WorldWideScience

Sample records for berkelium phosphides

  1. Fatal aluminium phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Meena Mahesh Chand

    2015-06-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law.

  2. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  3. Gallium phosphide energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Sims, P.E.; Dinetta, L.C.; Goetz, M.A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  4. Can Ni phosphides become viable hydroprocessing catalysts?

    Energy Technology Data Exchange (ETDEWEB)

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  5. Sinterless Formation Of Contacts On Indium Phosphide

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  6. InP (Indium Phosphide): Into the future

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  7. Aluminum phosphide poisoning: an unsolved riddle.

    Science.gov (United States)

    Anand, R; Binukumar, B K; Gill, Kiran Dip

    2011-08-01

    Aluminum phosphide (ALP), a widely used insecticide and rodenticide, is also infamous for the mortality and morbidity it causes in ALP-poisoned individuals. The toxicity of metal phosphides is due to phosphine liberated when ingested phosphides come into contact with gut fluids. ALP poisoning is lethal, having a mortality rate in excess of 70%. Circulatory failure and severe hypotension are common features of ALP poisoning and frequent cause of death. Severe poisoning also has the potential to induce multi-organ failure. The exact site or mechanism of its action has not been proved in humans. Rather than targeting a single organ to cause gross damage, ALP seems to work at the cellular level, resulting in widespread damage leading to multiorgan dysfunction (MOD) and death. There has been proof in vitro that phosphine inhibits cytochrome c oxidase. However, it is unlikely that this interaction is the primary cause of its toxicity. Mitochondria could be the possible site of maximum damage in ALP poisoning, resulting in low ATP production followed by metabolic shutdown and MOD; also, owing to impairment in electron flow, there could be free radical generation and damage, again producing MOD. Evidence of reactive oxygen species-induced toxicity owing to ALP has been observed in insects and rats. A similar mechanism could also play a role in humans and contribute to the missing link in the pathogenesis of ALP toxicity. There is no specific antidote for ALP poisoning and supportive measures are all that are currently available.

  8. Microwave-assisted synthesis of transition metal phosphide

    Science.gov (United States)

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  9. Comment on " An update on toxicology of aluminum phosphide "

    Directory of Open Access Journals (Sweden)

    Omid Mehrpour

    2012-10-01

    Full Text Available I read with interest the recent published article by Dr Moghadamnia titled "An update on toxicology of aluminum phosphide". Since aluminum phosphide (AlP poisoning is an important medical concern in Iran, I have had the opportunities to work and publish many papers in this regard. I would like to comment on that paper.

  10. Synthesis, characterization and properties of hollow nickel phosphide nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ni Yonghong; Tao Ali; Hu Guangzhi; Cao Xiaofeng; Wei Xianwen; Yang Zhousheng [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China)

    2006-10-14

    Nickel phosphide (Ni{sub 12}P{sub 5}) hollow nanospheres with a mean diameter of 100 nm and a shell thickness of 15-20 nm have been successfully prepared by a hydrothermal-microemulsion route, using NaH{sub 2}PO{sub 2} as a phosphorus source. XRD, EDS (HR)TEM, SEM and the SAED pattern were used to characterize the final product. Experiments showed that the as-prepared nickel phosphide hollow nanospheres could selectively catalytically degrade some organic dyes such as methyl red and Safranine T under 254 nm UV light irradiation. At the same time, the nickel phosphide hollow nanospheres showed a stronger ability to promote electron transfer between the glass-carbon electrode and adrenalin than nickel phosphide honeycomb-like particles prepared by a simple hydrothermal route. A possible formation process for nickel phosphide hollow nanospheres was suggested based on the experimental results.

  11. New synthesis method for nickel phosphide hydrotreating catalysts.

    Science.gov (United States)

    Yang, Shaofeng; Prins, Roel

    2005-09-07

    Nickel phosphide particles on silica and alumina support were prepared from metal or metal oxide particles by treatment with phosphine and hydrogen at moderate temperature, resulting in small particle sizes equivalent to that of the precursor particle size.

  12. Indium phosphide nanowires and their applications in optoelectronic devices

    OpenAIRE

    2016-01-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In t...

  13. Predictors of Poor Prognosis in Aluminum Phosphide Intoxication

    Directory of Open Access Journals (Sweden)

    Fakhredin Taghaddosi Nejad

    2012-05-01

    Full Text Available Background: Aluminum phosphide as a fumigant is extensively used for wheat preservation from rodents and bugs especially in silos worldwide. There is increasing number of acute intoxication with this potentially lethal compound because of its easy availability. We have tried to locate predictors of poor prognosis in patients with aluminum phosphide intoxication in order to find patients who need more strict medical cares. Methods: All cases of aluminum phosphide intoxication that had been referred to our hospital during April 2008 to March 2010 were studied by their medical dossiers. Pertinent data including vital signs, demographic features, clinical and lab findings, and incidence of any complication were collected and analyzed by the relevant statistical methods. Results: Sixty seven cases of aluminum phosphide intoxication were included in the study. 44.8% of them were male. 97% of cases were suicidal. Mean amount of ingestion was 1.23+/- 0.71 tablets. Mortality rate was 41.8%. ECG abnormality and need for mechanical ventilation had negative relation with outcome. Conclusion: Correlation between some findings and complications with outcome in aluminum phosphide intoxication can be used as guidance for risk assessment and treatment planning in the patients.

  14. Prognostic factors of acute aluminum phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Louriz M

    2009-06-01

    Full Text Available Background : In Morocco, acute aluminum phosphide poisoning (AAlPP is a serious health care problem. It results in high mortality rate despite the progress of critical care. Aims : The present paper aims at determining the characteristics of AAlPP and evaluating its severity factors. Setting and design: We studied consecutive patients of AAlPP admitted to the medical intensive care unit (ICU (Ibn Sina Hospital, Rabat, Morocco between January 1992 and December 2007. Materials and Methods : Around 50 parameters were collected, and a comparison was made between survivor and nonsurvivor groups. Statistical Analysis : Data were analyzed using Fisher exact test, Mann-Whitney U test and Cox regression model. Results : Forty-nine patients were enrolled: 31 females and 18 males; their average age was 26± 11 years. The ingested dose of aluminum phosphide was 1.2± 0.7 g. Self-poisoning was observed in 47 cases, and the median of delay before admission to the hospital was 5.3 hours (range, 2.9-10 hours. Glasgow coma scale was 14± 2. Shock was reported in 42.6% of the patients. pH was 7.1± 0.4, and bicarbonate concentration was 16.3± 8.8 mmol/L. Electrocardiogram abnormalities were noted in 28 (57% cases. The mortality rate was 49% (24 cases. The prognostic factors were APACHE II (P= 0.01, low Glasgow coma scale (P= 0.022, shock (P= 0.0003, electrocardiogram abnormalities (P= 0.015, acute renal failure (P= 0.026, low prothrombin rate (P= 0.020, hyperleukocytosis (P= 0.004, use of vasoactive drugs (P< 0.001, use of mechanical ventilation (P= 0.003. Multivariate analysis by logistic regression revealed that mortality in AAlPP correlated with shock (RR = 3.82; 95% CI= 1.12-13.38; P= 0.036 and altered consciousness (RR= 3.26; 95% CI= 1.18-8.99; P= 0.022. Conclusion : AAlPP is responsible for a high mortality, which is primarily due to hemodynamic failure.

  15. Controlled synthesis and magnetic properties of nickel phosphide and bimetallic iron-nickel phosphide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupendra; Ho, Chia-Ling [National Cheng Kung University, Department of Chemical Engineering, Taiwan (China); Tseng, Yuan-Chieh [National Chiao Tung University, Department of Materials Science and Engineering, Taiwan (China); Lo, Chieh-Tsung, E-mail: tsunglo@mail.ncku.edu.tw [National Cheng Kung University, Department of Chemical Engineering, Taiwan (China)

    2012-02-15

    Nickel phosphide (Ni{sub 2}P) and bimetallic iron-nickel phosphides [(Fe{sub x}Ni{sub y}){sub 2}P] nanorods were fabricated by a seeded growth strategy. This strategy utilized pre-synthesized Fe{sub 3}O{sub 4} nanoparticles as seeds and the thermal decomposition of metal precursors by multiple injections in a solution containing trioctylphosphine and didodecyldimethylammonium bromide (DDAB). The nanorods were characterized by transmission electron microscopy, X-ray diffraction, and magnetic measurements were carried out using superconducting quantum interference device (SQUID). The rod length was tunable, ranging from 10 to 110 nm depending on the number of injections, whereas the diameter of the rods was nearly 6 nm. It was found that the rod size increased with the number of injections under the constant total injection concentration and reaction time. In addition, the effect of the DDAB quantity used as a co-surfactant was studied, which showed that an optimum quantity was required to achieve uniform nanorods. Magnetic characterizations were performed over the two kinds of nanorods to identify their respective magnetic phases. The results demonstrated that the Ni{sub 2}P nanorods were defined as a Curie-Weiss paramagnet, whereas the (Fe{sub x}Ni{sub y}){sub 2}P nanorods exhibited superparamagnetic characteristics.

  16. Acute aluminium phosphide poisoning, what is new?

    Directory of Open Access Journals (Sweden)

    Yatendra Singh

    2014-01-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide that is commonly used for grain preservation. AlP has currently generated interest with increasing number of cases in the past four decades because of its increased use for agricultural and nonagricultural purposes, and also its easy availability in the markets has led to its increased misuse to commit suicide. Ingestion is usually suicidal in intent, uncommonly accidental and rarely homicidal. The poison affects all systems, shock, cardiac arrhythmias with varied ECG changes and gastrointestinal features being the most prominent. Diagnosis is made on the basis of clinical suspicion, a positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination of coconut oil and sodium bicarbonate, administration of charcoal and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Unfortunately, the lack of a specific antidote Results in very high mortality and the key to treatment lies in rapid decontamination and institution of resuscitative measures. This article aims to identify the salient features and mechanism of AlP poisoning along with its management strategies and prognostic variables.

  17. An Update on Toxicology of Aluminum Phosphide

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moghhadamnia

    2012-09-01

    Full Text Available Aluminum phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the "rice tablet". AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposes and also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC, glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  18. An update on toxicology of aluminum phosphide

    Directory of Open Access Journals (Sweden)

    Moghadamnia Ali

    2012-09-01

    Full Text Available Abstract Aluminum phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the “rice tablet”. AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC, glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  19. An update on toxicology of aluminum phosphide

    Science.gov (United States)

    2012-01-01

    Aluminum phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the “rice tablet”. AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC), glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning. PMID:23351193

  20. Carbon phosphide monolayers with superior carrier mobility

    Science.gov (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  1. Manganese phosphide thin films and nanorods grown on gallium phosphide and on glass substrates

    Science.gov (United States)

    Nateghi, N.; Lambert-Milot, S.; Ménard, D.; Masut, R. A.

    2016-05-01

    We report a simple and fast route to grow ferromagnetic manganese phosphide polycrystalline films and nanorods on GaP and on glass substrates using metalorganic vapor phase deposition. Increasing the growth temperature (≥600 °C) and growth time (≥30 min) results in nucleation of secondary MnP crystals on the primary grains. The secondary crystals grow faster along a specific direction of orthorhombic MnP (c-axis) and form long rods (up to 10 μm) whose diameters are in the nanoscale (20-100 nm). The nanorods can be easily detached from the glass substrate. The films exhibit ferromagnetic behavior with a range of transition temperatures, depending on the growth conditions.

  2. A Nonaqueous Approach to the Preparation of Iron Phosphide Nanowires

    Directory of Open Access Journals (Sweden)

    She Houde

    2010-01-01

    Full Text Available Abstract Previous preparation of iron phosphide nanowires usually employed toxic and unstable iron carbonyl compounds as precursor. In this study, we demonstrate that iron phosphide nanowires can be synthesized via a facile nonaqueous chemical route that utilizes a commonly available iron precursor, iron (III acetylacetonate. In the synthesis, trioctylphosphine (TOP and trioctylphosphine oxide (TOPO have been used as surfactants, and oleylamine has been used as solvent. The crystalline structure and morphology of the as-synthesized products were characterized by powder X-ray diffraction (XRD and transmission electron microscopy (TEM. The obtained iron phosphide nanowires have a typical width of ~16 nm and a length of several hundred nanometers. Structural and compositional characterization reveals a hexagonal Fe2P crystalline phase. The morphology of as-synthesized products is greatly influenced by the ratio of TOP/TOPO. The presence of TOPO has been found to be essential for the growth of high-quality iron phosphide nanowires. Magnetic measurements reveal ferromagnetic characteristics, and hysteresis behaviors below the blocking temperature have been observed.

  3. Evaluation of aluminum phosphide against wood-destroying insects.

    Science.gov (United States)

    Pant, Himani; Tripathi, Sadhna

    2012-02-01

    Aluminum phosphide, a well-known stored grain fumigant, available in solid formulation, has shown promise as wood fumigant. This chemical decomposes to phosphine when exposed to moisture. The feasibility of fumigant treatment to extend the service life of wood was evaluated in a small block test of two wood species. Hard wood (Mangifera indica L.) and conifer blocks (Pinus roxburghii Sargent) were fumigated with different concentrations (0.05, 0.1, 0.2, 0.4, 0.8, and 1.6%) of aluminum phosphide. Fumigated blocks were exposed to Lyctus africanus Lesne (Coleoptera; Lyctidae) larvae. Results revealed that aluminum phosphide showed complete mortality of Lyctus larvae at 0.2% concentration, that is, 0.93 g/m3 retention level. Mean mortality of 74% of Lyctus larvae was observed in soft wood blocks fumigated with lowest concentration, that is, 0.05% of aluminum phosphide, whereas in hard wood blocks > 85% mortality was observed at this concentration.

  4. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    Science.gov (United States)

    Bosco, Jeffrey Paul

    The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an ``earth-abundant'' solar absorber, we find zinc phosphide (α-Zn 3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>10. 4cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P 2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn 3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P 2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found. The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P 2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are

  5. Acute Anterolateral Myocardial Infarction Due to Aluminum Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Bita Dadpour

    2013-08-01

    Full Text Available Aluminum phosphide (AlP is a highly effective rodenticide which is used as a suicide poison. Herein, a 24 year-old man who’d intentionally ingested about 1liter of alcohol and one tablet of AlP is reported. Acute myocardial infarction due to AlP poisoning has been occurred secondary to AIP poisoning. Cardiovascular complications are poor prognostic factors in AlP poisoning

  6. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    Science.gov (United States)

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.

  7. Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined.The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feed-stock.The TiO2,γ-Al2O3 supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni (3%-5%),Co (5%-7%) and V (1%-3%) could increase dispersivity of the W species and the BET surface area of the WP/γ-Al2O3 catalyst.The WP/γ-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/γ-Al2O3 catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/γ-Al2O3 catalyst.In general,a support or promoter in the WP/γ-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.

  8. Novel synthetic routes to nanocomposites of transition metal phosphides

    Energy Technology Data Exchange (ETDEWEB)

    Milne, S.B.; Lukehart, C.M.; Wittig, J.E. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1996-10-01

    Novel routes to nanocomposites of transition metal phosphides will be presented. Silica xerogels containing covalently attached organometallic or other coordination compounds were prepared using standard sol-gel methods. The doped xerogels were thermally treated in a reducing atmosphere to yield the desired nanocomposite. Using these techniques, Fe{sub 2}P, RuP, Co{sub 2}P, Rh{sub 2}P, Ni{sub 2}P, Pd{sub 5}P{sub 2}, and PtP{sub 2} nanocomposites have been prepared and characterized.

  9. Strategic Review of Arsenide, Phosphide and Nitride MOSFETs

    Directory of Open Access Journals (Sweden)

    Gourab Dutta

    2011-01-01

    Full Text Available Metal oxide semiconductor field effect transistor used as an amplifier and switch uses Si primarily as a channel material for its very stable oxide SiO2. In-spite of many advantages there are some restrictions for Si MOS, so the world is approaching towards compound semiconductor for higher frequency and current. The development of compound semiconductor metal oxide semiconductor is also facing critical problems due to the lack of availability of proper gate oxide material. Research is being conducted on arsenide and phosphide metal oxide semiconductor field effect transistor. Nitride channel MOS are in focus due to their high band gap, high current and high temperature uses.

  10. [Case Report: Zinc phosphide poisoning after ingestion of a rodentizide in suicidal intention].

    Science.gov (United States)

    Simon, Christoph; Schneider, Ralf; Meininger, Dirk

    2016-01-01

    Zinc phosphide normally serves as a rodenticide but is occasionally ingested for suicide, potentially causing multiorgan failure. Phosphine gas is commonly in use for fumigation of grain silos and shipping containers.We describe a suicide attempt of a 54 year old female, the clinical symptoms, the treatment, the chemical and biochemical background and we give information on the potential occurrence of zinc phosphide and phosphine gas.

  11. Clinical characteristics of zinc phosphide poisoning in Thailand

    Science.gov (United States)

    Trakulsrichai, Satariya; Kosanyawat, Natcha; Atiksawedparit, Pongsakorn; Sriapha, Charuwan; Tongpoo, Achara; Udomsubpayakul, Umaporn; Rittilert, Panee; Wananukul, Winai

    2017-01-01

    Objective The objectives of this study were to describe the clinical characteristics and outcomes of poisoning by zinc phosphide, a common rodenticide in Thailand, and to evaluate whether these outcomes can be prognosticated by the clinical presentation. Materials and methods A 3-year retrospective cohort study was performed using data from the Ramathibodi Poison Center Toxic Exposure Surveillance System. Results In total, 455 poisonings were identified. Most were males (60.5%) and from the central region of Thailand (71.0%). The mean age was 39.91±19.15 years. The most common route of exposure was oral (99.3%). Most patients showed normal vital signs, oxygen saturation, and consciousness at the first presentation. The three most common clinical presentations were gastrointestinal (GI; 68.8%), cardiovascular (22.0%), and respiratory (13.8%) signs and symptoms. Most patients had normal blood chemistry laboratory results and chest X-ray findings at presentation. The median hospital stay was 2 days, and the mortality rate was 7%. Approximately 70% of patients underwent GI decontamination, including gastric lavage and a single dose of activated charcoal. In all, 31 patients were intubated and required ventilator support. Inotropic drugs were given to 4.2% of patients. Four moribund patients also received hyperinsulinemia–euglycemia therapy and intravenous hydrocortisone; however, all died. Patients who survived and died showed significant differences in age, duration from taking zinc phosphide to hospital presentation, abnormal vital signs at presentation (tachycardia, low blood pressure, and tachypnea), acidosis, hypernatremia, hyperkalemia, in-hospital acute kidney injury, in-hospital hypoglycemia, endotracheal tube intubation, and inotropic requirement during hospitalization (P<0.05). Conclusion Zinc phosphide poisoning causes fatalities. Most patients have mild symptoms, and GI symptoms are the most common. Patients who present with abnormal vital signs or

  12. Detection of Aluminium Phosphide and Zinc Phosphide by X-Ray Diffraction%X射线衍射法检测磷化铝磷化锌

    Institute of Scientific and Technical Information of China (English)

    马健; 王力春; 郭东东; 罗敬锋; 张忠

    2011-01-01

    Aluminium phosphide and zinc phosphide are detected by X-ray diffractometer and the powder of aluminium phoshphide and zinc phosphide is analyzed.Compared with traditional methods,the x-ray diffraction method has many advantages such as simplicity,high precision and reliability and is one of several nondestructive analysis techniques.%用X射线衍射仪检测磷化铝和磷化锌,并对磷化铝和磷化锌粉末进行分析,发现较之传统检测方法,其结果更可靠,操作更简便,且能得到样品的某些晶体参数,是仅有的几个无损分析技术之一。

  13. Band structures in silicene on monolayer gallium phosphide substrate

    Science.gov (United States)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  14. Zinc phosphide intoxication of wild turkeys (Meleagris gallopavo).

    Science.gov (United States)

    Poppenga, Robert H; Ziegler, Andre F; Habecker, Perry L; Singletary, Don L; Walter, Mark K; Miller, Paul G

    2005-01-01

    Zinc phosphide (Zn3P2) is a rodenticide used to control a variety of small mammal species. It is available over-the-counter or as a restricted-use pesticide depending on how it is to be applied. The toxicity of Zn3P2 is dependent on the species exposed, whether the animal is able to vomit or not, and whether it is ingested on a full or empty stomach. Nontarget species can be exposed through inadvertent or intentional product misapplication. In this article we describe four mortality events in which wild turkeys (Meleagris gallopavo) were believed to have been intoxicated following the ingestion of baits containing Zn3P2.

  15. Computational prediction of the diversity of monolayer boron phosphide allotropes

    Science.gov (United States)

    Zhu, Zhili; Cai, Xiaolin; Niu, Chunyao; Wang, Chongze; Jia, Yu

    2016-10-01

    We propose previously unrecognized allotropes of monolayer boron phosphorus (BP) based on ab initio density functional calculations. In addition to the hexagonal structure of h-BP, four types of boron phosphide compounds were predicted to be stable as monolayers. They can form sp2 hybridized planar structures composed of 6-membered rings, and buckled geometries including 4-8 or 3-9 membered rings with sp3 like bonding for P atoms. The calculated Bader charges illustrate their ionic characters with the charge transfers from B to P atoms. The competing between the electrostatic energy and the bonding energy of sp2 and sp3 hybridizations reflected in P atoms results in multiple structures of BP. These 2D BP structures can be semiconducting or metallic depending on their geometric structures. Our findings significantly broaden the diversity of monolayer BP allotropes and provide valuable guidance to other 2D group-III-V allotropes.

  16. AC surface photovoltage of indium phosphide nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J.; Kobayashi, Nobuhiko P. [California Univ., Santa Cruz, CA (United States). Baskin School of Engineering; California Univ., Santa Cruz, CA (US). Nanostructured Energy Conversion Technology and Research (NECTAR); NASA Ames Research Center, Moffett Field, CA (United States). Advanced Studies Laboratories

    2012-06-15

    Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5-14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. (orig.)

  17. Optical properties of indium phosphide nanowire ensembles at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J; Onishi, Takehiro; Kobayashi, Nobuhiko P [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz-NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2010-09-03

    Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.

  18. Synthesis and catalytic activity of the metastable phase of gold phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.; Alia, Shaun M.; Pivovar, Bryan S.; Vasquez, Yolanda

    2016-10-01

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.

  19. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    Science.gov (United States)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  20. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  1. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires

    KAUST Repository

    Greil, J.

    2016-06-08

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material.

  2. Severe myocardial depression in a patient with aluminium phosphide poisoning: A clinical, electrocardiographical and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Shah Viral

    2009-01-01

    Full Text Available Aluminium phosphide poisoning is very common in India. It is one of the most fatal poisons. The clinical spectrum of poisoning varies depending upon the dosage and duration of consumption. The main effect of the poison is due to the release of phosphine which inhibits cytochrome oxidase and thereby hampers cellular oxygen utilization. Almost any organ can be affected by aluminium phosphide poisoning. We report a case where the heart was the predominantly affected organ. We describe the clinical symptoms and signs and their correlation with electrocardiographic and histopathological examinations.

  3. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    Science.gov (United States)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  4. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    Science.gov (United States)

    Lobisser, Evan

    Indium phosphide heterojunction bipolar transistors are able to achieve higher bandwidths at a given feature size than transistors in the Silicon material system for a given feature size. Indium phosphide bipolar transistors demonstrate higher breakdown voltages at a given bandwidth than both Si bipolars and field effect transistors in the InP material system. The high bandwidth of InP HBTs results from both intrinsic material parameters and bandgap engineering through epitaxial growth. The electron mobility in the InGaAs base and saturation velocity in the InP collector are both approximately three times higher than their counterparts in the SiGe material system. Resistance of the base can be made very low due to the large offset in the valence band between the InP emitter and the InGaAs base, which allows the base to be doped on the order of 1020 cm-3 with negligible reduction in emitter injection efficiency. This thesis deals with type-I, NPN dual-heterojunction bipolar transistors. The emitters are InP, and the base is InGaAs. There is a thin (˜ 10 nm) n-type InGaAs "setback" region, followed by a chirped superlattice InGaAs/InAlAs grade to the InP collector. The setback, grade, and collector are all lightly doped n-type. The emitter and collector are contacted through thin (˜ 5 nm) heavily doped n-type InGaAs layers to reduce contact resistivity. The primary focus of this work is increasing the bandwidth of InP HBTs through the proportional scaling of the device dimensions, both layer thicknesses and junction areas, as well as the reduction of the contact resistivities associated with the transistor. Essentially, all RC time constants and transit times must be reduced by a factor of two to double a transistor's bandwidth. Chapter 2 describes in detail the scaling laws and design principles for high frequency bipolar transistor design. A low-stress, blanket sputter deposited composite emitter metal process was developed. Refractory metal base contacts were

  5. Solid state synthesis and room temperature magnetic properties of iron phosphide nanoparticles

    Science.gov (United States)

    Singh, N.; Khanna, P. K.; Joy, P. A.

    2009-02-01

    Room temperature magnetic properties have been achieved for nano-crystalline iron phosphide synthesized from the direct solid state reaction of iron chloride and tri-octylphosphine (TOP). The magnetization continuously increased with higher magnetic fields, indicating a super-paramagnetic behavior. It is observed that room temperature magnetism is possible for the material showing antiferromagnetic nature at low temperatures. In the present synthesis, TOP acted as a source of phosphorus as well as a surfactant. X-ray diffraction (XRD) studies revealed that the black powder is a mixture of FeP and Fe2P. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed elongated as well spherical particles. Energy dispersion X-ray analysis (EDAX) confirmed a non-stoichiometric iron phosphide. Presence of TOP was confirmed by infra-red (IR) spectroscopy, and thermo-gravimetric analysis (TGA) indicated about 6% wt. loss due to presence of organics.

  6. Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J.; Wrobel, J.M.; Brzezinka, K.-W.; Esser, N.; Kautek, W

    2002-12-30

    Surface modification and ablation of crystalline indium phosphide was performed with single and double 130 fs pulses from a Ti:sapphire laser. The morphological features resulting from laser processing, have been investigated by means of micro Raman spectroscopy as well as by optical, atomic force and scanning electron microscopy. The studies indicate amorphous, ablated and recrystallized zones on the processed surface. In the single-pulse irradiation experimentsveral different threshold fluences could be assigned to the processes of melting, ablation and polycrystalline resolidification. Residual stress has been detected within the irradiated areas. Double-pulse exposure experiments have been analyzed in order to clarify the effect of cumulative damage in the ablation process of indium phosphide.

  7. Nickel Phosphide as a Copper Free Back Contact for CdTe-Based Solar Cells

    Science.gov (United States)

    Sunderland, Brian; Gupta, Akhlesh; Compaan, Alvin D.

    2002-03-01

    Nickel phosphide back contacts were deposited onto polycrystalline, thin-film, CdS/CdTe solar cells using DC magnetron sputtering. The effects of the etching procedure, substrate temperature, deposition duration, post-deposition diffusion temperature, and ambient on the initial performance and on the long term stability of the devices were studied. We found that the initial performance of nickel phosphide contacts was lower than typical Cu-based back contacts. However, the stability of the cells at open circuit under one-sun light soak for several months is better than for our standard contact with evaporated Cu and Au. The use of sputtered graphite as an interfacial layer improved the performance. Average efficiencies of over 8.6were achieved. The excellent stability makes Ni2P an attractive candidate for a Cu-free back contact to CdTe-based solar cells. Work supported by NREL and by NSF-REU.

  8. Ultra-fast mechanochemical synthesis of boron phosphides, BP and B12P2.

    Science.gov (United States)

    Mukhanov, Vladimir A; Vrel, Dominique; Sokolov, Petr S; Le Godec, Yann; Solozhenko, Vladimir L

    2016-06-21

    Here we propose a new approach to the synthesis of single-phase boron phosphides (BP and B12P2) by mechanochemical reactions between boron phosphate and magnesium/magnesium diboride in the presence of an inert diluent (sodium chloride). The proposed method is characterized by the simplicity of implementation, high efficiency, low cost of the product, and good perspectives for large-scale production.

  9. Phosphide residue exposure as the cause of serum vitamin depletion in female Wistar rats

    Directory of Open Access Journals (Sweden)

    Ayobola Abolape Iyanda

    2013-04-01

    Full Text Available Background: Synthetic chemical preservatives have received much negative publicity in recent time, some of which include insect resistance and misapplication of fumigants as well as a myriad of clinical conditions that have been associated with grain consumption. Aluminum phosphide is widely employed for the fumigation of grains meant for both international and local markets. Although its manufacturers have discouraged contamination of grains with spent or unspent phosphide residue, contamination still does occur especially among many illiterate cowpea merchants. The objective of this study is to determine the impact of phosphide residue contaminated cowpea on serum vitamin levels. Methods: Female Wistar rats were divided into 3 experimental groups with each group consisting of 6 rats. They were fed unfumigated (control, fumigated-contaminated (group 1 and fumigated but uncontaminated (group 2 cowpea. Results: Vitamin analysis using high performance liquid chromatography technique showed significant differences in the levels of niacin, folic acid, thiamine, riboflavin, and vitamins A, C, D and E; but pantothenic acid and pyridoxine were not significantly different in group 1 rats compared with control. Moreover, compared with control none of the vitamins were significantly different in rats in group 2. Conclusion: Cowpea is a source of many vitamins among the teeming poor in many part of the developing world; therefore there is need to ensure its proper fumigation. The results of this study suggest that although proper phosphide fumigation of cowpea may not alter serum vitamin levels but improper handling of the fumigation process may result in vitamin depletion. [J Exp Integr Med 2013; 3(2.000: 159-163

  10. A new type of nonsulfide hydrotreating catalyst: nickel phosphide on carbon.

    Science.gov (United States)

    Shu, Yuying; Oyama, S Ted

    2005-03-07

    Nickel phosphide on carbon is successfully synthesized by temperature-programmed reduction as verified with X-ray diffraction and extended X-ray absorption fine structure measurements; it shows superior activity, selectivity, and stability for sulfur removal from the refractory compound 4,6-dimethyldibenzothiophene with a steady-state conversion of 99%, which is much higher than that of a commercial NiMoS/[gamma]-Al2O3 catalyst of 68%.

  11. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function.

    Science.gov (United States)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N

    2013-07-19

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  12. Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation.

    Science.gov (United States)

    Pu, Zonghua; Amiinu, Ibrahim Saana; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-10-06

    There is a crucial demand for cost-effective hydrogen evolution reaction (HER) catalysts towards future renewable energy systems, and the development of such catalysts operating under all pH conditions still remains a challenging task. In this work, a one-step facile approach to synthesizing nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles (MoP NPs@NC) is introduced by using ammonium molybdate, ammonium dihydrogen phosphate and melamine as precursor. Benefitting from structural advantages, including ultrasmall nanoparticles, large exposed surface area and fast charge transfer, MoP NPs@NC exhibits excellent HER catalytic activities with small overpotentials at all pH values (j = 10 mA cm(-2) at η = 115, 136 and 80 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively.). Meanwhile, the high catalytic activities of MoP NPs@NC under both neutral and basic conditions have never been achieved before for molybdenum phosphide-based catalysts. Additionally, the encapsulation by N-doped carbon effectively prevents the MoP NPs from corrosion, exhibiting nearly unfading stability after 100 h testing in 0.5 M H2SO4. Thus, our work could pave a new avenue for unprecedented design and fabrication of novel low-cost metal phosphide electrocatalysts encapsulated by N-doped carbon.

  13. Orientation of Zn3P2 films via phosphidation of Zn precursors

    Science.gov (United States)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  14. Acetaminophen and zinc phosphide for lethal management of invasive lizards Ctenosaura similis

    Institute of Scientific and Technical Information of China (English)

    Michael L. AVERY; John D. EISEMANN; Kandy L. KEACHER; Peter J. SAVARIE

    2011-01-01

    Reducing populations of invasive lizards through trapping and shooting is feasible in many cases but effective integrated management relies on a variety of tools,including toxicants.In Florida,using wild-caught non-native black spiny-tailed iguanas Ctenosaura similis,we screened acetaminophen and zinc phosphide to determine their suitability for effective population management of this prolific invasive species.Of the animals that received acetaminophen,none died except at the highest test dose,240 mg per lizard,which is not practical for field use.Zinc phosphide produced 100% mortality at dose levels as little as 25 mg per lizard,equivalent to about 0.5% in bait which is lower than currently used in commercial baits for eommensal rodent control.We conclude that zinc phosphide has potential as a useful tool for reducing populations of invasive lizards such as the black spiny-tailed iguana provided target-selective delivery methods are developed [Current Zoology 57 (5):625-629,2011].

  15. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates

    Science.gov (United States)

    Han, Yu; Li, Qiang; Lau, Kei May

    2016-12-01

    We report the characteristics of indium gallium arsenide stacked quantum structures inside planar indium phosphide nanowires grown on exact (001) silicon substrates. The morphological evolution of the indium phosphide ridge buffers inside sub-micron trenches has been studied, and the role of inter-facet diffusion in this process is discussed. Inside a single indium phosphide nanowire, we are able to stack quantum structures including indium gallium arsenide flat quantum wells, quasi-quantum wires, quantum wires, and ridge quantum wells. Room temperature photoluminescence measurements reveal a broadband emission spectrum centered at 1550 nm. Power dependent photoluminescence analysis indicates the presence of quasi-continuum states. This work thus provides insights into the design and growth process control of multiple quantum wells in wire structures for high performance nanowire lasers on a silicon substrate with 1550 nm band emission.

  16. Theoretical investigations on the elastic and thermodynamic properties of rhenium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qun; Zhu, Xuanmin; Lin, Zhengzhe; Yao, Ronghui [Xidian Univ., Xi' an (China). School of Physics and Optoelectronic Engineering; Yan, Haiyan [Baoji Univ. of Arts and Sciences (China). Dept. of Chemistry and Chemical Engineering

    2016-04-01

    Structural, mechanical, and electronic properties of orthorhombic rhenium phosphide (Re{sub 2}P) are systematically investigated by using first principles calculations. The elastic constants and anisotropy of elastic properties are obtained. The metallic character of Re{sub 2}P is demonstrated by density of state calculations. The quasi-harmonic Debye model is applied to the study of the thermodynamic properties. The thermal expansion, heat capacities, and Grueneisen parameter on the temperature and pressure have been determined as a function of temperature and pressure in the pressure range from 0 to 100 GPa and the temperature range from 0 to 1600 K.

  17. Unusual complication of aluminum phosphide poisoning: Development of hemolysis and methemoglobinemia and its successful treatment

    Directory of Open Access Journals (Sweden)

    Kambiz Soltaninejad

    2011-01-01

    Full Text Available Methemoglobinemia and hemolysis are rare findings following phosphine poisoning. In this paper, a case of aluminum phosphide (AlP poisoning complicated by methemoglobinemia and hemolysis with a successful treatment is reported. A 28-year-old male patient presented following intentional ingestion of an AlP tablet. In this case, hematuria, hemolysis and methemoglobinemia were significant events. A methemoglobin level of 46% was detected by CO-oximetry. The patient was treated with ascorbic acid and methylene blue and he also received supportive care. Two weeks after admission, the patient was discharged from the hospital. Hemolysis and methemoglobinemia may complicate the course of phosphine poisoning.

  18. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    Science.gov (United States)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  19. Elastic Constants and Its Pressure Derivative of Boron Phosphide Using Higher-Order Perturbation Theory

    Directory of Open Access Journals (Sweden)

    A.R. Jivani

    2011-01-01

    Full Text Available The elastic constants, pressure derivative of bulk modulus and pressure derivative of elastic constants are investigated using the higher-order perturbation theory based on pseudopotential formalism and the application of our proposed model potential for Boron Phosphide. The parameter of the potential is derived using zero-pressure equilibrium condition. In the present study, Hartree and Sarkar et al screening functions are used to consider exchange and correlation effect. The good agreement of presently investigated numerical data is found with the available experiment data and other such theoretical values.

  20. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation

    Science.gov (United States)

    Liu, Danni; Lu, Wenbo; Wang, Kunyang; Du, Gu; Asiri, Abdullah M.; Lu, Qun; Sun, Xuping

    2016-11-01

    In this letter, we report on the use of a cobalt phosphide nanowall array on conductive carbon cloth (CoP NA/CC) as an efficient catalyst electrode for methanol electro-oxidation under alkaline conditions. This CoP NA/CC achieves a current density of 96 mA cm-2 toward 0.5 M methanol at 0.5 V (versus a saturated calomel electrode (SCE)) in 1 M KOH. Moreover, this electrode exhibits superior stability and 93% of the initial anodic current density can be retained after 1000 cyclic voltammetry cycles when re-measured in new electrolyte.

  1. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    Science.gov (United States)

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.

  2. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution

    OpenAIRE

    Bao, Xiao-Qing; Cerqueira, M.F.; Alpuim, P.; Liu, Lifeng

    2015-01-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. L. F. Liu acknowledges the financial support by the FCT Investigator grant (IF/01595/2014).

  3. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuna, E-mail: zhangshujuan@tust.edu.cn [College of Textile Engineering, Zhejiang Industry Polytechnic College, Shaoxing 312000 (China); Zhang, Shujuan [College of Science, Tianjin University of Science and Technology, Tianjin 300457 (China); Song, Limin, E-mail: tjpu2012@sohu.com [College of Environment and Chemical Engineering and State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Wu, Xiaoqing [Institute of Composite Materials and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387 (China); Fang, Sheng, E-mail: songlmnk@sohu.com [College of Environment and Chemical Engineering and State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China)

    2014-05-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni{sub 2}P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni{sub 2}P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni{sub 2}P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni{sub 2}P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni{sub 2}P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni{sub 2}P was postulated and discussed in detail. To investigate its catalytic properties, SiO{sub 2} supported three-dimensional Ni{sub 2}P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni{sub 2}P/SiO{sub 2}.

  4. Structure characterization and strain relief analysis in CVD growth of boron phosphide on silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoliang [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Abbott, Julia K.C.; Brasfield, John D. [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States); Liu, Peizhi [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Dale, Alexis [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States); Duscher, Gerd [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rack, Philip D. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Feigerle, Charles S., E-mail: cfeigerl@tennessee.edu [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States)

    2015-02-01

    Highlights: • Crystalline boron phosphide was grown on vicinal 4H (0 0 0 1)-SiC surfaces. • The microstructure evolution of defects generated at the interface was characterized by transmission electron microscopy. • The evolution of lattice distortion and strain are determined. - Abstract: Boron phosphide (BP) is a material of interest for development of a high-efficiency solid-state thermal neutron detector. For a thick film-based device, microstructure evolution is key to the engineering of material synthesis. Here, we report epitaxial BP films grown on silicon carbide with vicinal steps and provide a detailed analysis of the microstructure evolution and strain relief. The BP film is epitaxial in the near-interface region but deviates from epitaxial growth as the film develops. Defects such as coherent and incoherent twin boundaries, dislocation loops, stacking faults concentrate in the near-interface region and segment this region into small domains. The formation of defects in this region do not fully release the strain originated from the lattice mismatch. Large grains emerge above the near-interface region and grain boundaries become the main defects in the upper part of the BP film.

  5. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    Science.gov (United States)

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  6. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.

    Science.gov (United States)

    Britto, Reuben J; Benck, Jesse D; Young, James L; Hahn, Christopher; Deutsch, Todd G; Jaramillo, Thomas F

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  7. Effect of Reduction Temperature on Hydrofining Performance of Supported Molybdenum Phosphide Catalyst

    Institute of Scientific and Technical Information of China (English)

    Fengyan Li; Zhifang Zhao; Qingjie Li; Tianbo Zhao; Cuiqing Li; Guida Sun

    2005-01-01

    A series of supported molybdenum phosphide catalysts were prepared by impregnation method.XRD, TG-DTG, XPS and BET were used to study the phase, compositions and surface areas of the prepared catalysts. A model reactant containing thiophene, pyridine and cyclohexene was used for the measurements of catalytic activities. The effect of reduction temperature on catalytic activities was investigated. The analysis results by XRD and BET are very different when the reduction temperature is changed from 400 to 900 ℃. MoP/γ-Al2O3 catalysts and CoMoP/γ-Al2O3 catalysts prepared at the reduction temperature of 500 ℃ are the most active ones.

  8. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.; Hahn, Christopher; Deutsch, Todd G.; Jaramillo, Thomas F.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  9. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    Science.gov (United States)

    Oghabian, Zohreh; Mehrpour, Omid

    2016-01-01

    Aluminium phosphide (AlP) is used to protect stored grains from rodents. It produces phosphine gas (PH3), a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-year-old male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols. PMID:27606117

  10. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Zohreh Oghabian

    2016-08-01

    Full Text Available Aluminium phosphide (AlP is used to protect stored grains from rodents. It produces phosphine gas (PH3, a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-yearold male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols.

  11. Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide

    Indian Academy of Sciences (India)

    Salah Daoud; Kamel Loucif; Nadhira Bloud; Noudjoud Lebgaa; Laarbi Belagraa

    2012-07-01

    In this paper we present the results obtained from first-principles calculations of the effect of hydrostatic pressure on the strucural, elastic and electronic properties of (B3) boron phosphide, using the pseudopotential plane-wave method (PP-PW) based on density functional theory within the Teter and Pade exchange-correlation functional form of the local density approximation (LDA). The lattice parameter, molecular and crystal densities, near-neighbour distances, independent elastic constant, bulk modulus, shear modulus, anisotropy factor and energy bandgaps of (B3) BP under high pressure are presented. The results showed a phase transition pressure from the zinc blende to rock-salt phase at around 1.56 Mbar, which is in good agreement with the theoretical data reported in the literature.

  12. Surface modification of gallium phosphide caused by swift (200 MeV) silver ions

    Science.gov (United States)

    Dubey, S. K.

    2017-02-01

    In the present work, the effects of swift silver ion irradiation in crystalline gallium phosphide samples with various fluences ranging between 1 × 1011 and 2 × 1013 ions cm-2 have been described. Atomic force microscopy images of the samples irradiated with different fluences showed the existence of hillocks at the surface, the diameter and density of these clusters were found to be depend on the ion fluence. As the ion fluence increased (⩾1 × 1013 ions cm-2), the big size hillocks having arbitrary shapes were observed due to outflow of the molten material to the sample surface or defect induced swelling of track areas accumulated during the track overlapping. Phonon confinement model employed to first order Raman scattering from longitudinal optical phonon mode revealed the decrease in phonon coherence length from 73.0 nm to 23.7 nm with the increase in ion fluence from 1 × 1012 to 2 × 1013 ion cm-2.

  13. Materials Development for Boron Phosphide Based Neutron Detectors: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Edgar, James Howard [Kansas State Univ., Manhattan, KS (United States)

    2014-09-09

    The project goal was to improve the quality of boron phosphide (BP) by optimizing its epitaxial growth on single crystal substrates and by producing bulk BP single crystals with low dislocation densities. BP is potentially a good semiconductor for high efficiency solid state neutron detectors by combining neutron capture and charge creation within the same volume. The project strategy was to use newly available single crystal substrates, silicon carbide and aluminum nitride, engineered to produce the best film properties. Substrate variables included the SiC polytype, crystallographic planes, misorientation of the substrate surface (tilt direction and magnitude) from the major crystallographic plane, and surface polarity (Si and C). The best films were (111)BP on silicon-face (0001) 4H-SiC misoriented 4° in the [1-100] direction, and BP on (100) and (111) 3C-SiC/Si; these substrates resulted in films that were free of in-plane twin defects, as determined by x-ray topography. The impact of the deposition temperature was also assessed: increasing the temperature from 1000 °C to 1200 °C produced films that were more ordered and more uniform, and the size of individual grains increased by more than a factor of twenty. The BP films were free of other compounds such as icosahedral boron phosphide (B12P2) over the entire temperature range, as established by Raman spectroscopy. The roughness of the BP films was reduced by increasing the phosphine to diborane ratio from 50 to 200. Bulk crystals were grown by reacting boron dissolved in nickel with phosphorus vapor to precipitate BP. Crystals with dimensions up to 2 mm were produced.

  14. Infrared spectroscopic investigation of CO adsorption on SBA-15- and KIT-6-supported nickel phosphide hydrotreating catalysts.

    Science.gov (United States)

    Korányi, Tamás I; Pfeifer, Eva; Mihály, Judith; Föttinger, Karin

    2008-06-12

    The infrared (IR) spectra of CO adsorbed on 10, 20, and 30 wt % nickel phosphide-containing reduced SBA-15 and KIT-6 mesoporous silica-supported catalysts have been studied at 300-473 K. On the catalysts containing a stoichiometric amount of phosphorus with 20 wt % loading, the most intense IR absorption band was observed at 2097-2099 cm(-1), which was assigned to CO terminally bonded to coordinatively unsaturated Ni(delta+) (0 hydrotreating catalytic activity. The modified Ni-P charge distribution, the mode of CO adsorption on surface nickel phosphide sites, as well as the acidity can be directly connected to the catalytic activity of these mesoporous silica-supported catalysts.

  15. Comparative Efficacy of Bromadiolone, Cholecalciferol and Zinc Phosphide Against Short -Tailed Mole Rat Nesokia indica in Captivity

    OpenAIRE

    PERVEZ, Amjad; AHMAD, Syed M.; Waqar, S; RIZVI, A.

    1998-01-01

    We conducted no-choice and paired choice feeding trials with individually caged Nesokia indica to evaluate the efficacy of Bromadiolone, Cholecalciferol and Zinc phosphide baits. Under no-choice test (1 day and 3 day) male rats consumed less bromadiolone bait. However, sex-wise difference was observed non-significant. Under choice feeding test, difference between bromadiolone bait intake and sex was observed non-significant. Under cholecalciferol bait, treated bait was consumed more than ...

  16. Zinc phosphide toxicities among patients of the University of Benin Teaching Hospital, Benin city, Nigeria: A 10 year experience

    Directory of Open Access Journals (Sweden)

    S E Aghahowa

    2012-01-01

    Full Text Available Background: Due to the poor success rate associated with zinc phosphide ingestion, it became necessary to assess the incidence. Objective: To assess the incidence of zinc phosphide toxicities reported between June 2000 and June 2009 in the University of Benin Teaching Hospital, Benin City, Nigeria. Material and Method : Data were sourced from the archives of casualties of zinc phosphide poisoning. These were entered into a generated case data form after obtaining an ethical permission. Results: All the ages of the 23 casualties reported were within 37.74±13.20 years. The male-female ratio was 4.75:1. Nineteen [78.26%] died after reporting 13.52±11.34 hours following single ingestion. Twenty cases were due to suicidal tendencies; the most common reason given was because of frustration in life related to marital affairs. Among the three unintentional, two were accidental while the other was due to assassination. Postmortem was refused in all the patients that died. One attempted herbal medication. Oil and milk were the most frequent solvents used at home as first-aid care therapy. Three were unintentional. Nine came with empty sachets and containers brought by relatives. Sodium chloride intravenous infusion was the most frequently used. Duration of hospitalization was 13.38±15.60 hours. Intravenous ciprofloxacin and metronidazole were the most common antibiotics used. Oxygen was instituted in 78.26% of the victims during respiratory distress. One ate meal prepared from poisoned rodent and died after reporting. One had alcohol along with the Zinc Phosphide ingestion. Nine were reported at the drug and poison information centre. Conclusion: Attention is needed by all for proper regulation in the handling of poisons and related substances to reduce burden minimally.

  17. Rodenticide Comparative Effect of Klerat® and Zinc Phosphide for Controlling Zoonotic Cutaneous Leishmaniasis in Central Iran

    Directory of Open Access Journals (Sweden)

    Arshad VEYSI

    2016-12-01

    Full Text Available Background: Zoonotic cutaneous leishmaniasis (ZCL is a neglected disease with public health importance that is common in many rural areas of Iran. In recent years, behavioral resistance and/or bait shyness against the common rodenticide among reservoir hosts of ZCL have been reported. The aim of this study was to evaluate the effectiveness of Klerat® and zinc phosphide against natural reservoir of ZCL.Methods: This survey was carried out in four villages located 45 to 95 km far from Esfahan City Esfahan province, central Iran from April to November 2011. The rodent burrows were counted destroyed and reopened holes baited around all villages. Effect of rodent control operation on the main vector density and incidence of ZCL were evaluated.Results: The reduction rate of rodent burrows after intervention calculated to be at 62.8% in Klerat® and 58.15% in zinc phosphide treated areas. Statistical analysis showed no difference between the densities of the vector in indoors and outdoors in intervention and control areas. The incidence of the disease between treated and control areas after intervention was statistically different (P< 0.05.Conclusion: Klerat® could be a suitable alternative for zinc phosphide in a specific condition such as behavior resistance or occurrence of bait shyness.

  18. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro [University of California, Santa Cruz (United States). Baskin School of Engineering; NASA Ames Research Center, Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz, Moffett Field, CA (United States); Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Logeeswaran, V.J.; Islam, M.S. [University of California Davis, Electrical and Computer Engineering, Davis, CA (United States)

    2009-06-15

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  19. A preliminary identification of insect successive wave in Egypt on control and zinc phosphide-intoxicated animals in different seasons

    Directory of Open Access Journals (Sweden)

    Marah Mohammad Abd El-Bar

    2016-09-01

    Full Text Available The presented study aimed primarily to document a baseline data of the decay process of rabbits and guinea pigs and their associated arthropod fauna, which are placed in an urban city: El Abbassyia, Cairo Governorate, Egypt, during winter and summer seasons, and to compare these data with the corresponding figure for zinc phosphide-intoxicated carrions. Generally, control rabbits and control guinea pigs were faster in their decay comparing the corresponding figure of the zinc phosphide–intoxicated group. A delay in colonization of insects was noticed either in the winter season for both groups, or additionally for the zinc phosphide groups. The associated insect fauna was represented in 6 orders, 20 families, and 36 genera and species. Necrophagous arthropods that supported decomposition of carcasses were mainly of orders Diptera and Coleoptera. Calliphoridae was the first insect family that colonized the different carcasses. The mean numbers of control immature dipterous maggots and similarly, the control coleopteran larvae significantly exceeded the corresponding mean numbers for the zinc phosphide-intoxicated groups in both winter and summer seasons in either rabbits or guinea pig groups. Moreover, the mean numbers of dipterous maggots or coleopteran larvae of rabbits significantly surpassed the corresponding figures for guinea pigs in both seasons. This study may add as a reference for the succession wave arthropod fauna in Cairo Governorate in winter and summer seasons. Moreover, it is the first record of the arthropod successive wave on zinc phosphide–intoxicated remains.

  20. One-step synthesis of nickel and cobalt phosphide nanomaterials via decomposition of hexamethylenetetramine-containing precursors.

    Science.gov (United States)

    Yao, Zhiwei; Wang, Guanzhang; Shi, Yan; Zhao, Yu; Jiang, Jun; Zhang, Yichi; Wang, Haiyan

    2015-08-21

    Dispersed pure phases of Ni2P and Co2P nanoparticles with high surface areas were prepared from one-step decomposition of hexamethylenetetramine (HMT)-containing precursors under an inert atmosphere. The solids before and after decomposition and the evolution of gas during the processes were studied by various characterization techniques. The HMT precursors underwent three decomposition stages: low-, moderate- and high-temperature stages. The formation of phosphides was observed at the high-temperature decomposition stage, in which Ni (Co) and P species were reduced by the decomposition products (C, H2 and CH4) of HMT to yield Ni (Co) phosphides, with the release of COx and H2O. Note that in contrast to the traditional H2-temperature-programmed reduction (H2-TPR) method, the HMT-based method produced CO as a major gas product rather than H2O. The better dispersions and higher surface areas of the as-prepared phosphide nanoparticles were achieved probably due to the mitigation of hydrothermal sintering.

  1. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots.

    Science.gov (United States)

    Yu, Heng; Li, Jingbo; Loomis, Richard A; Wang, Lin-Wang; Buhro, William E

    2003-08-01

    The size dependence of the bandgap is the most identifiable aspect of quantum confinement in semiconductors; the bandgap increases as the nanostructure size decreases. The bandgaps in one-dimensional (1D)-confined wells, 2D-confined wires, and 3D-confined dots should evolve differently with size as a result of the differing dimensionality of confinement. However, no systematic experimental comparisons of analogous 1D, 2D or 3D confinement systems have been made. Here we report growth of indium phosphide (InP) quantum wires having diameters in the strong-confinement regime, and a comparison of their bandgaps with those previously reported for InP quantum dots. We provide theoretical evidence to establish that the quantum confinement observed in the InP wires is weakened to the expected extent, relative to that in InP dots, by the loss of one confinement dimension. Quantum wires sometimes behave as strings of quantum dots, and we propose an analysis to generally distinguish quantum-wire from quantum-dot behaviour.

  2. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.

    Science.gov (United States)

    Kornienko, Nikolay; Gibson, Natalie A; Zhang, Hao; Eaton, Samuel W; Yu, Yi; Aloni, Shaul; Leone, Stephen R; Yang, Peidong

    2016-05-24

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%.

  3. Effect of heat-treatment on the surface properties of gallium phosphide nanosolids by Raman spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaochun; YUE Longyi; GUO Jingkang

    2006-01-01

    Raman spectra of gallium phosphide (GaP) nanosolids (unheated and heat-treated at 598 and 723 K, respectively)were investigated. It was observed that both the longitudinal optical mode (LO) and the transverse optical mode (TO) displayed an asymmetry on the low-wavenumber side. The scattering bands were fitted to a sum of four Lorentzians which were assigned to the LO mode, surface phonon mode, TO mode, and a combination of Ga-O-P symmetric bending and sum band formed from the X-point TA + LA phonons, respectively. Analysis of the characteristic of surface phonon mode revealed that the surface phonon peak of the GaP nanosolids could be confirmed. In the infrared spectrum of the GaP nanoparticles, we observed the bands on account of symmetric stretching and bending of PO2, as well as stretching of Ga-O.The Raman scattering intensity arising from the Ga-O-P linkages increased as increasing the heat-treatment temperature.

