressed and unstressed samples. Phosphorus decreases strongly the swelling of stabilized austenitic steels. This effect is due to a large increase of the swelling incubation dose. The best swelling resistance is observed for the multistabilized (Nb, V, Ti) steel. Phosphorus decreases also the irradiation creep strain, but only because of the decrease in swelling. The transmission electron microscopy (TEM) examinations show that the improvement of swelling resistance by phosphorus addition comes from a decrease in void density, that occurs mainly when a uniform distribution of needle-shaped phosphides appears. In titanium stabilized steels, the phosphides are FeTiP whereas in the phosphides of the multistabilized steel, titanium is replaced by niobium, leaving the titanium in solution to play its role of swelling inhibitor for long irradiations

  16. A mechanism of swelling suppression in phosphorous-modified Fe-Ni-Cr alloys*1

    Science.gov (United States)

    Lee, E. H.; Mansur, L. K.

    1986-11-01

    Five simple alloys were ion irradiated at 948 K in an experiment designed to investigate the mechanism of swelling suppression associated wtih phosphorous additions. One of the alloys was the simple ternary Fe-15Ni-13Cr, another had 0.05% P added and the other three had further additions of the phosphide precipitate-forming elements Ti and/or Si. Ion irradiations were carried out with heavy ions only (Ni or Fe) or with heavy ions followed by dual heavy ions and helium. The ternary with and without P swelled readily early in dose with or without helium. The other three alloys only showed swelling in the presence of helium and exhibited a long delay in dose prior to the onset of swelling. These displayed fine distributions of Fe 2P type phosphide precipitates enhanced by irradiation. The phosphide particles gave rise to very high concentrations of stable helium filled cavities at the precipitate matrix interfaces. The results were analyzed in terms of the theory of cavity swelling. The accumulation of the critical number of gas atoms in an individual cavity is required in the theory for point defect driven swelling to begin. It is concluded that the primary mechanism leading to swelling suppression is therefore the dilution of injected helium over a very large number of cavities. It is suggested that this mechanism may offer a key for alloy design for swelling resistance in high helium environments.

  17. Nuclear Chemistry Institute, Mainz University. Annual Report 1995

    International Nuclear Information System (INIS)

    The annual report of the Institut fuer Kernchemie addresses inter alia three main research activities. The first belongs to the area of basic research, covering studies in the fields of nuclear fission, chemistry of the super-heavy elements and of heavy-ion reactions extending from the Coulomb barrier to relativistic energies, and nuclear astrophysics in connection with the ''r process''. By means of laser technology, high-precision data could be measured of the ionization energies of berkelium and californium. Studies of atomic clusters in the vacuum of an ionization trap revealed interesting aspects. The second major activity was devoted to the analysis of environmental media, applying inter alia neutron activation analysis and resonance ionization mass spectroscopy (RIMS). The third activity resulted in the development of novel processes, or the enhancement of existing processes or methods, for applications in basic research work and in environmental analytics. Another item of interest is the summarizing report on the operation of the TRIGA research reactor. (orig./SR)

  18. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. [Lawrence Berkeley Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Chemistry; Smith, B.F. [Los Alamos National Lab., NM (United States)

    1991-11-01

    The first measurements of distribution coefficients (K{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}`s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}`s for these actinides are about a factor of 5 to 10 greater than the K{sub d}`s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}`s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand.

  19. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry); Smith, B.F. (Los Alamos National Lab., NM (United States))

    1991-11-01

    The first measurements of distribution coefficients (K{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}'s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}'s for these actinides are about a factor of 5 to 10 greater than the K{sub d}'s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}'s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand.

  20. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-Dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and Tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. [Lawrence Berkeley Lab., CA (United States); Smith, B.F. [Los Alamos National Lab., NM (United States)

    1992-07-01

    The first measurements of distribution coefficients (k{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}`s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}`s for these actinides are about about a factor of 10 greater than the K{sub d}`s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}`s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand. 9 refs., 2 figs., 1 tab.

  1. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-09-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  2. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Although originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element 107 Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided

  3. Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range

    Science.gov (United States)

    Wu, Aiping; Tian, Chungui; Yan, Haijing; Jiao, Yanqing; Yan, Qing; Yang, Guoyu; Fu, Honggang

    2016-05-01

    A low-cost catalyst for the hydrogen evolution reaction (HER) over a broad pH range is highly desired to meet the practical needs in different areas. In this study, hierarchical flower-like MoS2@MoP core-shell heterojunctions (HF-MoSP) are designed as a promising catalyst for HER over a broad pH range. The materials are obtained by the controllable phosphidation of the hierarchical MoS2 flower (HF-MoS2) composed of thin silk belt-like sheets. The phosphidation degree, P/S ratio and work function (WF) of HF-MoSP can be tuned easily over broad range by changing the phosphidation temperature. Under optimized condition, HF-MoSP exhibits excellent electrocatalytic activity for HER with a low onset overpotential of 29 mV and η of 108 mV at 10 mA cm-2 in 0.5 M H2SO4 and retains its good activity for 30 h. In addition, the catalyst shows excellent activity in 1 M KOH with an onset overpotential of 42 mV and η of 119 mV at 10 mA cm-2. The catalysts also exhibit obvious activity in neutral, weak acid and weak alkaline conditions. The good performance is relative to the synergy of the MoP shell and MoS2 core and the high WF of HF-MoSP close to Pt, and the large SBET of HF-MoSP benefited from the hierarchical structure. This study represents the construction of the core-shell heterojunction and provides a new way to provide the low-cost and high-performance catalyst for HER.A low-cost catalyst for the hydrogen evolution reaction (HER) over a broad pH range is highly desired to meet the practical needs in different areas. In this study, hierarchical flower-like MoS2@MoP core-shell heterojunctions (HF-MoSP) are designed as a promising catalyst for HER over a broad pH range. The materials are obtained by the controllable phosphidation of the hierarchical MoS2 flower (HF-MoS2) composed of thin silk belt-like sheets. The phosphidation degree, P/S ratio and work function (WF) of HF-MoSP can be tuned easily over broad range by changing the phosphidation temperature. Under optimized

  4. Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range.

    Science.gov (United States)

    Wu, Aiping; Tian, Chungui; Yan, Haijing; Jiao, Yanqing; Yan, Qing; Yang, Guoyu; Fu, Honggang

    2016-06-01

    A low-cost catalyst for the hydrogen evolution reaction (HER) over a broad pH range is highly desired to meet the practical needs in different areas. In this study, hierarchical flower-like MoS2@MoP core-shell heterojunctions (HF-MoSP) are designed as a promising catalyst for HER over a broad pH range. The materials are obtained by the controllable phosphidation of the hierarchical MoS2 flower (HF-MoS2) composed of thin silk belt-like sheets. The phosphidation degree, P/S ratio and work function (WF) of HF-MoSP can be tuned easily over broad range by changing the phosphidation temperature. Under optimized condition, HF-MoSP exhibits excellent electrocatalytic activity for HER with a low onset overpotential of 29 mV and η of 108 mV at 10 mA cm(-2) in 0.5 M H2SO4 and retains its good activity for 30 h. In addition, the catalyst shows excellent activity in 1 M KOH with an onset overpotential of 42 mV and η of 119 mV at 10 mA cm(-2). The catalysts also exhibit obvious activity in neutral, weak acid and weak alkaline conditions. The good performance is relative to the synergy of the MoP shell and MoS2 core and the high WF of HF-MoSP close to Pt, and the large SBET of HF-MoSP benefited from the hierarchical structure. This study represents the construction of the core-shell heterojunction and provides a new way to provide the low-cost and high-performance catalyst for HER. PMID:27172989

  5. Particle detectors based on InP Schottky diodes

    International Nuclear Information System (INIS)

    A study of electrical properties and detection performance of Indium Phosphide detector structures with Schottky contacts prepared on high purity p-type InP was performed. Schottky barrier detectors were prepared by vacuum evaporation of Pd on p-type epitaxial layers grown on Zn-doped p-type substrates. The detection performance of the detectors was characterized by the measurement of pulse-height spectra with alpha particles emitted from 241Am source at room temperature. The influence of the quality of p-type epitaxial layers on the charge-collection efficiency and energy resolution in the full-width half-maximum is discussed.

  6. Local Refractive Index Measurements at Low Temperatures using Photonic Crystal Cavities

    CERN Document Server

    Wolters, Janik; Schoengen, Max; Schell, Andreas W; Probst, Jürgen; Löchel, Bernd; Benson, Oliver

    2012-01-01

    Photonic crystal cavities have a wide range of applications in physics today. Here we demonstrate a method to use the narrow resonances of photonic crystal cavities to measure the temperature dependence of the refractive index of gallium phosphide in a temperature range between 5 K and near room temperature at a wavelength of about 605 nm. On one hand, this is an essential step for the design of GaP photonic crystal structures for quantum technology applications. On the other hand, this demonstrates how photonic structures can be utilized to locally determine the optical properties of semiconductor materials in attoliter volumina.

  7. Electroluminescence

    CERN Document Server

    Henisch, H K

    1962-01-01

    Electroluminescence deals with the multiplicity of forms related to electroluminescence phenomena. The book reviews some basic observations of electroluminescence, the Gudden-Pohl and Dechene effects, the electroluminescence phenomena in zinc sulfide phosphors, in silicon carbide, and in compounds composed of elements in groups III and V of the Periodic Table (such as gallium phosphide). The text also explains polarization of free charge carriers, the outline of junction breakdown theory, carrier recombination, and phosphor suspensions. The book describes the growth of zinc sulfide crystals (f

  8. Study of phase transformation processes in steel after phosphor ion implantation and following thermal treatment

    International Nuclear Information System (INIS)

    In the paper process of phase transformation after phosphor ion implantation in steel-45 and annealing in vacuum at 1000 deg C and irradiation by various doses of phosphor ions with energy 100 keV an accelerator are researched by conversion electron method. The phosphor overall solubility in iron is equal 4.53 %. Implantation dose below 6·1017 ions/cm2 allows increase phosphor ions content in implantation region to 35 %. Therefore, iron phosphides (Fe3P, Fe2P and Fe P) forming are possible. (author)

  9. Inhalation of phosphine gas following a fire associated with fumigation of processed pistachio nuts.

    Science.gov (United States)

    O'Malley, Michael; Fong, Harvard; Sánchez, Martha E; Roisman, Rachel; Nonato, Yvette; Mehler, Louise

    2013-01-01

    On December 10, 2009, a fumigation stack containing aluminum phosphide became soaked with rain water and caught fire at a pistachio processing plant in Kern County, California. Untrained plant personnel responding to the fire had exposure to pyrolysis by-products, particulates, and extinguisher ingredients. Ten workers taken for medical evaluation had respiratory and nonspecific systemic symptoms consistent with exposure to phosphine gas. Six of the 10 workers had respiratory distress, indicated by chest pain, shortness of breath, elevated respiratory rate, or decreased oxygen saturation. Recommendations are made for the management of similar illnesses and prevention of similar exposures.

  10. Data readout system utilizing photonic integrated circuit

    International Nuclear Information System (INIS)

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run

  11. Poultry egg components as cereal bait additives for enhancing rodenticide based control success and trap index of house rat, Rattus rattus

    Institute of Scientific and Technical Information of China (English)

    Neena Singla; Deepia Kanwar

    2014-01-01

    Objective: To compare the acceptance and efficacy of cereal bait containing different concentrations of poultry egg components in laboratory and poultry farms to control house rat,Rattus rattus Methods: Acceptance of cereal bait containing different concentrations (2%, 5% and 10%) of poultry egg components such as egg shell powder (ESP), egg albumin (EA) and crushed egg shell as bait additives were studied after exposing them to different groups of rats in bi-choice with bait without additive. Behaviour of rats towards cereal bait containing 2% concentration of different egg components was recorded in no-choice conditions through Food Scale Consumption Monitor. In poultry farm predominantly infested with R. rattus, acceptance and efficacy of 2%zinc phosphide bait containing 2% EA and ESP was evaluated. Trap success of single rat traps containing chapatti pieces smeared with 2% EA and 2% ESP was also evaluated in poultry farm.Results:(R. rattus). containing 2% and 5% ESP and all the three concentrations of EA compared to plain bait by female rats and that of baits containing 5% and 10% EA by male rats. In no-choice test, non-significantly higher consumption, number of bouts made and time spent towards bait containing 2% EA was found by rats of both sexes. In poultry farm, acceptance and efficacy of 2% zinc phosphide bait containing 2% EA and ESP was significantly (P<0.05) more than 2% zinc phosphide bait without additive. No significant difference was, however, found in trap success of single rat traps containing chapatti pieces smeared with 2% concentration of EA and ESP placed in the poultry farm.Conclusions:Present data support the use of 2% egg albumin and egg shell powder in cereal bait In bi-choice tests, significantly (P<0.05) higher preference was observed for baits to enhance acceptance and efficacy of 2% zinc phosphide bait against R. rattus. This may further help in checking the spread of rodent borne diseases to animals and humans.

  12. Palladium nanoparticles on InP for hydrogen detection

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Layers of palladium (Pd nanoparticles on indium phosphide (InP were prepared by electrophoretic deposition from the colloid solution of Pd nanoparticles. Layers prepared by an opposite polarity of deposition showed different physical and morphological properties. Particles in solution are separated and, after deposition onto the InP surface, they form small aggregates. The size of the aggregates is dependent on the time of deposition. If the aggregates are small, the layer has no lateral conductance. Forward and reverse I-V characteristics showed a high rectification ratio with a high Schottky barrier height. The response of the structure on the presence of hydrogen was monitored.

  13. Space Photovoltaic Research and Technology, 1989

    Science.gov (United States)

    1991-01-01

    Remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications is reported. Papers were presented in a variety of technical areas, including multi-junction cell technology, GaAs and InP cells, system studies, cell and array development, and non-solar direct conversion. Five workshops were held to discuss the following topics: mechanical versus monolithic multi-junction cells; strategy in space flight experiments; non-solar direct conversion; indium phosphide cells; and space cell theory and modeling.

  14. Optical phonon spectra of GaP nanoparticles prepared by nanochemistry

    Science.gov (United States)

    Manciu, F. S.; Sahoo, Y.; MacRae, D. J.; Furis, M.; McCombe, B. D.; Prasad, P. N.

    2003-06-01

    Gallium phosphide (GaP) nanoparticles have been synthesized by colloidal nanochemistry with two different surfactants: trioctylphosphine oxide and dodecylamine. Transverse optical (bulk) and surface optical phonons associated with the GaP nanoparticles were observed and studied experimentally by infrared transmission spectroscopy of a solid dispersion of these nanoparticles in cesium iodide pellets. These vibrational properties of the nanoparticles were used to obtain information about the crystallinity and surface interactions. The crystallinity and the stoichiometry of the samples were also examined and characterized by transmission electron microscopy, electron diffraction, and energy dispersive x-ray spectroscopy.

  15. Macrophage Solubilization and Cytotoxicity of Indium-Containing Particles as in vitro Correlates to Pulmonary Toxicity in vivo

    OpenAIRE

    Gwinn, William M.; Qu, Wei; Bousquet, Ronald W.; Price, Herman; Shines, Cassandra J.; Taylor, Genie J.; Waalkes, Michael P.; Morgan, Daniel L.

    2014-01-01

    Macrophage-solubilized indium-containing particles (ICPs) were previously shown in vitro to be cytotoxic. In this study, we compared macrophage solubilization and cytotoxicity of indium phosphide (InP) and indium-tin oxide (ITO) with similar particle diameters (∼1.5 µm) and then determined if relative differences in these in vitro parameters correlated with pulmonary toxicity in vivo. RAW 264.7 macrophages were treated with InP or ITO particles and cytotoxicity was assayed at 24 h. Ionic indi...

  16. Mid-infrared Laser System Development for Dielectric Laser Accelerators

    Science.gov (United States)

    Jovanovic, Igor; Xu, Guibao; Wandel, Scott

    Laser-driven particle accelerators based on dielectric laser acceleration are under development and exhibit unique and challenging pump requirements. Operation in the mid-infrared (5 μm) range with short pulses (500 μJ) and good beam quality is required. We present our progress on the design and development of a novel two- stage source of mid-infrared pulses for this application, which is based on optical parametric amplification. Beta barium borate and zinc germanium phosphide crystals are used, and are pumped by a Ti:sapphire ultrashort laser and seeded by self-phase modulation and parametric generation-based sources.

  17. The Synthesis of Nanostructured Ni5P4 Films and their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting

    OpenAIRE

    Ledendecker, M.; Krick Calderón, S.; Papp, C.; Steinrück, H; Antonietti, M.; Shalom, M.

    2015-01-01

    The investigation of nickel phosphide (Ni5P4) as a catalyst for the hydrogen (HER) and oxygen evolution reaction (OER) in strong acidic and alkaline environment is described. The catalyst can be grown in a 3D hierarchical structure directly on a nickel substrate, thus making it an ideal candidate for practical water splitting devices. The activity of the catalyst towards the HER, together with its high stability especially in acidic solution, makes it one of the best non-noble materials descr...

  18. Design procedure for millimeter-wave InP DHBT stacked power amplifiers

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Johansen, Tom Keinicke; Midili, Virginio

    2015-01-01

    The stacked-transistor concept for power amplifiers (PA) has been investigated in this work. Specifically, this architecture has been applied in the design of millimeter-wave monolithic microwave integrated circuits (MMICs) using indium phosphide (InP) double heterojunction bipolar transistors...... gives 13.1 dBm of output power, 10.1 dB of gain and 13 % of PAE. To the best of the authors' knowledge, this is the first investigation of multi-level stacked PAs based on InP HBT technology....

  19. Efficient telecom to visible wavelength conversion in doubly resonant GaP microdisks

    CERN Document Server

    Lake, David P; Jayakumar, Harishankar; Santos, Laís Fujii dos; Curic, Davor; Barclay, Paul E

    2015-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with outside efficiency $> 4.4\\times10^{-4}\\, \\text{mW}^{-1}$ is demonstrated in a gallium phosphide microdisk cavity supporting high-$Q$ modes at visible ($Q \\sim 10^4$) and infrared ($Q \\sim 10^5$) wavelengths. The double resonance condition was satisfied through intracavity photothermal temperature tuning using $\\sim 360\\,\\mu$W of 1550 nm light input to a fiber taper and resonantly coupled to the microdisk. Above this pump power efficiency was observed to decrease. The observed behavior is consistent with a simple model for thermal tuning of the double resonance condition.

  20. Controlling the Spontaneous Emission Rate of Monolayer MoS$_2$ in a Photonic Crystal Nanocavity

    CERN Document Server

    Gan, Xuetao; Mak, Kin Fai; Yao, Xinwen; Shiue, Ren-Jye; van der Zande, Arend; Trusheim, Matthew; Hatami, Fariba; Heinz, Tony F; Hone, James; Englund, Dirk

    2013-01-01

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS$_2$) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS$_2$ monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS$_2$ emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of MoS$_2$ SE rate exceeding a factor of 70.

  1. 180-GHz I-Q Second Harmonic Resistive Mixer MMIC

    Science.gov (United States)

    Kangaslahti, Pekka P.; Lai, Richard; Mei, Xiaobing

    2010-01-01

    An indium phosphide MMIC (monolithic microwave integrated circuit) mixer was developed, processed, and tested in the NGC 35-nm-gate-length HEMT (high electron mobility transistor) process. This innovation is very compact in size and operates with very low LO power. Because it is a resistive mixer, this innovation does not require DC power. This is an enabling technology for the miniature receiver modules for the GeoSTAR instrument, which is the only viable option for the NRC decadal study mission PATH.

  2. Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1993-01-01

    Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.

  3. A Narrow Linewidth Singly Resonant ZGP OPO for Multiple Lidar Applications

    Science.gov (United States)

    Yu, Jirong; Lee, Hyung R.; Bai, Yingxin; Barnes, Norman P.

    2006-01-01

    A singly resonant, injection seeded Zinc Germanium Phosphide (ZGP) optical parametric oscillator (OPO), capable to tune over 4.3-10.1 microns, is demonstrated. This ZGP OPO uses a bow-tie cavity with a partially reflective mirror for injection seeding at the signal wavelength. The injection seed source can be either a continuous wave 3.39 m laser or a tunable near-infrared OPO laser, which provides wide wavelength tuning capability. The injection seeded ZGP OPO narrows the idler wavelength linewidth to less than 1nm, limited by the measurement resolution of the monochromator. This device has potential to be used as a transmitter for multiple purpose lidar applications.

  4. Influence of Natural Convection and Thermal Radiation Multi-Component Transport in MOCVD Reactors

    Science.gov (United States)

    Lowry, S.; Krishnan, A.; Clark, I.

    1999-01-01

    The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.

  5. Unprecedented ∞1(P103-) band anion in the crystal structure of HgAg6P20I2

    International Nuclear Information System (INIS)

    A new phosphorus polyanion ∞1(P103-) has been determined within the novel double silver mercury phosphide iodide HgAg6P20I2. It crystallizes in a monoclinic space group P21/m with the lattice parameters a = 6.718(1) A, b = 27.701(6) A, c = 7.383(1) A, β = 113.98(3) deg., and Z = 2. An infinite one-dimensional phosphorus polyanion ∞1(P103-) is built from short tubular fragments P103- joint through common phosphorus atoms. Mercury and silver atoms having the same coordination but different formal charge are linked to the phosphorus atoms.

  6. Effect of excess plasma on photoelectron spectra of nanoporous GaP

    International Nuclear Information System (INIS)

    A comparative study of the effect of excess plasma on the photoelectron spectra (PES) of crystalline gallium phosphide (GaP) wafer and 'nanoporous' GaP network samples have been carried out. Rigid shift along with large changes in the line shapes of PES of nanoporous GaP have been observed in the presence of secondary light with respect to spectra measured in its absence. In case of GaP wafer, only rigid shift of PES have been observed. The valence bands offset between 'nanoporous' GaP and GaOx is found 2.30 eV at 300 K

  7. Electron-phonon superconductivity in $A$Pt$_3$P compounds: from weak to strong coupling

    OpenAIRE

    Subedi, Alaska; Ortenzi, Luciano; Boeri, Lilia

    2012-01-01

    We study the newly discovered Pt phosphides $A$Pt$_3$P ($A$=Sr, Ca, La) [ T. Takayama et al. Phys. Rev. Lett. 108, 237001 (2012)] using first-principles calculations and Migdal-Eliashberg theory. Given the remarkable agreement with the experiment, we exclude the charge-density wave scenario proposed by previous first-principles calculations, and give conclusive answers concerning the superconducting state in these materials. The pairing increases from La to Ca and Sr due to changes in the ele...

  8. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP.

    Science.gov (United States)

    Muñoz, P; García-Olcina, R; Habib, C; Chen, L R; Leijtens, X J M; de Vries, T; Robbins, D; Capmany, J

    2011-07-01

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster. PMID:21747509

  9. Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots

    OpenAIRE

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J.; Maitra, Anirban; Prasad, Paras N.

    2009-01-01

    In this paper, we report the successful use of non-cadmium based quantum dots (QDs) as highly efficient and non-toxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulphide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in non-aqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjug...

  10. Raman spectroscopy of boron carbides and related boron-containing materials

    International Nuclear Information System (INIS)

    Raman spectra of crystalline boron, boron carbide, boron arsenide (B12As2), and boron phosphide (B12P2) are reported. The spectra are compared with other boron-containing materials containing the boron icosahedron as a structural unit. The spectra exhibit similar features some of which correlate with the structure of the icosahedral units of the crystals. The highest Raman lines appear to be especially sensitive to the B-B distance in the polar triangle of the icosahedron. Such Raman structural markers are potentially useful in efforts to tailor electronic properties of these high temperature semiconductors and thermoelectrics

  11. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  12. Laboratory trials of five rodenticides for the control of Mesocricetus auratus Waterhouse.

    Science.gov (United States)

    Bradfield, A A; Gill, J E

    1984-10-01

    The efficacy of five rodenticides for use in bait against the golden hamster (Mesocricetus auratus Waterhouse) was investigated in the laboratory. The species proved to be resistant to warfarin (up to 0.5%) and difenacoum (0.005%), but brodifacoum (0.005%) gave complete mortality after three days' feeding. Calciferol (0.1%), though toxic, was significantly unpalatable. Zinc phosphide (5.0%) presented in a choice test for two days against unpoisoned feed gave 100% mortality, and appears to be the most suitable of these compounds for the control of M. auratus in the field. PMID:6334113

  13. High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy

    OpenAIRE

    Lu, Shulong; Ji, Lian; He, Wei; Dai, Pan; Yang, Hui; Arimochi, Masayuki; Yoshida, Hiroshi; Uchida, Shiro; Ikeda, Masao

    2011-01-01

    We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% is also reached for GaInP solar cell. Our results demonstrate that the MBE-grown phosphide-contained ...

  14. 钝化

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [篇名] ANALYSIS OF LOCAL DEFECTS IN SURFACE FILMS ON COMMERCIAL ALLOYS USING CONDUCTIVE ATOMIC FORCE MICROSCOPY (C-AFM), [篇名] Annealing-Induced Properties of Al-N-M (M: Co, Fe) Thin Films, [篇名] Anodic oscillatory behavior and film formation on indium phosphide, [篇名] Bias-temperature instabilities of polysilicon gate HfO{sub}2 MOSFETs, [ 篇名] Commercialization of a Silicon Nitridc Co-Fire Through (SINCOFT) process for manufacturing high efficiency mono-crystalline silicon solar cells, [篇名] Copper CMP for dual damascene technology some considerations on the mechanism of Cu removal.

  15. Enhanced EOS photovoltaic power system capability with InP solar cells

    Science.gov (United States)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  16. High-pressure and high-temperature powder diffraction on molybdenum diphosphide, MoP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Soto, V. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Esenada (Mexico); Knorr, K.; Ehm, L. [Christian-Albrechts-Univ. zu Kiel, Inst. fuer Geowissenschaften, Mineralogie/Kristallographie, Kiel (Germany); Baehtz, C. [HASYLAB Hamburg and TU Darmstadt, Materialwissenschaften, Darmstadt (Germany); Winkler, B. [Johann-Wolfgang-Goethe Univ. Frankfurt-Main, Mineralogie, Frankfurt/M. (Germany); Avalos-Borja, M. [Centro de Ciencias de la Materia Condensada, Univ. Nacional Autonoma de Mexico, Ensenada, BC (Mexico)

    2004-07-01

    The isothermal compressibility and bulk thermal expansion of molybdenum diphosphide, MoP{sub 2}, were measured by in-situ X-ray powder diffraction from ambient conditions to 6.8 GPa and 839 K, respectively. A small anisotropy of the compressibilities in MoP{sub 2} appears to be governed by non-bonding interactions in this layer-like material. The thermal expansion data are compared to molybdenum phosphide, MoP, which was measured to 1262 K. (orig.)

  17. Minor Actinide Burning in Thermal Reactors. A Report by the Working Party on Scientific Issues of Reactor Systems

    International Nuclear Information System (INIS)

    The actinides (or actinoids) are those elements in the periodic table from actinium upwards. Uranium (U) and plutonium (Pu) are two of the principal elements in nuclear fuel that could be classed as major actinides. The minor actinides are normally taken to be the triad of neptunium (Np), americium (Am) and curium (Cm). The combined masses of the remaining actinides (i.e. actinium, thorium, protactinium, berkelium, californium, einsteinium and fermium) are small enough to be regarded as very minor trace contaminants in nuclear fuel. Those elements above uranium in the periodic table are known collectively as the transuranics (TRUs). The operation of a nuclear reactor produces large quantities of irradiated fuel (sometimes referred to as spent fuel), which is either stored prior to eventual deep geological disposal or reprocessed to enable actinide recycling. A modern light water reactor (LWR) of 1 GWe capacity will typically discharge about 20-25 tonnes of irradiated fuel per year of operation. About 93-94% of the mass of uranium oxide irradiated fuel is comprised of uranium (mostly 238U), with about 4-5% fission products and ∼1% plutonium. About 0.1-0.2% of the mass is comprised of neptunium, americium and curium. These latter elements accumulate in nuclear fuel because of neutron captures, and they contribute significantly to decay heat loading and neutron output, as well as to the overall radio-toxic hazard of spent fuel. Although the total minor actinide mass is relatively small - approximately 20-25 kg per year from a 1 GWe LWR - it has a disproportionate impact on spent fuel disposal, and thus the longstanding interest in transmuting these actinides either by fission (to fission products) or neutron capture in order to reduce their impact on the back end of the fuel cycle. The combined masses of the trace actinides actinium, thorium, protactinium, berkelium and californium in irradiated LWR fuel are only about 2 parts per billion, which is far too low for

  18. Actinide production in the reaction of heavy ions with curium-248

    International Nuclear Information System (INIS)

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z=91) to mendelevium (Z=101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of 248Cm with 18O, 86Kr and 136Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from 48Ca and 238U bombardments of 248Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like 136Xe and 238U the new species 248Am, 249Am and 247Pu should be produced with large cross sections from a 248Cm target. A preliminary, unsuccessful attempt to isolate 247Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from 251Bk decay, necessary for calculating the 251Bk cross section, are also determined

  19. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A. [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  20. Transuranium Processing Plant semiannual report of production, status, and plans for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    King, L.J.; Bigelow, J.E.; Collins, E.D.

    1976-10-01

    Between July 1, 1975, and December 31, 1975, maintenance was conducted at TRU for a period of three months, 295 g of curium oxide (enough for approximately 26 HFIR targets) were prepared, 100 mg of high-purity /sup 248/Cm, were separated from /sup 252/Cf that had been purified during earlier periods, 11 HFIR targets were fabricated, and 28 product shipments were made. No changes were made in the chemical processing flowsheets normally used at TRU during this report period. However, three equipment racks were replaced (with two new racks) during this time. In Cubicle 6, the equipment replaced was that used to decontaminate the transplutonium elements from rare earth fission products and to separate curium from the heavier elements by means of the LiCl-based anion-exchange process. In Cubicle 5, the equipment used to separate the transcurium elements by high-pressure ion exchange and to purify berkelium by batch solvent extraction was replaced. Two neutron sources were fabricated, bringing the total fabricated to 79. One source that had been used in a completed project was returned to the TRU inventory and is available for reissue. Three sources, for which no further use was foreseen, were processed to isolate and recover the ingrown /sup 248/Cm and the residual /sup 252/Cf. Eight pellets, each containing 100 ..mu..g of high-purity /sup 248/Cm were prepared for irradiation in HFIR to study the production of /sup 250/Cm. The values currently being used for transuranium element decay data and for cross-section data in planning irradiation-processing cycles, calculating production forecasts, and assaying products are tabulated.

