WorldWideScience

Sample records for berkelium arsenides

  1. Chemistry of berkelium: a review

    International Nuclear Information System (INIS)

    Hobart, D.E.; Peterson, J.R.

    1985-01-01

    Element 97 was first produced in December 1949, by the bombardment of americium-241 with accelerated alpha particles. This new element was named berkelium (Bk) after Berkeley, California, the city of its discovery [Thompson, Ghiorso, and Seaborg, Phys. Rev. 77, 838 (1950); 80, 781 (1950)]. In the 36 years since the discovery of Bk, a substantial amount of knowledge concerning the physicochemical properties of this relatively scarce transplutonium element has been acquired. All of the Bk isotopes of mass numbers 240 and 242 through 251 are presently known, but only berkelium-249 (β - decay, 0.125 MeV, t/sub 1/2/ = 325 days) is available in sufficient quantities for bulk chemical studies. About 0.7 gram of this isotope has been isolated at the HFIR/TRU Complex in Oak Ridge, Tennessee in the last 18 years. Over the same time period, the scale of experimental work using berkelium-249 has increased from the tracer level to bulk studies at the microgram level to solution and solid state investigations with milligram quantities. Extended knowledge of the physicochemical behavior of berkelium is important in its own right, because Bk is the first member of the second half of the actinide series. In addition, such information should enable more accurate extrapolations to the predicted behavior of heavier elements for which experimental studies are severely limited by lack of material and/or by intense radioactivity

  2. Citric complexes of trivalent cerium and berkelium

    International Nuclear Information System (INIS)

    Boulhassa, S.

    1977-01-01

    The extraction by thenoyltrifluoroacetone (TTA) in benzene of trivalent cerium, berkelium and californium, at the indicator scale, hydrolysis and complexation by citric acid of these cations are studied. The radionuclides used were 144 Ce, 249 Bk and 249 Cf respectively γ, β and α emitters. The solvent extraction technique of the elements by TTA in benzene from a perchloric medium at the ionic stength 0.1 was employed. The distribution coefficients D were measured by the γ, β or α radiometry. Cerium and berkelium, which have a comparable redox behavior, show in solution a relatively stable valency IV. Therefore the study by solvent extraction of their trivalent form required the standing up of complete reducing conditions of these elements and their stabilization in solution at the valency III. The thermodynamic data obtained for berkelium and californium contribute to understand the chemistry of these elements and permit to complete the third 'tetrad branch' of 5f elements from Cm 3+ to Es 3+ . This tetrad effect is a manifestation of thermodynamic consequence of the 'nephelauxetic effect'. As for Ce(III), the data confirm the pronounced acid property and may be show no neglected ligand effect for f 1 configuration [fr

  3. Berkelium (4) and cerium (4) extraction with tertiary amines

    International Nuclear Information System (INIS)

    Milyukova, M.S.; Malikov, D.A.; Myasoedov, B.V.

    1978-01-01

    Oxidation of indicator quantities of berkelium and cerium by a mixture of silver nitrate and ammonium persulfate in the solutions of nitric and sulfuric acid has been examined. The stability of the elements in a tetravalent state and their extraction by the solutions of ternary amines have been investigated. It has been established that berkelium and cerium oxidation under these conditions occurs under the effect of ions of divalent silver which is formed owing to oxidation of monovalent silver by peroxide sulfate ions. The following supposition has been put forward: a difference in the behaviour of tetravalent berkelium and cerium during their extraction by ternary amines is explained by their different stability in this state, but not by the formation of complex compounds with nitrate ions

  4. Chelation and stabilization of berkelium in oxidation state +IV

    Science.gov (United States)

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; An, Dahlia D.; Illy, Marie-Claire; Ralston, Corie Y.; Brabec, Jiri; de Jong, Wibe A.; Strong, Roland K.; Abergel, Rebecca J.

    2017-09-01

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

  5. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide

    International Nuclear Information System (INIS)

    Tanaka, Akiyo

    2004-01-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials

  6. Possible stabilization of the tetravalent oxidation state of berkelium and californium in acetonitrile with triphenylarsine oxide

    International Nuclear Information System (INIS)

    Payne, G.F.; Peterson, J.R.

    1987-01-01

    It appears that we may have prepared Bk(IV) nitrate.nTPAs0 and Bk(IV) perchlorate.nTPAs0 complexes which formed the corresponding Cf(IV) complexes through the beta decay of Bk-249. Definitive proof should come from similar experiments with quantities of Bk-249 large enough to allow spectrophotometric detection of the characteristic f→f transitions in these berkelium and californium species. It is clear, however, that TPAs0 and acetonitrile can play a pivotal role in the stabilization of lanact(IV) species

  7. Peaceful berkelium

    Science.gov (United States)

    Trabesinger, Andreas

    2017-09-01

    The first new element produced after the Second World War has led a rather peaceful life since entering the period table -- until it became the target of those producing superheavy elements, as Andreas Trabesinger describes.

  8. Thermodynamics of gallium arsenide electrodeposition

    International Nuclear Information System (INIS)

    Perrault, G.G.

    1986-01-01

    Gallium Arsenide is well known as a very interesting compound for photoelectrical devices. Up to now, it has been prepared mostly by high temperature technology, and the authors considered that it might be of interest to set up an electrodeposition technique suitable to prepare thin layers of this compound. A reaction sequence similar to the one observed for Cadmium Sulfide or Cadmium Telluride could be considered. In these cases, the metal chalcogenide is obtained from the precipitation of the metal ions dissolved in the solutions by the reduction product of the metalloidic compound

  9. Metal Contacts to Gallium Arsenide.

    Science.gov (United States)

    Ren, Fan

    1991-07-01

    While various high performance devices fabricated from the gallium arsenide (GaAs) and related materials have generated considerable interest, metallization are fundamental components to all semiconductor devices and integrated circuits. The essential roles of metallization systems are providing the desired electrical paths between the active region of the semiconductor and the external circuits through the metal interconnections and contacts. In this work, in-situ clean of native oxide, high temperature n-type, low temperature n-type and low temperature p-type ohmic metal systems have been studied. Argon ion mill was used to remove the native oxide prior to metal deposition. For high temperature process n-type GaAs ohmic contacts, Tungsten (W) and Tungsten Silicide (WSi) were used with an epitaxial grown graded Indium Gallium Arsenide (InGaAs) layer (0.2 eV) on GaAs. In addition, refractory metals, Molybdenum (Mo), was incorporated in the Gold-Germanium (AuGe) based on n-type GaAs ohmic contacts to replace conventional silver as barrier to prevent the reaction between ohmic metal and chlorine based plasma as well as the ohmic metallization intermixing which degrades the device performance. Finally, Indium/Gold-Beryllium (In/Au-Be) alloy has been developed as an ohmic contact for p-type GaAs to reduce the contact resistance. The Fermi-level pinning of GaAs has been dominated by the surface states. The Schottky barrier height of metal contacts are about 0.8 V regardless of the metal systems. By using p-n junction approach, barrier height of pulsed C-doped layers was achieved as high as 1.4 V. Arsenic implantation into GaAs method was also used to enhance the barrier height of 1.6 V.

  10. Window structure for passivating solar cells based on gallium arsenide

    Science.gov (United States)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  11. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  12. Normal vibrations in gallium arsenide

    International Nuclear Information System (INIS)

    Dolling, G.; Waugh, J.L.T.

    1964-01-01

    The triple axis crystal spectrometer at Chalk River has been used to observe coherent slow neutron scattering from a single crystal of pure gallium arsenide at 296 o K. The frequencies of normal modes of vibration propagating in the [ζ00], (ζζζ], and (0ζζ] crystal directions have been determined with a precision of between 1 and 2·5 per cent. A limited number of normal modes have also been studied at 95 and 184 o K. Considerable difficulty was experienced in obtaining welt resolved neutron peaks corresponding to the two non-degenerate optic modes for very small wave-vector, particularly at 296 o K. However, from a comparison of results obtained under various experimental conditions at several different points in reciprocal space, frequencies (units 10 12 c/s) for these modes (at 296 o K) have been assigned: T 8·02±0·08 and L 8·55±02. Other specific normal modes, with their measured frequencies are (a) (1,0,0): TO 7·56 ± 008, TA 2·36 ± 0·015, LO 7·22 ± 0·15, LA 6·80 ± 0·06; (b) (0·5, 0·5, 0·5): TO 7·84 ± 0·12, TA 1·86 ± 0·02, LO 7·15 ± 0·07, LA 6·26 ± 0·10; (c) (0, 0·65, 0·65): optic 8·08 ±0·13, 7·54 ± 0·12 and 6·57 ± 0·11, acoustic 5·58 ± 0·08, 3·42 · 0·06 and 2·36 ± 004. These results are generally slightly lower than the corresponding frequencies for germanium. An analysis in terms of various modifications of the dipole approximation model has been carried out. A feature of this analysis is that the charge on the gallium atom appears to be very small, about +0·04 e. The frequency distribution function has been derived from one of the force models. (author)