  4. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    Science.gov (United States)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  5. Low resistance silver contacts to indium phosphide - Electrical and metallurgical considerations

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1993-03-01

    The electrical and metallurgical behavior of the Ag-InP contact system has been investigated. Specific contact resistivity (Rc) values in the low 10 exp -6 Ohm sq cm range are readily achieved on n-InP (Si: 1.7 x 10 exp 18/cu cm) after sintering at 400 C for several minutes. The low Rc values, however, are shown to be accompanied by dissolution of InP into the metallization, resulting in device degradation. An analysis of the sinter-induced metallurgical interactions shows this system to be similar to the well-characterized Au-InP system, albeit with fundamental differences. The similarities include the dissociative diffusion of In, the reaction-suppressing effect of SiO2 capping, and especially, the formation of a phosphide layer at the metal-InP interface. The low post-sinter Rc values in the Ag-InP system may be due to the presence of a AgP2 layer at the metal-InP interface; low values of Rc can be achieved without incurring device degrading metallurgical interactions by introducing a thin AgP2 layer between the InP and the current carrying metallization.

  6. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    Institute of Scientific and Technical Information of China (English)

    Zhang Qi-Xian; Wei Wen-Sheng; Ruan Fang-Ping

    2011-01-01

    Gallium phosphide (GaP)nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry.After the model GaP+void|Si02 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  7. Planar array antenna with director on indium phosphide substrate for 300GHz wireless link

    Science.gov (United States)

    Kanaya, Haruichi; Oda, Tomoki; Iizasa, Naoto; Kato, Kazutoshi

    2016-02-01

    This paper presents a design and fabrication of 1 x 4 one-sided directional slot array antenna with director metal layer on indium phosphide (InP) substrate for 300 GHz wireless link. The floating metal and polyimide dielectric layer are stacked on InP. Antenna is designed on the top metal layer. By optimizing the length of the bottom floating metal layer, one-sided directional radiation can be realized. The branched coplanar wave guide (CPW) transmission line is connected to each antenna element with the same electrical length. The size of the 1 x 4 array antenna is 2,550 µm x 1,217 µm x 18 µm. In order to enhance the gain of forward direction, director metal layer is placed over 83 µm from top metal layer. Simulated realized gain in peak direction of our antenna is 9.23 dBi. The measured center frequency is almost the same as that of the simulation results.

  8. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. V{sub 18}P{sub 9}C{sub 2}. A complex phosphide carbide

    Energy Technology Data Exchange (ETDEWEB)

    Boller, Herbert [Linz Univ. (Austria). Inst. fuer Anorganische Chemie; Effenberger, Herta [Wien Univ. (Austria). Inst. fuer Mineralogie und Kristallographie

    2016-08-01

    V{sub 18}P{sub 9}C{sub 2} crystallizes in the orthorhombic space group Pmma with the lattice parameters a = 17.044(3), b = 3.2219(7), and c = 13.030(2) Aa, Z = 2. The crystal structure is composed of 19 symmetry-independent atoms. The crystal structure is considered as a network formed by the transition metal atoms exhibiting cubic, trigonal prismatic, and octahedral voids centered by V, P, and C atoms, respectively. Vice versa, the V and P atoms form a three-dimensional network. The two CV{sub 6} octahedra are edge- and corner-connected to chains running parallel to [010]. The five unique P atoms are trigonal prismatically coordinated by V atoms with one to three faces capped again by a V atom. The V atoms have mainly cubic environments formed solely by V or by V and P atoms. V{sub 18}P{sub 9}C{sub 2} exhibits some structural relations to other compounds of the ternary system V-P-C as well as to other intermetallic phases. Despite the low carbon content, V{sub 18}P{sub 9}C{sub 2} is considered as a ternary compound rather than an interstitially stabilized (binary) phosphide in view of its special structural features.

  10. ROLE OF C AND P SITES ON THE CHEMICAL ACTIVITY OF METAL CARBIDE AND PHOSPHIDES: FROM CLUSTERS TO SINGLE-CRYSTAL SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; VINES, F.; LIU, P.; ILLAS, F.

    2007-07-01

    Transition metal carbides and phosphides have shown tremendous potential as highly active catalysts. At a microscopic level, it is not well understood how these new catalysts work. Their high activity is usually attributed to ligand or/and ensemble effects. Here, we review recent studies that examine the chemical activity of metal carbide and phosphides as a function of size, from clusters to extended surfaces, and metal/carbon or metal/phosphorous ratio. These studies reveal that the C and P sites in these compounds cannot be considered as simple spectators. They moderate the reactivity of the metal centers and provide bonding sites for adsorbates.

  11. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Hannes [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany); ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Ohrdes, Tobias [Institute for Solar Energy Research Hamelin (ISFH), 31860 Emmerthal (Germany); Dastgheib-Shirazi, Amir [Div. Photovoltaics, Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Puthen-Veettil, Binesh; König, Dirk [ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Altermatt, Pietro P. [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2014-01-28

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl{sub 3} diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)–(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher V{sub oc}. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  12. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    Science.gov (United States)

    Wagner, Hannes; Ohrdes, Tobias; Dastgheib-Shirazi, Amir; Puthen-Veettil, Binesh; König, Dirk; Altermatt, Pietro P.

    2014-01-01

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl3 diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)-(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher Voc. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  13. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides.

    Science.gov (United States)

    Muthuswamy, Elayaraja; Brock, Stephanie L

    2010-11-17

    Unexpected reactivity on the part of oxide nanoparticles that enables their transformation into phosphides or sulfides by solution-phase reaction with trioctylphosphine (TOP) or sulfur, respectively, at temperatures of ≤370 °C is reported. Impressively, single-phase phosphide products are produced, in some cases with controlled anisotropy and narrow polydispersity. The generality of the approach is demonstrated for Ni, Fe, and Co, and while manganese oxides are not sufficiently reactive toward TOP to form phosphides, they do yield MnS upon reaction with sulfur. The reactivity can be attributed to the small size of the precursor particles, since attempts to convert bulk oxides or even particles with sizes approaching 50 nm were unsuccessful. Overall, the use of oxide nanoparticles, which are easily accessed via reaction of inexpensive salts with air, in lieu of organometallic reagents (e.g., metal carbonyls), which may or may not be transformed into metal nanoparticles, greatly simplifies the production of nanoscale phosphides and sulfides. The precursor nanoparticles can easily be produced in large quantities and stored in the solid state without concern that "oxidation" will limit their reactivity.

  14. Exploiting the P L2,3 absorption edge for optics: spectroscopic and structural characterization of cubic boron phosphide thin films

    NARCIS (Netherlands)

    Huber, S.P.; Medvedev, V.V.; Meyer-Ilse, J.; Gullikson, E.; Padavala, B.; Edgar, J.H.; Sturm, J.M.; Kruijs, van de R.W.E.; Prendergast, D.; Bijkerk, F.

    2016-01-01

    The transmission of cubic boron phosphide (c-BP) thin films, prepared by chemical vapor deposition (CVD), was evaluated near the phosphorous L2,3 and boron K absorption edge. The c-BP films were analyzed with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray ab

  15. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Science.gov (United States)

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically.

  16. Aluminum phosphide poisoning known as rice tablet: A common toxicity in North Iran

    Directory of Open Access Journals (Sweden)

    A Hosseinian

    2011-01-01

    Full Text Available Background: Aluminum phosphide (ALP is a highly effective insecticide and rodenticide used frequently to protect stored grain. Acute poisoning with this compound is common in some countries including India and Iran, and is a serious health problem. Aim: The objective of this study was to survey ALP poisoning locally known as "Rice Tablet" and the outcome in a referral poisoning hospital in Mazandaran province, northern part of Iran. Materials and Methods: The study was a cross-sectional study from March 2007 to February 2008. Records of all patients admitted and hospitalized to a referral teaching hospital during the 2 year period were collected. Information including gender, age, cause of toxicity, amount of AIP consumed, route of exposure, time between exposure and hospital admission, signs and symptoms of toxicity at admission, therapeutic intervention, laboratory tests, and outcome were extracted from the patients′ notes. Patients who died and survived were compared using appropriate statistical tests. Results: During the two-year period, 102 patients, 46 men and 56 women with mean (±SD age 28.5 ± 12.4 year were admitted with ALP poisoning. The most common signs and symptoms at admission were nausea (79.4%, vomiting (76.5%, and abdominal pain (31.4%. 41.1% of the patients showed metabolic acidosis. Suicidal intention was the most common cause of poisoning (97% leading to 19 (18.6% deaths. Compared with the patients who survived, those who died had taken higher amount of ALP tablet (2.2 ± 2.4 vs. 1.4 ± 1.0, P < 0.05, had poor liver function test (P < 0.0001 and severe metabolic acidosis (pH: 7.17 ± 0.19 vs. 7.33 ± 0.08, P < 0.0001. Conclusion: ALP poisoning is a common toxicity in Iran causing high morality. This is a serious health problem in agricultural region where ALP is readily available. Withdrawal of ALP tablet from the market and introduction of safer products as rodenticides and insecticides is recommended.

  17. Mössbauer Spectroscopy Investigation and Hydrodesulfurization Properties of Iron–nickel Phosphide Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaudette, Amy F.; Burns, Autumn W.; Hayes, John R.; Smith, Mica C.; Bowker, Richard H.; Seda, Takele; Bussell, Mark E.

    2010-05-25

    Unsupported and silica-supported FexNi2-xPy catalysts having a range of metal compositions (0 < x 6 2.0) were investigated using Mössbauer spectroscopy, and the results correlated with the surface and hydrodesulfurization (HDS) properties of the supported catalysts. Mössbauer spectroscopy permits determination of the relative site occupancy of Fe atoms in tetrahedral (M(1)) and pyramidal (M(2)) sites in the FexNi2-xPy materials. Fe atoms preferentially occupy M(2) sites for materials with significant Fe contents (x > ~0.60), but the Fe site preference reverses as the Fe content decreases (x < ~0.60). Similar occupation trends are observed for the unsupported and silica-supported FexNi2-xPy materials. Thiophene HDS measurements of the FexNi2-xPy/SiO2 catalysts revealed catalysts with high Fe contents (0.80 6 x 6 2.00) to have low activities, while the activities of Ni-rich catalysts increased dramatically with increased Ni content (0.03 6 x 6 0.60). The highest HDS activity was measured for a catalyst having a nominal precursor composition of Fe0.03Ni1.97P2.00/SiO2; this catalyst was 40% more active than a optimized nickel phosphide catalyst prepared from a precursor having a nominal composition of Ni2.00P1.60/SiO2. The 25 wt.% Fe0.03Ni1.97P2.00/SiO2 catalyst also had a dibenzothiophene HDS activity just over 10% higher than that of the 25 wt.% Ni2.00P1.60/SiO2 catalyst at 548 K. The trend of increasing HDS activity for the FexNi2-xPy/ SiO2 catalysts correlates with preferential Fe occupation of M(1) sites (and, therefore, Ni occupation of M(2) sites). Supported by X-ray photoelectron spectroscopy and oxygen chemisorption measurements, we conclude that the high activity of Ni-rich FexNi2-xPy/SiO2 catalysts can be traced to a high surface density of Ni in M(2) sites that are resistant to site blockage due to S incorporation.

  18. Facile synthesis of iron phosphide Fe{sub 2}P nanoparticle and its catalytic performance in thiophene hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiang, E-mail: huangxianghd@gmail.com; Dong, Qing; Huang, He; Yue, Li; Zhu, Zhibin; Dai, Jinhui [Ocean University of China, Institute of Materials Science and Engineering (China)

    2014-12-15

    Nanosized iron phosphide (Fe{sub 2}P) was successfully synthesized under mild solvothermal conditions with environmental-friendly raw materials. The key synthetic parameters including the molar ratios of Fe/P in initial mixture, the solvothermal treatment temperature, and duration were systematically investigated, and the samples were characterized using X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy. These measurements indicated that the nanoparticles are pure Fe{sub 2}P with an average particle size of about 20 nm. Furthermore, the catalytic performance of the as-synthesized Fe{sub 2}P/ZSM-5 in thiophene hydrodesulfurization was tested. The results showed that the desulfurization efficiency of thiophene can reach up to 88 % after 3 h with a stable catalytic activity during the whole examination process.

  19. Characterization of the Absolute Crystal Polarity across Twin Boundaries in Gallium Phosphide Using Convergent-Beam Electron Diffraction.

    Science.gov (United States)

    Cohen; McKernan; Carter

    1999-05-01

    : The measurement of absolute crystal polarity is crucial to understanding the structural properties of many planar defects in compound semiconductors. Grain boundaries, including twin boundaries, in the sphalerite lattice are uniquely characterized by the crystallographic misorientation of individual grains and the direction of the crystal polarity in domains adjoining the grain boundary. To evaluate crystal polarity in gallium phosphide (GaP), asymmetrical interference contrast in convergent-beam electron-diffraction (CBED) patterns was used to ascertain the nature and direction of polar bonds. The direction of the asymmetry in the electron diffraction reflections was correlated with the crystal polarity of a sample with known polarity. The CBED technique was applied to determine the polar orientation of grains adjoining Sigma = 3 coherent and lateral twin boundaries in polycrystalline GaP.

  20. 25th anniversary article: exploring nanoscaled matter from speciation to phase diagrams: metal phosphide nanoparticles as a case of study.

    Science.gov (United States)

    Carenco, Sophie; Portehault, David; Boissière, Cédric; Mézailles, Nicolas; Sanchez, Clément

    2014-01-22

    The notions of nanoscale "phase speciation" and "phase diagram" are defined and discussed in terms of kinetic and thermodynamic controls, based on the case of metal phosphide nanoparticles. After an overview of the most successful synthetic routes for these exotic nanomaterials, the cases of InP, Ni2 P, Ni12 P5 and Pdx Py are discussed in detail to highlight the relationship between composition, structure, and size at the nanoscale. The influence of morphology is discussed next by comparing the behavior of Cu3 P nanophases with those of Nix Py , FeP/Fe2 P, and CoP/Co2 P. Perspectives provide the reader with methodological guidelines for further investigation of nanoscale "phase diagrams", and their use for optimized synthesis of new functional nanomaterials.

  1. Probing hydrodesulfurization over bimetallic phosphides using monodisperse Ni2-xMxP nanoparticles encapsulated in mesoporous silica

    Science.gov (United States)

    Danforth, Samuel J.; Liyanage, D. Ruchira; Hitihami-Mudiyanselage, Asha; Ilic, Boris; Brock, Stephanie L.; Bussell, Mark E.

    2016-06-01

    Metal phosphide nanoparticles encapsulated in mesoporous silica provide a well-defined system for probing the fundamental chemistry of the hydrodesulfurization (HDS) reaction over this new class of hydrotreating catalysts. To investigate composition effects in bimetallic phosphides, the HDS of dibenzothiophene (DBT) was carried out over a series of Ni-rich Ni2-xMxP@mSiO2 (M = Co, Fe) nanocatalysts (x ≤ 0.50). The Ni2-xMxP nanoparticles (average diameters: 11-13 nm) were prepared by solution-phase arrested precipitation and encapsulated in mesoporous silica, characterized by a range of techniques (XRD, TEM, IR spectroscopy, BET surface area, CO chemisorption) and tested for DBT HDS activity and selectivity. The highest activity was observed for a Ni1.92Co0.08P@mSiO2 nanocatalyst, but the overall trend was a decrease in HDS activity with increasing Co or Fe content. In contrast, the highest turnover frequency (TOF) was observed for the most Co- and Fe-rich compositions based on sites titrated by CO chemisorption. IR spectral studies of adsorbed CO on the Ni2-xMxP@mSiO2 catalysts indicate that an increase in electron density occurs on Ni sites as the Co or Fe content is increased, which may be responsible for the increased TOFs of the catalytic sites. The Ni2-xMxP@mSiO2 nanocatalysts exhibit a strong preference for the direct desulfurization pathway (DDS) for DBT HDS that changes only slightly with increasing Co or Fe content.

  2. In situ X-ray absorption fine structure studies on the structure of nickel phosphide catalyst supported on K-USY

    CERN Document Server

    Kawai, T; Suzuki, S

    2003-01-01

    Local structure around Ni in a nickel phosphide catalyst supported on K-USY was investigated by an situ X-ray absorption fine structure (XAFS) method during the reduction process of the catalyst and the hydrodesulfurization (HDS) reaction of thiophene. In the passivated sample, Ni phosphide was partially oxidized but after the reduction, 1.1 nm diameter Ni sub 2 P particles were formed with Ni-P and Ni-Ni distances at 0.218 and 0.261 nm, respectively, corresponding to those of bulk Ni sub 2 P. In situ XAFS cleary revealed that the Ni sub 2 P structure was stable under reaction conditions and was an active structure for the HDS process.

  3. Comparative Study on the Effectiveness of Coumavec® and Zinc Phosphide in Controlling Zoonotic Cutaneous Leishmaniasis in a Hyperendemic Focus in Central Iran

    Directory of Open Access Journals (Sweden)

    A Veysi

    2012-06-01

    Full Text Available Background: Zoonotic cutaneous leishmaniasis (ZCL is an increasing health problems in many rural areas of Iran. The aim of this study was to introduce a new alternative rodenticide to control the reservoirs of ZCL, its effect on the vector density and the incidence of the disease in hyperendemic focus of Esfa­han County, central Iran.Methods: The study was carried out from January 2011 to Janu­ary 2012. In intervention areas, rodent control operation was conducted using zinc phosphide or Coumavec®. Active case findings were done by house-to-house visits once every season during 2011–2012. To evaluate the effect of rodent control operation on the vector density, sand flies were collected twice a month using sticky traps.Results: The reduction rate of rodent holes in intervention areas with Coumavec® and zinc phosphide were 48.46% and 58.15% respectively, whereas in control area results showed 6.66 folds intensification. The Incidence of ZCL significantly reduced in the treated areas. Totally, 3200 adult sand flies were collected and identified in the inter­vention and control areas. In the treated area with zinc phosphide, the density of Phlebotomus papatasi was higher in outdoors in contrast with the treated area by Coumavec® which the density of the sand fly was higher in indoors. Conclusion: Both rodenticides were effective on the incidence of ZCL and the population of the reservoirs as well. Coumavec® seems to be effective on the outdoor density of the vector. This combination of rodenticide-insecticide could be a suitable alternative for zinc phosphide while bait shyness or behavioral resistance is occurred.

  4. Proposing Boric Acid as an Antidote for Aluminium Phosphide Poisoning by Investigation of the Chemical Reaction Between Boric Acid and Phosphine

    OpenAIRE

    Motahareh Soltani; Seyed Farid Shetab-Boushehri; Hamidreza Mohammadi; Seyed Vahid Shetab-Boushehri

    2013-01-01

    Aluminium phosphide (AlP) is a storage fumigant pesticide, which is used to protect stored grains especially from insects and rodents. It releases phosphine (PH3) gas, a highly toxic mitochondrial poison, in contact with moisture, particularly if acidic. Although the exact mechanism of action is unknown so far, the major mechanism of PH3 toxicity seems to be the inhibition of cytochrome-c oxidase and oxidative phosphorylation which eventually results in adenosine triphosphate (ATP) depletion ...

  5. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    Energy Technology Data Exchange (ETDEWEB)

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  6. Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst

    Science.gov (United States)

    Yang, Libin; Wang, Kunyang; Du, Gu; Zhu, Wenxin; Cui, Liang; Zhang, Chengxiao; Sun, Xuping; Asiri, Abdullah M.

    2016-11-01

    Hydrogen has been considered as an ideal energy carrier for replacing fossil fuels to mitigate global energy crises. Hydrolysis of sodium borohydride (NaBH4) is simple and effective for hydrogen production but needs active and durable catalysts to accelerate the kinetics. In this paper, we demonstrate that cobalt phosphide nanowall arrays supported on carbon cloth (CoP NAs/CC) efficiently catalyze the hydrolytic dehydrogenation of NaBH4 with an activation energy of 42.1 kJ mol-1 in alkaline media. These monolithic CoP NAs/CC show a maximum hydrogen generation rate of 5960 {{ml}} {{{\\min }}}-1 {{{{g}}}-1}({{CoP})} and are robust with superior durability and reusability. They are also excellent in activity and durability for electrochemical hydrogen evolution in 1.0 M KOH, with the need of an overpotential of only 80 mV to drive 10 mA cm-2. They offer us a promising low-cost hydrogen-generating catalyst for applications.

  7. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Motahareh Soltani

    2016-08-01

    Full Text Available Objectives: Aluminium phosphide (AlP is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3, a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01. Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01. A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  8. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    Science.gov (United States)

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  9. Mid-infrared tunable, narrow-linewidth difference-frequency laser based on orientation-patterned gallium phosphide

    Science.gov (United States)

    Insero, G.; Clivati, C.; D’Ambrosio, D.; De Natale, P.; Santambrogio, G.; Schunemann, P. G.; Borri, S.; Zondy, J. J.

    2017-01-01

    We report on the first characterization of orientation-patterned gallium phosphide (OP-GaP) crystals used to generate narrow-linewidth, coherent mid-infrared (MIR) radiation at 5.85 μm by difference frequency generation (DFG) of continuous-wave (cw) Nd:YAG laser at 1064nm and diode-laser at 1301nm. By comparison of the experimental absolute MIR efficiency versus focusing to Gaussian beam DFG theory, we derive an effective nonlinear coefficient for first-order quasi-phase-matched OP-GaP at the generated DFG wavelength. Using d = (2/π)d 14 and taking into account Miller’s delta rule, we retrieve an absolute value of the d 14 quadratic nonlinear susceptibility coefficient of GaP of d 14 = 27.2(3) pm/V at 5.85 μm, in good agreement with the latest absolute measurement of this nonlinear coefficient from non-phase-matched second-harmonic generation (1.32 μm → 0.66 μm) taking into account multiple reflection effects [Shoji et al 1997 J. Opt. Soc. Am. B 14 2268]. The temperature and signal-wave tuning curves are also in qualitative agreement with a recently proposed temperature-dependent Sellmeier equation for OP-GaP when focusing effects are taken into account.

  10. Pure and carbon-doped boron phosphide (6,0) zigzag nanotube: A computational NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Arshadi, S., E-mail: sattar_arshadi@yahoo.com [Department of Chemistry, Payame Noor University, 19395-4697, I.R. of Iran (Iran, Islamic Republic of); Bekhradnia, A.R., E-mail: abekhradnia@gmail.com [Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of); Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg (Sweden); Alipour, F.; Abedini, S. [Department of Chemistry, Payame Noor University, 19395-4697, I.R. of Iran (Iran, Islamic Republic of)

    2015-11-15

    Calculations were performed for investigation of the properties of the electronic structure of Carbon- Doped Boron Phosphide Nanotube (CDBPNT). Pristine and three models of C-doped structures of (6,0) zigzag BPNT were studied at density functional theory (DFT) in combination with 6-311G* basis set using Gaussian package of program. The calculated parameters reveal that various {sup 11}B and {sup 31}P nuclei are divided into some layers with equivalent electrostatic properties. The electronic structure properties are highly influenced by replacement of {sup 11}B and {sup 31}P atoms by {sup 12}C atoms in pristine model. Furthermore, the HOMO−LUMO gap energy for suggested doped models (I), (II) and (III) were lower than pure BPNT pristine systems. The dipole moment values of models (II) and (III) were decreased to 1.788 and 1.789, respectively while the dipole moments of model (I) were enhanced to 4.373, in compare to pure pristine one (2.586). The magnitude of changes in Chemical Shielding (CS) tensor parameters revealed that the electron density at the site of {sup 31}P was higher than that at the site of {sup 11}B due to carbon doping.

  11. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    Science.gov (United States)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  12. Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries.

    Science.gov (United States)

    Zhang, Huijuan; Feng, Yangyang; Zhang, Yan; Fang, Ling; Li, Wenxiang; Liu, Qing; Wu, Kai; Wang, Yu

    2014-07-01

    Herein, we introduce a peapod-like composite with Ni12 P5 nanoparticles encapsulated in carbon fibers as the enhanced anode in Li-ion batteries for the first time. In the synthesis, NiNH4 PO4 ⋅H2 O nanorods act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source. With the aid of hydrogen bonding between the precursor and carbon source, a polymer layer is hydrothermally formed and then rationally converted into carbon fibers upon inert calcination at elevated temperatures. Meanwhile, NiNH4 PO4 ⋅H2 O nanorods simultaneously turn into Ni12 P5 nanoparticles encapsulated in carbon fibers by undergoing a decomposition and reduction process induced by high temperature and the carbon fibers. The obtained composite performs excellently as a Li-ion batteries anode relative to pure-phase materials. Specific capacity can reach 600 m Ah g(-1) over 200 cycles, which is much higher than that of isolated graphitized carbon or phosphides, and reasonably believed to originate from the synergistic effect based on the combination of Ni12 P5 nanoparticles and carbon fibers. Due to the benignity, sustainability, low cost, and abundance of raw materials of the peapod-like composite, numerous potential applications, in fields such as optoelectronics, electronics, specific catalysis, gas sensing, and biotechnology can be envisaged.

  13. Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator.

    Science.gov (United States)

    Maidment, Luke; Schunemann, Peter G; Reid, Derryck T

    2016-09-15

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation-patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 μm with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  14. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator

    Science.gov (United States)

    Maidment, Luke; Schunemann, Peter G.; Reid, Derryck T.

    2016-09-01

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 \\mu m with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  15. Molecular fingerprint-region spectroscopy from 5-12 \\mu m using an orientation-patterned gallium phosphide optical parametric oscillator

    CERN Document Server

    Maidment, Luke; Reid, Derryck T

    2016-01-01

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 \\mu m with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  16. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Avinash Agarwal

    2014-01-01

    Full Text Available Introduction: The primary objective of this study was to determine the serum level of antioxidant enzymes and to correlate them with outcome in patients of aluminum phosphide (ALP poisoning and, secondly, to evaluate the effect of N-acetylcysteine (NAC given along with supportive treatment of ALP poisoning. Design: We conducted a cohort study in patients of ALP poisoning hospitalized at a tertiary care center of North India. The treatment group and control group were enrolled during the study period of 1 year from May 2011 to April 2012. Interventions: Oxidative stress was evaluated in each subject by estimating the serum levels of the enzymes, viz. catalase, superoxide dismutase (SOD and glutathione reductase (GR. The treatment group comprised of patients who were given NAC in addition to supportive treatment (magnesium sulfate and vasopressors, if required, while in the control group, only supportive treatment was instituted. The primary endpoint of the study was the survival of the patients. Measurements and Results: The baseline catalase (P = 0.008 and SOD (P < 0.01 levels were higher among survivors than non-survivors. Of the total patients in the study, 31 (67.4% expired and 15 (32.6% survived. Among those who expired, the mean duration of survival was 2.92 ± 0.40 days in the test group and 1.82 ± 0.33 days in the control group (P = 0.043. Conclusions: This study suggests that the baseline level of catalase and SOD have reduced in ALP poisoning, but baseline GR level has not suppressed but is rather increasing with due time, and more so in the treatment group. NAC along with supportive treatment may have improved survival in ALP poisoning.

  17. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.

    Science.gov (United States)

    Lee, Yoon Cheol; Han, Dong-Wook; Park, Mihui; Jo, Mi Ru; Kang, Seung Ho; Lee, Ju Kyung; Kang, Yong-Mook

    2014-06-25

    We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the electrospinning technique. These dense and thick carbon layers prevented not only electrolyte penetration into the inner LiFePO4 nanofibers but also facile Li ion transport at the electrode/electrolyte interface. In contrast, the existing strong interactions between the carbon and oxygen atoms on the surface of the pristine LiFePO4/C nanofibers were weakened or partly broken by the adhesion of phosphorus, thereby improving Li ion migration through the thick carbon layers on the surfaces of the LiFePO4 nanofibers. As a result, the phosphidated LiFePO4/C nanofibers have a higher initial discharge capacity and a greatly improved rate capability when compared with pristine LiFePO4/C nanofibers. Our findings of high Li ion transport induced by phosphidation can be widely applied to other carbon-coated electrode materials.

  18. In situ XRD, XAS, and magnetic susceptibility study of the reduction of ammonium nickel phosphate NiNH4PO4 x H2O into nickel phosphide.

    Science.gov (United States)

    Berhault, Gilles; Afanasiev, Pavel; Loboué, Hermione; Geantet, Christophe; Cseri, Tivadar; Pichon, Christophe; Guillot-Deudon, Catherine; Lafond, Alain

    2009-04-06

    The reduction of the ammonium nickel phosphate NiNH(4)PO(4) x H(2)O precursor into nickel phosphide (Ni(2)P), a highly active phase in hydrotreating catalysis, was studied using a combination of magnetic susceptibility and in situ X-ray diffraction and X-ray absorption spectroscopy (XAS) techniques. The transformation of NiNH(4)PO(4) x H(2)O into Ni(2)P could be divided into three distinguishable zones: (1) from room temperature to 250 degrees C, the NiNH(4)PO(4) x H(2)O structure was essentially retained; (2) from 300 to 500 degrees C, only an amorphous phase was observed; (3) above 500 degrees C, a crystallization process occurred with the formation of Ni(2)P. An in situ XAS study and magnetic susceptibility measurements clearly revealed for the first time that the amorphous region corresponds to the nickel pyrophosphate phase alpha-Ni(2)P(2)O(7). The phosphate reduction into phosphide did not start before 550 degrees C and led to the selective formation of Ni(2)P at 650 degrees C.

  19. Design and fabrication of anti-reflection coating on Gallium Phosphide, Zinc Selenide and Zinc Sulfide substrates for visible and infrared application

    Directory of Open Access Journals (Sweden)

    Mokrý P.

    2013-05-01

    Full Text Available Results of design and fabrication of a dual-band anti-reflection coating on a gallium phosphide (GaP, zinc selenide (ZnSe and zinc sulfide (ZnS substrates are presented. A multilayer stack structure of antireflection coatings made of zinc sulfide and yttrium fluoride (YF3 was theoretically designed for optical bands between 0.8 and 0.9 μm and between 9.5 and 10.5 μm. This stack was designed as efficient for these materials (GaP, ZnS, ZnSe together. Multilayer stack structure was deposited using thermal evaporation method. Theoretically predicted transmittance spectra were compared with transmitted spectra measured on coated substrates. Efficiency of anti-reflection coating is estimated and discrepancies are analyzed and discussed.

  20. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  1. Thermal expansion, heat capacity and Grüneisen parameter of iridium phosphide Ir2P from quasi-harmonic Debye model

    Science.gov (United States)

    Liu, Z. J.; Song, T.; Sun, X. W.; Ma, Q.; Wang, T.; Guo, Y.

    2017-03-01

    Thermal expansion coefficient, heat capacity, and Grüneisen parameter of iridium phosphide Ir2P are reported by means of quasi-harmonic Debye model for the first time in the current study. This model combines with first-principles calculations within generalized gradient approximation using pseudopotentials and a plane-wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. The Debye temperature as a function of volume, the Grüneisen parameter, thermal expansion coefficient, constant-volume and constant-pressure heat capacities, and entropy on the temperature T are also successfully obtained. All the thermodynamic properties of Ir2P in the whole pressure range from 0 to 100 GPa and temperature range from 0 to 3000 K are summarized and discussed in detail.

  2. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Kristen [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-19

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  3. Analysis of radiation-damaged and annealed gallium arsenide and indium phosphide solar cells using deep-level transient spectroscopy techniques. Master's thesis

    Energy Technology Data Exchange (ETDEWEB)

    Pinzon, D.

    1991-03-01

    Degradation of solar cell performance from radiation damage was found to be reversed through annealing processes. The mechanisms behind the degradation and recovery is based on deep-level traps, or defects, in the lattice structure of the solar cell. Through a process known as Deep Level Transient Spectroscopy (DLTS), a correlation can be made between damage/recovery and trap energy level/concentration of the cell. Gallium Arsenide (GaAs) and Indium Phosphide (InP) solar cells were subjected to 1 MeV electron irradiation by a Dynamitron linear acceleration at two fluence levels of 1E1r and 1E15 electrons/cm sq. The process of annealing included thermal annealing at 90 c with forward bias current and thermal annealing alone for (GaAs). After each cycle, DLTS measurements were taken to determine the energy level of the traps and their concentration. Multiple cycles of irradiation, annealing and DLTS were performed to observe the correlation between degradation and recovery to trap energy level and concentration. The results show that the lower energy level traps are associated with the recovery of the cells while the higher level traps are associated with the overall permanent degradation of the cells.

  4. Interaction between F2 gas with the pristine and 3C-doped(4, 4 armchair boron phosphide nanotubes: a DFT study

    Directory of Open Access Journals (Sweden)

    M Rezaei-Sameti

    2015-12-01

    Full Text Available In this research, the structure, quantum and NQR (Nuclear quadrupole resonanceparameters of F2 gas adsorption on the pristine and 3C-doped (4,4 armchair models of boron phosphide nanotubes (BPNTs have been investigated in the framework of density functional theory. For this purpose, at the first step, four models for F2 adsorption on the inner and outer surfaces of pristine and 3C-doped BPNTS are considered and then all structures are optimized by using Gaussian 03 program package. The optimized structures are used to calculate the quantum and NQR parameters. The calculated results reveal that the adsorption energy of pristine and 3C-doped models of BPNTs are exothermic and adsorption process is a physisorption process due to the weak Van der Waals interaction. The substitution of three carbons with three B atoms of nanotube decreases significantly the adsorption energies. The F2 adsorption and 3C-doping decrease the band gap, global hardness, and ionization potential of the pristine BPNTs. The calculated NQR parameters of all the models show that CQ and &etaQ values of the first layer are larger than those of the other layers.

  5. Phosphorus K β X-Ray Emission Spectra and Valence-Band Structures of Transition-Metal Phosphides and GaAs 1-xPx

    Science.gov (United States)

    Sugiura, Chikara

    1996-07-01

    The P Kβ emission spectra in fluorescence from ZrP, NbP, MoP,HfP, TaP, WP, AgP2, CdP2, Mn3P2, Cd3P2 and GaAs1-xPxfor 0.2 ≤ x ≤ 1 are measured with a high-resolutiontwo-crystal vacuum spectrometer equipped with Ge(111) crystals. Theinfluence of metal atoms appears distinctly in the P Kβemission spectra of transition-metal phosphides. The effect ofarsenic atoms appears slightly in the P Kβ emission spectraof GaAs1-xPx. The P Kβ emission spectra of AgP2,CdP2, Cd3P2 and GaAs0.6 P0.4 are compared withavailable P L2,3 emission and XPS valence-band spectra ona common energy scale. It is shown that the P 3p electronsinteract fairly with the metal d electrons in the upper partof the valence band for MP ( M = Zr, Nb, Mo, Hf, Ta, W) and Mn3P2;considerable p-d, s mixing occurs in the middle part for AgP2and in the lower part for CdP2 and Cd3P2; and the Ga 3dstates mix fairly with the P 3s states in GaAs0.6P0.4.

  6. Proposing Boric Acid as an Antidote for Aluminium Phosphide Poisoning by Investigation of the Chemical Reaction Between Boric Acid and Phosphine

    Directory of Open Access Journals (Sweden)

    Motahareh Soltani

    2013-01-01

    Full Text Available Aluminium phosphide (AlP is a storage fumigant pesticide, which is used to protect stored grains especially from insects and rodents. It releases phosphine (PH3 gas, a highly toxic mitochondrial poison, in contact with moisture, particularly if acidic. Although the exact mechanism of action is unknown so far, the major mechanism of PH3 toxicity seems to be the inhibition of cytochrome-c oxidase and oxidative phosphorylation which eventually results in adenosine triphosphate (ATP depletion and cell death. Death due to AlP poisoning seems to be as a result of myocardial damage. No efficient antidote has been found for AlP poisoning so far, and unfortunately, most of the poisoned human cases die. PH3, like ammonia (NH3, is a Lewis base with a lone-pair electron. However, boric acid (B(OH3 is a Lewis acid with an empty p orbital. It is predicted that lone-pair electron from PH3 is shared with the empty p orbital from B(OH3 and a compound forms in which boron attains its octet. In other words, PH3 is trapped and neutralised by B(OH3. The resulting polar reaction product seems to be excretable by the body due to hydrogen bonding with water molecules. The present article proposes boric acid as a non-toxic and efficient trapping agent and an antidote for PH3 poisoning by investigating the chemical reaction between them.

  7. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    Science.gov (United States)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  8. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Kristen [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-18

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  9. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.

    Science.gov (United States)

    Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Gao, Shanmin

    2004-02-06

    A general synthetic route has been developed for the growth of metal phosphide, oxide, sulfide, and tungstate nanowires in aqueous solution. In detail, cetyltrimethylammonium cations (CTA(+)) can be combined with anionic inorganic species along a co-condensation mechanism to form lamellar inorganic-surfactant intercalated mesostructures, which serve as both microreactors and reactants for the growth of nanowires. For example, GaP, InP, gamma-MnO(2), ZnO, SnS(2), ZnS, CdWO(4), and ZnWO(4) nanowires have been grown by this route. To the best of our knowledge, this is the first time that the synthesis of GaP and InP nanowires in aqueous solution has been achieved. This strategy is expected to extend to grow nanowires of other materials in solution or by vapor transport routes, since the nanowire growth of any inorganic materials can be realized by selecting an appropriate reaction and its corresponding lamellar inorganic-surfactant precursors.

  10. Effects of Aluminum Phosphide on Soil Microbial Population and Enzyme Activities%磷化铝对土壤微生物数量和酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    仉欢; 朱玉坤; 乔康; 王开运

    2012-01-01

    Effects of aluminum phosphide (0.1, 1 mg·g-1 and 10 mg·g-1) on soil microbial population and enzyme activities were studied under laboratory control condition. The results indicated that, all concentrations of aluminum phosphide had inhibitory effect on soil bacteria, fungi and actinomyces and the inhibitory effect was more obvious with concentration increased. However, the effect caused by low concentration (0.1 mg·g-1) returned to the control level after a period of treatment. Aluminum phosphide had inhibitory effect on soil urease, and the inhibitory effect increased with the increasing concentration. Low concentration of aluminum phosphide had no significant inhibitory effect on soil invertase, while the treatment with the highest concentration (10 mg·g-1) had the greatest inhibition all the time. All concentrations of aluminum phosphide had inhibitory or stimulatory effect on soil hydrogen peroxidase in the early stage, while the effect returned to the control level on 30 days after treatment. The present data supported the conclusion that aluminum phosphide at the routine dose had certain effect on soil microbial population and enzyme activities, but the effect disappeared and recovered to the control level after a period.%为明确磷化铝对土壤微生物数量和酶活性的影响,采用室内培养的方法,研究了经0.1、1 mg? g4和10 mg?g-1 3个浓度磷化铝熏蒸处理后,供试土壤中微生物数量和土壤酶活性的变化.结果表明,磷化铝处理土壤后,各个浓度的磷化铝对土壤细菌、真菌和放线菌数量具有抑制作用,浓度越高,抑制作用越强,但一段时间后低浓度(0.1 mg?g-1)处理对土壤微生物数量的影响恢复至对照水平.磷化铝对土壤脲酶表现为抑制作用,并随浓度升高而增强;低浓度处理对土壤中的蔗糖酶活性抑制作用不明显,而高浓度(10mg?g-1)处理表现为强烈的抑制作用;各浓度处理初期对土壤过氧化氢酶表现为

  11. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  12. An Improved Study of Electronic Band Structure and Optical Parameters of X-Phosphides (X--B, AL, Ga, In) by Modified Becke-Johnson Potential%An Improved Study of Electronic Band Structure and Optical Parameters of X-Phosphides (X--B, AL, Ga, In) by Modified Becke-Johnson Potential

    Institute of Scientific and Technical Information of China (English)

    Masood Yousaf; M.A. Saeed; R. Ahmed; M.M. Alsardia; Ahmad Radzi Mat Isa; A. Shaari

    2012-01-01

    We report the electronic band structure and optical parameters of X-Phosphides (X=B, AI, Ga, In) by first-principles technique based on a new approximation known as modified Becke-Johnson (roB J). This potential is considered more accurate in elaborating excited states properties of insulators and semiconductors as compared to LDA and GGA. The present calculated band gaps values of BP, AlP, GaP, and InP are 1.867 eV, 2.268 eV, 2.090 eV, and 1.377 eV respectively, which are in close agreement to the experimental results. The band gap values trend in this study is as: E9 (mBJ-GGA/LDA) 〉 E9 (GGA) 〉 Eg (LDA). Optical parametric quantities (dielectric constant, refractive index, reflectivity and optical conductivity) which based on the band structure are aiso presented and discussed. BP, AlP, GaP, and InP have strong absorption in between the energy range 4-9 eV, 4-7 ev, 3-7 eV, and 2-7 eV respectively. Static dielectric constant, static refractive index and coefficient of reflectivity at zero frequency, within mBJ-GGA, are also calculated. BP, AIP, GaP, and InP show significant optical conductivity in the range 5.2-10 eV, 4.3-8 eV, 3.5- 7.2 eV, and 3.2-8 eV respectively. The present study endorses that the said compounds can be used in opto-electronic applications, for different energy ranges.

  13. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoP x Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Xu, Bo Z. [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Ye, Ranfeng [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Beckman, Scott P. [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-10-25

    Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/ RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.

  14. Gallium phosphide high temperature diodes

    Science.gov (United States)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  15. Structure and properties of a new family of ceramic phosphides: AgZnLaP sub 2 , AgZnSmP sub 2 , and CuZnSmP sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, P.; Stacy, A.M. (Univ. of California, Berkeley (USA))

    1990-12-01

    Three new quaternary phosphides, AgZnLaP{sub 2}, AgZnSmP{sub 2}, and CuZnSmP{sub 2}, were synthesized by direct reaction of the elements. Recrystallization by isothermal chemical vapor transport, using iodine as the transporting agent, yielded single crystals. The structure of AgZnSmP{sub 2} was refined from single crystal X-ray data in the space group P{bar 3}m1 to an R value of 2.11%. The lattice parameters are a = 4.1247(4) {angstrom} and c = 6.6920(6) {angstrom}. The other two compounds were found to be isostructural, with lattice parameters a = 4.194(2) {angstrom} and c = 6.817(2) {angstrom} for AgZnLaP{sub 2} and a = 4.016(2) {angstrom} and c = 6.592(2) {angstrom} for CuZnSmP{sub 2}. These new materials sinter at temperatures near 800C, have melting points above 1,100C, and do not react with water at room temperature. Diffuse reflectance spectra and the temperature dependence of the resistivity indicate that these materials are heavily doped semiconductors.

  16. Structure and behavior of the barringerite Ni end-member, Ni[subscript 2]P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores

    Energy Technology Data Exchange (ETDEWEB)

    Dera, P.; Lavina, B.; Borkowski, L.A.; Prakapenka, V.B.; Sutton, S.R.; Rivers, M.L.; Downs, R.T.; Boctor, N.Z.; Prewitt, C.T.; (UNLV); (CIW); (UC); (Ariz)

    2009-06-01

    High pressure and high temperature behavior of synthetic Ni{sub 2}P has been studied in a laser-heated diamond anvil cell up to 50 GPA and 2200 K. Incongruent melting associated with formation of pyrite-type NiP{sub 2} and amorphous Ni-P alloy was found at an intermediate pressure range, between 6.5 and 40 GPa. Above GPa, Ni{sub 2}P melts congruently. At room conditions, Ni{sub 2}P has hexagonal C22-type structure, and without heating it remains in this structure to at least 50 GPa. With a bulk modulus K{sub 0} = 201(8) GPa and K' = 4.2(6), Ni{sub 2}P is noticeable less compressible than hcp Fe, as well as all previously described iron phosphides, and its presence in the Earth core would favorable lower the core density. In contrast to Fe{sub 2}P, the c/a ratio in Ni{sub 2}P decreases on compression because of the lack of ferromagnetic interaction along the c direction. Lack of the C22{yields}C23 transition in the Ni{sub 2}P rules out a stabilizing effect of Ni on the orthorhombic phase of natural (Fe{sub 1-x}Ni{sub x}){sub 2}P allabogdanite.

  17. Phase equilibria in the Mo-Fe-P system at 800 °C and structure of ternary phosphide (Mo(1-x)Fe(x))3P (0.10 ≤ x ≤ 0.15).

    Science.gov (United States)

    Oliynyk, Anton O; Lomnytska, Yaroslava F; Dzevenko, Mariya V; Stoyko, Stanislav S; Mar, Arthur

    2013-01-18

    Construction of the isothermal section in the metal-rich portion (<67 atom % P) of the Mo-Fe-P phase diagram at 800 °C has led to the identification of two new ternary phases: (Mo(1-x)Fe(x))(2)P (x = 0.30-0.82) and (Mo(1-x)Fe(x))(3)P (x = 0.10-0.15). The occurrence of a Co(2)Si-type ternary phase (Mo(1-x)Fe(x))(2)P, which straddles the equiatomic composition MoFeP, is common to other ternary transition-metal phosphide systems. However, the ternary phase (Mo(1-x)Fe(x))(3)P is unusual because it is distinct from the binary phase Mo(3)P, notwithstanding their similar compositions and structures. The relationship has been clarified through single-crystal X-ray diffraction studies on Mo(3)P (α-V(3)S-type, space group I42m, a = 9.7925(11) Å, c = 4.8246(6) Å) and (Mo(0.85)Fe(0.15))(3)P (Ni(3)P-type, space group I4, a = 9.6982(8) Å, c = 4.7590(4) Å) at -100 °C. Representation in terms of nets containing fused triangles provides a pathway to transform these closely related structures through twisting. Band structure calculations support the adoption of these structure types and the site preference of Fe atoms. Electrical resistivity measurements on (Mo(0.85)Fe(0.15))(3)P reveal metallic behavior but no superconducting transition.

  18. The first-principle study of N2O gas interaction on the surface of pristine and Si-, Ga-, SiGa-doped of armchair boron phosphide nanotube using DFT method

    Directory of Open Access Journals (Sweden)

    M Rezaei-Sameti

    2016-12-01

    Full Text Available In present research,  the electrical, structural, quantum and Nuclear Magnetic Resonance (NMR parameters of interaction of N2O gas on the B and P sites of pristine, Ga-, Si- and SiGa-doped (4,4 armchair models of boron phosphide nanotubes (BPNTs are investigated by using density functional theory (DFT.  For this purpose, seven models for adsorption of N2O gas on the exterior surfaces of BPNTs have been considered and then all structures are optimized by B3LYP level of theory and 6–31G (d base set. The optimized structures are used to calculate the electrical, structural, quantum and NMR parameters. The computational results revealed that the adsorption energy of all studied models of BPNTs is negative; all processes are exothermic and favorable in thermodynamic approach. When N2O gas is adsorbed from its O atom head on the B site of nanotube, N2O gas is dissociated to O atom and N2 molecule. The adsorption energy of this process is more than those of other models and more stable than other models. In A, B and C models, the global hardness decreases significantly from original values and so the activity of nanotube increases from original state. On the other hand, the electrophilicity index (ω, electronic chemical potential (μ, electronegativity (χ and global softness (S of the A, B and C models increase significantly from original value and CSI values of the C model are larger than those of other models. The results demonstrate that the Ga-, Si- and SiGa- doped BPNTs are good candidates to adsorb N2O and make N2O gas sensor

  19. 烟草熏蒸过程中仓库内外环境磷化氢浓度检测%Air phosphine concentration of aluminum phosphide fumigated warehouse

    Institute of Scientific and Technical Information of China (English)

    张建中; 陈发明; 叶青; 彭言群

    2011-01-01

    Objective To investigate the variation of air phosphine (PH3) concentrations in the internal and external environment of warehouse after aluminum phosphide (AlP) fumigation and natural air ventilation.Methods Air PH3 concentrations inside and outside fumigated warehouse were measured using synchronous sampling method according to the GBZ159 air collection standard during the process of fumigation and ventilation.Results PH3 concentrations were 30.36 ~ 182.14 g/m3 inside the warehouse when it was fumigated with 0.2~0.5 g/m3 AlP.Air PH3 concentrations were 3.12~17.9 mg/m3 and 27.3~ 162.4 g/m3 respectively at the fumigation operation position andbefore the ventilation of fumigated warehouse.PH3 concentrations gradually decreased to occupationally acceptable level in 90 % of the air samples inside the warehouse after 48 hrs of natural ventilation.Conclusion Air PH3 concentrations outside the fumigated warehouse were within the occupational acceptable levels in the whole process of fumigation.The safe level of air PH3 concentrations inside the fumigated warehouse was achieved after 72 hrs of natural air ventilation.%目的 探讨某烟草仓储基地磷化铝熏蒸过程中库内及周围环境空气中磷化氢(PH3)浓度变化规律,以及熏蒸后开仓通风散气工作场所达到安全浓度所需排放时间,为烟草熏蒸安全作业提供依据.方法 按GBZ-159采样规范,采用与熏蒸和散气过程同步等时采样方法,对某烟草仓储基地1号储烟库烟草熏蒸和开仓散气过程仓库内外环境空气中PH3浓度进行现场检测,监测不同时段库内外空气中PH3浓度.结果 库内磷化铝投放量为0.2~0.5 mg/m3;库内磷化氢熏蒸浓度为30.36~182.14 mg/m3;熏蒸时操作岗位磷化氢浓度范围为3.12~17.9 mg/m3;开仓散气前库内磷化氢浓度范围为27.3~162.4 mg/m3;在开仓散气48 h后库内pH3氢浓度逐步降至职业接触限值;库外磷化氢浓度在散气时同步检测91%

  20. Electrical properties of donors in gallium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Poedoer, B. (Hungarian Academy of Sciences, Budapest. Research Lab. for Inorganic Chemistry); Pfeiffer, J.; Csontos, L.; Nador, N. (Hungarian Academy of Sciences, Budapest. Research Inst. for Technical Physics); Deak, F. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Atomfizikai Tanszek)

    1983-04-16

    The thermal ionization energies of S, Te, and Si donors in GaP and their dependences on impurity concentration are determined from an anlysis of Hall effect data. An ellipsoidal six-valley model is used incorporating the effects of valley-orbit splitting of the ground state of the P-site donors. A careful characterization of the samples ensures that results are obtained on samples containing only one type of dominant donor. The thermal ionization energies of the above donors extrapolated to infinite dilution are (105.0 +- 5.7), (94.1 +- 2.6), and (83.5 +- 1.7) meV, respectively. The valley-orbit splitting energies of S and Te donors are also obtained, amounting to (34 +- 9) and (23.5 +- 9) meV, respectively.

  1. [Suicide attempt with aluminum phosphide poisoning].

    Science.gov (United States)

    Reyna-Medina, Mauricio; Vázquez-de Anda, Gilberto Felipe; García-Monroy, Jesús; Valdespino-Salinas, Eduardo Alfredo; Vicente-Cruz, Dante Carlos

    2013-01-01

    Introducción: la tentativa suicida con el fumigante denominado fosfuro de aluminio tiene elevada mortalidad. El objetivo fue determinar la frecuencia del consumo de fosfuro de aluminio por tentativa suicida. Métodos: estudio retrospectivo de serie de casos, realizado en el Hospital General de Tejupilco durante los años 2009 a 2011. De 32 pacientes con tentativa suicida, solo se incluyeron 18 que utilizaron fosfuro de aluminio. El riesgo de rescate se calificó de acuerdo con la escala de Weisman. Resultados: de los 18 pacientes suicidas que utilizaron fosfuro de aluminio, 83 % era del sexo femenino (n = 15) y la edad media era de 17.7 ± 4.4 años, 89 % (n = 16) tenía = 23 años de edad y 89 % (n = 16) cursaba con depresión. El motivo detonante del intento suicida fue el abandono de la pareja en 56 % (n = 10). La letalidad del fosfuro de aluminio fue de 78 % (n = 14). Las defunciones sucedieron en 4 ± 2 horas. Conclusiones: el fosfuro de aluminio es el tóxico más usado con intención suicida en el medio rural; su uso predomina en las mujeres abandonadas por su pareja y se relaciona con depresión emocional y seguridad de morir.

  2. Efficient water reduction with gallium phosphide nanowires

    NARCIS (Netherlands)

    Standing, A.; Assali, S.; Gao, L.; Verheijen, M.A.; Van Dam, D.; Cui, Y.; Notten, P.H.L.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new m

  3. Multiple light scattering in porous gallium phosphide

    OpenAIRE

    Bret, Boris Paul Jean

    2005-01-01

    This thesis presents an experimental study on multiple light scattering, with the necessary introductions: theoretical background and sample preparation. The emphasis is put on the effects of the multiple scattering of waves, i.e., where interference effects exist and are significant, in the search for Anderson localization. In ensemble-averaged random media, there exists a cone of light, superimposed on the diffuse background, in the exact backscattering direction, due to the constructive in...

  4. Minority carrier lifetime in indium phosphide

    Science.gov (United States)

    Jenkins, Phillip; Landis, Geoffrey A.; Weinberg, Irving; Kneisel, Keith

    1991-01-01

    Transient photoluminescence is used to measure the minority carrier lifetime on n-type and p-type InP wafers. The measurements show that unprocessed InP wafers have very high minority carrier lifetimes. Lifetimes of 200 ns and 700 ns were observed for lightly-doped p- and n-type material respectively. Lifetimes over 5 ns were found in heavily doped n-type material.

  5. 磷化铝中毒抑制大鼠胆碱酯酶及阿托品和氯解磷啶的作用%Cholinesterase inhibition by aluminium phosphide poisoning in rats and effects of atropine and pralidoxime chloride

    Institute of Scientific and Technical Information of China (English)

    Shivani MHrRA; Sharda Shah PESHIN; Shyam Bala LALL

    2001-01-01

    AIM: To investigate the cholinesterase inhibition and effect of atropine and pralidoxime (PAM) treatment on the survival time in the rat model of aluminium phosphide (ALP) poisoning. METHODS: The rats were treated with AlP (10 mg/kg; 5.55×LD50; ig) and the survival time was noted. The effect of atropine (1 mg/kg, ip) and PAM (5 mg/kg, ip) was noted on the above. Atropine and PAM were administered 5 min after AlP. Plasma cholinesterase levels were measured spectrophotometrically in the control and AlP treated rats 30 min after administration. RESULTS: Treaanent with atropine and PAM increased the survival time by 2.5 fold (1.4 h ±0.3 h vs 3.4 h±2.5 h, P<0.01) in9 out of 15 animals and resulted in total survival of the 6 remaining animals. Plasma cholinesterase levels were inhibited by 47%, (438±74) U/L in AlP treated rats as compared tocontrol (840±90) U/L (P<0.01). CONCLUSION: This preliminary study concludes that AlP poisoning causes cholinesterase inhibition and responds to treatment with atropine and PAM.