  1. Evaluation of critical materials in five additional advance design photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  2. Mechanical, piezoelectric and some thermal properties of (B3) BP under pressure

    Institute of Scientific and Technical Information of China (English)

    S.DAOUD; N.BIOUD; N.LEBGAA

    2014-01-01

    Some compounds of group III-V semiconductor materials exhibit very good piezoelectric, mechanical, and thermal properties and their use in surface acoustic wave (SAW) devices operating specially at GHz frequencies. These materials have been appreciated for a long time due to their high acoustic velocities, which are important parameters for active microelectromechanical systems (MEMS) devices. For this object, first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical, piezoelectric and some thermal properties of the (B3) boron phosphide are presented, using the density functional perturbation theory (DFPT). The independent elastic and compliance constants, the Reuss modulus, Voigt modulus, and the shear modulus, the Kleinman parameter, the Cauchy and Born coefficients, the elastic modulus, and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained. The direct and converse piezoelectric coefficients, the longitudinal, transverse, and average sound velocity, the Debye temperature, and the Debye frequency of (B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.

  3. Deep level defects in high temperature annealed InP

    Institute of Scientific and Technical Information of China (English)

    DONG; Zhiyuan; ZHAO; Youwen; ZENG; Yiping; DUAN; Manlong

    2004-01-01

    Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed iniron phosphide ambient,while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.

  4. Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution

    Science.gov (United States)

    Wu, Tianli; Pi, Mingyu; Zhang, Dingke; Chen, Shijian

    2016-10-01

    Transition metal phosphides (TMPs) are burgeoning as novel electrocatalysts to replace noble metals for electrochemical production of hydrogen. In this work, we propose a novel and cost-effective catalyst, molybdenum diphosphide (MoP2) three-dimensional porous structural nanoparticles with superior activity towards the hydrogen evolution reaction (HER). MoP2 nanoparticles catalyst exhibits an onset overpotential of -38 mV, a Tafel slope of 52 mV dev-1 and an exchange current density of 0.038 mA cm-2. Furthermore, the catalyst only needs low overpotentials of -121 and -193 mV to produce operationally relevant cathodic current densities of -10 and -100 mA cm-2, respectively, and its catalytic activity is maintained for at least 24 h. Comparative study with MoP nanoparticles as electrocatalyst for HER clearly indicates that MoP2 with high phosphor component can potentially improve the electrocatalytic activities. Density functional theory (DFT) calculation shows that the higher electrocatalytic activity of MoP2 over MoP can be attributed to a longer Hsbnd P bond length, lower hydrogen adsorption energy, lower HER energy barrier and luxuriant surface active sites. This work may expand the TMPs family to poly-phosphides as active and cost-effective hydrogen electrode for the large-scale hydrogen production.

  5. Photoelectrochemistry of Semiconductor Nanowire Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  6. Experimental discovery of a topological Weyl semimetal state in TaP.

    Science.gov (United States)

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S; Zhang, Chenglong; Chang, Guoqing; Guo, Cheng; Bian, Guang; Yuan, Zhujun; Lu, Hong; Chang, Tay-Rong; Shibayev, Pavel P; Prokopovych, Mykhailo L; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Sankar, Raman; Chou, Fangcheng; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2015-11-01

    Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal's surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission. PMID:26702446

  7. The effect of nitrogen implantation on structural changes in semi-insulating InP

    Energy Technology Data Exchange (ETDEWEB)

    Santhakumar, K.; Jayavel, P.; Reddy, G.L.N.; Sastry, V.S.; Nair, K.G.M.; Ravichandran, V. E-mail: vravichandran@vsnl.com

    2003-12-01

    110 keV nitrogen ions (N{sup +}) of fluences 1 x 10{sup 14}-1 x 10{sup 17} cm{sup -2} have been implanted in liquid encapsulated Czochralski grown Fe-doped semi-insulating indium phosphide (InP) single crystal substrates. Grazing incidence X-ray diffraction measurements on as-grown and implanted samples have been carried out and analyzed. At all above fluences, a broad hump in the region of InP(1 1 1) peaks is observed. It might have resulted from implantation-induced misoriented grains along certain preferred orientations. The peak observed at a d-value of 1.77 A for all the fluences becomes more pronounced as the implantation fluence increases up to 1 x 10{sup 16} cm{sup -2}. This could indicate formation of an Indium phosphide nitride alloy. Post-implantation annealing reduces the structural defects and assists in the growth of the nitride phase.

  8. Polymer-Embedded Fabrication of Co2P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation.

    Science.gov (United States)

    Zhuang, Minghao; Ou, Xuewu; Dou, Yubing; Zhang, Lulu; Zhang, Qicheng; Wu, Ruizhe; Ding, Yao; Shao, Minhua; Luo, Zhengtang

    2016-07-13

    We developed a method to engineer well-distributed dicobalt phosphide (Co2P) nanoparticles encapsulated in N,P-doped graphene (Co2P@NPG) as electrocatalysts for hydrogen evolution reaction (HER). We fabricated such nanostructure by the absorption of initiator and functional monomers, including acrylamide and phytic acid on graphene oxides, followed by UV-initiated polymerization, then by adsorption of cobalt ions and finally calcination to form N,P-doped graphene structures. Our experimental results show significantly enhanced performance for such engineered nanostructures due to the synergistic effect from nanoparticles encapsulation and nitrogen and phosphorus doping on graphene structures. The obtained Co2P@NPG modified cathode exhibits small overpotentials of only -45 mV at 1 mA cm(-2), respectively, with a low Tafel slope of 58 mV dec(-1) and high exchange current density of 0.21 mA cm(-2) in 0.5 M H2SO4. In addition, encapsulation by N,P-doped graphene effectively prevent nanoparticle from corrosion, exhibiting nearly unfading catalytic performance after 30 h testing. This versatile method also opens a door for unprecedented design and fabrication of novel low-cost metal phosphide electrocatalysts encapsulated by graphene. PMID:27267432

  9. A Novel Bis(phosphido)pyridine [PNP] 2− Pincer Ligand and Its Potassium and Bis(dimethylamido)zirconium(IV) Complexes

    KAUST Repository

    Winston, Matthew S.

    2010-12-13

    A novel PNP bis(secondary phosphine)pyridine pincer ligand, 2,6-bis(2-(phenylphosphino)phenyl)pyridine, has been prepared in high yield, and the properties of the doubly deprotonated form as a ligand in K 4(PNP)2(THF)6 and (PNP)Zr(NMe2) 2 have been investigated. The neutral PNP ligand has been isolated as a mixture of noninterconverting diastereomers, due to the presence of two chirogenic phosphorus atoms of the secondary phopshines, but coordination of the dianionic form to potassium and zirconium allows for isolation of a single diastereomer in near-quantitative yield. The structure of a bis(dimethylamido) zirconium(IV) derivative of the bis(phosphido)pyridine ligand and DFT calculations suggest that the phosphides do not π-bond to early transition metals, likely due to geometric strain and possibly orbital size mismatch between phosphorus and zirconium. As a result, the soft phosphides are prone to formation of insoluble oligomers with substantial bridging of the phosphido lone pairs to other zirconium centers. © 2010 American Chemical Society.

  10. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N.

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below ∼800 °C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing ≤2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co) 3O 4 protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr) 3O 4 passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr 2O 3. On SS 441, reaction of phosphorus with (Mn,Cr) 3O 4 led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe 3P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co) 3O 4 spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn 3(PO 4) 2 and Co 2P. A thin Cr 2O 3 passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr 2O 3 was apparent. On alumel, an Al 2O 3 passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al 2O 3 occurred. This work shows that unprotected metallic components of an SOFC stack and system can provide a sink for P, As and Sb impurities that may be present in fuel gases, and thus complicate

  11. III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael; Battaglia, Corsin; Kapadia, Rehan; Javey, Ali

    2016-06-01

    The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enable lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.

  12. Theoretical and experimental research in space photovoltaics

    Science.gov (United States)

    Faur, Mircea; Faur, Maria

    1995-01-01

    Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.

  13. Aerogels Handbook

    CERN Document Server

    Aegerter, Michel A; Koebel, Matthias M

    2011-01-01

    Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recove...

  14. Structure and bonding in metal-rich compounds: pnictides, chalcides and halides

    International Nuclear Information System (INIS)

    The subject is reviewed under the following headings: introduction (compounds included in the review; purpose of the review); MX compounds with M = transition metal and X = O,N,S or P; sulfides and selenides of the transition metals; transition-metal phosphides; alkali oxides; transition-metal oxides and nitrides with X/M < 1; metal-rich halides; conclusion. The references number 238. Compounds of the following principal elements of nuclear interest are included in the tables and text: Am, Ce, Cs, Eu, Gd, Hf, La, Mo, Np, Nb, Pu, Pr, Pa, Re, Ru, Sc, Ta, Tb, Th, W, U, V, Y, Zr. The information in the tables is presented under: structure type, space group, lattice parameters and remarks. (U.K.)

  15. Particle detectors based on semiconducting InP epitaxial layers

    Science.gov (United States)

    Yatskiv, R.; Grym, J.; Zdansky, K.

    2011-01-01

    A study of electrical properties and detection performance of two types of Indium Phosphide detector structures was performed: (i) with p-n-junction and (ii) with Schottky contact prepared on high purity p-type InP. The p-n junction detectors were based on a high purity InP:Pr layers of both n- and p- type conductivity with carrier concentration on the order of 1014 cm-3 grown on Sn doped n-type substrate. Schottky barrier detectors were prepared by vacuum evaporation of Pd on high purity p-type epitaxial layer grown on Mn doped p-type substrate. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from 241Am source at room temperature.

  16. Particle detectors based on semiconducting InP epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Yatskiv, R; Grym, J; Zdansky, K, E-mail: yatskiv@ufe.cz [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 18251 Praha 8 (Czech Republic)

    2011-01-15

    A study of electrical properties and detection performance of two types of Indium Phosphide detector structures was performed: (i) with p-n-junction and (ii) with Schottky contact prepared on high purity p-type InP. The p-n junction detectors were based on a high purity InP:Pr layers of both n- and p- type conductivity with carrier concentration on the order of 10{sup 14} cm{sup -3} grown on Sn doped n-type substrate. Schottky barrier detectors were prepared by vacuum evaporation of Pd on high purity p-type epitaxial layer grown on Mn doped p-type substrate. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from {sup 241}Am source at room temperature.

  17. Particle detectors based on semiconducting InP epitaxial layers

    International Nuclear Information System (INIS)

    A study of electrical properties and detection performance of two types of Indium Phosphide detector structures was performed: (i) with p-n-junction and (ii) with Schottky contact prepared on high purity p-type InP. The p-n junction detectors were based on a high purity InP:Pr layers of both n- and p- type conductivity with carrier concentration on the order of 1014 cm-3 grown on Sn doped n-type substrate. Schottky barrier detectors were prepared by vacuum evaporation of Pd on high purity p-type epitaxial layer grown on Mn doped p-type substrate. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from 241Am source at room temperature.

  18. Self-supported electrocatalysts for advanced energy conversion processes

    Directory of Open Access Journals (Sweden)

    Tian Yi Ma

    2016-06-01

    Full Text Available The biggest challenge in developing new energy conversion technologies such as rechargeable metal-air batteries, regenerated fuel cells and water splitting devices is to find suitable catalysts that can efficiently and stably catalyze the key electrochemical processes involved. This paper reviews the new development of self-supported electrocatalysts in three categories: electrocatalysts growing on rigid substrates, electrocatalysts growing on soft substrates, and free-standing catalyst films. They are distinct and superior to the conventional powdery electrocatalysts, showing advantages in controllable nanostructure and chemical component, flexible electrode configuration, and outstanding catalytic performance. The self-supported electrocatalysts with various architectures like nanowire/plate/pillar arrays and porous films, composed of metals, metal oxides/selenides/phosphides, organic polymers, carbons and their corresponding hybrids, are presented and discussed. These catalysts exhibit high activity, durability and selectivity toward oxygen reduction, oxygen evolution, and/or hydrogen evolution reactions. The perspectives on the relevant areas are also proposed.

  19. Ultra-compact plasmonic waveguide modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia

    -compatible materials, both passive and active plasmonic waveguide components are important. Among other proposed plasmonic waveguides and modulators, the structures where the dielectric core is sandwiched between metal plates have been shown as one of the most compact and efficient layout. Because of the tight mode...... modulators based on ultra-compact waveguides with different active cores. Plasmonic modulators with the active core such as indium phosphides or ferroelectrics sandwiched between metal plates have promising characteristics. Apart from the speed and dimensions advantages, the metal plates can serve...... as electrodes for electrical pumping of the active material making it easier to integrate. Including an additional layer in the plasmonic waveguide, in particular an ultrathin transparent conductive oxide film, allows the control of the dispersive properties of the waveguide and thus the higher efficiency...

  20. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  1. Evaluation of aziridine bonding agent by means of chemical and instrumental techniques of analysis

    Directory of Open Access Journals (Sweden)

    Darci Cortes Pires

    2009-01-01

    Full Text Available A new method using wet chemistry and instrumental analysis has been developed for evaluating the ring-opening of aziridine tris [1-(2 methyl aziridinyl] phosphide oxide (MAPO of the bonding agent used in composite propellant. A reduction was observed in the intensity absorption bands in 1400 and 1040 cm-1, characteristic of aziridinic ring. It was also observed, in some cases, that when the number of open aziridinyl ring increases, the NH band in the range 3400-3300 cm-1, that appears with ring-opening, is located in the region of lower wave numbers. The study of the synthesis of MAPO derivative indicated side reactions such as homopolymerization of rings and also, with secondary hydroxyl of the 12-hydroxy stearic acid and probable humidity existent in the original sample.

  2. The Unexpected Influence of Precursor Conversion Rate in the Synthesis of III-V Quantum Dots.

    Science.gov (United States)

    Franke, Daniel; Harris, Daniel K; Xie, Lisi; Jensen, Klavs F; Bawendi, Moungi G

    2015-11-23

    Control of quantum dot (QD) precursor chemistry has been expected to help improve the size control and uniformity of III-V QDs such as indium phosphide and indium arsenide. Indeed, experimental results for other QD systems are consistent with the theoretical prediction that the rate of precursor conversion is an important factor controlling QD size and size distribution. We synthesized and characterized the reactivity of a variety of group-V precursors in order to determine if precursor chemistry could be used to improve the quality of III-V QDs. Despite slowing down precursor conversion rate by multiple orders of magnitude, the less reactive precursors do not yield the expected increase in size and improvement in size distribution. This result disproves the widely accepted explanation for the shortcoming of current III-V QD syntheses and points to the need for a new generalizable theoretical picture for the mechanism of QD formation and growth.

  3. Application of fluorine calorimetry method for determination of compound formation enthalpy

    International Nuclear Information System (INIS)

    Systematized and analyzed in detail are literary data on enthalpies of fluoride formation as well as other multiple compounds of Zr, Hf, U, Nb, Ta, Ru, Cd, Yt, Th, Be, Mo, W, V and other elements prepared by the fluorine calorimetry method. Considered and discussed are the results of determinations of combustion heats of different metals in fluorine, the most significant non-metals as well as compounds like oxides, sulfides, nitrides, phosphides, carbides, borides, low fluorides and others. Discussed is the influence of different factors on the accuracy of the data obtained. Separately considered are the results of determination of heat effects of reactions of fluoration with participation of a number of other fluorine-containing oxidants ( oxygen difluoride, chlorine, xenon, nitrogen, carbon, boron, silicon and sulfur fluorides)

  4. 3D integrated hybrid silicon laser.

    Science.gov (United States)

    Song, Bowen; Stagarescu, Cristian; Ristic, Sasa; Behfar, Alex; Klamkin, Jonathan

    2016-05-16

    Lasers were realized on silicon by flip-chip bonding of indium phosphide (InP) devices containing total internal reflection turning mirrors for surface emission. Light is coupled to the silicon waveguides through surface grating couplers. With this technique, InP lasers were integrated on silicon. Laser cavities were also formed by coupling InP reflective semiconductor optical amplifiers to microring resonator filters and distributed Bragg reflector mirrors. Single-mode continuous wave lasing was demonstrated with a side mode suppression ratio of 30 dB. Up to 2 mW of optical power was coupled to the silicon waveguide. Thermal simulations were also performed to evaluate the low thermal impedance afforded by this architecture and potential for high wall-plug efficiency. PMID:27409867

  5. Detrapping and retrapping of free carriers in nominally pure single crystal GaP, GaAs and 4H-SiC semiconductors under light illumination at cryogenic temperatures

    CERN Document Server

    Mouneyrac, David; Floch, Jean-Michel Le; Tobar, Michael E; Cros, Dominique; Krupka, Jerzy

    2010-01-01

    We report on extremely sensitive measurements of changes in the microwave properties of high purity non-intentionally-doped single-crystal semiconductor samples of gallium phosphide, gallium arsenide and 4H-silicon carbide when illuminated with light of different wavelengths at cryogenic temperatures. Whispering gallery modes were excited in the semiconductors whilst they were cooled on the coldfinger of a single-stage cryocooler and their frequencies and Q-factors measured under light and dark conditions. With these materials, the whispering gallery mode technique is able to resolve changes of a few parts per million in the permittivity and the microwave losses as compared with those measured in darkness. A phenomenological model is proposed to explain the observed changes, which result not from direct valence to conduction band transitions but from detrapping and retrapping of carriers from impurity/defect sites with ionization energies that lay in the semiconductor band gap. Detrapping and retrapping relax...

  6. Optical and interfacial electronic properties of diamond-like carbon films

    Science.gov (United States)

    Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.

    1984-01-01

    Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.

  7. A quantum entropy source on an InP photonic integrated circuit for random number generation

    CERN Document Server

    Abellan, Carlos; Domenech, David; Muñoz, Pascual; Capmany, Jose; Longhi, Stefano; Mitchell, Morgan W; Pruneri, Valerio

    2016-01-01

    Random number generators are essential to ensure performance in information technologies, including cryptography, stochastic simulations and massive data processing. The quality of random numbers ultimately determines the security and privacy that can be achieved, while the speed at which they can be generated poses limits to the utilisation of the available resources. In this work we propose and demonstrate a quantum entropy source for random number generation on an indium phosphide photonic integrated circuit made possible by a new design using two-laser interference and heterodyne detection. The resulting device offers high-speed operation with unprecedented security guarantees and reduced form factor. It is also compatible with complementary metal-oxide semiconductor technology, opening the path to its integration in computation and communication electronic cards, which is particularly relevant for the intensive migration of information processing and storage tasks from local premises to cloud data centre...

  8. Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission

    CERN Document Server

    Melati, Daniele; Melloni, Andrea

    2016-01-01

    A photonic integrated circuit for mode multiplexing and demultiplexing in a few-mode fiber is presented and demonstrated. Two 10 Gbit/s channels at the same wavelength and polarization are simultaneously transmitted over modes LP01 and LP11a of a few-mode fiber exploiting the integrated mode MUX and DEMUX. The proposed Indium-Phosphide-based circuits have a good coupling efficiency with fiber modes with mode-dependant loss smaller than 1 dB. Measured mode excitation cross-talk is as low as -20 dB and a channel cross-talk after propagation and demultiplexing of -15 dB is achieved. An operational bandwidth of the full transmission system of at least 10 nm is demonstrated. Both mode MUX and DEMUX are fully reconfigurable and allow a dynamic switch of channel routing in the transmission system.

  9. The temperature and oxygen pressure influence on the iron secondary ion emission

    International Nuclear Information System (INIS)

    Investigations of secondary ion composition, ejected from the iron surface by an Ar+ beam with E=2keV and current density 5 x 10-7A/cm2, were carried out. The influence of the target temperature and oxygen partial pressure value near its surface on the composition and quantitative ratio of flow values of secondary ions ejected from the target is shown. A strong effect of bulk admixtures (C.S.P) on the temperature dependences of mass line intensities of secondary ions of oxides, carbides, sulphides and phosphides of iron in the high temperature ranges is discovered. The influence of two mechanisms of carbon diffusion on coverage size of the target surface by iron carbides is observed. (Auth.)

  10. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  11. Photoelectrochemical based direct conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Arent, D.; Peterson, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  12. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Xia; Sun, Pingping; Qin, Jinwen; Wang, Jianqiang; Xiao, Ying; Cao, Minhua

    2016-05-01

    Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an anode material for lithium-ion batteries in terms of specific capacity, cycling stability and long-cycle life. It presents stable cycling performance with a high reversible capacity up to 1028 mA h g-1 at a current density of 100 mA g-1 after 100 cycles. By ex situ XRD, HRTEM, SAED and XPS analyses, the 3D porous MoP@C hybrid was found to follow the Li-intercalation reaction mechanism (MoP + xLi+ + e- LixMoP), which was further confirmed by ab initio calculations based on density functional theory.Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an

  13. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    Science.gov (United States)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  14. A novel and compact nanoindentation device for in situ nanoindentation tests inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-03-01

    Full Text Available In situ nanomechanical tests provide a unique insight into mechanical behaviors of materials, such as fracture onset and crack propagation, shear band formation and so on. This paper presents a novel in situ nanoindentation device with dimensions of 103mm×74mm×60mm. Integrating the stepper motor, the piezoelectric actuator and the flexure hinge, the device can realize coarse adjustment of the specimen and precision loading and unloading of the indenter automatically. A novel indenter holder was designed to guarantee that the indenter penetrates into and withdraws from the specimen surface vertically. Closed-loop control of the indentation process was established to solve the problem of nonlinearity of the piezoelectric actuator and to enrich the loading modes. The in situ indentation test of Indium Phosphide (InP inside the scanning electron microscope (SEM was carried out and the experimental result indicates the feasibility of the developed device.

  15. Chemical composition and structural transformations of amorphous chromium coatings electrodeposited from Cr(III) electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Safonova, Olga V. [Swiss-Norwegian Beamlines at European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Vykhodtseva, Ludmila N. [Department of Electrochemistry, Faculty of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Polyakov, Nikolai A. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow (Russian Federation); Swarbrick, Janine C. [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Sikora, Marcin [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Av. Mickiewicza 30, 30-059 Krakow (Poland); Glatzel, Pieter [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Safonov, Viktor A., E-mail: safon@elch.chem.msu.r [Department of Electrochemistry, Faculty of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2010-12-15

    Amorphous chromium coatings were electrodeposited from Cr(III)-based solutions containing organic (HCOONa) or phosphorus-containing (NaH{sub 2}PO{sub 2}) additives. Their structure was studied by a combination of X-ray diffraction (XRD), valence-to-core X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) at the Cr K-edge. Metalloid atoms (C or P) incorporated in electroplates structure are chemically bonded to chromium (i.e. are located in the first coordination shell). Upon annealing at elevated temperatures in vacuum, these amorphous coatings crystallize into a mixture of phases containing metallic chromium and chromium carbides or chromium phosphides. Quantitative analysis of valence-to-core XES data demonstrates that the average local structure of chromium in the amorphous coatings does not change significantly during crystallization.

  16. Berry phase and band structure analysis of the Weyl semimetal NbP

    Science.gov (United States)

    Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2016-01-01

    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase. PMID:27667203

  17. Electron-beam pulse annealed Ti-implanted GaP

    Science.gov (United States)

    Werner, Z.; Barlak, M.; Ratajczak, R.; Konarski, P.; Markov, A. M.; Heller, R.

    2016-08-01

    Gallium phosphide heavily doped with substitutional titanium is a prospective material for intermediate band solar cells. To manufacture such a material, single crystals of GaP were implanted with 120 keV Ti ions to doses between 5 × 1014 cm-2 and 5 × 1015 cm-2. They were next pulse annealed with 2 μs electron-beam pulses of electron energy of about 13 keV and pulse energy density between 1 and 2 Jcm-2. The samples were studied by channeled Rutherford Backscattering, particle induced X-ray emission, and SIMS. The results show full recovery of crystal structure damaged by implantation and good retention of the implanted titanium without, however, its significant substitution at crystal sites.

  18. Electron-phonon superconductivity in APt3P (A=Sr, Ca, La) compounds: From weak to strong coupling

    Science.gov (United States)

    Subedi, Alaska; Ortenzi, Luciano; Boeri, Lilia

    2013-04-01

    We study the newly discovered Pt phosphides APt3P (A=Sr, Ca, La) [T. Takayama , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.237001 108, 237001 (2012)] using first-principles calculations and Migdal-Eliashberg theory. Given the remarkable agreement with the experiment, we exclude the charge-density wave scenario proposed by previous first-principles calculations, and give conclusive answers concerning the superconducting state in these materials. The pairing increases from La to Ca and Sr due to changes in the electron-phonon matrix elements and low-frequency phonons. Although we find that all three compounds are well described by conventional s-wave superconductivity and spin-orbit coupling of Pt plays a marginal role, we show that it could be possible to tune the structure from centrosymmetric to noncentrosymmetric opening new perspectives towards the understanding of unconventional superconductivity.

  19. Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction.

    Science.gov (United States)

    Zhang, Zhe; Hao, Jinhui; Yang, Wenshu; Lu, Baoping; Tang, Jilin

    2015-03-14

    Developing inexpensive and highly efficient non-precious-metal electrocatalysts has been proposed as a promising alternative to platinum-based catalysts for the hydrogen evolution reaction (HER). Herein, we report novel FeP NPs supported on inexpensive and available candle soot (FeP-CS) derived from Fe3O4-CS hybrid precursors obtained after a phosphidation reaction. As HER electrocatalysts, the FeP-CS hybrids exhibit high electrocatalytic ability for HER with a Tafel slope of 58 mV dec(-1), a low onset overpotential of 38 mV, a large exchange current density of 2.2 × 10(-1) mA cm(-2) and an overpotential of 112 mV to obtain a current of 10 mA cm(-2). The present work shows significant advance in designing and developing non-precious-metal electrocatalysts for hydrogen evolution reaction. PMID:25685982

  20. Zintl Salts Ba2P7X (X = Cl, Br, and I: Synthesis, Crystal, and Electronic Structures

    Directory of Open Access Journals (Sweden)

    Juli-Anna Dolyniuk

    2013-08-01

    Full Text Available Two barium phosphide halides, Ba2P7Br and Ba2P7I, were synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds crystallize in the monoclinic space group P21/m (No. 11 and are isostructural to Ba2P7Cl. The crystal structures of Ba2P7X (X = Cl, Br, I feature the presence of heptaphosphanortricyclane P73− clusters along with halogen anions and barium cations. According to the Zintl concept, Ba2P7X compounds are electron-balanced semiconductors. Quantum-chemical calculations together with UV-Visible spectroscopy confirm the title compounds are wide bandgap semiconductors. The bonding in the P73− clusters was analyzed by means of electron localization function. The elemental compositions were confirmed using energy dispersive X-ray spectroscopy.

  1. BRUGADA TYPE ECG PATTERN IN A CASE OF ALUMINIUM PHO SPHIDE POISONING

    Directory of Open Access Journals (Sweden)

    Devinder Singh

    2012-12-01

    Full Text Available ABSTRACT: We are presenting a case which reveals unmasking of Brugada pattern with aluminum phosphide (celphos ingestion that could most probably be due to hypomagnesaemia caused by the chemical, though its direct toxic eff ect on cardiac tissue cannot be ruled out. Earlier low levels of magnesium has been shown to pr ecipitate arrhythmias in susceptible individuals and low magnesium levels have been reco rded in survivors of sudden death with underlying Brugada syndrome, this is the first case in which celphos induced hypomagnesaemia has unmasked the Brugada pattern in ECG that can inc rease susceptibility to life threatening arrhythmias. This case opens scope for further resear ch on role of magnesium in celphos poisoning

  2. Synthesis of monoclinic zinc diphosphide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mowles, T.A.

    1978-05-01

    Monoclinic zinc diphosphide is a cheap, plentiful, direct-gap semiconductor with an optimum transition energy for solar absorption. Single crystals were grown from the vapor to be evaluated as a new photovoltaic material. Monoclinic and tetragonal crystal formed within evacuated quartz ampules that were charged with zinc and excess phosphorous and heated in a temperature gradient to give phosphorous pressures from 0.07 to 8.5 atmospheres. The monoclinic form melts incongruently near 990/sup 0/C. The tetragonal form is metastable; its growth is enhanced by impurities but retarded by high phosphorous pressures. The mechanism of the synthesis indicates that a tightly-controlled vapor deposition is possible and that high-quality thin films should form at temperatures from 950 to 990/sup 0/C at pressures below 10 atmospheres. By a modification of the technique, sesquizinc phosphide single crystals were grown for comparison.

  3. Biomimetic-Inspired Infrared Sensors from Zn3P2 Microwires: Study of Their Photoconductivity and Infrared Spectrum Properties

    Directory of Open Access Journals (Sweden)

    M. Israelowitz

    2014-01-01

    Full Text Available The fire beetle, Melanophila acuminata (Coleoptera: Buprestidae, senses infrared radiation at wavelengths of 3 and 10–25 microns via specialized protein-containing sensilla. Although the protein denatures outside of a biological system, this detection mechanism has inspired our bottom-up approach to produce single zinc phosphide microwires via vapour transport for IR sensing. The Zn3P2 microwires were immobilized and electrical contact was made by dielectrophoresis. Photoconductivity measurements have been extended to the near IR range, spanning the Zn3P2 band gaps. Purity and integrity of the Zn3P2 microwires including infrared light scattering properties were confirmed by infrared transmission microscopy. This biomimetic microwire shows promise for infrared chip development.

  4. Optical properties of nanowire metamaterials with gain

    DEFF Research Database (Denmark)

    Isidio de Lima, Joaquim Junior; Adam, Jost; Rego, Davi;

    2016-01-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide....... The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice...... constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications....

  5. Optical properties of nanowire metamaterials with gain

    Science.gov (United States)

    Lima, Joaquim; Adam, Jost; Rego, Davi; Esquerre, Vitaly; Bordo, Vladimir

    2016-11-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide. The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications.