  13. Normal vibrations in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Dolling, G; Waugh, J L T

    1964-07-01

    The triple axis crystal spectrometer at Chalk River has been used to observe coherent slow neutron scattering from a single crystal of pure gallium arsenide at 296{sup o}K. The frequencies of normal modes of vibration propagating in the [{zeta}00], ({zeta}{zeta}{zeta}], and (0{zeta}{zeta}] crystal directions have been determined with a precision of between 1 and 2{center_dot}5 per cent. A limited number of normal modes have also been studied at 95 and 184{sup o}K. Considerable difficulty was experienced in obtaining welt resolved neutron peaks corresponding to the two non-degenerate optic modes for very small wave-vector, particularly at 296{sup o}K. However, from a comparison of results obtained under various experimental conditions at several different points in reciprocal space, frequencies (units 10{sup 12} c/s) for these modes (at 296{sup o}K) have been assigned: T 8{center_dot}02{+-}0{center_dot}08 and L 8{center_dot}55{+-}02. Other specific normal modes, with their measured frequencies are (a) (1,0,0): TO 7{center_dot}56 {+-} 008, TA 2{center_dot}36 {+-} 0{center_dot}015, LO 7{center_dot}22 {+-} 0{center_dot}15, LA 6{center_dot}80 {+-} 0{center_dot}06; (b) (0{center_dot}5, 0{center_dot}5, 0{center_dot}5): TO 7{center_dot}84 {+-} 0{center_dot}12, TA 1{center_dot}86 {+-} 0{center_dot}02, LO 7{center_dot}15 {+-} 0{center_dot}07, LA 6{center_dot}26 {+-} 0{center_dot}10; (c) (0, 0{center_dot}65, 0{center_dot}65): optic 8{center_dot}08 {+-}0{center_dot}13, 7{center_dot}54 {+-} 0{center_dot}12 and 6{center_dot}57 {+-} 0{center_dot}11, acoustic 5{center_dot}58 {+-} 0{center_dot}08, 3{center_dot}42 {center_dot} 0{center_dot}06 and 2{center_dot}36 {+-} 004. These results are generally slightly lower than the corresponding frequencies for germanium. An analysis in terms of various modifications of the dipole approximation model has been carried out. A feature of this analysis is that the charge on the gallium atom appears to be very small, about +0{center_dot}04 e. The

  14. Optical Characterization of Thick Growth Orientation-Patterned Gallium Arsenide

    National Research Council Canada - National Science Library

    Meyer, Joshua W

    2006-01-01

    .... Orientation patterned gallium arsenide (OPGaAs) is a promising nonlinear conversion material because it has broad transparency and can be engineered for specific pump laser and output wavelengths using quasi-phase matching techniques...

  15. Elastic properties of some transition metal arsenides

    Science.gov (United States)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  16. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  17. Maskless proton beam writing in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom) and Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail: p.mistry@surrey.ac.uk; Gomez-Morilla, I. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Smith, R.C. [Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Thomson, D. [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, G.W. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Webb, R.P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gwilliam, R. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Jeynes, C. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Cansell, A. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Merchant, M. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2007-07-15

    Proton beam writing (PBW) is a direct write technique that employs a focused MeV proton beam which is scanned in a pre-determined pattern over a target material which is subsequently electrochemically etched or chemically developed. By changing the energy of the protons the range of the protons can be changed. The ultimate depth of the structure is determined by the range of the protons in the material and this allows structures to be formed to different depths. PBW has been successfully employed on etchable glasses, polymers and semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). This study reports on PBW in p-type GaAs and compares experimental results with computer simulations using the Atlas (copy right) semiconductor device package from SILVACO. It has already been proven that hole transport is required for the electrochemical etching of GaAs using Tiron (4,5-dihydroxy-m-benzenedisulfonic acid, di-sodium salt). PBW in GaAs results in carrier removal in the irradiated regions and consequently minimal hole transport (in these regions) during electrochemical etching. As a result the irradiated regions are significantly more etch resistant than the non-irradiated regions. This allows high aspect ratio structures to be formed.

  18. Maskless proton beam writing in gallium arsenide

    International Nuclear Information System (INIS)

    Mistry, P.; Gomez-Morilla, I.; Smith, R.C.; Thomson, D.; Grime, G.W.; Webb, R.P.; Gwilliam, R.; Jeynes, C.; Cansell, A.; Merchant, M.; Kirkby, K.J.

    2007-01-01

    Proton beam writing (PBW) is a direct write technique that employs a focused MeV proton beam which is scanned in a pre-determined pattern over a target material which is subsequently electrochemically etched or chemically developed. By changing the energy of the protons the range of the protons can be changed. The ultimate depth of the structure is determined by the range of the protons in the material and this allows structures to be formed to different depths. PBW has been successfully employed on etchable glasses, polymers and semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). This study reports on PBW in p-type GaAs and compares experimental results with computer simulations using the Atlas (copy right) semiconductor device package from SILVACO. It has already been proven that hole transport is required for the electrochemical etching of GaAs using Tiron (4,5-dihydroxy-m-benzenedisulfonic acid, di-sodium salt). PBW in GaAs results in carrier removal in the irradiated regions and consequently minimal hole transport (in these regions) during electrochemical etching. As a result the irradiated regions are significantly more etch resistant than the non-irradiated regions. This allows high aspect ratio structures to be formed

  19. White beam synchrotron x-ray topography of gallium arsenide

    International Nuclear Information System (INIS)

    Winter, J.M. Jr.; Green, R.E. Jr.; Corak, W.S.

    1988-01-01

    The defect structure of gallium arsenide was investigated using white beam transmission topography. The samples were cut and polished monocrystal substrates from different suppliers. The goal of the work was to determine the viability of the method for documenting various crystallographic defect structures and establishing their effect on the performance of integrated microwave circuits fabricated on the wafers. The principles of the technique, essentially identical to classical Laue x-ray diffraction, are outlined. Two distinct defect structures were determined in the topographs. Reasons for the defect structures were postulated and the application of the method for quality control assessments of manufacturer-supplied gallium arsenide substrates was assessed

  20. Rutherford backscatter measurements on tellurium and cadmium implanted gallium arsenide

    International Nuclear Information System (INIS)

    Bell, E.C.

    1979-10-01

    The primary aim of the work described in this thesis was to examine implanted layers of the dopant impurities cadmium and tellurium in gallium arsenide and to experimentally assess their potential for producing electrically active layers. 1.5 MeV Rutherford backscattering measurements of lattice disorder and atom site location have been used to assess post implantation thermal annealing and elevated temperature implantations to site the dopant impurities on either gallium or arsenic lattice positions in an otherwise undisordered lattice. Pyrolitically deposited silicon dioxide was used as an encapsulant to prevent thermal dissociation of the gallium arsenide during annealing. It has been shown that high doses of cadmium and tellurium can be implanted without forming amorphous lattice disorder by heating the gallium arsenide during implantation to relatively low temperatures. Atom site location measurements have shown that a large fraction of a tellurium dose implanted at 180 0 C is located on or near lattice sites. Channeled backscatter measurements have shown that there is residual disorder or lattice strain in gallium arsenide implanted at elevated temperatures. The extent of this disorder has been shown to depend on the implanted dose and implantation temperature. The channeling effect has been used to measure annealing of the disorder. (author)

  1. Electron emission from individual indium arsenide semiconductor nanowires

    NARCIS (Netherlands)

    Heeres, E.C.; Bakkers, E.P.A.M.; Roest, A.L.; Kaiser, M.A.; Oosterkamp, T.H.; Jonge, de N.

    2007-01-01

    A procedure was developed to mount individual semiconductor indium arsenide nanowires onto tungsten support tips to serve as electron field-emission sources. The electron emission properties of the single nanowires were precisely determined by measuring the emission pattern, current-voltage curve,

  2. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.

    1991-11-01

    Surface barrier radiation detector made from high purity liquid phase epitaxial gallium arsenide wafers have been operated as X- and γ-ray detectors at various operating temperatures. Low energy isotopes are resolved including 241 Am at 40 deg C. and the higher gamma energies of 235 U at -80 deg C. 15 refs., 1 tab., 6 figs

  3. Electrical properties of indium arsenide irradiated with fast neutrons

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskii, V.B.; Rytova, N.S.; Yurova, E.S.

    1987-01-01

    A study was made of the influence of irradiation with fast reactor neutrons on electrical properties of indium arsenide samples with different dopant concentrations. The laws governing the formation and annealing of radiation defects in indium arsenide were found to be governed by the donor-acceptor interaction. Depending on the density of free carriers in the original crystal, irradiation could produce charged defects of predominantly donor or acceptor types. Donor defects in irradiated InAs samples were annealed practically completely, whereas a considerable fraction of residual acceptor defects was retained even after heat treatment at 900 degree C. The concentration of these residual acceptors depended on the electron density at the annealing temperature

  4. Assessment of arsenic exposures and controls in gallium arsenide production.

    Science.gov (United States)

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  5. Study of current instabilities in high resistivity gallium arsenide

    International Nuclear Information System (INIS)

    Barraud, A.

    1968-01-01

    We have shown the existence and made a study of the current oscillations produced in high-resistivity gallium arsenide by a strong electric field. The oscillations are associated with the slow travelling of a region of high electrical field across the whole sample. An experimental study of the properties of these instabilities has made it possible for us to distinguish this phenomenon from the Gunn effect, from acoustic-electric effects and from contact effects. In order to account for this type of instability, a differential trapping mechanism involving repulsive impurities is proposed; this mechanism can reduce the concentration of charge carriers in the conduction band at strong electrical fields and can lead to the production of a high-field domain. By developing this model qualitatively we have been able to account for all the properties of high-resistance gallium arsenide crystals subjected to a strong electrical field: increase of the Hall constant, existence of a voltage threshold for these oscillations, production of domains of high field, low rate of propagation of these domains, and finally the possibility of inverting the direction of the propagation of the domain without destroying the latter. A quantitative development of the model makes it possible to calculate the various characteristic parameters of these instabilities. Comparison with experiment shows that there is a good agreement, the small deviations coming especially from the lack of knowledge concerning transport properties in gallium arsenide subjected to high fields. From a study of this model, it appears that the instability phenomenon can occur over a wide range of repulsive centre concentrations, and also for a large range of resistivities. This is the reason why it appears systematically in gallium arsenide of medium and high resistivity. (authors) [fr

  6. Testing of gallium arsenide solar cells on the CRRES vehicle

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage

  7. Photo-dissociation of hydrogen passivated dopants in gallium arsenide

    International Nuclear Information System (INIS)

    Tong, L.; Larsson, J.A.; Nolan, M.; Murtagh, M.; Greer, J.C.; Barbe, M.; Bailly, F.; Chevallier, J.; Silvestre, F.S.; Loridant-Bernard, D.; Constant, E.; Constant, F.M.