  6. Preparation, Characterization, Hydrodesulfurization and Hydrodenitrogenation Activities of Alumina-supported Tungsten Phosphide Catalysts%WP/γ-Al2O3催化剂的制备、表征及加氢脱硫和加氢脱氮活性

    Institute of Scientific and Technical Information of China (English)

    李翠清; 孙桂大; 李成岳; 宋亚娟

    2006-01-01

    Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%-37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperature-programmed reduction of supported tungsten phosphate (precursor of WP/Al2O3 catatlysts) in H2 at 650℃ for 4h. The catalysts were characterized by XRD, BET, TG/DTA, XPS and 31p MAS-NMR. The activities of these catalysts were tested in the hydrodenitrogenation (HDN) of pyridine and hydrodesulfurization (HDS) of thiophene at 340℃ and 3.0MPa. The results showed that owing to the stronger interaction of the support with the active species, the precursor of WP/Al2O3 catalyst was more difficultly phosphided and a greater amount of W species was in a high valence state W6+ on the surface of the catalyst prepared by the impregnation method than that by the mixing method. 31p MAS-NMR results indicated that 31p shift from 85% H3PO4 of 2.55 × 10-4 for WP and 2.57 × 10-4 for WP/γ-Al2O3 catalysts prepared by mixing method. Such WP/Al2O3 catalysts showed higher HDN activities and lower HDS activities than those prepared by the impregnation method under the same loading of WP.WP/γ-Al2O3 catalysts with weak interaction between support and active species were favorable for HDN reaction while the WP/γ-Al2O3 catalysts with strong interaction were favorable for HDS reaction.

  7. Effect of N-acetylcysteine and L-NAME on aluminium phosphide induced cardiovascular toxicity in rats%N-乙酰半胱氨酸和L-NAME对磷化铝诱导的大鼠心血管毒性的作用

    Institute of Scientific and Technical Information of China (English)

    Archana AZAD; Shyam Bala LALL; Shivani MITTRA

    2001-01-01

    AIM: To investigate the protective effects of N-acetyl- cysteine (NAC) and Nω-Nitro-L-arginine methyl ester (L-NAME) on aluminium phosphide (AlP) poisoning induced hemodynamic changes, myocardial oxygen free radical injury and on survival time in rats. METH- ODS: AlP (12.5 mg/kg) was administered intragastri cally under urethane anaesthesia. The effect of pre- and post-treatment with NAC and L-NAME alone and in combination was studied on haemodynamic parameters [blood pressure (BP), heart rate (HR), and electrocar- diogram (ECG) ] and biochemical parameters ( malonyl- dialdehyde, catalase, and glutathione peroxidase). RE SULTS: AlP caused significant hypotension, tachycar dia, ECG abnormalities, and finally marked bradycardia. The mean survival time was (90 ± 10) min. There was significant increase in myocardial malonyldialdehyde (MDA), and decrease in catalase and glutathione peroxi dase (GSH Px) levels. NAC infusion (6.25 mg·kg-1· min-1, iv for 30 min) caused insignificant hemodynamic and biochemical changes. Pre- and post-treatment of NAC with AlP significantly increased the survival time, stabilized BP, HR, and ECG, decreased MDA and in creased GSH Px levels compared to AlP group. L- NAME infusion ( 1 mg· kg- 1· min- 1, iv for 60 min) as such caused significant rise in BP but precipitated ECG abnormalities. Pre- and post-treatment of L-NAME with AlP neither improved the survival time nor the biochemi cal parameters despite significant rise in BP. Co-admin- istration of both the drugs with AlP worsened the hemo dynamic and biochemical parameters with reduction in the survival time as compared to AlP. CONCLUSION: NAC increased the survival time by reducing myocardial oxidative injury whereas L-NAME showed no such pro tective effects in rats exposed to AlP.

  8. A review of indium phosphide space solar cell fabrication technology

    Science.gov (United States)

    Spitzer, M. B.; Dingle, B.; Dingle, J.; Morrison, R.

    1990-01-01

    A review of the status of InP cell efficiency and of approaches to the reduction of cell cost is presented. The use of heteroepitaxial techniques such as InP-on-GaAs and InP-on-Si is discussed along with the use of chemical and mechanical techniques for removal and recovery of the substrate. The efficiency ultimately obtainable with designs made possible by such an approach is calculated.

  9. Strategic Review of Arsenide, Phosphide and Nitride MOSFETs

    OpenAIRE

    Gourab Dutta; Palash Das; Partha Mukherjee; Dhrubes Biswas

    2011-01-01

    Metal oxide semiconductor field effect transistor used as an amplifier and switch uses Si primarily as a channel material for its very stable oxide SiO2. In-spite of many advantages there are some restrictions for Si MOS, so the world is approaching towards compound semiconductor for higher frequency and current. The development of compound semiconductor metal oxide semiconductor is also facing critical problems due to the lack of availability of proper gate oxide material. Research is being ...

  10. Electron and hole transfer from indium phosphide quantum dots.

    Science.gov (United States)

    Blackburn, J L; Selmarten, D C; Ellingson, R J; Jones, M; Micic, O; Nozik, A J

    2005-02-24

    Electron- and hole-transfer reactions are studied in colloidal InP quantum dots (QDs). Photoluminescence quenching and time-resolved transient absorption (TA) measurements are utilized to examine hole transfer from photoexcited InP QDs to the hole acceptor N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and electron transfer to nanocrystalline titanium dioxide (TiO2) films. Core-confined holes are effectively quenched by TMPD, resulting in a new approximately 4-ps component in the TA decay. It is found that electron transfer to TiO2 is primarily mediated through surface-localized states on the InP QDs.

  11. Spectroscopic properties of colloidal indium phosphide quantum wires.

    Science.gov (United States)

    Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C; Wang, Lin-Wang; Janes, David B; Buhro, William E

    2007-11-21

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photooxidation, without a significant influence on quantum-wire photoluminescence. However, photooxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  12. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... agricultural commodities as follows: Commodity Parts per million Alfalfa, forage 0.2 Alfalfa, hay 0.2 Barley, grain 0.05 Barley, hay 0.2 Barley, straw 0.2 Bean, dry, seed 0.05 Beet, sugar, roots 0.05 Beet, sugar... Expiration/Revocation Date Alfalfa, forage 1.0 12/31/05 Alfalfa, hay 1.0 12/31/05 Clover, forage 0.1...

  13. Spectroscopic properties of colloidal indium phosphide quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  14. Observation of Weyl nodes and Fermi arcs in tantalum phosphide.

    Science.gov (United States)

    Xu, N; Weng, H M; Lv, B Q; Matt, C E; Park, J; Bisti, F; Strocov, V N; Gawryluk, D; Pomjakushina, E; Conder, K; Plumb, N C; Radovic, M; Autès, G; Yazyev, O V; Fang, Z; Dai, X; Qian, T; Mesot, J; Ding, H; Shi, M

    2016-03-17

    A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with non-zero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only a single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs.

  15. Third-Order Nonlinear Optical Susceptibility of Indium Phosphide Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Li; WANG Dong; CHEN Guang-De; LIU Hui

    2007-01-01

    InP nanocrystals synthesized by refluxing and annealing of organic solvent are determined from XRD measurements to have an average granularity of 25 nm. The nonlinear optical properties of the InP nanocrystals studied by using laser Z-scan technique with 50ps pulses at 532nm are found to reveal strong nonlinear optical properties and two-photon absorption phenomenon. Also, the nonlinear absorption coefficient, the nonlinear refractive index and the third-order nonlinear optical susceptibility are determined by experiments, in which the nonlinear refractive index is three orders of magnitude larger than that of bulk InP.

  16. Hydrodechlorination of polychlorinated molecules using transition metal phosphide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia, J.A.; Infantes-Molina, A., E-mail: ainfantes@uma.es; Rodríguez-Castellón, E.

    2015-10-15

    Highlights: • Ni{sub 2}P catalyst is much more active than CoP one for Cl-removal. • Benzene is the main reaction product for Ni{sub 2}P catalyst. • The activity followed the order ClB > 1,4-DClB ≈ 1,2,4-TClB > 1,3-DClB > 1,2-DClB for Ni{sub 2}P. • The activity followed the order ClB > 1,4-DClB > 1,3-DClB > 1,2-DClB > 2,4-TClB for CoP. • Active phase dispersion, P-concentration on the surface and H-species on the surface explain the results. - Abstract: Ni{sub 2}P and CoP catalysts (5 wt.% of metal) supported on a commercial SiO{sub 2} were tested in the gas phase catalytic hydrodechlorination (HDCl) of mono (chlorobenzene-ClB) and polychlorobenzenes (PCBs) (1,2- dichlorobenzene (1,2-DClB), 1,3-dichlorobenzene (1,3-DClB), 1,4-dichlorobenzene (1,4-DClB), and 1,2,4-trichlorobenzene (1,2,4-TClB)) at atmospheric pressure. It was investigated how the number and position of chlorine atoms in the molecule influence the HDCl activity. The prepared catalysts were characterized by X-ray diffraction (XRD), CO chemisorption, N{sub 2} adsorption–desorption at −196 °C, and X-ray photoelectron spectroscopy (XPS). Characterization results indicated better active phase dispersion and greater amount of P on the Ni{sub 2}P catalyst surface. Catalytic results showed that the Ni{sub 2}P was more active and stable in this type of reactions. The hydrodechlorination activity decreased by increasing the number of chlorine atoms in the molecule and chlorine substituents in close proximity. The observed trend in the HDCl activity was: ClB > 1,4-DClB > 1,3-DClB > 1,2-DClB > 1,2,4-TClB. The exception was the catalytic response after 24 h on stream observed for the Ni{sub 2}P in the HDCl reaction of 1,2,4-TClB, which was equal to that observed for the 1,4-DClB molecule, and also yielding benzene as the main reaction product.

  17. Analysis of indium-phosphide/indium tin oxide solar cells

    Science.gov (United States)

    Coutts, T. J.; Pearsall, N. M.; Nottenburg, R.; Ireland, P. J.; Kazmerski, L. L.

    1981-05-01

    The mechanisms that underlie the operation of p-InP/N-ITO solar cells fabricated by depositing thin films of ITO onto InP substrates by both RF sputtering and ion-beam sputtering were investigated. The RF sputtered devices behave like SIS or heterojunction cells. The ion-beam sputtered cells behave more like buried homojunction devices. It is sown that the properties of these cells depend not only on the method of fabrication, but also on several other complicating effects which occur before, during and after deposition of the ITO.

  18. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Science.gov (United States)

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  19. A Semiconductor Under Insulator Technology in Indium Phosphide

    CERN Document Server

    Mnaymneh, Khaled; Frédérick, Simon; Lapointe, Jean; Poole, Philip J; Williams, Robin L

    2012-01-01

    This Letter introduces a Semiconductor-Under-Insulator (SUI) technology in InP for designing strip waveguides that interface InP photonic crystal membrane structures. Strip waveguides in InP-SUI are supported under an atomic layer deposited insulator layer in contrast to strip waveguides in silicon supported on insulator. We show a substantial improvement in optical transmission when using InP-SUI strip waveguides interfaced with localized photonic crystal membrane structures when compared with extended photonic crystal waveguide membranes. Furthermore, SUI makes available various fiber-coupling techniques used in SOI, such as sub-micron coupling, for planar membrane III-V systems.

  20. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    Science.gov (United States)

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an InP cell as the active layer in a monolithically integrated module. Importantly, TF-VLS growth avoids the hobbles of traditional growth: the epitaxial wafer substrate, low utilization efficiency of expensive metalorganic precursors, and high capital depreciation costs due to low throughput. Production costs are projected to be 0.76/W(DC) for the benchmark case of 12% efficient modules and would decrease to 0.40/W(DC) for the long-term potential case of 24% efficient modules.

  1. [Zinc phosphide poisoning in pediatric patients from a Toxicology Center at Mexico City].

    Science.gov (United States)

    Sánchez-Villegas, María Carmen Socorro; Bárcena-Ruiz, Alejandro

    2017-01-01

    Introducción: el fosfuro de zinc es usado para exterminar roedores; es un producto altamente tóxico, no crea resistencias y es de uso popular. Debido a que es un plaguicida altamente comercializado de elevada toxicidad que no cuenta con un antídoto disponible, es imperativo precisar e identificar con oportunidad las manifestaciones clínicas de la intoxicación. El objetivo fue describir el perfil epidemiológico y clínico de los niños intoxicados con fosfuro de zinc atendidos en un centro toxicológico de tercer nivel de atención. Métodos: estudio retrospectivo, observacional y trasversal del 2005 al 2015, con 36 registros de pacientes pediátricos atendidos en el Centro de Información y Atención Toxicológica del Hospital General “Dr. Gaudencio González Garza” del Centro Médico Nacional La Raza del Instituto Mexicano del Seguro Social. Resultados: el estudio no demostró predominio de algún género. El 66% de los pacientes se encontraba entre 1 y 2 años de edad. El 96% de los pacientes eran sanos y tres adolescentes utilizaron el producto con fines suicidas. La exposición ocurrió en el hogar. La toxicidad se caracterizó por hipotensión arterial, hipoglucemia, acidosis metabólica, dolor abdominal, náuseas, vómitos; ninguno de los pacientes falleció ni requirió de asistencia ventilatoria ni de hemodiálisis. Conclusión: la falta de conocimiento del potencial tóxico y la accesibilidad al producto en el interior del domicilio de los pacientes facilita su exposición; se trata de un riesgo 100% prevenible.

  2. Undoped semi-insulating indium phosphide (InP) and its applications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ During the past several years, the research and development of InP material has made great progress due to serving as the substrate for most optoelectronic devices operating at the communications wavelength of 1.31 and 1.55 (m. At present, InP has become an important semiconductor material together with Si and GaAs. When compared to GaAs, InP has higher electron velocity, higher radiation hardness and better heat-conducting property. The advantage of InP crystal material allows higher frequency operation and lower power requirements. Therefore, InPis widely being used for the manufacture of microwave devices, high-frequency devices and optoelectronic integrated circuits (OEICs) which are indispensable for wireless technology, satellite communications[1-3]. Although n-type and p-type InP can meet actual needs, semi-insulating InP substrates remain to be improved due to their poor uniformity and consistency. For this reason, several possible approaches have been reported to the preparation of SI InP by wafer annealing under different conditions[4-9].

  3. Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots.

    Science.gov (United States)

    Tessier, Mickael D; De Nolf, Kim; Dupont, Dorian; Sinnaeve, Davy; De Roo, Jonathan; Hens, Zeger

    2016-05-11

    Aminophosphines have recently emerged as economical, easy-to-implement precursors for making InP nanocrystals, which stand out as alternative Cd-free quantum dots for optoelectronic applications. Here, we present a complete investigation of the chemical reactions leading to InP formation starting from InCl3 and tris(dialkylamino)phosphines. Using nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction, we demonstrate that injection of the aminophosphine in the reaction mixture is followed by a transamination with oleylamine, the solvent of the reaction. In addition, mass spectrometry and NMR indicate that the formation of InP concurs with that of tetra(oleylamino)phosphonium chloride. The chemical yield of the InP formation agrees with this 4 P(+III) → P(-III) + 3 P(+V) disproportionation reaction occurring, since full conversion of the In precursor was only attained for a 4:1 P/In ratio. Hence it underlines the double role of the aminophosphine as both precursor and reducing agent. These new insights will guide further optimization of high quality InP quantum dots and might lead to the extension of synthetic protocols toward other pnictide nanocrystals.

  4. Epitaxially Grown Indium Phosphide Quantum Dots on a Virtual Ge Substrate Realized on Si(001)

    Science.gov (United States)

    Wiesner, Michael; Bommer, Moritz; Schulz, Wolfgang-Michael; Etter, Martin; Werner, Jens; Oehme, Michael; Schulze, Jörg; Jetter, Michael; Michler, Peter

    2012-04-01

    An ultrathin virtual Ge substrate (GeVS) with low defect density was realized on CMOS-compatible Si(001) by molecular beam epitaxy. On top, III-V layers were deposited by metal-organic vapor-phase epitaxy, at which diffusion of Ge was successfully suppressed. Nonclassical light emitters, based on InP quantum dots (QDs), were realized on a thin GaAs buffer (thickness ≈ 1 µm). The quantum dots show emission in the red spectral region, meeting the range of the highest detection efficiency of silicon avalanche photodiodes. The decay dynamics and emission characteristics of single QDs were investigated. Autocorrelation measurements prove single-photon emission with a value of g(2)(0)=0.32.

  5. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Science.gov (United States)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E.; Sorokin, M.; Facsko, S.; Trautmann, C.

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV 129Xe(33-40)+ and with various swift heavy ions (SHI) of 30 MeV I9+ and 374 MeV-2.2 GeV 197Au25+. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  6. Histopathological effect of sub-lethal concentration of aluminum phosphide (phostoxin on Clarias gariepinus juveniles

    Directory of Open Access Journals (Sweden)

    Kayode B. Olurin

    Full Text Available Abtsract: The study evaluated the effect of sub-lethal concentration of phostoxin on Clarias gariepinus juveniles. C. gariepinus juveniles belonging to the same cohort (40.1±1.2g; 18.1±1.1cm from a commercial fish farm were randomly placed ten in each of 15 plastic tanks containing 15 liters of water. They were exposed for 96 hrs to three sub-lethal concentrations (treatments of phostoxin (0.125, 0.250, 0.5mg L-1 and a phostoxin free control. At the end of 96 hrs exposure, they were dissected and the tissues need for histopathology removed and fixed in Bouin's fluid. The gill filament exhibited fusion at the secondary lamella that was progressive with concentration. At the highest concentration of exposure, the secondary lamellae showed marked pyknotic and necrotic changes characterized by epithelia detachment. The hepatic tissue showed mild inflammatory changes at lower concentrations while at the highest concentration of exposure there was marked inflammation with observed hydropic degeneration. In the kidney, an inflammatory change was only observed in the interstices at the highest dose of exposure with the convoluted tubules showing partial shrinkage. Phostoxin showed to have significantly caused alterations in cyto-architecture of the gills and to a considerable extent liver and kidney of C. gariepinus.

  7. Studies of Electrical Activation and Impurity Migration in Ion Implanted Indium Phosphide.

    Science.gov (United States)

    1986-09-01

    diffused with Fe (7). Fe acts as an acceptor in n-type material by the reaction ES:2 3%>e~ 2 FeGa 3 + + e < ------- > FeGa [151 .?. ,*% "S whereas in p...type material the Fermi level is below the FeGa2+ energy level so that Fe is . seen only as FeGa 3+. In this case, the Fe atom does not have to change

  8. DWDM laser arrays fabricated using thermal nanoimprint lithography on Indium Phosphide substrates

    DEFF Research Database (Denmark)

    Smistrup, K.; Nørregaard, J.; Mironov, A.;

    Dense Wavelength Division Multiplexing (DWDM) lasers play a major role in today’s long-haul broadband communication. Typical distributed feedback (DFB) laser cavities consist of long half-pitch gratings in InGaAsP on InP substrates with pitches around 240 nm. Lasers are made reliably single mode ....... The fabricated lasers were cleaved and measured. Laser arrays exhibited >40mW optical power in all 12 channels. Figure 3 shows the overlaid spectra of a 12-channel array laser chip with uniform (~3nm) wavelength spacing and good sidemode suppression....

  9. Synthesis of Indium Nitride Epitaxial Layers on a Substrate of Porous Indium Phosphide

    Directory of Open Access Journals (Sweden)

    J.A. Suchikova

    2015-10-01

    Full Text Available The paper presents a technique to obtain InN films on porous InP substrates by radical-beam gettering epitaxy. According to the results of the Auger spectroscopy, InN film thickness ranged from 100 nm to 0.5 microns depending on the etching conditions.

  10. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods.

    Science.gov (United States)

    Wang, Fudong; Buhro, William E

    2007-11-21

    Colloidal InP quantum rods (QRs) having controlled diameters and lengths are grown by the solution-liquid-solid method, from Bi nanoparticles in the presence of hexadecylamine and other conventional quantum dot surfactants. These quantum rods show band-edge photoluminescence after HF photochemical etching. Photoluminescence efficiency is further enhanced after the Bi tips are selectively removed from the QRs by oleic acid etching. The QRs are anisotropically 3D confined, the nature of which is compared to the corresponding isotropic 3D confinement in quantum dots and 2D confinement in quantum wires. The 3D-2D rod-wire transition length is experimentally determined to be 25 nm, which is about 2 times the bulk InP exciton Bohr radius (of approximately 11 nm).

  11. Indium phosphide solar cell research in the United States: Comparison with non-photovoltaic sources

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1989-01-01

    Highlights of the InP solar cell research program are presented. Homojunction cells with efficiencies approaching 19 percent are demonstrated, while 17 percent is achieved for ITO/InP cells. The superior radiation resistance of the two latter cell configurations over both Si and GaAs cells has been shown. InP cells aboard the LIPS3 satellite show no degradation after more than a year in orbit. Computed array specific powers are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems.

  12. UV-sensitive optical sensors based on ITO-gallium phosphide heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Oleksandr; Hidalga-Wade, F. Javier de la; Zuniga-Islas, Carlos; Abundis Patino, Jesus H. [National Institute for Astrophysics, Optics, and Electronics (INAOE), Puebla (Mexico)

    2010-04-15

    Design and characteristics of wide-band UV sensors based on ITO/GaP heterostructures are discussed. Such sensors have perfect electrical parameters and high UV-visible sensitivity in comparison with surface-barrier structures using a semi-transparent thin metal film as an electrode. Many applications require UV sensors with an effective rejection of visible radiation and a wide temperature operating interval. For this aim, the theoretical modelling of extreme selective optical sensors with a double Ag/ITO thin film on the GaP surface, in which the thin silver film serves as a narrow bandpass filter at 320 nm, has been conducted. With this modelling the optimal thickness combination for the silver and ITO films was found for the maximum rejection of the sensitivity to visible radiation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight has demonstrated highly-uniform APD arrays based on the highly sensitive InGaAs/InP material system. These results provide great promise for achieving the...

  14. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a monolithically integrated FPA of densely packed APDs (70-um pitch) operating at or around 1500 nm wavelength that is suitable for the solicited...

  15. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.

  16. Naval Research Laboratory's programs in advanced indium phosphide solar cell development

    Science.gov (United States)

    Summers, Geoffrey P.

    1996-01-01

    The Naval Research Laboratory (NRL) has been involved in the development of solar cells for space applications since the 1960s. It quickly became apparent in this work that radiation damage caused to solar cells by electrons and protons trapped by the earth's magnetic field would seriously degrade the power output of photovoltaic arrays in extended missions. Techniques were therefore developed to harden the cells by shielding them with coverglass, etc. Ultimately, however, there is a limit to such approaches, which is determined by the radiation response of the semiconductor material employed. A desire for high efficiency and radiation resistance led to the development of alternative cell technologies such as GaAs, which has since become the technology of choice for many applications. InP cells are currently the most radiation resistant, high efficiency, planar cells known. NRL first sponsored InP solar cell technology in 1986, when Arizona State University was contracted to grow p/n cells by liquid phase epitaxy. NRL's interest in InP cells was generated by the results presented by Yamaguchi and his co-workers in the early 1980s on the remarkable radiation resistance of cells grown by diffusion of S into Zn doped p-type InP substrates. These cells also had beginning of life (BOL) efficiencies approximately 16%(AM0). Related to the radiation resistance of the cells was the fact that radiation-induced damage could be optically annealed by sunlight. Relatively large quantities of 1 x 2 cm(exp 2) diffused junction cells were made and were used on the MUSES-A and the EXOS-D satellites. These cells were also available in the U.S. through NIMCO, and were studied at NRL and elsewhere. Workers at NASA Lewis became involved in research in InP cells about the same time as NRL.

  17. Junction characteristics of indium tin oxide/indium phosphide solar cells

    Science.gov (United States)

    Sheldon, P.; Ahrenkiel, R. K.; Hayes, R. E.; Russell, P. E.; Nottenburg, R. N.; Kazmerski, L. L.

    Efficient indium tin oxide (ITO)/p-InP solar cells have been fabricated. Typical uncorrected efficiencies range from 9-12 percent at AM1 intensities. It is shown that deposition of ITO causes a semi-insulating layer at the InP surface as determined by C-V measurements. The thickness of this layer is approximately 750 A. We believe that this high resistivity region is due to surface accumulation of Fe at the ITO/InP interface.

  18. Grain boundary resistance in p- and n-type indium phosphide

    Science.gov (United States)

    Shieh, C.-L.; Wagner, S.; Kazmerski, L. L.

    1985-08-01

    The zero-bias resistance between grains in p- and n-type InP was measured as a function of temperature. Among bulk n-type, bulk p-type and thin-film p-type samples, only the first exhibited a temperature-dependent resistance. Auger electron and secondary ion mass spectrometries of grain boundaries fractured in vacuo showed pronounced segregation of In, P and of foreign impurities. An impurity-induced grain boundary defect located close to the conduction band edge appears to account best for the experimental results.

  19. Excitons into one-axis crystals of zinc phosphide (Zn3P2

    Directory of Open Access Journals (Sweden)

    D.M. Stepanchikov

    2009-01-01

    Full Text Available Theoretical study of excitons spectra is offered in this report as for Zn3P2 crystals. Spectra are got in the zero approach of the theory of perturbations with consideration of both the anisotropy of the dispersion law and the selection rules. The existence of two exciton series was found, which corresponds to two valence bands (hh, lh and the conductivity band (c. It is noteworthy that anisotropy of the dispersion law plus the existence of crystalline packets (layers normal to the main optical axis, both will permit the consideration of two-dimensional excitons too. The high temperature displaying of these 2D-exciton effects is not eliminated even into bulk crystals. The calculated values of the binding energies as well as the oscillator's strength for the optical transitions are given for a volume (3D and for two-dimensional (2D excitons. The model of energy exciton transitions and four-level scheme of stimulated exciton radiation for receiving laser effect are offered.

  20. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  1. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid...

  2. Chemical mechanical polishing of Indium phosphide, Gallium arsenide and Indium gallium arsenide films and related environment and safety aspects

    Science.gov (United States)

    Matovu, John Bogere

    As scaling continues with advanced technology nodes in the microelectronic industry to enhance device performance, the performance limits of the conventional substrate materials such as silicon as a channel material in the front-end-of-the-line of the complementary metal oxide semiconductor (CMOS) need to be surmounted. These challenges have invigorated research into new materials such as III-V materials consisting of InP, GaAs, InGaAs for n-channel CMOS and Ge for p-channels CMOS to enhance device performance. These III-V materials have higher electron mobility that is required for the n-channel while Ge has high hole mobility that is required for the p-channel. Integration of these materials in future devices requires chemical mechanical polishing (CMP) to achieve a smooth and planar surface to enable further processing. The CMP process of these materials has been associated with environment, health and safety (EH&S) issues due to the presence of P and As that can lead to the formation of toxic gaseous hydrides. The safe handling of As contaminated consumables and post-CMP slurry waste is essential. In this work, the chemical mechanical polishing of InP, GaAs and InGaAs films and the associated environment, health and safety (EH&S) issues are discussed. InP removal rates (RRs) and phosphine generation during the CMP of blanket InP films in hydrogen peroxide-based silica particle dispersions in the presence and absence of three different multifunctional chelating carboxylic acids, namely oxalic acid, tartaric acid, and citric acid are reported. The presence of these acids in the polishing slurry resulted in good InP removal rates (about 400 nm min-1) and very low phosphine generation (isolation structures was planarized and scratches, slurry particles and smearing of InP were absent. Additionally, wafers polished at pH 6 showed very low dishing values of about 12-15 nm, determined by cross sectional SEM. During the polishing of blanket GaAs, GaAs RRs were negligible with deionized water or with silica slurries alone. They were relatively high in aq. solutions of H2O2 alone and showed a strong pH dependence, with significantly higher RRs in the alkaline region. The addition of silica particles to aq. H2O2 did not increase the GaAs RRs significantly. The evolution of arsenic trihydride (AsH3) during the dissolution of GaAs in aq. H2O2 solution was similarly higher in the basic pH range than in neutral pH or in the acidic pH range. However, no AsH3 was measured during polishing, evidently because of the relatively high water solubility of AsH3. The work done on InGaAs polishing shows that InGaAs RR trends are different from those observed for InP or GaAs. InGaAs RRs at pH 2 are higher than those at pH 10 and highest at pH 4. Dissolution rates (DRs), Fourier Transform Infrared Spectroscopy (FTIR), contact angles, X-Ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence Spectroscopy (XRF), zeta potential measurements and calculated Gibbs free energy changes of the reactions involved during polishing and gas formation were used to discuss the observed RRs and hydride gas generation trends and to propose the reaction pathways involved in the material removal and in hydride gas generation mechanisms.

  3. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity

    Science.gov (United States)

    Pan, Yuan; Yang, Na; Chen, Yinjuan; Lin, Yan; Li, Yanpeng; Liu, Yunqi; Liu, Chenguang

    2015-11-01

    Development of hybrid catalysts with high activity, good stability and low cost is extremely desirable for hydrogen production by electrolysis of water. In this work, a hybrid composed of Ni2P nanoparticles (NPs) on N-doped reduced graphene oxide (NRGO) is synthesized via an in situ thermal decomposition approach for the first time and investigated as a catalyst for the hydrogen evolution reaction (HER). The as-synthesized Ni2P/NRGO hybrid exhibits an enhanced catalytic activity with low onset overpotential (37 mV), a small Tafel slope (59 mV dec-1), a much larger exchange current density (4.9 × 10-5 A cm-2), and lower HER activation energy (46.9 kJ mol-1) than Ni2P/RGO hybrid. In addition, the Ni2P/NRGO hybrid maintains its catalytic activity for at least 60‧000 s in acidic media. The enhanced catalytic activity is attributed to the synergistic effect of N-doped RGO and Ni2P NPs, the charged natures of Ni and P, as well as the high electrical conductivity of Ni2P/NRGO hybrid. This study may offer a new strategy for improving the electrocatalytic activity for hydrogen production.

  4. Heavy-Fermion Compound of the Ternary Phosphide Ce2Pt8P with a Non-Centrosymmetric Structure

    Science.gov (United States)

    Kase, Naoki; Furukawa, Shoh; Nakano, Tomohito; Takeda, Naoya

    2017-01-01

    The low-temperature properties of Ce2Pt8P are studied by magnetic susceptibility χ(T), electrical resistivity ρ(T), and specific heat C(T) measurements. The crystal structure is considered to be analogs of the CePt3Si-type structure. From the magnetic susceptibility χ(T), the effective paramagnetic moment μeff is estimated to be 2.30 μB/Ce, suggesting that the valence state of Ce ions is expected to be close to trivalent (Ce3+). The paramagnetic Curie-Weiss temperature θcw is determined to be 12 K. The electrical resistivity ρ(T) shows -ln T dependence with a small slope from 10 to 3 K, which indicates a weak Kondo anomaly. The specific heat exhibits a λ-type anomaly at around T* = 1.0 K, while the magnetic entropy at T* is reduced to 80% of R ln 2. The linear coefficient of specific heat is determined to be 145 mJ/(mol-Ce·K2). From several measurements, Ce2Pt8P can be classified as a moderate heavy-fermion compound. The ground state is far from the quantum-critical point (QCP) compared with CePt3Si. La2Pt8P shows normal metallic behavior and no superconductivity is observed above 0.28 K.

  5. Theoretical Studies of High Energy Transport of Electrons and Holes in Gallium Arsenide, Indium Phosphide, Indium Arsenide, and Gallium Antimonide.

    Science.gov (United States)

    1984-06-01

    interest and support in many aspects of this work. The author would also like to thank Professors N. Holonyak Jr., G. * Stillman, and B. Wheeler for...York, 1958. [321 R. P. Feynman , Statistical Mechanics, A Set of Lectures, W. A. * -. Benjamin, Reading Ma., 1972. [33] G. 3. lafrate, "Quantum transport

  6. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    Science.gov (United States)

    2011-03-01

    calculated using following relations: H H s qR r N and s H H R . (3.8) Temperature-dependent Hall ( TDH ...freeze, leaving the material highly resistive. If the material is highly degenerate, TDH measurements will reveal the degenerate layer at low

  7. Controlled Synthesis of Uniform Cobalt Phosphide Hyperbranched Nanocrystals Using Tri- n -octylphosphine Oxide as a Phosphorus Source

    KAUST Repository

    Zhang, Haitao

    2011-01-12

    A new method to produce hyperbranched Co 2P nanocrystals that are uniform in size, shape, and symmetry was developed. In this reaction tri-n-octylphosphine oxide (TOPO) was used as both a solvent and a phosphorus source. The reaction exhibits a novel monomer-saturation-dependent tunability between Co metal nanoparticle (NP) and Co 2P NP products. The morphology of Co 2P can be controlled from sheaflike structures to hexagonal symmetric structures by varying the concentration of the surfactant. This unique product differs significantly from other reported hyperbranched nanocrystals in that the highly anisotropic shapes can be stabilized as the majority shape (>84%). This is the first known use of TOPO as a reagent as well as a coordinating background solvent in NP synthesis. © 2011 American Chemical Society.

  8. International Conference on Indium Phosphide and Related Materials, Held in Cape Cod, Massachusetts, on 11 - 15 May 1997.

    Science.gov (United States)

    2007-11-02

    standart temperature (500’C), nominally a 25nm thick LTG-InP channel grown at 280°C. having the identical channel carrier concentration The temperature...the barrier interfaces has also resulted in a standart ohmic contact metallisation systems used reduction of the excess P concentration in a large in...doped standart material (4)) may suggest that operation so- -o.15 in the GHz regime is feasible and that eventually high drain bias operation may be

  9. Oxidative formation of phosphinyl radicals from a trigonal pyramidal terminal phosphide Rh(i) complex, with an unusually long Rh-P bond.

    Science.gov (United States)

    Fischbach, Urs; Trincado, M; Grützmacher, Hansjörg

    2017-03-14

    A rhodium complex containing a tetrapodal triolefin ligand (trop3P) and a phosphanyl ligand (PPh2(-)) has been prepared and characterised. The special structural confinements of the tetradentate ligand impose an unusually long Rh-PPh2 bond. Chemical oxidation of the complex with FcOTf affords [Rh(OTf)(trop3P)] and plausibly phosphanyl radicals, which react instantly with a spin trap reagent forming a nitroxide-based persistent radical, undergo HAT with silanes or dimerise to the corresponding diphosphine (PPh2)2. Chemical oxidation with a peroxide leads to complex [Rh(POPh2)(trop3P)] which is photolabile and loses the Ph2PO moiety upon irradiation with UV/Vis light in CH2Cl2.

  10. International Conference on Indium Phosphide and Related Materials (22nd) (IPRM) held on 31 May-4 Jun 2010, at Takamatsu Symbol Tower, Kagawa, Japan

    Science.gov (United States)

    2010-08-13

    E. Patten, R. Coussa, K. Kosai, W. Radford, J. Edwards, S. Johnson, S. Baur, J. Roth , B. Nosho, J. Jensen and R. Longshore, "Materials for Infrared... Roth . IEEE J. Sel. Top. Quantum Electron, Vol. 4. pp. 741-745, July/August 1998. 5. S. Gozu. T. Mozume. R. Akimoto. K. Akita. G.W. Cong, and H...13 (1974) 2886. [2] T. Tsuchiya, T. Kitatani, and M. Aoki: Proc. 17th Int. Conf. InP and Related Materials, Glasgow. Scotland , 2005, p. 256. [3] C

  11. Preparation of Unsupported Molybdenum Phosphide Hydrofining Catalysts%非负载型磷化钼加氢精制催化剂的研制

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Hydrofining catalysts contain Mn-Ni, Ni-Mo, Ni-W, Co-Mo, Mo, W, Ni, Co, etc and many studies of these catalysts are concerned with the addition of phosphorus or compounds containing phosphorus to give Ni-Mo-P, W-Ni-P, Mo-P, Ni-P, W-P, Co-Mo-P, NiPS3, and Mo-Ni-W-P[1,2].

  12. Temperature and chemical bonding-directed self-assembly of cobalt phosphide nanowires in reaction solutions into vertical and horizontal alignments.

    Science.gov (United States)

    Zhang, Shuang-Yuan; Ye, Enyi; Liu, Shuhua; Lim, Suo Hon; Tee, Si Yin; Dong, Zhili; Han, Ming-Yong

    2012-08-22

    The preparation of vertically or horizontally aligned self-assemblies of CoP nanowires is demonstrated for the first time by aging them in the reaction solution for a sufficient time at 20 or 0 °C. This strategy opens up a way for exploring the controlled self-assembly of various highly anisotropic nanostructures into long-range ordered structures with collective properties.

  13. Measurement of the Two-photon Absorption Coefficient of Gallium Phosphide (GaP) Using a Dispersion-minimized Sub-10 Femtosecond Z-scan Measurement System

    Science.gov (United States)

    2012-09-01

    samples of semiconductors and thin films of organic materials on substrates. The use of dispersive media in the optical path has been eliminated...other semiconductors such as cadmium sulfide (CdS) and zinc selenide (ZnSe). We will also begin measuring the two-photon absorption coefficient for...organic thin - film materials deposited on various substrates. 15 6. References 1. Sheik-Bahae, M.; Said, A. A.; Van Stryland, E. W. High

  14. Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Mao-Sung; Wu, Jia-Fang

    2013-12-01

    A Ni2P nanolayer with porous nanospheres was directly coated on fluorine-doped tin oxide glass by pulse-reverse deposition as a low-cost counter electrode catalyst for dye-sensitized solar cells, and the photoelectron conversion efficiency of the cell was increased to 7.32% by using a porous nanosphere catalyst due to the significantly improved ion transport.

  15. Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: a new, versatile route to nanoscale transition metal phosphides.

    Science.gov (United States)

    Perera, Susanthri C; Tsoi, Georgy; Wenger, Lowell E; Brock, Stephanie L

    2003-11-19

    The reaction of Mn2(CO)10 with P(SiMe3)3 in coordinating solvents at T >/= 220 degrees C yields low polydispersity, highly crystalline MnP nanoparticles for the first time. The effect of dimensional limiting has resulted in the stabilization of a ferromagnetic ground state at low temperatures, rather than the metamagnetic state observed in bulk (microcrystalline) MnP. The synthetic methodology reported here is demonstrated to be general for a number of different metals and phosphine sources.

  16. The effect of bulk traps on the InP (Indium Phosphide) accumulation type MISFET (Metal-Insulator-Semiconductor Field-Effect Transistor)

    Science.gov (United States)

    Meiners, L. G.

    The enclosed reports represent work performed at USCD on Contract N00014-82-K-2032 entitled Surface and Interfacial Properties of InP and provides a full account of the results obtained during the contract period: May 1, 1984 through April 31, 1985. The paper, Space charge-limited currents and trapping in semi-insulating InP, has now been published in Electron. Device Letters, volume EDL-6, page 356 (1985). The manuscript, Effect of bulk traps on the InP accumulation type MISFET, will be presented as an invited talk at the fall meeting in the Journal of the Electrochemical Society.

  17. Design of a Three-Layer Antireflection Coating for High Efficiency Indium Phosphide Solar Cells Using a Chemical Oxide as First Layer

    Science.gov (United States)

    Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.

  18. Electronic Properties of III-V Semiconductors under [111] Uniaxial Strain; a Tight-Binding Approach: I. Arsenides and Gallium Phosphide

    Directory of Open Access Journals (Sweden)

    Miguel E. Mora-Ramos

    2009-01-01

    Full Text Available Empleando un esquema de cálculo tight-binding que usa una base de orbitales sp3s*d5, se estudian propiedades de la estructura electrónica de un grupo de materiales semiconductores IIIV los cuales son de notable interés para la tecnología de dispositivos electrónicos y optoelectrónicos. En específico, se analiza la influencia sobre estas propiedades de una tensión aplicada según la dirección cristalográfica [111], haciendo uso de una formulación basada en la teoría de la elasticidad para establecer las posiciones relativas de los iones vecinos más próximos. Especial atención se presta a la inclusión del efecto de deformación interna de la red cristalina. Para cada material de los estudiados presentamos las dependencias de las brechas energéticas asociadas a los puntos L, X y L de la zona de Brillouin como funciones de la tensión uniaxial en AlAs, GaAs, InAs y GaP. Asimismo, reportamos expresiones de ajuste para los valores de las masas efectivas de conducción en esos cuatro materiales. La comparación de la variación de la brecha de energía en X para el GaP, calculada con nuestro modelo, y recientes resultados experimentales para la transición indirecta entre la banda de huecos pesados y la banda X de conducción arroja una muy buena concordancia.

  19. Generation of phosphine gas for the control of grain storage pests

    OpenAIRE

    Zhao, B.X.

    2010-01-01

    The phosphine generator is a device for rapid production of phosphine (PH₃) gas to be introduced into grain storage. The aluminum phosphide (ALP) tablets are used as raw material and its effective constituent is 56%. When the aluminum phosphide and water are brought into contact a hydrolyzation reaction takes place to produce the phosphine gas. Controlling the reaction temperature, reaction pressure and the dosage of aluminum phosphide immersed in the water, the hydrolyzation reaction can be ...

  20. Ni2P/Al-MCM-41催化剂的制备及其加氢脱硫性能%Preparation and hydrodesulfurization performance of Al-MCM-41 supported nickel phosphide catalysts

    Institute of Scientific and Technical Information of China (English)

    匡志敏; 龚建议; 杨运泉; 王威燕; 陈来福; 贺恒

    2011-01-01

    A1-MCM-41 mesoporous molecular sieves were prepared by the azeotropic distillation and ultrasonic dispersive technology using sodium silicate as silica source , aluminum sulfate as aluminum source and cetyltrimethyl ammonium bromide as structure-directing agent. By using A1-MCM-41 as support, nickel nitrate and diammonium hydrogen phosphate as raw materials, a series of supported Ni2P catalysts on A1-MCM-41 was prepared via the method of temperature-programmed reduction under ultrasonic oscillation. The catalysts were characterized by FT1R, BET, XRD and SEM.Hydrodesulfurization of thiophene catalyzed by Ni2P/Al-MCM-41 was carried out in a high pressure autoclave reactor. The experimental results showed that Al-MCM-41 prepared by ultrasonic dispersive technology had a much higher specific surface area, larger pore volume and pore diameter than that prepared by conventional mechanical mixing. The Al-MCM-41 prepared by azeotropic distillation with ultrasonic dispersive technology was also better than that using only ultrasonic dispersive technology.The Ni2P/A1-MCM-41 catalysts, hydrodesulfurization conversion of thiophene nearly reached 100% at the reaction time 5 h, reaction temperature 548 K, and reaction pressure 3.5 MPa.%以硅酸钠为硅源、硫酸铝为铝源、十六烷基三甲基溴化铵(CTAB)作模板剂,采用共沸蒸馏与超声波分散技术相结合的方法制备了介孔分子筛Al-MCM-41.以Al-MCM-41为载体,硝酸镍和磷酸氢二氨为原料,采用超声波振荡、程序升温还原法制备了Ni2P/Al-MCM-41催化剂,并对Al-MCM-41和Ni2P/Al-MCM-41进行了傅里叶变换红外光谱、比表面积测定、X射线衍射、扫描电镜表征.考察了Ni2P/Al-MCM-41催化剂对噻吩加氢脱硫的催化性能.结果表明:采用超声波制得的Al-MCM-41其比表面积,孔容和孔径明显高于常规搅拌制得的Al-MCM-41,共沸蒸馏制得的Al-MCM-41其比表面积、孔容和孔径高于未共沸蒸馏的Al-MCM-41;在反应时间为5h、548K、3.5MPa条件下,Ni2P/Al-MCM-41催化剂对噻吩加氢脱硫的转化率接近100%.

  1. Discovery of Isotopes of the Transuranium Elements with 93 <= Z <= 98

    CERN Document Server

    Fry, C

    2012-01-01

    One hundred and five isotopes of the transuranium elements neptunium, plutonium, americium, curium, berkelium and californium have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Methods for Estimating Physicochemical Properties of Inorganic Chemicals of Environmental Concern.

    Science.gov (United States)

    1984-06-01

    Herbicides, Fumigants , Growth Regulators, Repellents, and Rodenticides 102 17. Organometallics Listed as TSCA Section 4 Chemicals 103 18. Organometallics...Na and K Tetrasodium Pyrophosphate Phosphine 0 Phosphorus Pentachloride Aluminum Phosphide Lead Phosphate Zinc Phosphide A Arthur Utdet Inc. 960 TABLE...acid) 101 * i Arthur D. Linke, imc TABLE 16 ORGANOMETALLICS USED AS INSECTICIDES, FUNGICIDES, 0 HERBICIDES, FUMIGANTS , GROWTH REGULATORS, REPELLENTS

  3. Sinterless Fabrication Of Contact Pads On InP Devices

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.; Korenyi-Both, Andras L.

    1995-01-01

    Research has shown that with proper choice of material, low-resistance contact pads deposited on solar cells and other devices by improved technique that does not involve sintering. Research directed at understanding mechanisms involved in contact-sintering process has resulted in identification of special group of materials that includes phosphides of gold, silver, and nickel; specifically, Au(2)P(3), AgP(2), and Ni(3)P. Incorporation of phosphide interlayer substantially reduces resistivity between gold current-carrying layer and indium phosphide substrate. Further research indicated only very thin interlayer of any of these compounds needed to obtain low contact resistance, without subjecting contact to destructive sintering process.

  4. Low Cost Automated Module Assembly for 180 GHz Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Emergence of Indium Phosphide IC's has made possible devices operating at frequencies up to 200GHZ and beyond. Building modules using these devices opens a goldmine...

  5. Rice tablet: An overview to common material in Iran

    Directory of Open Access Journals (Sweden)

    Hassan Amiri

    2016-05-01

    Full Text Available Rice tablets or Aluminum phosphide (ALP poisoning is one of the most lethal poisoning cases in the country, leading to high mortality, especially in youths every year. The management of aluminum phosphide poisoning remains purely supportive because no specific antidote exists. Although in various studies mortality rates has been reported ranged 40-80%. In many cases it marked too late, suspected to consume of Botanical rice tablets (garlic compound and caused delay in aggressive treatment. Aluminium phosphide, is an effective insecticide and rodenticide, which is used widely in the storage place and transportation of grain as a fumigant to control rodents and pests. For many years, Aluminum and zinc phosphide have been strong insecticides and rodenticides, which are cheap and effective, and their residues are not toxic

  6. Optical Processing and Control

    Science.gov (United States)

    1994-01-01

    interfaces(7]. The effect has been used to provide evidence for surface states on semiconductors using germanium and silicon surfaces(8]. 3.1 References...8f, c ndr where Sf& is the beat frequency of the ring laser due to the moving medium, f is the frequency of the propagating beam, c is the velocity...Tantalate Gallium Arsenide Phosphide Tantalum Pentoxide Gallium Aluminum Nitride Niobium Pentoxide Indium Phosphide Silicon Other III-V, II-VI, etc

  7. A Model to Predict Duration of Ventilation and 30-Day Mortality in Patients with Traumatic Injuries

    Science.gov (United States)

    2014-12-02

    383 PATTERN OF HOSPITAL ADMISSIONS AND OUTCOME OF ACUTE ALUMINIUM PHOSPHIDE POISONING IN AN INDIAN ICU RANVIR SINGH1, diptimala agrawal2, vivek...Acute aluminium poisoning is a major problem in India. This retrospective study was undertaken to describe the epidemiological features of aluminium ...the out- come Methods: Data was extracted from the medical records of 62 patients with aluminium phosphide poisoning admitted between January 2009

  8. 补药控制偏高磷化氢浓度熏蒸锈赤扁谷盗生产试验%FIELD TRAIL OF CRYPTOLESTES FERRUGINEUS (STEPHENS)FUMIGATED WITH HIGHER LEVEL OF PHOSPHINE CONCENTRATION MAINTAINED BY ALUMINIUM PHOSPHIDE SUPPLEMENT

    Institute of Scientific and Technical Information of China (English)

    黄子法; 王殿轩; 汪灵广; 王公勤

    2012-01-01

    The field trial of phosphine fumigation was carried out that was focus on the Cryptolestes ferrugineus (Stephens)control completely in a horizontal storage of paddy rice, in which the population of the insect was similarly high both monitored by the method of sieving and light trap attracting. The gastightness of the warehouse was 30 seconds of half time decreased from 500 Pa to 250 Pa. The results involved in that the phosphine concentration reached to 130-170 mL/m3 in 20h after aluminium powder and tablet application. The peak concentration, 800 mL/m3 was monitored in three days. And then the concentration went down quickly. The maintaining time of phosphine was six days above 400 mL/m3, nine days in 300-400 mL/m3, seven days in 200?00 mL/m3. Total time of more than 300 mL/m3 was 15 days. Through the process of phosphine concentration maintaining the insect population was killed fully and successfully.%针对灯光诱捕和取样检查都发现锈赤扁谷盗发生数量较多的储藏稻谷,实仓进行了补充施药控制偏高磷化氢浓度杀虫试验,试验仓房的气密性为500 Pa正压半衰期为30 s.试验结果为:在粮面施用磷化铝粉剂和通风口施用磷化铝片剂后,环流20 h仓内磷化氢浓度可达130 mL/m3~170 mL/m3,施药3d后两种剂型药剂都达到了释放磷化氢的高峰(800 mL/m3),随后磷化氢浓度较快地下降.通过分别2次补充施药后,保持磷化氢浓度在400 mL/m3以上的时间达6d,300 mL/m~400 mL/m3的时间达9d,200 mL/m3~300 mL/m3的时间7d.试验仓熏蒸中磷化氢控制偏高浓度(大于300 mL/m3)的时间达到了15 d.在此偏高浓度下,9d后大部分害虫死亡,整个熏蒸过程实现了完全杀死锈赤扁谷盗.

  9. Strained quantum well photovoltaic energy converter

    Science.gov (United States)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  10. TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas

    2012-03-01

    This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

  11. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Phuoc [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State; Mcintyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  12. PROCEEDINGS OF THE SYMPOSIUM COMMEMORATING THE 25th ANNIVERSARY OF ELEMENTS 97 and 98 HELD ON JAN. 20, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.; Street Jr., Kenneth; Thompson, Stanley G.; Ghiorso, Albert

    1976-07-01

    This volume includes the talks given on January 20, 1975, at a symposium in Berkeley on the occasion of the celebration of the 25th anniversary of the discovery of berkelium and californium. Talks were given at this symposium by the four people involved in the discovery of these elements and by a number of people who have made significant contributions in the intervening years to the investigation of their nuclear and chemical properties. The papers are being published here, without editing, in the form in which they were submitted by the authors in the months following the anniversary symposium, and they reflect rather faithfully the remarks made on that occasion.

  13. Photonic crystal cavity-assisted upconversion infrared photodetector.

    Science.gov (United States)

    Gan, Xuetao; Yao, Xinwen; Shiue, Ren-Jye; Hatami, Fariba; Englund, Dirk

    2015-05-18

    We describe an upconversion infrared photodetector assisted by a gallium phosphide photonic crystal nanocavity directly coupled to a silicon photodiode. The strongly cavity-enhanced second harmonic signal radiating from the gallium phosphide membrane can thus be efficiently collected by the silicon photodiode, which promises a high photoresponsivity of the upconversion detector as 0.81 A/W with the coupled power of 1W. The integrated upconversion photodetector also functions as a compact autocorrelator with sub-ps resolution for measuring pulse width and chirp.

  14. Accidental phosphine gas poisoning with fatal myocardial dysfunction in two families.

    Science.gov (United States)

    Akhtar, Saleem; Rehman, Arshalooz; Bano, Surraya; Haque, Anwarul

    2015-05-01

    Aluminum phosphide is commonly used as a rodenticide and insecticide and is one of the most fatal poisons. The active ingredient is Phosphine gas which inhibits cytochrome oxidase and cellular oxygen utilization. The clinical symptoms are due to multiorgan involvement including cardiac toxicity which is the most common cause of mortality. Severity of clinical manifestations depends upon the amount of the gas to which a person is exposed. There is no specific antidote available. High index of suspicion and early aggressive treatment is the key to success. We report 2 cases of aluminum phosphide toxicity in 2 families due to incidental exposure after fumigation.

  15. InP-based two-dimensional photonic crystals filled with polymers

    NARCIS (Netherlands)

    Van der Heijden, R.; Carlström, C.F.; Snijders, J.A.P.; Van der Heijden, R.W.; Karouta, F.; Nötzel, R.; Salemink, H.W.M.; Kjellander, B.K.C.; Bastiaansen, C.W.M.; Broer, D.J.; Van der Drift, E.

    2006-01-01

    Polymer filling of the air holes of indium-phosphide-based two-dimensional photonic crystals is reported. After infiltration of the holes with a liquid monomer and solidification of the infill in situ by thermal polymerization, complete filling is proven using scanning electron microscopy. Optical t

  16. Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite.

    Science.gov (United States)

    Bryant, David E; Kee, Terence P

    2006-06-14

    Anoxic irradiation of a type IIICD iron meteorite known to contain the phosphide mineral schreibersite (Fe,Ni)3P in the presence of ethanol/water affords the reactive oxyacid H-phosphinic acid (H3PO2) as the dominant phosphorus product.

  17. Historical Perspective and Contribution of U.S. Researchers Into the Field of Self-Propagating High-Temperature Synthesis (SHS)/Combustion Synthesis (CS): Personal Reflections

    Science.gov (United States)

    2008-07-01

    Use of zirconium in thermal batteries. ............................................................................3 Figure 2. Combustion front...and (b) TEM images of Al and Ni nanoreactants, (c) reaction chamber, (d) SEM image of nanosize nickel aluminide-alumina composite prepared by...silicides, sulfides, phosphides, hydrides, and oxides of many elements as well as intermetallics, composites, nonstoichiometric compounds, and solid

  18. Phosphorus-based compounds for EUV multilayer optics materials

    NARCIS (Netherlands)

    Medvedev, V.V.; Yakshin, A.E.; Kruijs, van de R.W.E.; Bijkerk, F.

    2015-01-01

    We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were cons

  19. Spatial Extent of Random Laser Modes

    NARCIS (Netherlands)

    Molen, van der Karen L.; Tjerkstra, R. Willem; Mosk, Allard P.; Lagendijk, Ad

    2007-01-01

    We have experimentally studied the distribution of the spatial extent of modes and the crossover from essentially single-mode to distinctly multimode behavior inside a porous gallium phosphide random laser. This system serves as a paragon for random lasers due to its exemplary high index contrast. I

  20. Widely available active sites on Ni2P for electrochemical hydrogen evolution - insights from first principles calculations

    DEFF Research Database (Denmark)

    Hansen, Martin Hangaard; Stern, Lucas-Alexandre; Feng, Ligang;

    2015-01-01

    We present insights into the mechanism and the active site for hydrogen evolution on nickel phosphide (Ni2P). Ni2P was recently discovered to be a very active non-precious hydrogen evolution catalyst. Current literature attributes the activity of Ni2P to a particular site on the (0001) facet. In ...