  6. Laboratory tests of seven rodenticides for the control of Meriones shawi.

    Science.gov (United States)

    Gill, J E; Redfern, R

    1983-10-01

    The response of Meriones shawi to seven rodenticides was investigated in laboratory feeding tests. The species proved to be much less susceptible to anticoagulants than most other species of rodent pests. Brodifacoum (at 0.005%), although giving complete mortality after only 8 days' continuous feeding, was more toxic than warfarin (0.025%), coumatetralyl (0.0375%), difenacoum (0.005%) and bromadiolone (0.005%). Calciferol (0.1%), though toxic, was significantly unpalatable. Zinc phosphide (5.0%) presented for 2 days in a choice test against unpoisoned food gave 80% mortality and appears to be the most suitable of these compounds for the control of M. shawi in the field. PMID:6605985

  7. Effects of pressure on deep levels in semiconductors: The MFe center in InP

    International Nuclear Information System (INIS)

    This work investigated the effects of hydrostatic pressure on the properties and bistability of the scientifically challenging and technologically important deep MFe center in iron (Fe)-doped, n-type indium phosphide (InP). When occupied by electrons, the center can be reversibly placed in either of two configurations, termed A and B, by the proper choice of electric biasing conditions and temperature. Pressure has a very large influence on the balance between these two configurations, favoring A over B. Above 8 kbar essentially only the A configuration is observed. This result, along with detailed studies of the effects of pressure on the energetics of the two configurations and on the kinetics of the B→A transformation, provide important new insights about the nature of the two configurations and their associated deep levels. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Radiation-hard, high efficiency InP solar cell and panel development

    International Nuclear Information System (INIS)

    Indium phosphide solar cells with efficiencies over 19% (Air mass zero, 25 degrees C) and area of 4 cm2 have been made and incorporated into prototype panels. The panels will be tested in space to confirm the high radiation resistance expected from InP solar cells, which makes the material attractive for space use, particularly in high-radiation orbits. Laboratory testing indicated an end-of-life efficiency of 15.5% after 1015 1 MeV electrons, and 12% after 1016. These cells are made by metalorganic chemical vapor deposition, and have a shallow homojunction structure. The manufacturing process is amendable to scale-up to larger volumes; more than 200 cells were produced in the laboratory operation. Cell performance, radiation degradation, annealing behavior, and results of deep level transient spectroscopy studies are presented in this paper

  9. Calculated performance of p(+)n InP solar cells with In(0.52)Al(0.48)As window layers

    Science.gov (United States)

    Jain, R. K.; Landis, G. A.

    1991-01-01

    The performance of indium phosphide solar cells with lattice matched wide band-gap In(0.52)Al(0.48)As window layers was calculated using the PC-1D computer code. The conversion efficiency of p(+)n InP solar cells is improved significantly by the window layer. No improvement is seen for n(+)p structures. The improvement in InP cell efficiency was studied as a function of In(0.52)Al(0.48)As layer thickness. The use of the window layer improves both the open circuit voltage and short circuit current.For a typical In(0.52)Al(0.48)As window layer thickness of 20 nm, the cell efficiency improves in excess of 27 percent to a value of 18.74 percent.

  10. Half-metallic ferromagnetism in Fe-doped Zn{sub 3}P{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaiganesh, G., E-mail: jaiganesh@igcar.gov.in; Jaya, S. Mathi, E-mail: jaiganesh@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2014-04-24

    Using the first-principles calculations based on the density functional theory, we have studied the magnetism and electronic structure of Fe-doped Zinc Phosphide (Zn{sub 3}P{sub 2}). Our results show that the half-metallic ground state and ferromagnetic stability for the small Fe concentrations considered in our study. The stability of the doped material has been studied by calculating the heat of formation and analyzing the minimum total energies in nonmagnetic and ferromagnetic phases. A large value of the magnetic moment is obtained from our calculations and our calculation suggests that the Fe-doped Zn{sub 3}P{sub 2} may be a useful material in semiconductor spintronics.

  11. The Significance of Multivalent Bonding Motifs and “Bond Order” in DNA-Directed Nanoparticle Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Thaner, Ryan V.; Eryazici, Ibrahim; Macfarlane, Robert J.; Brown, Keith A.; Lee, Byeongdu; Nguyen, SonBinh T.; Mirkin, Chad A.

    2016-05-18

    Multivalent oligonucleotide-based bonding elements have been synthesized and studied for the assembly and crystallization of gold nanoparticles. Through the use of organic branching points, divalent and trivalent DNA linkers were readily incorporated into the oligonucleotide shells that define DNA-nanoparticles and compared to monovalent linker systems. These multivalent bonding motifs enable the change of "bond strength" between particles and therefore modulate the effective "bond order." In addition, the improved accessibility of strands between neighboring particles, either due to multivalency or modifications to increase strand flexibility, gives rise to superlattices with less strain in the crystallites compared to traditional designs. Furthermore, the increased availability and number of binding modes also provide a new variable that allows previously unobserved crystal structures to be synthesized, as evidenced by the formation of a thorium phosphide superlattice.

  12. Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna.

    Science.gov (United States)

    Mattsson, Karin; Adolfsson, Karl; Ekvall, Mikael T; Borgström, Magnus T; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy; Prinz, Christelle N

    2016-10-01

    Nanowires (NWs) have unique electrical and optical properties of value for many applications including lighting, sensing, and energy harnessing. Consumer products containing NWs increase the risk of NWs being released in the environment, especially into aquatic ecosystems through sewage systems. Daphnia magna is a common, cosmopolitan freshwater organism sensitive to toxicity tests and represents a likely entry point for nanoparticles into food webs of aquatic ecosystems. Here we have evaluated the effect of NW diameter on the gut penetrance of NWs in Daphnia magna. The animals were exposed to NWs of two diameters (40 and 80 nm) and similar length (3.6 and 3.8 μm, respectively) suspended in water. In order to locate the NWs in Daphnia, the NWs were designed to comprise one inherently fluorescent segment of gallium indium phosphide (GaInP) flanked by a gallium phosphide (GaP) segment. Daphnia mortality was assessed directly after 24 h of exposure and 7 days after exposure. Translocation of NWs across the intestinal epithelium was investigated using confocal fluorescence microscopy directly after 24 h of exposure and was observed in 89% of Daphnia exposed to 40 nm NWs and in 11% of Daphnia exposed to 80 nm NWs. A high degree of fragmentation was observed for NWs of both diameters after ingestion by the Daphnia, although 40 nm NWs were fragmented to a greater extent, which could possibly facilitate translocation across the intestinal epithelium. Our results show that the feeding behavior of animals may enhance the ability of NWs to penetrate biological barriers and that penetrance is governed by the NW diameter. PMID:27181920

  13. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn; Wang, Guo-Dong

    2015-05-15

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.

  14. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    International Nuclear Information System (INIS)

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved

  15. Hydrostatic High-Pressure Studies to 25 GPA on the Model Superconducting Pnictide LaRu2P2

    Science.gov (United States)

    Lim, Jinhyuk; Forouzani, Neda; Schilling, James; Fotovat, Roxanna; Zheng, Chong; Hoffmann, Roald

    2014-03-01

    Prior to the discovery of the Fe-pnictides in 2008, the ruthenium phosphide LaRu2P2 possessed the highest value of the su- perconducting transition temperature, Tc ~ 4 K, in the entire pnictide family. Recently, there has been renewed interest in this compound in an effort to better understand why the Fe-pnictides have much higher values of Tc. In related phosphides superconductivity appears to only be present if the separation be- tween the phosphor ions dp-p in neigh- boring Ru2P2 planes is greater than the critical value 2.8 Å, too great for a P-P covalent bond to be formed. For example, in superconducting LaRu2P2, the value of dp-p is 3.0 Å. To test these ideas directly, we have carried out hydro- static high-pressure studies on single-crystalline LaRu2P2 in a diamond-anvil cell using He pressure medium to pres- sures as high as 25 GPa and temperatures as low as 1.5 K. We find that Tc initially increases under pressure, but suddenly disappears above 2.1 GPa. Since dp-p decreases under pressure, the sudden disappearance of superconductivity is likely due to the formation of a covalent P-P bond between adjacent Ru2P2 planes and a possible structural phase transition. Work at Washington University is supported by the NSF through Grant No. DMR-1104742 and by the Carnegie/DOE through NNSA/DOE Grant No. DE-FC52-08NA28554.

  16. On the properties of Au2₂P₃z (z = -1, 0, +1): analysis of geometry, interaction, and electron density

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kang-Ming; Jiang, Shuai; Zhu, Yu-Peng; Huang, Teng; Liu, Yi-Rong; Zhang, Yang; Lv, Yu-Zhou; Huang, Wei

    2015-03-02

    Au₂P₃, the only metastable binary phase of gold phosphide, has been discovered to exhibit remarkable semiconductor properties among metal phosphides. A systematic study on the geometry, the transformation of Au₂P₃ into different valence states and the different interactions among the atoms of the species is performed by using the density functional theory (DFT) method. The global minimum of Au₂P₃- is a 3D structure with Cs symmetry. This structure could be distorted from a planar configuration of Au₂P₃ which decreases the steric effect on it and leads to a new stable configuration. An analogous planar configuration, a local minimum rather than a global minimum, is also found in Au₂P₃⁺, due to the electron effect acting on the structure. Natural bond orbital (NBO) analysis reveals the re-distribution progression of the charge within the species. The central located Au atom and another no. 5 positioned P atom play significant roles on the structures. P5, as an electron adjuster, balances the electron distribution at different valence states of the structures. Deformation density analysis supplies information about charge transfer and the bonding type between two adjacent atoms as well. Looking deep into the bonding types, as electron localization function (ELF) suggests, the interaction between two adjacent P atoms (P3 and P4) of Au₂P₃ belongs to a strong covalent bond. The Au–P interactions among the configurations could be classified as weak classical covalent bonds through the atoms in molecules (AIM) dual parameter analysis. And for the first time, the weak interaction between the two adjacent Au atoms (Au1 and Au2) of the charged states of Au₂P₃ (Au₂P₃⁻ and Au₂P₃⁺), are verified and different from the neutral Au₂P₃ through the reduced density gradient (RDG) analysis.

  17. Low-temperature laser-induced selective area growth of compound semiconductor

    Science.gov (United States)

    Uppili, Sudarsan

    Laser induced epitaxial growth of gallium phosphide was investigated as a low temperature, spatially selective process using both pyrolytic and photolytic reaction. A focussed beam from an argon ion laser operating at 514.5 nm was used to direct-write epitaxial microstructures of homoepitaxial GaP using a pyrolytic process. The precursors were trimethyl gallium (TMG) and tertiary butylphosphine (TBP). Dependence of the epitaxial growth on several deposition parameters was examined. An ArF excimer laser was also used to achieve homoepitaxy and heteroepitaxy of gallium phosphide on gallium arsenide at 500 C using TMG and TBP as the precusor gases. Dependence of homoepitaxial growth of GaP on several parameters is examined. The crystalline properties of the film were determined using transmission electron microscopy (TEM). Electrical properties of p-n diodes fabricated via Zn doping were also examined. Defect structures in excimer laser-assisted epitaxial GaP on (100) GaP and (100) GaAs were examined using TEM. Periodic structures were obtained using nominally unpolarized excimer laser radiation, during heteroepitaxial growth of GaP on GaAs. Both crystalline properties and chemical composition of these structures were examined. Microanalysis showed modulation in composition in the ripple structure resulting from the thermal variation caused by the optical interference during growth. Electrical conductivity measurements of GaP during pulsed lasers irradiation indicated that in the absence of gases, there was appreciable heating of the semiconductor. However, a very small quantity of hydrogen or helium cooled the substrate appreciably. This suggested that the average temperature rise of the substrate was not an important factor in the temperature calculations used in the present investigation.

  18. Grain boundary segregation in FeCrNi model alloys; Korngrenzensegregation in FeCrNi-Modellegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, B.; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Muraleedharan, P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy

    1998-12-31

    P and S segregate at the grain boundaries and thus increase susceptibility to intergranular corrosion at those sites. This could be proven by means of nitric acid-chromate tests and potentiostatic etching tests. There is a direct connection between loss in mass, mean depth of intergranular corrosion attacks, dissolution current density, and level of segregation-induced concentration of P and S at the grain boundaries. The segregation effect at these sites was found to be most evident in specimens of the examined Fe-Cr-Ni steel which had been heat-treated for 1000 hours at 550 C. However, segregation occurs also in materials that received a heat treatment of 400 C/5000 hours, while intergranular corrosion is observed only after heat treatment of 500 C/1000 hours. Apart from segregation of P, formation of Cr-rich phosphides is observed, which leads to depletion of Cr at the precipitates. (orig./CB) [Deutsch] P und S segregieren an die KG und erhoehen dort die IK-Anfaelligkeit. Dies konnte mit Hilfe von Salpetersaeure-Chromat- und Potentiostatischem Aetztest nachgewiesen werden. Es besteht ein direkter Zusammenhang zwischen Masseverlust, mittlerer IK-Angriffstiefe, Aufloesungsstromdichte und Hoehe der segregationsbedingten Anreicherungen von P und S an den KG. Der KG-Segregationseffekt am untersuchten Fe-Cr-Ni-Stahl ist im Waermebehandlungszustand 550 C/1000 h am deutlichsten ausgepraegt. Aber auch bereits bei 400 C/5000 h findet Segregation statt. IKSpRK tritt nur im Waermebehandlungszustand 550 C/1000 h auf. Neben der P-Segregation wird die Bildung Cr-reicher Phosphide beobachtet, die zur Abreicherung von Cr an den Ausscheidungen fuehrt. (orig.)

  19. La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2}. Synthesis, structure and {sup 31}P solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Timo; Eul, Matthias; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. of Physics

    2016-04-01

    The phosphide oxides La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2} were synthesized from lanthanum, copper(I) oxide, red phosphorus, and lanthanum(III) chloride through a ceramic technique. Single crystals can be grown in a NaCl/KCl flux. Both structures were refined from single crystal X-ray diffractometer data: I4/mmm, a = 403.89(4), c = 2681.7(3) pm, wR2 = 0.0660, 269 F{sup 2} values, 19 variables for La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and a = 407.52(5), c = 4056.8(7) pm, wR2 = 0.0905, 426 F{sup 2} values, 27 variables for La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2}. Refinement of the occupancy parameters revealed full occupancy for the oxygen sites in both compounds. The structures are composed of cationic (La{sub 2}O{sub 2}){sup 2+} layers and covalently bonded (Cu{sub 4}P{sub 4}){sup 5-} polyanionic layers with metallic characteristics, and an additional La{sup 3+} between two adjacent (Cu{sub 4}P{sub 4}){sup 5-} layers. The structure of La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2} comprises two additional LaOCl slabs per unit cell. Temperature-dependent magnetic susceptibility studies revealed Pauli paramagnetism. The phosphide substructure of La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} was studied by {sup 31}P solid state NMR spectroscopy. By using a suitable dipolar re-coupling approach the two distinct resonances belonging to the P{sub 2}{sup 4-} and the P{sup 3-} units could be identified.

  20. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Michael James [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    the free OH or free OD. From the absence of SFG spectra of ice-like structure we conclude that surface hydroxides are formed and no liquid water is present on the surface. Other than model catalysis, gas phase anion photoelectron spectroscopy of the Cl + H2 van der Waals well, silicon clusters, germanium clusters, aluminum oxide clusters and indium phosphide clusters were studied. The spectra help to map out the neutral potential energy surfaces of the clusters. For aluminum oxide, the structures of the anions and neutrals were explored and for silicon, germanium and indium phosphide the electronic structure of larger clusters was mapped out.

  1. Especially for High School Teachers

    Science.gov (United States)

    Howell, J. Emory

    2000-01-01

    Ideas and Resources in This Issue This issue contains a broad spectrum of topics of potential interest to high school teachers, including chemical safety, history, demonstrations, laboratory activities, electrochemistry, small group learning, and instructional software. In his report on articles published recently in The Science Teacher, Steve Long includes annotated references from that journal, and also from JCE, that provide timely and practical information (pp 21-22). The chemical significance of several anniversaries that will occur in the year 2000 are discussed in an article by Paul Schatz (pp 11-14). Scientists and inventors mentioned include Dumas, Wöhler, Goodyear, Joliot-Curie, Krebs, Pauli, Kjeldahl, and Haworth. Several discoveries are also discussed, including development of the voltaic pile, the use of chlorine to purify water, and the discovery of element 97, berkelium. This is the fourth consecutive year that Schatz has written an anniversaries article (1-3). Although most readers probably do not plan to be teaching in the years 2097-3000, these articles can make a nice addition to your file of readily available historical information for use now in meeting NSES Content Standard G (4). In contrast to the short historical summaries, an in-depth account of the work of Herman Boerhaave is provided by Trinity School (NY) teacher Damon Diemente. You cannot recall having heard of Boerhaave? Diemente explains in detail how Boerhaave's scientific observations, imperfect though they were, contributed significantly to the understanding of temperature and heat by scientists who followed him. Chemical demonstrations attract the interest of most of us, and Kathy Thorsen discusses several that appeared in Chem 13 News during the past year (pp 18-20). Included are demonstrations relating to LeChâtelier's principle, electronegativity, and the synthesis and reactions of carbon monoxide. Ideas for investigating the hydrophobic nature of Magic Sand are given in JCE

  2. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  3. Macroporous p-GaP Photocathodes Prepared by Anodic Etching and Atomic Layer Deposition Doping.

    Science.gov (United States)

    Lee, Sudarat; Bielinski, Ashley R; Fahrenkrug, Eli; Dasgupta, Neil P; Maldonado, Stephen

    2016-06-29

    P-type macroporous gallium phosphide (GaP) photoelectrodes have been prepared by anodic etching of an undoped, intrinsically n-type GaP(100) wafer and followed by drive-in doping with Zn from conformal ZnO films prepared by atomic layer deposition (ALD). Specifically, 30 nm ALD ZnO films were coated on GaP macroporous films and then annealed at T = 650 °C for various times to diffuse Zn in GaP. Under 100 mW cm(-2) white light illumination, the resulting Zn-doped macroporous GaP consistently exhibit strong cathodic photocurrent when measured in aqueous electrolyte containing methyl viologen. Wavelength-dependent photoresponse measurements of the Zn-doped macroporous GaP revealed enhanced collection efficiency at wavelengths longer than 460 nm, indicating that the ALD doping step rendered the entire material p-type and imparted the ability to sustain a strong internal electric field that preferentially drove photogenerated electrons to the GaP/electrolyte interface. Collectively, this work presents a doping strategy with a potentially high degree of controllability for high-aspect ratio III-V materials, where the ZnO ALD film is a practical dopant source for Zn. PMID:27254534

  4. Fabrication of Titanium/Fluorapatite Composites and In Vitro Behavior in Simulated Body Fluid

    Institute of Scientific and Technical Information of China (English)

    Hezhou Ye; Xing Yang Liu; Hanping Hong

    2013-01-01

    Titanium/fluorapatite (Ti/FA) composites with various FA additions were fabricated by powder metallurgy.The decomposition of FA during sintering was accelerated by the presence of Ti.The main reaction products of FA and Ti were identified as CaO,Ti phosphides,and CaTiO3.The addition of FA significantly inhibited the densification of Ti.The in vitro bioactivity of the composites was evaluated in a simulated body fluid (SBF).After immersion into the SBF,all the Ti/FA composites induced nucleation and growth of bone-like carbonated apatite on the surface.Co-precipitation of CaCO3 and Mg(OH)2 was also detected on the surface of the composite with high FA addition at an early stage of immersion.Furthermore,the release of fluorine ions from the composite was confirmed,which could promote bone regeneration and retard the formation of caries in the biological environment.The in vitro behavior was attributed to multiple factors,including the surface conditions and the constituents of the composite.The results demonstrated that the Ti/FA composites were bioactive in nature even with a low FA addition and they could introduce the benefit of fluorine ions in the service.

  5. Ab initio study of the unusual thermal transport properties of boron arsenide and related materials

    Science.gov (United States)

    Broido, D. A.; Lindsay, L.; Reinecke, T. L.

    2013-12-01

    Recently, using a first principles approach, we predicted that zinc blende boron arsenide (BAs) will have an ultrahigh lattice thermal conductivity, κ, of over 2000 Wm-1K-1 at room temperature (RT), comparable to that of diamond. Here, we provide a detailed ab initio examination of phonon thermal transport in boron arsenide, contrasting its unconventional behavior with that of other related materials, including the zinc blende crystals boron nitride (BN), boron phosphide, boron antimonide, and gallium nitride (GaN). The unusual vibrational properties of BAs contribute to its weak phonon-phonon scattering and phonon-isotope scattering, which are responsible for its exceptionally high κ. The thermal conductivity of BAs has contributions from phonons with anomalously large mean free paths (˜2 μm), two to three times those of diamond and BN. This makes κ in BAs sensitive to phonon scattering from crystal boundaries. An order of magnitude smaller RT thermal conductivity in a similar material, zinc blende GaN, is connected to more separated acoustic phonon branches, larger anharmonic force constants, and a large isotope mixture on the heavy rather than the light constituent atom. The striking difference in κ for BAs and GaN demonstrates the importance of using a microscopic first principles thermal transport approach for calculating κ. BAs also has an advantageous RT coefficient of thermal expansion, which, combined with the high κ value, suggests that it is a promising material for use in thermal management applications.

  6. Advances in telecom and datacom optical components

    Science.gov (United States)

    Eldada, Louay A.

    2001-07-01

    We review and contrast key technologies developed to address the optical components market for telecom and datacom applications. We first look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include glass fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then look at the most commonly used classes of technology and present their pros and cons as well as the functions achieved to date in each. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering (e.g., AWG), Bragg gratings, diffraction gratings, holographic elements, thin film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto- optics, magneto-optics, liquid crystals, total internal reflection technologies (e.g., bubble technology), and mechanical actuation (e.g., moving fibers and MEMS). We finally describe active technologies including heterostructures, quantum wells, rare earth doping, and semiconductor optical amplifiers. We also investigate the use of different material systems and technologies to achieve building block functions including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, nonreciprocal elements (Faraday rotators or nonreciprocal phase shifters) for isolators and circulators, wavelength converters, and dispersion compensators.

  7. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    International Nuclear Information System (INIS)

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations. (paper)

  8. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    Science.gov (United States)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-09-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.

  9. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting

    Institute of Scientific and Technical Information of China (English)

    Yingjie Li; Haichuan Zhang; Ming Jiang; Yun Kuang; Xiaoming Sun; Xue Duan

    2016-01-01

    Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency,low cost,and easy integration is extremely crucial for future renewable energy systems.Herein,ternary NiCoP nanosheet arrays (NSAs) were fabricated on 3D Ni foam by a facile hydrothermal method followed by phosphorization.These arrays serve as bifunctional alkaline catalysts,exhibiting excellent electrocatalytic performance and good working stability for both the HER and OER.The overpotentials of the NiCoP NSA electrode required to drive a current density of 50 mA/cm2 for the HER and OER are as low as 133 and 308 mV,respectively,which is ascribed to excellent intrinsic electrocatalytic activity,fast electron transport,and a unique superaerophobic structure.When NiCoP was integrated as both anodic and cathodic material,the electrolyzer required a potential as low as ~1.77 V to drive a current density of 50 mA/cm2 for overall water splitting,which is much smaller than a reported electrolyzer using the same kind of phosphide-based material and is even better than the combination of Pt/C and Ir/C,the best known noble metal-based electrodes.Combining satisfactory working stability and high activity,this NiCoP electrode paves the way for exploring overall water splitting catalysts.

  10. Noble metal-free hydrogen evolution catalysts for water splitting.

    Science.gov (United States)

    Zou, Xiaoxin; Zhang, Yu

    2015-08-01

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts. PMID:25886650

  11. ZnGeP sub 2 crystals for infrared laser radiation frequency conversion

    CERN Document Server

    Andreev, Y M; Gribenyukov, A I; Korotkova, V V

    1998-01-01

    In this parer, we present some recent results on integrated studies concerned with different aspects of ZnGeP sub 2 crystal technology: synthesis, growth, and post-growth treatment. High-yield two-temperature synthesis and subsequent growth of ZnGeP sub 2 crystals are considered. By X-Ray phase analysis it has been found that two-temperature synthesis of ZnGeP sub 2 is realized through binary zinc and germanium phosphides formed at the Zn-Ge mixture temperature of about 900 .deg. C and the P pressure of 7 approx 10 atm. Using the heat-balance equation, a ratio of the thermal conductivity in the solid to that in the liquid ZnGeP sub 2 near the melting point has been determined. The value of the determined ratio is K sub l /K sub s approx =2.3. Analysis of the most favored crystallographic directions for ZnGeP sub 2 growth has been performed. These directions are [116], [132] and [102]. Data for optical absorption of the as-grown and the annealed ZnGeP sub 2 crystals are also presented.

  12. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  13. Triple-bond reactivity of an AsP complex intermediate: synthesis stemming from molecular arsenic, As(4).

    Science.gov (United States)

    Spinney, Heather A; Piro, Nicholas A; Cummins, Christopher C

    2009-11-11

    While P(4) is the stable molecular form of phosphorus, a recent study illustrated the possibility of P(2) generation for reactions in organic media under mild conditions. The heavier group 15 element arsenic can exist as As(4) molecules, but As(4) cannot be stored as a pure substance because it is both light-sensitive and reverts thermally to its stable, metallic gray form. Herein we report As(4) activation giving rise to a mu-As(2) diniobium complex, serving in turn as precursor to a terminal arsenide anion complex of niobium. Functionalization of the latter provides the new AsPNMes* ligand, which when complexed with tungsten pentacarbonyl elicits extrusion of the (AsP)W(CO)(5) molecule as a reactive intermediate. Trapping reactions of the latter with organic dienes are found to furnish double Diels-Alder adducts in which the AsP unit is embedded in a polycyclic organic framework. Thermal generation of (AsP)W(CO)(5) in the presence of the neutral terminal phosphide complex P identical withMo(N[(i)Pr]Ar)(3) leads to the cyclo-AsP(2) complex (OC)(5)W(cyclo-AsP(2))Mo(N[(i)Pr]Ar)(3). The (AsP)W(CO)(5) trapping products were crystallized and characterized by X-ray diffraction methods, and computational methods were applied for analysis of the As-As and As-P bonds in the complexes. PMID:19842699

  14. Phase transformations of mechanically alloyed Fe-Cr-P-C powders

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, N. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba, Algerie (Algeria); Alleg, S. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba, Algerie (Algeria); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense - UMR 6087, Universite du Maine, Faculte des Sciences 72085, Le Mans Cedex 9 (France)]. E-mail: greneche@univ-lemans.fr

    2005-05-03

    Fe{sub 77}Cr{sub 4}P{sub 8}C{sub 11} alloy was prepared by mechanical alloying (MA) of elemental Fe, Cr, P and C (graphite) powders in a planetary ball mill type Fritsch P7 under argon atmosphere. Morphological changes, microstructural and structural evolutions during ball milling were followed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and {sup 57}Fe Moessbauer spectrometry (MS) as a function of the milling time. The crystallite size refinement against the milling time is accompanied by an increase of the atomic level strain. After 6 h of milling, the dissolution of phosphorous into the {alpha}-Fe matrix is evidenced by the formation of a small amount ({approx}4%) of the paramagnetic Fe{sub 2}P phase as revealed by Moessbauer spectrometry. The complete mixing of all the elemental powders at the atomic level is achieved at 12 h of milling and results, after 24 h, in an amorphous matrix where nanocrystalline phosphides and carbides with nearly equal crystallite sizes are embedded. Further milling time up to 190 h gives rise to the formation of both the orthorhombic and the hexagonal (FeCr){sub 7}C{sub 3} carbide as well as the superparamagnetic {epsilon}'-Fe{sub 2.2}C carbide through the recrystallisation of the amorphous phase.

  15. Low- and high-intensity lasers in the treatment of herpes simplex virus 1 infection.

    Science.gov (United States)

    Bello-Silva, Marina Stella; de Freitas, Patricia Moreira; Aranha, Ana Cecília Corrêa; Lage-Marques, José Luiz; Simões, Alyne; de Paula Eduardo, Carlos

    2010-02-01

    Herpes simplex virus (HSV) is one of the most common viral infections of the human being. Although most of the seropositive persons do not manifest symptoms, infected individuals may present recurrent infections, characterized by cold sores. HSV-1 infection can result in potentially harmful complications in some patients, especially in those with compromised immunity. We report a clinical case of a patient with severe oral HSV-1 infection in the lower lip. The treatment of the lesions with the association of high-intensity (erbium-doped yttrium aluminum garnet, 2.94 mum, 80 mJ/pulse, 2-4 Hz) and low-intensity (indium gallium aluminum phosphide, 660 nm, 3.8 J/cm(2), 10 mW) lasers has not been reported in the literature. During treatment, no systemic or topical medication was used. Pain sensitivity was completely gone after the first irradiation with the low-intensity laser. During the healing process, lesions were traumatized twice, on the days 4 and 7. Even though the lesions were completely healed within 10 days. PMID:19712025

  16. Thermo photo-electrochemical effect in n-InP/aqueous solution of orange dye/C cell

    Science.gov (United States)

    Ali, Taimoor; Karimov, Khasan S.; Akhmedov, Khakim M.; Kabutov, K.; Farooq, Amjad

    2015-03-01

    The effect of light and heat is studied on the electrical properties of an electrochemical n-InP/aqueous solution of orange dye/C cell. The cell is investigated under the light and heat of filament bulb. The n-type indium phosphide and carbon plates are used as electrodes. The aqueous solution of organic material orange dye (C17H17N5O2) in distilled water is served as electrolyte at 1, 3 and 5 wt. % concentration. The cell is assembled in sealed organic glass box with dimensions 35 × 13 × 14 mm. The open circuit voltage ( V oc ) and short circuit current ( I sc ) of the cell are observed by illuminating and heating the samples. The temperature is raised up to 60°C from 25°C when light intensity is increased from dark condition to 425 W/m2. It is observed that the relationship between light intensity and temperature is approximately linear for all cases. The V oc and I sc increase 100% and 300% respectively by increasing the light. The reported n-InP/aqueous solution of orange dye/C cell can be considered as small converter of light and heat into electric power. [Figure not available: see fulltext.

  17. Lattice vibrations of icosahedral boron-rich solids

    Energy Technology Data Exchange (ETDEWEB)

    Beckel, C.L.; Yousaf, M. (The University of New Mexico, Albuquerque, New Mexico 87131 (United States))

    1991-07-01

    The rhombohedral lattices for {alpha}-boron, boron arsenide, and boron phosphide are each of D{sub 3d} symmetry and have bases that include B{sub 12} icosahedra. Boron carbide with B{sub 4}C stoichiometry has near-D{sub 3d} symmetry and is almost certainly composed of B{sub 11}C icosahedra and C-B-C chains. Comparable classical force field models are applied to each of these crystals to correlate q=0 phonon structure with experimental Raman and IR spectra. We here describe our methods and contrast interaction strengths for different materials. Vibrations are correlated in the different crystals through normal mode eigenvector expansions. Acoustic wave velocities from Brillouin zone dispersion curves in two distinct symmetry-axis directions are presented and contrasted for {alpha}-boron and B{sub 12}As{sub 2}. The origin of lines with anomalous polarization and width in {alpha}-boron, B{sub 12}As{sub 2}, and B{sub 12}P{sub 2} is considered.