    2002-01-01

    A theoretical and experimental study of the photo-dissociation mechanisms of hydrogen passivated n- and p-type dopants in gallium arsenide is presented. The photo-induced dissociation of the Si Ga -H complex has been observed for relatively low photon energies (3.48 eV), whereas the photo-dissociation of C As -H is not observed for photon energies up to 5.58 eV. This fundamental difference in the photo-dissociation behavior between the two dopants is explained in terms of the localized excitation energies about the Si-H and C-H bonds

  8. Liquid phase epitaxy of gallium arsenide - a review

    International Nuclear Information System (INIS)

    Alexiev, D.; Edmondson, M.; Butcher, K.S.A.; Tansley, T.

    1992-07-01

    Liquid phase epitaxy of gallium arsenide has been investigated intensively from the late 1960's to the present and has now a special place in the manufacture of wide band, compound semiconductor radiation detectors. Although this particular process appears to have gained prominence in the last three decades, the authors point out that its origins reach back to 1836 when Frankenheim made his first observations. A brief review is presented from a semiconductor applications point of view on how this subject developed. 70 refs., 5 figs

  9. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.

    1988-02-01

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  10. Lattice parameters guide superconductivity in iron-arsenides

    Science.gov (United States)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  11. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Sven-Joachim Wolfgang

    2009-09-21

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  12. Synchrotron white beam topographic studies of gallium arsenide crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Graeff, W.

    1997-01-01

    A series of samples cut out from different types of gallium arsenide crystals with low dislocation density were studied by means of white beam synchrotron topography. The investigation was performed with transmission and black-reflection projection methods and transmission section method. Some of topographs in transmission geometry provided a very high sensitivity suitable for revealing small precipitates. The transmission section images significantly differed depending on the wavelength and absorption. In some cases a distinct Pendelloesung fringes and fine details of dislocation and precipitates images were observed. It was possible to reproduce the character of these images by means of numerical simulation based on integration of Takagi-Taupin equations. Due to more convenient choice of radiation, synchrotron back-reflection projection topography provided much better visibility of dislocations than analogous realized with conventional X-ray sources. (author)

  13. Density Functional Theory Study on Defect Feature of AsGaGaAs in Gallium Arsenide

    Directory of Open Access Journals (Sweden)

    Deming Ma

    2015-01-01

    Full Text Available We investigate the defect feature of AsGaGaAs defect in gallium arsenide clusters in detail by using first-principles calculations based on the density functional theory (DFT. Our calculations reveal that the lowest donor level of AsGaGaAs defect on the gallium arsenide crystal surface is 0.85 eV below the conduction band minimum, while the lowest donor level of the AsGaGaAs defect inside the gallium arsenide bulk is 0.83 eV below the bottom of the conduction band, consistent with gallium arsenide EL2 defect level of experimental value (Ec-0.82 eV. This suggests that AsGaGaAs defect is one of the possible gallium arsenide EL2 deep-level defects. Moreover, our results also indicate that the formation energies of internal AsGaGaAs and surface AsGaGaAs defects are predicted to be around 2.36 eV and 5.54 eV, respectively. This implies that formation of AsGaGaAs defect within the crystal is easier than that of surface. Our results offer assistance in discussing the structure of gallium arsenide deep-level defect and its effect on the material.

  14. Semiconducting icosahedral boron arsenide crystal growth for neutron detection

    Science.gov (United States)

    Whiteley, C. E.; Zhang, Y.; Gong, Y.; Bakalova, S.; Mayo, A.; Edgar, J. H.; Kuball, M.

    2011-03-01

    Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors, thermoelectric converters, and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron (or B12As2 powder) and arsenic in a sealed quartz ampoule. B12As2 crystals of 10-15 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 h and slowly cooled (3.5 °C/h). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), and elemental analysis by energy dispersive X-ray spectroscopy (EDS) confirmed that the crystals had the expected rhombohedral structure and chemical stoichiometry. The concentrations of residual impurities (nickel, carbon, etc.) were low, as measured by Raman spectroscopy and secondary ion mass spectrometry (SIMS). Additionally, low etch-pit densities (4.4×107 cm-2) were observed after etching in molten KOH at 500 °C. Thus, the flux growth method is viable for growing large, high-quality B12As2 crystals.

  15. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    Science.gov (United States)

    2011-03-01

    spectrum, photoluminescence (PL), and refractive index measurements. Other methods such as infrared imagery and micro probe wavelength dispersing ...States. AFIT/DS/ENP/11-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF MELT- GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ...CHARACTERIZATION OF MELT-GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ALLOYS Jean Wei, BS, MS Approved

  16. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Energy Technology Data Exchange (ETDEWEB)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna [School of Microelectronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  17. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Science.gov (United States)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, Pmax was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  18. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    International Nuclear Information System (INIS)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-01-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P max was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs

  19. Properties of gallium arsenide alloyed with Ge and Se by irradiation in nuclear reactor thermal column

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskij, V.B.; Tokarevskij, V.V.; Kharchenko, V.A.; Ievlev, S.M.

    1985-01-01

    Dependences of electrophysical properties as well as lattice unit spacing and density of nuclear-alloyed gallium arsenide on the fluence of reactor neutrons and heat treatment are investigated. Neutron radiation of gallium arsenide with different energy spectra is shown to differently affect material properties. Fast neutrons make the main contribution to defect formation. Concentration of compensating acceptor defects formed under GaAs radiation in a thermal column practically equals concentration of introduced donor impurities. Radiation defects of acceptor type are not annealed in the material completely even at 900-1000 deg C

  20. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Science.gov (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  1. Noise suppression and long-range exchange coupling for gallium arsenide spin qubits

    DEFF Research Database (Denmark)

    Malinowski, Filip

    This thesis presents the results of the experimental study performed on spin qubits realized in gate-defined gallium arsenide quantum dots, with the focus on noise suppression and long-distance coupling. First, we show that the susceptibility to charge noise can be reduced by reducing the gradien...

  2. Continuum modelling of silicon diffusion in indium gallium arsenide

    Science.gov (United States)

    Aldridge, Henry Lee, Jr.

    A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point

  3. Gallium interstitial contributions to diffusion in gallium arsenide

    Science.gov (United States)

    Schick, Joseph T.; Morgan, Caroline G.

    2011-09-01

    encountered in fitting experimental results for heavily p-type, Ga-rich gallium arsenide by simply extending a model for gallium interstitial diffusion which has been used for less p-doped material.

  4. Point defects in gallium arsenide characterized by positron annihilation spectroscopy and deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Mih, R.; Gronsky, R.; Sterne, P.A.

    1995-01-01

    Positron annihilation lifetime spectroscopy (PALS) is a unique technique for detection of vacancy related defects in both as-grown and irradiated materials. The authors present a systematic study of vacancy defects in stoichiometrically controlled p-type Gallium Arsenide grown by the Hot-Wall Czochralski method. Microstructural information based on PALS, was correlated to crystallographic data and electrical measurements. Vacancies were detected and compared to electrical levels detected by deep level transient spectroscopy and stoichiometry based on crystallographic data

  5. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    Science.gov (United States)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  6. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    Science.gov (United States)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  7. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    Science.gov (United States)

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  8. Detection of spin-states in Mn-doped gallium arsenide films

    International Nuclear Information System (INIS)

    Hofer, Werner A; Palotas, Krisztian; Teobaldi, Gilberto; Sadowski, Janusz; Mikkelsen, Anders; Lundgren, Edvin

    2007-01-01

    We show that isolated magnetic dipoles centred at the position of manganese impurities in a gallium arsenide lattice lead to spin polarized states in the bandgap of the III-V semiconductor. Spectroscopy simulations with a tungsten tip agree well with experimental data; in this case, no difference can be observed for the two magnetic groundstates. But if the signal is read with a magnetic iron tip, it changes by a factor of up to 20, depending on the magnetic orientation of the Mn atom

  9. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  10. Pulsed electron-beam annealing of selenium-implanted gallium arsenide

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.

    1979-01-01

    Electrical properties of selenium-implanted gallium arsenide annealed by a single shot of high-power pulsed electron beams have been investigated by differential Hall-effect and sheet-resistivity measurements. It has been shown that higher electrical activation of implanted selenium can be obtained after electron-beam annealing at an incident energy density of 1.2 J/cm 2 , independent of heating of GaAs substrate during implantation. Measured carrier concentrations exhibit uniformly distributed profiles having carrier concentrations of 2--3 x 10 19 /cm 3 , which is difficult to realize by conventional thermal annealing

  11. THE QUANTUM-WELL STRUCTURES OF SELF ELECTROOPTIC-EFFECT DEVICES AND GALLIUM-ARSENIDE

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1996-02-01

    Full Text Available Multiple quantum-well (MQW electroabsorptive self electro optic-effect devices (SEEDs are being extensively studied for use in optical switching and computing. The self electro-optic-effect devices which has quantum-well structures is a new optoelectronic technology with capability to obtain both optical inputs and outputs for Gallium-Arsenide/Aluminum Gallium-Arsenide (GaAs/AlGaAs electronic circuits. The optical inputs and outputs are based on quantum-well absorptive properties. These quantum-well structures consist of many thin layers of semiconductors materials of GaAs/AlGaAs which have emerged some important directions recently. The most important advance in the physics of these materials since the early days has been invention of the heterojunction structures which is based at present on GaAs technology. GaAs/AlGaAs structures present some important advantages to relevant band gap and index of refraction which allow to form the quantum-well structures and also to make semiconductor lasers, dedectors and waveguide optical switches.