  1. All-optical signal processing at 10 GHz using a photonic crystal molecule

    Energy Technology Data Exchange (ETDEWEB)

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo, E-mail: alfredo.derossi@thalesgroup.com [Thales Research and Technology, 1 Avenue A. Fresnel, 91767 Palaiseau (France); Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy); Ménager, Loic [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France); Peter Reithmaier, Johann [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2013-11-04

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  2. Approved quarantine treatment for Hessian fly (Diptera: Cecidomyiidae) in large-size bales and Hessian fly and cereal leaf beetle (Coleoptera: Chrysomelidae) control by bale compression

    Science.gov (United States)

    An approved quarantine treatment using bale compression (32 kg/sq cm of pressure) and phosphine fumigation (61 g/28.2 cu m) aluminum phosphide for 7 d at 20 degrees C) was determined to control Hessian fly, Mayetiola destructor (Say), in large-size, polypropylene fabric-wrapped bales exported from t...

  3. Rague-Like FeP Nanocrystal Assembly on Carbon Cloth: An Exceptionally Efficient and Stable Cathode for Hydrogen Evolution

    KAUST Repository

    Yang, Xiulin

    2015-05-25

    There is a strong demand to replace expensive Pt catalysts with cheap metal sulfides or phosphides for hydrogen generation in water electrolysis. The earth-abundant Fe can be electroplated on carbon cloth (CC) to form high surface area rague-like FeOOH assembly. Subsequent gas phase phosphidation converts the FeOOH to FeP or FeP2 and the morphology of the crystal assembly is controlled by the phosphidation temperature. The FeP prepared at 250 oC presents lower crystallinity and those prepared at higher temperatures 400 oC and 500 oC possess higher crystallinity but lower surface area. The phosphidation at 300 oC produces nanocrystalline FeP and preserves the high-surface area morphology; thus it exhibits the highest HER efficiency in 0.5 M H2SO4; i.e. the required overpotential to reach 10 and 20 mA/cm2 is 34 and 43 mV respectively. These values are lowest among the reported non-precious metal phosphides on CC. The Tafel slope for the FeP prepared at 300 oC is around 29.2 mV/dec comparable to that of Pt/CC, indicating that the hydrogen evolution for our best FeP is limited by Tafel reaction (same as Pt). Importantly, the FeP/CC catalyst exhibits much better stability in a wide range working current density (up to 1 V/cm2), suggesting that it is a promising replacement of Pt for HER.

  4. Improved fumigation process for stored foodstuffs by using phosphine in sealed chambers.

    Science.gov (United States)

    Formato, Andrea; Naviglio, Daniele; Pucillo, Gian Pio; Nota, Giorgio

    2012-01-11

    In this paper we present an innovative device designed and constructed to improve the fumigation process for stored foodstuffs with the use of phosphine gas in sealed chambers. The device allowed a considerable reduction in phosphine production time (from about 5 to 7 days for traditional systems to 2 days for the equipment considered), maintaining the system below the inflammability threshold, and at the same time achieving the total exhaustion of aluminum (or magnesium) phosphide so as to avoid toxic residues at the end of the process. With the standard device currently available on the market, after the normal 5-7 day fumigating period, the powder residue contains as much as 1-2% (w/w) of phosphide. Thus the residues, according to current legislation, have to be considered toxic and harmful. To overcome this disadvantage, appropriate modifications were made to the cylindrical tray used for the fumigation process: a nebulizer was installed, which has the function of increasing the moisture of the air spreading around the phosphide pellets and allowing a more rapid reaction with phosphide. Moreover, the cylindrical tray was also heated by means of an electrical resistance, and temperature was checked by a thermostat, so as to always obtain the same efficiency, independently of outside temperature, for both hot and cold periods, since reaction speed depends on the system temperature considered. In addition, a control device for air saturation allows condensation processes to be avoided. Using the modified cylindrical tray we performed tests to determine the best values of humidity and temperature for the process concerned, avoiding phosphine concentrations that might result in a fire hazard, and the remixing of phosphide pellets inside the cylindrical tray. Our experimental data allowed us to obtain a mathematical model used to gain an insight into the process in question.

  5. Nuclear fission and the transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  6. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L. [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  7. Intoxication of nontarget wildlife with rodenticides in northwestern Kansas.

    Science.gov (United States)

    Ruder, Mark G; Poppenga, Robert H; Bryan, John A; Bain, Matt; Pitman, Jim; Keel, M Kevin

    2011-01-01

    The perception of prairie dogs (Cynomys spp.) both as a nuisance species and a keystone species presents a significant challenge to land, livestock, and wildlife managers. Anticoagulant and nonanticoagulant rodenticides are commonly employed to control prairie dog populations throughout their range. Chlorophacinone, and to a lesser extent zinc phosphide, are widely used in northwestern Kansas for controlling black-tailed prairie dog (Cynomys ludovicianus) populations. Although zinc phosphide poisoning of gallinaceous birds is not uncommon, there are few published accounts of nontarget chlorophacinone poisoning of wildlife. We report three mortality events involving nontarget rodenticide poisoning in several species, including wild turkeys (Meleagris gallopavo), a raccoon (Procyon lotor), and an American badger (Taxidea taxus). This includes the first documentation of chlorophacinone intoxication in wild turkeys and an American badger in the literature. The extent of nontarget poisoning in this area is currently unknown and warrants further investigation.

  8. Commercial-Off-The-Shelf (COTS) Indirect Energy Conversion Isotope (IDEC) Design Structure and Power Management

    Science.gov (United States)

    2014-12-01

    arsenide GPS global positioning system 3H tritium iBAT isotope batteries InGaP indium gallium phosphide LiSoCl2 lithium thionyl chloride PV... lithium thionyl chloride (LiSoCl2), the operating energy starts off comparably well compared with 3H, but a steep drop-off occurs near the end of life...The internal assembly and structure replicate a typical lithium battery design. The overall design, material selection, and components of the battery

  9. Direct Observation of Early-stage Quantum Dot Growth Mechanisms with High-temperature Ab Initio Molecular Dynamics

    OpenAIRE

    2015-01-01

    Colloidal quantum dots (QDs) exhibit highly desirable size- and shape-dependent properties for applications from electronic devices to imaging. Indium phosphide QDs have emerged as a primary candidate to replace the more toxic CdSe QDs, but production of InP QDs with the desired properties lags behind other QD materials due to a poor understanding of how to tune the growth process. Using high-temperature ab initio molecular dynamics (AIMD) simulations, we report the first direct observation o...

  10. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  11. Superconductivity theory applied to the periodic table of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Elifritz, T.L. [Information Corporation, Madison, WI (United States)

    1994-12-31

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  12. Tuning the metamagnetic transition in the (Co, Fe)MnP system for magnetocaloric purposes

    NARCIS (Netherlands)

    Guillou, F.; Brück, E.

    2013-01-01

    The inverse magnetocaloric effect taking place at the antiferro-to-ferromagnetic transition of (Co,Fe)MnP phosphides has been characterised by magnetic and direct ΔTad measurements. In Co0.53Fe0.47MnP, entropy change of 1.5 Jkg−1 K−1 and adiabatic temperature change of 0.6 K are found at room temper

  13. Smokes and Obscurants: A Guidebook of Environmental Assessment. Volume 2. A Sample Environmental Assessment

    Science.gov (United States)

    1987-09-04

    omnivorous. The collared lizard also eats smaller lizards in addition to insects . Seventeen common species of snakes are found at DevU’s Washbasin. They...rattlesnake (C. mitchellii) are both venomous. All of the snakes are predators, eating rodents, small birds, insects , lizards, and other snakes. A list of...corresponding phosphides. The unreacted phosphorus might also react with the alkali hydroxides in the soil to form phosphine and hypophosphites. The amount

  14. Enhancement of the Zero Phonon Line emission from a Single NV-Center in a Nanodiamond via Coupling to a Photonic Crystal Cavity

    CERN Document Server

    Wolters, Janik; Kewes, Güter; Nüsse, Nils; Schoengen, Max; Döscher, Henning; Hannappel, Thomas; öhel, Bernd L; Barth, Michael; Benson, Oliver

    2010-01-01

    Using a nanomanipulation technique a nanodiamond with a single nitrogen vacancy center is placed directly on the surface of a gallium phosphide photonic crystal cavity. A Purcell-enhancement of the fluorescence emission at the zero phonon line (ZPL) by a factor of 12.1 is observed. The ZPL coupling is a first crucial step towards future diamond-based integrated quantum optical devices.

  15. Superconductivity theory applied to the periodic table of the elements

    Science.gov (United States)

    Elifritz, Thomas Lee

    1995-01-01

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition is applied to the periodic table of the elements, in order to isolate the essential features of of high temperature superconductivity and to predict its occurrence with the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  16. Electrical and thermal characterization of single and multi-finger InP DHBTs

    DEFF Research Database (Denmark)

    Midili, Virginio; Nodjiadjim, V.; Johansen, Tom Keinicke

    2015-01-01

    This paper presents the characterization of single and multi-finger Indium Phosphide Double Heterojunction Bipolar transistors (InP DHBTs). It is used as the starting point for technology optimization. Safe Operating Area (SOA) and small signal AC parameters are investigated along with thermal...... characteristics. The results are presented comparing different device dimensions and number of fingers. This work gives directions towards further optimization of geometrical parameters and reduction of thermal effects....

  17. Synthesis and structural characterization of CsNiP crystal

    Indian Academy of Sciences (India)

    G S Gopalakrishna; B H Doreswamy; M J Mahesh; M Mahendra; M A Sridhar; J Shashidhara Prasad; K G Ashamanjari

    2004-02-01

    CsNiP crystals were synthesized by hydrothermal technique and characterized by the X-ray diffraction method. This alkaline transition metal phosphide crystallizes in the hexagonal system with space group P6$_3/mmc$ and cell parameters, = 7.173(2) Å, = 5.944(9) Å, = 264.87(7) Å3 and = 2. The final residual factor is 1 = 0.0362 for 206 reflections with > 2().

  18. Proposing an Antidote for Poisonous Phosphine in View of Mitochondrial Eectrochemistry Facts

    Directory of Open Access Journals (Sweden)

    Mohammad Abdollahi

    2012-01-01

    Full Text Available Metal phosphides in general are potent pesticides that are a common cause of human poisoning. Various salts of phosphides produce highly toxic phosphine in exposure to gastric acid that results in multi-organ damage and death. There is no antidote for phosphine poisoning and most of human poisoned cases do not survive. All we know so far is that phosphine is a mitochondrial toxin that inhibits cellular respiration and induces oxidative stress. Mechanistically, phosphine as a reducing agent interacts with metal ion cofactors at the active site of enzymes and inhibits key enzymes such as cytochrome C oxidase that lead to inhibition of mitochondrial respiration. Phosphine (E0 = −1.18 V as a reducing agent gives electrons to cytochrome C oxidase (E0 = +0.29 V. Metal phosphides with lower reduction potential are stronger electron donors and thus stronger poisons. Our hypothesis is that if an electron receiver stronger than cytochrome C oxidase is used then it would compete with cytochrome C oxidase in interaction with phosphine. This competition might prevent or reduce the inhibition of cellular respiration. This idea can be tested in an animal model of phosphine toxicity by monitoring cardiovascular state and measuring the cardiac mitochondrial function.

  19. CLINICAL STUDY OF ACUTE POISONING: A RETROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Praveen

    2014-11-01

    Full Text Available : OBJECTIVES: To determine the common agents, clinical features and outcomes of acute poisoning. MATERIALS AND METHODS: A retrospective study of patients of acute poisoning of more than 14 years age admitted through emergency with a history of intentional, self-inflicted and suicidal poisoning in SRMS-IMS from Jan 2010 to Dec 2012. RESULTS: A total of 58 cases were included with a common age of affection 16 to 25 years and male to female ratio 1.63: 1. Poisoning cases occur throughout the year with maximum prevalence in May and minimum in June. Organophosphorus was the most common poison followed by aluminium phosphide. Vomiting was the most common symptoms followed by altered sensorium. 70.68% patients were discharged, 20.68% expired and 8.62% left against medical advice. Aluminium phosphide was the most common toxin consumed by dead patients. CONCLUSION: Acute poisoning is commonly affecting young population and is caused by variety of toxin. High mortality is associated with aluminum phosphide.

  20. Ab initio investigations of the electronic structures and chemical bonding in LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [CNRS, ICMCB, UPR 9048, F‐33600 Pessac (France); Université de Bordeaux, ICMCB, UPR 9048, F‐33600 Pessac (France); Al-Alam, Adel; Ouaini, Naïm [Université Saint-Esprit de Kaslik (USEK), Groupe OCM (Optimization et Caractérisation des Matériaux), CSR-USEK, CNRS-L, Jounieh (Lebanon); Pöttgen, Rainer, E-mail: pottgen@uni-muenster.de [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, D-48149 Münster (Germany)

    2013-06-15

    The electronic structures of the metal-rich phosphides LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7} were studied by DFT calculations. Both phosphides consist of three-dimensional [Co{sub 6}P{sub 4}] and [Co{sub 12}P{sub 7}] polyanionic networks which leave hexagonal channels for the lithium atoms. COOP data show strong Co–P and Co–Co bonding within the polyanions. The lithium atoms have trigonal prismatic phosphorus coordination. Total energy calculations indicate stability upon de-lithiation towards the Co{sub 6}P{sub 4} and Co{sub 12}P{sub 7} substructures - Graphical abstract: The cobalt–phosphorus networks in LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}. - Highlights: • Chemical bonding resolved in the metal-rich phosphides LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}. • Strong covalent Co–P bonding character in the [Co{sub 6}P{sub 4}] and [Co{sub 12}P{sub 7}] substructures. • Total energy calculations indicate stability of the de-lithiated substructures.

  1. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation

    KAUST Repository

    Yang, Xiulin

    2015-07-01

    There exists a strong demand to replace expensive noble metal catalysts with cheap metal sulfides or phosphides for hydrogen evolution reaction (HER). Recently metal phosphides such as NixP, FeP and CoP have been considered as promising candidates to replace Pt cathodes. Here we report that the nanocrystalline CoP nanosheet assembly on carbon cloth can be formed by a two-step process: electrochemical deposition of Co species followed by gas phase phosphidation. The CoP catalyst in this report exhibits a Tafel slope of 30.1mV/dec in 0.5M H2SO4 and 42.6mV/dec in 1M KOH. The high HER performance of our CoP catalysts is attributed to the rugae-like morphology which results in a high double-layer capacitance and high density of active sites, estimated as 7.77×1017sites/cm2. © 2015 Elsevier Ltd.

  2. Novel preparation of highly dispersed Ni2P embedded in carbon framework and its improved catalytic performance

    Science.gov (United States)

    Wang, Shan; Wang, Kang; Wang, Xitao

    2016-11-01

    Highly dispersed Ni2P embedded in carbon framework with different phosphidation temperature was prepared through carbonizing Ni-alginate gel and followed by phosphidation with PPh3 in liquid phase. The significant effects of phosphidation temperature on Ni2P particle size and catalytic properties for isobutane dehydrogenation to isobutene were investigated. The results showed that Ni2P catalyst derived from the Ni-alginate gel (Ni2P-ADC), consisting of Ni2P particles embedded in carbon walls, possessed smaller particle size and more active site compared with Ni2P catalyst supported on active carbon (Ni2P/AC) prepared by impregnation method. The Ni2P-ADC catalyst phosphorized at 578 K for 3 h exhibited the highest catalytic performance, with the corresponding selectivity of isobutene approaching 89% and conversion approaching 15% after reaction for 4.5 h at 833 K, whereas Ni2P/AC catalyst prepared by impregnation method displays a much lower catalytic activity. The improved catalytic performance of the Ni2P-ADC can be ascribed to the smaller and highly dispersed Ni2P particles incorporated into carbon framework resulting from Ni-alginate gel.

  3. A mechanism of swelling suppression in phosphorous-modified Fe-Ni-Cr alloys*1

    Science.gov (United States)

    Lee, E. H.; Mansur, L. K.

    1986-11-01

    Five simple alloys were ion irradiated at 948 K in an experiment designed to investigate the mechanism of swelling suppression associated wtih phosphorous additions. One of the alloys was the simple ternary Fe-15Ni-13Cr, another had 0.05% P added and the other three had further additions of the phosphide precipitate-forming elements Ti and/or Si. Ion irradiations were carried out with heavy ions only (Ni or Fe) or with heavy ions followed by dual heavy ions and helium. The ternary with and without P swelled readily early in dose with or without helium. The other three alloys only showed swelling in the presence of helium and exhibited a long delay in dose prior to the onset of swelling. These displayed fine distributions of Fe 2P type phosphide precipitates enhanced by irradiation. The phosphide particles gave rise to very high concentrations of stable helium filled cavities at the precipitate matrix interfaces. The results were analyzed in terms of the theory of cavity swelling. The accumulation of the critical number of gas atoms in an individual cavity is required in the theory for point defect driven swelling to begin. It is concluded that the primary mechanism leading to swelling suppression is therefore the dilution of injected helium over a very large number of cavities. It is suggested that this mechanism may offer a key for alloy design for swelling resistance in high helium environments.

  4. In-depth survey report of Early and Daniel Co. , Inc. , Louisville, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Zaebst, D.D.

    1986-09-01

    An in-depth industrial hygiene survey was conducted to evaluate worker exposures to phosphine during fumigation of grain at the Early and Daniel Co. grain elevator in Louisville, Kentucky. Stored grain was fumigated using aluminum phosphide. Aluminum-phosphide pellets were also added directly to the grain by the blender as it was poured into the storage containers. Local exhaust ventilation was used at points in the grain-moving system where grain dust was generated. Air samples were taken during full-shift periods at the breathing zone of the weighmaster, two bin floormen, and the blender. Area monitoring samples were also taken. If the operators spend considerable time in the vicinity of a bin which is being filled with grain, there is a likelihood of far greater exposure levels being noted. According to the author, further studies of the use of phosphide products at other elevators should be conducted to determine the effect of environmental and process parameters on phosphine exposures.

  5. Effect of RE-Modifier on Microstructure and Mechanical Property of High-Carbon Medium-Manganese Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work. The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel. The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated. Consequently, the impact toughness of the steel is increased by more than one time, compared with no addition of RE-modifier.

  6. Solar cells based on InP/GaP/Si structure

    Science.gov (United States)

    Kvitsiani, O.; Laperashvil, D.; Laperashvili, T.; Mikelashvili, V.

    2016-10-01

    Solar cells (SCs) based on III-V semiconductors are reviewed. Presented work emphases on the Solar Cells containing Quantum Dots (QDs) for next-generation photovoltaics. In this work the method of fabrication of InP QDs on III-V semiconductors is investigated. The original method of electrochemical deposition of metals: indium (In), gallium (Ga) and of alloys (InGa) on the surface of gallium phosphide (GaP), and mechanism of formation of InP QDs on GaP surface is presented. The possibilities of application of InP/GaP/Si structure as SC are discussed, and the challenges arising is also considered.

  7. Optical phonon spectra of GaP nanoparticles prepared by nanochemistry

    Science.gov (United States)

    Manciu, F. S.; Sahoo, Y.; MacRae, D. J.; Furis, M.; McCombe, B. D.; Prasad, P. N.

    2003-06-01

    Gallium phosphide (GaP) nanoparticles have been synthesized by colloidal nanochemistry with two different surfactants: trioctylphosphine oxide and dodecylamine. Transverse optical (bulk) and surface optical phonons associated with the GaP nanoparticles were observed and studied experimentally by infrared transmission spectroscopy of a solid dispersion of these nanoparticles in cesium iodide pellets. These vibrational properties of the nanoparticles were used to obtain information about the crystallinity and surface interactions. The crystallinity and the stoichiometry of the samples were also examined and characterized by transmission electron microscopy, electron diffraction, and energy dispersive x-ray spectroscopy.

  8. Controlling the Spontaneous Emission Rate of Monolayer MoS$_2$ in a Photonic Crystal Nanocavity

    CERN Document Server

    Gan, Xuetao; Mak, Kin Fai; Yao, Xinwen; Shiue, Ren-Jye; van der Zande, Arend; Trusheim, Matthew; Hatami, Fariba; Heinz, Tony F; Hone, James; Englund, Dirk

    2013-01-01

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS$_2$) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS$_2$ monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS$_2$ emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of MoS$_2$ SE rate exceeding a factor of 70.

  9. Poultry egg components as cereal bait additives for enhancing rodenticide based control success and trap index of house rat, Rattus rattus

    Institute of Scientific and Technical Information of China (English)

    Neena Singla; Deepia Kanwar

    2014-01-01

    Objective: To compare the acceptance and efficacy of cereal bait containing different concentrations of poultry egg components in laboratory and poultry farms to control house rat,Rattus rattus Methods: Acceptance of cereal bait containing different concentrations (2%, 5% and 10%) of poultry egg components such as egg shell powder (ESP), egg albumin (EA) and crushed egg shell as bait additives were studied after exposing them to different groups of rats in bi-choice with bait without additive. Behaviour of rats towards cereal bait containing 2% concentration of different egg components was recorded in no-choice conditions through Food Scale Consumption Monitor. In poultry farm predominantly infested with R. rattus, acceptance and efficacy of 2%zinc phosphide bait containing 2% EA and ESP was evaluated. Trap success of single rat traps containing chapatti pieces smeared with 2% EA and 2% ESP was also evaluated in poultry farm.Results:(R. rattus). containing 2% and 5% ESP and all the three concentrations of EA compared to plain bait by female rats and that of baits containing 5% and 10% EA by male rats. In no-choice test, non-significantly higher consumption, number of bouts made and time spent towards bait containing 2% EA was found by rats of both sexes. In poultry farm, acceptance and efficacy of 2% zinc phosphide bait containing 2% EA and ESP was significantly (P<0.05) more than 2% zinc phosphide bait without additive. No significant difference was, however, found in trap success of single rat traps containing chapatti pieces smeared with 2% concentration of EA and ESP placed in the poultry farm.Conclusions:Present data support the use of 2% egg albumin and egg shell powder in cereal bait In bi-choice tests, significantly (P<0.05) higher preference was observed for baits to enhance acceptance and efficacy of 2% zinc phosphide bait against R. rattus. This may further help in checking the spread of rodent borne diseases to animals and humans.

  10. Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001)

    Science.gov (United States)

    Wiesner, M.; Schulz, W.-M.; Kessler, C.; Reischle, M.; Metzner, S.; Bertram, F.; Christen, J.; Roßbach, R.; Jetter, M.; Michler, P.

    2012-08-01

    The heteroepitaxy of III-V semiconductors on silicon is a promising approach for making silicon a photonic platform. Mismatches in material properties, however, present a major challenge, leading to high defect densities in the epitaxial layers and adversely affecting radiative recombination processes. However, nanostructures, such as quantum dots, have been found to grow defect-free even in a suboptimal environment. Here we present the first realization of indium phosphide quantum dots on exactly oriented Si(001), grown by metal-organic vapour-phase epitaxy. We report electrically driven single-photon emission in the red spectral region, meeting the wavelength range of silicon avalanche photodiodes’ highest detection efficiency.

  11. Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots

    OpenAIRE

    2009-01-01

    In this paper, we report the successful use of non-cadmium based quantum dots (QDs) as highly efficient and non-toxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulphide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in non-aqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjug...

  12. Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser.

    Science.gov (United States)

    Moskalenko, Valentina; Latkowski, Sylwester; Tahvili, Saeed; de Vries, Tjibbe; Smit, Meint; Bente, Erwin

    2014-11-17

    In this paper, we present the detailed characterization of a semiconductor ring passively mode-locked laser with a 20 GHz repetition rate that was realized as an indium phosphide based photonic integrated circuit (PIC). Various dynamical regimes as a function of operating conditions were explored in the spectral and time domain. A record bandwidth of the optical coherent comb from a quantum well based device of 11.5 nm at 3 dB and sub-picosecond pulse generation is demonstrated.

  13. Optical properties of nanowire metamaterials with gain

    DEFF Research Database (Denmark)

    Isidio de Lima, Joaquim Junior; Adam, Jost; Rego, Davi;

    2016-01-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide....... The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice...

  14. FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions.

    Science.gov (United States)

    Tian, Jingqi; Liu, Qian; Liang, Yanhui; Xing, Zhicai; Asiri, Abdullah M; Sun, Xuping

    2014-12-10

    In this Letter, we demonstrate the direct growth of FeP nanoparticles film on carbon cloth (FeP/CC) through low-temperature phosphidation of its Fe3O4/CC precursor. Remarkably, when used as an integrated 3D hydrogen evolution cathode, this FeP/CC electrode exhibits ultrahigh catalytic activity comparable to commercial Pt/C and good stability in acidic media. This electrode also performs well in neutral solutions. This work offers us the most cost-effective and active 3D cathode toward electrochemical water splitting for large-scale hydrogen fuel production.

  15. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  16. Transport phenomena in a high pressure crystal growth system: In situ synthesis for InP melt

    Science.gov (United States)

    Zhang, H.; Prasad, V.; Anselmo, A. P.; Bliss, D. F.; Iseler, G.

    1997-06-01

    The physical phenomena underlying the "one-step" in situ synthesis and high pressure growth of indium phosphide crystals are complex. A high resolution computer model based on multizone adaptive grid generation and curvilinear finite volume discretization is used to predict the flow and temperature fields during the synthesis of the InP melt. Simulations are performed for a range of parameters, including Grashof number, crucible rotation, and location of the injector. These parameters affect the gas flow in a high pressure liquid-encapsulated Czochralski (HPLEC) furnace significantly, and have a strong influence on the melt synthesis and its control.

  17. Synthesis of anionic phosphorus-containing heterocycles by intramolecular cyclizations involving N-functionalized phosphinecarboxamides.

    Science.gov (United States)

    Robinson, Thomas P; Goicoechea, Jose M

    2015-04-07

    We report that the 2-phosphaethynolate anion (PCO(-)) reacts with propargylamines in the presence of a proton source to afford novel N-derivatized phosphinecarboxamides bearing alkyne functionalities. Deprotonation of these species gives rise to novel five- and six-membered anionic heterocycles resulting from intramolecular nucleophilic attack of the resulting phosphide at the alkyne functionality (via 5-exo-dig or 6-endo-dig cyclizations, respectively). The nature of the substituents on the phosphinecarboxamide can be used to influence the outcome of these reactions. This strategy represents a unique approach to phosphorus-containing heterocylic systems that are closely related to known organic molecules with interesting bio-active properties.

  18. Parametric Studies on Artificial Morpho Butterfly Wing Scales for Optical Device Applications

    Directory of Open Access Journals (Sweden)

    Hyun Myung Kim

    2015-01-01

    Full Text Available We calculated diffraction efficiencies of grating structures inspired by Morpho butterfly wings by using a rigorous coupled-wave analysis method. The geometrical effects, such as grating width, period, thickness, and material index, were investigated in order to obtain better optical performance. Closely packed grating structures with an optimized membrane thickness show vivid reflected colors and provide high sensitivity to surrounding media variations, which is applicable to vapor sensing or healthcare indicators. Morpho structures with high index materials such as zinc sulfide or gallium phosphide generate white color caused by broadband reflection that can be used as reflected light sources for display applications.

  19. Integration, gap formation, and sharpening of III-V heterostructure nanowires by selective etching

    DEFF Research Database (Denmark)

    Kallesoe, C.; Mølhave, Kristian; Larsen, K. F.;

    2010-01-01

    Epitaxial growth of heterostructure nanowires allows for the definition of narrow sections with specific semiconductor composition. The authors demonstrate how postgrowth engineering of III-V heterostructure nanowires using selective etching can form gaps, sharpening of tips, and thin sections...... lithography is used for deposition of catalyst particles on trench sidewalls and the lateral growth of III-V nanowires is achieved from such catalysts. The selectivity of a bromine-based etch on gallium arsenide segments in gallium phosphide nanowires is examined, using a hydrochloride etch to remove the III...

  20. Shadowing and mask opening effects during selective-area vapor-liquid-solid growth of InP nanowires by metalorganic molecular beam epitaxy.

    Science.gov (United States)

    Kelrich, A; Calahorra, Y; Greenberg, Y; Gavrilov, A; Cohen, S; Ritter, D

    2013-11-29

    Indium phosphide nanowires were grown by metalorganic molecular beam epitaxy using the selective-area vapor-liquid-solid method. We show experimentally and theoretically that the size of the annular opening around the nanowire has a major impact on nanowire growth rate. In addition, we observed a considerable reduction of the growth rate in dense two-dimensional arrays, in agreement with a calculation of the shadowing of the scattered precursors. Due to the impact of these effects on growth, they should be considered during selective-area vapor-liquid-solid nanowire epitaxy.

  1. Local Refractive Index Measurements at Low Temperatures using Photonic Crystal Cavities

    CERN Document Server

    Wolters, Janik; Schoengen, Max; Schell, Andreas W; Probst, Jürgen; Löchel, Bernd; Benson, Oliver

    2012-01-01

    Photonic crystal cavities have a wide range of applications in physics today. Here we demonstrate a method to use the narrow resonances of photonic crystal cavities to measure the temperature dependence of the refractive index of gallium phosphide in a temperature range between 5 K and near room temperature at a wavelength of about 605 nm. On one hand, this is an essential step for the design of GaP photonic crystal structures for quantum technology applications. On the other hand, this demonstrates how photonic structures can be utilized to locally determine the optical properties of semiconductor materials in attoliter volumina.

  2. Electron beam generation from semiconductor photocathodes

    Science.gov (United States)

    Arneodo, F.; Cavanna, F.; De Mitri, I.; Mazza, D.; Nassisi, V.

    2001-01-01

    Several measurements on a variety of semiconductor photocathodes were performed in order to determine their photoelectric quantum efficiency. Two different excimer lasers (XeCl and KrCl) and a pulsed Xe lamp were used as light sources for electron photoextraction from doped and undoped samples of cadmiun telluride, indium antimonide, and indium phosphide. Large current densities were obtained up to the limit of the Child-Langmuir law. This suggests the use of these materials for the production of intense electron sources, which could also be used for purity measurements of noble liquids.

  3. Enhanced EOS photovoltaic power system capability with InP solar cells

    Science.gov (United States)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  4. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    Science.gov (United States)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  5. Heralded single-photon source in a III-V photonic crystal.

    Science.gov (United States)

    Clark, Alex S; Husko, Chad; Collins, Matthew J; Lehoucq, Gaelle; Xavier, Stéphane; De Rossi, Alfredo; Combrié, Sylvain; Xiong, Chunle; Eggleton, Benjamin J

    2013-03-01

    In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

  6. Research of MBE Growth and Properties of Semiconductors Hetero-Interfaces with Unusual Band Lineups

    Science.gov (United States)

    1988-09-19

    OF 1 JAN 73,IS OQBQLET.E. .. -9 ,. 񔰣 Research on .p MBE Growth and Properties of Semiconductor Hetero-Interfaces with Unusual Band Lineups...On the other hand, being a phosphide rather than an arsenide, it was widely 3 regarded as a material ill suited for MBE growth . However, we had...extensive experience with the MBE growth of GaP (far more than anybody else) and had found GaP a material far easier to grow than its reputation suggested

  7. A Study of Ga(.47)In(.53)As and Al(.48)In(.52)As for Very High Frequency Device Applications.

    Science.gov (United States)

    1985-01-01

    GaInAs/AlInAs modulation doped structures grown by molecular beam epitaxy (MBE) were studied. The parameters of the MBE growth were adjusted to give high room temperature mobilities (-12000 sq cm/v-sec) and high sheet electron concentrations 2 x 10 to the 12th power per sq cm. Because of higher electron velocities and high conductivities GaInAs modulation doped transistors should be significantly higher speed than those of GaAs. Originator-Supplied keywords include: Gallium indium arsenide, Aluminum indium arsenide, Indium phosphide, Modulation

  8. Efficient telecom to visible wavelength conversion in doubly resonant GaP microdisks

    CERN Document Server

    Lake, David P; Jayakumar, Harishankar; Santos, Laís Fujii dos; Curic, Davor; Barclay, Paul E

    2015-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with outside efficiency $> 4.4\\times10^{-4}\\, \\text{mW}^{-1}$ is demonstrated in a gallium phosphide microdisk cavity supporting high-$Q$ modes at visible ($Q \\sim 10^4$) and infrared ($Q \\sim 10^5$) wavelengths. The double resonance condition was satisfied through intracavity photothermal temperature tuning using $\\sim 360\\,\\mu$W of 1550 nm light input to a fiber taper and resonantly coupled to the microdisk. Above this pump power efficiency was observed to decrease. The observed behavior is consistent with a simple model for thermal tuning of the double resonance condition.

  9. Microanalysis of Solar Cells

    Science.gov (United States)

    Kazmerski, Lawrence L.

    1980-11-01

    Applications of complementary surface analysis techniques (AES, SIMS, XPS) to solar cell device problems are discussed. Several examples of device interface and grain boundary problems are presented. Silicon, gallium arsenide and indium phosphide based devices are reviewed. Results of compositional and chemical analysis are correlated directly with EBIC measurements performed in-situ on identical sample areas. Those are, in turn, correlated with resulting photovoltaic device performance. The importance of microanalysis to the solution of critical device problems in the photovoltaics technology is emphasized.

  10. High-pressure and high-temperature powder diffraction on molybdenum diphosphide, MoP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Soto, V. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Esenada (Mexico); Knorr, K.; Ehm, L. [Christian-Albrechts-Univ. zu Kiel, Inst. fuer Geowissenschaften, Mineralogie/Kristallographie, Kiel (Germany); Baehtz, C. [HASYLAB Hamburg and TU Darmstadt, Materialwissenschaften, Darmstadt (Germany); Winkler, B. [Johann-Wolfgang-Goethe Univ. Frankfurt-Main, Mineralogie, Frankfurt/M. (Germany); Avalos-Borja, M. [Centro de Ciencias de la Materia Condensada, Univ. Nacional Autonoma de Mexico, Ensenada, BC (Mexico)

    2004-07-01

    The isothermal compressibility and bulk thermal expansion of molybdenum diphosphide, MoP{sub 2}, were measured by in-situ X-ray powder diffraction from ambient conditions to 6.8 GPa and 839 K, respectively. A small anisotropy of the compressibilities in MoP{sub 2} appears to be governed by non-bonding interactions in this layer-like material. The thermal expansion data are compared to molybdenum phosphide, MoP, which was measured to 1262 K. (orig.)

  11. Palladium nanoparticles on InP for hydrogen detection

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Layers of palladium (Pd nanoparticles on indium phosphide (InP were prepared by electrophoretic deposition from the colloid solution of Pd nanoparticles. Layers prepared by an opposite polarity of deposition showed different physical and morphological properties. Particles in solution are separated and, after deposition onto the InP surface, they form small aggregates. The size of the aggregates is dependent on the time of deposition. If the aggregates are small, the layer has no lateral conductance. Forward and reverse I-V characteristics showed a high rectification ratio with a high Schottky barrier height. The response of the structure on the presence of hydrogen was monitored.

  12. Electroluminescence

    CERN Document Server

    Henisch, H K

    1962-01-01

    Electroluminescence deals with the multiplicity of forms related to electroluminescence phenomena. The book reviews some basic observations of electroluminescence, the Gudden-Pohl and Dechene effects, the electroluminescence phenomena in zinc sulfide phosphors, in silicon carbide, and in compounds composed of elements in groups III and V of the Periodic Table (such as gallium phosphide). The text also explains polarization of free charge carriers, the outline of junction breakdown theory, carrier recombination, and phosphor suspensions. The book describes the growth of zinc sulfide crystals (f

  13. Inhalation of phosphine gas following a fire associated with fumigation of processed pistachio nuts.

    Science.gov (United States)

    O'Malley, Michael; Fong, Harvard; Sánchez, Martha E; Roisman, Rachel; Nonato, Yvette; Mehler, Louise

    2013-01-01

    On December 10, 2009, a fumigation stack containing aluminum phosphide became soaked with rain water and caught fire at a pistachio processing plant in Kern County, California. Untrained plant personnel responding to the fire had exposure to pyrolysis by-products, particulates, and extinguisher ingredients. Ten workers taken for medical evaluation had respiratory and nonspecific systemic symptoms consistent with exposure to phosphine gas. Six of the 10 workers had respiratory distress, indicated by chest pain, shortness of breath, elevated respiratory rate, or decreased oxygen saturation. Recommendations are made for the management of similar illnesses and prevention of similar exposures.

  14. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-09-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  15. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. [Lawrence Berkeley Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Chemistry; Smith, B.F. [Los Alamos National Lab., NM (United States)

    1991-11-01

    The first measurements of distribution coefficients (K{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}`s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}`s for these actinides are about a factor of 5 to 10 greater than the K{sub d}`s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}`s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand.

  16. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry); Smith, B.F. (Los Alamos National Lab., NM (United States))

    1991-11-01

    The first measurements of distribution coefficients (K{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}'s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}'s for these actinides are about a factor of 5 to 10 greater than the K{sub d}'s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}'s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand.

  17. Extraction studies of selected actinide ions from aqueous solutions with 4-benzoyl-2,4-Dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and Tri-n-octylphosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hannink, N.J.; Hoffman, D.C. [Lawrence Berkeley Lab., CA (United States); Smith, B.F. [Los Alamos National Lab., NM (United States)

    1992-07-01

    The first measurements of distribution coefficients (k{sub d}) for Cm(III), Bk(III), Cf(III), Es(III), and Fm(III) between aqueous perchlorate solutions and solutions of 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT) and the synergist tri-n-octylphosphine oxide (TOPO) in toluene are reported. Curium-243, berkelium-250, californium-249, einsteinium-254, and fermium-253 were used in these studies. The K{sub d} for {sup 241}Am was also measured and is in agreement with previously published results. Our new results show that the K{sub d}`s decrease gradually with increasing atomic number for the actinides with a dip at Cf. In general, the K{sub d}`s for these actinides are about about a factor of 10 greater than the K{sub d}`s for the homologous lanthanides at a pH of 2.9, a BMPPT concentration of 0.2 M, and a TOPO concentration of 0.04 M. The larger K{sub d}`s for the actinides are consistent with greater covalent bonding between the actinide metal ion and the sulfur bonding site in the ligand. 9 refs., 2 figs., 1 tab.

  18. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  19. Polymer-Embedded Fabrication of Co2P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation.

    Science.gov (United States)

    Zhuang, Minghao; Ou, Xuewu; Dou, Yubing; Zhang, Lulu; Zhang, Qicheng; Wu, Ruizhe; Ding, Yao; Shao, Minhua; Luo, Zhengtang

    2016-07-13

    We developed a method to engineer well-distributed dicobalt phosphide (Co2P) nanoparticles encapsulated in N,P-doped graphene (Co2P@NPG) as electrocatalysts for hydrogen evolution reaction (HER). We fabricated such nanostructure by the absorption of initiator and functional monomers, including acrylamide and phytic acid on graphene oxides, followed by UV-initiated polymerization, then by adsorption of cobalt ions and finally calcination to form N,P-doped graphene structures. Our experimental results show significantly enhanced performance for such engineered nanostructures due to the synergistic effect from nanoparticles encapsulation and nitrogen and phosphorus doping on graphene structures. The obtained Co2P@NPG modified cathode exhibits small overpotentials of only -45 mV at 1 mA cm(-2), respectively, with a low Tafel slope of 58 mV dec(-1) and high exchange current density of 0.21 mA cm(-2) in 0.5 M H2SO4. In addition, encapsulation by N,P-doped graphene effectively prevent nanoparticle from corrosion, exhibiting nearly unfading catalytic performance after 30 h testing. This versatile method also opens a door for unprecedented design and fabrication of novel low-cost metal phosphide electrocatalysts encapsulated by graphene.

  20. Deep level defects in high temperature annealed InP

    Institute of Scientific and Technical Information of China (English)

    DONG Zhiyuan; ZHAO Youwen; ZENG Yiping; DUAN Manlong; LIN Lanying

    2004-01-01

    Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed iniron phosphide ambient,while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.

  1. Exploring highly porous Co2P nanowire arrays for electrochemical energy storage

    Science.gov (United States)

    Chen, Minghua; Zhou, Weiwei; Qi, Meili; Yin, Jinghua; Xia, Xinhui; Chen, Qingguo

    2017-02-01

    Controllable synthesis of mesoporous conductive metal phosphide nanowire arrays is critical for developing highly-active electrodes of alkaline batteries. Herein we develop a simple combined strategy for rational synthesis of mesoporous Co2P nanowire arrays by hydrothermal-phosphorization method. Free-standing mesoporous Co2P nanowires consisting of interconnected nanoparticles of 10-20 nm grow vertically to the substrate forming arrays. High electrical conductivity and large porosity are obtained in the arrays architecture. When characterized as the cathode of high-rate alkaline batteries, the designed Co2P nanowire arrays are proven with good electrochemical performance with a large capacity (133 mAh g-1 at 1 A g-1), stable cycling life with a capacity retention of almost 100% after 5000 cycles at 10 A g-1 owing to the mesoporous nanowire structure with short ion/electron transport path. Our synthetic approach can be useful for construction of other porous metal phosphide arrays for energy storage and conversion.

  2. Photoelectrochemistry of Semiconductor Nanowire Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  3. Magnetic properties of nanostructured Fe{sub 92}P{sub 8} powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Bensalem, R. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12 (23000) Annaba (Algeria)], E-mail: rachid_bensalem06@yahoo.fr; Tebib, W.; Alleg, S. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12 (23000) Annaba (Algeria); Sunol, J.J. [Dep. De fisica, Universitat de Girona, Campus de Montilivi, Girona 17017 (Spain); Bessais, L. [CNRS-Laboratoire de Chimie Metallurgique des Terres Rares-Groupe des Laboratoires de Thiais, 2-8 Rue Henri Durant, Thiais Cedex 94320 (France); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, Le Mans Cedex 72085 (France)

    2009-03-05

    Structural and magnetic properties of nanostructured Fe{sub 92}P{sub 8} (wt.%) powder mixture prepared by mechanical alloying were investigated by X-ray diffraction (XRD), Moessbauer spectrometry and magnetic measurements. The crystallite sizes were found to decrease with milling time to the nanometer scale (6-14 nm). Milling for 21 h gives rise to a mixture of: (i) a two-bcc {alpha}-Fe structure with the same lattice parameter but different microstructural (crystallite size, microstrain) and hyperfine parameters (magnetic field, isomer shift), (ii) Fe{sub 3}P nanophase and (iii) a small amount of a paramagnetic FeP phosphide phase, not exceeding 2%. Furthermore, the temperature dependence of the magnetic susceptibility measurement reveals the presence of two magnetic phases with different Curie temperatures, Tc{sub 1} and Tc{sub 2}. One Curie temperature is nearly constant (Tc{sub 1} = 867 K) during the milling process, while the other one (Tc{sub 2}) is milling time dependent. Annealing at a temperature of 210 deg. C for half an hour leads to the formation of the FeP phosphide in addition to an {alpha}-Fe(P) solid solution and the Fe{sub 3}P nanophase.

  4. A Novel Bis(phosphido)pyridine [PNP] 2− Pincer Ligand and Its Potassium and Bis(dimethylamido)zirconium(IV) Complexes

    KAUST Repository

    Winston, Matthew S.

    2010-12-13

    A novel PNP bis(secondary phosphine)pyridine pincer ligand, 2,6-bis(2-(phenylphosphino)phenyl)pyridine, has been prepared in high yield, and the properties of the doubly deprotonated form as a ligand in K 4(PNP)2(THF)6 and (PNP)Zr(NMe2) 2 have been investigated. The neutral PNP ligand has been isolated as a mixture of noninterconverting diastereomers, due to the presence of two chirogenic phosphorus atoms of the secondary phopshines, but coordination of the dianionic form to potassium and zirconium allows for isolation of a single diastereomer in near-quantitative yield. The structure of a bis(dimethylamido) zirconium(IV) derivative of the bis(phosphido)pyridine ligand and DFT calculations suggest that the phosphides do not π-bond to early transition metals, likely due to geometric strain and possibly orbital size mismatch between phosphorus and zirconium. As a result, the soft phosphides are prone to formation of insoluble oligomers with substantial bridging of the phosphido lone pairs to other zirconium centers. © 2010 American Chemical Society.

  5. Mechanical, piezoelectric and some thermal properties of (B3) BP under pressure

    Institute of Scientific and Technical Information of China (English)

    S.DAOUD; N.BIOUD; N.LEBGAA

    2014-01-01

    Some compounds of group III-V semiconductor materials exhibit very good piezoelectric, mechanical, and thermal properties and their use in surface acoustic wave (SAW) devices operating specially at GHz frequencies. These materials have been appreciated for a long time due to their high acoustic velocities, which are important parameters for active microelectromechanical systems (MEMS) devices. For this object, first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical, piezoelectric and some thermal properties of the (B3) boron phosphide are presented, using the density functional perturbation theory (DFPT). The independent elastic and compliance constants, the Reuss modulus, Voigt modulus, and the shear modulus, the Kleinman parameter, the Cauchy and Born coefficients, the elastic modulus, and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained. The direct and converse piezoelectric coefficients, the longitudinal, transverse, and average sound velocity, the Debye temperature, and the Debye frequency of (B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.

  6. Comparisons of Accurate Electronic, Transport, and Bulk Properties of XP (X = B, Al, Ga, In)

    Science.gov (United States)

    Malozovsky, Yuriy; Ejembi, John; Saliev, Azizjon; Franklin, Lashounda; Bagayoko, Diola

    We present comparisons of results from ab-initio,self-consistent local density approximation (LDA) calculations of accurate, electronic and related properties of zinc blende XP (X =B, Al, Ga, In) phosphides. We implemented the linear combination of atomic orbitals following the Bagayoko, Zhao, and Williams (BZW) method as enhanced by Ekuma and Franklin (BZW-EF). Consequently, our results have the full physical content of DFT and agree very well with corresponding experimental ones [AIP Advances, 4, 127104 (2014)]. Our calculated, indirect band gap of 2.02 eV for BP, 2.56 eV for AlP, and of 2.29 eV for GaP, from Γ to X-point, are in excellent agreement with experimental values. Our calculated direct band gap of 1.43 eV, at Γ, for InP is also in an excellent agreement with experimental value. We discuss calculated electron and hole effective masses, total (DOS) and partial (pDOS) densities of states, and the bulk modulus of these phosphides. Acknowledgments: NSF and the Louisiana Board of Regents, LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, DOE - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  7. Evaluation of critical materials in five additional advance design photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  8. The effect of nitrogen implantation on structural changes in semi-insulating InP

    Energy Technology Data Exchange (ETDEWEB)

    Santhakumar, K.; Jayavel, P.; Reddy, G.L.N.; Sastry, V.S.; Nair, K.G.M.; Ravichandran, V. E-mail: vravichandran@vsnl.com

    2003-12-01

    110 keV nitrogen ions (N{sup +}) of fluences 1 x 10{sup 14}-1 x 10{sup 17} cm{sup -2} have been implanted in liquid encapsulated Czochralski grown Fe-doped semi-insulating indium phosphide (InP) single crystal substrates. Grazing incidence X-ray diffraction measurements on as-grown and implanted samples have been carried out and analyzed. At all above fluences, a broad hump in the region of InP(1 1 1) peaks is observed. It might have resulted from implantation-induced misoriented grains along certain preferred orientations. The peak observed at a d-value of 1.77 A for all the fluences becomes more pronounced as the implantation fluence increases up to 1 x 10{sup 16} cm{sup -2}. This could indicate formation of an Indium phosphide nitride alloy. Post-implantation annealing reduces the structural defects and assists in the growth of the nitride phase.

  9. Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution

    Science.gov (United States)

    Wu, Tianli; Pi, Mingyu; Zhang, Dingke; Chen, Shijian

    2016-10-01

    Transition metal phosphides (TMPs) are burgeoning as novel electrocatalysts to replace noble metals for electrochemical production of hydrogen. In this work, we propose a novel and cost-effective catalyst, molybdenum diphosphide (MoP2) three-dimensional porous structural nanoparticles with superior activity towards the hydrogen evolution reaction (HER). MoP2 nanoparticles catalyst exhibits an onset overpotential of -38 mV, a Tafel slope of 52 mV dev-1 and an exchange current density of 0.038 mA cm-2. Furthermore, the catalyst only needs low overpotentials of -121 and -193 mV to produce operationally relevant cathodic current densities of -10 and -100 mA cm-2, respectively, and its catalytic activity is maintained for at least 24 h. Comparative study with MoP nanoparticles as electrocatalyst for HER clearly indicates that MoP2 with high phosphor component can potentially improve the electrocatalytic activities. Density functional theory (DFT) calculation shows that the higher electrocatalytic activity of MoP2 over MoP can be attributed to a longer Hsbnd P bond length, lower hydrogen adsorption energy, lower HER energy barrier and luxuriant surface active sites. This work may expand the TMPs family to poly-phosphides as active and cost-effective hydrogen electrode for the large-scale hydrogen production.

  10. Surface chemistry and physics of III/V compound semiconductors

    Science.gov (United States)

    Fu, Qiang

    The surface chemistry of gallium arsenide and indium phosphide has been investigated using infrared spectroscopy (IR), scanning tunneling microscopy (STM), and ab initio molecular cluster calculations. The work presented here provides the first theoretical framework for studying the reaction sites on compound semiconductor surfaces. These sites consist of dimers and threefold-coordinated atoms in the second layer. Stable clusters of gallium arsenide, i.e., GaxAsyHz, where x, y = 4, 5 and z = 11, 13, are those in which the arsenic dangling bonds are filled, while the gallium dangling bonds are empty. By contrast, stable clusters of indium phosphide, i.e., InxPyHz, where x, y = 4, 5 and z = 10, 11, 13, are those in which the phosphorous dangling bonds are either filled or half filled, and the indium dangling bonds are empty. The most important contribution of this work is the discovery of a new surface structure, the InP (001)-(2 x 1). The InP (2 x 1) is terminated with a complete layer of phosphorous dimers with a half-filled dangling bond on every other phosphorous atom. The half-filled orbital violate the electron counting model [Pashley, Phys. Rev. B 1989, 40, 10481], and indicate that many more reconstructions are possible on these surfaces than was originally thought. Excellent agreement is achieved between the molecular cluster calculations and the measured vibrational frequencies of adsorbed hydrogen and arsine on gallium arsenide and indium phosphide (001) surfaces. On both GaAs and InP, mono-hydrogen and di-hydrogen bonds are formed with the three-coordinate, group V atoms and dimers. Conversely, electron deficient bridging hydrides are produced on the group III dimers. These latter species occur in isolated or coupled structures involving two or three metal atoms. In addition, we have elucidated the kinetics and mechanism of arsine decomposition on gallium-rich GaAs (001). The combination of STM, IR, and ab initio molecular cluster calculations provides a

  11. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N.

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below ∼800 °C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing ≤2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co) 3O 4 protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr) 3O 4 passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr 2O 3. On SS 441, reaction of phosphorus with (Mn,Cr) 3O 4 led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe 3P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co) 3O 4 spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn 3(PO 4) 2 and Co 2P. A thin Cr 2O 3 passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr 2O 3 was apparent. On alumel, an Al 2O 3 passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al 2O 3 occurred. This work shows that unprotected metallic components of an SOFC stack and system can provide a sink for P, As and Sb impurities that may be present in fuel gases, and thus complicate

  12. Self-catalyst synthesis of aligned ZnO nanorods by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    LEN; Song-En; Andy

    2009-01-01

    High-density well-aligned ZnO nanorods were successfully synthesized on ZnO-buffer-layer coated indium phosphide (InP) (100) substrates by a pulsed laser deposition (PLD) method. Scanning electron microscopy images show that the ZnO buffer layer formed uniform drip-like structure and ZnO nano- rods were well-oriented perpendicular to the substrate surface. The sharp diffraction peak observed at 34.46° in X-ray diffraction scanning pattern suggests that the ZnO nanorods exhibit a (002)-preferred orientation. The PL spectra of ZnO samples shows a strong near band edge emission centered at about 380 nm and a weak deep level emission centered at around 495 nm, and it demonstrates that the ZnO nanorods produced in this work have high optical quality, which sheds light on further applications for nanodevices.

  13. Chip-based quantum key distribution

    Science.gov (United States)

    Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-01-01

    Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip—monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols—BB84, Coherent One Way and Differential Phase Shift—with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks. PMID:28181489

  14. Electrical detection of spin hyperpolarization in InP

    Science.gov (United States)

    Caspers, Christian; Ansermet, Jean-Philippe

    2014-09-01

    The electrical detection of surface spin polarization in Indium Phosphide (InP) is demonstrated. Using a planar four-terminal architecture on top of semi-insulating Fe:InP (001) wafers, optical orientation is separated from electrical detection. Spin filter tunnel contacts consisting of InP/oxide/Co reveal significant asymmetries in the differential resistance upon helicity change of the optical pumping. The iron-rich tunnel oxide provides the main spin selection mechanism. A reproducible helicity-dependent asymmetry as high as 18% could be observed at T = 55 K and an external induction field μ0H = 1 T. At room temperature and zero external field, a helicity-dependent asymmetry of 6% suggests the stand-alone applicability of the device either as an electronic spin sensor or as an optical helicity sensor.

  15. Electrical detection of spin hyperpolarization in InP

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Christian; Ansermet, Jean-Philippe [Laboratoire de Physique des Matériaux Nanostructurés, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland)

    2014-09-29

    The electrical detection of surface spin polarization in Indium Phosphide (InP) is demonstrated. Using a planar four-terminal architecture on top of semi-insulating Fe:InP (001) wafers, optical orientation is separated from electrical detection. Spin filter tunnel contacts consisting of InP/oxide/Co reveal significant asymmetries in the differential resistance upon helicity change of the optical pumping. The iron-rich tunnel oxide provides the main spin selection mechanism. A reproducible helicity-dependent asymmetry as high as 18% could be observed at T = 55 K and an external induction field μ{sub 0}H = 1 T. At room temperature and zero external field, a helicity-dependent asymmetry of 6% suggests the stand-alone applicability of the device either as an electronic spin sensor or as an optical helicity sensor.