  18. Hybrid Photonic Integration on a Polymer Platform

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2015-09-01

    Full Text Available To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard, which provides flexible optical input/ouptut interfaces (I/Os that allow robust coupling of indium phosphide (InP-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.

  19. Characterization of electroless nickel as a seed layer for silicon solar cell metallization

    Indian Academy of Sciences (India)

    Mehul C Raval; Chetan S Solanki

    2015-02-01

    Electroless nickel plating is a suitable method for seed layer deposition in Ni–Cu-based solar cell metallization. Nickel silicide formation and hence contact resistivity of the interface is largely influenced by the plating process and annealing conditions. In the present work, a thin seed layer is deposited from neutral pH and alkaline electroless nickel baths which are annealed in the range of 400–420°C for silicide morphology and contact resistivity studies. A minimum contact resistivity of 7 m cm2 is obtained for seed layer deposited from alkaline bath. Silicide formation for Pd-activated samples leads to uniform surface morphology as compared with unactivated samples due to non-homogeneous migration of nickel atoms at the interface. Formation of nickel phosphides during annealing and the presence of SiO2 at Ni–Si interface creates isolated Ni2Si–Si interface with limited supply of silicon. Such an interface leads to the formation of high resistivity metal-rich Ni3Si silicide phase which limits the reduction in contact resistivity.

  20. Use of the CSD program package for structure determination from powder data

    International Nuclear Information System (INIS)

    Although Rietveld's method of full profile structure refinement of powder data is a much-used tool today, ab initio structure solution from powder data is still not a routine task. One of the reasons for this is that fully overlapped peaks usually cannot be handled by routine structure determination programs. This shortcoming is not present in the Crystal Structure Determination (CSD) package which accepts intensities from powder diagrams as well as single crystal data. In order to demonstrate the possibilities of the CSD package, powder diagrams of five substances with already known crystal structure were collected and evaluated with the CSD package. The samples were scheelite (CaWO4), pentaerythritol (C(CH2OH)4), sodium sulfite (Na2SO3), copper sulfate pentahydrate (CuSO4.5H2O) and silver germanium phosphide (Ag6Ge10P12) and showed problems typical for powder work like preferred orientation and heavy peak overlapping. For four of the samples, correct atomic positions for some atoms could be found from the automatic MULTAN solution, which were then used in subsequent least squares- and difference Fourier calculations to locate the remaining atoms. Surprisingly, the cubic Ag6Ge10P12 posed the most problems for the structure solution although one third of the observed intensities was single-indexed and the final R-value was as low as 4%. (orig.)

  1. Structural Properties of Several Castanopsis carlesi Modified Starches%几种小红栲变性淀粉的结构特性

    Institute of Scientific and Technical Information of China (English)

    谢涛; 王焕龙; 张儒

    2011-01-01

    The scanning electron microscopy ( SEM ), Fourier-transform infrared spectroscopy ( FTIR ) and X-ray diffraction ( XRD) were applied to characterize the morphology, chemical and crystalline structures of several Castanopsis carlesi modified starches. The formation procedure of micro-porous starch is that the hollows in the surface of starch granule can be hydrolyzed from the outside to the inside, and be further punctured through the granule center by the mixture solution of a-amylase and glucoamylase, finally the net-cavity structure of starch granule which is distributed by plenty of about 1 u,m holes can be made. The carbonyl groups and glycosidic bonds in starch carbon chains can be enzymatic-hydrolyzed, while phosphide ester linkage can be formed by crosslinking reaction between hydroxyl groups in starch carbon chains and POC13. Whichever native, microporous, crosslinked or crosslinked microporous starch granule is a multi-crystal system which made from crystal and non-crystal, and belong to C-type crystalline. The crystalline degree and crystal size of crosslinked, native, crosslinked microporous and microporous starch increase in sequence, while the change of crystal interval is just adverse.%@@目前世界上变性淀粉的年产量已经达到500万t左右,如美国为200万t以上,欧洲为90万t,日本在30万t以上;

  2. Mechanical strength and tribological behavior of ion-beam deposited boron nitride films on non-metallic substrates

    International Nuclear Information System (INIS)

    An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2

  3. Magnetic phase transitions and magnetization reversal in MnRuP

    Science.gov (United States)

    Lampen-Kelley, P.; Mandrus, D.

    The ternary phosphide MnRuP is an incommensurate antiferromagnetic metal crystallizing in the non-centrosymmetric Fe2P-type crystal structure. Below the Neel transition at 250 K, MnRuP exhibits hysteretic anomalies in resistivity and magnetic susceptibility curves as the propagation vectors of the spiral spin structure change discontinuously across T1 = 180 K and T2 = 100 K. Temperature-dependent X-ray diffraction data indicate that the first-order spin reorientation occurs in the absence of a structural transition. A strong magnetization reversal (MR) effect is observed upon cooling the system through TN in moderate dc magnetic fields. Positive magnetization is recovered on further cooling through T1 and maintained in subsequent warming curves. The field dependence and training of the MR effect in MnRuP will be discussed in terms of the underlying magnetic structures and compared to anomalous MR observed in vanadate systems. This work is supported by the Gordon and Betty Moore Foundation GBMF4416 and U.S. DOE, Office of Science, BES, Materials Science and Engineering Division.

  4. A flexible master oscillator for a pulse-burst laser system

    Science.gov (United States)

    Den Hartog, D. J.; Young, W. C.

    2015-12-01

    A new master oscillator is being installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a Laser Quantum ventus 1064 diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 1064 nm, 2.7 mm diameter polarized beam is focused into the gallium phosphide crystal of a Brimrose AOM, which deflects the beam by approximately 60 mR when driven by the 400 MHz fixed frequency driver. Beam deflection is controlled by a simple digital input pulse, and is capable of producing deflected pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These deflected pulses from the output of the AOM are collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma.

  5. Optical and transport properties correlation driven by amorphous/crystalline disorder in InP nanowires.

    Science.gov (United States)

    Kamimura, H; Gouveia, R C; Carrocine, S C; Souza, L D; Rodrigues, A D; Teodoro, M D; Marques, G E; Leite, E R; Chiquito, A J

    2016-11-30

    Indium phosphide nanowires with a single crystalline zinc-blend core and polycrystalline/amorphous shell were grown from a reliable route without the use of hazardous precursors. The nanowires are composed by a crystalline core covered by a polycrystalline shell, presenting typical lengths larger than 10 μm and diameters of 80-90 nm. Raman spectra taken from as-grown nanowires exhibited asymmetric line shapes with broadening towards higher wave numbers which can be attributed to phonon localization effects. It was found that optical phonons in the nanowires are localized in regions with average size of 3 nm, which seems to have the same order of magnitude of grain sizes in the polycrystalline shell. Regardless of the fact that the nanowires exhibit a crystalline core, any considerable degree of disorder can lead to a localized behaviour of carriers. In consequence, the variable range hopping was observed as the main transport instead of the usual thermal excitation mechanisms. Furthermore the hopping length was ten times smaller than nanowire cross-sections, confirming that the nanostructures do behave as a 3D system. Accordingly, the V-shape observed in PL spectra clearly demonstrates a very strong influence of the potential fluctuations on the exciton optical recombination. Such fluctuations can still be observed at low temperature regime, confirming that the amorphous/polycrystalline shell of the nanowires affects the exciton recombination in every laser power regime tested.

  6. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  7. Optical and mechanical properties of long-term ordered semiconductors

    International Nuclear Information System (INIS)

    The 45-year-monitoring of optical and mechanical properties of the various semiconductor crystals grown in the sixties of the past century shows that the stimuli for long-term improvement of crystal quality prevail over those which lead to its degradation. Evolution of optical and mechanical properties testifies that now in diamond-like gallium phosphide (GaP) doped with nitrogen (N), the impurity is a regular element of the new crystal lattice - it increases the forbidden gap, and at relevant concentration and level of optical excitation creates a bound excitonic crystal. The ternary compound CdIn2S4, now having the perfect normal (instead of partly inversed) spinel crystal lattice, as well as GaP with evenly distributed impurities, demonstrate new stable and bright luminescent phenomena, including stimulated emission and 'hot' luminescence at room temperature. All chosen semiconductor crystals from different groups of semiconductor compounds demonstrate the long term ordering and improvement of useful for application properties. Existing technologies help us to reproduce artificially these naturally ordered structures for application in optoelectronics. (authors)

  8. Mortality and Disease in Wild Turkeys ( Meleagris gallopavo silvestris) in Ontario, Canada, from 1992 to 2014: A Retrospective Review.

    Science.gov (United States)

    MacDonald, Amanda M; Jardine, Claire M; Campbell, G Douglas; Nemeth, Nicole M

    2016-09-01

    Wild turkeys ( Meleagris gallopavo silvestris) were extirpated from Ontario, Canada, in the early 1900s due to unregulated over-hunting and habitat loss. Despite a successful reintroduction program and strong population numbers, information regarding the health of wild turkeys in Ontario is scarce. A 22-yr (1992-2014) retrospective study was performed to evaluate diagnostic data, including the cause(s) and contributors to death, in wild turkeys submitted to the Ontario-Nunavut node of the Canadian Wildlife Health Cooperative (n = 56). Noninfectious diagnostic findings (39/56; 69.6%) were more common than infectious, with emaciation recognized most frequently (n = 19; 33.9%) followed by trauma (n = 11, 19.6%). The majority of deaths due to emaciation occurred in winter and spring (17/18; 94.4%), which is consistent with lack of access to or availability of food resources. Morbidity and mortality due to infectious diseases was diagnosed in 16 (28.6%) wild turkeys. Avian poxvirus was the most common infectious cause of disease (n = 7; 12.5%), followed by bacterial infections (n = 5; 8.9%), the most common of which was Pasteurella multocida . Zinc phosphide toxicosis (n = 7; 12.5%) occurred in two incidents involving multiple birds. This study aims to provide baseline data that can be used for reference and comparison in future wild turkey disease surveillance and population monitoring studies.

  9. Recent Advances in PV Research and Future Directions

    Science.gov (United States)

    Deb, Satyen K.

    1998-04-01

    The photovoltaic technology is making a major thrust in the commercial arena with 1997 worldwide production of PV modules reaching over 125 MW and growing at the rate of 20-25semiconductor materials and devices are emerging as strong contenders for PV applications even though silicon is still the 'work-horse' of the industry. Ultra-high efficiency solar cells fabricated from gallium arsenide (GaAs) and its ternary alloys like gallium indium phosphide (GaInP2) are finding applications in space technology. Enormous progress has also been made on various thin-film solar cell technologies, which offer the promise for substantially reducing the cost of PV systems. Some of the leading contenders are amorphous and polycrystalline silicon, compound semiconductor thin films such as copper indium diselenide (CuInSe2) based alloys, and cadmium telluride (CdTe) thin films. Exciting new developments are happening in the use of nano-particle semiconductor materials like titanium dioxide (TiO2) for low-cost PV devices. Intense research on these and other materials and devices is making a strong impact on the technology. In this presentation, a brief overview of recent advances in PV research will b e made and the trends and opportunities for future research directions will be identified.

  10. Mechanism of anaerobic (microbial) corrosion. Technical summary report No. 1, 1 Jun-31 Dec 82

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, W.P.; Olson, G.J.

    1982-12-01

    This report in the form of three papers describes research into the role of bacteria in anaerobic corrosion processes. During the year we have given more evidence for a novel mechanism of anaerobic corrosion in which a volatile, highly reactive phosporous compound is produced as a result of the activities of sulfate-reducing bacteria (Desulfovibio desuluricans). The corrosion product is an amorphous type of iron phosphide which can be detected by the formation of phosphine upon its acidification. Phosphine (in addition to H2S) has been detected from all the cases of suspected anaerobic corrosion (including tubercles from the inside of water pipes) examined so far. In examining the headspace over growing cultures of Desulfovibio to detect this volatile phosphorus containing compound, using a gas chromatograph (GC) with a flame photometric detector (FPD) specific for phosphorus and sulfur, two sulfur compounds, in addition to H2S, were detected and identified. These compounds, methylmercaptan, and dimethyldisulfide, were found to be relatively non-corrosive to iron under anaerobic conditions. No volatile phosphorus compounds were detected.

  11. Stable phases in aged type 321 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, J.; Leitnaker, J.M.

    1978-01-01

    X-ray diffraction and Analytical Electron Microscopy have been used to characterize the precipitate phases present in type 321 stainless steel after 17 years of service at approximately 600/sup 0/C. The morphology, crystallography, and orientation relationships with the matrix of the precipitates have been determined along with the chemical composition of several of the phases. Long-term aging of type 321 stainless steel indicates TiC, not M/sub 23/C/sub 6/, is the stable carbide phase. A theory is developed to explain appearance of M/sub 23/C/sub 6/ at intermediate times. The theory also indicates the means for preventing M/sub 23/C/sub 6/ formation and hence sensitization of the steel to intergranular corrosion. The amount of sigma found correlates well with results from shorter time studies. Ti/sub 4/C/sub 2/S/sub 2/ and a complex phosphide-arsenide were also present.

  12. Organic chemistry on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen; Zaera, Francisco [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2006-07-15

    Chemistry on solid surfaces is central to many areas of practical interest such as heterogeneous catalysis, tribology, electrochemistry, and materials processing. With the development of many surface-sensitive analytical techniques in the past decades, great advances have been possible in our understanding of such surface chemistry at the molecular level. Earlier studies with model systems, single crystals in particular, have provided rich information about the adsorption and reaction kinetics of simple inorganic molecules. More recently, the same approach has been expanded to the study of the surface chemistry of relatively complex organic molecules, in large measure in connection with the selective synthesis of fine chemicals and pharmaceuticals. In this report, the chemical reactions of organic molecules and fragments on solid surfaces, mainly on single crystals of metals but also on crystals of metal oxides, carbides, nitrides, phosphides, sulfides and semiconductors as well as on more complex models such as bimetallics, alloys, and supported particles, are reviewed. A scheme borrowed from the organometallic and organic chemistry literature is followed in which key examples of representative reactions are cited first, and general reactivity trends in terms of both the reactants and the nature of the surface are then identified to highlight important mechanistic details. An attempt has been made to emphasize recent advances, but key earlier examples are cited as needed. Finally, correlations between surface and organometallic and organic chemistry, the relevance of surface reactions to applied catalysis and materials functionalization, and some promising future directions in this area are briefly discussed. (author)

  13. Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment

    International Nuclear Information System (INIS)

    Using current–voltage (I–V) measurements, we investigated the effect of oxygen plasma treatment on the temperature-dependent electrical properties of Cu/n-type indium phosphide (InP) Schottky contacts at temperatures in the range 100–300 K. Changes in the electrical parameters were evident below 180 K for the low-plasma-power sample (100 W), which is indicative of the presence of a wider distribution of regions of low barrier height. Modified Richardson plots were used to obtain Richardson constants, which were similar to the theoretical value of 9.4 A cm−2 K−2 for n-type InP. This suggests that, for all the samples, a thermionic emission model including a spatially inhomogeneous Schottky barrier can be used to describe the charge transport phenomena at the metal/semiconductor interface. The voltage dependence of the reverse-bias current revealed that Schottky emission was dominant for the untreated and high-plasma-power (250 W) samples. For the low-plasma-power sample, Poole–Frenkel emission was dominant at low voltages, whereas Schottky emission dominated at higher voltages. Defect states and nonuniformity of the interfacial layer appear to be significant in the reverse-bias charge transport properties of the low-plasma-power sample. (paper)

  14. Development of P/M Fe–P soft magnetic materials

    Indian Academy of Sciences (India)

    S K Chaurasia; Ujjwal Prakash; P S Misra; K Chandra

    2012-04-01

    Phosphorous is treated as an impurity in conventional steels owing to segregation of phosphorous and formation of brittle phosphides along the grain boundaries. It is responsible for cold and hot shortness in wrought steels. In conventional powder metallurgy, involving compaction and sintering, high phosphorous content (up to 0.7%) in Fe-based alloys exhibit attractive set ofmechanical andmagnetic properties. These powder-processed alloys suffer from increasing volumetric shrinkage during sintering as phosphorous is increased beyond 0.6%. Thus both cast as well as conventional powder metallurgy routes have their own limitations in dealing with iron–phosphorous alloys. Hot-powder forging was used in the present investigation for the development of high-density soft magnetic materials containing 0.3–0.8% phosphorous to overcome these difficulties. It was observed that phosphorous addition improves the final density of the resulting product. It was further observed that hot-forged iron–phosphorous alloys have excellent hot/cold workability and could be easily shaped to thin strips (0.5–1.0 mm thick) and wires (0.5–1.0 mm diameter). The powder hot-forged alloys were characterized in terms of microstructure, porosity content/densification, hardness, softmagnetic properties and electrical resistivity.Magnetic properties such as coercivity 0.35–1.24 Oe, saturation magnetization 14145–17490 G and retentivity 6402–10836 G were observed. The obtained results were discussed based on the microstructures evolved.

  15. III-V semiconductors for photoelectrochemical applications: surface preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Dominic; Schaechner, Birgit; Calvet, Wofram; Kaiser, Bernhard; Jaegermann, Wolfram [TU Darmstadt, Fachbereich Materialwissenschaft, Fachgebiet Oberflaechenforschung (Germany)

    2011-07-01

    III-V semiconductors are promising reference systems for photoelectrochemical energy conversion. Therefore we have studied the influence of different acids and acidic solutions on the etching of p-doped gallium-arsenide and gallium-phosphide single crystal surfaces. From our experiments we conclude, that etching with HCl and subsequent annealing up to 450 C gives the best results for the removal of the carbonates and the oxides without affecting the quality of the sample. By treating the surfaces with ''piranha''-solution (H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O/7:2:1), the creation of an oxide layer with well defined thickness can be achieved. For the creation of an efficient photoelectrochemical cell, Pt nanoparticles have been deposited from solution. These surfaces are then characterized by photoelectron spectroscopy and AFM. Further electrochemical measurements try to correlate the effect of the surface cleaning and the Pt deposition on the photoactivity of the GaAs- and GaP-semiconductors.

  16. Effect of reducing agent and nano Al2O3 particles on the properties of electroless Ni–P coating

    International Nuclear Information System (INIS)

    This work is an experimental study on the formation, characteristics and properties of electroless nickel phosphorous (Ni–P) coatings and electroless nickel alumina (Ni–P–Al2O3) coating with varying reducing agent concentration. The results obtained indicate that the deposition rate and surface roughness of both Ni–P coating and Ni–P–Al2O3 coatings are highly influenced by reducing agent (sodium hypophosphite). With increase in sodium hypophosphite Ni forms amorphous phase and as a result the micro hardness of the coating gets reduced. Heat treatment was carried out at 400 °C for 1 h after the coating, resulted in the formation of an intermetallic nickel phosphide (Ni3P) phase which improved the hardness of the Ni–P coating from 400 ± 25 to 700 ± 25 HV. A composite coating is formed due to the incorporation of nano alumina in the Ni–P coating leading to an increase in the hardness. The chemical composition of nickel gets reduced from 85.3 to 77.8 wt.% due to the presence of alumina which resists the deposition of Ni. The uniform distribution of alumina particles are observed using a scanning electron micrograph and confirmed by X-ray diffraction techniques. The specific wear rate of Ni–P–Al2O3 coated and post coating heat treated specimens was observed to be less when compared with that obtained in the case of conventional Ni–P coating.

  17. Conversion of an Ex-Transuranicum Laboratory Building into a RAW Processing Facility, Serbia. Annex A.I-5

    International Nuclear Information System (INIS)

    From 1993 to 1994, a building previously designated for the handling of transuranium elements in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia, a laboratory for transuranicum elements (LATRANSA), was used for the production of Fumitoxin (aluminium phosphide, or AlP). The fumitoxin production process was based on synthesis from pulverized aluminium and red phosphorus as the principle reactants. A third party ran the process, and due to inadequate performance, the process was terminated. A considerable amount of Fumitoxin pellets and partly reacted mixtures were left stored in glove boxes, which represented a hazardous waste and prevented the use of the LATRANSA building for any other purpose. Fumitoxin is formulated as a mixture of AlP and ammonium carbamate (NH2COONH4). When exposed to the atmosphere, the humidity in the air reacts with water (hydrolyzes), giving off a poisonous gas phosphine (PH3) and an inactive powder of aluminium hydroxide (Al(OH)3). The project included the cleanup of the building so it could be refurbished and reused for other purposes

  18. 聚苯胺无溶剂聚氨酯防锈涂料的研制%Preparation of Polyaniline Solvent-free Polyurethane Anti-rust Coatings

    Institute of Scientific and Technical Information of China (English)

    赵绍洪; 张辉耀; 刘志文

    2012-01-01

    介绍了以蓖麻油酸改性环氧酯为含羟基树脂,以二丁胺改性1,6-己二醇二缩水甘油醚为反应性稀释剂,配合聚苯胺/凹凸棒纳米复合材料、磷钛粉、吸水剂等组成A组分,采用含-NCO基的聚氨酯预聚体为B组分,将A组分和B组分按规定比例混合均匀后涂布在金属表面即形成一种无溶剂、不含重金属的新型环境友好金属防锈涂料。%A two-component anti-rust coatings formula is designed in this paper. The component A includes ricinoleic acid modified epoxy ester as hydroxyl resin, n-dibutylamine modified 1,6-hexylene glycol two glycidyl ether as reactive thinner, Polyaniline/Attapulgite nanocomposites, titanium phosphide powder and water absorbent. The component B includes --NCO polyurethane prepolymer. The two components are mixed at some proportion and applied on the metal surface to serve as non- solvent non-heavy metal environmental friendly metal anti-rust coatings.

  19. Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions

    Science.gov (United States)

    Guglielmi, Camila De Almeida B.; Simionato, Maria Regina L.; Ramalho, Karen Müller; Imparato, José Carlos P.; Pinheiro, Sérgio Luiz; Luz, Maria A. A. C.

    2011-08-01

    The purpose of this study was to assess photodynamic antimicrobial chemotherapy (PACT) via irradiation, using a low power laser associated with a photosensitization dye, as an alternative to remove cariogenic microorganisms by drilling. Remaining dentinal samples in deep carious lesions on permanent molars (n = 26) were treated with 0.01% methylene blue dye and irradiated with a low power laser (InGaAIP - indium gallium aluminum phosphide; λ = 660 nm; 100 mW; 320 Jcm-2 90 s; 9J). Samples of dentin from the pulpal wall region were collected with a micropunch before and immediately after PACT and kept in a transport medium for microbiological analysis. Samples were cultured in plates of Brucella blood agar, Mitis Salivarius Bacitracin agar and Rogosa SL agar to determine the total viable bacteria, mutans streptococci and Lactobacillus spp. counts, respectively. After incubation, colony-forming units were counted and microbial reduction was calculated for each group of bacteria. PACT led to statistically significant reductions in mutans streptococci (1.38 log), Lactobacillus spp. (0.93 log), and total viable bacteria (0.91 log). This therapy may be an appropriate approach for the treatment of deep carious lesions using minimally invasive procedures.

  20. A flexible master oscillator for a pulse-burst laser system

    International Nuclear Information System (INIS)

    A new master oscillator is being installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a Laser Quantum ventus 1064 diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 1064 nm, 2.7 mm diameter polarized beam is focused into the gallium phosphide crystal of a Brimrose AOM, which deflects the beam by approximately 60 mR when driven by the 400 MHz fixed frequency driver. Beam deflection is controlled by a simple digital input pulse, and is capable of producing deflected pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These deflected pulses from the output of the AOM are collimated and propagated into the laser amplifier system, where they will be amplified to ∼2 J/pulse and injected into the MST plasma

  1. Nonlinear current-voltage characteristics based on semiconductor nanowire networks enable a new concept in thermoelectric device optimization

    Science.gov (United States)

    Diaz Leon, Juan J.; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2016-08-01

    Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Δ T = T_{{hot}} - T_{{cold}}, T hot: hot side temperature, T cold: cold side temperature) with respect to the average temperature ( T). While the resistance of TE devices changes as Δ T and/or T change, the current-voltage ( I- V) characteristics have consistently been shown to remain linear, which clips generated electric power ( P gen) within the given open-circuit voltage ( V OC) and short-circuit current ( I SC). This P gen clipping is altered when an appropriate nonlinearity is introduced to the I- V characteristics—increasing P gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I- V characteristics. In this paper, the concept of a unique TE device with nonlinear I- V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I- V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P gen that is more than 25 times larger than those of comparable devices with linear I- V characteristics. The plausible causes of the nonlinear I- V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P gen of TE devices made of semiconductors.

  2. Planck pre-launch status: Design and description of the Low Frequency Instrument

    CERN Document Server

    Bersanelli, M; Butler, R C; Mennella, A; Villa, F; Aja, B; Artal, E; Artina, E; Baccigalupi, C; Balasini, M; Baldan, G; Banday, A; Bastia, P; Battaglia, P; Bernardino, T; Blackhurst, E; Boschini, L; Burigana, C; Cafagna, G; Cappellini, B; Cavaliere, F; Colombo, F; Crone, G; Cuttaia, F; D'Arcangelo, O; Danese, L; Davies, R D; Davis, R J; De Angelis, L; De Gasperis, G C; De La Fuente, L; De Rosa, A; De Zotti, G; Falvella, M C; Ferrari, F; Ferretti, R; Figini, L; Fogliani, S; Franceschet, C; Franceschi, E; Gaier, T; Garavaglia, S; Gomez, F; Gorski, K; Gregorio, A; Guzzi, P; Herreros, J M; Hildebrandt, S R; Hoyland, R; Hughes, N; Janssen, M; Jukkala, P; Kettle, D; Kilpia, V H; Laaninen, M; Lapolla, P M; Lawrence, C R; Leahy, J P; Leonardi, R; Leutenegger, P; Levin, S; Lilje, P B; Lowe, S R; Lubin, D Lawson P M; Maino, D; Malaspina, M; Maris, M; Marti-Canales, J; Martinez-Gonzalez, E; Mediavilla, A; Meinhold, P; Miccolis, M; Morgante, G; Natoli, P; Nesti, R; Pagan, L; Paine, C; Partridge, B; Pascual, J P; Pasian, F; Pearson, D; Pecora, M; Perrotta, F; Platania, P; Pospieszalski, M; Poutanen, T; Prina, M; Rebolo, R; Roddis, N; Rubino-Martin, J A; Salmon, n M J; Sandri, M; Seiffert, M; Silvestri, R; Simonetto, A; Sjoman, P; Smoot, G F; Sozzi, C; Stringhetti, L; Taddei, E; Tauber, J; Terenzi, L; Tomasi, M; Tuovinen, J; Valenziano, L; Varis, J; Vittorio, N; Wade, L A; Wilkinson, A; Winder, F; Zacchei, A; Zonca, A

    2010-01-01

    In this paper we present the Low Frequency Instrument (LFI), designed and developed as part of the Planck space mission, the ESA program dedicated to precision imaging of the cosmic microwave background (CMB). Planck-LFI will observe the full sky in intensity and polarisation in three frequency bands centred at 30, 44 and 70 GHz, while higher frequencies (100-850 GHz) will be covered by the HFI instrument. The LFI is an array of microwave radiometers based on state-of-the-art Indium Phosphide cryogenic HEMT amplifiers implemented in a differential system using blackbody loads as reference signals. The front-end is cooled to 20K for optimal sensitivity and the reference loads are cooled to 4K to minimise low frequency noise. We provide an overview of the LFI, discuss the leading scientific requirements and describe the design solutions adopted for the various hardware subsystems. The main drivers of the radiometric, optical and thermal design are discussed, including the stringent requirements on sensitivity, ...

  3. ETIOLOGICAL ASPECTS OF ANEMIA IN DOG INTOXICATION

    Directory of Open Access Journals (Sweden)

    Likhoman A. V.

    2016-03-01

    Full Text Available Dog poisoning toxicant used at home for rodent control (often based on zinc phosphide is accompanied by the development of anemia . In etiopathogenesis of this type of pathology of the blood we can highlight as important: haemolytic , haemorrhagic and allergic components, but the nature and extent of the changes under there are unequal. This requires the development of a special algorithm of examination and treatment strategies of the animal in accordance with the stages of the development of the disease. Modern conditions dictate the need, along with the actions to carry out urgent medical identification as the main etiological factor and pathogenesis, and the leading pathogenetic factors that pose a threat to the danger of other pathological processes and disease states. First, we evaluate the extent of damage to the liver, kidneys, heart, spleen and blood vessels, which is possible only if the clinic has appropriate methods and equipment. It is undeniable in this regard the importance of evidence-based recommendations for dietary nutrition of the affected animal's behavior after the clinic urgent remedial measures. The article proves high importance of evaluating the effectiveness of the treatment in the clinic

  4. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Piryatinski, Andrei [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Hollingsworth, Jennifer A. [Los Alamos National Laboratory

    2012-06-21

    Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDs to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.

  5. Spectroscopic properties of LaZnPO polycrystals doped with Nd{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Lemański, K. [Institute of Low Temperature and Structure Research Polish Academy of Sciences, Department of Spectroscopy of Excited States, ul. Okólna 2, 50-422 Wrocław (Poland); Babij, M. [Institute of Low Temperature and Structure Research Polish Academy of Sciences, Department of Spectroscopy of Excited States, ul. Okólna 2, 50-422 Wrocław (Poland); University of Wrocław, Faculty of Chemistry, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland); Ptak, M.; Bukowski, Z. [Institute of Low Temperature and Structure Research Polish Academy of Sciences, Department of Spectroscopy of Excited States, ul. Okólna 2, 50-422 Wrocław (Poland); Dereń, P.J., E-mail: P.Deren@int.pan.wroc.pl [Institute of Low Temperature and Structure Research Polish Academy of Sciences, Department of Spectroscopy of Excited States, ul. Okólna 2, 50-422 Wrocław (Poland)

    2015-09-15

    LaZnPO phosphide oxide was synthesized by a solid state reaction. The crystal structure has been confirmed using the X-Ray Powder Diffraction. LaZnPO possesses a tetragonal crystal structure with a space group P4/nmm. The absorption, FTIR, Raman and luminescence spectra have been measured and analyzed. For the neodymium(III) ions the spectroscopic quality parameter and the luminescence branching ratio were estimated from the emission spectra. The investigated crystals may find applications as a down-shifting material, to enhance the yield of solar cells. - Highlights: • Spectroscopic properties of LaZnPO:Nd{sup 3+} were investigated for the first time. • Broad absorption band occurs in the visible range. • The energy transfer from the host to the doped Nd{sup 3+} ions occurs. • The Stark energy levels of Nd{sup 3+} ions in LaZnPO were obtained. • LaZnPO:Nd{sup 3+} may find applications as a down-shifting material.