  12. Structural and electrooptical characteristics of quantum dots emitting at 1.3 μm on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, A.; Oesterle, U.; Stanley, R.P.

    2001-01-01

    We present a comprehensive study of the structural and emission properties of self-assembled InAs quantum dots emitting at 1.3 mum. The dots are grown by molecular beam epitaxy on gallium arsenide substrates. Room-temperature emission at 1.3 mum is obtained by embedding the dots in an InGaAs layer...

  13. Damage structure of gallium arsenide irradiated in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Loretto, D.; Loretto, M.H.

    1989-01-01

    Semi-insulating undoped gallium arsenide has been irradiated in a high-voltage electron microscope between room temperature and about 500 0 C for doses of up to 5 x 10 22 electrons cm -2 at 1 MeV. Room-temperature irradiation produces small (less than 5 nm) damage clusters. As the temperature of the irradiation is increased, the size of these clusters increases, until at about 300 0 C a high density of dislocation loops can be resolved. The dislocation loops, 20 nm or less in diameter, which are produced at about 500 0 C have been analysed in a bright field using a two-beam inside-outside method which minimises the tilt necessary between micrographs. It is concluded that the loops are an interstitial perfect-edge type with a Burgers vector of (a/2) . (author)

  14. Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor

    International Nuclear Information System (INIS)

    Sebastian, Suchitra E; Gillett, J; Lau, P H C; Lonzarich, G G; Harrison, N; Mielke, C H; Singh, D J

    2008-01-01

    We report measurements of quantum oscillations in SrFe 2 As 2 -which is an antiferromagnetic parent of the iron arsenide family of superconductors-known to become superconducting under doping and the application of pressure. The magnetic field and temperature dependences of the oscillations between 20 and 55 T in the liquid helium temperature range suggest that the electronic excitations are those of a Fermi liquid. We show that the observed Fermi surface comprising small pockets is consistent with the formation of a spin-density wave. Our measurements thus demonstrate that high T c superconductivity can occur on doping or pressurizing a conventional metallic spin-density wave state. (fast track communication)

  15. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    Science.gov (United States)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  16. Ultrafast photocurrents and terahertz radiation in gallium arsenide and carbon based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Prechtel, Hans Leonhard

    2011-08-15

    In this thesis we developed a measurement technique based on a common pump-probe scheme and coplanar stripline circuits that enables time-resolved photocurrent measurements of contacted nanosystems with a micrometer spatial and a picosecond time resolution. The measurement technique was applied to lowtemperature grown gallium arsenide (LT-GaAs), carbon nanotubes (CNTs), graphene, and p-doped gallium arsenide (GaAs) nanowires. The various mechanisms responsible for the generation of current pulses by pulsed laser excitation were reviewed. Furthermore the propagation of the resulting electromagnetic radiation along a coplanar stripline circuit was theoretically and numerically treated. The ultrafast photocurrent response of low-temperature grown GaAs was investigated. We found two photocurrent pulses in the time-resolved response. We showed that the first pulse is consistent with a displacement current pulse. We interpreted the second pulse to result from a transport current process. We further determined the velocity of the photo-generated charge carriers to exceed the drift, thermal and quantum velocities of single charge carriers. Hereby, we interpreted the transport current pulse to stem from an electron-hole plasma excitation. We demonstrated that the photocurrent response of CNTs comprises an ultrafast displacement current and a transport current. The data suggested that the photocurrent is finally terminated by the recombination lifetime of the charge carriers. To the best of our knowledge, we presented in this thesis the first recombination lifetime measurements of contacted, suspended, CVD grown CNT networks. In addition, we studied the ultrafast photocurrent dynamics of freely suspended graphene contacted by metal electrodes. At the graphene-metal interface, we demonstrated that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of a few picoseconds and that a photo-thermoelectric effect generates a current with a decay time

  17. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    Science.gov (United States)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  18. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  19. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    Science.gov (United States)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  20. Site preference of rare earth doping in palladium-iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzer, Christine; Schulz, Anne; Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2014-12-15

    The solid solutions (Ca{sub 1-y}RE{sub y}Fe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8} with RE = La, Ce, and Pr were synthesized by solid state methods and characterized by X-ray powder diffraction with subsequent Rietveld refinements [(CaFeAs){sub 10}Pt{sub 3}As{sub 8}-type structure (''1038 type''), P anti 1, Z = 1]. Substitution levels (Ca/RE, Fe/Pd, and Pd/□) obtained from Rietveld refinements coincide well with the nominal values according to EDS and the linear courses of the lattice parameters as expected from the ionic radii. The RE atoms favor the one out of five calcium sites, which is eightfold coordinated by arsenic. This leads to significant stabilization of the structure, and especially prevents palladium over-doping in the iron-arsenide layers as observed in the pristine compound (CaFe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8}. While the stabilization energy is estimated to about 40 kJ.mol{sup -1} by electronic structure calculations, the reason for the diminished Fe/Pd substitution through RE doping is still not yet understood. We suggest that the electrons transferred from RE{sup 3+} to the (Fe{sub 1-x}Pd{sub x})As layer makes higher palladium concentrations unfavorable. Anyway the reduced palladium doping enables superconductivity with critical temperatures up to 20 K (onset) in the RE doped Pd1038 samples, which could not be obtained earlier due to palladium over-doping in the active iron-arsenide layers. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    International Nuclear Information System (INIS)

    Fisher, I R; Shen, Z X; Degiorgi, L

    2011-01-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  2. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  3. Thermo-chemical properties and electrical resistivity of Zr-based arsenide chalcogenides

    Directory of Open Access Journals (Sweden)

    A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu. Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich and R. Kniep

    2007-01-01

    Full Text Available Ternary phases in the systems Zr–As–Se and Zr–As–Te were studied using single crystals of ZrAs1.40(1Se0.50(1 and ZrAs1.60(2Te0.40(1 (PbFCl-type of structure, space group P4/nmm as well as ZrAs0.70(1Se1.30(1 and ZrAs0.75(1Te1.25(1 (NbPS-type of structure, space group Immm. The characterization covers chemical compositions, crystal structures, homogeneity ranges and electrical resistivities. At 1223 K, the Te-containing phases can be described with the general formula ZrAsxTe2−x, with 1.53(1≤x≤1.65(1 (As-rich and 0.58(1≤x≤0.75(1 (Te-rich. Both phases are located directly on the tie-line between ZrAs2 and ZrTe2, with no indication for any deviation. Similar is true for the Se-rich phase ZrAsxSe2−x with 0.70(1≤x≤0.75(1. However, the compositional range of the respective As-rich phase ZrAsx−ySe2−x (0.03(1≤y≤0.10(1; 1.42(1≤x≤1.70(1 is not located on the tie-line ZrAs2–ZrSe2, and exhibits a triangular region of existence with intrinsic deviation of the composition towards lower non-metal contents. Except for ZrAs0.75Se1.25, from the homogeneity range of the Se-rich phase, all compounds under investigation show metallic characteristics of electrical resistivity at temperatures >20 K. Related uranium and thorium arsenide selenides display a typical magnetic field-independent rise of the resistivity towards lower temperatures, which has been explained by a non-magnetic Kondo effect. However, a similar observation has been made for ZrAs1.40Se0.50, which, among the Zr-based arsenide chalcogenides, is the only system with a large concentration of intrinsic defects in the anionic substructure.

  4. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Sellan, Daniel P.; Ou, Eric; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Evans, Daniel A.; Williams, Owen M.; Cowley, Alan H. [Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-05-16

    Recent first principles calculations have predicted that boron arsenide (BAs) can possess an unexpectedly high thermal conductivity that depends sensitively on the crystal size and defect concentration. However, few experimental results have been obtained to verify these predictions. In the present work, we report four-probe thermal and thermoelectric transport measurements of an individual BAs microstructure that was synthesized via a vapor transport method. The measured thermal conductivity was found to decrease slightly with temperature in the range between 250 K and 350 K. The temperature dependence suggests that the extrinsic phonon scattering processes play an important role in addition to intrinsic phonon-phonon scattering. The room temperature value of (186 ± 46) W m{sup −1 }K{sup −1} is higher than that of bulk silicon but still a factor of four lower than the calculated result for a defect-free, non-degenerate BAs rod with a similar diameter of 1.15 μm. The measured p-type Seebeck coefficient and thermoelectric power factor are comparable to those of bismuth telluride, which is a commonly used thermoelectric material. The foregoing results also suggest that it is necessary to not only reduce defect and boundary scatterings but also to better understand and control the electron scattering of phonons in order to achieve the predicted ultrahigh intrinsic lattice thermal conductivity of BAs.

  5. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide

    International Nuclear Information System (INIS)

    Wampler, William R.; Myers, Samuel M.

    2015-01-01

    A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation

  6. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats

    International Nuclear Information System (INIS)

    Flora, Swaran J.S.; Bhatt, Kapil; Mehta, Ashish

    2009-01-01

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  7. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  8. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  9. Irradiation effects of swift heavy ions on gallium arsenide, silicon and silicon diodes

    International Nuclear Information System (INIS)

    Bhoraskar, V.N.