  16. Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions

    Science.gov (United States)

    Ippen, Christian; Schneider, Benjamin; Pries, Christopher; Kröpke, Stefan; Greco, Tonino; Holländer, Andreas

    2015-02-01

    The synthesis of indium phosphide quantum dots (QDs) in toluene under supercritical conditions was carried out in a macroscopic continuous flow reaction system. The results of first experiments are reported in comparison with analogous reactions in octadecene. The reaction system is described and details are provided about special procedures that are enabled by the continuous flow system for the screening of reaction conditions. The produced QDs show very narrow emission peaks with full width at half maximum down to 45 nm and reasonable photoluminescence quantum yields. The subsequent purification process is facilitated by the ease of removal of toluene, and the productivity of the system is increased by high temperature and high pressure conditions.

  17. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    Science.gov (United States)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  18. Electron-beam pulse annealed Ti-implanted GaP

    Science.gov (United States)

    Werner, Z.; Barlak, M.; Ratajczak, R.; Konarski, P.; Markov, A. M.; Heller, R.

    2016-08-01

    Gallium phosphide heavily doped with substitutional titanium is a prospective material for intermediate band solar cells. To manufacture such a material, single crystals of GaP were implanted with 120 keV Ti ions to doses between 5 × 1014 cm-2 and 5 × 1015 cm-2. They were next pulse annealed with 2 μs electron-beam pulses of electron energy of about 13 keV and pulse energy density between 1 and 2 Jcm-2. The samples were studied by channeled Rutherford Backscattering, particle induced X-ray emission, and SIMS. The results show full recovery of crystal structure damaged by implantation and good retention of the implanted titanium without, however, its significant substitution at crystal sites.

  19. Effect of C, Si and P on intergranular corrosion susceptibility of type 316 stainless steel; 316 kei stainless ko no ryuiaki fushokusei ni oyobosu kochu C, Si oyobi P no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M.; Abe, S. [Nippon Steel Corp., Tokyo (Japan)

    1995-07-15

    The effect of C, Si and P on intergranular corrosion (IGC) susceptibility of Type 316 painless steels (SS) has been studied in terms of the composition dependent IGC and the impound dependent IGC. The results obtained are as follows; (1) C increases the IGC existence of Type 316 SS in Huey and Coriou tests by suppressing the precipitation of Laves phase. However, severe IGC occurs in HNO3 + HF and Huey tests when the Cr depleted one is continuously formed at grainboundaries (GB). (2) Si raises the IGC susceptibility both in Huey and Coriou tests. It is considered that Si enhances the precipitation of Laves phase at GB. (3) p also increases the IGC susceptibility both in Huey and Coriou tests by decapitating as Ni-P phosphides at GB. 10 refs., 12 figs., 2 tabs.

  20. Fibre optic communication key devices

    CERN Document Server

    Grote, Norbert

    2017-01-01

    The book gives an in-depth description of key devices of current and next generation fibre optic communication networks. Devices treated include semiconductor lasers, optical amplifiers, modulators, wavelength filters and other passives, detectors, all-optical switches, but relevant properties of optical fibres and network aspects are included as well. The presentations include the physical principles underlying the various devices, technologies used for their realization, typical performance characteristics and limitations, but development trends towards more advanced components are also illustrated. This new edition of a successful book was expanded and updated extensively. The new edition covers among others lasers for optical communication, optical switches, hybrid integration, monolithic integration and silicon photonics. The main focus is on Indium phosphide-based structures but silicon photonics is included as well. The book covers relevant principles, state-of-the-art implementations, status of curren...

  1. Chip-based quantum key distribution

    Science.gov (United States)

    Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-02-01

    Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip--monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols--BB84, Coherent One Way and Differential Phase Shift--with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks.

  2. The Significance of Multivalent Bonding Motifs and “Bond Order” in DNA-Directed Nanoparticle Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Thaner, Ryan V.; Eryazici, Ibrahim; Macfarlane, Robert J.; Brown, Keith A.; Lee, Byeongdu; Nguyen, SonBinh T.; Mirkin, Chad A.

    2016-05-18

    Multivalent oligonucleotide-based bonding elements have been synthesized and studied for the assembly and crystallization of gold nanoparticles. Through the use of organic branching points, divalent and trivalent DNA linkers were readily incorporated into the oligonucleotide shells that define DNA-nanoparticles and compared to monovalent linker systems. These multivalent bonding motifs enable the change of "bond strength" between particles and therefore modulate the effective "bond order." In addition, the improved accessibility of strands between neighboring particles, either due to multivalency or modifications to increase strand flexibility, gives rise to superlattices with less strain in the crystallites compared to traditional designs. Furthermore, the increased availability and number of binding modes also provide a new variable that allows previously unobserved crystal structures to be synthesized, as evidenced by the formation of a thorium phosphide superlattice.

  3. Synthesis of monoclinic zinc diphosphide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mowles, T.A.

    1978-05-01

    Monoclinic zinc diphosphide is a cheap, plentiful, direct-gap semiconductor with an optimum transition energy for solar absorption. Single crystals were grown from the vapor to be evaluated as a new photovoltaic material. Monoclinic and tetragonal crystal formed within evacuated quartz ampules that were charged with zinc and excess phosphorous and heated in a temperature gradient to give phosphorous pressures from 0.07 to 8.5 atmospheres. The monoclinic form melts incongruently near 990/sup 0/C. The tetragonal form is metastable; its growth is enhanced by impurities but retarded by high phosphorous pressures. The mechanism of the synthesis indicates that a tightly-controlled vapor deposition is possible and that high-quality thin films should form at temperatures from 950 to 990/sup 0/C at pressures below 10 atmospheres. By a modification of the technique, sesquizinc phosphide single crystals were grown for comparison.

  4. A novel and compact nanoindentation device for in situ nanoindentation tests inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-03-01

    Full Text Available In situ nanomechanical tests provide a unique insight into mechanical behaviors of materials, such as fracture onset and crack propagation, shear band formation and so on. This paper presents a novel in situ nanoindentation device with dimensions of 103mm×74mm×60mm. Integrating the stepper motor, the piezoelectric actuator and the flexure hinge, the device can realize coarse adjustment of the specimen and precision loading and unloading of the indenter automatically. A novel indenter holder was designed to guarantee that the indenter penetrates into and withdraws from the specimen surface vertically. Closed-loop control of the indentation process was established to solve the problem of nonlinearity of the piezoelectric actuator and to enrich the loading modes. The in situ indentation test of Indium Phosphide (InP inside the scanning electron microscope (SEM was carried out and the experimental result indicates the feasibility of the developed device.

  5. Zintl Salts Ba2P7X (X = Cl, Br, and I: Synthesis, Crystal, and Electronic Structures

    Directory of Open Access Journals (Sweden)

    Juli-Anna Dolyniuk

    2013-08-01

    Full Text Available Two barium phosphide halides, Ba2P7Br and Ba2P7I, were synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds crystallize in the monoclinic space group P21/m (No. 11 and are isostructural to Ba2P7Cl. The crystal structures of Ba2P7X (X = Cl, Br, I feature the presence of heptaphosphanortricyclane P73− clusters along with halogen anions and barium cations. According to the Zintl concept, Ba2P7X compounds are electron-balanced semiconductors. Quantum-chemical calculations together with UV-Visible spectroscopy confirm the title compounds are wide bandgap semiconductors. The bonding in the P73− clusters was analyzed by means of electron localization function. The elemental compositions were confirmed using energy dispersive X-ray spectroscopy.

  6. Extraction of second harmonic from the In0.53Ga0.47As planar Gunn diode using radial stub resonators

    Science.gov (United States)

    Maricar, Mohamed Ismaeel; Khalid, A.; Glover, J.; Evans, G. A.; Vasileious, P.; Li, Chong; Cumming, D.; Oxley, C. H.

    2014-09-01

    Planar Indium Gallium Arsenide (InGaAs) Gunn diodes with on chip matching circuits have been fabricated on a semi-insulating Indium Phosphide (InP) substrate to enable the extraction of the second harmonic in millimeter-wave and terahertz frequencies. The planar Gunn diodes were designed in coplanar waveguide (CPW) format with an active channel length of 4 μm and width 120 μm integrated to CPW matching circuit and radial stub resonator to suppress the fundamental and to extract the second harmonic. The initial experimental measurements have given a second harmonic signal at 118 GHz with an output power of -20 dBm and the fundamental signal at 59 GHz was suppressed to the noise level of the experimental set-up.

  7. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Xia; Sun, Pingping; Qin, Jinwen; Wang, Jianqiang; Xiao, Ying; Cao, Minhua

    2016-05-01

    Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an anode material for lithium-ion batteries in terms of specific capacity, cycling stability and long-cycle life. It presents stable cycling performance with a high reversible capacity up to 1028 mA h g-1 at a current density of 100 mA g-1 after 100 cycles. By ex situ XRD, HRTEM, SAED and XPS analyses, the 3D porous MoP@C hybrid was found to follow the Li-intercalation reaction mechanism (MoP + xLi+ + e- LixMoP), which was further confirmed by ab initio calculations based on density functional theory.Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an

  8. Silicon optical modulators

    Directory of Open Access Journals (Sweden)

    Graham T. Reed

    2005-01-01

    Full Text Available Ever since the earliest research on optical circuits, dating back to the 1970s, there have been visions of an optical superchip (see for example1,2, containing a variety of integrated optical components to carry out light generation, modulation, manipulation, detection, and amplification (Fig. 1. The early work was associated with ferroelectric materials such as lithium niobate (LiNbO3, and III-V semiconductors such as gallium arsenide (GaAs and indium phosphide (InP based systems. LiNbO3 was interesting almost solely because of the fact that it possesses a large electro-optic coefficient3, enabling optical modulation via the Pockels effect. Alternatively, the III-V compounds were interesting because of the relative ease of laser fabrication and the prospect of optical and electronic integration.

  9. About bond model of S-type negative differential resistance in GaP LEDs

    Science.gov (United States)

    Gaydar, G.; Konoreva, O.; Maliy, Ye.; Olikh, Ya.; Petrenko, I.; Pinkovska, M.; Radkevych, O.; Tartachnyk, V.

    2017-04-01

    The bond models are presented that explain the S-type anomaly of GaP LEDs' electrical characteristics at temperatures Т ≤ 120 K. A possible mechanism of negative differential resistance appearing in current-voltage characteristics is proposed, based on the features of the gallium phosphide complex band structure. The conductive zone absolute minimum in this crystal is near the Brillouin zone end. Due to the positive internal bond, controlled by the current, intervalley electron transfer occurs from the side valley to the higher one with the smaller effective electron mass. While the applied voltage is increased, electrons move from the lateral valley to the direct conductive zone bottom and an S-type negative differential resistance region appears.

  10. The high-pressure compressibility of B12P2

    Science.gov (United States)

    Gao, Yang; Zhou, Mi; Wang, Haiyan; Ji, Cheng; Whiteley, C. E.; Edgar, J. H.; Liu, Haozhe; Ma, Yanzhang

    2017-03-01

    In situ high pressure synchrotron X-ray diffraction measurements were performed on icosahedral boron phosphide (B12P2) to 43.2 GPa. No structural phase transition occurs over this pressure range. The bulk modulus of B12P2 is KOT = 207 ± 7 GPa with pressure derivative of K'OT = 6.6 ± 0.8 . The structure is most compressible along the chain formed by phosphorus and boron atoms in the crystal structure. It is believed that the compressibility of boron-rich compounds at close to ambient pressure is determined by the boron icosahedral structure, while the inclusive atoms (both boron and non-boron) between the icosahedra determine the high-pressure compressibility and structure stability.

  11. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  12. Photoelectrochemical based direct conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Arent, D.; Peterson, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  13. InP solid state detector for measurement of low energy solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Yoshiyuki, E-mail: fukuda@staff.miyakyo-u.ac.j [Faculty of Education, Miyagi University of Education, 149, Aobaku-aza-aoba, Sendai, Miyagi 980-0845 (Japan); Izawa, Toshiyuki [Solid State Division, Hamamatsu Photonics K.K. 1126-1, Ichino-cho, Hamamatsu, Shizuoka 435-8558 (Japan); Koshio, Yusuke; Moriyama, Shigetaka [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida, Gifu 506-1205 (Japan); Namba, Toshio [ICEPP, International Center for Elementary Particle Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Shiozawa, Masato [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida, Gifu 506-1205 (Japan)

    2010-11-01

    A large volume radiation detector using a semi-insulating Indium Phosphide (InP) wafer has been developed for Indium Project on Neutrino Observation for Solar interior (IPNOS) experiment. We have achieved the volume of 20 mm{sup 3}, and this is world largest one among InP detectors which observed {gamma}'s at hundred keV region. In spite of the depletion layer, most of charge generated by electron hole pair production are collected by an induction, and the charge collection efficiency and the energy resolution are obtained by 60% and 25%, respectively. We measured actual backgrounds related to {sup 115}In {beta} decay, and no significant background was found.

  14. Photocatalytic reduction of CO2 on TiO2 and other semiconductors.

    Science.gov (United States)

    Habisreutinger, Severin N; Schmidt-Mende, Lukas; Stolarczyk, Jacek K

    2013-07-15

    Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

  15. Berry phase and band structure analysis of the Weyl semimetal NbP

    Science.gov (United States)

    Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2016-01-01

    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase. PMID:27667203

  16. III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael; Battaglia, Corsin; Kapadia, Rehan; Javey, Ali

    2016-06-01

    The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enable lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.

  17. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    Science.gov (United States)

    Choi, S. W.; Lucovsky, G.; Bachmann, Klaus J.

    1993-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) were grown by remote plasma enhanced chemical vapor deposition utilizing in situ generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (rf) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate, however, the saturation of the growth rate at even higher rf power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  18. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-10-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time.

  19. Investigation of defect cavities formed in three-dimensional woodpile photonic crystals

    CERN Document Server

    Taverne, Mike P C; Rarity, J G

    2014-01-01

    We report the optimisation of optical properties of single defects in threedimensional (3D) face-centred-cubic (FCC) woodpile photonic crystal (PC) cavities by using plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methods. By optimising the dimensions of a 3D woodpile PC wide photonic band gaps (PBG) are created. Optical cavities with resonances in the bandgap arise when point defects are introduced in the crystal. Three types of single defects are investigated in high refractive index contrast (Gallium Phosphide-Air) woodpile structures and Q-factors and mode volumes (Veff) of the resonant cavity modes are calculated. We show that, by introducing an air buffer around a single defect, smaller mode volumes can be obtained. The estimates of Q and Veff are then used to quantify the enhancement of spontaneous emission and the possibility of achieving strong coupling with nitrogen-vacancy (NV) colour centres in diamond.

  20. Multiport InP monolithically integrated all-optical wavelength router.

    Science.gov (United States)

    Zheng, Xiu; Raz, Oded; Calabretta, Nicola; Zhao, Dan; Lu, Rongguo; Liu, Yong

    2016-08-15

    An indium phosphide-based monolithically integrated wavelength router is demonstrated in this Letter. The wavelength router has four input ports and four output ports, which integrate four wavelength converters and a 4×4 arrayed-waveguide grating router. Each wavelength converter is achieved based on cross-gain modulation and cross-phase modulation effects in a semiconductor optical amplifier. Error-free wavelength switching for a non-return-to-zero 231-1 ps eudorandom binary sequence at 40 Gb/s data rate is performed. Both 1×4 and 3×1 all-optical routing functions of this chip are demonstrated for the first time with power penalties as low as 3.2 dB.

  1. Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements.Application to n-InP

    Institute of Scientific and Technical Information of China (English)

    Ali Ahaitouf; Abdelaziz Ahaitouf; Jean Paul Salvestrini; Hussein Srour

    2011-01-01

    Based on current voltage (I-Vg) and capacitance voltage (C-Vg) measurements,a reliable procedure is proposed to determine the effective surface potential Vd (Vg) in Schottky diodes.In the framework of thermionic emission,our analysis includes both the effect of the series resistance and the ideality factor,even voltage dependent.This technique is applied to n-type indium phosphide (n-InP) Schottky diodes with and without an interfacial layer and allows us to provide an interpretation of the observed peak on the C-Vg measurements.The study clearly shows that the depletion width and the flat band barrier height deduced from C-Vg,which are important parameters directly related to the surface potential in the semiconductor,should be estimated within our approach to obtain more reliable information.

  2. Self-supported electrocatalysts for advanced energy conversion processes

    Directory of Open Access Journals (Sweden)

    Tian Yi Ma

    2016-06-01

    Full Text Available The biggest challenge in developing new energy conversion technologies such as rechargeable metal-air batteries, regenerated fuel cells and water splitting devices is to find suitable catalysts that can efficiently and stably catalyze the key electrochemical processes involved. This paper reviews the new development of self-supported electrocatalysts in three categories: electrocatalysts growing on rigid substrates, electrocatalysts growing on soft substrates, and free-standing catalyst films. They are distinct and superior to the conventional powdery electrocatalysts, showing advantages in controllable nanostructure and chemical component, flexible electrode configuration, and outstanding catalytic performance. The self-supported electrocatalysts with various architectures like nanowire/plate/pillar arrays and porous films, composed of metals, metal oxides/selenides/phosphides, organic polymers, carbons and their corresponding hybrids, are presented and discussed. These catalysts exhibit high activity, durability and selectivity toward oxygen reduction, oxygen evolution, and/or hydrogen evolution reactions. The perspectives on the relevant areas are also proposed.

  3. Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission

    CERN Document Server

    Melati, Daniele; Melloni, Andrea

    2016-01-01

    A photonic integrated circuit for mode multiplexing and demultiplexing in a few-mode fiber is presented and demonstrated. Two 10 Gbit/s channels at the same wavelength and polarization are simultaneously transmitted over modes LP01 and LP11a of a few-mode fiber exploiting the integrated mode MUX and DEMUX. The proposed Indium-Phosphide-based circuits have a good coupling efficiency with fiber modes with mode-dependant loss smaller than 1 dB. Measured mode excitation cross-talk is as low as -20 dB and a channel cross-talk after propagation and demultiplexing of -15 dB is achieved. An operational bandwidth of the full transmission system of at least 10 nm is demonstrated. Both mode MUX and DEMUX are fully reconfigurable and allow a dynamic switch of channel routing in the transmission system.

  4. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications.

    Science.gov (United States)

    Buencuerpo, Jeronimo; Munioz-Camuniez, Luis E; Dotor, Maria L; Postigo, Pablo A

    2012-07-02

    A hybrid approach for light trapping using photonic crystal nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra thin film as a substrate is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP). A consistent enhancement is observed for all of the materials when using a thin hybrid system (300 nm) even compared to the non patterned thin film with an anti-reflective coating (ARC). A realistic solar cell structure composed of a hybrid system with a layer of indium tin oxide (ITO) an ARC and a back metal layer is performed, showing an 18% of improvement for the nanostructured device.

  5. Effect of Deposition Time on the Morphological Features and Corrosion Resistance of Electroless Ni-High P Coatings on Aluminium

    Directory of Open Access Journals (Sweden)

    N. Sridhar

    2013-01-01

    Full Text Available High phosphorus Ni-P alloy was deposited on aluminium substrate using electroless deposition route. Using zincating bath, the surface was activated before deposition. Deposition time was varied from 15 minutes to 3 hours. Deposit was characterised using scanning electron microscope with energy dispersive spectroscope, X-ray diffraction, and microhardness tester. The corrosion resistance was measured using Tafel extrapolation route. The medium was aqueous 5% HNO3 solution. The analysis showed that the deposit consisted of nodules of submicron and micron scale. The predominant phase in the deposit was nickel along with phosphides of nickel. Compared to substrate material, deposit showed higher hardness. With increase in deposition time, the deposit showed more nobleness in 5% HNO3 solution and nobleness reached a limiting value in 1 hour deposition time.

  6. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  7. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    Science.gov (United States)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  8. A quantum entropy source on an InP photonic integrated circuit for random number generation

    CERN Document Server

    Abellan, Carlos; Domenech, David; Muñoz, Pascual; Capmany, Jose; Longhi, Stefano; Mitchell, Morgan W; Pruneri, Valerio

    2016-01-01

    Random number generators are essential to ensure performance in information technologies, including cryptography, stochastic simulations and massive data processing. The quality of random numbers ultimately determines the security and privacy that can be achieved, while the speed at which they can be generated poses limits to the utilisation of the available resources. In this work we propose and demonstrate a quantum entropy source for random number generation on an indium phosphide photonic integrated circuit made possible by a new design using two-laser interference and heterodyne detection. The resulting device offers high-speed operation with unprecedented security guarantees and reduced form factor. It is also compatible with complementary metal-oxide semiconductor technology, opening the path to its integration in computation and communication electronic cards, which is particularly relevant for the intensive migration of information processing and storage tasks from local premises to cloud data centre...

  9. Aerogels Handbook

    CERN Document Server

    Aegerter, Michel A; Koebel, Matthias M

    2011-01-01

    Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recove...

  10. Optical properties of nanowire metamaterials with gain

    Science.gov (United States)

    Lima, Joaquim; Adam, Jost; Rego, Davi; Esquerre, Vitaly; Bordo, Vladimir

    2016-11-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide. The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications.

  11. Use of radiation graft polymerization for modification of polypropylene

    Directory of Open Access Journals (Sweden)

    Saule Nauryzova

    2016-06-01

    Full Text Available The article investigates the process of applying the conductive layer on isotactic polypropylene modified by the radiation grafting monomer for improving the wettability of the surface. Presented IR spectra, the results of measuring the contact angle of the modified material indicate the improved surface hydrophilicity. The degree of grafting functional groups to the surface of isotactic polypropylene is determined. A scheme of gradual modification of polypropylene surface is presented. As the primary layer for the polymer metallization, copper-phosphorus film may be used. Copper-phosphorus films were obtained by reduction of copper compounds with phosphine gas. Experimental results show that the copper phosphide is electrically conductive coating and imparts an increased hardness.

  12. Polymer Electrolyte Membrane Electrolyzers Utilizing Non-precious Mo-based Hydrogen Evolution Catalysts.

    Science.gov (United States)

    Ng, Jia Wei Desmond; Hellstern, Thomas R; Kibsgaard, Jakob; Hinckley, Allison C; Benck, Jesse D; Jaramillo, Thomas F

    2015-10-26

    The development of low-cost hydrogen evolution reaction (HER) catalysts that can be readily integrated into electrolyzers is critical if H2 from renewable electricity-powered electrolysis is to compete cost effectively with steam reforming. Herein, we report three distinct earth-abundant Mo-based catalysts, namely those based on MoSx , [Mo3 S13 ](2-) nanoclusters, and sulfur-doped Mo phosphide (MoP|S), loaded onto carbon supports. The catalysts were synthesized through facile impregnation-sulfidization routes specifically designed for catalyst-device compatibility. Fundamental electrochemical studies demonstrate the excellent HER activity and stability of the Mo-sulfide based catalysts in an acidic environment, and the resulting polymer electrolyte membrane (PEM) electrolyzers that integrate these catalysts exhibit high efficiency and durability. This work is an important step towards the goal of replacing Pt with earth-abundant catalysts for the HER in commercial PEM electrolyzers.

  13. Detrapping and retrapping of free carriers in nominally pure single crystal GaP, GaAs and 4H-SiC semiconductors under light illumination at cryogenic temperatures

    CERN Document Server

    Mouneyrac, David; Floch, Jean-Michel Le; Tobar, Michael E; Cros, Dominique; Krupka, Jerzy

    2010-01-01

    We report on extremely sensitive measurements of changes in the microwave properties of high purity non-intentionally-doped single-crystal semiconductor samples of gallium phosphide, gallium arsenide and 4H-silicon carbide when illuminated with light of different wavelengths at cryogenic temperatures. Whispering gallery modes were excited in the semiconductors whilst they were cooled on the coldfinger of a single-stage cryocooler and their frequencies and Q-factors measured under light and dark conditions. With these materials, the whispering gallery mode technique is able to resolve changes of a few parts per million in the permittivity and the microwave losses as compared with those measured in darkness. A phenomenological model is proposed to explain the observed changes, which result not from direct valence to conduction band transitions but from detrapping and retrapping of carriers from impurity/defect sites with ionization energies that lay in the semiconductor band gap. Detrapping and retrapping relax...

  14. InGaAs PV Device Development for TPV Power Systems

    Science.gov (United States)

    Wilt, David M.; Fatemi, Navid S.; Hoffman, Richard W., Jr.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David; Lowe, Roland; Chubb, Donald

    1994-01-01

    lndium Gallium Arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 eV on Indium Phosphide (InP) substrates. Reported efficiencies have been as high as 11.2% (AMO) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8% efficiency under a 1500 K blackbody with a projected efficiency of 29.3%. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8% and 6% respectively under similar conditions. Low long wavelength response and high dark currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested.

  15. Hybrid nanocavities for resonant enhancement of color center emission in diamond

    CERN Document Server

    Barclay, Paul E; Santori, Charles; Faraon, Andrei; Beausoleil, Raymond G

    2011-01-01

    Resonantly enhanced emission from the zero phonon line of a diamond nitrogen-vacancy (NV) center in single crystal diamond is demonstrated experimentally using a hybrid whispering gallery mode nanocavity. A 900 nm diameter ring nanocavity formed from gallium phosphide, whose sidewalls extend into a diamond substrate, is tuned onto resonance at low-temperature with the zero phonon line of a negatively charged NV center implanted near the diamond surface. When the nanocavity is on resonance, the zero phonon line intensity is enhanced by approximately an order of magnitude, and the spontaneous emission lifetime of the NV is reduced as much as 18%, corresponding to a 6.3X enhancement of emission in the zero photon line.

  16. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2016-12-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  17. Phosphorus Cation Doping: A New Strategy for Boosting Photoelectrochemical Performance on TiO2 Nanotube Photonic Crystals.

    Science.gov (United States)

    Li, Zhenzhen; Xin, Yanmei; Wu, Wenlong; Fu, Baihe; Zhang, Zhonghai

    2016-11-16

    Photoelectrochemical (PEC) water splitting is a promising technique for sustainable hydrogen generation. However, PEC performance on current semiconductors needs further improvement. Herein, a phosphorus cation doping strategy is proposed to fundamentally boost PEC performance on TiO2 nanotube photonic crystal (TiO2 NTPC) photoelectrodes in both the visible-light region and full solar-light illumination. The self-supported P-TiO2 NTPC photoelectrodes are fabricated by a facile two-step electrochemical anodization method and subsequent phosphidation treatment. The Ti(4+) is partially replaced by P cations (P(5+)) from the crystal lattice, which narrows the band gap of TiO2 and induces charge imbalance by the formation of Ti-O-P bonds. We believe the combination of unique photonic nanostructures of TiO2 NTPCs and P cation doping strategy will open up a new opportunity for enhancing PEC performance of TiO2-based photoelectrodes.

  18. Effect of native oxide mechanical deformation on InP nanoindentation

    Science.gov (United States)

    Almeida, C. M.; Prioli, R.; Ponce, F. A.

    2008-12-01

    Native oxide has been found to have a noticeable effect on the mechanical deformation of InP during nanoindentation. The indentations were performed using spherical diamond tips and the residual impressions were studied by atomic force microscopy. It has been observed that in the early stages of mechanical deformation, plastic flow occurs in the oxide layer while the indium phosphide is still in the elastic regime. The deformed native oxide layer results in a pile-up formation that causes an increase in the contact area between the tip and the surface during the nanoindentation process. This increase in the projected contact area is shown to contribute to the apparent high pressure sustained by the crystal before the onset of plastic deformation. It is also shown that the stress necessary to generate the first dislocations from the crystal surface is ˜3 GPa higher than the stress needed for slip to occur when dislocations are already present in the crystalline structure.

  19. The Unexpected Influence of Precursor Conversion Rate in the Synthesis of III-V Quantum Dots.

    Science.gov (United States)

    Franke, Daniel; Harris, Daniel K; Xie, Lisi; Jensen, Klavs F; Bawendi, Moungi G

    2015-11-23

    Control of quantum dot (QD) precursor chemistry has been expected to help improve the size control and uniformity of III-V QDs such as indium phosphide and indium arsenide. Indeed, experimental results for other QD systems are consistent with the theoretical prediction that the rate of precursor conversion is an important factor controlling QD size and size distribution. We synthesized and characterized the reactivity of a variety of group-V precursors in order to determine if precursor chemistry could be used to improve the quality of III-V QDs. Despite slowing down precursor conversion rate by multiple orders of magnitude, the less reactive precursors do not yield the expected increase in size and improvement in size distribution. This result disproves the widely accepted explanation for the shortcoming of current III-V QD syntheses and points to the need for a new generalizable theoretical picture for the mechanism of QD formation and growth.

  20. Half-metallic ferromagnetism in Fe-doped Zn{sub 3}P{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaiganesh, G., E-mail: jaiganesh@igcar.gov.in; Jaya, S. Mathi, E-mail: jaiganesh@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2014-04-24

    Using the first-principles calculations based on the density functional theory, we have studied the magnetism and electronic structure of Fe-doped Zinc Phosphide (Zn{sub 3}P{sub 2}). Our results show that the half-metallic ground state and ferromagnetic stability for the small Fe concentrations considered in our study. The stability of the doped material has been studied by calculating the heat of formation and analyzing the minimum total energies in nonmagnetic and ferromagnetic phases. A large value of the magnetic moment is obtained from our calculations and our calculation suggests that the Fe-doped Zn{sub 3}P{sub 2} may be a useful material in semiconductor spintronics.

  1. Photoluminescence Imaging Characterization of Thin-Film InP

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Steve; Allende Motz, Alyssa; Moore, James; Zheng, Maxwell; Javey, Ali; Bermel, Peter

    2015-06-14

    Indium phosphide grown using a novel vapor-liquid-solid method is a promising low-cost material for III-V single-junction photovoltaics. In this work, we characterize the properties of these materials using photoluminescence (PL) imaging, time-resolved photoluminescence (TRPL), and microwave-reflection photoconductive decay (u-PCD). PL image data clearly shows the emergence of a self-similar dendritic growth network from nucleation sites, while zoomed-in images show grain structure and grain boundaries. Single photon TRPL data shows initial surface-dominated recombination, while two-photon excitation TRPL shows a lifetime of 10 ns. Bulk carrier lifetime may be as long as 35 ns as measured by u-PCD, which can be less sensitive to surface recombination.

  2. Biomimetic-Inspired Infrared Sensors from Zn3P2 Microwires: Study of Their Photoconductivity and Infrared Spectrum Properties

    Directory of Open Access Journals (Sweden)

    M. Israelowitz

    2014-01-01

    Full Text Available The fire beetle, Melanophila acuminata (Coleoptera: Buprestidae, senses infrared radiation at wavelengths of 3 and 10–25 microns via specialized protein-containing sensilla. Although the protein denatures outside of a biological system, this detection mechanism has inspired our bottom-up approach to produce single zinc phosphide microwires via vapour transport for IR sensing. The Zn3P2 microwires were immobilized and electrical contact was made by dielectrophoresis. Photoconductivity measurements have been extended to the near IR range, spanning the Zn3P2 band gaps. Purity and integrity of the Zn3P2 microwires including infrared light scattering properties were confirmed by infrared transmission microscopy. This biomimetic microwire shows promise for infrared chip development.

  3. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  4. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A. [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  5. Transuranium Processing Plant semiannual report of production, status, and plans for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    King, L.J.; Bigelow, J.E.; Collins, E.D.

    1976-10-01

    Between July 1, 1975, and December 31, 1975, maintenance was conducted at TRU for a period of three months, 295 g of curium oxide (enough for approximately 26 HFIR targets) were prepared, 100 mg of high-purity /sup 248/Cm, were separated from /sup 252/Cf that had been purified during earlier periods, 11 HFIR targets were fabricated, and 28 product shipments were made. No changes were made in the chemical processing flowsheets normally used at TRU during this report period. However, three equipment racks were replaced (with two new racks) during this time. In Cubicle 6, the equipment replaced was that used to decontaminate the transplutonium elements from rare earth fission products and to separate curium from the heavier elements by means of the LiCl-based anion-exchange process. In Cubicle 5, the equipment used to separate the transcurium elements by high-pressure ion exchange and to purify berkelium by batch solvent extraction was replaced. Two neutron sources were fabricated, bringing the total fabricated to 79. One source that had been used in a completed project was returned to the TRU inventory and is available for reissue. Three sources, for which no further use was foreseen, were processed to isolate and recover the ingrown /sup 248/Cm and the residual /sup 252/Cf. Eight pellets, each containing 100 ..mu..g of high-purity /sup 248/Cm were prepared for irradiation in HFIR to study the production of /sup 250/Cm. The values currently being used for transuranium element decay data and for cross-section data in planning irradiation-processing cycles, calculating production forecasts, and assaying products are tabulated.

  6. Actinide Production in the Reaction of Heavy Ions withCurium-248

    Energy Technology Data Exchange (ETDEWEB)

    Moody, K.J.

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z = 91) to mendelevium (Z = 101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of {sup 248}Cm with {sup 18}O, {sup 86}Kr and {sup 136}Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from {sup 48}Ca and {sup 238}U bombardments of {sup 248}Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like {sup 136}Xe and {sup 238}U the new species {sup 248}Am, {sup 249}Am and {sup 247}Pu should be produced with large cross sections from a {sup 248}Cm target. A preliminary, unsuccessful attempt to isolate {sup 247}Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from {sup 251}Bk decay, necessary for calculating the {sup 251}Bk cross section, are also determined.

  7. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting

    KAUST Repository

    Liang, Hanfeng

    2016-11-09

    Efficient water splitting requires highly active, earth-abundant, and robust catalysts. Monometallic phosphides such as NiP have been shown to be active toward water splitting. Our theoretical analysis has suggested that their performance can be further enhanced by substitution with extrinsic metals, though very little work has been conducted in this area. Here we present for the first time a novel PH plasma-assisted approach to convert NiCo hydroxides into ternary NiCoP. The obtained NiCoP nanostructure supported on Ni foam shows superior catalytic activity toward the hydrogen evolution reaction (HER) with a low overpotential of 32 mV at 10 mA cm in alkaline media. Moreover, it is also capable of catalyzing the oxygen evolution reaction (OER) with high efficiency though the real active sites are surface oxides in situ formed during the catalysis. Specifically, a current density of 10 mA cm is achieved at overpotential of 280 mV. These overpotentials are among the best reported values for non-noble metal catalysts. Most importantly, when used as both the cathode and anode for overall water splitting, a current density of 10 mA cm is achieved at a cell voltage as low as 1.58 V, making NiCoP among the most efficient earth-abundant catalysts for water splitting. Moreover, our new synthetic approach can serve as a versatile route to synthesize various bimetallic or even more complex phosphides for various applications.

  8. Quantum dots coupled to chip-based dielectric resonators via DNA origami mediated assembly (Conference Presentation)

    Science.gov (United States)

    Mitskovets, Anya; Gopinath, Ashwin; Rothemund, Paul; Atwater, Harry A.

    2016-09-01

    Interfacing of single photon emitters, such as quantum dots, with photonic nanocavities enables study of fundamental quantum electrodynamic phenomena. In such experiments, the inability to precisely position quantum emitters at the nanoscale usually limits the ability to control spontaneous emission, despite sophisticated control of optical density of states by cavity design. Thus, effective light-matter interactions in photonic nanostructures strongly depend on deterministic positioning of quantum emitters. In this work by using directed self-assembly of DNA origami we demonstrate deterministic coupling of quantum dots with gallium phosphide (GaP) dielectric whispering gallery mode resonators design to enhance CdSe quantum dot emission at 600nm-650nm. GaP microdisk and microring resonators are dry-etched through 200nm layer of gallium phosphide on silicon dioxide/silicon substrates. Our simulations show that such GaP resonators may have quality factors up to 10^5, which ensures strong light-matter interaction. On the top surface of microresonators, we write binding sites in the shape of DNA origami using electron beam lithography, and use oxygen plasma exposure to chemically activate these binding sites. DNA origami self-assembly is accomplished by placing DNA origami - quantum dot complexes into these binding sites. This approach allows us to achieve deterministic placement of the quantum dots with a few nm precision in position relative to the resonator. We will report photoluminescence spectroscopy and lifetime measurements of quantum dot - resonator deterministic coupling to probe the cavity-enhanced spontaneous emission rate. Overall, this approach offers precise control of emitter positioning in nanophotonic structures, which is a critical step for scalable quantum information processing.

  9. NMR and NQR parameters of the SiC-doped on the (4,4) armchair single-walled BPNT: a computational study.

    Science.gov (United States)

    Baei, Mohammad T; Sayyad-Alangi, S Zahra; Moradi, Ali Varasteh; Torabi, Parviz

    2012-03-01

    The structural properties, NMR and NQR parameters in the pristine and silicon carbide (SiC) doped boron phosphide nanotubes (BPNTs) were calculated using DFT methods (BLYP, B3LYP/6-31G) in order to evaluate the influence of SiC-doped on the (4,4) armchair BPNTs. Nuclear magnetic resonance (NMR) parameters including isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (13)C, (29)Si, (11)B, and (31)P atoms and quadrupole coupling constant (C ( Q )), and asymmetry parameter (η ( Q )) at the sites of various (11)B nuclei were calculated in pristine and SiC- doped (4,4) armchair boron phosphide nanotubes models. The calculations indicated that doping of (11)B and (31)P atoms by C and Si atoms had a more significant influence on the calculated NMR and NQR parameters than did doping of the B and P atoms by Si and C atoms. In comparison with the pristine model, the SiC- doping in Si(P)C(B) model of the (4,4) armchair BPNTs reduces the energy gaps of the nanotubes and increases their electrical conductance. The NMR results showed that the B and P atoms which are directly bonded to the C atoms in the SiC-doped BPNTs have significant changes in the NMR parameters with respect to the B and P atoms which are directly bonded to the Si atoms in the SiC-doped BPNTs. The NQR results showed that in BPNTs, the B atoms at the edges of nanotubes play dominant roles in determining the electronic behaviors of BPNTs. Also, the NMR and NQR results detect that the Fig. 1b (Si(P)C(B)) model is a more reactive material than the pristine and the Fig. 1a (Si(B)C(p)) models of the (4,4) armchair BPNTs.

  10. Phosphine-induced oxidative damage in rats: role of glutathione.

    Science.gov (United States)

    Hsu, Ching-Hung; Chi, Bei-Ching; Liu, Ming-Yie; Li, Jih-Heng; Chen, Chiou-Jong; Chen, Ruey-Yu

    2002-09-30

    Phosphine (PH(3)), generated from aluminium, magnesium and zinc phosphide, is a widely used pesticide. PH(3) induces oxidative stress in insects, mammalian cells, animals, and humans. The involvement of glutathione (GSH) in PH(3)-induced oxidative toxicity is controversial. GSH levels in various tested tissues were reduced in aluminium phosphide-poisoned rats and humans, while the levels remained unchanged in insects and mammalian cells. This study examines the effectiveness of endogenous GSH as a protective agent against PH(3)-induced oxidative damage in rats. The association of PH(3)-induced nephrotoxicity and cardiotoxicity with free radical production was also tested. Male Wistar rats, administered intraperitoneally (I.P.) with PH(3) at 4 mg/kg, were evaluated 30 min after treatment for PH(3) toxicity to organs. PH(3) significantly decreased GSH, GSH peroxidase and catalase, while significantly increased lipid peroxidation (as malondialdehyde and 4-hydroxyalkenals), DNA oxidation (as 8-hydroxydeoxyguaonsoine) and superoxide dismutase (SOD) levels in kidney and heart. These changes were significantly alleviated by melatonin (10 mg/kg I.P., 30 min before PH(3)), with the exception of SOD activity in heart tissue. The study also found that buthionine sulfoximine (1 g/kg I.P., 24 h before PH(3)) significantly enhanced the effect of PH(3) on GSH loss and lipid peroxidation elevation in lung. These findings indicate that (1) endogenous GSH plays a crucial role as a protective factor in modulating PH(3)-induced oxidative damage, and (2) PH(3) could injure kidney and heart (as noted earlier with brain, liver and lung) via oxidative stress and the antioxidant melatonin effectively prevents the damage.

  11. Grain boundary segregation in FeCrNi model alloys; Korngrenzensegregation in FeCrNi-Modellegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, B.; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Muraleedharan, P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy

    1998-12-31

    P and S segregate at the grain boundaries and thus increase susceptibility to intergranular corrosion at those sites. This could be proven by means of nitric acid-chromate tests and potentiostatic etching tests. There is a direct connection between loss in mass, mean depth of intergranular corrosion attacks, dissolution current density, and level of segregation-induced concentration of P and S at the grain boundaries. The segregation effect at these sites was found to be most evident in specimens of the examined Fe-Cr-Ni steel which had been heat-treated for 1000 hours at 550 C. However, segregation occurs also in materials that received a heat treatment of 400 C/5000 hours, while intergranular corrosion is observed only after heat treatment of 500 C/1000 hours. Apart from segregation of P, formation of Cr-rich phosphides is observed, which leads to depletion of Cr at the precipitates. (orig./CB) [Deutsch] P und S segregieren an die KG und erhoehen dort die IK-Anfaelligkeit. Dies konnte mit Hilfe von Salpetersaeure-Chromat- und Potentiostatischem Aetztest nachgewiesen werden. Es besteht ein direkter Zusammenhang zwischen Masseverlust, mittlerer IK-Angriffstiefe, Aufloesungsstromdichte und Hoehe der segregationsbedingten Anreicherungen von P und S an den KG. Der KG-Segregationseffekt am untersuchten Fe-Cr-Ni-Stahl ist im Waermebehandlungszustand 550 C/1000 h am deutlichsten ausgepraegt. Aber auch bereits bei 400 C/5000 h findet Segregation statt. IKSpRK tritt nur im Waermebehandlungszustand 550 C/1000 h auf. Neben der P-Segregation wird die Bildung Cr-reicher Phosphide beobachtet, die zur Abreicherung von Cr an den Ausscheidungen fuehrt. (orig.)

  12. On the properties of Au2₂P₃z (z = -1, 0, +1): analysis of geometry, interaction, and electron density

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kang-Ming; Jiang, Shuai; Zhu, Yu-Peng; Huang, Teng; Liu, Yi-Rong; Zhang, Yang; Lv, Yu-Zhou; Huang, Wei

    2015-03-02

    Au₂P₃, the only metastable binary phase of gold phosphide, has been discovered to exhibit remarkable semiconductor properties among metal phosphides. A systematic study on the geometry, the transformation of Au₂P₃ into different valence states and the different interactions among the atoms of the species is performed by using the density functional theory (DFT) method. The global minimum of Au₂P₃- is a 3D structure with Cs symmetry. This structure could be distorted from a planar configuration of Au₂P₃ which decreases the steric effect on it and leads to a new stable configuration. An analogous planar configuration, a local minimum rather than a global minimum, is also found in Au₂P₃⁺, due to the electron effect acting on the structure. Natural bond orbital (NBO) analysis reveals the re-distribution progression of the charge within the species. The central located Au atom and another no. 5 positioned P atom play significant roles on the structures. P5, as an electron adjuster, balances the electron distribution at different valence states of the structures. Deformation density analysis supplies information about charge transfer and the bonding type between two adjacent atoms as well. Looking deep into the bonding types, as electron localization function (ELF) suggests, the interaction between two adjacent P atoms (P3 and P4) of Au₂P₃ belongs to a strong covalent bond. The Au–P interactions among the configurations could be classified as weak classical covalent bonds through the atoms in molecules (AIM) dual parameter analysis. And for the first time, the weak interaction between the two adjacent Au atoms (Au1 and Au2) of the charged states of Au₂P₃ (Au₂P₃⁻ and Au₂P₃⁺), are verified and different from the neutral Au₂P₃ through the reduced density gradient (RDG) analysis.

  13. Low-temperature laser-induced selective area growth of compound semiconductor

    Science.gov (United States)

    Uppili, Sudarsan

    Laser induced epitaxial growth of gallium phosphide was investigated as a low temperature, spatially selective process using both pyrolytic and photolytic reaction. A focussed beam from an argon ion laser operating at 514.5 nm was used to direct-write epitaxial microstructures of homoepitaxial GaP using a pyrolytic process. The precursors were trimethyl gallium (TMG) and tertiary butylphosphine (TBP). Dependence of the epitaxial growth on several deposition parameters was examined. An ArF excimer laser was also used to achieve homoepitaxy and heteroepitaxy of gallium phosphide on gallium arsenide at 500 C using TMG and TBP as the precusor gases. Dependence of homoepitaxial growth of GaP on several parameters is examined. The crystalline properties of the film were determined using transmission electron microscopy (TEM). Electrical properties of p-n diodes fabricated via Zn doping were also examined. Defect structures in excimer laser-assisted epitaxial GaP on (100) GaP and (100) GaAs were examined using TEM. Periodic structures were obtained using nominally unpolarized excimer laser radiation, during heteroepitaxial growth of GaP on GaAs. Both crystalline properties and chemical composition of these structures were examined. Microanalysis showed modulation in composition in the ripple structure resulting from the thermal variation caused by the optical interference during growth. Electrical conductivity measurements of GaP during pulsed lasers irradiation indicated that in the absence of gases, there was appreciable heating of the semiconductor. However, a very small quantity of hydrogen or helium cooled the substrate appreciably. This suggested that the average temperature rise of the substrate was not an important factor in the temperature calculations used in the present investigation.

  14. Approved quarantine treatment for Hessian fly (Diptera: Cecidomyiidae) in large-size hay bales and Hessian fly and cereal leaf beetle (Coleoptera: Chrysomelidae) control by bale compression.

    Science.gov (United States)

    Yokoyama, Victoria Y

    2011-06-01

    A quarantine treatment using bale compression (32 kg/cm2 pressure) and phosphine fumigation (61 g/28.3 m3 aluminum phosphide for 7 d at 20 degrees C) was approved to control Hessian fly, Mayetiola destructor (Say), in large-size, polypropylene fabric-wrapped bales exported from the western states to Japan. No Hessian fly puparia (45,366) survived to the adult stage in infested wheat, Triticum aestivum L., seedlings exposed to the treatment in a large-scale commercial test. Daily temperatures (mean +/- SEM) inside and among bales in three test freight containers were 17.8 +/- 0.2 front top, 17.0 +/- 0.2 front bottom, 17.3 +/- 0.2 middle bale, 15.7 +/- 0.3 middle air, 18.5 +/- 0.1 back top, and 18.1 +/- 0.1 degrees C back bottom, allowing the fumigation temperature to be established at > or = 20 degrees C. Mean fumigant concentrations ranged from 208 to 340 ppm during the first 3 d and ranged from 328 to 461 ppm after 7 d of fumigation. Copper plate corrosion values inside the doors, and in the middle of the large-size bales in all locations indicated moderate exposure to hydrogen phosphide (PH3). PH3 residues were below the U.S. Environmental Protection Agency tolerance of 0.1 ppm in animal feeds. The research was approved by Japan and U.S. regulatory agencies, and regulations were implemented on 20 May 2005. Compression in large-size bale compressors resulted in 3-3.6 and 0% survival of Hessian fly puparia and cereal leaf beetle, Oulema melanopus (L.), respectively. Bale compression can be used as a single treatment for cereal leaf beetle and as a component in a systems approach for quarantine control of Hessian fly.

  15. 磷化氢-二氧化碳混合熏蒸对烟草甲虫卵灭杀效果研究%Killing Effect of Mixed Fumigation of Phosphine and Carbon Dioxide on Eggs of Lasioderma serricorne F

    Institute of Scientific and Technical Information of China (English)

    彭涛; 刘师伟; 谭琳; 余兴江; 郭年梅

    2015-01-01

    Objective] This study aimed to investigate the kil ing effect of mixed fumi-gation of phosphine and carbon dioxide on eggs of Lasioderma serricorne F. [Method] The outside-storage phosphine generator was placed in a tabernacled smoke box, and the mortality rates of L. serricorne F. eggs in the smoke box under conditions of different aluminium phosphide usage amount and different fumigation time were studied. In addition, the times needed by tabernacle and smoke box cen-ter to reach the phosphine concentration peak were recorded. [Result] The optimum conditions for kil ing the eggs of L. serricorne were as fol ows: temperature of (27± 2) ℃, relatively humidity of (45±5)%, aluminium phosphide usage amount of 1.5 g/m3 and effective exposure time of 96 h. The kil ing effect of mixed fumigation of phos-phine and carbon dioxide was increased with the extension of fumigation time. The increased usage amount of aluminium phosphide showed no significant effect on kil ing effect. The tabernacle space and smoke box center al required relatively short time to reach the phosphine concentration peak. If the tabernacle had a good airtightness, the overal fumigation time could be shortened. [Conclusion] The fumi-gation method is reliable, and it can be used for the control of L. serricorne F. in tobacco storage.%[目的]考察磷化氢-二氧化碳混合熏蒸法测定其对烟草甲虫卵的杀灭效果。[方法]使用仓外磷化氢发生器对帐幕烟箱中的烟草甲虫卵采取磷化氢-二氧化碳混合熏蒸法杀虫,测定不同磷化铝使用量和不同熏蒸时间条件下烟草甲虫卵的死亡率,同时测定帐幕空间和烟箱中心磷化氢浓度达到峰值的时间。[结果]帐幕温度在(27±2)℃,RH(45±5)%时,磷化铝在1.5 g/m3的使用量下,有效密闭96 h,对烟草甲虫卵有较好的杀灭效果。磷化氢-二氧化碳混合熏蒸杀虫效果随熏蒸时间的延长而提高,磷化铝用量的提高对杀虫效果

  16. 二突异翅长蠹的生物学特性及熏蒸技术研究%Biological characteristics and fumigation technology for Heterobostrychus hamatipennis Lesne

    Institute of Scientific and Technical Information of China (English)

    何玉杰; 陈青林; 林华峰; 李茂业; 张玉美; 李世广

    2013-01-01

    Heterobostrychus hamatipennis Lesne causes more and more serious damage on the wicker in warehouse in Anhui province in recent years. In order to control it efficiently, we studied its biological characteristics and fumigation technology. The results of feeding in the laboratory and survey in the warehouse were as follows. It has 2 generations a year in Anhui province and overwinter as matured larvae in the injured wickers. The overwintering larvae begin to harm in late March and pupate in late April. A large number of the adults emerge in the middle of May. The adults start to spawn in late May. The larvae of the first generation hatch in early June. The larvae start to pupate in early August. In the middle of August, the first generation adults emerge. About ten days later, the adults start to spawn. In early September, the second generation larvae hatch. And until November, when the new wickers are harvested, the matured larvae would move into the new wickers and overwinter. The fumigation tests were carried out with aluminium phosphide 56% tablet and dichlorvos 80% emulsion in hermetic bags, and the results showed that the mortality in different stages could achieve 100% at 72 h after fumigation with aluminum phosphide 56% tablet at the dose of 12 g·m-3, and the larvae are more sensitive to phosphine than any other stages. Therefore, fumigation control must focus on the stage of recovery of overwintering generation larvae, which is in late March and early April every year, with aluminium phosphide 56% tablet at 12 g·m-3above 72 h.%近年来二突异翅长蠹对安徽省储藏期柳编原材料——杞柳枝条的危害日趋严重.为了有效防控该虫,对其生物学特性和熏蒸技术进行研究.实验室饲养观测与仓库调查结果表明,该虫在安徽省1年发生2代,以老熟幼虫在被害柳条内部越冬.翌年3月下旬越冬幼虫开始活动为害,4月下旬开始化蛹,5月中旬成虫大量出现,并于5月下旬产卵.第1

  17. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Michael James [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    the free OH or free OD. From the absence of SFG spectra of ice-like structure we conclude that surface hydroxides are formed and no liquid water is present on the surface. Other than model catalysis, gas phase anion photoelectron spectroscopy of the Cl + H2 van der Waals well, silicon clusters, germanium clusters, aluminum oxide clusters and indium phosphide clusters were studied. The spectra help to map out the neutral potential energy surfaces of the clusters. For aluminum oxide, the structures of the anions and neutrals were explored and for silicon, germanium and indium phosphide the electronic structure of larger clusters was mapped out.

  18. La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2}. Synthesis, structure and {sup 31}P solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Timo; Eul, Matthias; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. of Physics

    2016-04-01

    The phosphide oxides La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2} were synthesized from lanthanum, copper(I) oxide, red phosphorus, and lanthanum(III) chloride through a ceramic technique. Single crystals can be grown in a NaCl/KCl flux. Both structures were refined from single crystal X-ray diffractometer data: I4/mmm, a = 403.89(4), c = 2681.7(3) pm, wR2 = 0.0660, 269 F{sup 2} values, 19 variables for La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and a = 407.52(5), c = 4056.8(7) pm, wR2 = 0.0905, 426 F{sup 2} values, 27 variables for La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2}. Refinement of the occupancy parameters revealed full occupancy for the oxygen sites in both compounds. The structures are composed of cationic (La{sub 2}O{sub 2}){sup 2+} layers and covalently bonded (Cu{sub 4}P{sub 4}){sup 5-} polyanionic layers with metallic characteristics, and an additional La{sup 3+} between two adjacent (Cu{sub 4}P{sub 4}){sup 5-} layers. The structure of La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2} comprises two additional LaOCl slabs per unit cell. Temperature-dependent magnetic susceptibility studies revealed Pauli paramagnetism. The phosphide substructure of La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} was studied by {sup 31}P solid state NMR spectroscopy. By using a suitable dipolar re-coupling approach the two distinct resonances belonging to the P{sub 2}{sup 4-} and the P{sup 3-} units could be identified.

  19. The research progress of Tin-based photocatalytic materials on the degradation of organic pollutants%锡基光催化材料降解有机污染物的研究进展∗

    Institute of Scientific and Technical Information of China (English)

    姚凯利; 李俊; 贾庆明; 陕绍云; 苏红莹; 王亚明

    2016-01-01

    硫化锡、磷化锡光催化材料的能带较窄,能对可见光响应,甚至可以实现近红外吸收。氧化锡材料虽然能带较宽,但是通过掺杂及复合等改性手段,也能拓宽其光响应范围。因此,许多研究者在 Sn 基功能半导体材料,尤其是具有低维结构、纳米级Sn基新型材料的制备及光催化性能方面作了大量的研究工作。系统综述了氧化锡、硫化锡、磷化锡等重要的锡基光催化材料在有机物降解方面的研究进展以及光催化降解机理,并对锡基光催化材料的发展提出一些展望及建议。%Tin sulfide,stannic phosphide are narrow band gap photocatalytic materials,can response to visible light,and even can realize the near-infrared absorption.While the band gap of Tin oxide material is wide,by means of doping and composite modification,also can widen the scope of its light response.Therefore,many re-searchers made a great deal of research work in tin-based function semiconductor materials,especially the prep-aration of low dimensional structure,nanoscale tin-based new materials and the photocatalytic performance. This paper systematically reviewed the research progress of tin oxide,tin sulfide,Stannic phosphide and other important tin-based photocatalytic materials in the degradation of organic pollutants,and their photocatalytic degradation mechanism.And putting forward some prospects and suggestions on the development of the tin-based photocatalytic materials.