  6. Electrochemical and structural properties of electroless Ni-P-SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farzaneh, Amir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman (Iran, Islamic Republic of); Department of Materials Science and Engineering, Faculty of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of); Mohammadi, Maysam, E-mail: maysam.mohammadi84@gmail.com [High Technology and Environmental Sciences, International Center for Science, Materials Research Institute, Kerman (Iran, Islamic Republic of); Ehteshamzadeh, Maryam [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman (Iran, Islamic Republic of); High Technology and Environmental Sciences, International Center for Science, Materials Research Institute, Kerman (Iran, Islamic Republic of); Mohammadi, Farzad [Department of Materials Engineering, The University of British Columbia, Vancouver, BC (Canada)

    2013-07-01

    Silicon carbide (SiC) nanoparticles were co-deposited with nickel-phosphorous (Ni-P) coatings through electroless deposition process. The effects of annealing temperature and SiC contents on properties of the coatings were investigated. Corrosion performance of the coatings was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). X-ray diffraction and Scanning Electron Microscopy (SEM) were employed for structural and morphological studies, respectively. It was shown that the structure of the as-deposited Ni-P-SiC nanocomposite coating was amorphous, and changed to the nickel crystal, nickel phosphide (Ni{sub 3}P) and silicide compounds (Ni{sub x}Si{sub y}) with heat treatment. Addition of the SiC concentration in the coating bath affected both composition and morphology of the coating. Presence of SiC nanoparticles in the Ni-P coating enhanced the corrosion resistance of the coating. Higher SiC contents, however, negatively affected the corrosion behavior of the coatings. Heat treatment also improved the corrosion resistance of the Ni-P-SiC coating. Annealing at 400 °C decreased the corrosion current density of the coating by approximately 60%.

  7. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  8. Investigations of phase transition, elastic and thermodynamic properties of GaP by using the density functional theory

    Institute of Scientific and Technical Information of China (English)

    Liu Li; Wei Jian-Jun; An Xin-You; Wang Xue-Min; Liu Hui-Na; Wu Wei-Dong

    2011-01-01

    The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT).Lattice constant a0,elastic constants cij,bulk modulus B0 and the pressure derivative of bulk modulus B'0 are calculated.The results are in good agreement with numerous experimental and theoretical data.From the usual condition of equal enthalpies,the phase transition from the ZB to the RS structure occurs at 21.9 GPa,which is close to the experimental value of 22.0 GPa.The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained.According to the quasi-harmonic Debye model,in which the phononic effects are considered,the normalized volume V/Vo,the Debye temperature θ,the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.

  9. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  10. Review of pulmonary toxicity of indium compounds to animals and humans

    International Nuclear Information System (INIS)

    Due to the increased production of ITO, the potential health hazards arising from occupational exposure to this material have attracted much attention. This review consists of three parts: 1) toxic effects of indium compounds on animals, 2) toxic effects of indium compounds on humans, and 3) recommendations for preventing exposure to indium compounds in the workplace. Available data have indicated that insoluble form of indium compounds, such as ITO, indium arsenide (InAs) and indium phosphide (InP), can be toxic to animals. Furthermore, InP has demonstrated clear evidence of carcinogenic potential in long-term inhalation studies using experimental animals. As for the dangers to humans, some data are available concerning adverse health effects to workers who have been exposed to indium-containing particles. The Japan Society for Occupational Health recommended the value of 3 μg/L of indium in serum as the occupational exposure limit based on biological monitoring to preventing adverse health effects in workers resulting from occupational exposure to indium compounds. Accordingly, it is essential that much greater attention is focused on human exposure to indium compounds, and precautions against possible exposure to indium compounds are most important with regard to health management among indium-handling workers.

  11. Optimisation of semiconductor optical amplifiers for optical networks

    International Nuclear Information System (INIS)

    This thesis is concerned with the design, fabrication and testing of Multiple Quantum Well Semiconductor Optical Amplifiers (SOAs) in the Indium Phosphide (InP) material system at a wavelength of 1.55μm. Following an introduction to optical communication systems and an overview of SOAs, the realisation of two SOAs is described. First, the design and fabrication of an SOA for linear amplification is presented, which uses integrated mode expanders to match the output mode to that of an optical fibre. In conjunction with angled facets, these mode expanders allow the reduction of the intrinsic facet reflectivity so that anti-reflection (AR) coatings are not required for travelling wave operation. It is shown that despite the effective reflectivity being very low, the mirror loss can be improved by the application of a single layer AR coating. Devices with this AR coating are shown to have state of the art performance in terms of gain and noise. Secondly, the requirements for non-linear switching using SOAs are investigated, through a combination of theory and experiment. From these findings, methods for optimisation are outlined, and an SOA is designed and fabricated which incorporates these changes. Following basic characterisation, the SOA is shown to have improved characteristics through CW measurements. The performance is demonstrated by world leading wavelength conversion experiments at 100Gbit/s and finally the prospects for operation of a 100Gbit/s interferometer using this device are investigated. (author)

  12. Synthesis and crystal structures of novel LaOAgS-type alkaline earth – Zinc, manganese, and cadmium fluoride pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Charkin, Dmitri O., E-mail: charkin@inorg.chem.msu.ru; Urmanov, Arthur V.; Plokhikh, Igor V.; Korshunov, Alexander D.; Kuznetsov, Alexey N.; Kazakov, Sergey M.

    2014-02-05

    Highlights: • Sight new alkaline earth – Mn, Zn, Cd fluoride pnictides were prepared. • All new compounds adopt the LaOAgS structure type. • Bond distances in their structures are transferable within 2–3%. • Very close similarities are observed in structural chemistry of LaOAgS- and HfCuSi{sub 2}-type compounds of Mn, Cu, Zn, Ag, and Cd. -- Abstract: Systematic studies of the LaOAgS-type compounds among alkaline earth – Zn/Cd/Mn fluoride pnictides revealed the existence of new representatives SrFMnP, SrFMnAs, SrFMnSb, SrFZnAs, SrFZnSb, BaFZnAs, BaFCdP, and BaFCdAs. Similar to rare-earth oxide compounds and contrary to isolobal chalcogenides of Cu/Ag, not all possible compositions could be realized. No compound of the structure type is formed for calcium; strontium forms fluoride pnictides only with zinc and manganese, while for barium, new representatives are also formed with cadmium. This trend, which possibly has a geometrical origin, is corroborated by quantum chemical calculations. Formation of NdOZnP-type compounds also was not observed suggesting the structure to be characteristic only for rare earth – zinc oxide phosphides.

  13. Zn3P2 and Cu2O Substrates for Solar Energy Conversion

    Science.gov (United States)

    Kimball, Gregory Michael

    Zinc phosphide (Zn3P2) and cuprous oxide (Cu 2O) are promising and earth-abundant alternatives to traditional thin film photovoltaics materials such as CIGS, CdTe, and a-Si. We have prepared high purity substrates of Zn3P2 from elemental zinc and phosphorus, and Cu2O by the thermal oxidation of copper foils, to investigate their fundamental material properties and potential for solar energy conversion. Photoluminescence-based measurements of Zn3P2 substrates have revealed a fundamental indirect band gap at 1.38 eV and a direct band gap at 1.50 eV, with time-resolved data indicating minority carrier diffusion lengths of ≥7 μm. Solar cells based on Mg/Zn3P2 junctions with solar energy conversion efficiency reaching 4.5% were examined by composition profiling to elucidate the passivation reaction between Mg metal and Zn3P2 surfaces. Semiconductor/liquid junctions incorporating Cu2O substrates exhibited open-circuit voltage, Voc, values in excess of 800 mV and internal quantum yields approaching 100% in the 400-500 nm spectral range.

  14. Novel high-pressure phases of AlP from first principles

    Science.gov (United States)

    Liu, Chao; Hu, Meng; Luo, Kun; Yu, Dongli; Zhao, Zhisheng; He, Julong

    2016-05-01

    By utilizing a crystal structure prediction software via particle swarm optimization, this study proposes three new high-pressure phases of aluminum phosphide (AlP) with high density and high hardness, in addition to previously proposed phases (wz-, zb-, rs-, NiAs-, β-Sn-, CsCl-, and Cmcm-AlP). These new phases are as follows: (1) an I 4 ¯ 3d symmetric structure (cI24-AlP) at 55.2 GPa, (2) an R 3 ¯ m symmetric structure (hR18-AlP) at 9.9 GPa, and (3) a C222 symmetric structure (oC12-AlP) at 20.6 GPa. Based on first-principle calculations, these phases have higher energetic advantage than CsCl- and β-Sn-AlP at ambient pressure. The independent elastic constants and phonon dispersion spectra are calculated to check the mechanical and dynamic stabilities of these phases. According to mechanical property studies, these new AlP phases have higher hardness than NiAs-AlP, and oC12-AlP has the highest hardness of 7.9 GPa. Electronic band structure calculations indicate that NiAs- and hR18-AlP have electrical conductivity. Additionally, wz-, zb-, and oC12-AlP possess semiconductive properties with indirect bandgaps, and cI24-AlP has a semiconductive property with a direct bandgap.

  15. Performance of a Double Gate Nanoscale MOSFET (DG-MOSFET Based on Novel Channel Materials

    Directory of Open Access Journals (Sweden)

    Rakesh Prasher

    2013-03-01

    Full Text Available In this paper, we have studied a double gate nanoscale MOSFET for various channel materials using simulation approach. The device metrics considered at the nanometer scale are subthreshold swing (SS, drain induced barrier lowering (DIBL, on and off current, carrier injection velocity (vinj, etc. The channel materials studied are Silicon (Si, Germanium (Ge, Gallium Arsenide (GaAs, Zinc Oxide (ZnO, Zinc Sulfide (ZnS, Indium Arsenide (InAs, Indium Phosphide (InP and Indium Antimonide (InSb. The results suggest that InSb and InAs materials have highest Ion and lowest Ioff values when used in the channel of the proposed MOSFET. Besides, InSb has the highest values for Ion / Ioff ratio, vinj, transconductance (gm and improved short channel effects (SS = 59.71 and DIBL = 1.14, both are very close to ideal values. More results such as effect of quantum capacitance verses gate voltage (Vgs, drain current (Ids vs. gate voltage and drain voltage (Vds, ratio of transconductance (gm and drain current (Id vs. gate voltage, average velocity vs. gate voltage and injection velocity (Vinj for the mentioned channel materials have been investigated. Various results obtained indicate that InSb and InAs as channel material appear to be suitable for high performance logic and even low operating power requirements for future nanoscale devices as suggested by latest ITRS reports.

  16. Sintered Cr/Pt and Ni/Au ohmic contacts to B{sub 12}P{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Clint D., E-mail: frye6@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94550 and Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 (United States); Kucheyev, Sergei O.; Voss, Lars F.; Conway, Adam M.; Shao, Qinghui; Nikolić, Rebecca J., E-mail: nikolic1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Edgar, James H. [Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-05-15

    Icosahedral boron phosphide (B{sub 12}P{sub 2}) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B{sub 12}P{sub 2} for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 °C for 30 s with a specific contact resistance of 2 × 10{sup −4} Ω cm{sup 2}, as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contact resistance was ∼l–4 × 10{sup −4} Ω cm{sup 2} after annealing over the temperature range of 500–800 °C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B{sub 12}P{sub 2} at 700 °C and a reaction layer between Ni and B{sub 12}P{sub 2} thinner than ∼25 nm at 500 °C.

  17. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm. PMID:27661578

  18. Growth and Strain Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell Structures

    Science.gov (United States)

    Alhomoudi, Ibrahim A.

    2016-06-01

    Metalorganic chemical vapor deposition (MOCVD) has been used for development of photovoltaic (PV) structures that enable enhanced efficiency for triple-junction solar cell (TJSC) devices. The in-plane strain, lattice match, surface defects, surface morphology, compositional uniformity, threading dislocations (TDs), and depth profile of each layer of the TJSC structure have been examined. The heteroepitaxial layers were found to be near lattice matched to the substrate with excellent coherence between the layers. The analysis explained that the indium gallium phosphide (InGaP) and indium gallium arsenide (InGaAs) layers on germanium (Ge) substrate are a strained structure with purely tetragonal crystalline phase, which indicates that the TJSC structural layers could maintain high crystalline quality. The biaxial in-plane strain in each layer of the TJSC structure is compressive and varies in magnitude for each layer in the structure, being strongly influenced by the Ge substrate and the multiple epilayers of the PV structure. Transmission electron microscopy (TEM) results show no TDs observed over a region with area of 500 nm2, with surface defect density less than 1 × 108 cm-2. No evidence of stacking faults and no visible defects of antiphase domains (APDs) at interfaces were observed, indicating adequate nucleation of epitaxial layers on the substrate and on subsequent growth layers. Furthermore, secondary-ion mass spectrometry (SIMS) analysis showed no significant Ge diffusion from the substrate into the TJSC structure.

  19. Optical and transport properties correlation driven by amorphous/crystalline disorder in InP nanowires

    Science.gov (United States)

    Kamimura, H.; Gouveia, R. C.; Carrocine, S. C.; Souza, L. D.; Rodrigues, A. D.; Teodoro, M. D.; Marques, G. E.; Leite, E. R.; Chiquito, A. J.

    2016-11-01

    Indium phosphide nanowires with a single crystalline zinc-blend core and polycrystalline/amorphous shell were grown from a reliable route without the use of hazardous precursors. The nanowires are composed by a crystalline core covered by a polycrystalline shell, presenting typical lengths larger than 10 μm and diameters of 80-90 nm. Raman spectra taken from as-grown nanowires exhibited asymmetric line shapes with broadening towards higher wave numbers which can be attributed to phonon localization effects. It was found that optical phonons in the nanowires are localized in regions with average size of 3 nm, which seems to have the same order of magnitude of grain sizes in the polycrystalline shell. Regardless of the fact that the nanowires exhibit a crystalline core, any considerable degree of disorder can lead to a localized behaviour of carriers. In consequence, the variable range hopping was observed as the main transport instead of the usual thermal excitation mechanisms. Furthermore the hopping length was ten times smaller than nanowire cross-sections, confirming that the nanostructures do behave as a 3D system. Accordingly, the V-shape observed in PL spectra clearly demonstrates a very strong influence of the potential fluctuations on the exciton optical recombination. Such fluctuations can still be observed at low temperature regime, confirming that the amorphous/polycrystalline shell of the nanowires affects the exciton recombination in every laser power regime tested.

  20. Improvement in lifetime of pseudo-Schottky diode sensor: Towards selective detection of O3 in a gaseous mixture (O3, NO2)

    International Nuclear Information System (INIS)

    This article concerns a pseudo-Schottky diode Palladium/Indium-Phosphide (Pd-InP) gas sensor. The catalytic activity of such a palladium layer coupled with a pseudo-Schottky structure enables the measurement of very low concentrations of two highly oxidant gases: nitrogen dioxide (NO2) and ozone (O3). The submission of the sensor to long O3 exposures leads to a degradation of its sensor characteristics (response time, recovery time and sensitivity) due to oxidation of the palladium metallization by O3. Therefore, to improve sensor lifetime and reduce drift, a methodology based on cyclic regeneration of the sensor's palladium surface (carbon monoxide (CO) reduction associated with thermal treatment) has been developed. The pseudo-Schottky gas sensor associated with this methodology exhibits reproducible responses, significant resolution and real time detection in the range of 20-100 ppb for NO2 and O3. Moreover, a sensor exposed to 20 ppb of O3 presented twice the response of the same sensor exposed to 100 ppb of NO2 (10.5 nA for 6.5 nA). Selectivity towards O3, with this methodology, is demonstrated in the case of atmospheric pollution monitoring

  1. Optimisation of semiconductor optical amplifiers for optical networks

    CERN Document Server

    Kelly, A E

    2000-01-01

    using this device are investigated. This thesis is concerned with the design, fabrication and testing of Multiple Quantum Well Semiconductor Optical Amplifiers (SOAs) in the Indium Phosphide (InP) material system at a wavelength of 1.55 mu m. Following an introduction to optical communication systems and an overview of SOAs, the realisation of two SOAs is described. First, the design and fabrication of an SOA for linear amplification is presented, which uses integrated mode expanders to match the output mode to that of an optical fibre. In conjunction with angled facets, these mode expanders allow the reduction of the intrinsic facet reflectivity so that anti-reflection (AR) coatings are not required for travelling wave operation. It is shown that despite the effective reflectivity being very low, the mirror loss can be improved by the application of a single layer AR coating. Devices with this AR coating are shown to have state of the art performance in terms of gain and noise. Secondly, the requirements for...

  2. Development of InP solid state detector and liquid scintillator containing metal complex for measurement of pp/7Be solar neutrinos and neutrinoless double beta decay

    Science.gov (United States)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka

    2012-07-01

    A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.

  3. Theoretical and Experimental Exploration of Breakdown Phenomena in an Argon-Filled GaP Device

    Science.gov (United States)

    Kurt, H. Hilal; Tanrıverdi, Evrim; Kurt, Erol

    2016-08-01

    A plasma device with large diameter and short interelectrode distance has been designed and implemented. Theoretical modeling and simulations have been carried out for different interelectrode distances, and experimental results obtained under different pressures p, both with argon atmosphere. The device produces direct-current (dc) discharges in the parallel-plate electrode configuration, with gallium phosphide (GaP) semiconductor at one side and SnO2-coated glass conducting material at the other side, separated by gas medium with width of 50 μm to 500 μm. The device can be operated under different values of interelectrode distance d, applied voltage U, and gas pressure p. Current-voltage characteristics and breakdown voltages have been found experimentally and theoretically. In addition, theoretical breakdown curves have been derived from simulations. The theory can also identify the space-charge density, thermal electron velocity, reduced electric field strength ( E/ N), electron density ne, and secondary-electron emission ( γ). Comparison between experiment and theory shows that the theory can estimate the breakdown very well for low pressure and small interelectrode gap.

  4. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    We report the recent result of GaAs/GaInP dual-junction solar cells grown by all solid-state molecular-beam-epitaxy (MBE). The device structure consists of a GaIn0.48P homojunction grown epitaxially upon a GaAs homojunction, with an interconnected GaAs tunnel junction. A photovoltaic conversion efficiency of 27% under the AM1.5 globe light intensity is realized for a GaAs/GaInP dual-junction solar cell, while the efficiencies of 26% and 16.6% are reached for a GaAs bottom cell and a GaInP top cell, respectively. The energy loss mechanism of our GaAs/GaInP tandem dual-junction solar cells is discussed. It is demonstrated that the MBE-grown phosphide-containing III—V compound semiconductor solar cell is very promising for achieving high energy conversion efficiency. (semiconductor devices)

  5. Heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-Si alloys investigated by entrained droplet technique and DSC

    Science.gov (United States)

    Li, J. H.; Albu, M.; Ludwig, T. H.; Hofer, F.; Arnberg, L.; Schumacher, P.

    2016-03-01

    Entrained droplet technique and DSC analyses were employed to investigate the influence of trace elements of Sr, Eu and P on the heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-5wt.% Si alloys. Sr and Eu addition was found to exert negative effects on the nucleation process, while an increased undercooling was observed. This can be attributed to the formation of phosphide compounds having a lower free energy and hence may preferentially form compared to AlP. Only a trace P addition was found to have a profound effect on the nucleation process. The nucleation kinetics is discussed on the basis of the classical nucleation theory and the free growth model, respectively. The estimated AlP patch size was found to be sufficient for the free growth of Si to occur within the droplets, which strongly indicates that the nucleation of Si on an AlP patch or AlP particle is a limiting step for free growth. The maximum nucleation site density within one droplet is directly related to the size distribution of AlP particles or AlP patches for Si nucleation, but is independent of the cooling rates. Although the nucleation conditions were optimized in entrained droplet experiments, the observed mechanisms are also valid at moderate cooling conditions, such as in shape casting.

  6. From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting

    Science.gov (United States)

    Li, Wei; Gao, Xuefei; Wang, Xiaoguang; Xiong, Dehua; Huang, Pei-Pei; Song, Wei-Guo; Bao, Xiaoqing; Liu, Lifeng

    2016-10-01

    Vertically-aligned cobalt nickel phosphide nanowires (Co-Ni-P NWs) are synthesized on Ni foam by phosphorizing cobalt carbonate hydroxide precursor NWs in red phosphorous vapor at an elevated temperature. The as-fabricated self-supported integrated electrode (Ni@Co-Ni-P) exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction (HER) in alkaline solution, delivering a cathodic current density of 100 mA cm-2 at a small overpotential of 137 mV and a Tafel slope of 65.1 mV dec-1. Furthermore, the electrode shows remarkable catalytic performance towards the oxygen evolution reaction (OER), affording an anodic current density of 90.2 mA cm-2 at an overpotential of 350 mV, superior to many other transition metal based OER catalysts. Given the well-defined bifunctionality, an alkaline electrolyzer is assembled using two symmetrical Ni@Co-Ni-P as the cathode and anode, respectively, which demonstrates outstanding catalytic performance for sustained water splitting at varying current densities from 10 to 240 mA cm-2. Significantly, the Ni@Co-Ni-P electrolyzer is able to operate for 3175 h (ca. 132 days) without degradation at an industry-relevant current density of 100 mA cm-2, leading to exceptionally high H2 production rate of 311 mmol h-1 g-1catalyst cm-2 with an energy efficiency of 76% at ca. 1.9 V.

  7. Determination of biocorrosion of low alloy steel by sulfate-reducing Desulfotomaculum sp. isolated from crude oil field

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, D.; Doenmez, G. [Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara (Turkey); Bilgic, S. [Faculty of Science, Department of Chemistry, Ankara University, Tandogan, 06100, Ankara (Turkey); Doenmez, S. [Faculty of Engineering, Department of Food Engineering, Ankara University, Diskapi, 06110 Ankara (Turkey)

    2007-11-15

    In this study corrosion behavior of low alloy steel, in the presence of anaerobic sulfate-reducing Desulfotomaculum sp. which was isolated from an oil production well, was investigated. In order to determine corrosion rates and mechanisms, mass loss measurements and electrochemical polarization studies were performed without and with bacteria in the culture medium. Scanning electron microscopic observations and energy dispersive X-ray spectra (EDS) analysis were made on steel coupons. The effect of iron concentration on corrosion behavior was determined by Tafel extrapolation method. In a sterile culture medium, as the FeSO{sub 4} . 7H{sub 2}O concentration increased, corrosion potential (E{sub cor}) values shifted towards more anodic potentials and corrosion current density (I{sub cor}) values increased considerably. After inoculation of sulfate-reducing bacteria (SRB), E{sub cor} shifted towards cathodic values. I{sub cor} values increased with increasing incubation time for 10 and 100 mg/L concentrations of FeSO{sub 4} . 7H{sub 2}O. Results have shown that the corrosion activity changed due to several factors such as bacterial metabolites, ferrous sulfide, hydrogen sulfide, iron phosphide, and cathodic depolarization effect. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Development of cadmium-free quantum dot for intracellular labelling through electroporation or lipid-calcium-phosphate

    Science.gov (United States)

    Liu, Ying-Feng; Hung, Wei-Ling; Hou, Tzh-Yin; Huang, Hsiu-Ying; Lin, Cheng-An J.

    2016-04-01

    Traditional fluorescent labelling techniques has severe photo-bleaching problem such as organic dyes and fluorescent protein. Quantum dots made up of traditional semiconductor (CdSe/ZnS) material has sort of biological toxicity. This research has developed novel Cd-free quantum dots divided into semiconductor (Indium phosphide, InP) and noble metal (Gold). Former has lower toxicity compared to traditional quantum dots. Latter consisting of gold (III) chloride (AuCl3) and toluene utilizes sonochemical preparation and different stimulus to regulate fluorescent wavelength. Amphoteric macromolecule surface technology and ligand Exchange in self-Assembled are involved to develop hydrophilic nanomaterials which can regulate the number of grafts per molecule of surface functional groups. Calcium phosphate (CaP) nanoparticle (NP) with an asymmetric lipid bilayer coating technology developed for intracellular delivery and labelling has synthesized Cd-free quantum dots possessing high brightness and multi-fluorescence successfully. Then, polymer coating and ligand exchange transfer to water-soluble materials to produce liposome nanomaterials as fluorescent probes and enhancing medical applications of nanotechnology.

  9. Evidence for reactive reduced phosphorus species in the early Archean ocean.

    Science.gov (United States)

    Pasek, Matthew A; Harnmeijer, Jelte P; Buick, Roger; Gull, Maheen; Atlas, Zachary

    2013-06-18

    It has been hypothesized that before the emergence of modern DNA-RNA-protein life, biology evolved from an "RNA world." However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean-Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron-nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol-phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth. PMID:23733935

  10. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    Science.gov (United States)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-01-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796

  11. Device Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, H.; Hofstetter, J.; Mitchell, B.; Altermatt, P.; Buonassisi, T.

    2015-03-23

    We present a numerical simulation study of different multicrystalline silicon materials and solar cell architectures to understand today's efficiency limitations and future efficiency possibilities. We compare conventional full-area BSF and PERC solar cells to future cell designs with a gallium phosphide heteroemitter. For all designs, mc-Si materials with different excess carrier lifetime distributions are used as simulation input parameters to capture a broad range of materials. The results show that conventional solar cell designs are sufficient for generalized mean lifetimes between 40 – 90 μs, but do not give a clear advantage in terms of efficiency for higher mean lifetime mc-Si material because they are often limited by recombination in the phosphorus diffused emitter region. Heteroemitter designs instead increase in cell efficiency considerable up to generalized mean lifetimes of 380 μs because they are significantly less limited by recombination in the emitter and the bulk lifetime becomes more important. In conclusion, to benefit from increasing mc-Si lifetime, new cell designs, especially heteroemitter, are desirable.

  12. The effect of varying the capping agent of magnetic/luminescent Fe3O4-InP/ZnSe core-shell nanocomposite

    Science.gov (United States)

    Paulsen, Zuraan; Onani, Martin O.; Allard, Garvin R. J.; Kiplagat, Ayabei; Okil, Joseph O.; Dejene, Francis B.; Mahanga, Geoffrey M.

    2016-01-01

    Magnetic-luminescent nanoparticles have shown great promise in various biomedical applications namely: contrast agents for magnetic resonance imaging, multifunctional drug carrier system, magnetic separation of cells, cell tracking, immunoassay, and magnetic bioseparation. This experiment describes the synthesis of a nanocomposite material, which is composed of an iron oxide (Fe3O4) superparamagnetic core and an indium phosphide/zinc selenide (InP/ZnSe) quantum dot shell. The magnetic nanoparticles (MNP's) and quantum dots (QD's) were synthesized separately before allowing them to conjugate. The MNP's were functionalized with a thiol-group allowing the QD shell to bind to the surface of the MNP by the formation of a thiol-metal bond. The nanocomposite was capped with 3-mercaptopropionic acid, oleylamine, β-cyclodextrin and their influence on the photoluminescence investigated. The synthesized nanocomposite was characterized with high- resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), selective electron area diffraction (SAED), scanning electron microscopy (SEM), superconducting quantum interference device (SQUID), and photoluminescence. These techniques yielded particle size, morphology, dispersion, and chemical composition including luminescence and florescence.

  13. SPECTRUM OF POISONING IN CHILDREN: STUDY FROM TERTIARY CARE HOSPITAL IN SOUTH INDIA

    Directory of Open Access Journals (Sweden)

    Mallesh

    2015-08-01

    Full Text Available PURPOSE: To understand pattern of poisoning in different age group in tertiary child care center and quantify burden of poisoning in pediatric admissions and mortality. DESIGN: Retrospective observation study. SETTING: Tertiary care center for children. METHODS: All the children admitted with diagnosis of acute poisoning between January 2013 and June 2015 was studied. RESULTS: There were 332 admissions due to poisoning during the study period (5.4% of total admissions. Mortality due to poisoning was 7, i.e. , 1.97% of all - cause mortality. 2.1% of poisonings died during the study period where a s overall mortality from all causes was 5.71%. House hold Products topped the list with 112 cases, followed by agricultural products (88 cases, animal bites and stings (69 cases, drugs (48 cases and industrial compounds (7 cases. Majority of admissions were in summer seasons 31% of all poisoning followed by rainy season. CONCLUSIONS: Incidence of acute poisoning in childhood has not changed significantly over time. Organophosphorus compounds, phosphides and drugs poisoning peak during adolescence and is particularly alarming. Conditions such as free availability of these compounds, co morbid conditions of adolescents, adolescent stressors have to be addressed

  14. Fano-like resonances in split concentric nanoshell dimers in designing negative-index metamaterials for biological-chemical sensing and spectroscopic purposes.

    Science.gov (United States)

    Ahmadivand, Arash; Karabiyik, Mustafa; Pala, Nezih

    2015-05-01

    In this study, we investigated numerically the plasmon response of a dimer configuration composed of a couple of split and concentric Au nanoshells in a complex orientation. We showed that an isolated composition of two concentric split nanoshells could be tailored to support strong plasmon resonant modes in the visible wavelengths. After determining the accurate geometric dimensions for the presented antisymmetric nanostructure, we designed a dimer array that shows complex behavior during exposure to different incident polarizations. We verified that the examined dimer was able to support destructive interference between dark and bright plasmon modes, which resulted in a pronounced Fano-like dip. Observation of a Fano minimum in such a simple molecular orientation of subwavelength particles opens new avenues for employing this structure in designing various practical plasmonic devices. Depositing the final dimer in a strong coupling condition on a semiconductor metasurface and measuring the effective refractive index at certain wavelengths, we demonstrate that each one of dimer units can be considered a meta-atom due to the high aspect ratio in the geometric parameters. Using this method, by extending the number of dimers periodically and illuminating the structure, we examined the isotropic, polarization-dependent, and transmission behavior of the metamaterial configuration. Using numerical methods and calculating the effective refractive indices, we computed and sketched corresponding figure of merit over the transmission window, where the maximum value obtained was 42.3 for Si and 54.6 for gallium phosphide (GaP) substrates. PMID:25811974

  15. Transmission Enhancement of High-$k$ Waves through Metal-InGaAsP Multilayers Calculated via Scattering Matrix Method with Semi-Classical Optical Gain

    CERN Document Server

    Smalley, Joseph S T; Shahin, Shiva; Kanté, Boubacar; Fainman, Yeshaiahu

    2015-01-01

    We analyze the steady-state transmission of high-momentum (high-$k$) electromagnetic waves through metal-semiconductor multilayer systems with loss and gain in the near-infrared (NIR). Using a semi-classical optical gain model in conjunction with the scattering matrix method (SMM), we study indium gallium arsenide phosphide (InGaAsP) quantum wells as the active semiconductor, in combination with the metals, aluminum-doped zinc oxide (AZO) and silver (Ag). Under moderate external pumping levels, we find that NIR transmission through Ag/InGaAsP systems may be enhanced by several orders of magnitude relative to the unpumped case, over a large angular and frequency bandwidth. Conversely, transmission enhancement through AZO/InGaAsP systems is orders of magnitude smaller, and has a strong frequency dependence. We discuss the relative importance of Purcell enhancement on our results and validate analytical calculations based on the SMM with numerical finite-difference time domain simulations.