    2001-01-01

    The irradiation effects of high energy lithium, boron, oxygen and silicon ions on crystalline silicon, gallium arsenide, porous silicon and silicon diodes were investigated. The ion energy and fluence were varied over the ranges 30 to 100 MeV and 10 11 to 10 14 ions/cm 2 respectively. Semiconductor samples were characterized with the x-ray fluorescence, photoluminescence, thermally stimulated exo-electron emission and optical reflectivity techniques. The life-time of minority carriers in crystalline silicon was measured with a pulsed electron beam and the lithium depth distribution in GaAs was measured with the neutron depth profiling technique. The diodes were characterized through electrical measurements. The results of optical reflectivity, life-time of minority carriers and photoluminescence show that swift heavy ions induce defects in the surface region of crystalline silicon. In the ion-irradiated GaAs, migration of silicon, oxygen and lithium atoms from the buried region towards the surface was observed, with orders of magnitude enhancement in the diffusion coefficients. Enhancement in the photoluminescence intensity was observed in the GaAs and porous silicon samples that, were irradiated with silicon ions. The trade-off between the turn-off time and the voltage, drop in diodes irradiated with different swift heavy ions was also studied. (author)

  10. Seeded growth of boron arsenide single crystals with high thermal conductivity

    Science.gov (United States)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  11. Selectivity control of photosensitive structures based on gallium arsenide phosphide solid solutions by changing the rate of surface recombination

    International Nuclear Information System (INIS)

    Tarasov, S A; Andreev, M Y; Lamkin, I A; Solomonov, A V

    2016-01-01

    In this paper, we demonstrate the effect of surface recombination on spectral sensitivity of structures based on gallium arsenide phosphide solid solutions. Simulation of the effect for structures based on a p-n junction and a Schottky barrier was carried out. Photodetectors with different rates of surface recombination were fabricated by using different methods of preliminary treatment of the semiconductor surface. We experimentally demonstrated the possibility to control photodetector selectivity by altering the rate of surface recombination. The full width at half maximum was reduced by almost 4 times, while a relatively small decrease in sensitivity at the maximum was observed. (paper)

  12. A study of ion implanted gallium arsenide using deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Emerson, N.G.

    1981-03-01

    This thesis is concerned with the study of deep energy levels in ion implanted gallium arsenide (GaAs) using deep level transient spectroscopy (D.L.T.S.). The D.L.T.S. technique is used to characterise deep levels in terms of their activation energies and capture cross-sections and to determine their concentration profiles. The main objective is to characterise the effects on deep levels, of ion implantation and the related annealing processes. In the majority of cases assessment is carried out using Schottky barrier diodes. Low doses of selenium ions 1 to 3 x 10 12 cm -2 are implanted into vapour phase epitaxial (V.P.E.) GaAs and the effects of post-implantation thermal and pulsed laser annealing are compared. The process of oxygen implantation with doses in the range 1 x 10 12 to 5 x 10 13 cm -2 followed by thermal annealing at about 750 deg C, introduces a deep level at 0.79 eV from the conduction band. Oxygen implantation, at doses of 5 x 10 13 cm -2 , into V.P.E. GaAs produces a significant increase in the concentration of the A-centre (0.83 eV). High doses of zinc (10 15 cm -2 ) are implanted into n-type V.P.E. GaAs to form shallow p-type layers. The D.L.T.S. system described in the text is used to measure levels in the range 0.16 to 1.1 eV (for GaAs) with a sensitivity of the order 1:10 3 . (U.K.)

  13. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin

    2014-01-01

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  14. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    Science.gov (United States)

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  15. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs{sub 2} (A = K, Rb)

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Sikander; Khan, Saleem Ayaz [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu [School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2015-10-15

    Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method and the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.

  16. Understanding charge carrier relaxation processes in terbium arsenide nanoparticles using transient absorption spectroscopy

    Science.gov (United States)

    Vanderhoef, Laura R.

    Erbium arsenide nanoparticles epitaxially grown within III-V semiconductors have been shown to improve the performance of devices for applications ranging from thermoelectrics to THz pulse generation. The small size of rare-earth nanoparticles suggests that interesting electronic properties might emerge as a result of both spatial confinement and surface states. However, ErAs nanoparticles do not exhibit any signs of quantum confinement or an emergent bandgap, and these experimental observations are understood from theory. The incorporation of other rare-earth monopnictide nanoparticles into III-V hosts is a likely path to engineering carrier excitation, relaxation and transport dynamics for optoelectronic device applications. However, the electronic structure of these other rare-earth monopnictide nanoparticles remains poorly understood. The objective of this research is to explore the electronic structure and optical properties of III-V materials containing novel rare-earth monopnictides. We use ultrafast pump-probe spectroscopy to investigate the electronic structure of TbAs nanoparticles in III-V hosts. We start with TbAs:GaAs, which was expected to be similar to ErAs:GaAs. We study the dynamics of carrier relaxation into the TbAs states using optical pump terahertz probe transient absorption spectroscopy. By analyzing how the carrier relaxation rates depend on pump fluence and sample temperature, we conclude that the TbAs states are saturable. Saturable traps suggest the existence of a bandgap for TbAs nanoparticles, in sharp contrast with previous results for ErAs. We then apply the same experimental technique to two samples of TbAs nanoparticles in InGaAs with different concentrations of TbAs. We observe similar relaxation dynamics associated with trap saturation, though the ability to resolve these processes is contingent upon a high enough TbAs concentration in the sample. We have also constructed an optical pump optical probe transient absorption

  17. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    Directory of Open Access Journals (Sweden)

    Domenico Melisi

    2014-11-01

    Full Text Available In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  18. Study of Gallium Arsenide Etching in a DC Discharge in Low-Pressure HCl-Containing Mixtures

    Science.gov (United States)

    Dunaev, A. V.; Murin, D. B.

    2018-04-01

    Halogen-containing plasmas are often used to form topological structures on semiconductor surfaces; therefore, spectral monitoring of the etching process is an important diagnostic tool in modern electronics. In this work, the emission spectra of gas discharges in mixtures of hydrogen chloride with argon, chlorine, and hydrogen in the presence of a semiconducting gallium arsenide plate were studied. Spectral lines and bands of the GaAs etching products appropriate for monitoring the etching rate were determined. It is shown that the emission intensity of the etching products is proportional to the GaAs etching rate in plasmas of HCl mixtures with Ar and Cl2, which makes it possible to monitor the etching process in real time by means of spectral methods.

  19. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    International Nuclear Information System (INIS)

    ISLAM, N.E.; SCHAMILOGLU, E.; MAR, ALAN; LOUBRIEL, GUILLERMO M.; ZUTAVERN, FRED J.; JOSHI, R.P.

    2000-01-01

    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of ∼ 10 4 shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10 8 shots for electro-optic drivers. Much effort is currently being channeled in the

  20. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained

  1. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-11-17

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained.

  2. Electron tunneling transport across heterojunctions between europium sulfide and indium arsenide

    Science.gov (United States)

    Kallaher, Raymond L.

    This dissertation presents research done on utilizing the ferromagnetic semiconductor europium sulfide (EuS) to inject spin polarized electrons into the non-magnetic semiconductor indium arsenide (InAs). There is great interest in expanding the functionality of modern day electronic circuits by creating devices that depend not only on the flow of charge in the device, but also on the transport of spin through the device. Within this mindset, there is a concerted effort to establish an efficient means of injecting and detecting spin polarized electrons in a two dimensional electron system (2DES) as the first step in developing a spin based field effect transistor. Thus, the research presented in this thesis has focused on the feasibility of using EuS, in direct electrical contact with InAs, as a spin injecting electrode into an InAs 2DES. Doped EuS is a concentrated ferromagnetic semiconductor, whose conduction band undergoes a giant Zeeman splitting when the material becomes ferromagnetic. The concomitant difference in energy between the spin-up and spin-down energy bands makes the itinerant electrons in EuS highly spin polarized. Thus, in principle, EuS is a good candidate to be used as an injector of spin polarized electrons into non-magnetic materials. In addition, the ability to adjust the conductivity of EuS by varying the doping level in the material makes EuS particularly suited for injecting spins into non-magnetic semiconductors and 2DES. For this research, thin films of EuS have been grown via e-beam evaporation of EuS powder. This growth technique produces EuS films that are sulfur deficient; these sulfur vacancies act as intrinsic electron donors and the resulting EuS films behave like heavily doped ferromagnetic semiconductors. The growth parameters and deposition procedures were varied and optimized in order to fabricate films that have minimal crystalline defects. Various properties and characteristics of these EuS films were measured and compared to

  3. Point defects and electric compensation in gallium arsenide single crystals; Punktdefekte und elektrische Kompensation in Galliumarsenid-Einkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Ulrich

    2007-12-10

    In the present thesis the point-defect budget of gallium arsenide single crystals with different dopings is studied. It is shown, in which way the concentration of the single point defects depende on the concentration of the dopants, the stoichiometry deviation, and the position of the Fermi level. For this serve the results of the measurement-technical characterization of a large number of samples, in the fabrication of which these parameters were directedly varied. The main topic of this thesis lies in the development of models, which allow a quantitative description of the experimentally studied electrical and optical properties of gallium arsenide single crystals starting from the point-defect concentrations. Because from point defects charge carriers can be set free, their concentration determines essentially the charge-carrier concentration in the bands. In the ionized state point defects act as scattering centers for free charge carriers and influence by this the drift mobility of the charge carriers. A thermodynamic modeling of the point-defect formation yields statements on the equilibrium concentrations of the point defects in dependence on dopant concentration and stoichiometry deviation. It is show that the electrical properties of the crystals observed at room temperature result from the kinetic suppression of processes, via which the adjustment of a thermodynamic equilibrium between the point defects is mediated. [German] In der vorliegenden Arbeit wird der Punktdefekthaushalt von Galliumarsenid-Einkristallen mit unterschiedlichen Dotierungen untersucht. Es wird gezeigt, in welcher Weise die Konzentration der einzelnen Punktdefekte von der Konzentration der Dotierstoffe, der Stoechiometrieabweichung und der Lage des Ferminiveaus abhaengen. Dazu dienen die Ergebnisse der messtechnischen Charakterisierung einer grossen Anzahl von Proben, bei deren Herstellung diese Parameter gezielt variiert wurden. Der Schwerpunkt der Arbeit liegt in der Entwicklung

  4. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa

    2013-08-20

    Exchange correlation (XC) energy functionals play a vital role in the efficiency of density functional theory (DFT) calculations, more soundly in the calculation of fundamental electronic energy bandgap. In the present DFT study of III-arsenides, we investigate the implications of XC-energy functional and corresponding potential on the structural, electronic and optical properties of XAs (X = B, Al, Ga, In). Firstly we report and discuss the optimized structural lattice parameters and the band gap calculations performed within different non-local XC functionals as implemented in the DFT-packages: WIEN2k, CASTEP and SIESTA. These packages are representative of the available code in ab initio studies. We employed the LDA, GGA-PBE, GGA-WC and mBJ-LDA using WIEN2k. In CASTEP, we employed the hybrid functional, sX-LDA. Furthermore LDA, GGA-PBE and meta-GGA were employed using SIESTA code. Our results point to GGA-WC as a more appropriate approximation for the calculations of structural parameters. However our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice agreement with the experimental measurements in addition to other theoretical results. © 2013 IOP Publishing Ltd.