  20. Holographic lens spectrum splitting photovoltaic system for increased diffuse collection and annual energy yield

    Science.gov (United States)

    Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.

    2015-09-01

    Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.

  1. Sintered Cr/Pt and Ni/Au ohmic contacts to B{sub 12}P{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Clint D., E-mail: frye6@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94550 and Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 (United States); Kucheyev, Sergei O.; Voss, Lars F.; Conway, Adam M.; Shao, Qinghui; Nikolić, Rebecca J., E-mail: nikolic1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Edgar, James H. [Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-05-15

    Icosahedral boron phosphide (B{sub 12}P{sub 2}) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B{sub 12}P{sub 2} for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 °C for 30 s with a specific contact resistance of 2 × 10{sup −4} Ω cm{sup 2}, as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contact resistance was ∼l–4 × 10{sup −4} Ω cm{sup 2} after annealing over the temperature range of 500–800 °C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B{sub 12}P{sub 2} at 700 °C and a reaction layer between Ni and B{sub 12}P{sub 2} thinner than ∼25 nm at 500 °C.

  2. Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage

    Science.gov (United States)

    Qi, Wen; Zhao, Haihua; Wu, Ying; Zeng, Hong; Tao, Tao; Chen, Chao; Kuang, Chunjiang; Zhou, Shaoxiong; Huang, Yunhui

    2017-01-01

    Recently, metal phosphides have been investigated as potential anode materials because of higher specific capacity compared with those of carbonaceous materials. However, the rapid capacity fade upon cycling leads to poor durability and short cycle life, which cannot meet the need of lithium-ion batteries with high energy density. Herein, we report a layer-structured GeP3/C nanocomposite anode material with high performance prepared by a facial and large-scale ball milling method via in-situ mechanical reaction. The P-O-C bonds are formed in the composite, leading to close contact between GeP3 and carbon. As a result, the GeP3/C anode displays excellent lithium storage performance with a high reversible capacity up to 1109 mA h g−1 after 130 cycles at a current density of 0.1 A g−1. Even at high current densities of 2 and 5 A g−1, the reversible capacities are still as high as 590 and 425 mA h g−1, respectively. This suggests that the GeP3/C composite is promising to achieve high-energy lithium-ion batteries and the mechanical milling is an efficient method to fabricate such composite electrode materials especially for large-scale application. PMID:28240247

  3. Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media.

    Science.gov (United States)

    Xu, Kun; Cheng, Han; Liu, Linqi; Lv, Haifeng; Wu, Xiaojun; Wu, Changzheng; Xie, Yi

    2017-01-11

    In this study, by using dicobalt phosphide nanoparticles as precatalysts, we demonstrated that electrochemical activation of metallic precatalysts in alkaline media (comparing with directly electrochemical activation in neutral media) could significantly promote the OER catalysis in neutral media, specifically realizing a 2-fold enhanced activity and meanwhile showing a greatly decreased overpotential of about 100 mV at 10 mA cm(-2). Compared directly with electrochemical activation in neutral media, the electrochemical activation in harsh alkaline media could easily break the strong Co-Co bond and promote active species generation on the surface of metallic Co2P, thus accounting for the enhancement of neutral OER activity, which is also evidenced by HRTEM and the electrochemical double-layer capacitance measurement. The activation of electrochemical oxidation of metallic precatalysts in alkaline media enhanced neutral OER catalysis could also be observed on CoP nanoparticles and Ni2P nanoparticles, suggesting this is a generic strategy. Our work highlights that the activation of electrochemical oxidation of metallic precatalysts in alkaline media would pave new avenues for the design of advanced neutral OER electrocatalysts.

  4. 6-Mercaptohexanoic acid assisted synthesis of high quality InP quantum dots for optoelectronic applications

    Science.gov (United States)

    Mahmoud, Waleed E.; Chang, Y. C.; Al-Ghamdi, A. A.; Al-Marzouki, F.; Bronstein, Lyudmila M.

    2013-04-01

    Indium phosphide semiconductor quantum dots are of significant heed as their applications encompass a spacious concatenation in LEDs and solar cells technologies. For improving their serviceable prominence, there is a real demand for a fashion that furnishes prompt and large mass production of mightily monodispersed nanoparticles. This study conveys an efficacious and fast recipe of generating substantially monodispersed InP quantum dots via water based route technique using a novel surfactant. Herein, InP QDs have been prepared using 6-mercaptohexanoic acid for achieving an effective surface passivation of monodispersed InP QDs with highly luminescence at temperature 50 °C. The as prepared quantum dots were investigated by transmission electron microscopy, luminescence spectroscopy, and X-ray diffraction. The XRD depicted that the InP quantum dots have a cubic zinc blend structure. TEM image revealed that the prepared quantum dots are monodispersed and their average particle size of about 4 nm. Energy dispersive X-ray spectroscopy confirmed the existence of organic ligand as a shell around InP nanoparticles. Time resolved spectra depicted that the capping agent passivated the InP QDs surface and enhanced the luminescence emission.

  5. Imaging pancreatic cancer using bioconjugated InP quantum dots.

    Science.gov (United States)

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J; Maitra, Anirban; Prasad, Paras N

    2009-03-24

    In this paper, we report the successful use of non-cadmium-based quantum dots (QDs) as highly efficient and nontoxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulfide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in nonaqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anticlaudin 4 and antiprostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor-mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in nonpancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium-based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer.

  6. Mortality and Disease in Wild Turkeys ( Meleagris gallopavo silvestris) in Ontario, Canada, from 1992 to 2014: A Retrospective Review.

    Science.gov (United States)

    MacDonald, Amanda M; Jardine, Claire M; Campbell, G Douglas; Nemeth, Nicole M

    2016-09-01

    Wild turkeys ( Meleagris gallopavo silvestris) were extirpated from Ontario, Canada, in the early 1900s due to unregulated over-hunting and habitat loss. Despite a successful reintroduction program and strong population numbers, information regarding the health of wild turkeys in Ontario is scarce. A 22-yr (1992-2014) retrospective study was performed to evaluate diagnostic data, including the cause(s) and contributors to death, in wild turkeys submitted to the Ontario-Nunavut node of the Canadian Wildlife Health Cooperative (n = 56). Noninfectious diagnostic findings (39/56; 69.6%) were more common than infectious, with emaciation recognized most frequently (n = 19; 33.9%) followed by trauma (n = 11, 19.6%). The majority of deaths due to emaciation occurred in winter and spring (17/18; 94.4%), which is consistent with lack of access to or availability of food resources. Morbidity and mortality due to infectious diseases was diagnosed in 16 (28.6%) wild turkeys. Avian poxvirus was the most common infectious cause of disease (n = 7; 12.5%), followed by bacterial infections (n = 5; 8.9%), the most common of which was Pasteurella multocida . Zinc phosphide toxicosis (n = 7; 12.5%) occurred in two incidents involving multiple birds. This study aims to provide baseline data that can be used for reference and comparison in future wild turkey disease surveillance and population monitoring studies.

  7. Self-Supported CoP Nanorod Arrays Grafted on Stainless Steel as an Advanced Integrated Anode for Stable and Long-Life Li-Ion Batteries.

    Science.gov (United States)

    Liu, Jun; Xu, Xijun; Hu, Renzong; Liu, Jiangwen; Ouyang, Liuzhang; Zhu, Min

    2017-03-05

    For alleviating the capacity degradation of anode materials caused by serious volume expansion and particle aggregation for Li-ion batteries, intensive attention has been devoted to the rational design and fabrication of novel anode architectures. Herein, self-supported CoP nanorod arrays have been facilely synthesized using hydrothemally deposited Co(CO3)0.5(OH)*0.11H2O nanorods array as the precursor via a gas-phase phosphidation method. As anode for Li-ion batteries, such 3D interconnected CoP nanorod arrays show an initial discharge capacity of 1067 mA h g-1 and high reversible charge capacity of 737 mA h g-1 at 0.4 A g-1. After long 400 cycles, their specific capacity can reach 510 mA h g-1, even after 900 cycles, they can still deliver a specific capacity of 390 mA h g-1. The CoP//LiCoO2 full-cells also exhibit a high revisable capacity of 400 mA h g-1 after 50 cycles. These unique 3D interconnected CoP nanorod arrays also show ultrastable cycling performance over 500 cycles when used as Na-ion battery anode.

  8. SPECTRUM OF POISONING IN CHILDREN: STUDY FROM TERTIARY CARE HOSPITAL IN SOUTH INDIA

    Directory of Open Access Journals (Sweden)

    Mallesh

    2015-08-01

    Full Text Available PURPOSE: To understand pattern of poisoning in different age group in tertiary child care center and quantify burden of poisoning in pediatric admissions and mortality. DESIGN: Retrospective observation study. SETTING: Tertiary care center for children. METHODS: All the children admitted with diagnosis of acute poisoning between January 2013 and June 2015 was studied. RESULTS: There were 332 admissions due to poisoning during the study period (5.4% of total admissions. Mortality due to poisoning was 7, i.e. , 1.97% of all - cause mortality. 2.1% of poisonings died during the study period where a s overall mortality from all causes was 5.71%. House hold Products topped the list with 112 cases, followed by agricultural products (88 cases, animal bites and stings (69 cases, drugs (48 cases and industrial compounds (7 cases. Majority of admissions were in summer seasons 31% of all poisoning followed by rainy season. CONCLUSIONS: Incidence of acute poisoning in childhood has not changed significantly over time. Organophosphorus compounds, phosphides and drugs poisoning peak during adolescence and is particularly alarming. Conditions such as free availability of these compounds, co morbid conditions of adolescents, adolescent stressors have to be addressed

  9. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  10. Tritium-field betacells

    Energy Technology Data Exchange (ETDEWEB)

    Walko, R.J.; Lincoln, R.C.; Baca, W.E. (Sandia National Labs., Albuquerque, NM (USA)); Goods, S.H. (Sandia National Labs., Livermore, CA (USA)); Negley, G.H. (AstroPower, Inc., Newark, DE (USA))

    1991-01-01

    Betavoltaic power sources operate by converting the nuclear decay energy of beta-emitting radioisotopes into electricity. Since they are not chemically driven, they could operate at temperatures which would either be to hot or too cold for typical chemical batteries. Further, for long lived isotopes, they offer the possibility of multi-decade active lifetimes. Two approaches are being investigated: direct and indirect conversion. Direct conversion cells consist of semiconductor diodes similar to photovoltaic cells. Beta particle directly bombard these cells, generating electron-hole pairs in the semiconductor which are converted to useful power. Many using low power flux beta emitters, wide bandgap semiconductors are required to achieve useful conversion efficiencies. The combination of tritium, as the beta emitter, and gallium phosphide (GaP), as the semiconductor converter, was evaluated. Indirect conversion betacells first convert the beta energy to light with a phosphor, and then to electricity with photovoltaic cells. An indirect conversion power source using a tritium radioluminescent (RL) light is being investigated. Our analysis indicates that this approach has the potential for significant volume and cost savings over the direct conversion method. 7 refs., 11 figs.

  11. Phase transformation and disorder effect on optical and electrical properties of Zn3P2 thin films.

    Science.gov (United States)

    El Zawawi, I K; Abdel Moez, A; Hammad, T R; Ibrahim, R S

    2012-08-01

    The phase transformation of zinc phosphide (Zn(3)P(2)) thin films was detected through isochronal annealing process. The effects on isochronal annealing on the internal structural, optical and electrical properties of deposited Zn(3)P(2) thin films have been discussed. The films were prepared by thermal evaporation under constant preparation conditions of vacuum 1.3×10(-5)Torr, substrate temperature (300K), rate of deposition (∼1nm/s) and film thickness (480nm). The annealing process was carried out under vacuum for 2h at different temperatures ranging from 373 to 623K. X-ray diffraction patterns showed that the as-deposited films and those annealed at temperatures less than 623K exhibit amorphous structure, while the films annealed at 623K showed tetragonal polycrystalline structure. The optical transmission and reflection spectra were measured at the wavelength range of 190-2500nm. The absorption coefficient spectra and the degree of disorder as measured from the absorption edge were determined. The indirect and direct optical energy band gaps were evaluated for indirect allowed and direct allowed transitions for amorphous and polycrystalline films, respectively. The refractive index n(o) increases with raising the annealing temperature which refers to more condensation in the material. The electrical resistivity for Zn(3)P(2) films decreases exponentially with raising the annealing temperature up to 623K as influenced by structure transformation and decreasing the degree of disorder in the films.

  12. Investigations of phase transition, elastic and thermodynamic properties of GaP by using the density functional theory

    Institute of Scientific and Technical Information of China (English)

    Liu Li; Wei Jian-Jun; An Xin-You; Wang Xue-Min; Liu Hui-Na; Wu Wei-Dong

    2011-01-01

    The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT).Lattice constant a0,elastic constants cij,bulk modulus B0 and the pressure derivative of bulk modulus B'0 are calculated.The results are in good agreement with numerous experimental and theoretical data.From the usual condition of equal enthalpies,the phase transition from the ZB to the RS structure occurs at 21.9 GPa,which is close to the experimental value of 22.0 GPa.The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained.According to the quasi-harmonic Debye model,in which the phononic effects are considered,the normalized volume V/Vo,the Debye temperature θ,the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.

  13. Stable phases in aged type 321 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, J.; Leitnaker, J.M.

    1978-01-01

    X-ray diffraction and Analytical Electron Microscopy have been used to characterize the precipitate phases present in type 321 stainless steel after 17 years of service at approximately 600/sup 0/C. The morphology, crystallography, and orientation relationships with the matrix of the precipitates have been determined along with the chemical composition of several of the phases. Long-term aging of type 321 stainless steel indicates TiC, not M/sub 23/C/sub 6/, is the stable carbide phase. A theory is developed to explain appearance of M/sub 23/C/sub 6/ at intermediate times. The theory also indicates the means for preventing M/sub 23/C/sub 6/ formation and hence sensitization of the steel to intergranular corrosion. The amount of sigma found correlates well with results from shorter time studies. Ti/sub 4/C/sub 2/S/sub 2/ and a complex phosphide-arsenide were also present.

  14. Structural Properties of Several Castanopsis carlesi Modified Starches%几种小红栲变性淀粉的结构特性

    Institute of Scientific and Technical Information of China (English)

    谢涛; 王焕龙; 张儒

    2011-01-01

    The scanning electron microscopy ( SEM ), Fourier-transform infrared spectroscopy ( FTIR ) and X-ray diffraction ( XRD) were applied to characterize the morphology, chemical and crystalline structures of several Castanopsis carlesi modified starches. The formation procedure of micro-porous starch is that the hollows in the surface of starch granule can be hydrolyzed from the outside to the inside, and be further punctured through the granule center by the mixture solution of a-amylase and glucoamylase, finally the net-cavity structure of starch granule which is distributed by plenty of about 1 u,m holes can be made. The carbonyl groups and glycosidic bonds in starch carbon chains can be enzymatic-hydrolyzed, while phosphide ester linkage can be formed by crosslinking reaction between hydroxyl groups in starch carbon chains and POC13. Whichever native, microporous, crosslinked or crosslinked microporous starch granule is a multi-crystal system which made from crystal and non-crystal, and belong to C-type crystalline. The crystalline degree and crystal size of crosslinked, native, crosslinked microporous and microporous starch increase in sequence, while the change of crystal interval is just adverse.%@@目前世界上变性淀粉的年产量已经达到500万t左右,如美国为200万t以上,欧洲为90万t,日本在30万t以上;

  15. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    Science.gov (United States)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1995-01-01

    Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.

  16. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  17. Forward and inverse problems for surface acoustic waves in anisotropic media: a Ritz-Rayleigh method based approach.

    Science.gov (United States)

    Stoklasová, Pavla; Sedlák, Petr; Seiner, Hanuš; Landa, Michal

    2015-02-01

    We show that the Ritz-Rayleigh method can be used for calculation of velocity of surface acoustic waves (SAWs) propagating in a general direction of an anisotropic medium of arbitrary symmetry class. The main advantage of this method is that expanding the displacement field of SAW into a fixed functional basis transforms the calculation of SAW velocities into a simple linear eigenvalue problem. The correctness and reliability of the proposed approach are verified on experimental SAW data obtained for generally oriented planes of an indium phosphide single crystal. The same experimental datasets are then used to discuss the invertibility of the method, i.e. the possibility of determination of elastic coefficients from SAW measurements in general directions. It is shown that the SAW data obtained on a single generally oriented plane are sufficient for such an inverse calculation for a cubic material only if they are complemented by measurements of velocities of bulk quasi-longitudinal (qL) waves propagating along the same free surface. Moreover, when the SAW and qL data are available from three almost perpendicular faces of a single specimen, the complete elastic tensor (21 independent constants) can be inversely determined, without considering a priori any symmetry constraints to the material.

  18. Performance of a Double Gate Nanoscale MOSFET (DG-MOSFET Based on Novel Channel Materials

    Directory of Open Access Journals (Sweden)

    Rakesh Prasher

    2013-03-01

    Full Text Available In this paper, we have studied a double gate nanoscale MOSFET for various channel materials using simulation approach. The device metrics considered at the nanometer scale are subthreshold swing (SS, drain induced barrier lowering (DIBL, on and off current, carrier injection velocity (vinj, etc. The channel materials studied are Silicon (Si, Germanium (Ge, Gallium Arsenide (GaAs, Zinc Oxide (ZnO, Zinc Sulfide (ZnS, Indium Arsenide (InAs, Indium Phosphide (InP and Indium Antimonide (InSb. The results suggest that InSb and InAs materials have highest Ion and lowest Ioff values when used in the channel of the proposed MOSFET. Besides, InSb has the highest values for Ion / Ioff ratio, vinj, transconductance (gm and improved short channel effects (SS = 59.71 and DIBL = 1.14, both are very close to ideal values. More results such as effect of quantum capacitance verses gate voltage (Vgs, drain current (Ids vs. gate voltage and drain voltage (Vds, ratio of transconductance (gm and drain current (Id vs. gate voltage, average velocity vs. gate voltage and injection velocity (Vinj for the mentioned channel materials have been investigated. Various results obtained indicate that InSb and InAs as channel material appear to be suitable for high performance logic and even low operating power requirements for future nanoscale devices as suggested by latest ITRS reports.

  19. Phase transformations of mechanically alloyed Fe-Cr-P-C powders

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, N. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba, Algerie (Algeria); Alleg, S. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba, Algerie (Algeria); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense - UMR 6087, Universite du Maine, Faculte des Sciences 72085, Le Mans Cedex 9 (France)]. E-mail: greneche@univ-lemans.fr

    2005-05-03

    Fe{sub 77}Cr{sub 4}P{sub 8}C{sub 11} alloy was prepared by mechanical alloying (MA) of elemental Fe, Cr, P and C (graphite) powders in a planetary ball mill type Fritsch P7 under argon atmosphere. Morphological changes, microstructural and structural evolutions during ball milling were followed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and {sup 57}Fe Moessbauer spectrometry (MS) as a function of the milling time. The crystallite size refinement against the milling time is accompanied by an increase of the atomic level strain. After 6 h of milling, the dissolution of phosphorous into the {alpha}-Fe matrix is evidenced by the formation of a small amount ({approx}4%) of the paramagnetic Fe{sub 2}P phase as revealed by Moessbauer spectrometry. The complete mixing of all the elemental powders at the atomic level is achieved at 12 h of milling and results, after 24 h, in an amorphous matrix where nanocrystalline phosphides and carbides with nearly equal crystallite sizes are embedded. Further milling time up to 190 h gives rise to the formation of both the orthorhombic and the hexagonal (FeCr){sub 7}C{sub 3} carbide as well as the superparamagnetic {epsilon}'-Fe{sub 2.2}C carbide through the recrystallisation of the amorphous phase.

  20. Lead flux crystal growth of Ce{sub 2}Ru{sub 12}P{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Niehaus, Oliver; Hoffmann, Rolf-Dieter; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2016-11-01

    Well-shaped needles of the metal-rich phosphide Ce{sub 2}Ru{sub 12}P{sub 7} were grown in a lead flux, while a polycrystalline sample became available through a ceramic route followed by arc-melting. Ce{sub 2}Ru{sub 12}P{sub 7} crystallizes with the hexagonal Zr{sub 2}Fe{sub 12}P{sub 7} type: P anti 6, a = 940.7(2), c = 389.8(1) pm, wR2 = 0.0342, 1001 F{sup 2} values and 45 variables. Striking structural motifs in the Ce{sub 2}Ru{sub 12}P{sub 7} structure are tri-capped trigonal prisms that are centered by the phosphorus atoms: P1 rate at Ru{sub 7}Ce{sub 2}, P2 rate at Ru{sub 7}Ce{sub 2} and P3 rate at Ru{sub 9}. Adjacent prisms are condensed via common edges to propeller-like building units.

  1. STUDIES ON OPTICAL MODULATION OF III-V GaN AND InP BASED DDR IMPATT DIODE AT SUB-MILLIMETER WAVE FREQUENCY

    Directory of Open Access Journals (Sweden)

    Soumen Banerjee,

    2010-07-01

    Full Text Available The effect of optically illumination of III-V compound semiconductor Indium Phosphide (InP and Wurtzite phase of Gallium Nitride (Wz-GaN or -GaN based Double Drift Impatt diodes at 300 GHz (0.3 THz has been investigated. The composition of photocurrent is altered by shining light on the p+ side and n+ side of the device through optical windows; thereby giving rise to Top Mounted (TM and Flip Chip (FC structures. The current multiplication factors for lectrons (Mn and for holes (Mp are altered to study the effect of leakage current in controlling the dynamic properties of the device. The conversion efficiency and output power of -GaN Impatt at 0.3 THz are 15.47% and 6.23 W respectively at an optimum bias current density of 0.5 x 108 A/m2 while the same parameters for InP Impatt are 18.38% and 2.81 W respectively at an optimum bias current density of 8.0 x 108 A/m2. Under optical illumination of the device, the frequency shift is observed to be more upwards upon lowering of Mpthan lowering of Mn. The frequency chirping in InP and -GaN Impatt are found to be of the order of few GHz, thereby indicating their high photo-sensitiveness at Sub-millimeter or Terahertz domain.

  2. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    Science.gov (United States)

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  3. Noble metal-free hydrogen evolution catalysts for water splitting.

    Science.gov (United States)

    Zou, Xiaoxin; Zhang, Yu

    2015-08-07

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  4. Modeling and dynamic simulation of ultraviolet induced growing interfaces

    Science.gov (United States)

    Flicstein, J.; Guillonneau, E.; Pata, S.; Kee Chun, L. S.; Palmier, J. F.; Daguet, C.; Courant, J. L.

    1999-01-01

    A solid-on-solid (SOS) model to simulate SiN:H dynamic surface characteristics in ultraviolet chemical vapor deposition (CVD) onto indium phosphide is presented. It is recognized that the nucleation process occurs at an UV induced active charged center on the surface of the substrate. Photolysis rates are determined using bond dissociation energies for molecular processes to generate active adsorbed species. The microscopic activation energy in elementary processes depends on the configuration of neighbouring atoms. Monte Carlo-Metropolis method using microscopic activation energy barriers is taken into account in molecular processes by a three-dimensional algorithm. The model includes lattice coordination and atom-atom interactions out to third-nearest neighbours. The molecular events are chosen with a probability of occurrence that depends on the kinetic rates at each atomic site. Stable incorporation of main species is enabled. Three-dimensional simulation of a growing interface indicates validation of a thermally activated rough-smooth transition for submicronic thick layers in the Kardar-Parisi-Zhang model.

  5. Organic chemistry on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen; Zaera, Francisco [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2006-07-15

    Chemistry on solid surfaces is central to many areas of practical interest such as heterogeneous catalysis, tribology, electrochemistry, and materials processing. With the development of many surface-sensitive analytical techniques in the past decades, great advances have been possible in our understanding of such surface chemistry at the molecular level. Earlier studies with model systems, single crystals in particular, have provided rich information about the adsorption and reaction kinetics of simple inorganic molecules. More recently, the same approach has been expanded to the study of the surface chemistry of relatively complex organic molecules, in large measure in connection with the selective synthesis of fine chemicals and pharmaceuticals. In this report, the chemical reactions of organic molecules and fragments on solid surfaces, mainly on single crystals of metals but also on crystals of metal oxides, carbides, nitrides, phosphides, sulfides and semiconductors as well as on more complex models such as bimetallics, alloys, and supported particles, are reviewed. A scheme borrowed from the organometallic and organic chemistry literature is followed in which key examples of representative reactions are cited first, and general reactivity trends in terms of both the reactants and the nature of the surface are then identified to highlight important mechanistic details. An attempt has been made to emphasize recent advances, but key earlier examples are cited as needed. Finally, correlations between surface and organometallic and organic chemistry, the relevance of surface reactions to applied catalysis and materials functionalization, and some promising future directions in this area are briefly discussed. (author)

  6. Cryogenic mechanical loss of a single-crystalline GaP coating layer for precision measurement applications

    Science.gov (United States)

    Murray, Peter G.; Martin, Iain W.; Craig, Kieran; Hough, James; Rowan, Sheila; Bassiri, Riccardo; Fejer, Martin M.; Harris, James S.; Lantz, Brian T.; Lin, Angie C.; Markosyan, Ashot S.; Route, Roger K.

    2017-02-01

    The first direct observations of gravitational waves have been made by the Advanced LIGO detectors. However, the quest to improve the sensitivities of these detectors remains, and epitaxially grown single-crystal coatings show considerable promise as alternatives to the ion-beam sputtered amorphous mirror coatings typically used in these detectors and other such precision optical measurements. The mechanical loss of a 1 μ m thick single-crystalline gallium phosphide (GaP) coating, incorporating a buffer layer region necessary for the growth of high quality epitaxial coatings, has been investigated over a broad range of frequencies and with fine temperature resolution. It is shown that at 20 K the mechanical loss of GaP is a factor of 40 less than an undoped tantala film heat-treated to 600 °C and is comparable to the loss of a multilayer GaP/AlGaP coating. This is shown to translate into possible reductions in coating thermal noise of a factor of 2 at 120 K and 5 at 20 K over the current best IBS coatings (alternating stacks of silica and titania-doped tantala). There is also evidence of a thermally activated dissipation process between 50 and 70 K.

  7. Modeling of high efficiency solar cells under laser pulse for power beaming applications

    Science.gov (United States)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-09-01

    Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

  8. Phosphine-induced oxidative damage in rats: attenuation by melatonin.

    Science.gov (United States)

    Hsu, C; Han, B; Liu, M; Yeh, C; Casida, J E

    2000-02-15

    Phosphine (PH(3)), from hydrolysis of aluminum, magnesium and zinc phosphide, is an insecticide and rodenticide. Earlier observations on PH(3)-poisoned insects, mammals and a mammalian cell line led to the proposed involvement of oxidative damage in the toxic mechanism. This investigation focused on PH(3)-induced oxidative damage in rats and antioxidants as candidate protective agents. Male Wistar rats were treated ip with PH(3) at 2 mg/kg. Thirty min later the brain, liver, and lung were analyzed for glutathione (GSH) levels and lipid peroxidation (as malondialdehyde and 4-hydroxyalkenals) and brain and lung for 8-hydroxydeoxyguanosine (8-OH-dGuo) in DNA. PH(3) caused a significant decrease in GSH concentration and elevation in lipid peroxidation in brain (36-42%), lung (32-38%) and liver (19-25%) and significant increase of 8-OH-dGuo in DNA of brain (70%) and liver (39%). Antioxidants administered ip 30 min before PH(3) were melatonin, vitamin C, and beta-carotene at 10, 30, and 6 mg/kg, respectively. The PH(3)-induced changes were significantly or completely blocked by melatonin while vitamin C and beta-carotene were less effective or inactive. These findings establish that PH(3) induces and melatonin protects against oxidative damage in the brain, lung and liver of rats and suggest the involvement of reactive oxygen species in the genotoxicity of PH(3).

  9. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting

    Institute of Scientific and Technical Information of China (English)

    Yingjie Li; Haichuan Zhang; Ming Jiang; Yun Kuang; Xiaoming Sun; Xue Duan

    2016-01-01

    Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency,low cost,and easy integration is extremely crucial for future renewable energy systems.Herein,ternary NiCoP nanosheet arrays (NSAs) were fabricated on 3D Ni foam by a facile hydrothermal method followed by phosphorization.These arrays serve as bifunctional alkaline catalysts,exhibiting excellent electrocatalytic performance and good working stability for both the HER and OER.The overpotentials of the NiCoP NSA electrode required to drive a current density of 50 mA/cm2 for the HER and OER are as low as 133 and 308 mV,respectively,which is ascribed to excellent intrinsic electrocatalytic activity,fast electron transport,and a unique superaerophobic structure.When NiCoP was integrated as both anodic and cathodic material,the electrolyzer required a potential as low as ~1.77 V to drive a current density of 50 mA/cm2 for overall water splitting,which is much smaller than a reported electrolyzer using the same kind of phosphide-based material and is even better than the combination of Pt/C and Ir/C,the best known noble metal-based electrodes.Combining satisfactory working stability and high activity,this NiCoP electrode paves the way for exploring overall water splitting catalysts.

  10. Development of cadmium-free quantum dot for intracellular labelling through electroporation or lipid-calcium-phosphate

    Science.gov (United States)

    Liu, Ying-Feng; Hung, Wei-Ling; Hou, Tzh-Yin; Huang, Hsiu-Ying; Lin, Cheng-An J.

    2016-04-01

    Traditional fluorescent labelling techniques has severe photo-bleaching problem such as organic dyes and fluorescent protein. Quantum dots made up of traditional semiconductor (CdSe/ZnS) material has sort of biological toxicity. This research has developed novel Cd-free quantum dots divided into semiconductor (Indium phosphide, InP) and noble metal (Gold). Former has lower toxicity compared to traditional quantum dots. Latter consisting of gold (III) chloride (AuCl3) and toluene utilizes sonochemical preparation and different stimulus to regulate fluorescent wavelength. Amphoteric macromolecule surface technology and ligand Exchange in self-Assembled are involved to develop hydrophilic nanomaterials which can regulate the number of grafts per molecule of surface functional groups. Calcium phosphate (CaP) nanoparticle (NP) with an asymmetric lipid bilayer coating technology developed for intracellular delivery and labelling has synthesized Cd-free quantum dots possessing high brightness and multi-fluorescence successfully. Then, polymer coating and ligand exchange transfer to water-soluble materials to produce liposome nanomaterials as fluorescent probes and enhancing medical applications of nanotechnology.

  11. Spectroscopic properties of LaZnPO polycrystals doped with Nd{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Lemański, K. [Institute of Low Temperature and Structure Research Polish Academy of Sciences, Department of Spectroscopy of Excited States, ul. Okólna 2, 50-422 Wrocław (Poland); Babij, M. [Institute of Low Temperature and Structure Research Polish Academy of Sciences, Department of Spectroscopy of Excited States, ul. Okólna 2, 50-422 Wrocław (Poland); University of Wrocław, Faculty of Chemistry, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland); Ptak, M.; Bukowski, Z. [Institute of Low Temperature and Structure Research Polish Academy of Sciences, Department of Spectroscopy of Excited States, ul. Okólna 2, 50-422 Wrocław (Poland); Dereń, P.J., E-mail: P.Deren@int.pan.wroc.pl [Institute of Low Temperature and Structure Research Polish Academy of Sciences, Department of Spectroscopy of Excited States, ul. Okólna 2, 50-422 Wrocław (Poland)

    2015-09-15

    LaZnPO phosphide oxide was synthesized by a solid state reaction. The crystal structure has been confirmed using the X-Ray Powder Diffraction. LaZnPO possesses a tetragonal crystal structure with a space group P4/nmm. The absorption, FTIR, Raman and luminescence spectra have been measured and analyzed. For the neodymium(III) ions the spectroscopic quality parameter and the luminescence branching ratio were estimated from the emission spectra. The investigated crystals may find applications as a down-shifting material, to enhance the yield of solar cells. - Highlights: • Spectroscopic properties of LaZnPO:Nd{sup 3+} were investigated for the first time. • Broad absorption band occurs in the visible range. • The energy transfer from the host to the doped Nd{sup 3+} ions occurs. • The Stark energy levels of Nd{sup 3+} ions in LaZnPO were obtained. • LaZnPO:Nd{sup 3+} may find applications as a down-shifting material.

  12. Planck pre-launch status: Design and description of the Low Frequency Instrument

    CERN Document Server

    Bersanelli, M; Butler, R C; Mennella, A; Villa, F; Aja, B; Artal, E; Artina, E; Baccigalupi, C; Balasini, M; Baldan, G; Banday, A; Bastia, P; Battaglia, P; Bernardino, T; Blackhurst, E; Boschini, L; Burigana, C; Cafagna, G; Cappellini, B; Cavaliere, F; Colombo, F; Crone, G; Cuttaia, F; D'Arcangelo, O; Danese, L; Davies, R D; Davis, R J; De Angelis, L; De Gasperis, G C; De La Fuente, L; De Rosa, A; De Zotti, G; Falvella, M C; Ferrari, F; Ferretti, R; Figini, L; Fogliani, S; Franceschet, C; Franceschi, E; Gaier, T; Garavaglia, S; Gomez, F; Gorski, K; Gregorio, A; Guzzi, P; Herreros, J M; Hildebrandt, S R; Hoyland, R; Hughes, N; Janssen, M; Jukkala, P; Kettle, D; Kilpia, V H; Laaninen, M; Lapolla, P M; Lawrence, C R; Leahy, J P; Leonardi, R; Leutenegger, P; Levin, S; Lilje, P B; Lowe, S R; Lubin, D Lawson P M; Maino, D; Malaspina, M; Maris, M; Marti-Canales, J; Martinez-Gonzalez, E; Mediavilla, A; Meinhold, P; Miccolis, M; Morgante, G; Natoli, P; Nesti, R; Pagan, L; Paine, C; Partridge, B; Pascual, J P; Pasian, F; Pearson, D; Pecora, M; Perrotta, F; Platania, P; Pospieszalski, M; Poutanen, T; Prina, M; Rebolo, R; Roddis, N; Rubino-Martin, J A; Salmon, n M J; Sandri, M; Seiffert, M; Silvestri, R; Simonetto, A; Sjoman, P; Smoot, G F; Sozzi, C; Stringhetti, L; Taddei, E; Tauber, J; Terenzi, L; Tomasi, M; Tuovinen, J; Valenziano, L; Varis, J; Vittorio, N; Wade, L A; Wilkinson, A; Winder, F; Zacchei, A; Zonca, A

    2010-01-01

    In this paper we present the Low Frequency Instrument (LFI), designed and developed as part of the Planck space mission, the ESA program dedicated to precision imaging of the cosmic microwave background (CMB). Planck-LFI will observe the full sky in intensity and polarisation in three frequency bands centred at 30, 44 and 70 GHz, while higher frequencies (100-850 GHz) will be covered by the HFI instrument. The LFI is an array of microwave radiometers based on state-of-the-art Indium Phosphide cryogenic HEMT amplifiers implemented in a differential system using blackbody loads as reference signals. The front-end is cooled to 20K for optimal sensitivity and the reference loads are cooled to 4K to minimise low frequency noise. We provide an overview of the LFI, discuss the leading scientific requirements and describe the design solutions adopted for the various hardware subsystems. The main drivers of the radiometric, optical and thermal design are discussed, including the stringent requirements on sensitivity, ...

  13. Physical and magnetic properties of LaFe0.6Sb2

    Science.gov (United States)

    Misuraca, Jennifer; Grose, J. E.; Simonson, J. W.; Marques, C.; Liu, J.; Smith, G.; Puri, A.; Hassinger, J.; Aronson, M. C.

    2013-03-01

    Currently, there is a tremendous effort to grow and characterize new iron pnictide materials with the hopes of discovering the next set of novel high temperature superconductors. The previous research has been focused on iron phosphides and arsenides, with relatively little work being done on the next heavier pnictogen, antimony. In this work, single crystals of the layered iron pnictide LaFe0.6Sb2 have been grown with the ZrCuSi2 structure with vacancies on the Fe sites as determined via x-ray diffraction and energy-dispersive x-ray spectroscopy. The DC magnetization, resistivity, and heat capacity have been measured in a range of temperatures between 300 K and 0.5 K. The susceptibility is small and shows very little anisotropy; there is a maximum at 265 K and we see no Curie-Weiss-like behavior from room temperature down to 1.8 K. This material is a good metal whose resistivity decreases by a factor of 1.4 from 300 K to 0.5 K and we see Fermi liquid-like behavior from 7 K to 20 K. Although there is no evidence of bulk superconductivity down to 0.5 K in this undoped material, a large Sommerfeld coefficient of 50 mJ/(mol Fe) K2 suggests that this metal is very strongly correlated. Research supported by a DOD National Security Science and Engineering Faculty Fellowship via the AFOSR.

  14. ETIOLOGICAL ASPECTS OF ANEMIA IN DOG INTOXICATION

    Directory of Open Access Journals (Sweden)

    Likhoman A. V.

    2016-03-01

    Full Text Available Dog poisoning toxicant used at home for rodent control (often based on zinc phosphide is accompanied by the development of anemia . In etiopathogenesis of this type of pathology of the blood we can highlight as important: haemolytic , haemorrhagic and allergic components, but the nature and extent of the changes under there are unequal. This requires the development of a special algorithm of examination and treatment strategies of the animal in accordance with the stages of the development of the disease. Modern conditions dictate the need, along with the actions to carry out urgent medical identification as the main etiological factor and pathogenesis, and the leading pathogenetic factors that pose a threat to the danger of other pathological processes and disease states. First, we evaluate the extent of damage to the liver, kidneys, heart, spleen and blood vessels, which is possible only if the clinic has appropriate methods and equipment. It is undeniable in this regard the importance of evidence-based recommendations for dietary nutrition of the affected animal's behavior after the clinic urgent remedial measures. The article proves high importance of evaluating the effectiveness of the treatment in the clinic

  15. In-situ Characterization of Water-Gas Shift Catalysts using Time-Resolved X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Hanson, J; Wen, W; Wang, X; Brito, J; Martnez-Arias, A; Fernandez-Garca, M

    2009-01-01

    Time-resolved X-ray diffraction (XRD) has emerged as a powerful technique for studying the behavior of heterogeneous catalysts (metal oxides, sulfides, carbides, phosphides, zeolites, etc.) in-situ during reaction conditions. The technique can identify the active phase of a heterogeneous catalyst and how its structure changes after interacting with the reactants and products (80 K < T < 1200 K; P < 50 atm). In this article, we review a series of recent works that use in-situ time-resolved XRD for studying the water-gas shift reaction (WGS, CO + H2O ? H2 + CO2) over several mixed-metal oxides: CuMoO4, NiMoO4, Ce1-xCuxO2-d and CuFe2O4. Under reaction conditions the oxides undergo partial reduction. Neutral Cu0 (i.e. no Cu1+ or Cu2+ cations) and Ni0 are the active species in the catalysts, but interactions with the oxide support are necessary in order to obtain high catalytic activity. These studies illustrate the important role played by O vacancies in the mechanism for the WGS. In the case of Ce1-xCuxO2-d, Rietveld refinement shows expansions/contractions in the oxide lattice which track steps within the WGS process: CO(gas) + O(oxi) ? CO2(gas) + O(vac); H2O(gas) + O(vac) ? O(oxi) + H2(gas).

  16. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  17. Electrochemical and structural properties of electroless Ni-P-SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farzaneh, Amir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman (Iran, Islamic Republic of); Department of Materials Science and Engineering, Faculty of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of); Mohammadi, Maysam, E-mail: maysam.mohammadi84@gmail.com [High Technology and Environmental Sciences, International Center for Science, Materials Research Institute, Kerman (Iran, Islamic Republic of); Ehteshamzadeh, Maryam [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman (Iran, Islamic Republic of); High Technology and Environmental Sciences, International Center for Science, Materials Research Institute, Kerman (Iran, Islamic Republic of); Mohammadi, Farzad [Department of Materials Engineering, The University of British Columbia, Vancouver, BC (Canada)

    2013-07-01

    Silicon carbide (SiC) nanoparticles were co-deposited with nickel-phosphorous (Ni-P) coatings through electroless deposition process. The effects of annealing temperature and SiC contents on properties of the coatings were investigated. Corrosion performance of the coatings was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). X-ray diffraction and Scanning Electron Microscopy (SEM) were employed for structural and morphological studies, respectively. It was shown that the structure of the as-deposited Ni-P-SiC nanocomposite coating was amorphous, and changed to the nickel crystal, nickel phosphide (Ni{sub 3}P) and silicide compounds (Ni{sub x}Si{sub y}) with heat treatment. Addition of the SiC concentration in the coating bath affected both composition and morphology of the coating. Presence of SiC nanoparticles in the Ni-P coating enhanced the corrosion resistance of the coating. Higher SiC contents, however, negatively affected the corrosion behavior of the coatings. Heat treatment also improved the corrosion resistance of the Ni-P-SiC coating. Annealing at 400 °C decreased the corrosion current density of the coating by approximately 60%.

  18. Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R J; Wilkinson, A; Davies, R D; Winder, W F; Roddis, N; Blackhurst, E J; Lawson, D; Lowe, S R; Baines, C; Butlin, M; Galtress, A; Shepherd, D [Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, M13 9PL (United Kingdom); Aja, B; Artal, E [Departamento de IngenierIa de Comunicaciones, Universidad de Cantabria, Avenida de los Castros s/n. 39005 Santander (Spain); Bersanelli, M [Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Butler, R C; Cuttaia, F [INAF IASF Bologna, Via Gobetti, 101, 40129, Bologna (Italy); Castelli, C [Science and Technology Facilities Council, Swindon, Wiltshire, SN2 1SZ (United Kingdom); D' Arcangelo, O [IFP-CNR, Via Cozzi 53, Milano (Italy); Gaier, T, E-mail: Richard.Davis@manchester.ac.u [Jet Propulsion Laboratory, Pasadena, California (United States)

    2009-12-15

    We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristics.

  19. ZnGeP sub 2 crystals for infrared laser radiation frequency conversion

    CERN Document Server

    Andreev, Y M; Gribenyukov, A I; Korotkova, V V

    1998-01-01

    In this parer, we present some recent results on integrated studies concerned with different aspects of ZnGeP sub 2 crystal technology: synthesis, growth, and post-growth treatment. High-yield two-temperature synthesis and subsequent growth of ZnGeP sub 2 crystals are considered. By X-Ray phase analysis it has been found that two-temperature synthesis of ZnGeP sub 2 is realized through binary zinc and germanium phosphides formed at the Zn-Ge mixture temperature of about 900 .deg. C and the P pressure of 7 approx 10 atm. Using the heat-balance equation, a ratio of the thermal conductivity in the solid to that in the liquid ZnGeP sub 2 near the melting point has been determined. The value of the determined ratio is K sub l /K sub s approx =2.3. Analysis of the most favored crystallographic directions for ZnGeP sub 2 growth has been performed. These directions are [116], [132] and [102]. Data for optical absorption of the as-grown and the annealed ZnGeP sub 2 crystals are also presented.

  20. Magnetic phase transitions and magnetization reversal in MnRuP

    Science.gov (United States)

    Lampen-Kelley, P.; Mandrus, D.

    The ternary phosphide MnRuP is an incommensurate antiferromagnetic metal crystallizing in the non-centrosymmetric Fe2P-type crystal structure. Below the Neel transition at 250 K, MnRuP exhibits hysteretic anomalies in resistivity and magnetic susceptibility curves as the propagation vectors of the spiral spin structure change discontinuously across T1 = 180 K and T2 = 100 K. Temperature-dependent X-ray diffraction data indicate that the first-order spin reorientation occurs in the absence of a structural transition. A strong magnetization reversal (MR) effect is observed upon cooling the system through TN in moderate dc magnetic fields. Positive magnetization is recovered on further cooling through T1 and maintained in subsequent warming curves. The field dependence and training of the MR effect in MnRuP will be discussed in terms of the underlying magnetic structures and compared to anomalous MR observed in vanadate systems. This work is supported by the Gordon and Betty Moore Foundation GBMF4416 and U.S. DOE, Office of Science, BES, Materials Science and Engineering Division.

  1. Device Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, H.; Hofstetter, J.; Mitchell, B.; Altermatt, P.; Buonassisi, T.

    2015-03-23

    We present a numerical simulation study of different multicrystalline silicon materials and solar cell architectures to understand today's efficiency limitations and future efficiency possibilities. We compare conventional full-area BSF and PERC solar cells to future cell designs with a gallium phosphide heteroemitter. For all designs, mc-Si materials with different excess carrier lifetime distributions are used as simulation input parameters to capture a broad range of materials. The results show that conventional solar cell designs are sufficient for generalized mean lifetimes between 40 – 90 μs, but do not give a clear advantage in terms of efficiency for higher mean lifetime mc-Si material because they are often limited by recombination in the phosphorus diffused emitter region. Heteroemitter designs instead increase in cell efficiency considerable up to generalized mean lifetimes of 380 μs because they are significantly less limited by recombination in the emitter and the bulk lifetime becomes more important. In conclusion, to benefit from increasing mc-Si lifetime, new cell designs, especially heteroemitter, are desirable.

  2. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Piryatinski, Andrei [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Hollingsworth, Jennifer A. [Los Alamos National Laboratory

    2012-06-21

    Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDs to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.

  3. Aluminium salt slag characterization and utilization--a review.

    Science.gov (United States)

    Tsakiridis, P E

    2012-05-30

    Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per tonne of secondary aluminium ranges from 200 to 500 kg. As salt slag has been classified as toxic and hazardous waste, it should be managed in compliance with the current legislation. Its landfill disposal is forbidden in most of the European countries and it should be recycled and processed in a proper way by taking the environmental impact into consideration. This paper presents a review of the aluminium salt slag chemical and mineralogical characteristics, as well as various processes for metal recovery, recycling of sodium and potassium chlorides content back to the smelting process and preparation of value added products from the final non metallic residue.

  4. Development of P/M Fe–P soft magnetic materials

    Indian Academy of Sciences (India)

    S K Chaurasia; Ujjwal Prakash; P S Misra; K Chandra

    2012-04-01

    Phosphorous is treated as an impurity in conventional steels owing to segregation of phosphorous and formation of brittle phosphides along the grain boundaries. It is responsible for cold and hot shortness in wrought steels. In conventional powder metallurgy, involving compaction and sintering, high phosphorous content (up to 0.7%) in Fe-based alloys exhibit attractive set ofmechanical andmagnetic properties. These powder-processed alloys suffer from increasing volumetric shrinkage during sintering as phosphorous is increased beyond 0.6%. Thus both cast as well as conventional powder metallurgy routes have their own limitations in dealing with iron–phosphorous alloys. Hot-powder forging was used in the present investigation for the development of high-density soft magnetic materials containing 0.3–0.8% phosphorous to overcome these difficulties. It was observed that phosphorous addition improves the final density of the resulting product. It was further observed that hot-forged iron–phosphorous alloys have excellent hot/cold workability and could be easily shaped to thin strips (0.5–1.0 mm thick) and wires (0.5–1.0 mm diameter). The powder hot-forged alloys were characterized in terms of microstructure, porosity content/densification, hardness, softmagnetic properties and electrical resistivity.Magnetic properties such as coercivity 0.35–1.24 Oe, saturation magnetization 14145–17490 G and retentivity 6402–10836 G were observed. The obtained results were discussed based on the microstructures evolved.

  5. Thermo photo-electrochemical effect in n-InP/aqueous solution of orange dye/C cell

    Science.gov (United States)

    Ali, Taimoor; Karimov, Khasan S.; Akhmedov, Khakim M.; Kabutov, K.; Farooq, Amjad

    2015-03-01

    The effect of light and heat is studied on the electrical properties of an electrochemical n-InP/aqueous solution of orange dye/C cell. The cell is investigated under the light and heat of filament bulb. The n-type indium phosphide and carbon plates are used as electrodes. The aqueous solution of organic material orange dye (C17H17N5O2) in distilled water is served as electrolyte at 1, 3 and 5 wt. % concentration. The cell is assembled in sealed organic glass box with dimensions 35 × 13 × 14 mm. The open circuit voltage ( V oc ) and short circuit current ( I sc ) of the cell are observed by illuminating and heating the samples. The temperature is raised up to 60°C from 25°C when light intensity is increased from dark condition to 425 W/m2. It is observed that the relationship between light intensity and temperature is approximately linear for all cases. The V oc and I sc increase 100% and 300% respectively by increasing the light. The reported n-InP/aqueous solution of orange dye/C cell can be considered as small converter of light and heat into electric power. [Figure not available: see fulltext.

  6. 300 mm InGaAs-on-insulator substrates fabricated using direct wafer bonding and the Smart Cut™ technology

    Science.gov (United States)

    Widiez, Julie; Sollier, Sébastien; Baron, Thierry; Martin, Mickaël; Gaudin, Gweltaz; Mazen, Frédéric; Madeira, Florence; Favier, Sylvie; Salaun, Amélie; Alcotte, Reynald; Beche, Elodie; Grampeix, Helen; Veytizou, Christelle; Moulet, Jean-Sébastien

    2016-04-01

    This paper reports the first demonstration of 300 mm In0.53Ga0.47As-on-insulator (InGaAs-OI) substrates. The use of direct wafer bonding and the Smart Cut™ technology lead to the transfer of high quality InGaAs layer on large Si wafer size (300 mm) at low effective cost, taking into account the reclaim of the III-V on Si donor substrate. The optimization of the three key building blocks of this technology is detailed. (1) The III-V epitaxial growth on 300 mm Si wafers has been optimized to decrease the defect density. (2) For the first time, hydrogen-induced thermal splitting is made inside the indium phosphide (InP) epitaxial layer and a wide implantation condition ranges is observed on the contrary to bulk InP. (3) Finally a specific direct wafer bonding with alumina oxide has been chosen to avoid outgas diffusion at the alumina oxide/III-V compound interface.

  7. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    Science.gov (United States)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-09-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.

  8. Optical and transport properties correlation driven by amorphous/crystalline disorder in InP nanowires

    Science.gov (United States)

    Kamimura, H.; Gouveia, R. C.; Carrocine, S. C.; Souza, L. D.; Rodrigues, A. D.; Teodoro, M. D.; Marques, G. E.; Leite, E. R.; Chiquito, A. J.

    2016-11-01

    Indium phosphide nanowires with a single crystalline zinc-blend core and polycrystalline/amorphous shell were grown from a reliable route without the use of hazardous precursors. The nanowires are composed by a crystalline core covered by a polycrystalline shell, presenting typical lengths larger than 10 μm and diameters of 80-90 nm. Raman spectra taken from as-grown nanowires exhibited asymmetric line shapes with broadening towards higher wave numbers which can be attributed to phonon localization effects. It was found that optical phonons in the nanowires are localized in regions with average size of 3 nm, which seems to have the same order of magnitude of grain sizes in the polycrystalline shell. Regardless of the fact that the nanowires exhibit a crystalline core, any considerable degree of disorder can lead to a localized behaviour of carriers. In consequence, the variable range hopping was observed as the main transport instead of the usual thermal excitation mechanisms. Furthermore the hopping length was ten times smaller than nanowire cross-sections, confirming that the nanostructures do behave as a 3D system. Accordingly, the V-shape observed in PL spectra clearly demonstrates a very strong influence of the potential fluctuations on the exciton optical recombination. Such fluctuations can still be observed at low temperature regime, confirming that the amorphous/polycrystalline shell of the nanowires affects the exciton recombination in every laser power regime tested.

  9. Influence of different energy densities of laser phototherapy on oral wound healing

    Science.gov (United States)

    Wagner, Vivian Petersen; Meurer, Luise; Martins, Marco Antonio Trevizani; Danilevicz, Chris Krebs; Magnusson, Alessandra Selinger; Marques, Márcia Martins; Filho, Manoel Sant'Ana; Squarize, Cristiane Helena; Martins, Manoela Domingues

    2013-12-01

    The aim of the present prospective study was to evaluate the impact of laser phototherapy (LPT) on the healing of oral ulcers. Different power densities were used on oral wounds in Wistar rats (n=72) randomly divided into three groups: control (0 J/cm2), 4 J/cm2 laser, and 20 J/cm2 laser. Ulcers (3 mm in diameter) were made on the dorsum of the tongue with a punch. Irradiation with an indium-gallium-aluminum-phosphide laser (660 nm output power: 40 mW spot size: 0.04 cm) was performed once a day in close contact with the ulcer for 14 consecutive days. A statistically significant acceleration in healing time was found with wounds treated with 4 J/cm2 LPT. Moreover, striking differences were found in the ulcer area, healing percentage, degree of reepithelialization, and collagen deposition. The most significant changes occurred after 5 days of irradiation. Based on the conditions employed in the present study, LPT is capable of accelerating the oral mucosa wound-healing process. Moreover, faster and more organized reepithelialization and tissue healing of the oral mucosa were achieved with an energy density of 4 J/cm2 in comparison to 20 J/cm2.

  10. Development of InP solid state detector and liquid scintillator containing metal complex for measurement of pp/7Be solar neutrinos and neutrinoless double beta decay

    Science.gov (United States)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka

    2012-07-01

    A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.

  11. High-pressure polymorphism of Fe[subscript 2]P and its implications for meteorites and Earth's core

    Energy Technology Data Exchange (ETDEWEB)

    Dera, P.; Lavina, B.; Borkowski, L.A.; Prakapenka, V.B.; Sutton, S.R.; Rivers, M.L.; Downs, R.T.; Boctor, N.Z.; Prewitt, C.T. (UNLV); (UofC); (Univ of AZ); (CIW)

    2008-05-19

    Minerals with composition (Fe,Ni){sub 2}P, are rare, though important accessory phases in iron and chondritic meteorites. The occurrence of these minerals in meteorites is believed to originate either from the equilibrium condensation of protoplanetary materials in solar nebulae or from the later accretion and condensation processes in the cores of parent bodies. Fe-Ni phosphides are considered a possible candidate for a minor phase present in the Earth's core, and at least partially responsible for the observed density deficit with respect to pure iron. We report results of high-pressure high-temperature X-ray diffraction experiments with synthetic barringerite (Fe{sub 2}P) up to 40 GPa and 1400 K. A new phase transition to the Co{sub 2}Si-type structure has been found at 8.0 GPa, upon heating. The high-pressure phase can be metastably quenched to ambient conditions at room temperature, and then, if heated again, transforms back to barringerite, providing an important constraint on the thermodynamic history of meteorite.