  16. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  17. Macroporous p-GaP Photocathodes Prepared by Anodic Etching and Atomic Layer Deposition Doping.

    Science.gov (United States)

    Lee, Sudarat; Bielinski, Ashley R; Fahrenkrug, Eli; Dasgupta, Neil P; Maldonado, Stephen

    2016-06-29

    P-type macroporous gallium phosphide (GaP) photoelectrodes have been prepared by anodic etching of an undoped, intrinsically n-type GaP(100) wafer and followed by drive-in doping with Zn from conformal ZnO films prepared by atomic layer deposition (ALD). Specifically, 30 nm ALD ZnO films were coated on GaP macroporous films and then annealed at T = 650 °C for various times to diffuse Zn in GaP. Under 100 mW cm(-2) white light illumination, the resulting Zn-doped macroporous GaP consistently exhibit strong cathodic photocurrent when measured in aqueous electrolyte containing methyl viologen. Wavelength-dependent photoresponse measurements of the Zn-doped macroporous GaP revealed enhanced collection efficiency at wavelengths longer than 460 nm, indicating that the ALD doping step rendered the entire material p-type and imparted the ability to sustain a strong internal electric field that preferentially drove photogenerated electrons to the GaP/electrolyte interface. Collectively, this work presents a doping strategy with a potentially high degree of controllability for high-aspect ratio III-V materials, where the ZnO ALD film is a practical dopant source for Zn.

  18. Molecular and biochemical evidence on the protection of cardiomyocytes from phosphine-induced oxidative stress, mitochondrial dysfunction and apoptosis by acetyl-L-carnitine.

    Science.gov (United States)

    Baghaei, Amir; Solgi, Reza; Jafari, Abbas; Abdolghaffari, Amir Hossein; Golaghaei, Alireza; Asghari, Mohammad Hossein; Baeeri, Maryam; Ostad, Seyed Nasser; Sharifzadeh, Mohammad; Abdollahi, Mohammad

    2016-03-01

    The aim of the present study was to investigate the efficacy of acetyl-L-carnitine (ALCAR) on pathologic changes of mitochondrial respiratory chain activity, ATP production, oxidative stress, and cellular apoptosis/necrosis induced by aluminum phosphide (AlP) poisoning. The study groups included: the Sham that received almond oil only; the AlP that received oral LD50 dose of aluminum; the AC-100, AC-200, and AC-300 which received concurrent oral LD50 dose of AlP and single 100, 200, and 300 mg/kg of ALCAR by intraperitoneal injection. After 24 h, the rats were sacrificed; the heart and blood sample were taken for measurement of biochemical and mitochondrial factors. The results specified that ALCAR significantly attenuated the oxidative stress (elevated ROS and plasma iron levels) caused by AlP poisoning. ALCAR also increased the activity of cytochrome oxidase, which in turn amplified ATP production. Furthermore, flow cytometric assays and caspase activity indicated that ALCAR prohibited AlP-induced apoptosis in cardiomyocytes. PMID:26773361

  19. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F [Leland Stanford Junior University, Stanford, CA (United States)

    2016-04-20

    In this project, we have employed a systematic approach to develop active, selective, and stable catalyst materials for important electrochemical reactions involving energy conversion. In particular, we have focused our attention on developing active catalyst materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). HER: We have synthesized and investigated several highly active and acid stable non-precious metal HER catalysts, including: [Mo3S13]2- nanoclusters (Nature Chemistry, 2014) and molybdenum phosphosulfide (MoP|S) (Angewandte Chemie, 2014). We have also aimed to engineer these catalyst formulations in a membrane electrode assembly (MEA) for fundamental studies of water electrolysis at high current densities, approximately 1 A/cm2 (ChemSusChem, 2015). We furthermore investigated transition metal phosphide (TMP) catalysts for HER by a combined experimental–theoretical approach (Energy & Environmental Science, 2015). By synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔGH, calculated by density functional theory, we showed that the TMPs follow a volcano relationship for the HER. Using our combined experimental–theoretical model, we predicted that the mixed metal TMP, Fe0.5Co0.5P, should have a near-optimal ΔGH. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe0.5Co0.5P exhibits the highest HER activity of the investigated TMPs (Energy & Environmental Science, 2015). The understanding gained as to how to improve catalytic activity for the HER, particularly for non-precious metal materials, is important to DOE targets for sustainable H2 production. OER: We have developed a SrIrO3/IrOx catalyst for acidic conditions (submitted, 2016). The SrIrO3/IrOx catalyst significantly outperforms rutile IrO2 and RuO2, the only other OER catalysts to have reasonable stability and activity in

  20. Germylenes and stannylenes stabilized within N2PE rings (E = Ge or Sn): combined experimental and theoretical study.

    Science.gov (United States)

    Vrána, Jan; Ketkov, Sergey; Jambor, Roman; Růžička, Aleš; Lyčka, Antonín; Dostál, Libor

    2016-06-21

    The deprotonation of aminophosphanes PhP(NHR)2 (R = t-Bu or Dip; Dip = 2,6-i-Pr2C6H3) and t-BuP(NHDip)2 using n-BuLi gave, depending on the stoichiometry, both the dilithium compounds {[PhP(Nt-Bu)2]Li2}2 (), [PhP(Nt-Bu)(NDip)]Li2·(Et2O) (), [t-BuP(NDip)2]Li2·(Et2O)2 () and [t-BuP(NDip)2]Li2·(tmeda)2 (), and the monolithium compounds [PhP(NHt-Bu)(NR)]Li·(tmeda) (R = t-Bu , Dip ) and [t-BuP(NHDip)(NDip)]Li·(tmeda) (). Treatment of , and with GeCl2·dioxane or SnCl2 in a 1 : 1 stoichiometric ratio gave the corresponding tetrylenes [PhP(Nt-Bu)2]E (E = Ge , Sn ), [PhP(Nt-Bu)(NDip)]Ge () and [t-BuP(NDip)2]E (E = Ge , Sn ). The heteroleptic germylene [Ph(H)P(Nt-Bu)2]GeCl () was obtained by the reaction of the monolithium compound [PhP(NHt-Bu)(Nt-Bu)]Li·(tmeda) () with GeCl2·dioxane in a 1 : 1 stoichiometric ratio, as a result of a spontaneous NH → PH tautomeric shift in the ligand backbone. In contrast, an analogous reaction with SnCl2 produced only stannylene along with the PhP(NHt-Bu)2 starting material, suggesting scrambling of the ligands rather than a NH → PH tautomeric shift. Finally, heating in solution led to P-C bond cleavage and formation of the bis(imino)phosphide [DipNPNDip]Li·(tmeda) (). The reaction of with GeCl2·dioxane, SnCl2 or PbCl2 in a 2 : 1 stoichiometric ratio yielded the unprecedented tetrylenes [DipNPNDip]2E (E = Ge , Sn and Pb ), in which the tetrylene center is incorporated within two N2PE rings. Treatment of the monolithium compound with n-BuLi and K (or KC8) gave [t-BuNPNt-Bu]Li·(tmeda) () and{[t-BuNPNt-Bu]K(tmeda)}2 (), respectively. In contrast to the reaction with , similar reactions of with GeCl2·dioxane and SnCl2 resulted in the known compounds cis-[P(μ-Nt-Bu)2P(t-BuN)2]E (E = Ge, Sn); evidently the t-Bu groups do not provide sufficient steric shielding to protect the bis(imino)phosphide backbone as in the case of . The bonding situation in a set of selected compounds (, ) has been subjected to a theoretical

  1. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries

    Science.gov (United States)

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-01

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g-1, a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g-1 even at 20 A g-1. Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices.We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as

  2. The core contribution of transmission electron microscopy to functional nanomaterials engineering

    Science.gov (United States)

    Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu

    2016-01-01

    Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM

  3. Germylenes and stannylenes stabilized within N2PE rings (E = Ge or Sn): combined experimental and theoretical study.

    Science.gov (United States)

    Vrána, Jan; Ketkov, Sergey; Jambor, Roman; Růžička, Aleš; Lyčka, Antonín; Dostál, Libor

    2016-06-21

    The deprotonation of aminophosphanes PhP(NHR)2 (R = t-Bu or Dip; Dip = 2,6-i-Pr2C6H3) and t-BuP(NHDip)2 using n-BuLi gave, depending on the stoichiometry, both the dilithium compounds {[PhP(Nt-Bu)2]Li2}2 (), [PhP(Nt-Bu)(NDip)]Li2·(Et2O) (), [t-BuP(NDip)2]Li2·(Et2O)2 () and [t-BuP(NDip)2]Li2·(tmeda)2 (), and the monolithium compounds [PhP(NHt-Bu)(NR)]Li·(tmeda) (R = t-Bu , Dip ) and [t-BuP(NHDip)(NDip)]Li·(tmeda) (). Treatment of , and with GeCl2·dioxane or SnCl2 in a 1 : 1 stoichiometric ratio gave the corresponding tetrylenes [PhP(Nt-Bu)2]E (E = Ge , Sn ), [PhP(Nt-Bu)(NDip)]Ge () and [t-BuP(NDip)2]E (E = Ge , Sn ). The heteroleptic germylene [Ph(H)P(Nt-Bu)2]GeCl () was obtained by the reaction of the monolithium compound [PhP(NHt-Bu)(Nt-Bu)]Li·(tmeda) () with GeCl2·dioxane in a 1 : 1 stoichiometric ratio, as a result of a spontaneous NH → PH tautomeric shift in the ligand backbone. In contrast, an analogous reaction with SnCl2 produced only stannylene along with the PhP(NHt-Bu)2 starting material, suggesting scrambling of the ligands rather than a NH → PH tautomeric shift. Finally, heating in solution led to P-C bond cleavage and formation of the bis(imino)phosphide [DipNPNDip]Li·(tmeda) (). The reaction of with GeCl2·dioxane, SnCl2 or PbCl2 in a 2 : 1 stoichiometric ratio yielded the unprecedented tetrylenes [DipNPNDip]2E (E = Ge , Sn and Pb ), in which the tetrylene center is incorporated within two N2PE rings. Treatment of the monolithium compound with n-BuLi and K (or KC8) gave [t-BuNPNt-Bu]Li·(tmeda) () and{[t-BuNPNt-Bu]K(tmeda)}2 (), respectively. In contrast to the reaction with , similar reactions of with GeCl2·dioxane and SnCl2 resulted in the known compounds cis-[P(μ-Nt-Bu)2P(t-BuN)2]E (E = Ge, Sn); evidently the t-Bu groups do not provide sufficient steric shielding to protect the bis(imino)phosphide backbone as in the case of . The bonding situation in a set of selected compounds (, ) has been subjected to a theoretical

  4. Fumigação de milho para o controle do gorgulho utilizando caule de Tanaecium nocturnum (Bignoniaceae Fumigation of maize for weevil control using Tanaecium nocturnum (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Murilo Fazolin

    2010-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da fumigação de grãos de milho com segmentos de caules injuriados de Tanaecium nocturnum no controle de Sitophilus zeamais. O delineamento experimental foi inteiramente casualizado, com sete repetições, em parcelas subdivididas. Considerou-se como parcela os tratamentos de fumigação e, como subparcelas, os intervalos de tempo consecutivos tomados a cada 23 dias para as avaliações. Os tratamentos foram: fumigação com 50 g de segmentos de caules verdes de T. nocturnum por quilograma de grãos de milho, que continham entre 800 e 900 mg kg-1 de HCN; fumigação com 60 mg de pastilhas de fosfeto de alumínio por quilograma de grãos de milho que continham 57% do princípio ativo; e testemunha (sem aplicação de fumigantes. A infestação por S. zeamais e a perda de peso de grãos foram avaliadas nove vezes durante 207 dias. A utilização de 50 g kg-1 de segmentos do caule de T. nocturnum para o controle de S. zeamais proporcionou redução da infestação pela praga e da perda de peso de grãos comparável à do fosfeto de alumínio. Esse controle alternativo pode ser adaptado às condições de armazenamento do milho em pequenas propriedades da Amazônia Ocidental.The objective of this work was to assess the effect of fumigating corn grains with injured stem parts of Tanaecium nocturnum in the control of Sitophilus zeamais. The experimental design was completely randomized with seven replicates in split plots. The plots consisted of fumigation treatments and the subplots, of consecutive time intervals taken every 23 days for the evaluations. The treatments were: fumigation using 50 g of green stem parts of T. nocturnum per kilogram of corn grains; which contained between 800 and 900 mg kg-1 HCN fumigation using 60 mg of aluminum phosphide tablets per kilogram of corn grains with 57% of active ingredient; and control (no fumigation. S. zeamais infestation and weight loss of corn grains were

  5. Polymer enabled 100 Gbaud connectivity for datacom applications

    Science.gov (United States)

    Katopodis, V.; Groumas, P.; Zhang, Z.; Dinu, R.; Miller, E.; Konczykowska, A.; Dupuy, J.-Y.; Beretta, A.; Dede, A.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Riet, Muriel; Cangini, G.; Vannucci, A.; Keil, N.; Bach, H.-G.; Grote, N.; Avramopoulos, H.; Kouloumentas, Ch.

    2016-03-01

    Polymers hold the promise for ultra-fast modulation of optical signals due to their potential for ultra-fast electro-optic (EO) response and high EO coefficient. In this work, we present the basic structure and properties of an efficient EO material system, and we summarize the efforts made within the project ICT-POLYSYS for the development of high-speed transmitters based on this system. More specifically, we describe successful efforts for the monolithic integration of multi-mode interference (MMI) couplers and Bragg-gratings (BGs) along with Mach-Zehnder modulators (MZMs) on this platform, and for the hybrid integration of InP active elements in the form of laser diodes (LDs) and gain chips (GCs). Using these integration techniques and the combination of the hybrid optical chips with ultra-fast indium phosphide double heterojunction bipolar transistor (InP-DHBT) electronics, we develop and fully package a single 100 Gb/s transmitter and a 2×100 Gb/s transmitter that can support serial operation at this rate with conventional non-return-to-zero on-off-keying (NRZ-OOK) modulation format. We also present the experimental evaluation of the devices, validating the efficiency of the monolithic and hybrid integration concepts and confirming the potential of this technology for single-lane 100 Gb/s optical connectivity in data-center network environments. Results from transmission experiments to this end include the achievement of BER close to 6·10-9 in B2B configuration, the achievement of BER lower than 10-7 for propagation over standard single-mode fiber (SSMF) with total length up to 1000 m, and the achievement of BER at the level of 10-5 after 1625 m of SSMF. Finally, plans for the use of the EO polymer system in a more complex hybrid integration platform for high-flexibility/high-capacity transmitters are also outlined.

  6. Hybrid integrated photonic components based on a polymer platform

    Science.gov (United States)

    Eldada, Louay A.

    2003-06-01

    We report on a polymer-on-silicon optical bench platform that enables the hybrid integration of elemental passive and active optical functions. Planar polymer circuits are produced photolithographically, and slots are formed in them for the insertion of chips and films of a variety of materials. The polymer circuits provide interconnects, static routing elements such as couplers, taps, and multi/demultiplexers, as well as thermo-optically dynamic elements such as switches, variable optical attenuators, and tunable notch filters. Crystal-ion-sliced thin films of lithium niobate are inserted in the polymer circuit for polarization control or for electro-optic modulation. Films of yttrium iron garnet and neodymium iron boron magnets are inserted in order to magneto-optically achieve non-reciprocal operation for isolation and circulation. Indium phosphide and gallium arsenide chips are inserted for light generation, amplification, and detection, as well as wavelength conversion. The functions enabled by this multi-material platform span the range of the building blocks needed in optical circuits, while using the highest-performance material system for each function. We demonstrated complex-functionality photonic components based on this technology, including a metro ring node module and a tunable optical transmitter. The metro ring node chip includes switches, variable optical attenuators, taps, and detectors; it enables optical add/drop multiplexing, power monitoring, and automatic load balancing, and it supports shared and dedicated protection protocols in two-fiber metro ring optical networks. The tunable optical transmitter chip includes a tunable external cavity laser, an isolator, and a high-speed modulator.

  7. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    Science.gov (United States)

    Yang, Weiquan; Becker, Jacob; Liu, Shi; Kuo, Ying-Shen; Li, Jing-Jing; Landini, Barbara; Campman, Ken; Zhang, Yong-Hang

    2014-05-01

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In0.49Ga0.51P/GaAs/In0.49Ga0.51P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al0.52In0.48P layer with a textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF2/ZnS anti-reflective coating demonstrated open-circuit voltages (Voc) up to 1.00 V, short-circuit current densities (Jsc) up to 24.5 mA/cm2, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated Jsc and conversion efficiency of these devices are expected to reach 26.6 mA/cm2 and 20.7%, respectively.

  8. Optical communication components

    Science.gov (United States)

    Eldada, Louay

    2004-03-01

    We review and contrast key technologies developed to address the optical components market for communication applications. We first review the component requirements from a network perspective. We then look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include silica fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin-film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then describe the most commonly used classes of optical device technology and present their pros and cons as well as the functions achieved to date in each of them. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering, Bragg gratings, diffraction gratings, holographic elements, thin-film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto-optics, magneto-optics, electroabsorption, liquid crystals, total internal reflection technologies, and mechanical actuation. The active technologies include heterostructures, quantum wells, rare-earth doping, dye doping, Raman amplification, and semiconductor amplification. We also investigate the use of different material systems and device technologies to achieve building-block functions, including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, isolators, circulators, wavelength converters, chromatic dispersion compensators, and polarization mode dispersion compensators. Some of the technologies presented are well established in the industry and in some cases have reached the commodity stage, others have recently become ready for commercial introduction, while some others

  9. Telecom optical componentry: past, present, future

    Science.gov (United States)

    Eldada, Louay A.

    2001-10-01

    We review and contrast key technologies developed to address the optical components market for telecom applications. We first look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include silica fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then look at the most commonly used classes of technology and present their pros & cons as well as the functions achieved to date in each. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering (e.g., AWG), Bragg gratings, diffraction gratings, holographic elements, thin film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto-optics, magneto-optics, liquid crystals, total internal reflection technologies (e.g., bubble technology), and mechanical actuation (e.g., moving fibers, MEMS). We finally describe active technologies including heterostructures, quantum wells, rare earth doping, Raman amplification, and semiconductor amplification. We also investigate the use of different material systems and technologies to achieve building block functions including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, non-reciprocal elements for isolators and circulators, wavelength converters, chromatic dispersion compensators, and polarization mode dispersion (PMD) compensators. Some of the technologies presented are established in the industry, others have recently been proven to be commercially viable, and some others are still under development in laboratories.

  10. Corrective Action Investigation Plan for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada (December 2002, Revision No.: 0), Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO

    2002-12-12

    The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations

  11. Estimation of Minimal Breakdown Point in a GaP Plasma Structure and Discharge Features in Air and Argon Media

    Science.gov (United States)

    Kurt, H. Hilal; Tanrıverdi, Evrim

    2016-08-01

    We present gas discharge phenomena in argon and air media using a gallium phosphide (GaP) semiconductor and metal electrodes. The system has a large-diameter ( D) semiconductor and a microscaled adjustable interelectrode gap ( d). Both theoretical and experimental findings are discussed for a direct-current (dc) electric field ( E) applied to this structure with parallel-plate geometry. As one of the main parameters, the pressure p takes an adjustable value from 0.26 kPa to 101 kPa. After collection of experimental data, a new theoretical formula is developed to estimate the minimal breakdown point of the system as a function of p and d. It is proven that the minimal breakdown point in the semiconductor and metal electrode system differs dramatically from that in metal and metal electrode systems. In addition, the surface charge density σ and spatial electron distribution n e are calculated theoretically. Current-voltage characteristics (CVCs) demonstrate that there exist certain negative differential resistance (NDR) regions for small interelectrode separations (i.e., d = 50 μm) and low and moderate pressures between 3.7 kPa and 13 kPa in Ar medium. From the difference of currents in CVCs, the bifurcation of the discharge current is clarified for an applied voltage U. Since the current differences in NDRs have various values from 1 μA to 7.24 μA for different pressures, the GaP semiconductor plasma structure can be used in microwave diode systems due to its clear NDR region.

  12. A General Method for Constructing Two-Dimensional Layered Mesoporous Mono- and Binary-Transition-Metal Nitride/Graphene as an Ultra-Efficient Support to Enhance Its Catalytic Activity and Durability for Electrocatalytic Application.

    Science.gov (United States)

    Liu, Baocang; Huo, Lili; Si, Rui; Liu, Jian; Zhang, Jun

    2016-07-27

    We constructed a series of two-dimensional (2D) layered mesoporous mono- and binary-transition-metal nitride/graphene nanocomposites (TMN/G, TM = Ti, Cr, W, Mo, TiCr, TiW, and TiMo) via an efficient and versatile nanocasting strategy for the first time. The 2D layered mesoporous TMN/G is constituted of small TMN nanoparticles composited with graphene nanosheets and has a large surface area with high porosity. Through decoration with well-dispersed Pt nanoparticles, 2D layered mesoporous Pt/TMN/G catalysts can be obtained that display excellent catalytic activity and stability for methanol electro-oxidation reactions (MOR) and oxygen reduction reactions (ORR) in both acidic and alkaline media. The 2D layered mesoporous binary-Pt/TMN/G catalysts possess catalytic activity superior to that of mono-Pt/TMN/G, graphene free Pt/TMN, Pt/G, and Pt/C catalysts. Encouragingly, the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst exhibits the best electrocatalytic performance for both MOR and ORR. The outstanding electrocatalytic performance of the Pt/Ti0.5Cr0.5N/G catalyst is rooted in its large surface area, high porosity, strong interaction among Pt, Ti0.5Cr0.5N, and graphene, an excellent electron transfer property facilitated by N-doped graphene, and the small size of Pt and Ti0.5Cr0.5N nanocrystals. The outstanding catalytic performance provides the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst with a wide range of application prospects in direct methanol fuel cells in both acidic and alkaline media. The synthetic method may be available for constructing other 2D layered mesoporous metal nitrides, carbides, and phosphides. PMID:27356463

  13. Electroreduction of Tungsten Oxide(Ⅵ) in Molten Salts with Added Metaphosphate

    Institute of Scientific and Technical Information of China (English)

    MALYSHEV Victor; GAB Angelina; POPESCU Ana-Maria; CONSTANTIN Virgil

    2013-01-01

    Tungstate ions WO42-are not electrochemically active in chloride melts.Upon introduction of PO3-ions into the melt,two waves appear in the voltammograms at potentials-0.1--0.2 V and-0.3--0.5 V vs.Pb/Pb2+ reference electrode.With a PO3-concentration ratio of 0.01<[PO3-]/[WO42-]<0.18,the potentiostatic electrolysis product of WO42-at the above mentioned potentials is metallic tungsten; a NaPO3 concentration increase for ratios [PO3-]/[WO42-]>>0.18 results in tungsten phosphide in electrolysis product.Cyclic voltammograms and dependence of half-peak potentials on electrode polarization rate indicate the irreversible character of the electrode process.Electrode process modeling allows us to state that the first wave in the voltammogram of KC1-NaC1-Na2WO4-NaPO3 system corresponds to tungsten oxychlorides discharge while the second wave appears due to the discharge of ditungstate ions.In the voltammograms of Na2WO4-NaPO3 melts,reduction wave was observed at-1.1--1.2 V potentials.Proportionality of limiting current to NaPO3 concentration,constancy ofId/v1/2 ratio,and Id/nFc constant kinetic value equal to (8.3-9.5)× 10-5 cm/s for steady-state wave indicate that electrode process rate is limited by electrochemically active particle diffusion to the electrode.Nascent ditungstate ions become electrochemically active in the overall electrode process.Charge transfer stage is reversible.

  14. A Flexible Master Oscillator for a Thomson Scattering Pulse-Burst Laser System

    Science.gov (United States)

    den Hartog, D. J.; Young, W. C.

    2015-11-01

    A new master oscillator will be installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a 1064 nm diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 2 mm diameter polarized beam is focused into the gallium phosphide crystal of the AOM, which deflects the beam by approximately 60 mrad. Beam deflection is controlled by a simple digital input pulse, and is capable of producing laser pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These pulses from the output of the AOM will be collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FC02-05ER54814, and by the National Science Foundation under Award Number PHY-0821899.

  15. The material system (AlGaIn)(AsSb). Properties and suitability for GaSb based vertical-resonator laser diodes; Das Materialsystem (AlGaIn)(AsSb). Eigenschaften und Eignung fuer GaSb-basierte Vertikalresonator-Laserdioden

    Energy Technology Data Exchange (ETDEWEB)

    Dier, Oliver

    2008-07-01

    The present thesis studies the particular properties of GaSb-based materials, where they differ from pure arsenides or phosphides, and also the impact of theses properties on long-wavelength vertical-cavity surface-emitting lasers (VCSELs). The goal is the first realisation of an electrically pumped VCSEL with a current aperture in this material system. After the basics, which are necessary for the understanding of the physical effects, the special features of antimony-containing materials are discussed with a focus on topics like band-structure, doping issues and miscibility gaps, which are relevant for devices. A VCSEL-structure optimized for long-wavelength applications is presented using an appropriate description of the device in its optical, electrical and thermal properties. A focus of this work is on the growth of laser-structures by molecular beam epitaxy. Annealing studies on this material showed a good prediction of the final wavelength after the temperature step, which is necessary due to the overgrowth of the tunnel-junction. The full-width at half maximum of the low-temperature photoluminescence signal shows a very low value of 3.95 meV for the quaternary active region. By using the type-II-band alignment of GaSb:Si and InAsSb:Si a low-resistive tunneljunction has been realised. After completion of the device processing a strong electroluminescence outside the DBR stopband and resonant modes within the stopband were found. A linear shift of the emission wavelength with temperature of 0.23 nm/K between -11 C and +30 C was found. (orig.)

  16. EL3 Chondrite (not Aubrite) Northwest Africa 2828: An Unusual Paleo-meteorite Occurring as Cobbles in a Terrestrial Conglomerate

    Science.gov (United States)

    Kuehner, S. M.; Irving, A. J.; Bunch, T. E.; Wittke, J. H.

    2006-12-01

    Although we recently classified NWA 2828 as an aubrite [1], our examination of new material (now comprising over 120 stones totaling >27 kg) requires revision of that classification. New information on the find site in Algeria indicates that these stones were excavated from a subsurface deposit, and we have found terrestrial rhyolite pebbles and sandy matrix attached to several NWA 2828 stones (see images at http://www.ess.washington.edu/meteoritics). Thus this is a rare example of a paleo-meteorite or 'fossil' meteorite. Some stones contain sparse (stone contain up to 6.5 wt.% Ni. These secondary minerals signify terrestrial alteration of primary metal, sulfides, phosphides, nitrides and glass in an ancient fluvial and/or acidic lacustrine environment. The dominant primary phase in NWA 2828 is enstatite (En98.4Wo1.4), which forms stubby prismatic grains (lacking polysynthetic twinning indicative of inverted clinoenstatite [cf., 1]). Our original classification was based on a very small specimen of an apparently igneous-textured rock, but the discovery of chondrules and the absence of twinned enstatite now suggests that it is instead an unequilibrated enstatite chondrite. Additional primary phases noted previously [1] are sodic plagioclase (An14- 15Or3-4), troilite, graphite, daubreelite, alabandite, oldhamite, schreibersite, glass and very rare kamacite. The well-formed, round chondrules containing glass coupled with the unrecrystallized matrix lead us to re-classify NWA 2828 as an EL3 chondrite. We also must revise our opinion [1] about the relationship between NWA 2828 and material classified as EL chondrites NWA 2965 and NWA 2736, which evidently come from the more extensively weathered top of the same ancient conglomerate layer as NWA 2828. [1] Irving A.J. et al. (2006) 69th Met. Soc. Mtg., #5264 (MAPS 41 Suppl., A84)

  17. Ecology and management of rodents in no-till agriculture in Washington, USA.

    Science.gov (United States)

    Witmer, Gary; Sayler, Rodney; Huggins, David; Capelli, Jason

    2007-09-01

    No-till farming is an important approach to sustainable agriculture because it can conserve soil and water resources. Unfortunately, rodent populations can thrive under no-till conditions because burrow systems are not disrupted by annual plowing and plant residues build-up on the surface, providing cover and insulation. This can result in substantial crop damage. We assessed rodent populations, habitat use, food habits, and crop damage in a no-till cropping system in Washington, USA. We also conducted preliminary trials of methods to reduce rodent populations and crop damage. In the fall, many more rodents were captured in fields with unharvested crops than in fields containing only plant stubble, suggesting that rodents leave fields after crop harvest, providing that suitable habitats are nearby, even when adequate cover is still available in harvested crop fields. By spring, the number of voles captured was much lower relative to fall. Despite this, capture rates were much higher in surrounding permanent grass areas than in crop (barley, wheat, pea) fields, suggesting that these grassy areas serve as refugia for rodents. Furthermore, the permanent grass cover type was the landscape variable most associated with rodent capture rates. In three winter pea fields, rodents removed 5-15% of the pea plants over winter. Examination of stomach contents revealed that voles mainly fed on grain plants in spring, but that their diet was more diversified in fall. Deer mice fed heavily on grain plants in both spring and fall, but also used insects as food. Metal barrier exclosures (9 m × 9 m), extending above and below ground, did not prevent access by rodents. Rodent populations in areas treated with zinc phosphide on grain were comparable to untreated areas 1 year after application of the rodenticide, perhaps because of immigration and recruitment, suggesting that baiting does not provide a long-term solution to rodent damage in no-till agricultural fields.

  18. Magnetic and structural properties of ferromagnetic Fe{sub 5}PB{sub 2} and Fe{sub 5}SiB{sub 2} and effects of Co and Mn substitutions

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Michael A., E-mail: McGuireMA@ornl.gov; Parker, David S. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-10-28

    Crystallographic and magnetic properties of Fe{sub 5}PB{sub 2}, Fe{sub 4}CoPB{sub 2}, Fe{sub 4}MnPB{sub 2}, Fe{sub 5}SiB{sub 2}, Fe{sub 4}CoSiB{sub 2}, and Fe{sub 4}MnSiB{sub 2} are reported. All adopt the tetragonal Cr{sub 5}B{sub 3} structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe{sub 5}SiB{sub 2} is observed as an anomaly in the magnetization near 170 K and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggest smaller magnetic anisotropy in the silicides. Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments by 16%–20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe{sub 5}PB{sub 2} and Fe{sub 5}SiB{sub 2}, with negative thermal expansion seen along the c-axis of Fe{sub 5}SiB{sub 2}. First principles calculations of the magnetic properties of Fe{sub 5}SiB{sub 2} and Fe{sub 4}MnSiB{sub 2} are reported. The results, including the magnetic moment and anisotropy, are in good agreement with experiment.