  5. Nematic fluctuations in iron arsenides NaFeAs and LiFeAs probed by 75As NMR

    Science.gov (United States)

    Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-03-01

    75As NMR measurements have been made on single crystals to study the nematic state in the iron arsenides NaFeAs, which undergoes a structural transition from a high-temperature (high-T ) tetragonal phase to a low-T orthorhombic phase at Ts=57 K and an antiferromagnetic transition at TN=42 K, and LiFeAs having a superconducting transition at Tc=18 K. We observe the in-plane anisotropy of the electric field gradient η even in the tetragonal phase of NaFeAs and LiFeAs, showing the local breaking of tetragonal C4 symmetry. Then, η is found to obey the Curie-Weiss (CW) law as well as in Ba (Fe1-xCox) 2As2 . The good agreement between η and the nematic susceptibility obtained by electronic Raman spectroscopy indicates that η is governed by the nematic susceptibility. From comparing η in NaFeAs and LiFeAs with η in Ba (Fe1-xCox) 2As2 , we discuss the carrier-doping dependence of the nematic susceptibility. The spin contribution to nematic susceptibility is also discussed from comparing the CW terms in η with the nuclear spin-lattice relaxation rate divided by temperature 1 /T1T . Finally, we discuss the nematic transition in the paramagnetic orthorhombic phase of NaFeAs from the in-plane anisotropy of 1 /T1T .

  6. The effect of hydrostatic pressure on the physical properties of magnesium arsenide in cubic and hexagonal phases

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Ali, E-mail: mokhtari@sci.sku.ac.i [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, P. B. 115, Shahrekord (Iran, Islamic Republic of); Sedighi, Matin [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, P. B. 115, Shahrekord (Iran, Islamic Republic of)

    2010-04-01

    Full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT) was applied to study the structural and electronic properties of the magnesium arsenide in both cubic and hexagonal phases. The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). The lattice parameters, bulk modulus and its pressure derivative, cohesive energy, band structures and effective mass of electrons and holes (EME and EMH) were obtained and compared to the available experimental and theoretical results. A phase transition was predicted at pressure of about 1.63 GPa from the cubic to the hexagonal phase. The effect of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths, anti-symmetry gap (the energy gap between two parts of the valence bands), EME and EMH were investigated using both GGA96 and EV-GGA methods. High applied pressure can decrease (increase) the holes mobility of cubic (hexagonal) phase of this compound.

  7. The effect of hydrostatic pressure on the physical properties of magnesium arsenide in cubic and hexagonal phases

    International Nuclear Information System (INIS)

    Mokhtari, Ali; Sedighi, Matin

    2010-01-01

    Full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT) was applied to study the structural and electronic properties of the magnesium arsenide in both cubic and hexagonal phases. The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). The lattice parameters, bulk modulus and its pressure derivative, cohesive energy, band structures and effective mass of electrons and holes (EME and EMH) were obtained and compared to the available experimental and theoretical results. A phase transition was predicted at pressure of about 1.63 GPa from the cubic to the hexagonal phase. The effect of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths, anti-symmetry gap (the energy gap between two parts of the valence bands), EME and EMH were investigated using both GGA96 and EV-GGA methods. High applied pressure can decrease (increase) the holes mobility of cubic (hexagonal) phase of this compound.

  8. A final report for Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    CERN Document Server

    Vernon, S M

    1999-01-01

    This SBIR Phase I developed neutron detectors made FR-om gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the FR-ont surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed FR-om a layer of Al sub x Ga sub 1 sub - sub x As. Schottky-barrier diodes formed FR-om the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10 sup - sup 1 sup 2 amps at -1 V o...

  9. Study by optical spectroscopy of the interaction between a hydrogen multi-polar plasma and a gallium arsenide surface

    International Nuclear Information System (INIS)

    Ferdinand, Robin

    1990-01-01

    The objective of this research thesis has been to understand which are the involved species during the deoxidation-passivation stage of the processing of gallium arsenide platelets used in semiconductor industry. The author describes problems related to the presence of oxides, and highlights the benefit of using a hydrogen multi-polar plasma to softly remove surface oxides. The experimental set-up is notably characterised by the role of magnetic confinement and its influence on plasma. A theoretical model is then developed for a better understanding of chemical and physical-chemical reactions occurring in the hydrogen plasma. Based on the use of the Boltzmann equation, the model calculates the electron energy distribution function, and allows the follow-up of species present in the plasma with respect to available and accessible parameters (pressure, discharge current, discharge voltage). A spectroscopic study of the hydrogen plasma is then reported, and the numerical model is validated by interpreting line shapes of the hydrogen Balmer series. A second experimental approach, based on electrostatic probes, is implemented, and the Laframboise theory is applied to this technique and allows electronic and ionic densities, and electron temperature to be determined. Experimental and numerical results are compared. All this leads to the study of the interaction of plasma with a sample, with a first step of study of a mixture plasma containing 85 per cent of hydrogen and 15 per cent of arsine, in order to get a general knowledge of emissions related to the presence of AsH 3 . Finally, interaction studies are performed by using laser-induced fluorescence and conventional space-resolved optical spectroscopy

  10. Joint Institute for Nuclear Research Data Analysis Guide - Berkelium Edition

    International Nuclear Information System (INIS)

    Henderson, R.A.

    2009-01-01

    This is a data analysis guide to the JINR system developed by Roger Henderson. It is intended as a complete guide to the data format and the calibration parameters utilized for the analysis of the data. This guide will provide the basic structure of the data files, the description of the individual data items, and the basic equations developed for the calculation of the results. Currently (7/17/2009), calculation of the calibration parameters is not a covered topic. It is intended that this will be covered in a future update

  11. Chelation and stabilization of berkelium in oxidation state +IV

    Czech Academy of Sciences Publication Activity Database

    Deblonde, G. J.-P.; Sturzbecher-Hoehne, M.; Rupert, P. B.; An, D. D.; Illy, M.-C.; Ralston, C. Y.; Brabec, Jiří; de Jong, W. A.; Strong, R. K.; Abergel, R. J.

    2017-01-01

    Roč. 9, č. 9 (2017), s. 843-849 ISSN 1755-4330 Institutional support: RVO:61388955 Keywords : bioorganic chemistry * chemical bonding * mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 25.870, year: 2016

  12. Determination of frequencies of atomic oscillations along the fourth order symmetry axis in indium arsenide according to thermal diffusion scattering of X-rays

    International Nuclear Information System (INIS)

    Orlova, N.S.

    1978-01-01

    Intensity of diffusion scattering of X-rays from the plane of a monocrystal of indium arsenide has been measured on the monochromatized CuKsub(α)-radiation. The samples are made of Cl indium arsenide monocrystal of the n-type with the 1x10 18 cm -3 concentration of carriers in the form of a plate with the polished parallel cut-off with the +-5' accuracy. The investigations have been carried out on the URS-5 IM X-ray diffractometer at room temperature in vacuum. Intensities of thermal diffusion scattering of the second order have been calculated by the two-atomic chain model with different mass and four interaction paramaters. Based upon the analysis of intensity of single-phonon diffusion scattering the curves of frequencies of atomic oscillations along the direction [100] have been determined. The values of frequencies obtained experimentally on the thermal diffusion scattering of X-rays are in a satisfactory agreement with the calculated data. The frequencies obtained are compared with the results of calculation and the analysis of multiphonon spectra of IR-absorption made elsewhere

  13. The roles of the temperature on the structural and electronic properties of deep-level V{sub As}V{sub Ga} defects in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deming, E-mail: xautmdm@163.com; Chen, Xi; Qiao, Hongbo; Shi, Wei; Li, Enling

    2015-07-15

    Highlights: • The energy gap of the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} is 0.82 eV. • Proves that the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} belongs to EL2 deep-level defect in GaAs. • Proves that EL2 and EL6 deep-level defects can transform into each other. • Temperature has an important effect on the microstructure of deep-level defects. - Abstract: The roles of temperature on the structural and electronic properties of V{sub As}V{sub Ga} defects in gallium arsenide have been studied by using ab-initio molecular dynamic (MD) simulation. Our calculated results show that the relatively stable quaternary complex defect of Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} can be converted from the V{sub As}V{sub Ga} complex clusters defect between 300 K and 1173 K; however, from 1173 K to 1373 K, the decomposition of the complex defect Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} occurs, turning into a deep-level V{sub As}V{sub Ga} cluster defect and an isolated As{sub Ga} antisite defect, and relevant defect of Ga{sub As} is recovered. The properties of Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} defect has been studied by first-principles calculations based on hybrid density functional theory. Our calculated results show that the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} belongs to EL2 deep-level defect in GaAs. Thus, we reveal that the temperature has an important effect on the microstructure of deep-level defects and defect energy level in gallium arsenide that EL2 and EL6 deep-level defects have a certain correlation, which means they could transform into each other. Controlling temperature in the growth process of GaAs could change the microstructure of deep-level defects and defect energy levels in gallium arsenide materials, whereby affects the electron transport properties of materials.