  12. An Approach to Preparing Ni-P with Different Phases for Use as Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Dan; Kong, Ling-Bin; Liu, Mao-Cheng; Luo, Yong-Chun; Kang, Long

    2015-12-01

    Herein, we describe a simple two-step approach to prepare nickel phosphide with different phases, such as Ni2 P and Ni5 P4 , to explain the influence of material microstructure and electrical conductivity on electrochemical performance. In this approach, we first prepared a Ni-P precursor through a ball milling process, then controlled the synthesis of either Ni2 P or Ni5 P4 by the annealing method. The as-prepared Ni2 P and Ni5 P4 are investigated as supercapacitor electrode materials for potential energy storage applications. The Ni2 P exhibits a high specific capacitance of 843.25 F g(-1) , whereas the specific capacitance of Ni5 P4 is 801.5 F g(-1) . Ni2 P possesses better cycle stability and rate capability than Ni5 P4 . In addition, the Fe2 O3 //Ni2 P supercapacitor displays a high energy density of 35.5 Wh kg(-1) at a power density of 400 W kg(-1) and long cycle stability with a specific capacitance retention rate of 96 % after 1000 cycles, whereas the Fe2 O3 //Ni5 P4 supercapacitor exhibits a high energy density of 29.8 Wh kg(-1) at a power density of 400 W kg(-1) and a specific capacitance retention rate of 86 % after 1000 cycles.

  13. Polymer waveguide systems for nonlinear and electro-optic applications

    Science.gov (United States)

    Pantelis, Philip; Hill, Julian R.; Kashyap, Raman

    1991-12-01

    Waveguides with photochromic or electro-optic properties have been fabricated by a new technique using spin coating of polymers, or guest/host-polymer systems, on to grooves etched in an indium phosphide wafer. Monomoded waveguides at 633 nm, and at 1320 and 1550 nm (wavelengths of telecommunications interest) have been fabricated. These guides have good quality cleaved ends which allow efficient coupling of light from monomoded standard lensed silica fibers. An example of an electro-optic application is given in the form of a phase modulator. This device uses a side-chain polymer as the waveguide core that develops linear electro-optic properties following an electric field alignment process. It was found to have a switching voltage of 30 V, for a (pi) phase change, and had a total insertion loss of 9.4 dB. Waveguides with photochromic properties have also been produced using Aberchrome 670 (a commercially available fulgide) as a guest in a poly(methyl methacrylate) polymer host. Refractive index, optical loss, photochromic activity, and film forming properties of differing concentrations of guest (up to 20% concentration by weight) have been measured and are reported.

  14. Characterization of electroless nickel as a seed layer for silicon solar cell metallization

    Indian Academy of Sciences (India)

    Mehul C Raval; Chetan S Solanki

    2015-02-01

    Electroless nickel plating is a suitable method for seed layer deposition in Ni–Cu-based solar cell metallization. Nickel silicide formation and hence contact resistivity of the interface is largely influenced by the plating process and annealing conditions. In the present work, a thin seed layer is deposited from neutral pH and alkaline electroless nickel baths which are annealed in the range of 400–420°C for silicide morphology and contact resistivity studies. A minimum contact resistivity of 7 m cm2 is obtained for seed layer deposited from alkaline bath. Silicide formation for Pd-activated samples leads to uniform surface morphology as compared with unactivated samples due to non-homogeneous migration of nickel atoms at the interface. Formation of nickel phosphides during annealing and the presence of SiO2 at Ni–Si interface creates isolated Ni2Si–Si interface with limited supply of silicon. Such an interface leads to the formation of high resistivity metal-rich Ni3Si silicide phase which limits the reduction in contact resistivity.

  15. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  16. Effect of integrated pest management on controlling zoonotic cutaneous leishmaniasis in Emamzadeh Agha Ali Abbas (AS) District, Isfahan province, 2006-2009

    Science.gov (United States)

    Nilforoushzadeh, Mohammad Ali; Shirani-Bidabadi, Leila; Saberi, Sedigheh; Hosseini, Seyed Mohsen; Jaffary, Fariba

    2014-01-01

    Background: Cutaneous leishmaniasis (CL) is still considered as a health problem in the world. Several methods of control in different regions, together with obtaining integrated information on its natural foci, are needed to decrease its prevalence. This study was designed to evaluate the effects of simultaneous interventions on CL control. Materials and Methods: A standard questionnaire was used to identify patients among pilgrims to Emamzadeh Agha Ali Abbas (Isfahan Province, Iran). Subsequently, three methods of controlling the disease, including, spraying residential buildings with Baygon, baiting with zinc phosphide poisons, changing the vegetative cover of the region, improving the environment, and mounting a mesh on all doors and windows of buildings in residential areas were used. The control measures were then evaluated by comparing the number of pilgrims affected by CL after and before the interventions. Results: While 23 pilgrims (1.4%) were affected with CL before the intervention (pretest), five (0.3%) persons were found to have CL after taking control measures. The Chi-square test did not indicate any significant difference in the relative frequency of CL (P = 0.731). Conclusion: The only scientific method for preventing and controlling zoonotic CL (ZCL) is a combination of the control methods (improving the environment and fighting off the disease districts and vectors) together with changing the vegetative cover of the region. Any measure for controlling this disease must be taken and programmed in accordance with the relevant experts’ views, in coordination with the participation of other organizations and the society. PMID:24818102

  17. The effect of varying the capping agent of magnetic/luminescent Fe{sub 3}O{sub 4}–InP/ZnSe core–shell nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Zuraan [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Onani, Martin O., E-mail: monani@uwc.ac.za [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Allard, Garvin R.J.; Kiplagat, Ayabei [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Okil, Joseph O. [532 Winchester Avenue, Union, NJ 07083 (United States); Dejene, Francis B. [Department of Physics, University of the Free State, QwaQwa Campus, Private bag X13, Phuthaditjhaba 9866 (South Africa); Mahanga, Geoffrey M. [Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, 40601 Bondo (Kenya)

    2016-01-01

    Magnetic–luminescent nanoparticles have shown great promise in various biomedical applications namely: contrast agents for magnetic resonance imaging, multifunctional drug carrier system, magnetic separation of cells, cell tracking, immunoassay, and magnetic bioseparation. This experiment describes the synthesis of a nanocomposite material, which is composed of an iron oxide (Fe{sub 3}O{sub 4}) superparamagnetic core and an indium phosphide/zinc selenide (InP/ZnSe) quantum dot shell. The magnetic nanoparticles (MNP’s) and quantum dots (QD’s) were synthesized separately before allowing them to conjugate. The MNP’s were functionalized with a thiol-group allowing the QD shell to bind to the surface of the MNP by the formation of a thiol–metal bond. The nanocomposite was capped with 3-mercaptopropionic acid, oleylamine, β-cyclodextrin and their influence on the photoluminescence investigated. The synthesized nanocomposite was characterized with high- resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), selective electron area diffraction (SAED), scanning electron microscopy (SEM), superconducting quantum interference device (SQUID), and photoluminescence. These techniques yielded particle size, morphology, dispersion, and chemical composition including luminescence and florescence.

  18. Semiconductor GaAs: electronic paramagnetic resonance new data; GaAs semi-isolant: nouvelles donnees de resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Benchiguer, T.

    1994-04-01

    The topic of this study was to put to the fore, thanks to our electron spin resonance experiments, one charge transfer process, which was optically induced between the deep donor As{sup +}{sub G}a and the different acceptors, which were present in the material. We described these processes through a theoretical model, which we named charge transfer model. With this latter, we were able to trace a graph network, representing the As{sup +}{sub G}a concentration kinetics. Then we verified the compatibility of our model with one transport experiment. One experimental verification of our model were delivered, thanks to neutronic transmutation doping. The following stage was the study of defects, induced by thermal strains, to which the crystal was submitted during the cooling phase. At last we wanted to get round the non solved super hyperfine structure problem for GaAs by studying another III-V material for which she was resolved, namely gallium phosphide. (MML). 150 refs., 72 figs., 16 tabs., 3 annexes.

  19. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.

    Science.gov (United States)

    van Dam, Dick; van Hoof, Niels J J; Cui, Yingchao; van Veldhoven, Peter J; Bakkers, Erik P A M; Gómez Rivas, Jaime; Haverkort, Jos E M

    2016-12-27

    Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm(2) under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.

  20. 聚苯胺无溶剂聚氨酯防锈涂料的研制%Preparation of Polyaniline Solvent-free Polyurethane Anti-rust Coatings

    Institute of Scientific and Technical Information of China (English)

    赵绍洪; 张辉耀; 刘志文

    2012-01-01

    介绍了以蓖麻油酸改性环氧酯为含羟基树脂,以二丁胺改性1,6-己二醇二缩水甘油醚为反应性稀释剂,配合聚苯胺/凹凸棒纳米复合材料、磷钛粉、吸水剂等组成A组分,采用含-NCO基的聚氨酯预聚体为B组分,将A组分和B组分按规定比例混合均匀后涂布在金属表面即形成一种无溶剂、不含重金属的新型环境友好金属防锈涂料。%A two-component anti-rust coatings formula is designed in this paper. The component A includes ricinoleic acid modified epoxy ester as hydroxyl resin, n-dibutylamine modified 1,6-hexylene glycol two glycidyl ether as reactive thinner, Polyaniline/Attapulgite nanocomposites, titanium phosphide powder and water absorbent. The component B includes --NCO polyurethane prepolymer. The two components are mixed at some proportion and applied on the metal surface to serve as non- solvent non-heavy metal environmental friendly metal anti-rust coatings.

  1. Black Phosphorus Transistors with Near Band Edge Contact Schottky Barrier

    Science.gov (United States)

    Ling, Zhi-Peng; Sakar, Soumya; Mathew, Sinu; Zhu, Jun-Tao; Gopinadhan, K.; Venkatesan, T.; Ang, Kah-Wee

    2015-12-01

    Black phosphorus (BP) is a new class of 2D material which holds promise for next generation transistor applications owing to its intrinsically superior carrier mobility properties. Among other issues, achieving good ohmic contacts with low source-drain parasitic resistance in BP field-effect transistors (FET) remains a challenge. For the first time, we report a new contact technology that employs the use of high work function nickel (Ni) and thermal anneal to produce a metal alloy that effectively reduces the contact Schottky barrier height (ΦB) in a BP FET. When annealed at 300 °C, the Ni electrode was found to react with the underlying BP crystal and resulted in the formation of nickel-phosphide (Ni2P) alloy. This serves to de-pin the metal Fermi level close to the valence band edge and realizes a record low hole ΦB of merely ~12 meV. The ΦB at the valence band has also been shown to be thickness-dependent, wherein increasing BP multi-layers results in a smaller ΦB due to bandgap energy shrinkage. The integration of hafnium-dioxide high-k gate dielectric additionally enables a significantly improved subthreshold swing (SS ~ 200 mV/dec), surpassing previously reported BP FETs with conventional SiO2 gate dielectric (SS > 1 V/dec).

  2. Optical and transport properties correlation driven by amorphous/crystalline disorder in InP nanowires.

    Science.gov (United States)

    Kamimura, H; Gouveia, R C; Carrocine, S C; Souza, L D; Rodrigues, A D; Teodoro, M D; Marques, G E; Leite, E R; Chiquito, A J

    2016-11-30

    Indium phosphide nanowires with a single crystalline zinc-blend core and polycrystalline/amorphous shell were grown from a reliable route without the use of hazardous precursors. The nanowires are composed by a crystalline core covered by a polycrystalline shell, presenting typical lengths larger than 10 μm and diameters of 80-90 nm. Raman spectra taken from as-grown nanowires exhibited asymmetric line shapes with broadening towards higher wave numbers which can be attributed to phonon localization effects. It was found that optical phonons in the nanowires are localized in regions with average size of 3 nm, which seems to have the same order of magnitude of grain sizes in the polycrystalline shell. Regardless of the fact that the nanowires exhibit a crystalline core, any considerable degree of disorder can lead to a localized behaviour of carriers. In consequence, the variable range hopping was observed as the main transport instead of the usual thermal excitation mechanisms. Furthermore the hopping length was ten times smaller than nanowire cross-sections, confirming that the nanostructures do behave as a 3D system. Accordingly, the V-shape observed in PL spectra clearly demonstrates a very strong influence of the potential fluctuations on the exciton optical recombination. Such fluctuations can still be observed at low temperature regime, confirming that the amorphous/polycrystalline shell of the nanowires affects the exciton recombination in every laser power regime tested.

  3. Transmission Enhancement of High-$k$ Waves through Metal-InGaAsP Multilayers Calculated via Scattering Matrix Method with Semi-Classical Optical Gain

    CERN Document Server

    Smalley, Joseph S T; Shahin, Shiva; Kanté, Boubacar; Fainman, Yeshaiahu

    2015-01-01

    We analyze the steady-state transmission of high-momentum (high-$k$) electromagnetic waves through metal-semiconductor multilayer systems with loss and gain in the near-infrared (NIR). Using a semi-classical optical gain model in conjunction with the scattering matrix method (SMM), we study indium gallium arsenide phosphide (InGaAsP) quantum wells as the active semiconductor, in combination with the metals, aluminum-doped zinc oxide (AZO) and silver (Ag). Under moderate external pumping levels, we find that NIR transmission through Ag/InGaAsP systems may be enhanced by several orders of magnitude relative to the unpumped case, over a large angular and frequency bandwidth. Conversely, transmission enhancement through AZO/InGaAsP systems is orders of magnitude smaller, and has a strong frequency dependence. We discuss the relative importance of Purcell enhancement on our results and validate analytical calculations based on the SMM with numerical finite-difference time domain simulations.

  4. Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions

    Science.gov (United States)

    Guglielmi, Camila De Almeida B.; Simionato, Maria Regina L.; Ramalho, Karen Müller; Imparato, José Carlos P.; Pinheiro, Sérgio Luiz; Luz, Maria A. A. C.

    2011-08-01

    The purpose of this study was to assess photodynamic antimicrobial chemotherapy (PACT) via irradiation, using a low power laser associated with a photosensitization dye, as an alternative to remove cariogenic microorganisms by drilling. Remaining dentinal samples in deep carious lesions on permanent molars (n = 26) were treated with 0.01% methylene blue dye and irradiated with a low power laser (InGaAIP - indium gallium aluminum phosphide; λ = 660 nm; 100 mW; 320 Jcm-2 90 s; 9J). Samples of dentin from the pulpal wall region were collected with a micropunch before and immediately after PACT and kept in a transport medium for microbiological analysis. Samples were cultured in plates of Brucella blood agar, Mitis Salivarius Bacitracin agar and Rogosa SL agar to determine the total viable bacteria, mutans streptococci and Lactobacillus spp. counts, respectively. After incubation, colony-forming units were counted and microbial reduction was calculated for each group of bacteria. PACT led to statistically significant reductions in mutans streptococci (1.38 log), Lactobacillus spp. (0.93 log), and total viable bacteria (0.91 log). This therapy may be an appropriate approach for the treatment of deep carious lesions using minimally invasive procedures.

  5. Surface chemistry of InP quantum dots: a comprehensive study.

    Science.gov (United States)

    Cros-Gagneux, Arnaud; Delpech, Fabien; Nayral, Céline; Cornejo, Alfonso; Coppel, Yannick; Chaudret, Bruno

    2010-12-29

    Advanced (1)H, (13)C, and (31)P solution and solid-state NMR studies combined with IR spectroscopy were used to probe, at the molecular scale, the composition and the surface chemistry of indium phosphide (InP) quantum dots (QDs) prepared via a non-coordinating solvent strategy. This nanomaterial can be described as a core-multishell object: an InP core, with a zinc blende bulk structure, is surrounded first by a partially oxidized surface shell, which is itself surrounded by an organic coating. This organic passivating layer is composed, in the first coordination sphere, of tightly bound palmitate ligands which display two different bonding modes. A second coordination sphere includes an unexpected dialkyl ketone and residual long-chain non-coordinating solvents (ODE and its isomers) which interact through weak intermolecular bonds with the alkyl chains of the carboxylate ligands. We show that this ketone is formed during the synthesis process via a decarboxylative coupling route and provides oxidative conditions which are responsible for the oxidation of the InP core surface. This phenomenon has a significant impact on the photoluminescence properties of the as-synthesized QDs and probably accounts for the failure of further growth of the InP core.

  6. Lattice vibrations of icosahedral boron-rich solids

    Energy Technology Data Exchange (ETDEWEB)

    Beckel, C.L.; Yousaf, M. (The University of New Mexico, Albuquerque, New Mexico 87131 (United States))

    1991-07-01

    The rhombohedral lattices for {alpha}-boron, boron arsenide, and boron phosphide are each of D{sub 3d} symmetry and have bases that include B{sub 12} icosahedra. Boron carbide with B{sub 4}C stoichiometry has near-D{sub 3d} symmetry and is almost certainly composed of B{sub 11}C icosahedra and C-B-C chains. Comparable classical force field models are applied to each of these crystals to correlate q=0 phonon structure with experimental Raman and IR spectra. We here describe our methods and contrast interaction strengths for different materials. Vibrations are correlated in the different crystals through normal mode eigenvector expansions. Acoustic wave velocities from Brillouin zone dispersion curves in two distinct symmetry-axis directions are presented and contrasted for {alpha}-boron and B{sub 12}As{sub 2}. The origin of lines with anomalous polarization and width in {alpha}-boron, B{sub 12}As{sub 2}, and B{sub 12}P{sub 2} is considered.

  7. Study of growth properties of InAs islands on patterned InP substrates defined by focused ion beam

    Science.gov (United States)

    Ribeiro-Andrade, R.; Malachias, A.; Miquita, D. R.; Vasconcelos, T. L.; Kawabata, R.; Pires, M. P.; Souza, P. L.; Rodrigues, W. N.

    2017-03-01

    This work describes morphological and crystalline properties of the InAs islands grown on templates created by focused ion beam (FIB) on indium phosphide (InP) substrates. Regular arrangements of shallow holes are created on the InP (001) surfaces, acting as preferential nucleation sites for InAs islands grown by Metal-Organic Vapor Phase Epitaxy. Ion doses ranging from 1015 to 1016 Ga+/cm2 were used and islands were grown for two sub-monolayer coverages. We observe the formation of clusters in the inner surfaces of the FIB produced cavities and show that for low doses templates the nanostructures are mainly coherent while templates created with large ion doses lead to the growth of incoherent islands with larger island density. The modified island growth is described by a simple model based on the surface potential and the net adatom flow to the cavities. We observe that obtained morphologies result from a competition between coarsening and coalescence mechanisms.

  8. Hybrid Photonic Integration on a Polymer Platform

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2015-09-01

    Full Text Available To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard, which provides flexible optical input/ouptut interfaces (I/Os that allow robust coupling of indium phosphide (InP-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.

  9. Determination of biocorrosion of low alloy steel by sulfate-reducing Desulfotomaculum sp. isolated from crude oil field

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, D.; Doenmez, G. [Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara (Turkey); Bilgic, S. [Faculty of Science, Department of Chemistry, Ankara University, Tandogan, 06100, Ankara (Turkey); Doenmez, S. [Faculty of Engineering, Department of Food Engineering, Ankara University, Diskapi, 06110 Ankara (Turkey)

    2007-11-15

    In this study corrosion behavior of low alloy steel, in the presence of anaerobic sulfate-reducing Desulfotomaculum sp. which was isolated from an oil production well, was investigated. In order to determine corrosion rates and mechanisms, mass loss measurements and electrochemical polarization studies were performed without and with bacteria in the culture medium. Scanning electron microscopic observations and energy dispersive X-ray spectra (EDS) analysis were made on steel coupons. The effect of iron concentration on corrosion behavior was determined by Tafel extrapolation method. In a sterile culture medium, as the FeSO{sub 4} . 7H{sub 2}O concentration increased, corrosion potential (E{sub cor}) values shifted towards more anodic potentials and corrosion current density (I{sub cor}) values increased considerably. After inoculation of sulfate-reducing bacteria (SRB), E{sub cor} shifted towards cathodic values. I{sub cor} values increased with increasing incubation time for 10 and 100 mg/L concentrations of FeSO{sub 4} . 7H{sub 2}O. Results have shown that the corrosion activity changed due to several factors such as bacterial metabolites, ferrous sulfide, hydrogen sulfide, iron phosphide, and cathodic depolarization effect. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  10. From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting

    Science.gov (United States)

    Li, Wei; Gao, Xuefei; Wang, Xiaoguang; Xiong, Dehua; Huang, Pei-Pei; Song, Wei-Guo; Bao, Xiaoqing; Liu, Lifeng

    2016-10-01

    Vertically-aligned cobalt nickel phosphide nanowires (Co-Ni-P NWs) are synthesized on Ni foam by phosphorizing cobalt carbonate hydroxide precursor NWs in red phosphorous vapor at an elevated temperature. The as-fabricated self-supported integrated electrode (Ni@Co-Ni-P) exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction (HER) in alkaline solution, delivering a cathodic current density of 100 mA cm-2 at a small overpotential of 137 mV and a Tafel slope of 65.1 mV dec-1. Furthermore, the electrode shows remarkable catalytic performance towards the oxygen evolution reaction (OER), affording an anodic current density of 90.2 mA cm-2 at an overpotential of 350 mV, superior to many other transition metal based OER catalysts. Given the well-defined bifunctionality, an alkaline electrolyzer is assembled using two symmetrical Ni@Co-Ni-P as the cathode and anode, respectively, which demonstrates outstanding catalytic performance for sustained water splitting at varying current densities from 10 to 240 mA cm-2. Significantly, the Ni@Co-Ni-P electrolyzer is able to operate for 3175 h (ca. 132 days) without degradation at an industry-relevant current density of 100 mA cm-2, leading to exceptionally high H2 production rate of 311 mmol h-1 g-1catalyst cm-2 with an energy efficiency of 76% at ca. 1.9 V.

  11. Occupational phosphine exposure in Indian workers.

    Science.gov (United States)

    Misra, U K; Bhargava, S K; Nag, D; Kidwai, M M; Lal, M M

    1988-09-01

    To evaluate the health effects of occupational phosphine exposure, 22 workers engaged in fumigation of stored grains were subjected to a clinical and environmental study. These workers were used to placing aluminum phosphide tablets on the stacks of grains and covering it with a gas-proof plastic cover. The mean age of the workers was 48 years (range 24-60) and mean duration of exposure 11.1 years (range 0.5-29). After fumigation they reported minor symptoms, which included cough (18.2%), dyspnoea (31.8%), tightness around the chest (27.3%), headache (31.8%), giddiness, numbness and lethargy (13.6% each), anorexia and epigastric pain (18.2% each). The abnormal physical signs included bilateral diffuse rhonchi and absent ankle reflex each occurring in one worker. Motor nerve conduction velocity of median and peroneal nerves, and sensory conduction velocity of median and sural nerves were normal. Phosphine concentration in the work environment ranged from 0.17 to 2.11 ppm. Occupational phosphine exposure in the workers was associated with mild to moderate symptoms, which were transient. However, to assess the chronic effects, long-term follow-up is recommended.

  12. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    Science.gov (United States)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-01-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796

  13. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging.

    Science.gov (United States)

    Beyer, Andreas; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-01

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible.

  14. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  15. Yield Improvement and Advanced Defect Control——Driving Forces for Modeling of Bulk Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Yield improvement and advanced defect control can be identified as the driving forces for modeling of industrial bulk crystal growth. Yield improvement is mainly achieved by upscaling of the whole crystal growth apparatus and increased processing windows with more tolerances for parameter variations. Advanced defect control means on one hand a reduction of the number of deficient crystal defects and on the other hand the formation of beneficial crystal defects with a uniform distribution and well defined concentrations in the whole crystal. This "defect engineering" relates to the whole crystal growth process as well as the following cooling and optional annealing processes, respectively. These topics were illustrated in the paper by examples of modeling and experimental results of bulk growth of silicon (Si), gallium arsenide (GaAs), indium phosphide (InP) and calcium fluoride (CaF2). These examples also involve the state of the art of modeling of the most important melt growth techniques, crystal pulling (Czochralski methods) and vertical gradient freeze (Bridgman-type methods).

  16. Fabrication of Titanium/Fluorapatite Composites and In Vitro Behavior in Simulated Body Fluid

    Institute of Scientific and Technical Information of China (English)

    Hezhou Ye; Xing Yang Liu; Hanping Hong

    2013-01-01

    Titanium/fluorapatite (Ti/FA) composites with various FA additions were fabricated by powder metallurgy.The decomposition of FA during sintering was accelerated by the presence of Ti.The main reaction products of FA and Ti were identified as CaO,Ti phosphides,and CaTiO3.The addition of FA significantly inhibited the densification of Ti.The in vitro bioactivity of the composites was evaluated in a simulated body fluid (SBF).After immersion into the SBF,all the Ti/FA composites induced nucleation and growth of bone-like carbonated apatite on the surface.Co-precipitation of CaCO3 and Mg(OH)2 was also detected on the surface of the composite with high FA addition at an early stage of immersion.Furthermore,the release of fluorine ions from the composite was confirmed,which could promote bone regeneration and retard the formation of caries in the biological environment.The in vitro behavior was attributed to multiple factors,including the surface conditions and the constituents of the composite.The results demonstrated that the Ti/FA composites were bioactive in nature even with a low FA addition and they could introduce the benefit of fluorine ions in the service.

  17. Broadband polarization interferometric time-integrating acousto-optic correlator for random noise radar

    Science.gov (United States)

    Kim, Sangtaek; Wagner, Kelvin H.; Narayanan, Ram M.; Zhou, Wei

    2005-10-01

    We describe a time-integrating acousto-optic correlator (TIAOC) developed for imaging and target detection using a wideband random-noise radar system. This novel polarization interferometric in-line TIAOC uses an intensity-modulated laser diode for the random noise reference and a polarization-switching, self-collimating acoustic shear-mode gallium phosphide (GaP) acousto-optic device for traveling-wave modulation of the radar returns. The time-integrated correlation output is detected on a 1-D charge-coupled device (CCD) detector array and calibrated and demodulated in real time to produce the complex radar range profile. The complex radar reflectivity is measured in more than 150 radar range bins in parallel on the 3000 pixels of the CCD, improving target acquisition speeds and sensitivities by 150 over previous serial analog correlator approaches. The polarization interferometric detection of the correlation using the undiffracted light as the reference allows us to use the full acousto-optic device (AOD) bandwidth as the system bandwidth. Also, the experimental result shows the fully complex random-noise signal correlation and coherent demodulation without an explicit carrier, demonstrating that optically processed random-noise radars do not need a stable local oscillator.

  18. Macroporous p-GaP Photocathodes Prepared by Anodic Etching and Atomic Layer Deposition Doping.

    Science.gov (United States)

    Lee, Sudarat; Bielinski, Ashley R; Fahrenkrug, Eli; Dasgupta, Neil P; Maldonado, Stephen

    2016-06-29

    P-type macroporous gallium phosphide (GaP) photoelectrodes have been prepared by anodic etching of an undoped, intrinsically n-type GaP(100) wafer and followed by drive-in doping with Zn from conformal ZnO films prepared by atomic layer deposition (ALD). Specifically, 30 nm ALD ZnO films were coated on GaP macroporous films and then annealed at T = 650 °C for various times to diffuse Zn in GaP. Under 100 mW cm(-2) white light illumination, the resulting Zn-doped macroporous GaP consistently exhibit strong cathodic photocurrent when measured in aqueous electrolyte containing methyl viologen. Wavelength-dependent photoresponse measurements of the Zn-doped macroporous GaP revealed enhanced collection efficiency at wavelengths longer than 460 nm, indicating that the ALD doping step rendered the entire material p-type and imparted the ability to sustain a strong internal electric field that preferentially drove photogenerated electrons to the GaP/electrolyte interface. Collectively, this work presents a doping strategy with a potentially high degree of controllability for high-aspect ratio III-V materials, where the ZnO ALD film is a practical dopant source for Zn.

  19. Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment

    Science.gov (United States)

    Kim, Hogyoung; Cho, Yunae; Jung, Chan Yeong; Kim, Se Hyun; Kim, Dong-Wook

    2015-12-01

    Using current-voltage (I-V) measurements, we investigated the effect of oxygen plasma treatment on the temperature-dependent electrical properties of Cu/n-type indium phosphide (InP) Schottky contacts at temperatures in the range 100-300 K. Changes in the electrical parameters were evident below 180 K for the low-plasma-power sample (100 W), which is indicative of the presence of a wider distribution of regions of low barrier height. Modified Richardson plots were used to obtain Richardson constants, which were similar to the theoretical value of 9.4 A cm-2 K-2 for n-type InP. This suggests that, for all the samples, a thermionic emission model including a spatially inhomogeneous Schottky barrier can be used to describe the charge transport phenomena at the metal/semiconductor interface. The voltage dependence of the reverse-bias current revealed that Schottky emission was dominant for the untreated and high-plasma-power (250 W) samples. For the low-plasma-power sample, Poole-Frenkel emission was dominant at low voltages, whereas Schottky emission dominated at higher voltages. Defect states and nonuniformity of the interfacial layer appear to be significant in the reverse-bias charge transport properties of the low-plasma-power sample.

  20. Zn₃P₂-Zn₃As₂ solid solution nanowires.

    Science.gov (United States)

    Im, Hyung Soon; Park, Kidong; Jang, Dong Myung; Jung, Chan Su; Park, Jeunghee; Yoo, Seung Jo; Kim, Jin-Gyu

    2015-02-11

    Semiconductor alloy nanowires (NWs) have recently attracted considerable attention for applications in optoelectronic nanodevices because of many notable properties, including band gap tunability. Zinc phosphide (Zn3P2) and zinc arsenide (Zn3As2) belong to a unique pseudocubic tetragonal system, but their solid solution has rarely been studied. Here In this study, we synthesized composition-tuned Zn3(P1-xAsx)2 NWs with different crystal structures by controlling the growth conditions during chemical vapor deposition. A first type of synthesized NWs were single-crystalline and grew uniformly along the [110] direction (in a cubic unit cell) over the entire compositional range (0 ≤ x ≤ 1) explored. The use of an indium source enabled the growth of a second type of NWs, with remarkable cubic-hexagonal polytypic twinned superlattice and bicrystalline structures. The growth direction of the Zn3P2 and Zn3As2 NWs was also switched to [111] and [112], respectively. These structural changes are attributable to the Zn-depleted indium catalytic nanoparticles which favor the growth of hexagonal phases. The formation of a solid solution at all compositions allowed the continuous tuning of the band gap (1.0-1.5 eV). Photocurrent measurements were performed on individual NWs by fabricating photodetector devices; the single-crystalline NWs with [110] growth direction exhibit a higher photoconversion efficiency compared to the twinned crystalline NWs with [111] or [112] growth direction.

  1. Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats.

    Science.gov (United States)

    Shen, Chiung-Chyi; Yang, Yi-Chin; Liu, Bai-Shuan

    2011-08-01

    This study used a biodegradable composite containing genipin-cross-linked gelatin annexed with β-tricalcium phosphate ceramic particles (genipin-gelatin-tricalcium phosphate, GGT), developed in a previous study, as a nerve guide conduit. The aim of this study was to analyse the influence of a large-area irradiated aluminium-gallium-indium phosphide (AlGaInP) diode laser (660 nm) on the neural regeneration of the transected sciatic nerve after bridging the GGT nerve guide conduit in rats. The animals were divided into two groups: group 1 comprised sham-irradiated controls and group 2 rats underwent low-level laser (LLL) therapy. A compact multi-cluster laser system with 20 AlGaInP laser diodes (output power, 50mW) was applied transcutaneously to the injured peripheral nerve immediately after closing the wound, which was repeated daily for 5 min for 21 consecutive days. Eight weeks after implantation, walking track analysis showed a significantly higher sciatic function index (SFI) score (Pregenerated nerve tissue in the laser-treated group were superior to those of the sham-irradiated group. Thus, the motor functional, electrophysiologic and histomorphometric assessments demonstrate that LLL therapy can accelerate neural repair of the corresponding transected peripheral nerve after bridging the GGT nerve guide conduit in rats.

  2. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  3. Advances in hydrodeoxygenation catalysts for upgrading bio-oils%生物质油提质加氢脱氧催化剂研究进展

    Institute of Scientific and Technical Information of China (English)

    王安杰; 王瑶; 遇治权; 董婷; 李翔; 陈永英

    2016-01-01

    With the dwindling of fossil energy , much attention has been paid to the research of renewable bio‐oil from lignocellulose biomass .Compared with the petroleum ,the high oxygen content imparts some disadvantages to the bio‐oil ,such as low energy density ,high viscosity ,poor thermal and chemical stability .The bio‐oil must be further deoxygenated to supply the conventional engine fuel .Hydrodeoxygenation (HDO) is the most common and promising method to upgrade bio‐oil .The development of HDO catalyst for lignocellulose bio‐oil ,including transition metal sulfide ,phosphide , nitride and carbide ,noble metal ,“metal‐acid” bi‐functional catalyst ,transition metal and amorphous alloy ,is reviewed . Over transition metal sulfide , the sulfur might be replaced by oxygen from oxygenates and water ,leading to the deactivation .Noble metal possesses higher HDO activity and product selectivities , w hereas the high cost and less resources suppress the large‐scale industrial application . T ransition metal nitride , carbide and transition metal have been show n to hydrodeoxygenate bio‐oil effectively ,but the oxygen accumulation and carbon deposition might lead to the deactivation . Despite the high HDO activity of amorphous alloy , the thermostability is poor . However ,transition metal phosphide attracts more attention ,due to the high HDO activity and good stability .The support effect is summarized as surface properties and pore structure . Moreover , carbon deposition and structure damage are the main causes of catalyst deactivation .%随着化石能源的日益减少,来源于木质纤维素基可再生生物质油越来越受到人们的关注。但是,与石油相比,生物质油含氧量高,导致其能量密度低、黏度高、热和化学稳定性差,因而必须进行脱氧提质才能用作发动机燃料。在生物质油提质方法中,加氢脱氧(HDO )最具应用前景。综述了木质纤维素基生物质油HDO催

  4. Germylenes and stannylenes stabilized within N2PE rings (E = Ge or Sn): combined experimental and theoretical study.

    Science.gov (United States)

    Vrána, Jan; Ketkov, Sergey; Jambor, Roman; Růžička, Aleš; Lyčka, Antonín; Dostál, Libor

    2016-06-21

    The deprotonation of aminophosphanes PhP(NHR)2 (R = t-Bu or Dip; Dip = 2,6-i-Pr2C6H3) and t-BuP(NHDip)2 using n-BuLi gave, depending on the stoichiometry, both the dilithium compounds {[PhP(Nt-Bu)2]Li2}2 (), [PhP(Nt-Bu)(NDip)]Li2·(Et2O) (), [t-BuP(NDip)2]Li2·(Et2O)2 () and [t-BuP(NDip)2]Li2·(tmeda)2 (), and the monolithium compounds [PhP(NHt-Bu)(NR)]Li·(tmeda) (R = t-Bu , Dip ) and [t-BuP(NHDip)(NDip)]Li·(tmeda) (). Treatment of , and with GeCl2·dioxane or SnCl2 in a 1 : 1 stoichiometric ratio gave the corresponding tetrylenes [PhP(Nt-Bu)2]E (E = Ge , Sn ), [PhP(Nt-Bu)(NDip)]Ge () and [t-BuP(NDip)2]E (E = Ge , Sn ). The heteroleptic germylene [Ph(H)P(Nt-Bu)2]GeCl () was obtained by the reaction of the monolithium compound [PhP(NHt-Bu)(Nt-Bu)]Li·(tmeda) () with GeCl2·dioxane in a 1 : 1 stoichiometric ratio, as a result of a spontaneous NH → PH tautomeric shift in the ligand backbone. In contrast, an analogous reaction with SnCl2 produced only stannylene along with the PhP(NHt-Bu)2 starting material, suggesting scrambling of the ligands rather than a NH → PH tautomeric shift. Finally, heating in solution led to P-C bond cleavage and formation of the bis(imino)phosphide [DipNPNDip]Li·(tmeda) (). The reaction of with GeCl2·dioxane, SnCl2 or PbCl2 in a 2 : 1 stoichiometric ratio yielded the unprecedented tetrylenes [DipNPNDip]2E (E = Ge , Sn and Pb ), in which the tetrylene center is incorporated within two N2PE rings. Treatment of the monolithium compound with n-BuLi and K (or KC8) gave [t-BuNPNt-Bu]Li·(tmeda) () and{[t-BuNPNt-Bu]K(tmeda)}2 (), respectively. In contrast to the reaction with , similar reactions of with GeCl2·dioxane and SnCl2 resulted in the known compounds cis-[P(μ-Nt-Bu)2P(t-BuN)2]E (E = Ge, Sn); evidently the t-Bu groups do not provide sufficient steric shielding to protect the bis(imino)phosphide backbone as in the case of . The bonding situation in a set of selected compounds (, ) has been subjected to a theoretical

  5. Transmission Electron Microscopy of Iron Metal in Almahata Sitta Ureilite

    Science.gov (United States)

    Mikouchi, T.; Yubuta, K.; Sugiyama, K.; Aoyagi, Y.; Yasuhara, A.; Mihira, T.; Zolensky, M. E.; Goodrich, C. A.

    2013-01-01

    Almahata Sitta (AS) is a polymict breccia mainly composed of variable ureilite lithologies with small amounts of chondritic lithologies [1]. Fe metal is a common accessory phase in ureilites, but our earlier study on Fe metals in one of AS fragments (#44) revealed a unique mineralogy never seen in other ureilites [2,3]. In this abstract we report detailed transmission electron microscopy (TEM) on these metal grains to better understand the thermal history of ureilites. We prepared FIB sections of AS#44 by JEOL JIB-4000 from the PTS that was well characterized by SEM-EBSD in our earlier study [2]. The sections were then observed by STEM (JEOL JEM- 2100F). One of the FIB sections shows a submicron-sized symplectic intergrown texture composed of Fe metal (kamacite), Fe carbide (cohenite), Fe phosphide (schreibersite), and Fe sulfide (troilite). Each phase has an identical SAED pattern in spite of its complex texture, suggesting co-crystallization of all phases. This is probably caused by shock re-melting of pre-existing metal + graphite to form a eutectic-looking texture. The other FIB section is mostly composed of homogeneous Fe metal (93 wt% Fe, 5 wt% Ni, and 2 wt% Si), but BF-STEM images exhibited the presence of elongated lathy grains (approx. 2 microns long) embedded in the interstitial matrix. The SAED patterns from these lath grains could be indexed by alpha-Fe (bcc) while interstitial areas are gamma-Fe (fcc). The elongated alpha-Fe grains show tweed-like structures suggesting martensite transformation. Such a texture can be formed by rapid cooling from high temperature where gamma-Fe was stable. Subsequently alpha-Fe crystallized, but gamma-Fe remained in the interstitial matrix due to quenching from high temperature. This scenario is consistent with very rapid cooling history of ureilites suggested by silicate mineralogy.

  6. Morphological and Strength Properties of Tanjung Bin Coal Ash Mixtures for applied in Geotechnical Engineering Work

    Directory of Open Access Journals (Sweden)

    Abd. Rahim Awang

    2012-01-01

    Full Text Available In Malaysia, coal has been used as a raw material to generate electricity since 1988. In the past, most of the wastage of coal burning especially the bottom ash was not managed properly as it was dumped in the waste pond and accumulated drastically.This paper focuses on some properties of coal ash mixtures (fly  ash and bottom ash mixtures from Tanjung Bin power plant. The characteristics studied were morphological properties, compaction behaviour and strength properties. Strength properties of coal ash mixtures are carried out by conducting direct shear test and unconfined compression test. Besides, morphology and mineralogy of coal ash mixtures are studied using scanning electron microscope (SEM and x-ray diffraction (XRD. The coal ash mixtures were compacted at 95% of maximum dry density, sealed and cured for 0, 14, and 28 days before they were analysed for shear strength, morphological and mineralogical analyses. The shear strength of coal ash mixtures varied depending on the fly ash compositions. The maximum shear strength was obtained at mixture with 50%FA: 50%BA and the value increased with curing periods. The friction angle obtained ranged from 27° to 37°. Morphological analysis showed that the number of irregular shaped particles increased confirming change in material type with curing period. From mineralogical analysis, the crystalline compounds present in Tanjung Bin coal ash were Mullite, Quartz, Calcium Phosphide, Calcite, Cristobalite and Hematite. It can be concluded that the coal ash mixtures can advantageously be applied in the construction of embankments, roads, reclamation and fill behind retaining structures.

  7. EL3 Chondrite (not Aubrite) Northwest Africa 2828: An Unusual Paleo-meteorite Occurring as Cobbles in a Terrestrial Conglomerate

    Science.gov (United States)

    Kuehner, S. M.; Irving, A. J.; Bunch, T. E.; Wittke, J. H.

    2006-12-01

    Although we recently classified NWA 2828 as an aubrite [1], our examination of new material (now comprising over 120 stones totaling >27 kg) requires revision of that classification. New information on the find site in Algeria indicates that these stones were excavated from a subsurface deposit, and we have found terrestrial rhyolite pebbles and sandy matrix attached to several NWA 2828 stones (see images at http://www.ess.washington.edu/meteoritics). Thus this is a rare example of a paleo-meteorite or 'fossil' meteorite. Some stones contain sparse (stone contain up to 6.5 wt.% Ni. These secondary minerals signify terrestrial alteration of primary metal, sulfides, phosphides, nitrides and glass in an ancient fluvial and/or acidic lacustrine environment. The dominant primary phase in NWA 2828 is enstatite (En98.4Wo1.4), which forms stubby prismatic grains (lacking polysynthetic twinning indicative of inverted clinoenstatite [cf., 1]). Our original classification was based on a very small specimen of an apparently igneous-textured rock, but the discovery of chondrules and the absence of twinned enstatite now suggests that it is instead an unequilibrated enstatite chondrite. Additional primary phases noted previously [1] are sodic plagioclase (An14- 15Or3-4), troilite, graphite, daubreelite, alabandite, oldhamite, schreibersite, glass and very rare kamacite. The well-formed, round chondrules containing glass coupled with the unrecrystallized matrix lead us to re-classify NWA 2828 as an EL3 chondrite. We also must revise our opinion [1] about the relationship between NWA 2828 and material classified as EL chondrites NWA 2965 and NWA 2736, which evidently come from the more extensively weathered top of the same ancient conglomerate layer as NWA 2828. [1] Irving A.J. et al. (2006) 69th Met. Soc. Mtg., #5264 (MAPS 41 Suppl., A84)

  8. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K

    2003-12-20

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer.

  9. Lattice-engineered Si{sub 1-x}Ge{sub x}-buffer on Si(001) for GaP integration

    Energy Technology Data Exchange (ETDEWEB)

    Skibitzki, Oliver, E-mail: skibitzki@ihp-microelectronics.com; Zaumseil, Peter; Yamamoto, Yuji; Andreas Schubert, Markus [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Paszuk, Agnieszka; Hannappel, Thomas [Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Hatami, Fariba; Ted Masselink, W. [Institut für Physik, Humboldt Universität zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Trampert, Achim [Paul Drude Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Tillack, Bernd [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Technische Universität Berlin, HFT4, Einsteinufer 25, 10587 Berlin (Germany); Schroeder, Thomas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Brandenburgische Technische Universität, Konrad-Zuse Str. 1, 03046 Cottbus (Germany)

    2014-03-14

    We report a detailed structure and defect characterization study on gallium phosphide (GaP) layers integrated on silicon (Si) (001) via silicon-germanium (SiGe) buffer layers. The presented approach uses an almost fully relaxed SiGe buffer heterostructure of only 400 nm thickness whose in-plane lattice constant is matched to GaP—not at room but at GaP deposition temperature. Single crystalline, pseudomorphic 270 nm thick GaP is successfully grown by metalorganic chemical vapour deposition on a 400 nm Si{sub 0.85}Ge{sub 0.15}/Si(001) heterosystem, but carries a 0.08% tensile strain after cooling down to room temperature due to the bigger thermal expansion coefficient of GaP with respect to Si. Transmission electron microscopy (TEM) studies confirm the absence of misfit dislocations in the pseudomorphic GaP film but growth defects (e.g., stacking faults, microtwins, etc.) especially at the GaP/SiGe interface region are detected. We interpret these growth defects as a residue of the initial 3D island coalescence phase of the GaP film on the SiGe buffer. TEM-energy-dispersive x-ray spectroscopy studies reveal that these defects are often correlated with stoichiometric inhomogeneities in the GaP film. Time-of-flight Secondary ion mass spectrometry detects sharp heterointerfaces between GaP and SiGe films with a minor level of Ga diffusion into the SiGe buffer.

  10. 森林鼠兔害发生特点及防控措施%Study on the occurrence characteristics of forest pika disaster and its control measures of Mulan Forestry Administration

    Institute of Scientific and Technical Information of China (English)

    马莉

    2015-01-01

    Since the 70’s of the last century , the Mulan Forestry Administration has wit‐nessed the pika hazard occurrence in artificial larch and Pinus tabulae f ormis forest in new plantation from sporadically into widespreadedly ,which endangers both the development of newly planted saplings of L arix gmelinii ,Pinus tabuli f ormis ,Pinus sylvestris ,Picea aspe‐rata plantation and greening seedlings ,affecting the afforestation effect ,reducing the eco‐nomic benefits of greening seedlings .In the practice ,effective prevention and treatments are conducted with the original apple cuts mixed with zinc phosphide ,wheat mixed with broma‐diolone ,seedling trunks smeared with repellent ,baits by dosing protector ,indicating that there is a continuous progress in its prevention and control technology ,and therefore the afforestation achievements have been effectively protected ,and an advanced ,well feasible , and economical prevention and control technology has been established .%自20世纪70年代开始,木兰林区森林鼠兔害由零星发生转化为普遍发生,由危害新造林地幼树发展到危害落叶松、油松、樟子松、云杉幼林地及绿化大苗,影响造林绿化成效,降低绿化大苗经济效益。为防控鼠兔危害,主要采取了苹果切块拌磷化锌、小麦拌溴敌隆、苗干涂抹驱避剂、保护器投药饵等方法,有效地保护了造林成果,在实践中逐渐探索出一条技术先进、生产可行、经济上合算的防治技术措施。

  11. Activation of P{sub 4} by Li[SitBu{sub 3}]. Generation of lithium bis(supersilyl)heptaphosphanortricyclanide Li[P{sub 7}(SitBu{sub 4}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, Inge; Breunig, Jens; Schoedel, Frauke; Bolte, Michael; Lerner, Hans-Wolfram [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Anorganische Chemie

    2016-04-01

    Treatment of P{sub 4} with one equivalent of Li[SitBu{sub 3}] leads to the formation of a number of oligo-phosphanes and -phosphides, e.g. the bicyclo[1.1.0]tetraphosphane P{sub 4}(SitBu{sub 3}){sub 2}, the heptaphosphanortricyclane P{sub 7}(SitBu{sub 3}){sub 3}, the tetraphosphides Li{sub 3}[P(PSitBu{sub 3}){sub 3}] (Li{sub 3}[2a]), and the pentaphosphacyclopentadienide Li[P{sub 5}]. From this reaction we could isolate single crystals of Li{sub 3}[2a]. However, this reaction took another course in the presence of Li[OSitBu{sub 3}]. When P{sub 4} was treated with one equivalent of Li[SitBu{sub 3}] in the presence of Li[OSitBu{sub 3}], the heptaphosphanortricyclanide Li[P{sub 7}(SitBu{sub 3}){sub 2}] (Li[8a]) was formed. Single crystals of the cluster {Li_4(C_6H_6)(OSitBu_3)[8a]_3}.C{sub 6}H{sub 6} (orthorhombic, space group Pca2{sub 1}) were isolated from the reaction mixture at ambient temperature. This cluster compound consists of three chiral Li[P{sub 7}(SitBu{sub 3}){sub 2}] units, one silanolate Li[OSitBu{sub 3}], and one benzene molecule. We further investigated the degradation reaction of the bicyclo[1.1.0]tetraphosphane P{sub 4}(SitBu{sub 3}){sub 2}. After heating a benzene solution to 60 C for 24 h, we found 100 % conversion of P{sub 4}(SitBu{sub 3}){sub 2}, and P{sub 7}(SitBu{sub 3}){sub 3} (monoclinic, space group P2{sub 1}/c) and tBu{sub 3}SiPH{sub 2} were formed.

  12. Ecology and management of rodents in no-till agriculture in Washington, USA.

    Science.gov (United States)

    Witmer, Gary; Sayler, Rodney; Huggins, David; Capelli, Jason

    2007-09-01

    No-till farming is an important approach to sustainable agriculture because it can conserve soil and water resources. Unfortunately, rodent populations can thrive under no-till conditions because burrow systems are not disrupted by annual plowing and plant residues build-up on the surface, providing cover and insulation. This can result in substantial crop damage. We assessed rodent populations, habitat use, food habits, and crop damage in a no-till cropping system in Washington, USA. We also conducted preliminary trials of methods to reduce rodent populations and crop damage. In the fall, many more rodents were captured in fields with unharvested crops than in fields containing only plant stubble, suggesting that rodents leave fields after crop harvest, providing that suitable habitats are nearby, even when adequate cover is still available in harvested crop fields. By spring, the number of voles captured was much lower relative to fall. Despite this, capture rates were much higher in surrounding permanent grass areas than in crop (barley, wheat, pea) fields, suggesting that these grassy areas serve as refugia for rodents. Furthermore, the permanent grass cover type was the landscape variable most associated with rodent capture rates. In three winter pea fields, rodents removed 5-15% of the pea plants over winter. Examination of stomach contents revealed that voles mainly fed on grain plants in spring, but that their diet was more diversified in fall. Deer mice fed heavily on grain plants in both spring and fall, but also used insects as food. Metal barrier exclosures (9 m × 9 m), extending above and below ground, did not prevent access by rodents. Rodent populations in areas treated with zinc phosphide on grain were comparable to untreated areas 1 year after application of the rodenticide, perhaps because of immigration and recruitment, suggesting that baiting does not provide a long-term solution to rodent damage in no-till agricultural fields.

  13. Prospects for P-bearing molecules in cometary atmospheres

    Science.gov (United States)

    Boice, Daniel; de Almeida, Amaury

    Phosphorus is a key element in all known forms of life and phosphorus-bearing compounds have been observed in space. Phosphorus is ubiquitous in meteorites, albeit in small quantities, with phosphates being found in stoney meteorites and phosphides have been identified in iron meteorites. It has been detected as part of the dust component in comet Halley but searches for P-bearing species in the gas phase in comets have been unsuccessful. Based of its moderate cosmic abundance (eighteenth most abundant element, [P]/[N] = 4 x 10-3 ) and the positive identification of P-bearing species in the interstellar medium (such as, PN, PC, HCP and PO), we would expect simple molecules, diatomics (like PH, PO, PC, PS), triatomics (like HCP and PH2 ), and possibly other polyatomics (like phosphine PH3 and diphosphine P2 H4 ), to exist in cometary ices, hence released into the gas phase upon ice sublimation. Our fluid dynamics model with chemistry of cometary comae (SUISEI) has been adapted to study this problem. SUISEI produces cometocentric abundances of the coma gas species; velocities of the bulk gas, light atomic and molecular hydrogen with escape, and electrons; gas and electron temperatures; column densities to facilitate comparison with observations; coma energy budget quantities; attenuation of the solar irradiance; and other quantities that can be related readily to observations. We present results from the first quantitative study of phosphorus-bearing molecules in comets to identify likely species containing phosphorus to aid in future searches for this important element in comets, possibly shedding light on issues of comet formation (time and place) and matters of the prebiotic to biotic evolution of life. Acknowledgements. This work was supported by the NSF Planetary Astronomy Program.

  14. Rapid thermal annealing effects on the electrical and structural properties of Ru/V/n-InP Schottky barrier diode

    Science.gov (United States)

    Padma, R.; Shanthi Latha, K.; Rajagopal Reddy, V.; Choi, Chel-Jong

    2015-07-01

    A Ru/V/n-InP Schottky barrier diode (SBD) is fabricated and investigated its electrical and structural properties as a function of annealing temperature. Measurements showed that the barrier height (BH) of the as-deposited Ru/V/n-InP SBD is found to be 0.83 eV (I-V) and 1.03 eV (C-V). Experimental results indicate that the SBD with high BH and low ideality factors (0.87 eV (I-V), 1.20 eV (C-V), and 1.12) can be achieved after annealing at 400 °C for 1 min in N2 atmosphere. Further, it is observed that the BH slightly decreases to 0.85 eV (I-V) and 1.09 eV (C-V) upon annealing at 500 °C. The BH, ideality factor and series resistance are also determined by Cheung's functions and Norde method. Further, the energy distribution of interface state density of Ru/V/n-InP SBD is calculated from the forward bias I-V characteristics as a function of annealing temperature. It is found that the interface state density decreases upon annealing at 400 °C and then slightly increases after annealing at 500 °C. The AES and XRD results revealed that the formation of indium phases at the Ru/V/n-InP interface could be the reason for the increase of BH upon annealing at 400 °C. The formation of phosphide phases at the interface may be the cause for the decrease of BH after annealing at 500 °C. The overall surface morphology of Ru/V Schottky contacts is considerably smooth at elevated temperatures.