  19. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, B.R.

    2007-07-15

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  20. Diagnostic molecular markers for phosphine resistance in U.S. populations of Tribolium castaneum and Rhyzopertha dominica.

    Science.gov (United States)

    Chen, Zhaorigetu; Schlipalius, David; Opit, George; Subramanyam, Bhadriraju; Phillips, Thomas W

    2015-01-01

    Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T. castaneum and R. dominica with strong resistance was identified as P45S in T. castaneum and P49S in R. dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T. castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.

  1. Diagnostic molecular markers for phosphine resistance in U.S. populations of Tribolium castaneum and Rhyzopertha dominica.

    Directory of Open Access Journals (Sweden)

    Zhaorigetu Chen

    Full Text Available Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T. castaneum and R. dominica with strong resistance was identified as P45S in T. castaneum and P49S in R. dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R allele and allowed inference of genotypes with that allele. Seven populations of T. castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.

  2. Metal Doping Effect of the M-Co2P/Nitrogen-Doped Carbon Nanotubes (M = Fe, Ni, Cu) Hydrogen Evolution Hybrid Catalysts.

    Science.gov (United States)

    Pan, Yuan; Liu, Yunqi; Lin, Yan; Liu, Chenguang

    2016-06-01

    The enhancement of catalytic performance of cobalt phosphide-based catalysts for the hydrogen evolution reaction (HER) is still challenging. In this work, the doping effect of some transition metal (M = Fe, Ni, Cu) on the electrocatalytic performance of the M-Co2P/NCNTs (NCNTs, nitrogen-doped carbon nanotubes) hybrid catalysts for the HER was studied systematically. The M-Co2P/NCNTs hybrid catalysts were synthesized via a simple in situ thermal decomposition process. A series of techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, transmission electron microscopy, and N2 sorption were used to characterize the as-synthesized M-Co2P/NCNTs hybrid catalysts. Electrochemical measurements showed the catalytic performance according to the following order of Fe-Co2P/NCNTs > Ni-Co2P/NCNTs > Cu-Co2P/NCNTs, which can be ascribed to the difference of structure, morphology, and electronic property after doping. The doping of Fe atoms promote the growth of the [111] crystal plane, resulting in a large specific area and exposing more catalytic active sites. Meanwhile, the Fe(δ+) has the highest positive charge among all the M-Co2P/NCNTs hybrid catalysts after doping. All these changes can be used to contribute the highest electrocatalytic activity of the Fe-Co2P/NCNTs hybrid catalyst for HER. Furthermore, an optimal HER electrocatalytic activity was obtained by adjusting the doping ratio of Fe atoms. Our current research indicates that the doping of metal is also an important strategy to improve the electrocatalytic activity for the HER. PMID:27197546

  3. Effect of reducing agent and nano Al{sub 2}O{sub 3} particles on the properties of electroless Ni–P coating

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, S.; Ramamoorthy, B., E-mail: ramoo@iitm.ac.in

    2014-07-01

    This work is an experimental study on the formation, characteristics and properties of electroless nickel phosphorous (Ni–P) coatings and electroless nickel alumina (Ni–P–Al{sub 2}O{sub 3}) coating with varying reducing agent concentration. The results obtained indicate that the deposition rate and surface roughness of both Ni–P coating and Ni–P–Al{sub 2}O{sub 3} coatings are highly influenced by reducing agent (sodium hypophosphite). With increase in sodium hypophosphite Ni forms amorphous phase and as a result the micro hardness of the coating gets reduced. Heat treatment was carried out at 400 °C for 1 h after the coating, resulted in the formation of an intermetallic nickel phosphide (Ni{sub 3}P) phase which improved the hardness of the Ni–P coating from 400 ± 25 to 700 ± 25 HV. A composite coating is formed due to the incorporation of nano alumina in the Ni–P coating leading to an increase in the hardness. The chemical composition of nickel gets reduced from 85.3 to 77.8 wt.% due to the presence of alumina which resists the deposition of Ni. The uniform distribution of alumina particles are observed using a scanning electron micrograph and confirmed by X-ray diffraction techniques. The specific wear rate of Ni–P–Al{sub 2}O{sub 3} coated and post coating heat treated specimens was observed to be less when compared with that obtained in the case of conventional Ni–P coating.

  4. Lattice-engineered Si{sub 1-x}Ge{sub x}-buffer on Si(001) for GaP integration

    Energy Technology Data Exchange (ETDEWEB)

    Skibitzki, Oliver, E-mail: skibitzki@ihp-microelectronics.com; Zaumseil, Peter; Yamamoto, Yuji; Andreas Schubert, Markus [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Paszuk, Agnieszka; Hannappel, Thomas [Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Hatami, Fariba; Ted Masselink, W. [Institut für Physik, Humboldt Universität zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Trampert, Achim [Paul Drude Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Tillack, Bernd [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Technische Universität Berlin, HFT4, Einsteinufer 25, 10587 Berlin (Germany); Schroeder, Thomas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Brandenburgische Technische Universität, Konrad-Zuse Str. 1, 03046 Cottbus (Germany)

    2014-03-14

    We report a detailed structure and defect characterization study on gallium phosphide (GaP) layers integrated on silicon (Si) (001) via silicon-germanium (SiGe) buffer layers. The presented approach uses an almost fully relaxed SiGe buffer heterostructure of only 400 nm thickness whose in-plane lattice constant is matched to GaP—not at room but at GaP deposition temperature. Single crystalline, pseudomorphic 270 nm thick GaP is successfully grown by metalorganic chemical vapour deposition on a 400 nm Si{sub 0.85}Ge{sub 0.15}/Si(001) heterosystem, but carries a 0.08% tensile strain after cooling down to room temperature due to the bigger thermal expansion coefficient of GaP with respect to Si. Transmission electron microscopy (TEM) studies confirm the absence of misfit dislocations in the pseudomorphic GaP film but growth defects (e.g., stacking faults, microtwins, etc.) especially at the GaP/SiGe interface region are detected. We interpret these growth defects as a residue of the initial 3D island coalescence phase of the GaP film on the SiGe buffer. TEM-energy-dispersive x-ray spectroscopy studies reveal that these defects are often correlated with stoichiometric inhomogeneities in the GaP film. Time-of-flight Secondary ion mass spectrometry detects sharp heterointerfaces between GaP and SiGe films with a minor level of Ga diffusion into the SiGe buffer.

  5. Rapid planetesimal cooling after core formation: Pallasite meteorites

    Science.gov (United States)

    McKibbin, Seann; Ireland, Trevor; O'Neill, Hugh; Holden, Peter; Mallmann, Guilherme; Claeys, Philippe

    2016-04-01

    Pallasite meteorites consist of olivine-metal mixtures and accessory minerals (chromite, sulfide, phosphide, phosphate, phosphoran olivine) and represent core-mantle interaction zones in early differentiated planetesimals. They can be linked to five distinct planetesimals, indicating that they are default differentiation products, but their formation modes (deep, shallow, and impact environments) and age are elusive. Using new trace element, Cr isotope, and previously published datasets, we re-interpret some Main-group pallasites (low-MnO and high-FeO subgroups, e.g. Brenham and Springwater types respectively) as samples of core-mantle reaction zones. These meteorites host rounded olivine and near-solidus phosphate minerals, which record back-reaction of metal and silicate reservoirs during decreasing temperature after core formation and removal of primitive silicate melts. These phosphates form via late oxidation of phosphorus, which is siderophile at high temperature but lithophile at low temperature. Mn-Cr dates this event to before ~2.5 to 4 Myr after Solar System formation (range is model-dependent). Importantly, this is in agreement with Hf-W ages for very early metal-silicate (i.e. core-mantle) separation, but also indicates rapid planetesimal cooling within a few million years. Near-solidus silico-phosphate melts probably formed before most known planetesimal crusts (eucrite and angrite meteorites) and are among the earliest evolved planetary silicates. Similar phosphates in non-Main-Group pallasites from other parent bodies also suggest that core-mantle reaction zones are generic, datable features of differentiation. The absence of near-solidus phosphates in common cluster pallasites suggests that these were quenched from high temperature and are mechanical mixtures, rather than samples of genuine core-mantle boundaries.

  6. 森林鼠兔害发生特点及防控措施%Study on the occurrence characteristics of forest pika disaster and its control measures of Mulan Forestry Administration

    Institute of Scientific and Technical Information of China (English)

    马莉

    2015-01-01

    Since the 70’s of the last century , the Mulan Forestry Administration has wit‐nessed the pika hazard occurrence in artificial larch and Pinus tabulae f ormis forest in new plantation from sporadically into widespreadedly ,which endangers both the development of newly planted saplings of L arix gmelinii ,Pinus tabuli f ormis ,Pinus sylvestris ,Picea aspe‐rata plantation and greening seedlings ,affecting the afforestation effect ,reducing the eco‐nomic benefits of greening seedlings .In the practice ,effective prevention and treatments are conducted with the original apple cuts mixed with zinc phosphide ,wheat mixed with broma‐diolone ,seedling trunks smeared with repellent ,baits by dosing protector ,indicating that there is a continuous progress in its prevention and control technology ,and therefore the afforestation achievements have been effectively protected ,and an advanced ,well feasible , and economical prevention and control technology has been established .%自20世纪70年代开始,木兰林区森林鼠兔害由零星发生转化为普遍发生,由危害新造林地幼树发展到危害落叶松、油松、樟子松、云杉幼林地及绿化大苗,影响造林绿化成效,降低绿化大苗经济效益。为防控鼠兔危害,主要采取了苹果切块拌磷化锌、小麦拌溴敌隆、苗干涂抹驱避剂、保护器投药饵等方法,有效地保护了造林成果,在实践中逐渐探索出一条技术先进、生产可行、经济上合算的防治技术措施。

  7. Activation of P{sub 4} by Li[SitBu{sub 3}]. Generation of lithium bis(supersilyl)heptaphosphanortricyclanide Li[P{sub 7}(SitBu{sub 4}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, Inge; Breunig, Jens; Schoedel, Frauke; Bolte, Michael; Lerner, Hans-Wolfram [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Anorganische Chemie

    2016-04-01

    Treatment of P{sub 4} with one equivalent of Li[SitBu{sub 3}] leads to the formation of a number of oligo-phosphanes and -phosphides, e.g. the bicyclo[1.1.0]tetraphosphane P{sub 4}(SitBu{sub 3}){sub 2}, the heptaphosphanortricyclane P{sub 7}(SitBu{sub 3}){sub 3}, the tetraphosphides Li{sub 3}[P(PSitBu{sub 3}){sub 3}] (Li{sub 3}[2a]), and the pentaphosphacyclopentadienide Li[P{sub 5}]. From this reaction we could isolate single crystals of Li{sub 3}[2a]. However, this reaction took another course in the presence of Li[OSitBu{sub 3}]. When P{sub 4} was treated with one equivalent of Li[SitBu{sub 3}] in the presence of Li[OSitBu{sub 3}], the heptaphosphanortricyclanide Li[P{sub 7}(SitBu{sub 3}){sub 2}] (Li[8a]) was formed. Single crystals of the cluster {Li_4(C_6H_6)(OSitBu_3)[8a]_3}.C{sub 6}H{sub 6} (orthorhombic, space group Pca2{sub 1}) were isolated from the reaction mixture at ambient temperature. This cluster compound consists of three chiral Li[P{sub 7}(SitBu{sub 3}){sub 2}] units, one silanolate Li[OSitBu{sub 3}], and one benzene molecule. We further investigated the degradation reaction of the bicyclo[1.1.0]tetraphosphane P{sub 4}(SitBu{sub 3}){sub 2}. After heating a benzene solution to 60 C for 24 h, we found 100 % conversion of P{sub 4}(SitBu{sub 3}){sub 2}, and P{sub 7}(SitBu{sub 3}){sub 3} (monoclinic, space group P2{sub 1}/c) and tBu{sub 3}SiPH{sub 2} were formed.

  8. The material system (AlGaIn)(AsSb). Properties and suitability for GaSb based vertical-resonator laser diodes

    International Nuclear Information System (INIS)

    The present thesis studies the particular properties of GaSb-based materials, where they differ from pure arsenides or phosphides, and also the impact of theses properties on long-wavelength vertical-cavity surface-emitting lasers (VCSELs). The goal is the first realisation of an electrically pumped VCSEL with a current aperture in this material system. After the basics, which are necessary for the understanding of the physical effects, the special features of antimony-containing materials are discussed with a focus on topics like band-structure, doping issues and miscibility gaps, which are relevant for devices. A VCSEL-structure optimized for long-wavelength applications is presented using an appropriate description of the device in its optical, electrical and thermal properties. A focus of this work is on the growth of laser-structures by molecular beam epitaxy. Annealing studies on this material showed a good prediction of the final wavelength after the temperature step, which is necessary due to the overgrowth of the tunnel-junction. The full-width at half maximum of the low-temperature photoluminescence signal shows a very low value of 3.95 meV for the quaternary active region. By using the type-II-band alignment of GaSb:Si and InAsSb:Si a low-resistive tunneljunction has been realised. After completion of the device processing a strong electroluminescence outside the DBR stopband and resonant modes within the stopband were found. A linear shift of the emission wavelength with temperature of 0.23 nm/K between -11 C and +30 C was found. (orig.)

  9. A Quantitative NMR Analysis of Phosphorus in Carbonaceous and Ordinary Chondrites

    Science.gov (United States)

    Pasek, M. A.; Smith, V. D.; Lauretta, D. S.

    2004-01-01

    Phosphorus is important in a number of biochemical molecules, from DNA to ATP. Early life may have depended on meteorites as a primary source of phosphorus as simple dissolution of crustal apatite may not produce the necessary concentration of phosphate. Phosphorus is found in several mineral phases in meteorites. Apatite and other Ca- and Mg phosphate minerals tend to be the dominant phosphorus reservoir in stony meteorites, whereas in more iron-rich or reduced meteorites, the phosphide minerals schreibersite, (Fe, Ni)3P, and perryite, (Ni, Fe)5(Si, P)2 are dominant. However, in CM chondrites that have experienced significant aqueous alteration, phosphorus has been detected in more exotic molecules. A series of phosphonic acids including methyl-, ethyl-, propyl- and butyl- phosphonic acids were observed by GC-MS in Murchison. Phosphorian sulfides are in Murchison and Murray. NMR spectrometry is capable of detecting multiple substances with one experiment, is non-destructive, and potentially quantitative, as discussed below. Despite these advantages, NMR spectrometry is infrequently applied to meteoritic studies due in large part to a lack of applicability to many compounds and the relatively high limit of detection requirements. Carbon-13 solid-state NMR has been applied to macromolecular carbon in Murchison. P-31 NMR has many advantages over aqueous carbon-13 NMR spectrometry. P-31 is the only isotope of phosphorus, and P-31 gives a signal approximately twice as strong as C-13. These two factors together with the relative abundances of carbon and phosphorus imply that phosphorus should give a signal approximately 20 as strong as carbon in a given sample. A discussion on the preparation of the quantitative standard and NMR studies are presented

  10. Microwave-assisted synthesis of carbon supported metal/metal oxide nanocomposites and their application in water purification

    Science.gov (United States)

    Gunawan, Gunawan

    A novel, easy, and cost effective method for synthesizing carbon supported metal/metal oxide nanocomposites has been studied. Carbon supported metal/metal oxide nanocomposites have niche applications in the area of catalysis, fuel cells, electrodes, and more. The method utilizes a commercial microwave and features the addition of a developed graphite-jacket technique with renewable carbon resources, tannin and lignin. The method has been successfully used to synthesize carbon/nickel, carbon/iron oxide, and carbon/nickel phosphide nanocomposites. The method has shown its versatility in the synthesis of carbon nanocomposites. The process is much simpler when compared with the available methods for synthesizing carbon nanocomposites. The synthesized nanocomposites were classified using several characterization techniques, such as electron microscopy, X-ray powder diffraction, surface area analysis, thermogravimetric analysis, and spectrophotometric studies. One application of the carbon nanocomposite is in wastewater remediation. The synthesized carbon/iron oxide nanocomposite was noted as being useful for removing arsenic (As) and phosphorus (P) from contaminated water. The adsorption process of the nanocomposite was critically studied in order to understand the process of removing pollutants from contaminated water. The study shows that the nanocomposites are capable of removing As and P from contaminated water. Kinetic and adsorption isotherm studies were applied to understand the adsorption of As and P onto the adsorbent. Several methods, such as pseudo-first and second order kinetic models, Elovich's equation, and the Weber-Morris intraparticle diffusion model were used to explain the kinetic aspects of the adsorption process. For the adsorption isotherm study, Langmuir and Freundlich isotherm models were applied.

  11. Transmission Electron Microscopy of Iron Metal in Almahata Sitta Ureilite

    Science.gov (United States)

    Mikouchi, T.; Yubuta, K.; Sugiyama, K.; Aoyagi, Y.; Yasuhara, A.; Mihira, T.; Zolensky, M. E.; Goodrich, C. A.

    2013-01-01

    Almahata Sitta (AS) is a polymict breccia mainly composed of variable ureilite lithologies with small amounts of chondritic lithologies [1]. Fe metal is a common accessory phase in ureilites, but our earlier study on Fe metals in one of AS fragments (#44) revealed a unique mineralogy never seen in other ureilites [2,3]. In this abstract we report detailed transmission electron microscopy (TEM) on these metal grains to better understand the thermal history of ureilites. We prepared FIB sections of AS#44 by JEOL JIB-4000 from the PTS that was well characterized by SEM-EBSD in our earlier study [2]. The sections were then observed by STEM (JEOL JEM- 2100F). One of the FIB sections shows a submicron-sized symplectic intergrown texture composed of Fe metal (kamacite), Fe carbide (cohenite), Fe phosphide (schreibersite), and Fe sulfide (troilite). Each phase has an identical SAED pattern in spite of its complex texture, suggesting co-crystallization of all phases. This is probably caused by shock re-melting of pre-existing metal + graphite to form a eutectic-looking texture. The other FIB section is mostly composed of homogeneous Fe metal (93 wt% Fe, 5 wt% Ni, and 2 wt% Si), but BF-STEM images exhibited the presence of elongated lathy grains (approx. 2 microns long) embedded in the interstitial matrix. The SAED patterns from these lath grains could be indexed by alpha-Fe (bcc) while interstitial areas are gamma-Fe (fcc). The elongated alpha-Fe grains show tweed-like structures suggesting martensite transformation. Such a texture can be formed by rapid cooling from high temperature where gamma-Fe was stable. Subsequently alpha-Fe crystallized, but gamma-Fe remained in the interstitial matrix due to quenching from high temperature. This scenario is consistent with very rapid cooling history of ureilites suggested by silicate mineralogy.

  12. Morphological and Strength Properties of Tanjung Bin Coal Ash Mixtures for applied in Geotechnical Engineering Work

    Directory of Open Access Journals (Sweden)

    Abd. Rahim Awang

    2012-01-01

    Full Text Available In Malaysia, coal has been used as a raw material to generate electricity since 1988. In the past, most of the wastage of coal burning especially the bottom ash was not managed properly as it was dumped in the waste pond and accumulated drastically.This paper focuses on some properties of coal ash mixtures (fly  ash and bottom ash mixtures from Tanjung Bin power plant. The characteristics studied were morphological properties, compaction behaviour and strength properties. Strength properties of coal ash mixtures are carried out by conducting direct shear test and unconfined compression test. Besides, morphology and mineralogy of coal ash mixtures are studied using scanning electron microscope (SEM and x-ray diffraction (XRD. The coal ash mixtures were compacted at 95% of maximum dry density, sealed and cured for 0, 14, and 28 days before they were analysed for shear strength, morphological and mineralogical analyses. The shear strength of coal ash mixtures varied depending on the fly ash compositions. The maximum shear strength was obtained at mixture with 50%FA: 50%BA and the value increased with curing periods. The friction angle obtained ranged from 27° to 37°. Morphological analysis showed that the number of irregular shaped particles increased confirming change in material type with curing period. From mineralogical analysis, the crystalline compounds present in Tanjung Bin coal ash were Mullite, Quartz, Calcium Phosphide, Calcite, Cristobalite and Hematite. It can be concluded that the coal ash mixtures can advantageously be applied in the construction of embankments, roads, reclamation and fill behind retaining structures.

  13. TiO{sub 2} as gate oxide on enhancement-mode N-channel sulfur-treated InP MOSFET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K.; Yen, C.F. [National Sun Yat-sen Univ., Taiwan (China). Dept. of Electrical Engineering

    2010-07-01

    This presentation discussed the use of titanium dioxide (TiO{sub 2}) in fuel cells as cathodes and catalysts, with particular reference to the feasibility of using TiO{sub 2} as the gate oxide in a MOSFET to make the integration more compact. An experiment was conducted aimed at fabricating an enhancement-mode n-channel sulfur-treated indium phosphide (InP) MOSFET with liquid phase deposition (LPD)-TiO{sub 2} as gate oxide. The TiO-2 film prepared by LPD on ammonium sulfide treated InP showed good electrical characteristics. The leakage currents can reach 2.1 x 10{sup -7} and 7.4 x 10{sup -7} A/cm{sup 2} at {+-}0.5 MV/cm. The fabricated enhancement-mode n-channel InP MOSFET exhibited the transconductance of 43 mS/mm and the electron field mobility of 348 cm{sup 2}/V s. The transconductance of MOSFET was higher with higher dielectric constant TiO{sub 2} as the gate oxide. Treatment of (NH{sub 4})2Sx prevented InP from oxidizing after cleaning and improved the interface properties of the MOS structure. Amorphous TiO{sub 2} film prepared by LPD can be deposited on InP substrate at near room temperature and can prevent the leakage current from the grain boundaries of polycrystalline structure. In this study, Zn doped p-type InP was used as the substrate. After cleaning and sulfidation, the InP was ready for MOSFET process. An aqueous solution of H{sub 2}TiF{sub 6} was used as the TiO{sub 2} deposition solution. It was concluded that the LPD-TiO2/S-InP capacitor had lower leakage current, higher k value, and lower Dit. 4 refs., 6 figs.

  14. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    KAUST Repository

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  15. Electrophysiological and molecular mechanisms of protection by iron sucrose against phosphine-induced cardiotoxicity: a time course study.

    Science.gov (United States)

    Solgi, Reza; Baghaei, Amir; Golaghaei, Ali; Hasani, Shokoufeh; Baeeri, Maryam; Navaei, Mona; Ostad, Seyyed Nasser; Hosseini, Rohollah; Abdollahi, Mohammad

    2015-01-01

    The present study was designed for determining the exact mechanism of cytotoxic action of aluminum phosphide (AlP) in the presence of iron sucrose as the proposed antidote. Rats received AlP (12 mg/kg) and iron sucrose (5-30 mg/kg) in various sets and were connected to cardiovascular monitoring device. After identification of optimum doses of AlP and iron sucrose, rats taken in 18 groups received AlP (6 mg/kg) and iron sucrose (10 mg/kg), treated at six different time points, and then their hearts were surgically removed and used for evaluating a series of mitochondrial parameters, including cell lipid peroxidation, antioxidant power, mitochondrial complex activity, ADP/ATP ratio and process of apoptosis. ECG changes of AlP poisoning, including QRS, QT, P-R, ST, BP and HR were ameliorated by iron sucrose (10 mg/kg) treatment. AlP initiated its toxicity in the heart mitochondria through reducing mitochondrial complexes (II, IV and V), which was followed by increasing lipid peroxidation and the ADP/ATP ratio and declining mitochondrial membrane integrity that ultimately resulted in cell death. AlP in acute exposure (6 mg/kg) resulted in an increase in hydroxyl radicals and lipid peroxidation in a time-dependent fashion, suggesting an interaction of delivering electrons of phosphine with mitochondrial respiratory chain and oxidative stress. Iron sucrose, as an electron receiver, can compete with mitochondrial respiratory chain complexes and divert electrons to another pathway. The present findings supported the idea that iron sucrose could normalize the activity of mitochondrial electron transfer chain and cellular ATP level as vital factors for cell escaping from AlP poisoning. PMID:25906050

  16. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  17. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    International Nuclear Information System (INIS)

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and

  18. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing

  19. The Radiometer Atmospheric Cubesat Experiment Post-Launch Results

    Science.gov (United States)

    Lim, B.; Misra, S.

    2015-12-01

    The Jet Propulsion Laboratory (JPL) developed the Radiometer Atmospheric CubeSat Experiment (RACE) that was lost during the Orbital 3 (Orb-3) launch anomaly on October 28, 2014. The 3U CubeSat mission would have measured 2 channels of the 183 GHz water vapor line and raised the technology readiness level (TRL) of various subsystems to 6. Despite the launch failure, several hundreds of hours of instrument operation data was taken, including measurements in thermal vacuum of the complete spacecraft system. These data is used to evaluate the 35 nm Indium Phosphide (InP) receivers, and the low noise amplifier (LNA) based internal calibration system. The thermal vacuum measurements included frequent observations of a 'cold' and 'hot' target allowing for various receiver parameters to be calculated. The payload thermal vacuum data show that the receiver front ends performed as expected in terms of the gain (>35 dB) and drift (0.06 dB/K). The data also shows that integration could be performed with decreasing noise up to ~30 seconds, allowing for the system to be calibrated within that time period. The expected spacecraft calibration period would have been every 12 seconds. The injected noise from the load terminated LNA show magnitudes from 50 - 150 K that can be tuned which would meet most requirements. However the temperature coefficient is large at ~3 K/K which is over an order of magnitude larger than typical noise diodes. For nanosatellite class spacecraft, the power required to properly maintain the physical temperature range (±0.1K) would be challenging. On larger spacecraft, this methodology may still be viable, depending on the availability of suitable noise diodes at 183 GHz. While the CubeSat did not take measurements in space, the ground data in the relevant environment and extensive testing allows us to raise the following subsystems to TRL 6: 1) 183 GHz 35 nm InP receiver, 2) 183 GHz direct detect receiver and 3) 183 GHz LNA based calibration system.

  20. Fabrication and characterization of integrated nanostructures & their applications to nanophotonics

    Science.gov (United States)

    Shukla, Shobha

    Current developments in optical devices are being directed toward nanocrystals based devices, where photons are manipulated using nanoscale optical phenomenon. Nanochemistry is a powerful tool for making nanostructures based on such nanocrystals. In this dissertation, various applications such as photodetectors/photovoltaics, photonic crystals and plasmonic applications involving nanoparticles and organic: inorganic hybrid systems have been investigated. The hall marks of quantum dots are well defined excitonic absorption and sharp emission profiles and their unique behavior comprises intense and immune to photobleaching luminescence, photon upconversion, slow exciton relaxation, multiexciton generation due to impact ionization, enhanced lasing, etc. Various quantum dots such as Indium Phosphide (InP), Cadmium Sulphide (CdS), Cadmium Selenide (CdSe), InP-CdS type-II core-shell, Lead Sulphide (PbS), Lead Selenide (PbSe) etc. have been prepared via hot colloidal synthesis and have been extensively characterized spectroscopically as well as structurally. These quantum dots were utilized for making solution processed organic: inorganic hybrid photodevices. Photodetecting device with enhanced efficiency has been fabricated using physical blend of PbSe and carbon nanotubes. Type-II quantum dots (InP-CdS) were also utilized for making solar cells and their efficiency was found to be much more than their parent quantum dots (InP and CdS). Photonic composite materials, such as polymers doped with nanoparticles, have attracted a great deal of attention because of relative ease and flexibility of their engineering as well as improved performance for applications in photonic or optoelectronic devices. 2D Photonic Crystals of enhanced structural and optical properties were fabricated by doping small amount of colloidal gold nanoparticles and patterned via multi-beam interference lithography. Spontaneous emission of quantum rods doped in such photonic crystal was controlled by

  1. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  2. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  3. P-O-rich sulfide phase in CM chondrites: Constraints on its origin on the CM parent body

    Science.gov (United States)

    Zhang, Ai-Cheng; Itoh, Shoichi; Yurimoto, Hisayoshi; Hsu, Wei-Biao; Wang, Ru-Cheng; Taylor, Lawrence A.

    2016-01-01

    CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P-O-rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P-O-rich sulfide is a polycrystalline aggregate of nanometer-size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type-I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca-carbonate are much less altered. This P-O-rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of -22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron-diffraction patterns imply that the P-O-rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P-O-rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low-temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type-I chondrules and absence in type-II chondrules. The textural relations of the P-O-rich sulfide and other low-temperature minerals reveal at least three episodic-alteration events on the parent body of CM chondrites (1) formation of P-O-rich sulfide during sulfur-rich aqueous alteration of P-rich FeNi metal, (2) formation of Ca-carbonate during local carbonation, and (3) alteration of P-O-rich sulfide and formation of tochilinite during a period of late-stage intensive aqueous alteration.