  14. Study of current instabilities in high resistivity gallium arsenide; Etude des instabilites de courant dans l'arseniure de gallium de haute resistivite

    Energy Technology Data Exchange (ETDEWEB)

    Barraud, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    We have shown the existence and made a study of the current oscillations produced in high-resistivity gallium arsenide by a strong electric field. The oscillations are associated with the slow travelling of a region of high electrical field across the whole sample. An experimental study of the properties of these instabilities has made it possible for us to distinguish this phenomenon from the Gunn effect, from acoustic-electric effects and from contact effects. In order to account for this type of instability, a differential trapping mechanism involving repulsive impurities is proposed; this mechanism can reduce the concentration of charge carriers in the conduction band at strong electrical fields and can lead to the production of a high-field domain. By developing this model qualitatively we have been able to account for all the properties of high-resistance gallium arsenide crystals subjected to a strong electrical field: increase of the Hall constant, existence of a voltage threshold for these oscillations, production of domains of high field, low rate of propagation of these domains, and finally the possibility of inverting the direction of the propagation of the domain without destroying the latter. A quantitative development of the model makes it possible to calculate the various characteristic parameters of these instabilities. Comparison with experiment shows that there is a good agreement, the small deviations coming especially from the lack of knowledge concerning transport properties in gallium arsenide subjected to high fields. From a study of this model, it appears that the instability phenomenon can occur over a wide range of repulsive centre concentrations, and also for a large range of resistivities. This is the reason why it appears systematically in gallium arsenide of medium and high resistivity. (authors) [French] Nous avons mis en evidence et etudie des oscillations de courant qui se produisent a champ electrique eleve dans l'arseniure de

  15. Gallium arsenide injection lasers

    International Nuclear Information System (INIS)

    Thompson, G.H.B.

    1975-01-01

    The semiconductor injection laser includes a thin inner GaAs p-n junction layer between two outer GaAlAs layers which are backed by further thin outer GaAlAs layers with a heavier doping of AlAs. This reduces optical losses. Optical energy is further confined within the inner layers and the lasing threshold reduced by added outer GaAs layers of low electrical and thermal resistivity

  16. Indium Arsenide Nanowires

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal

    -ray diffraction. InAs NWs can be used in a broad range of applications, including detectors, high speed electronics and low temperature transport measurements, but in this thesis focus will be put on biological experiments on living cells. Good control of Au-assisted InAs NW growth has been achieved......This thesis is about growth of Au-assisted and self-assisted InAs nanowires (NWs). The wires are synthesized using a solid source molecular beam epitaxy (MBE) system and characterized with several techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x...... by a systematic study to optimize the growth conditions; first the Au deposition, then the growth temperature and finally the beam fluxes. For further control of the growth, Au droplets have been positioned with electron beam lithography and large scale arrays with a > 99 % yield have been made on 2 inch...

  17. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  18. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C

    Science.gov (United States)

    Helmy, Hassan M.; Bragagni, Alessandro

    2017-11-01

    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  19. Atmospheric pressure chemical vapour deposition of vanadium arsenide thin films via the reaction of VCl4 or VOCl3 with tBuAsH2

    International Nuclear Information System (INIS)

    Thomas, Tegan; Blackman, Christopher S.; Parkin, Ivan P.; Carmalt, Claire J.

    2013-01-01

    Thin films of vanadium arsenide were deposited via the dual-source atmospheric pressure chemical vapour deposition reactions of VCl 4 or VOCl 3 with t BuAsH 2 . Using the vanadium precursor VCl 4 , films were deposited at substrate temperatures of 550–600 °C, which were black-gold in appearance and were found to be metal-rich with high levels of chlorine incorporation. The use of VOCl 3 as the vanadium source resulted in films being deposited between 450 and 600 °C and, unlike when using VCl 4 , were silver in appearance. The films deposited using VOCl 3 demonstrated vanadium to arsenic ratios close to 1:1, and negligible chlorine incorporation. Films deposited using either vanadium precursor were identified as VAs using powder X-ray diffraction and possessed borderline metallic/semiconductor resistivities. - Highlights: • Formation of VAs films via atmospheric pressure chemical vapour deposition. • Films formed using VCl 4 or VOCl 3 and t BuAsH 2 . • Powder X-ray diffraction showed that crystalline VAs films were deposited. • Films from VOCl 3 had a V:As ratio close to 1 with negligible Cl incorporation. • Films were silver and possessed borderline metallic/semiconductor resistivities

  20. A novel wide range, real-time neutron fluence monitor based on commercial off the shelf gallium arsenide light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B., E-mail: bhaskar.mukherjee@uk-essen.de [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany); Hentschel, R. [Strahlenklinik, University Hospital Essen (Germany); Lambert, J. [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany); Deya, W. [Strahlenklinik, University Hospital Essen (Germany); Farr, J. [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany)

    2011-10-01

    Displacement damage produced by high-energy neutrons in gallium arsenide (GaAs) light emitting diodes (LED) results in the reduction of light output. Based on this principle we have developed a simple, cost effective, neutron detector using commercial off the shelf (COTS) GaAs-LED for the assessment of neutron fluence and KERMA at critical locations in the vicinity of the 230 MeV proton therapy cyclotron operated by Westdeutsches Protonentherapiezentrum Essen (WPE). The LED detector response (mV) was found to be linear within the neutron fluence range of 3.0x10{sup 8}-1.0x10{sup 11} neutron cm{sup -2}. The response of the LED detector was proportional to neutron induced displacement damage in LED; hence, by using the differential KERMA coefficient of neutrons in GaAs, we have rescaled the calibration curve for two mono-energetic sources, i.e. 1 MeV neutrons and 14 MeV neutrons generated by D+T fusion reaction. In this paper we present the principle of the real-time GaAs-LED based neutron fluence monitor as mentioned above. The device was calibrated using fast neutrons produced by bombarding a thick beryllium target with 14 MeV deuterons from a TCC CV 28 medical cyclotron of the Strahlenklinik University Hospital Essen.

  1. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons

    International Nuclear Information System (INIS)

    Mukherjee, B.; Simrock, S.; Khachan, J.; Rybka, D.; Romaniuk, R.

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a 60 Co source up to a dose level in excess of 1.0 kGy (1.0 x 10 5 rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong Bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted. (authors)

  2. Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200 °C with implications for arsenic speciation and platinum sequestration in mafic igneous systems

    Science.gov (United States)

    Canali, A. C.; Brenan, J. M.; Sullivan, N. A.

    2017-11-01

    To better understand the Pt-As association in natural magmas, experiments were done at 1200 °C and 0.1 MPa to measure the solubility of Pt and Pt-arsenide phases (melt and sperrylite, PtAs2), as well as to determine the oxidation state, and identify evidence for Pt-As complexing, in molten silicate. Samples consisting of synthetic basalt contained in chromite crucibles were subject to three experimental procedures. In the first, platinum solubility in the synthetic basalt was determined without added arsenic by equilibrating the sample with a platinum source (embedded wire or bead) in a gas-mixing furnace. In the second, the sample plus a Pt-arsenide source was equilibrated in a vacuum-sealed fused quartz tube containing a solid-oxide oxygen buffer. The third approach involved two steps: first equilibrating the sample in a gas-mixing furnace, then with added arsenide melt in a sealed quartz tube. Oxygen fugacity was estimated in the latter step using chromite/melt partitioning of vanadium. Method two experiments done at high initial arsenic activity (PtAs melt + PtAs2), showed significant loss of arsenic from the sample, the result of vapour transfer to newly-formed arsenide phases in the buffer. Method three experiments showed no loss of arsenic, yielding a uniform final distribution in the sample. Analyses of run-product glasses from experiments which did not show arsenic loss reveal significant increase in arsenic concentrations with fO2, varying from ∼10 ppm (FMQ-3.25) to >10,000 ppm (FMQ + 5.5). Despite very high arsenic loadings (>1000 ppm), the solubility of Pt is similar in arsenic-bearing and arsenic-free glasses. The variation in arsenic solubility with fO2 shows a linear relationship, that when corrected for the change in the activity of dissolved arsenic with the melt ferric/ferrous ratio, yields a solubility-fO2 relationship consistent with As3+ as the dissolved species. This result is confirmed by X-ray absorption near edge structure (XANES

  3. a Positron 2D-ACAR Study of the Silicon-Dioxide Interface and the Point Defects in the Semi-Insulating Gallium Arsenide

    Science.gov (United States)

    Peng, Jianping

    The SiO_2-Si system has been the subject of extensive study for several decades. Particular interest has been paid to the interface between Si single crystal and the amorphous SiO_2 which determines the properties and performances of devices. This is significant because of the importance of Si technology in the semiconductor industry. The development of the high-intensity slow positron beam at Brookhaven National Laboratory make it possible to study this system for the first time using the positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique. 2D-ACAR is a well established and is a non-destructive microscopic probe for studying the electronic structure of materials, and for doing the depth-resolved measurements. Some unique information was obtained from the measurements performed on the SiO_2-Si system: Positronium (Ps) atoms formation and trapping in microvoids in both oxide and interface regions; and positron annihilation at vacancy-like defects in the interface region which can be attributed to the famous Pb centers. The discovery of the microvoids in the interface region may have some impact on the fabrication of the next generation electronic devices. Using the conventional 2D-ACAR setup with a ^{22}Na as positron source, we also studied the native arsenic (As) vacancy in the semi -insulating gallium-arsenide (SI-GaAs), coupled with in situ infrared light illumination. The defect spectrum was obtained by comparing the spectrum taken without photo -illumination to the spectrum taken with photo-illumination. The photo-illumination excited electrons from valence band to the defect level so that positrons can become localized in the defects. The two experiments may represent a new direction of the application of positron 2D-ACAR technique on the solid state physics and materials sciences.