  15. Bonding and site preferences in the new quasi-binary Zr{sub 2.7}Hf{sub 11.3}P{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Kleinke, H.; Franzen, H.F. [Ames Lab., IA (United States)

    1998-03-01

    The new quasi-binary Zr{sub 2.7}Hf{sub 11.3}P{sub 9} was synthesized by arc-melting of Zr, Hf, Co, and HfP in a ratio corresponding to the initial composition Zr{sub 2.25}Hf{sub 6.75}Co{sub 2}P{sub 4}. Zr{sub 2.7}Hf{sub 11.3}P{sub 9} crystallizes in the Zr{sub 14}P{sub 9} structure type, which is unknown in the binary Hf/P system. the ideal orthorhomibic lattice dimensions (space group Pnnm (No. 58), Z = 4) were refined to a = 16.640(7) {angstrom}, b = 27.40(2) {angstrom}, c = 3.619(1) {angstrom}, V = 1650(2) {angstrom}{sup 3}. The structure consists of three-dimensional condensed one-, two-, and three-capped trigonal (Zr, Hf){sub 6}P prisms, occurring with numerous short M-M bonds (M = Zr, Hf). Each of the 15 metal sites is statistically occupied by a mixture of Zr and Hf, which varies significantly from site to site. The Hf/Zr ratio in a given site depends on the M-M and M-P interactions. The systematic increase of this ratio with increasing total bond order, as evaluated via Mulliken overlap populations and Pauling bond orders, can be understood based on the trend that Hf forms stronger M-M and M-P bonds than Zr. As expected for a metal-rich phosphide, band structure calculations for the hypothetical Hf{sub 14}P{sub 9} carried out with the extended Hueckel approximation result in a significant density of states at the Fermi level.

  16. Bonding and Site Preferences in the New Quasi-Binary Zr 2.7Hf 11.3P 9

    Science.gov (United States)

    Kleinke, Holger; Franzen, Hugo F.

    1998-03-01

    The new quasi-binary Zr 2.7Hf 11.3P 9was synthesized by arc-melting of Zr, Hf, Co, and HfP in a ratio corresponding to the initial composition "Zr 2.25Hf 6.75Co 2P 4". Zr 2.7Hf 11.3P 9crystallizes in the Zr 14P 9structure type, which is unknown in the binary Hf/P system. The ideal orthorhombic lattice dimensions (space group Pnnm(No. 58), Z=4) were refined to a=16.640(7) Å, b=27.40(2) Å, c=3.619(1) Å, V=1650(2) Å 3. The structure consists of three-dimensional condensed one-, two-, and three-capped trigonal (Zr, Hf) 6P prisms, occurring with numerous short M- Mbonds ( M=Zr, Hf). Each of the 15 metal sites is statistically occupied by a mixture of Zr and Hf, which varies significantly from site to site. The Hf/Zr ratio in a given site depends on the M- Mand M-P interactions. The systematic increase of this ratio with increasing total bond order, as evaluated via Mulliken overlap populations and Pauling bond orders, can be understood based on the trend that Hf forms stronger M- Mand M-P bonds than Zr. As expected for a metal-rich phosphide, band structure calculations for the hypothetical "Hf 14P 9" carried out with the extended Hückel approximation result in a significant density of states at the Fermi level.

  17. Preparation and crystal structures of Th[sub 5]Fe[sub 19]P[sub 12] and ThFe[sub 4]P[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Albering, J.H.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.)

    1992-11-01

    The new compounds Th[sub 5]Fe[sub 19]P[sub 12] and ThFe[sub 4]P[sub 2] were prepared by reaction of the elemental components in a tin flux and their crystal structures were determined from single-crystal X-ray data. Th[sub 5]Fe[sub 19]P[sub 12] crystallizes with a new monoclinic structure type: C2/m, a = 2920.3(3), b = 379.18(3), c = 931.48(8) pm, [beta] = 103.36(1)deg, Z = 2, R = 0.031. ThFe[sub 4]P[sub 2] is isotypic with SmNi[sub 4]P[sub 2]: Pnnm, a = 1448.9(2), b = 1074.7(2), c = 376.98(4) pm, Z = 6, R = 0.030. Both compounds belong to the large family of structures with a metal:nonmetal ratio of exactly or nearly 2:1. In these phosphides all phosphorus atoms have nine metal neighbors: six are forming a trigonal prism with three additional neighbors capping the rectangular faces of the prism. In both structures the thorium atoms have trigonal prismatic or octahedral phosphorus coordination. Most iron atoms have the usual tetrahedral phosphorus environment. In addition, the structure of Th[sub 5]Fe[sub 19]P[sub 12] has iron atoms in rectangular and distorted square pyramidal phosphorus coordination, while the structure of ThFe[sub 4]P[sub 2] contains iron atoms with only two or three phosphorus neighbors. (orig.).

  18. The material system (AlGaIn)(AsSb). Properties and suitability for GaSb based vertical-resonator laser diodes; Das Materialsystem (AlGaIn)(AsSb). Eigenschaften und Eignung fuer GaSb-basierte Vertikalresonator-Laserdioden

    Energy Technology Data Exchange (ETDEWEB)

    Dier, Oliver

    2008-07-01

    The present thesis studies the particular properties of GaSb-based materials, where they differ from pure arsenides or phosphides, and also the impact of theses properties on long-wavelength vertical-cavity surface-emitting lasers (VCSELs). The goal is the first realisation of an electrically pumped VCSEL with a current aperture in this material system. After the basics, which are necessary for the understanding of the physical effects, the special features of antimony-containing materials are discussed with a focus on topics like band-structure, doping issues and miscibility gaps, which are relevant for devices. A VCSEL-structure optimized for long-wavelength applications is presented using an appropriate description of the device in its optical, electrical and thermal properties. A focus of this work is on the growth of laser-structures by molecular beam epitaxy. Annealing studies on this material showed a good prediction of the final wavelength after the temperature step, which is necessary due to the overgrowth of the tunnel-junction. The full-width at half maximum of the low-temperature photoluminescence signal shows a very low value of 3.95 meV for the quaternary active region. By using the type-II-band alignment of GaSb:Si and InAsSb:Si a low-resistive tunneljunction has been realised. After completion of the device processing a strong electroluminescence outside the DBR stopband and resonant modes within the stopband were found. A linear shift of the emission wavelength with temperature of 0.23 nm/K between -11 C and +30 C was found. (orig.)

  19. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    KAUST Repository

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  20. InGaAsP Solar Cells Grown by Hydride Vapor Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Nikhil; Simon, John; Schulte, Kevin L.; Dippo, Patricia; Young, Michelle; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Hydride vapor phase epitaxy (HVPE) has recently reemerged as a low-cost, high-throughput alternative to metalorganic chemical vapor deposition (MOCVD) for the growth of high-efficiency III-V solar cells. Quaternary InGaAsP solar cells in the bandgap range of ~1.7-1.8 eV are promising top-cell candidates for integration in Ill-V/Si tandem cells with projected one-sun efficiencies exceeding 30%. In this work, we report on the development of lattice-matched InGaAsP solar cells grown on GaAs substrates via HVPE at very high growth rates of ~0.7 um/min. We demonstrate prototype 1.7 eV InGaAsP solar cells with an open-circuit voltage of 1.11 V. The short-circuit current is limited by the lack of a window layer in these early stage devices. The photo response of 1.7 InGaAsP solar cell with ~1.1 um thick base layer is found to be nearly insensitive to variation in p-type base doping concentration in the range from Na - 4x1016 to - 1x1017 cm-3, indicating an effective carrier collection length on the order of - 1.1 um or higher in our devices. These initial InGaAsP cell results are encouraging and highlight the viability of HVPE to produce mixed arsenide-phosphide solar cells grown lattice-matched on GaAs.

  1. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  2. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, B.R.

    2007-07-15

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  3. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    Science.gov (United States)

    Yang, Weiquan; Becker, Jacob; Liu, Shi; Kuo, Ying-Shen; Li, Jing-Jing; Landini, Barbara; Campman, Ken; Zhang, Yong-Hang

    2014-05-01

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In0.49Ga0.51P/GaAs/In0.49Ga0.51P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al0.52In0.48P layer with a textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF2/ZnS anti-reflective coating demonstrated open-circuit voltages (Voc) up to 1.00 V, short-circuit current densities (Jsc) up to 24.5 mA/cm2, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated Jsc and conversion efficiency of these devices are expected to reach 26.6 mA/cm2 and 20.7%, respectively.

  4. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma.

    Science.gov (United States)

    Opit, G P; Phillips, T W; Aikins, M J; Hasan, M M

    2012-08-01

    Phosphine gas, or hydrogen phosphide (PH3), is the most common insecticide applied to durable stored products worldwide and is routinely used in the United States for treatment of bulk-stored cereal grains and other durable stored products. Research from the late 1980s revealed low frequencies of resistance to various residual grain protectant insecticides and to phosphine in grain insect species collected in Oklahoma. The present work, which used the same previously established discriminating dose bioassays for phosphine toxicity as in the earlier study, evaluated adults of nine different populations of red flour beetle, Tribolium castaneum (Herbst), and five populations of lesser grain borer, Rhyzopertha dominica (F.) collected from different geographic locations in Oklahoma. One additional population for each species was a laboratory susceptible strain. Discriminating dose assays determined eight out of the nine T. castaneum populations, and all five populations of R. dominica, contained phosphine-resistant individuals, and highest resistance frequencies were 94 and 98%, respectively. Dose-response bioassays and logit analyses determined that LC99 values were approximately 3 ppm for susceptible and 377 ppm for resistant T. castaneum, and approximately 2 ppm for susceptible and 3,430 ppm for resistant R. dominica. The most resistant T. castaneum population was 119-fold more resistant than the susceptible strain and the most resistant R. dominica population was over 1,500-fold more resistant. Results suggest a substantial increase in phosphine resistance in these major stored-wheat pests in the past 21 yr, and these levels of resistance to phosphine approach those reported for other stored-grain pest species in other countries.

  5. Diagnostic molecular markers for phosphine resistance in U.S. populations of Tribolium castaneum and Rhyzopertha dominica.

    Science.gov (United States)

    Chen, Zhaorigetu; Schlipalius, David; Opit, George; Subramanyam, Bhadriraju; Phillips, Thomas W

    2015-01-01

    Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T. castaneum and R. dominica with strong resistance was identified as P45S in T. castaneum and P49S in R. dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T. castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.

  6. Electrophysiological and molecular mechanisms of protection by iron sucrose against phosphine-induced cardiotoxicity: a time course study.

    Science.gov (United States)

    Solgi, Reza; Baghaei, Amir; Golaghaei, Ali; Hasani, Shokoufeh; Baeeri, Maryam; Navaei, Mona; Ostad, Seyyed Nasser; Hosseini, Rohollah; Abdollahi, Mohammad

    2015-01-01

    The present study was designed for determining the exact mechanism of cytotoxic action of aluminum phosphide (AlP) in the presence of iron sucrose as the proposed antidote. Rats received AlP (12 mg/kg) and iron sucrose (5-30 mg/kg) in various sets and were connected to cardiovascular monitoring device. After identification of optimum doses of AlP and iron sucrose, rats taken in 18 groups received AlP (6 mg/kg) and iron sucrose (10 mg/kg), treated at six different time points, and then their hearts were surgically removed and used for evaluating a series of mitochondrial parameters, including cell lipid peroxidation, antioxidant power, mitochondrial complex activity, ADP/ATP ratio and process of apoptosis. ECG changes of AlP poisoning, including QRS, QT, P-R, ST, BP and HR were ameliorated by iron sucrose (10 mg/kg) treatment. AlP initiated its toxicity in the heart mitochondria through reducing mitochondrial complexes (II, IV and V), which was followed by increasing lipid peroxidation and the ADP/ATP ratio and declining mitochondrial membrane integrity that ultimately resulted in cell death. AlP in acute exposure (6 mg/kg) resulted in an increase in hydroxyl radicals and lipid peroxidation in a time-dependent fashion, suggesting an interaction of delivering electrons of phosphine with mitochondrial respiratory chain and oxidative stress. Iron sucrose, as an electron receiver, can compete with mitochondrial respiratory chain complexes and divert electrons to another pathway. The present findings supported the idea that iron sucrose could normalize the activity of mitochondrial electron transfer chain and cellular ATP level as vital factors for cell escaping from AlP poisoning.

  7. Diagnostic molecular markers for phosphine resistance in U.S. populations of Tribolium castaneum and Rhyzopertha dominica.

    Directory of Open Access Journals (Sweden)

    Zhaorigetu Chen

    Full Text Available Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T. castaneum and R. dominica with strong resistance was identified as P45S in T. castaneum and P49S in R. dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R allele and allowed inference of genotypes with that allele. Seven populations of T. castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.

  8. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro.

    Science.gov (United States)

    Gwinn, William M; Qu, Wei; Shines, Cassandra J; Bousquet, Ronald W; Taylor, Genie J; Waalkes, Michael P; Morgan, Daniel L

    2013-10-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic.

  9. Effect of reducing agent and nano Al{sub 2}O{sub 3} particles on the properties of electroless Ni–P coating

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, S.; Ramamoorthy, B., E-mail: ramoo@iitm.ac.in

    2014-07-01

    This work is an experimental study on the formation, characteristics and properties of electroless nickel phosphorous (Ni–P) coatings and electroless nickel alumina (Ni–P–Al{sub 2}O{sub 3}) coating with varying reducing agent concentration. The results obtained indicate that the deposition rate and surface roughness of both Ni–P coating and Ni–P–Al{sub 2}O{sub 3} coatings are highly influenced by reducing agent (sodium hypophosphite). With increase in sodium hypophosphite Ni forms amorphous phase and as a result the micro hardness of the coating gets reduced. Heat treatment was carried out at 400 °C for 1 h after the coating, resulted in the formation of an intermetallic nickel phosphide (Ni{sub 3}P) phase which improved the hardness of the Ni–P coating from 400 ± 25 to 700 ± 25 HV. A composite coating is formed due to the incorporation of nano alumina in the Ni–P coating leading to an increase in the hardness. The chemical composition of nickel gets reduced from 85.3 to 77.8 wt.% due to the presence of alumina which resists the deposition of Ni. The uniform distribution of alumina particles are observed using a scanning electron micrograph and confirmed by X-ray diffraction techniques. The specific wear rate of Ni–P–Al{sub 2}O{sub 3} coated and post coating heat treated specimens was observed to be less when compared with that obtained in the case of conventional Ni–P coating.

  10. Corrective Action Investigation Plan for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada (December 2002, Revision No.: 0), Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO

    2002-12-12

    The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations

  11. Estimation of Minimal Breakdown Point in a GaP Plasma Structure and Discharge Features in Air and Argon Media

    Science.gov (United States)

    Kurt, H. Hilal; Tanrıverdi, Evrim

    2016-08-01

    We present gas discharge phenomena in argon and air media using a gallium phosphide (GaP) semiconductor and metal electrodes. The system has a large-diameter ( D) semiconductor and a microscaled adjustable interelectrode gap ( d). Both theoretical and experimental findings are discussed for a direct-current (dc) electric field ( E) applied to this structure with parallel-plate geometry. As one of the main parameters, the pressure p takes an adjustable value from 0.26 kPa to 101 kPa. After collection of experimental data, a new theoretical formula is developed to estimate the minimal breakdown point of the system as a function of p and d. It is proven that the minimal breakdown point in the semiconductor and metal electrode system differs dramatically from that in metal and metal electrode systems. In addition, the surface charge density σ and spatial electron distribution n e are calculated theoretically. Current-voltage characteristics (CVCs) demonstrate that there exist certain negative differential resistance (NDR) regions for small interelectrode separations (i.e., d = 50 μm) and low and moderate pressures between 3.7 kPa and 13 kPa in Ar medium. From the difference of currents in CVCs, the bifurcation of the discharge current is clarified for an applied voltage U. Since the current differences in NDRs have various values from 1 μA to 7.24 μA for different pressures, the GaP semiconductor plasma structure can be used in microwave diode systems due to its clear NDR region.

  12. Fabrication of Zr-2.5Nb pressure tubes to minimize the harmful effects of trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Theaker, J.R.; Coleman, C.E. [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.; Choubey, R. [AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.; Moan, G.D. [AECL CANDU, Mississauga, Ontario (Canada); Aldridge, S.A. [Nu-Tech Precision Metals Inc., Arnprior, Ontario (Canada); Davis, L.; Graham, R.A. [Teledyne Wah Chang Albany, OR (United States)

    1994-12-31

    Trace elements can reduce the fracture resistance of Zr-2.5Nb pressure tubes. The effects of hydrogen as hydrides and oxygen as an alloy-strengthening agent are well known, but the contributions of carbon, phosphorus, chlorine, and segregated oxygen have only recently been recognized. Carbides and phosphides are brittle particles, while chlorine segregates to form planes of weakness that produce fissures on the fracture face of test specimens. A high density of fissures is associated with low toughness. With long hold times in the ({alpha} + {beta}) region, oxygen partitions into the {alpha}-grains; such grains are hard and, if they survive fabrication, may reduce the toughness of the finished tube. Through a cooperative program involving AECL and the manufacturers, a series of manufacturing innovations and controls has been introduced that minimizes these harmful effects. Hydrogen is present in the zirconium sponge as water, can be absorbed at each stage of tube fabrication, and needs to be carefully controlled, particularly during ingot breakdown and subsequent forging. Hydrogen concentrations in finished tubes have been reduced by a factor of three through the optimization of manufacturing processes and the implementation of new technology. Multiple vacuum arc melting, use of selected raw materials, and intermediate ingot surface conditioning have resulted in much improved fracture toughness through the reduction of chlorine and phosphorus concentrations. Optimum distribution of oxygen may be achieved through changes to the extrusion process cycle. An understanding of the Zr-2.5Nb-C phase diagram, particularly the solubility of carbon at low concentrations, has resulted in the specification of a lower carbon concentration.

  13. Origin of the size-dependence of the polarizability per atom in heterogeneous clusters: The case of AlP clusters.

    Science.gov (United States)

    Krishtal, Alisa; Senet, Patrick; Van Alsenoy, Christian

    2010-10-21

    An analysis of the atomic polarizabilities α in stoichiometric aluminum phosphide clusters, computed at the MP2 and density functional theory (DFT) levels, the latter using the B3LYP functional, and partitioned using the classic and iterative versions of the Hirshfeld method, is presented. Two sets of clusters are examined: the ground-state Al(n)P(n) clusters (n=2-9) and the prolate clusters (Al(2)P(2))(N) and (Al(3)P(3))(N) (N≤6). In the ground-state clusters, the mean polarizability per atom, i.e., α/2n, decreases with the cluster size but shows peaks at n=5 and at n=7. We demonstrate that these peaks can be explained by a large polarizability of the Al atoms and by a low polarizability of the P atoms in Al(5)P(5) and Al(7)P(7) due to the presence of homopolar bonds in these clusters. We show indeed that the polarizability of an atom within an Al(n)P(n) cluster depends on the cluster size and the heteropolarity of the bonds it forms within the cluster, i.e., on the charges of the atoms. The polarizabilities of the fragments Al(2)P(2) and Al(3)P(3) in the prolate clusters were found to depend mainly on their location within the cluster. Finally, we show that the iterative Hirshfeld method is more suitable than the classic Hirshfeld method for describing the atomic polarizabilities and the atomic charges in clusters with heteropolar bonds, although both versions of the Hirshfeld method lead to similar conclusions.

  14. Determination of content of carbon and Co2P impurities in LiCoPO4%LiCoPO4中碳与Co2P杂质含量的确定

    Institute of Scientific and Technical Information of China (English)

    鞠华; 吴军; 李德成; 徐艳辉

    2012-01-01

    A method to analyze the content of carbon and cobalt phosphide(Co2P) impurities in lithium cobalt phosphate(Li-CoPO4) by acid leaching to dissolve LiCoPO4 was presented. The results of XRD analysis showed that the product was Co2P phase after leached by dilute HQ, the product was carbon material after leached by dilute HNO3. The content of carbon in synthesized Ii-CoPO4/C composite was 5.4%, the content of Co2P impurity was 5.3% by the determination with the mentioned method. The particle size of Synthesized sample was about 0.5μm,the 0.2 C specific discharge capacity was 75 mAh/gd(LiCoPO4+Co2+P+C).%提出用酸淋洗溶解磷酸钴锂( LiCoPO4),测定橄榄石型LiCoPO4中杂质碳和磷化钴(Co2P)含量的方法.XRD分析结果表明:稀盐酸淋洗后的产物是Co2P相,硝酸淋洗后的产物是碳材料.用上述方法确定了合成的LiCoPO4/C复合材料中,碳含量为5.4%,Co2P杂质的含量为5.3%.合成的样品粒度约为0.5μm,0.2C放电比容量为75 mAh/g(LiCopo4+Co2P+C).

  15. Efficiency and stability aspects of CdS photoanode for solar hydrogen generation technology

    Science.gov (United States)

    Pareek, Alka; Gopalakrishnan, Arthi; Borse, Pramod H.

    2016-10-01

    Photoelectrochemical (PEC) cell based technology is expected to be one of the easiest green technologies to harness and to convert available solar energy into hydrogen [1]. Among the known systems of GaAs, Si, GaP and CdS- Cadmium sulphide is one of the best suited PEC materials that display a balance between its efficiency and stability. It has capability to absorb the visible light photons (E∼1.5eV - 3eV), and displays the band- energetics that suits for water-splitting reaction (H2O→H2+O2), that ultimately is based on the electronic and optical structure of the sulphides. However, the photo-induced dissolution of CdS in an electrolyte during its photo-illumination in PEC cell is its major drawback [2]. Though arsenides and phosphides show higher efficiency however CdS exhibits significant stability. In contrast though TiO2/ ZnO show good stability but CdS displays good optical response towards visible light photons as compared null response of titanate like systems. This necessitates one to identify the practical way to inhibit the photocorrosion in case of CdS photoanodes which is mainly facilitated due to interaction of photogenerated holes with CdS lattice. In past, Pt/ RuO2/ Ru modified CdS surface were found to control the unwanted photocorrosion [3]. Commercially, usage of such materials is un-economic option for any technological usage. The present work discusses that with advent of present day new synthetic routes how the dynamics of photo generated holes and electrons can be controlled to improve the stability and efficiency of the sulphide photoanodes, which in turn shows an an improvement in the performance and stability of the PEC cell for desirable technological applications.

  16. A General Method for Constructing Two-Dimensional Layered Mesoporous Mono- and Binary-Transition-Metal Nitride/Graphene as an Ultra-Efficient Support to Enhance Its Catalytic Activity and Durability for Electrocatalytic Application.

    Science.gov (United States)

    Liu, Baocang; Huo, Lili; Si, Rui; Liu, Jian; Zhang, Jun

    2016-07-27

    We constructed a series of two-dimensional (2D) layered mesoporous mono- and binary-transition-metal nitride/graphene nanocomposites (TMN/G, TM = Ti, Cr, W, Mo, TiCr, TiW, and TiMo) via an efficient and versatile nanocasting strategy for the first time. The 2D layered mesoporous TMN/G is constituted of small TMN nanoparticles composited with graphene nanosheets and has a large surface area with high porosity. Through decoration with well-dispersed Pt nanoparticles, 2D layered mesoporous Pt/TMN/G catalysts can be obtained that display excellent catalytic activity and stability for methanol electro-oxidation reactions (MOR) and oxygen reduction reactions (ORR) in both acidic and alkaline media. The 2D layered mesoporous binary-Pt/TMN/G catalysts possess catalytic activity superior to that of mono-Pt/TMN/G, graphene free Pt/TMN, Pt/G, and Pt/C catalysts. Encouragingly, the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst exhibits the best electrocatalytic performance for both MOR and ORR. The outstanding electrocatalytic performance of the Pt/Ti0.5Cr0.5N/G catalyst is rooted in its large surface area, high porosity, strong interaction among Pt, Ti0.5Cr0.5N, and graphene, an excellent electron transfer property facilitated by N-doped graphene, and the small size of Pt and Ti0.5Cr0.5N nanocrystals. The outstanding catalytic performance provides the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst with a wide range of application prospects in direct methanol fuel cells in both acidic and alkaline media. The synthetic method may be available for constructing other 2D layered mesoporous metal nitrides, carbides, and phosphides.

  17. Paleomagnetism and Mineralogy of Unusual Silicate Glasses and Baked Soils on the Surface of the Atacama Desert of Northern Chile: A Major Airburst Impact ~12ka ago?.

    Science.gov (United States)

    Roperch, P. J.; Blanco, N.; Valenzuela, M.; Gattacceca, J.; Devouard, B.; Lorand, J. P.; Tomlinson, A. J.; Arriagada, C.; Rochette, P.

    2015-12-01

    Unusual silicate glasses were found in northern Chile in one of the driest place on earth, the Atacama Desert. The scoria-type melted rocks are littered on the ground at several localities distributed along a longitudinal band of about 50km. The silicate glasses have a stable natural remanent magnetization carried by fine-grained magnetite and acquired during cooling. At one locality, fine-grained overbank sediments were heated to form a 10 to 20 cm-thick layer of brick-type samples. Magnetic experiments on oriented samples demonstrate that the baked clays record a thermoremanent magnetization acquired in situ above 600°C down to more than 10cm depth and cooled under a normal polarity geomagnetic field with a paleointensity of 40μT. In some samples of the silicate glass, large grains of iron sulphides (troilite) are found in the glass matrix with numerous droplets of native iron, iron sulphides and iron phosphides indicating high temperature and strong redox conditions during melting. The paleomagnetic record of the baked clays and the unusual mineralogy of the silicate glasses indicate a formation mainly by in situ high temperature radiation. Paleomagnetic experiments and chemical analyses indicate that the silicate glasses are not fulgurite type rocks due to lightning events, nor volcanic glasses or even metallurgical slags related to mining activity. The existence of a well-developped baked clay layer indicates that the silicate glasses are not impact-related ejectas. The field, paleomagnetic and mineralogical observations support evidence for a thermal event likely related to a major airburst. The youngest calibrated 14C age on a charcoal sample closely associated with the glass indicates that the thermal event occurred around 12 to 13 ka BP. The good conservation of the surface effects of this thermal event in the Atacama Desert could provide a good opportunity to further estimate the threats posed by large asteroid airbursts.

  18. Electroreduction of Tungsten Oxide(Ⅵ) in Molten Salts with Added Metaphosphate

    Institute of Scientific and Technical Information of China (English)

    MALYSHEV Victor; GAB Angelina; POPESCU Ana-Maria; CONSTANTIN Virgil

    2013-01-01

    Tungstate ions WO42-are not electrochemically active in chloride melts.Upon introduction of PO3-ions into the melt,two waves appear in the voltammograms at potentials-0.1--0.2 V and-0.3--0.5 V vs.Pb/Pb2+ reference electrode.With a PO3-concentration ratio of 0.01<[PO3-]/[WO42-]<0.18,the potentiostatic electrolysis product of WO42-at the above mentioned potentials is metallic tungsten; a NaPO3 concentration increase for ratios [PO3-]/[WO42-]>>0.18 results in tungsten phosphide in electrolysis product.Cyclic voltammograms and dependence of half-peak potentials on electrode polarization rate indicate the irreversible character of the electrode process.Electrode process modeling allows us to state that the first wave in the voltammogram of KC1-NaC1-Na2WO4-NaPO3 system corresponds to tungsten oxychlorides discharge while the second wave appears due to the discharge of ditungstate ions.In the voltammograms of Na2WO4-NaPO3 melts,reduction wave was observed at-1.1--1.2 V potentials.Proportionality of limiting current to NaPO3 concentration,constancy ofId/v1/2 ratio,and Id/nFc constant kinetic value equal to (8.3-9.5)× 10-5 cm/s for steady-state wave indicate that electrode process rate is limited by electrochemically active particle diffusion to the electrode.Nascent ditungstate ions become electrochemically active in the overall electrode process.Charge transfer stage is reversible.

  19. A Quantitative NMR Analysis of Phosphorus in Carbonaceous and Ordinary Chondrites

    Science.gov (United States)

    Pasek, M. A.; Smith, V. D.; Lauretta, D. S.

    2004-01-01

    Phosphorus is important in a number of biochemical molecules, from DNA to ATP. Early life may have depended on meteorites as a primary source of phosphorus as simple dissolution of crustal apatite may not produce the necessary concentration of phosphate. Phosphorus is found in several mineral phases in meteorites. Apatite and other Ca- and Mg phosphate minerals tend to be the dominant phosphorus reservoir in stony meteorites, whereas in more iron-rich or reduced meteorites, the phosphide minerals schreibersite, (Fe, Ni)3P, and perryite, (Ni, Fe)5(Si, P)2 are dominant. However, in CM chondrites that have experienced significant aqueous alteration, phosphorus has been detected in more exotic molecules. A series of phosphonic acids including methyl-, ethyl-, propyl- and butyl- phosphonic acids were observed by GC-MS in Murchison. Phosphorian sulfides are in Murchison and Murray. NMR spectrometry is capable of detecting multiple substances with one experiment, is non-destructive, and potentially quantitative, as discussed below. Despite these advantages, NMR spectrometry is infrequently applied to meteoritic studies due in large part to a lack of applicability to many compounds and the relatively high limit of detection requirements. Carbon-13 solid-state NMR has been applied to macromolecular carbon in Murchison. P-31 NMR has many advantages over aqueous carbon-13 NMR spectrometry. P-31 is the only isotope of phosphorus, and P-31 gives a signal approximately twice as strong as C-13. These two factors together with the relative abundances of carbon and phosphorus imply that phosphorus should give a signal approximately 20 as strong as carbon in a given sample. A discussion on the preparation of the quantitative standard and NMR studies are presented

  20. Performance of phosphine in fumigation of bagged paddy rice in indoor and outdoor stores.

    Science.gov (United States)

    Rajendran, S; Muralidharan, N

    2001-10-01

    Phosphine fumigation trials were carried out on bag-stacks of paddy rice to study the differences in gas loss rates and concentration-time (Ct) products achieved during the treatment of indoor and outdoor stacks. Stacks (89-132t) were fumigated singly under 250&mgr;m thick polyethylene sheeting, which was sealed with a double layer of sand-snakes to the concrete floor. Phosphine was applied as an aluminium phosphide formulation and the fumigations continued for 7 days. In the first experiment, stacks of paddy rice with moisture contents ranging from 12.2 to 13.7% were held in either indoor or in outdoor storage and subjected to fumigation at the rate of 2, 3 or 4g of phosphine/tonne. The outdoor stacks held relatively low levels of phosphine with Ct products for the indoor stacks of 135, 171 and 294gh/m(3), respectively, whilst the corresponding values for the outdoor stacks were 70, 85 and 166gh/m(3) only. The average gas loss rate was 14.5% per day for the indoor stacks and 29.5% for the outdoor stacks. In the second experiment, old stacks of paddy rice inside a godown, one each with grains at 8.8 and 9.8% moisture content, were fumigated at 3g phosphine/tonne. Release of phosphine was delayed and fumigant sorption was less and therefore higher Ct products of 204 and 216gh/m(3) were achieved. In the stacks built outdoors, the resident infestations of Rhyzopertha dominica, Cryptolestes sp. and Oryzaephilus surinamensis were completely controlled despite lower Ct products. On the other hand, in the stacks of old paddy, R. dominica survived the treatment. Subsequent testing showed that the population had a degree of resistance to phosphine.

  1. Diagnostic Molecular Markers for Phosphine Resistance in U.S. Populations of Tribolium castaneum and Rhyzopertha dominica

    Science.gov (United States)

    Chen, Zhaorigetu; Schlipalius, David; Opit, George; Subramanyam, Bhadriraju; Phillips, Thomas W.

    2015-01-01

    Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T. castaneum and R. dominica with strong resistance was identified as P45S in T. castaneum and P49S in R. dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T. castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population. PMID:25826251

  2. Susceptibility of Two Strains of the Confused Flour Beetle (Coleoptera: Tenebrionidae) Following Phosphine Structural Mill Fumigation: Effects of Concentration, Temperature, and Flour Deposits.

    Science.gov (United States)

    Aulicky, R; Stejskal, V; Frydova, B; Athanassiou, C G

    2015-12-01

    In this study, we evaluated phosphine efficacy against two strains of the confused flour beetle, Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae), one laboratory strain, with no previous exposure to phosphine, and one field strain, originated from the flour mill on which we performed the fumigation. The standard Detia Degesh Phosphine Resistance Kit showed that the adults of the field strain of T. confusum required 4.4 × longer time to be knocked down than the laboratory strain. In order to assess the efficacy of phosphine in the field against these strains, aluminium phosphide (AlP) was applied in a flour mill in Czech Republic, in 2014. In this application, temperature among the six floors of the flour mill varied between 20 and 30°C, relative humidity (RH) between 44 and 78%, and phosphine concentration-time-products (CtP) between 24 and 38 g.m(-3).h(-1). Moreover, the insects were bioassayed in dishes that contained either no commodity or 1, 3, and 5 cm of flour. Nevertheless, despite these variations, all adults and larvae from both strains were dead, regardless of the floor, the quantity of the commodity, and the conditions prevailing. However, larval emergence from eggs that were used in the bioassays for both strains was recorded in some of the locations tested. In addition, larval emergence was negatively correlated with both temperature and RH. At the same time, emergence was generally similar between strains. The results of the present study illustrate that highly visible dead adults and larvae after the application of phosphine falsely imply good fumigation efficacy, given that a considerable number of eggs are very likely to survive in a wider range of conditions, and the concomitant larval emergence may result in rapid population grown right after the fumigation.

  3. Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas

    Science.gov (United States)

    Valmas, Nicholas; Ebert, Paul R.

    2006-01-01

    Background With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage of phosphine; yet research into phosphine resistance mechanisms has been limited due to the potential for human poisoning in enclosed laboratory environments. Principal Findings Here we describe a custom-designed chamber for safely containing phosphine gas generated from aluminium phosphide tablets. In an improvement on previous generation systems, this chamber can be completely sealed to control the escape of phosphine. The device has been utilised in a screening program with C. elegans that has identified a phosphine synergist, and quantified the efficacy of a new fumigant against that of phosphine. The phosphine-induced mortality at 20°C has been determined with an LC50 of 732 ppm. This result was contrasted with the efficacy of a potential new botanical pesticide dimethyl disulphide, which for a 24 hour exposure at 20°C is 600 times more potent than phosphine (LC50 1.24 ppm). We also found that co-administration of the glutathione depletor diethyl maleate (DEM) with a sublethal dose of phosphine (70 ppm, phosphine in a laboratory environment has now been substantially reduced by the implementation of our novel gas generation chamber. We have also identified a novel phosphine synergist, the glutathione depletor DEM, suggesting an effective pathway to be targeted in future synergist research; as well as quantifying the efficacy of a potential alternative to phosphine, dimethyl disulphide. PMID:17205134

  4. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  5. Fabrication and characterization of integrated nanostructures & their applications to nanophotonics

    Science.gov (United States)

    Shukla, Shobha

    Current developments in optical devices are being directed toward nanocrystals based devices, where photons are manipulated using nanoscale optical phenomenon. Nanochemistry is a powerful tool for making nanostructures based on such nanocrystals. In this dissertation, various applications such as photodetectors/photovoltaics, photonic crystals and plasmonic applications involving nanoparticles and organic: inorganic hybrid systems have been investigated. The hall marks of quantum dots are well defined excitonic absorption and sharp emission profiles and their unique behavior comprises intense and immune to photobleaching luminescence, photon upconversion, slow exciton relaxation, multiexciton generation due to impact ionization, enhanced lasing, etc. Various quantum dots such as Indium Phosphide (InP), Cadmium Sulphide (CdS), Cadmium Selenide (CdSe), InP-CdS type-II core-shell, Lead Sulphide (PbS), Lead Selenide (PbSe) etc. have been prepared via hot colloidal synthesis and have been extensively characterized spectroscopically as well as structurally. These quantum dots were utilized for making solution processed organic: inorganic hybrid photodevices. Photodetecting device with enhanced efficiency has been fabricated using physical blend of PbSe and carbon nanotubes. Type-II quantum dots (InP-CdS) were also utilized for making solar cells and their efficiency was found to be much more than their parent quantum dots (InP and CdS). Photonic composite materials, such as polymers doped with nanoparticles, have attracted a great deal of attention because of relative ease and flexibility of their engineering as well as improved performance for applications in photonic or optoelectronic devices. 2D Photonic Crystals of enhanced structural and optical properties were fabricated by doping small amount of colloidal gold nanoparticles and patterned via multi-beam interference lithography. Spontaneous emission of quantum rods doped in such photonic crystal was controlled by

  6. P-O-rich sulfide phase in CM chondrites: Constraints on its origin on the CM parent body

    Science.gov (United States)

    Zhang, Ai-Cheng; Itoh, Shoichi; Yurimoto, Hisayoshi; Hsu, Wei-Biao; Wang, Ru-Cheng; Taylor, Lawrence A.

    2016-01-01

    CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P-O-rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P-O-rich sulfide is a polycrystalline aggregate of nanometer-size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type-I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca-carbonate are much less altered. This P-O-rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of -22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron-diffraction patterns imply that the P-O-rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P-O-rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low-temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type-I chondrules and absence in type-II chondrules. The textural relations of the P-O-rich sulfide and other low-temperature minerals reveal at least three episodic-alteration events on the parent body of CM chondrites (1) formation of P-O-rich sulfide during sulfur-rich aqueous alteration of P-rich FeNi metal, (2) formation of Ca-carbonate during local carbonation, and (3) alteration of P-O-rich sulfide and formation of tochilinite during a period of late-stage intensive aqueous alteration.

  7. The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm.

    Directory of Open Access Journals (Sweden)

    Guilherme Henrique C Fernandes

    Full Text Available Freezing changes sperm integrity remarkably. Cryopreservation involves cooling, freezing, and thawing and all these contribute to structural damage in sperm, resulting in reduced fertility potential. Low-level laser irradiation (LLLI could increase energy supply to the cell and cause reactive oxygen species reduction (ROS, contributing to the restoration of oxygen consumption and adenosine triphosphate synthesis (ATP in the mitochondria. Our goal was to analyze the effects of low-level laser irradiation on sperm motility and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm.We analyzed 09 samples of bull semen (Bos taurus indicus, divided into three groups: a control group without laser irradiation, a 4J group subjected to a laser irradiation dose of 4 joules, and a 6J group subjected to dose of 6 joules. Samples were divided for the analysis of cell viability and acrosomal membrane integrity using flow cytometry; another portion was used for motion analysis. Irradiation was performed in petri dishes of 30 mm containing 3 ml of semen by an aluminum gallium indium phosphide laser diode with a wavelength of 660 nm, 30 mW power, and energy of 4 and 6 joules for 80 and 120 seconds respectively. Subsequently, the irradiated and control semen samples were subjected to cryopreservation and analyzed by flow cytometry (7AAD and FITC-PSA using the ISAS--Integrated Semen Analysis System.Flow cytometry showed an increase in the percentage of live sperm cells and acrosome integrity in relation to control cells when subjected to irradiation of low-power laser in two different doses of 4 and 6 joules (p < 0.05. In the analysis of straightness, percentage of cell movement, and motility, a dose of 4 joules was more effective (p < 0.05.We conclude that LLLI may exert beneficial effects in the preservation of live sperm. A dose of 4 joules prior to cryopreservation was more effective than a dose of 6 joules in preserving sperm motility.

  8. Electroless ternary NiCeP coatings: Preparation and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Balaraju, J.N., E-mail: jnbalraj@nal.res.in [Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779 Bangalore 560017, Karnataka (India); Chembath, Manju [Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779 Bangalore 560017, Karnataka (India)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Rare earth element (Ce) has been successfully codeposited in NiP matrix. Black-Right-Pointing-Pointer Surface analysis carried out by XPS showed that the Ce is present in +3 and +4 oxidation state. Black-Right-Pointing-Pointer Palladium stability test indicated that the Ce salts in electroless nickel bath has reduced the stability. Black-Right-Pointing-Pointer Cerium codeposition in NiP matrix has increased the microhardness both in as-plated and annealed conditions. Black-Right-Pointing-Pointer Higher thermal stability has been obtained by Ce incorporation. - Abstract: Electroless ternary NiCeP deposits were prepared from alkaline citrate bath containing nickel sulphate, cerium chloride and sodium hypophosphite. Concentration of rare earth cerium was varied from 1 to 2 g/L to obtain ternary deposits containing variable Ce and P contents. The influence of cerium on the deposit properties was analysed. The deposit exhibited a maximum cerium content of 6.2 {+-} 0.1 wt.% when the cerium chloride concentration was 2 g/L. The result of the Pd stability test showed that the stability of the bath was reduced due to Ce salt addition. The microhardness measurements made on both as-plated and heat treated samples exhibited a peak hardness of 1006 {+-} 11 VHN for cerium concentration of 1.5 g/L. The concept of kinetic strength analysis was proved to be applicable only for binary and not for ternary alloys due to multistep deposition mechanism with different kinetic energies. X-ray diffraction (XRD) patterns of as-plated and heat treated samples revealed peaks corresponding to Ni (1 1 1) and nickel phosphide (Ni{sub 3}P). Higher amount of Ce incorporation in NiP matrix increased the crystallisation temperature of the deposit which could be due to the suppression of nickel crystallisation prior to Ni{sub 3}P compound formation and thus increasing the activation energy for the formation of stable phases. Surface compositional analysis

  9. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing

  10. Crystal growth of compound semiconductors in a low-gravity environment (InGaAs crystals) (M-22)

    Science.gov (United States)

    Tatsumi, Masami

    1993-01-01

    Compound semiconductor crystals, such as gallium arsenide and indium phosphide crystals, have many interesting properties that silicon crystals lack, and they are expected to be used as materials for optic and/or electro-optic integrated devices. Generally speaking, alloy semiconductors, which consist of more than three elements, demonstrate new functions. For example, values of important parameters, such as lattice constant and emission wavelength, can be chosen independently. However, as it is easy for macroscopic and/or microscopic fluctuations of composition to occur in alloy semiconductor crystals, it is difficult to obtain crystals having homogeneous properties. Macroscopic change of composition in a crystal is caused by the segregation phenomenon. This phenomenon is due to a continuous change in the concentration of constituent elements at the solid-liquid interfacing during solidification. On Earth, attempts were made to obtain a crystal with homogeneous composition by maintaining a constant melt composition near the solid-liquid interface, through suppression of the convection flow of the melt by applying a magnetic field. However, the attempt was not completely successful. Convective flow does not occur in microgravity because the gravity in space is from four to six orders of magnitude less than that on Earth. In such a case, mass transfer in the melt is dominated by the diffusion phenomenon. So, if crystal growth is carried out at a rate that is higher than the rate of mass transfer due to this phenomenon, it is expected that crystals having a homogeneous composition will be obtained. In addition, it is also possible that microscopic composition fluctuations (striation) may disappear because microscopic fluctuations diminish in the absence of convection. We are going to grow a bulk-indium gallium arsenide (InGaAs) crystal using the gradient heating furnace (GHF) in the first material processing test (FMPT). The structure of the sample is shown where In

  11. Investigation of the metallization of Gunn diode and process%耿氏管的合金金属及正面反面工艺的研究

    Institute of Scientific and Technical Information of China (English)

    白阳; 贾锐; 刘新宇; 武德起; 金智

    2013-01-01

      介绍了一种实现低成本、高功率、高散热性能耿氏管的工艺制备流程,利用分子束外延生长技术(MBE)在高掺杂的InP衬底上生长n n+型的一致性掺杂外延结构,在外延结构正面利用电子束蒸发Ge/Au/Ni/Au作为器件阴极和电镀金制备作为散热层,背面通过化学湿法腐蚀形成台面(MESA)。在不同的温度下进行了退火对比实验,研究了阴极合金形成良好欧姆接触的温度条件。结果表明:退火温度为450益时形成的金属电极的接触效果最好。关于耿氏管的正面反面制备工艺简便易行,利用Ge/Au/Ni/Au制备金属电极得到了良好的欧姆接触性能,用氯基溶液进行了湿法腐蚀实验得到了较好的垂直台面(MESA)。该制备方法有望实现优良性能的耿氏器件。%  A practical heat sink fabrication process for low-cost, high-power and millimeter-wave devices was presented. The uniformly doping epitaxial structure (n n+) was grown by molecular beam epitaxy (MBE) on heavily-doped n++ InP substrate. Also a batch-fabrication technique for mesas with gold heat sink was proposed. A technology was developed to form ohmic contacts to indium phosphide Gunn diodes, and the metallization of cathode and anode was fabricated by Ge/Au/Ni/Au evaporation, and was annealed at different temperature. Results show that the best ohmic contact is formed at 450℃. The complete fabrication procedure is described to realize the Gunn devices for low-cost millimeter-wave applications. By the way, wet etching could get approximately vertical MESA structure by HCl-based solution.

  12. Functional fusion of living systems with synthetic electrode interfaces.

    Science.gov (United States)

    Staufer, Oskar; Weber, Sebastian; Bengtson, C Peter; Bading, Hilmar; Spatz, Joachim P; Rustom, Amin

    2016-01-01

    The functional fusion of "living" biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries "perfected" during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events

  13. CHANGES IN LIVER IN CASE OF INSECTICIDAL AND ALCOHOL POISONING: AN AUTOPSY STUDY

    Directory of Open Access Journals (Sweden)

    Subhasish

    2015-03-01

    Full Text Available Poison is a substance introduced in the body to produce ill - effect, disease or death. It may be of any origin like synthetic, mineral, animal or vegetable. Death due to poisoning is mostly prevalent in the developing countries, of the total burden of acute pesticide poisoning; the majority of deaths are from deliberate self - poisoning with organophosphorus pesticides, aluminium phosphide and paraquat. Exposure to pesticides is usually occupational, accidental or suicidal. In India very few research works hav e been undertaken on histopathological changes of liver in different poisoning. In this part of our country a sizable number of cases of poisoning due to insecticides & alcohol are reported. So this current study intends to find out different histopatholog ical changes of liver in insecticidal & alcohol poisoning with regards to time interval between poisoning and death. In our 1 year (November 2012 - October 2013 of study we got 143 victims who died due to insecticidal and alcohol poisoning, out of which 132 cases show significant histopathological changes in liver. In this study male subjects (60.83% outnumber female (39.17% victims and most common age group affected in this study is between 20 - 40 years. This study show 29.37% victims died due to organopho sphorus poisoning, 25.17% cases of organochlorine poisoning, 11.88% study subjects from carbamate poisoning, 18.88% cases died due to combined alcohol and insecticidal poisoning, and 14.68% victims died due to alcohol poisoning. On microscopically 25.87% o f cases show centrilobular necrosis(CN, sinusoidal dilatation(SD found in 22.37%, fatty changes(FC in 11.88%, both venous congestion(VC, combined sinusoidal dilatation and degenerative change in 1.39% of cases, each 2.09% of cases show degenerative cha nge(DC , centrilobular necrosis and venous congestion , and sinusoidal dilatation and venous congestion respectively, each 3.49% show combined centrilobular necrosis and sinusoidal

  14. Thermodynamic evaluation of Cu-H-O-S-P system - Phase stabilities and solubilities for OFP-copper

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Hans; Frisk, Karin [Swerea KIMAB, Kista (Sweden)

    2013-04-15

    A thermodynamic evaluation for Cu-H-O-S-P has been made, with special focus on the phase stabilities and solubilities for OFP-copper. All binary systems including copper have been reviewed. Gaseous species and stoichiometric crystalline phases have been included for higher systems. Sulphur in OFP-copper will be found in sulphides. The sulphide can take different morphologies but constant stoichiometry Cu{sub 2}S. The solubility of sulphur in FCC-copper reaches ppm levels already at 550 deg C and decreases with lower temperature. No phosphorus-sulphide will be stable, although the copper sulphide can be replaced by copper sulphates at high partial pressure oxygen like in the oxide scale. Phosphorus has a high affinity to oxygen, and phosphorus oxide P{sub 4}O{sub 10} and copper phosphates (Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(PO{sub 4}){sub 2}) are all more stable than copper oxide Cu{sub 2}O. With hydrogen present at atmospheric pressure, copper phosphates Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(P{sub 2}O{sub 6}OH){sub 2} are both more stable than water vapour or aqueous water at temperatures below 400 deg C. At high pressure conditions, the copper phosphates can be reduced giving water. However, the phosphates are still more stable than water vapour. The solubility limit of phosphorus in FCC-copper at 25 deg C is 510 ppm, in equilibrium with copper phosphide Cu{sub 3}P. The major part of phosphorus in OFP-copper will be in solid solution. Oxygen in FCC-copper has a very low solubility. In the presence of a strong oxide forming element such as phosphorus in OFP-copper, the solubility decreases even more. Copper oxides will become stable first when all phosphorus has been consumed, which takes place at twice the phosphorus content, calculated in weight. Hydrogen has a low solubility in copper, calculated as 0.1 ppm at 675 deg C. No crystalline hydrogen phase has been found stable at atmospheric pressures and above 400 deg C. At lower temperatures the hydrogen

  15. The Radiometer Atmospheric Cubesat Experiment Post-Launch Results

    Science.gov (United States)

    Lim, B.; Misra, S.

    2015-12-01

    The Jet Propulsion Laboratory (JPL) developed the Radiometer Atmospheric CubeSat Experiment (RACE) that was lost during the Orbital 3 (Orb-3) launch anomaly on October 28, 2014. The 3U CubeSat mission would have measured 2 channels of the 183 GHz water vapor line and raised the technology readiness level (TRL) of various subsystems to 6. Despite the launch failure, several hundreds of hours of instrument operation data was taken, including measurements in thermal vacuum of the complete spacecraft system. These data is used to evaluate the 35 nm Indium Phosphide (InP) receivers, and the low noise amplifier (LNA) based internal calibration system. The thermal vacuum measurements included frequent observations of a 'cold' and 'hot' target allowing for various receiver parameters to be calculated. The payload thermal vacuum data show that the receiver front ends performed as expected in terms of the gain (>35 dB) and drift (0.06 dB/K). The data also shows that integration could be performed with decreasing noise up to ~30 seconds, allowing for the system to be calibrated within that time period. The expected spacecraft calibration period would have been every 12 seconds. The injected noise from the load terminated LNA show magnitudes from 50 - 150 K that can be tuned which would meet most requirements. However the temperature coefficient is large at ~3 K/K which is over an order of magnitude larger than typical noise diodes. For nanosatellite class spacecraft, the power required to properly maintain the physical temperature range (±0.1K) would be challenging. On larger spacecraft, this methodology may still be viable, depending on the availability of suitable noise diodes at 183 GHz. While the CubeSat did not take measurements in space, the ground data in the relevant environment and extensive testing allows us to raise the following subsystems to TRL 6: 1) 183 GHz 35 nm InP receiver, 2) 183 GHz direct detect receiver and 3) 183 GHz LNA based calibration system.

  16. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  17. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  18. 1-μm-pumped OPO based on orientation-patterned GaP

    Science.gov (United States)

    Pomeranz, Leonard A.; Schunemann, Peter G.; Magarrell, Daniel J.; McCarthy, John C.; Zawilski, Kevin T.; Zelmon, David E.

    2015-03-01

    Orientation patterned gallium phosphide (OP-GaP) is a new nonlinear optical (NLO) crystal which exhibits the highest nonlinear coefficient (d14=70.6 pm/V) and the longest infrared cut-off (12.5 μm) of any quasi-phase-matched (QPM) material that can be pumped at 1-μm without significant two-photon absorption. Here we report the first 1064nm-pumped OPO based on bulk OP-GaP. Multi-grating OP-GaP QPM structures were grown by producing an inverted GaP layer by polar-on-nonpolar molecular beam epitaxy (MBE), lithographically patterning, reactive ion etching, and regrowing by MBE to yield templates for subsequent bulk growth by low-pressure hydride vapor phase epitaxy (LP-HVPE). The pump source was a diode-end-pumped Nd:YVO4 monoblock laser with an RTP high-voltage Q-switch (1064 nm, 1W, 10kHz, 3.3 ns) which was linearly polarized along the orientation of the AR-coated 16.5 x 6.3 x 1.1 mm3 OP-GaP crystal (800-μm thick HVPE layer, 20.8 μm grating period only 150 μm thick) mounted on a copper blocked maintained at 20°C by a thermo-electric cooler. The OPO cavity was a linear resonator with 10-cm ROC mirrors coated for DRO operation (85%R at signal, 55%R at idler). The pump 4σ-diameter at the crystal face was 175 μm. The observed OPO signal (idler) threshold was 533 mW (508 mW) with a slope efficiency of 4% (1%) and maximum output power 15 mW (4 mW). The signal (1342 nm) and idler (4624 nm) output wavelengths agreed well with sellemier predictions. Orange parasitic output at 601.7nm corresponded to 9th order QPM sum frequency mixing of the 1064-nm pump and the 1385-nm signal.

  19. Development of an Ultra-Wideband Receiver for the North America Array

    Science.gov (United States)

    Velazco, J. E.; Soriano, M.; Hoppe, D.; Russell, D.; D'Addario, L.; Long, E.; Bowen, J.; Samoska, L.; Lazio, J.

    2016-11-01

    efficiencies across the band of interest. In addition, we show experimental results of low-noise 70-nm gallium arsenide, metamorphic high-electron-mobility-transistor (HEMT) amplifier testing performed across the 1 to 18 GHz frequency range. Also presented are 8 to 48 GHz simulation results for 35-nm indium phosphide HEMT amplifiers.

  20. United States Department of Agriculture-Agricultural Research Service stored-grain areawide integrated pest management program.

    Science.gov (United States)

    Flinn, Paul W; Hagstrum, David W; Reed, Carl; Phillips, Tom W

    2003-01-01

    The USDA Agricultural Research Service (ARS) funded a demonstration project (1998-2002) for areawide IPM for stored wheat in Kansas and Oklahoma. This project was a collaboration of researchers at the ARS Grain Marketing and Production Research Center in Manhattan, Kansas, Kansas State University, and Oklahoma State University. The project utilized two elevator networks, one in each state, for a total of 28 grain elevators. These elevators stored approximately 31 million bushels of wheat, which is approximately 1.2% of the annual national production. Stored wheat was followed as it moved from farm to the country elevator and finally to the terminal elevator. During this study, thousands of grain samples were taken in concrete elevator silos. Wheat stored at elevators was frequently infested by several insect species, which sometimes reached high numbers and damaged the grain. Fumigation using aluminum phosphide pellets was the main method for managing these insect pests in elevators in the USA. Fumigation decisions tended to be based on past experience with controlling stored-grain insects, or were calendar based. Integrated pest management (IPM) requires sampling and risk benefit analysis. We found that the best sampling method for estimating insect density, without turning the grain from one bin to another, was the vacuum probe sampler. Decision support software, Stored Grain Advisor Pro (SGA Pro) was developed that interprets insect sampling data, and provides grain managers with a risk analysis report detailing which bins are at low, moderate or high risk for insect-caused economic losses. Insect density was predicted up to three months in the future based on current insect density, grain temperature and moisture. Because sampling costs money, there is a trade-off between frequency of sampling and the cost of fumigation. The insect growth model in SGA Pro reduces the need to sample as often, thereby making the program more cost-effective. SGA Pro was validated