  4. Ultrafast Carrier Dynamics Measured by the Transient Change in the Reflectance of InP and GaAs Film

    Energy Technology Data Exchange (ETDEWEB)

    John Klopf

    2005-10-31

    Advancements in microfabrication techniques and thin film growth have led to complex integrated photonic devices, also known as optoelectronics. The performance of these devices relies upon precise control of the band gap and optical characteristics of the thin film structures, as well as a fundamental understanding of the photoexcited carrier thermalization, relaxation, and recombination processes. An optical pump-probe technique has been developed to measure the transient behavior of these processes on a sub-picosecond timescale. This method relies upon the generation of hot carriers by theabsorption of an intense ultrashort laser pulse (~ 135 fs). The transient changes in reflectance due to the pump pulse excitation are monitored using a weaker probe pulse. Control of the relative time delay between the pump and probe pulses allows for temporal measurements with resolution limited only by the pulse width. The transient change in reflectance is the result of a transient change in the carrier distribution. Observation of the reflectance response of indium phosphide (InP) and gallium arsenide (GaAs) films on a sub-picosecond timescale allows for detailed examination of thermalization and relaxation processes of the excited carriers. Longer timescales (> 100 ps) are useful for correlating the transient reflectance response to slower processes such as the diffusion and recombination of the photoexcited carriers. This research investigates the transient hot carrier processes in several InP and GaAs based films similar to those commonly used in optoelectronics. This technique is especially important as it provides a non-destructive means of evaluating these materials; whereas much of the research performed in this field has relied upon the measurement of transient changes in the transmission of transparent films. The process of preparing films that are transparent renders them unusable in functioning devices. This research should not only extend the understanding of

  5. 670-GHz Down- and Up-Converting HEMT-Based Mixers

    Science.gov (United States)

    Schlecht, Enrich T.; Chattopadhyay, Goutam; Lin, Robert H.; Sin, Seth; Deal, William; Rodriquez, Bryan; Bayuk, Brian; Leong, Kevin; Mei, Gerry

    2012-01-01

    A large category of scientific investigation takes advantage of the interactions of signals in the frequency range from 300 to 1,000 GHz and higher. This includes astronomy and atmospheric science, where spectral observations in this frequency range give information about molecular abundances, pressures, and temperatures of small-sized molecules such as water. Additionally, there is a minimum in the atmospheric absorption at around 670 GHz that makes this frequency useful for terrestrial imaging, radar, and possibly communications purposes. This is because 670 GHz is a good compromise for imaging and radar applications between spatial resolution (for a given antenna size) that favors higher frequencies, and atmospheric losses that favor lower frequencies. A similar trade-off applies to communications link budgets: higher frequencies allow smaller antennas, but incur a higher loss. All of these applications usually require converting the RF (radio frequency) signal at 670 GHz to a lower IF (intermediate frequency) for processing. Further, transmitting for communication and radar generally requires up-conversion from IF to the RF. The current state-of-the-art device for performing the frequency conversion is based on Schottky diode mixers for both up and down conversion in this frequency range for room-temperature operation. Devices that can operate at room temperature are generally required for terrestrial, military, and planetary applications that cannot tolerate the mass, bulk, and power consumption of cryogenic cooling. The technology has recently advanced to the point that amplifiers in the region up to nearly 1,000 GHz are feasible. Almost all of these have been based on indium phosphide pseudomorphic high-electron mobility transistors (pHEMTs), in the form of monolithic microwave integrated circuits (MMICs). Since the processing of HEMT amplifiers is quite differ en t from that of Schottky diodes, use of Schottky mixers requires separate MMICs for the mixers

  6. Photonic Crystal Microcavities for Quantum Information Science

    Science.gov (United States)

    Hagemeier, Jenna Nicole

    Quantum information science and technology is a broad and fascinating field, encompassing diverse research areas such as materials science, atomic physics, superconductors, solid-state physics, and photonics. A goal of this field is to demonstrate the basic functions of information initialization, manipulation, and read-out in systems that take advantage of quantum physics to greatly enhance computing performance capabilities. In a hybrid quantum information network, different systems are used to perform different functions, to best exploit the advantageous properties of each system. For example, matter quantum bits (qubits) can be used for local data storage and manipulation while photonic qubits can be used for long-distance communication between storage points of the network. Our research focuses on the following two solid-state realizations of a matter qubit for the purpose of building such a hybrid quantum network: the electronic spin of a self-assembled indium arsenide quantum dot and the electronic spin of a nitrogen-vacancy defect center in diamond. Light--matter interactions are necessary to transfer the information from the matter qubit to the photonic qubit, and this interaction can be enhanced by embedding the spin system in an optical cavity. We focus on photonic crystal microcavities for this purpose, and we study interactions between the optical cavity modes and incorporated spin systems. To improve the performance of this spin--photon interface, it is important to maximize the coupling strength between the spin and photonic systems and to increase the read-out efficiency of information stored in the cavity. In this thesis, we present our work to deterministically couple a nitrogen-vacancy center in diamond to a photonic crystal microcavity in gallium phosphide. This is achieved by nanopositioning a pre-selected diamond nanocrystal in the intensity maximum of the optical cavity mode. We also present an optimized design of a photonic crystal

  7. Electroless ternary NiCeP coatings: Preparation and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Balaraju, J.N., E-mail: jnbalraj@nal.res.in [Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779 Bangalore 560017, Karnataka (India); Chembath, Manju [Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779 Bangalore 560017, Karnataka (India)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Rare earth element (Ce) has been successfully codeposited in NiP matrix. Black-Right-Pointing-Pointer Surface analysis carried out by XPS showed that the Ce is present in +3 and +4 oxidation state. Black-Right-Pointing-Pointer Palladium stability test indicated that the Ce salts in electroless nickel bath has reduced the stability. Black-Right-Pointing-Pointer Cerium codeposition in NiP matrix has increased the microhardness both in as-plated and annealed conditions. Black-Right-Pointing-Pointer Higher thermal stability has been obtained by Ce incorporation. - Abstract: Electroless ternary NiCeP deposits were prepared from alkaline citrate bath containing nickel sulphate, cerium chloride and sodium hypophosphite. Concentration of rare earth cerium was varied from 1 to 2 g/L to obtain ternary deposits containing variable Ce and P contents. The influence of cerium on the deposit properties was analysed. The deposit exhibited a maximum cerium content of 6.2 {+-} 0.1 wt.% when the cerium chloride concentration was 2 g/L. The result of the Pd stability test showed that the stability of the bath was reduced due to Ce salt addition. The microhardness measurements made on both as-plated and heat treated samples exhibited a peak hardness of 1006 {+-} 11 VHN for cerium concentration of 1.5 g/L. The concept of kinetic strength analysis was proved to be applicable only for binary and not for ternary alloys due to multistep deposition mechanism with different kinetic energies. X-ray diffraction (XRD) patterns of as-plated and heat treated samples revealed peaks corresponding to Ni (1 1 1) and nickel phosphide (Ni{sub 3}P). Higher amount of Ce incorporation in NiP matrix increased the crystallisation temperature of the deposit which could be due to the suppression of nickel crystallisation prior to Ni{sub 3}P compound formation and thus increasing the activation energy for the formation of stable phases. Surface compositional analysis

  8. Development of inexpensive optical broad- and narrow-band sensors for ecosystem research

    Science.gov (United States)

    Mollenhauer, Hannes; Cuntz, Thomas; Bumberger, Jan

    2014-05-01

    absorption. The resulting spectral signature then differs from usual reflectance patterns and can be used as stress indicator. Hence, reflectances between 550-700 nm are extremely sensitive regarding changing Chlorophyll contents. Both kinds of sensors based on semiconductor technologies whereby the material input can kept on low level. This work presents the development and testing of a practical, rugged, and inexpensive PAR and hyperspectral sensor. The sensors were made from a gallium arsenide phosphide (GaAsP) photodiodes and silicon photodiodes with different interference filters. First results of recorded long term in-situ data and linear regressions (in comparison to commercial products) show extremely high performances (coefficient of determination higher than 0.99) of the PAR sensors simultaneous to the cost cutting.

  9. CHANGES IN LIVER IN CASE OF INSECTICIDAL AND ALCOHOL POISONING: AN AUTOPSY STUDY

    Directory of Open Access Journals (Sweden)

    Subhasish

    2015-03-01

    Full Text Available Poison is a substance introduced in the body to produce ill - effect, disease or death. It may be of any origin like synthetic, mineral, animal or vegetable. Death due to poisoning is mostly prevalent in the developing countries, of the total burden of acute pesticide poisoning; the majority of deaths are from deliberate self - poisoning with organophosphorus pesticides, aluminium phosphide and paraquat. Exposure to pesticides is usually occupational, accidental or suicidal. In India very few research works hav e been undertaken on histopathological changes of liver in different poisoning. In this part of our country a sizable number of cases of poisoning due to insecticides & alcohol are reported. So this current study intends to find out different histopatholog ical changes of liver in insecticidal & alcohol poisoning with regards to time interval between poisoning and death. In our 1 year (November 2012 - October 2013 of study we got 143 victims who died due to insecticidal and alcohol poisoning, out of which 132 cases show significant histopathological changes in liver. In this study male subjects (60.83% outnumber female (39.17% victims and most common age group affected in this study is between 20 - 40 years. This study show 29.37% victims died due to organopho sphorus poisoning, 25.17% cases of organochlorine poisoning, 11.88% study subjects from carbamate poisoning, 18.88% cases died due to combined alcohol and insecticidal poisoning, and 14.68% victims died due to alcohol poisoning. On microscopically 25.87% o f cases show centrilobular necrosis(CN, sinusoidal dilatation(SD found in 22.37%, fatty changes(FC in 11.88%, both venous congestion(VC, combined sinusoidal dilatation and degenerative change in 1.39% of cases, each 2.09% of cases show degenerative cha nge(DC , centrilobular necrosis and venous congestion , and sinusoidal dilatation and venous congestion respectively, each 3.49% show combined centrilobular necrosis and sinusoidal

  10. Thermodynamic evaluation of Cu-H-O-S-P system - Phase stabilities and solubilities for OFP-copper

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Hans; Frisk, Karin [Swerea KIMAB, Kista (Sweden)

    2013-04-15

    A thermodynamic evaluation for Cu-H-O-S-P has been made, with special focus on the phase stabilities and solubilities for OFP-copper. All binary systems including copper have been reviewed. Gaseous species and stoichiometric crystalline phases have been included for higher systems. Sulphur in OFP-copper will be found in sulphides. The sulphide can take different morphologies but constant stoichiometry Cu{sub 2}S. The solubility of sulphur in FCC-copper reaches ppm levels already at 550 deg C and decreases with lower temperature. No phosphorus-sulphide will be stable, although the copper sulphide can be replaced by copper sulphates at high partial pressure oxygen like in the oxide scale. Phosphorus has a high affinity to oxygen, and phosphorus oxide P{sub 4}O{sub 10} and copper phosphates (Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(PO{sub 4}){sub 2}) are all more stable than copper oxide Cu{sub 2}O. With hydrogen present at atmospheric pressure, copper phosphates Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(P{sub 2}O{sub 6}OH){sub 2} are both more stable than water vapour or aqueous water at temperatures below 400 deg C. At high pressure conditions, the copper phosphates can be reduced giving water. However, the phosphates are still more stable than water vapour. The solubility limit of phosphorus in FCC-copper at 25 deg C is 510 ppm, in equilibrium with copper phosphide Cu{sub 3}P. The major part of phosphorus in OFP-copper will be in solid solution. Oxygen in FCC-copper has a very low solubility. In the presence of a strong oxide forming element such as phosphorus in OFP-copper, the solubility decreases even more. Copper oxides will become stable first when all phosphorus has been consumed, which takes place at twice the phosphorus content, calculated in weight. Hydrogen has a low solubility in copper, calculated as 0.1 ppm at 675 deg C. No crystalline hydrogen phase has been found stable at atmospheric pressures and above 400 deg C. At lower temperatures the hydrogen

  11. Functional fusion of living systems with synthetic electrode interfaces.

    Science.gov (United States)

    Staufer, Oskar; Weber, Sebastian; Bengtson, C Peter; Bading, Hilmar; Spatz, Joachim P; Rustom, Amin

    2016-01-01

    The functional fusion of "living" biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries "perfected" during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events

  12. Functional fusion of living systems with synthetic electrode interfaces.

    Science.gov (United States)

    Staufer, Oskar; Weber, Sebastian; Bengtson, C Peter; Bading, Hilmar; Spatz, Joachim P; Rustom, Amin

    2016-01-01

    The functional fusion of "living" biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries "perfected" during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events

  13. Progress on Electrocatalysts of Hydrogen Evolution Reaction Based on Carbon Fiber Materials%基于碳纤维材料基底的电解水制氢催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    佟珊珊; 王雪靖; 李庆川; 韩晓军

    2016-01-01

    Hydrogen evolution from water electrolysis is one of the effective ways to obtain clean hydrogen energy in the future. Pt-based materials are the efficient catalysts in hydrogen evolution reaction, but it is expensive, difficult to recycle, which impedes its application in the development of hydrogen energy and economy. Therefore, it is the key trend to develop efficient non-noble metal electrocatalysts with the aim of providing cost-competitive hydrogen energy. In this review, we highlighted the recent research efforts toward the synthesis of noble metal-free electrocatalysts for the hydrogen evolution reaction ( HER) , mainly focusing on nanomaterial catalysts supported on carbon fiber materials. We reviewed several important kinds of heterogeneous non-noble metal electrocatalysts, including sulfides, selenides, carbides, phosphides, and oxides. In the discussion, emphasis was given to the synthetic methods of these HER electrocatalysts, and the strategies for performance improvement. In addition, this paper also briefly summarized the application of carbon fiber material as substrate in the field of electroanalytical chemistry.%电解水制氢技术是未来获得清洁氢能源的有效途径之一。铂作为高效的电解水制氢催化剂,由于其价格昂贵,难以回收,不利于氢能源与氢经济的发展,因此发展高效的非贵金属电催化剂,使电解水制氢过程更加高效、经济化是十分关键的科学问题。本文综述了近年来电解水制氢催化剂的研究进展,重点集中在以碳纤维材料为基底的非贵金属催化剂领域。总结了几类重要的多相异质非贵金属催化剂,包括磷化物、硫化物、硒化物、碳化物、氧化物催化剂等,重点探讨了各种析氢催化剂的合成方法和性能提高策略。同时,本文也简要概述了碳纤维基底材料在电分析化学检测方面的应用研究。

  14. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen Martin; Tucker, Garritt J. (Drexel University)

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers

  15. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F. [Stanford Univ., CA (United States). Dept. of Chemical Engineering. Shriram Center

    2016-04-20

    In this project, we have employed a systematic approach to develop active, selective, and stable catalyst materials for important electrochemical reactions involving energy conversion. In particular, we have focused our attention on developing active catalyst materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). HER: We have synthesized and investigated several highly active and acid stable non-precious metal HER catalysts, including: [Mo3S13]2- nanoclusters (Nature Chemistry, 2014) and molybdenum phosphosulfide (MoP|S) (Angewandte Chemie, 2014). We have also aimed to engineer these catalyst formulations in a membrane electrode assembly (MEA) for fundamental studies of water electrolysis at high current densities, approximately 1 A/cm2 (ChemSusChem, 2015). We furthermore investigated transition metal phosphide (TMP) catalysts for HER by a combined experimental–theoretical approach (Energy & Environmental Science, 2015). By synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔGH, calculated by density functional theory, we showed that the TMPs follow a volcano relationship for the HER. Using our combined experimental–theoretical model, we predicted that the mixed metal TMP, Fe0.5Co0.5P, should have a near-optimal ΔGH. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe0.5Co0.5P exhibits the highest HER activity of the investigated TMPs (Energy & Environmental Science, 2015). The understanding gained as to how to improve catalytic activity for the HER, particularly for non-precious metal materials, is important to DOE targets for sustainable H2 production. OER: We have developed a SrIrO3/IrOx catalyst for acidic conditions (submitted, 2016). The Sr

  16. Influence of ingaalp laser (660nm on the healing of skin wounds in diabetic rats Influência do laser ingaalp (660nm na cicatrização de feridas cutâneas em ratos diabéticos

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Camillo de Carvalho

    2010-02-01

    Full Text Available PURPOSE: To determine the influence of low-power laser (660 nm on the collagen percentage and macrophages in skin wounds in diabetic rats. METHODS: 30 male Wistar rats were used, distributed in two groups: laser treated diabetic (n= 15; untreated diabetic (n = 15. The diabetes was induced by intravenous injection of alloxan into the dorsal vein of the penis, at a rate of 0.1 ml of solution per 100 g of body weight. A wound was made on the back of all the animals. Groups 2 were treated with Aluminium Gallium Indium Phosphide - InGaAlP type diode laser (Photon Laser III DMC® with a continuous output power of 100 mW and wavelength (? of 660 nm (4 J/cm² for 24 s. five animal from each group was sacrificed on the 3rd, 7th and 14th days after wounding. Samples were taken, embedded in paraffin, stained with hematoxylin-eosin, Masson's trichrome, and immunohistochemical macrophage. morphometrically analyzed using the Image Pro Plus 4.5 software. The percentages of collagen fibers and macrophages were determined from the samples from the euthanasia animals. RESULTS: The data were treated statistically using analysis of variance (ANOVA and the Post-hocTukey test. The significance level was set at 0.05 or 5%. CONCLUSION: The low-power laser (660 nm was shown to be capable of influencing the collagen percentage in skin wounds by increasing the mean quantity of collagen fibers and macrophages.OBJETIVO: Determinar a influência do diodo laser InGaAlP (660 nm sobre o percentual de colágeno e macrófagos em feridas cutâneas de ratos diabéticos. MÉTODOS: Para tanto 30 ratos machos Wistar foram distribuídos em dois grupos: diabético tratado com laser (n=15, diabético não tratado (n = 15. O diabetes foi induzido por injeção intravenosa de aloxana na veia dorsal do pênis, a uma taxa de 0,1 ml de solução por 100 g de peso corporal. A lesão foi confeccionada no dorso de todos os animais utilizando um punch de 8mm. 2 grupos foram tratados com o diodo

  17. Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Thorsten [Uppsala Univ. (Sweden)

    2004-01-01

    In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 μm thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm

  18. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  19. 阿拉山口口岸灭鼠效果回顾性分析及鼠情反弹监控的探讨%Retrospective analysis of the rodenticidal effect and rodent infestation monitoring at Alataw Pass

    Institute of Scientific and Technical Information of China (English)

    尹小平; 叶志辉; 彭定希; 骄娃; 刘文平; 阿布都·扎伊尔

    2011-01-01

    目的 总结、评价灭鼠效果、经验和教训,为持续巩固灭鼠成果及鼠情反弹监控提供科学依据.方法 自2005年开始,在口岸城区、郊区及野外阳性点区连续5年的灭鼠、灭蚤,在城区用溴敌隆毒饵,在郊区和野外用人工捕获法、堵洞、投磷化铝和建立砖制溴敌隆毒饵站隔离防护带;将5年前、5年间和5年灭鼠后的鼠情监测结果对比分析.结果 2009年在口岸城区鼠形动物密度由5年前的9.0%降至0.2%,褐家鼠密度由20.0%降至0,染蚤率由93.3%降为0,印鼠客蚤指数由16.27降为0,原有的优势鼠种及媒介印鼠客蚤现已消退,鼠形动物密度是口岸开放20年以来的最低;在郊区灭鼠区鼠形动物密度由6.0%下降到3.0%,野外阳性点大沙鼠密度也由原来的9.0只/hm2下降到2.3只/hm2.结论 当前口岸灭鼠措施、技术和药物有效,消除了口岸鼠疫疫情发生的潜在风险;为巩固成果、监控鼠情反弹隐患,探讨了创建口岸鼠防安全五道防线屏障建设.%Objective To collect data on from previous practices for sustainable rodent control and monitoring of potential rodent infestation.Methods Rodent and flea control measures were implemented for five consecutive years in urban, rural and wild locations since 2005.Bromadiolone baits were deployed in urban areas and the pests were manually captured, holes blocked,aluminium phosphide applied and isolation belts made up of bromadiolone bait sentinels built in the suburb and field areas.Rodent infestation monitoring results before, during and after the five-year control period were compared.Results The rodent density in the urban area dropped to 0.2% in 2009 from 9.0% five years ago, the Rattus norvegicus density to 0 from 20.0%, the flea infestation rate to 0 from 93.3%, and the index of Xenopsylla cheopis to 0 from 16.27.The previously dominant species disappeared including the vector Xe.cheopis.The rodent density hit a record low this year

  20. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita

    2004-11-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  1. Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Thorsten

    2004-11-01

    In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 {micro}m thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm

  2. Oxygen Isotope Signatures of UV Oxidation of Phosphite: Implications for a Biomarker in the Search for Life

    Science.gov (United States)

    Chang, S.; Blake, R.

    2013-12-01

    On the present Earth, phosphorus (P) occurs primarily in fully-oxidized form (P5+) as orthophosphate (PO4), and PO4 derived from igneous apatite minerals is considered as the primary source of P for prebiotic reactions and evolution of first life. Recent discoveries have shown, however, that abundant P compounds with valence aqueous weathering of phosphides in meteorites(1) and of fulgurites formed by lightning strikes or high-energy impacts(2). These studies concluded that PO3 was likely abundant on the oxygen-free early Earth and extraterrestrial environments, and was possibly the first form of biologically-available P, due to its greater solubility and reactivity relative to PO4 and apatite(1). These findings suggest alternative prebiotic P reservoirs to igneous apatite that would also likely have very different prebiotic/baseline PO4 δ18O values. Here we report results of experimental studies to determine the O-isotope signature of PO4 derived from PO3 oxidation catalyzed by ultraviolet (UV) radiation, which was not blocked on early Earth due to lack of an ozone layer(3). These studies are critical for interpretation of PO4 δ18O biosignatures preserved in ancient terrestrial and extraterrestrial samples. Experiments on UV-catalyzed oxidation of aqueous PO3 to PO4 were conducted using δ18O-labled PO3 and different δ18O-labled waters to gain information on (i) the source(s) of O involved and mechanism of oxidation of PO3 to PO4, and (ii) fractionations accompanying O incorporation into product PO4. Our preliminary results under modern atmospheric conditions indicate incorporation of ca. 15 % O from ambient water and ca. 10 % atmospheric O (δ18O: ~23.5 ‰) into product PO4 with a fractionation between incorporated water O and ambient water O of -20 × 4 ‰ (1 SD), assuming 75 % inheritance of O from PO3 and direct incorporation of atmospheric O into product PO4 without fractionation. If initial δ18O values of PO3 sources were the same as igneous apatite (6

  3. Segregation of antimony in InP in MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  4. Environmental and health benefits of adopting food irradiation technology

    International Nuclear Information System (INIS)

    World is largely dependent on low temperature and fumigation methods for conserving its food and managing supply chains from farm to fork. Maintaining low temperature is energy intensive, and therefore, an expensive exercise, with some impact on environment. On the other hand, fumigation is a cheap method, but hugely detrimental to the environment and human health. Applications of food irradiation technology are well known. However, the technology is yet to be fully exploited commercially. This is probably because of insufficient policy backing at the global level. An analysis of the applications of food irradiation reveals that the technology can help reduce process related impact on the environment, and mitigate consumption related risks to human health. Despite the planned phase out by 2015, fumigation is still a common practice in a large part of the world, including India. Huge buffer stocks of grain are fumigated at regular intervals round the year to keep them free from insect infestation. Besides, for managing regular stocks and supply chains, both for domestic consumption as well as in international trade, fumigants like methyl bromide, ethylene dibromide, ethylene oxide, and phosphides are regularly used for disinfestation and microbial decontamination of cereals, pulses, and their products, and commodities like spices and dehydrated vegetables. This whopping use of fumigants can be drastically reduced by adopting food irradiation technology as a safe and dependable alternative. For fresh fruits and vegetables, radiation technology can delay physiological changes like ripening, senescence, and inhibit sprouting. Besides achieving the technological objective, radiation treatment allows storage of many of these commodities at a temperature about ten degree higher than the normal recommended. Many of the commodities like meat and seafood, and their products, that are normally stored frozen, can be stored under chilled storage after radiation processing

  5. Heterogeneous Integration for Reduced Phase Noise and Improved Reliability of Semiconductor Lasers

    Science.gov (United States)

    Srinivasan, Sudharsanan

    Significant savings in cost, power and space are possible in existing optical data transmission networks, sensors and metrology equipment through photonic integration. Photonic integration can be broadly classified into two categories, hybrid and monolithic integration. The former involves assembling multiple single functionality optical devices together into a single package including any optical coupling and/or electronic connections. On the other hand monolithic integration assembles many devices or optical functionalities on a single chip so that all the optical connections are on chip and require no external alignment. This provides a substantial improvement in reliability and simplifies testing. Monolithic integration has been demonstrated on both indium phosphide (InP) and silicon (Si) substrates. Integration on larger 300mm Si substrates can further bring down the cost and has been a major area of research in recent years. Furthermore, with increasing interest from industry, the hybrid silicon platform is emerging as a new technology for integrating various active and passive optical elements on a single chip. This is both in the interest of bringing down manufacturing cost through scaling along with continued improvement in performance and to produce multi-functional photonic integrated circuits (PIC). The goal of this work is twofold. First, we show four laser demonstrations that use the hybrid silicon platform to lower phase noise due to spontaneous emission, based on the following two techniques, viz. confinement factor reduction and negative optical feedback. The first two demonstrations are of mode-locked lasers and the next two are of tunable lasers. Some of the key results include; (a) 14dB white frequency noise reduction of a 20GHz radio-frequency (RF) signal from a harmonically mode-locked long cavity laser with greater than 55dB supermode noise suppression, (b) 8dB white frequency noise reduction from a colliding pulse mode-locked laser by

  6. Materials growth and characterization of thermoelectric and resistive switching devices

    Science.gov (United States)

    Norris, Kate J.

    erbium monoantimonide (ErSb) thin films with thermal conductivities close to or slightly smaller than the alloy limit of the two ternary alloy hosts. Second we consider an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer, a concept for thermoelectric devices to scatter phonons. Thirdly we begin our discussion of nanowires with the selective area growth (SAG) of single crystalline indium phosphide (InP) nanopillars on an array of template segments composed of a stack of gold and amorphous silicon. Our approach enables flexible and scalable nanofabrication using industrially proven tools and a wide range of semiconductors on various non-semiconductor substrates. Then we examine the use of graphene to promote the growth of nanowire networks on flexible copper foil leading to the testing of nanowire network devices for thermoelectric applications and the concept of multi-stage devices. We present the ability to tailor current-voltage characteristics to fit a desired application of thermoelectric devices by using nanowire networks as building blocks that can be stacked vertically or laterally. Furthermore, in the study of our flexible nanowire network multi-stage devices, we discovered the presence of nonlinear current-voltage characteristics and discuss how this feature could be utilized to increase efficiency for thermoelectric devices. This work indicates that with sufficient volume and optimized doping, flexible nanowire networks could be a low cost semiconductor solution to our wasted heat challenge. Resistive switching devices are two terminal electrical resistance switches that retain a state of internal resistance based on the history of applied voltage and current. The occurrence of reversible resistance switching has been widely studied in a variety of material systems for applications including nonvolatile memory, logic circuits, and

  7. Theoretical Studies in Heterogenous Catalysis: Towards a Rational Design of Novel Catalysts for Hydrodesulfurization and Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez,J.A.; Liu, P.

    2008-10-01

    important advantage of the cluster approach is that one can use the whole spectrum of quantum-chemical methods developed for small molecules with relatively minor modifications. On the other hand, the numerical effort involved in cluster calculations increases rather quickly with the size of the cluster. This problem does not exist when using slab models. Due to the explicit incorporation of the periodicity of the crystal lattice through the Bloch theorem, the actual dimension of a slab calculation depends only on the size of the unit cell. In practical terms, the slab approach is mainly useful for investigating the behavior of adsorbates at medium and high coverages. Very large unit cells are required at the limit of low to zero coverage, or when examining the properties and chemical behavior of isolated defect sites in a surface. In these cases, from a computational viewpoint, the cluster approach can be much more cost effective than the slab approach. Slab and cluster calculations can be performed at different levels of sophistication: semi-empirical methods, simple ab initio Hartree-Fock, ab initio post-Hartree-Fock (CI, MP2, etc), and density functional theory. Density-functional (DF) based calculations frequently give adsorption geometries with a high degree of accuracy and predict reliable trends for the energetics of adsorption reactions. This article provides a review of recent theoretical studies that deal with the behavior of novel catalysts used for hydrodesulfurization (HDS) reactions and the production of hydrogen (i.e. catalytic processes employed in the generation of clean fuels). These studies involve a strong coupling of theory and experiment. A significant fraction of the review is focused on the importance of size-effects and correlations between the electronic and chemical properties of catalytic materials. The article begins with a discussion of results for the desulfurization of thiophene on metal carbides and phosphides, systems which have the

  8. EDITORIAL: Quantum science and technology at the nanoscale Quantum science and technology at the nanoscale

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    correlated, and how they influence spin currents and their fluctuations, as well as the mechanisms behind current-induced spin polarizations in chaotic ballistic systems. In a theoretical report on current-induced spin polarization from the University of Arizona, progress is made in filling in some of these gaps, and a 'spin-probe' model is proposed [5]. Spin is also an important element in quantum information research. With electron spin coherence lifetimes exceeding 1 ms at room temperature, as well as the added benefit of being optically addressable, nitrogen-vacancy defects in diamond have been identified as having considerable potential for quantum information applications. Now researchers in the US describe the fabrication and low-temperature characterization of silica microdisk cavities coupled to diamond nanoparticles, and present theoretical and experimental studies of gallium phosphide structures coupled to nitrogen-vacancy centers in bulk diamond [6]. Double quantum dots have been considered as prospective candidates for charge qubits for quantum information processors. The application of a bias voltage can be used to control tunnelling between the double quantum dots, allowing the energy states to be tuned. Researchers in Switzerland investigate experimentally the effect of ohmic heating of the phonon bath on decoherence, and find that the system can be considered as a thermoelectric generator [7]. This progress has only been made possible by advances in our understanding of the fundamental science behind quantum mechanics, and work exploring this territory is still a hotbed of activity and progress. Increasingly sophisticated tools, both numerical and experimental, have facilitated engagement with quantum phenomena in nanoscale systems. Molecular spin clusters represent an ideal setting within solid-state systems to test concepts in quantum mechanics, as highlighted in this issue by researchers in Italy, who report their work on controlling entanglement between

  9. Annual Report: Fuels (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Link, Dirk [NETL; Morreale, Bryan [NETL

    2012-09-30

    The thermochemical conversion of fossil fuels through gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feeds (coal, biomass, natural gas, municipal waste, etc.) and to produce a variety of products (heat, specialty chemicals, power, etc.), as well as the inherent nature of the process to facilitate near zero emissions. Currently, the National Energy Technology Laboratory (NETL) Fuels Program has two pathways for syngas utilization: The production of transportation fuels, chemicals, or chemical intermediates. The hydrogen production as an intermediate for power production via advanced combustion turbines or fuel cells. Work under this activity focuses on the production, separation, and utilization of hydrogen from syngas using novel separation materials and processes. Advanced integrated gasification combined cycle (IGCC) schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research focuses on the development and assessment of membranes tailored for application in the severe environments associated with syngas conversion. The specific goals of this research include: Provide data needed to fully understand the impact of syngas environments and hydrogen removal on relevant hydrogen separation materials. Utilize the understanding of material stability to engineer a membrane tailored for operations in the severe environments associated with syngas conversion. Provide unbiased evaluation of hydrogen separation membranes being developed within the Fuels Program. Precious metals and alloys of historic interest (Pd, Cu, Ag, Au, Pt), as well as novel materials (carbides and phosphides) are candidates for evaluation of function as hydrogen separation membranes. The first step in the transport of hydrogen through dense metals is the adsorption and dissociation of hydrogen on the membrane surface. Observation shows that coal-based syngas