  4. The quaternary arsenide oxides Ce{sub 9}Au{sub 5-x}As{sub 8}O{sub 6} and Pr{sub 9}Au{sub 5-x}As{sub 8}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Timo; Hoffmann, Rolf-Dieter; Poettgen, Rainer [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie

    2016-07-01

    The quaternary gold arsenide oxides Ce{sub 9}Au{sub 5-x}As{sub 8}O{sub 6} and Pr{sub 9}Au{sub 5-x}As{sub 8}O{sub 6} were synthesized from the rare earth elements (RE), rare earth oxides, arsenic and gold powder at maximum annealing temperatures of 1173 K. The structures were refined from single crystal X-ray diffractometer data: Pnnm, a=1321.64(6) pm, b=4073.0(3), c=423.96(2), wR2=0.0842, 3106 F{sup 2} values, 160 variables for Ce{sub 9}Au{sub 4.91(4)}As{sub 8}O{sub 6} and Pnnm, a=1315.01(4), b=4052.87(8), c=420.68(1) pm, wR2=0.0865, 5313 F{sup 2} values, 160 variables for Pr{sub 9}Au{sub 4.75(1)}As{sub 8}O{sub 6}. They represent a new structure type and show a further extension of pnictide oxide crystal chemistry. A complex polyanionic gold arsenide network [Au{sub 5}As{sub 8}]{sup 15-} (with some disorder in the gold substructure) is charge compensated with polycationic strands of condensed edge-sharing O rate at RE{sub 4/4} and O rate at RE{sub 4/3} tetrahedra ([RE{sub 4}O{sub 3}]{sub 2}{sup 12+}) as well as RE{sup 3+} cations in cavities.

  5. Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium.

    Science.gov (United States)

    Dau, Phuong D; Vasiliu, Monica; Peterson, Kirk A; Dixon, David A; Gibson, John K

    2017-12-06

    Actinyl chemistry is extended beyond Cm to BkO 2 + and CfO 2 + through transfer of an O atom from NO 2 to BkO + or CfO + , establishing a surprisingly high lower limit of 73 kcal mol -1 for the dissociation energies, D[O-(BkO + )] and D[O-(CfO + )]. CCSD(T) computations are in accord with the observed reactions, and characterize the newly observed dioxide ions as linear pentavalent actinyls; these being the first Bk and Cf species with oxidation states above IV. Computations of actinide dioxide cations AnO 2 + for An=Pa to Lr reveal an unexpected minimum for D[O-(CmO + )]. For CmO 2 + , and AnO 2 + beyond EsO 2 + , the most stable structure has side-on bonded η 2 -(O 2 ), as An III peroxides for An=Cm and Lr, and as An II superoxides for An=Fm, Md, and No. It is predicted that the most stable structure of EsO 2 + is linear [O=Es V =O] + , einsteinyl, and that FmO 2 + and MdO 2 + , like CmO 2 + , also have actinyl(V) structures as local energy minima. The results expand actinide oxidation state chemistry, the realm of the distinctive actinyl moiety, and the non-periodic character towards the end of the periodic table. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Total neutron cross sections of berkelium-249 and californium-249 below 100 eV

    International Nuclear Information System (INIS)

    Benjamin, R.W.; Harvey, J.A.; Hill, N.W.; Pandey, M.S.; Carlton, R.F.

    1979-01-01

    The neutron total cross sections of 249 Bk and 249 Cf have been measured from 0.03 to 100 eV using the Oak Ridge Electron Linear Accelerator (ORELA) as a source of pulsed neutrons. The 1.6 mm dia. cylindrical transmission samples contained initially up to 5.3 mg of 98% 249 Bk and 2% 249 Cf: 4.5 years later, when the final measurements were made, the composition of the samples had become 2.5% 249 Bk, 96.9% 249 Cf, and 0.6% 245 Cm. Samples were cooled with liquid nitrogen to reduce Doppler broadening. Thirty-nine resonances were identified in 249 Bk and analyzed using a single-level Breit-Wigner formalism. Fifty-five resonances were identified in 249 Cf and analyzed using an R-matrix multilevel formalism. Fifty-five resonances were identified in 249 Cf and analyzed using an R-matrix multilevel formalism. The resonance parameters obtained have been used to determine the average level spacings and the s-wave neutron and fission strength functions. Where possible, bound-level parameters were derived to fit the thermal neutron total cross section data

  7. Evolution of magnetic and superconducting phases with doping and pressure in the underdoped iron-arsenide superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hassinger, Elena [Universite de Sherbrooke, Quebec (Canada); Canadian Institute for Advanced Research, Toronto, Ontario (Canada); Max Planck Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Gredat, Gregory; Valade, Fabrice; Rene de Cotret, Samuel; Juneau-Fecteau, Alexandre; Reid, Jean-Philippe; Doiron-Leyraud, Nicolas [Universite de Sherbrooke, Quebec (Canada); Kim, H.; Tanatar, Makariy A.; Prozorov, Ruslan [Ames Laboratory, Ames, Iowa (United States); Shen, B.; Wen, H.H. [Nanjing University (China); Taillefer, Louis [Universite de Sherbrooke, Quebec (Canada); Canadian Institute for Advanced Research, Toronto, Ontario (Canada)

    2015-07-01

    The electrical resistivity ρ of the iron-arsenide superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} was measured in applied pressures up to 2.75 GPa for seven underdoped samples. Six of them are antiferromagnetic at P = 0 with 0.16 < x < 0.24 and one is non-magnetic with x = 0.26. The stripe-like antiferromagnetic ordering temperature T{sub N}, detected as a sharp anomaly in ρ(T), decreases linearly with pressure. For every magnetic sample a second phase appears with pressure at a lower temperature T{sub 0}, which rises with pressure. The critical pressure above which this phase appears decreases with doping going to zero for x = 0.24 just below the critical doping for the magnetic phase. This behaviour is reminiscent of the second magnetic phase appearing in Ba{sub 0.76}Na{sub 0.24}Fe{sub 2}As{sub 2} where the tetragonal symmetry is restored in favour of the scenario in which the nematic order in the iron pnictides is of magnetic origin.

  8. Non-stoichiometric nickel arsenides in nature: The structure of orcelite, Ni5−xAs2 (x = 0.25), from the Bon Accord oxide body, South Africa

    International Nuclear Information System (INIS)

    Bindi, Luca; Tredoux, Marian; Zaccarini, Federica; Miller, Duncan E.; Garuti, Giorgio

    2014-01-01

    Highlights: • The structure of natural orcelite has been solved for the first time. • The non-stoichiometry for orcelite previously reported was confirmed. • Non-stoichiometry could cause disorder phenomena during the crystal growth. - Abstract: The crystal structure of the mineral orcelite, a rare nickel arsenide reported in the literature with the formula Ni 5−x As 2 (with x = 0.23), was refined using intensity data collected from a crystal from the Bon Accord body, South Africa. This study revealed that the structure is hexagonal, space group P6 3 mc, with a = 6.7922(2), c = 12.4975(5) Å, and V = 499.31(3) Å 3 . The refinement of an anisotropic model led to an R index of 0.028 for 412 independent reflections. The orcelite structure can be described as a distorted variant of the Pd 5 Sb 2 structure. The smaller As atoms are in the centres of distorted tetragonal antiprisms, formed by only Ni atoms. The coordination sphere is completed with two additional Ni atoms opposite to the rectangular faces. Electron microprobe data carried out on the same crystal used for the structural study point to the following formula [on the basis of Σ(As + Fe + Sb)=2]: Ni 4.75 (As 1.93 Fe 0.05 Sb 0.02 ). According to the high-quality structure refinement, the minor elements were found to replace As in the structure. An atomic position for Ni was found to be partially occupied (75%), thus confirming the non-stoichiometry for the mineral orcelite previously reported in literature. Such a deviation from the stoichiometry could represent the driving force favouring disorder phenomena during the growth of the mineral

  9. Non-stoichiometric nickel arsenides in nature: The structure of orcelite, Ni{sub 5−x}As{sub 2} (x = 0.25), from the Bon Accord oxide body, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca, E-mail: luca.bindi@unifi.it [Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy); Tredoux, Marian [Department of Geology, University of the Free State, Bloemfontein 9300 (South Africa); Zaccarini, Federica [Department of Applied Geosciences and Geophysics, University of Leoben, Peter Tunner str. 5, A-8700 Leoben (Austria); Miller, Duncan E. [Department of Geology, University of the Free State, Bloemfontein 9300 (South Africa); Garuti, Giorgio [Department of Applied Geosciences and Geophysics, University of Leoben, Peter Tunner str. 5, A-8700 Leoben (Austria)

    2014-07-15

    Highlights: • The structure of natural orcelite has been solved for the first time. • The non-stoichiometry for orcelite previously reported was confirmed. • Non-stoichiometry could cause disorder phenomena during the crystal growth. - Abstract: The crystal structure of the mineral orcelite, a rare nickel arsenide reported in the literature with the formula Ni{sub 5−x}As{sub 2} (with x = 0.23), was refined using intensity data collected from a crystal from the Bon Accord body, South Africa. This study revealed that the structure is hexagonal, space group P6{sub 3}mc, with a = 6.7922(2), c = 12.4975(5) Å, and V = 499.31(3) Å{sup 3}. The refinement of an anisotropic model led to an R index of 0.028 for 412 independent reflections. The orcelite structure can be described as a distorted variant of the Pd{sub 5}Sb{sub 2} structure. The smaller As atoms are in the centres of distorted tetragonal antiprisms, formed by only Ni atoms. The coordination sphere is completed with two additional Ni atoms opposite to the rectangular faces. Electron microprobe data carried out on the same crystal used for the structural study point to the following formula [on the basis of Σ(As + Fe + Sb)=2]: Ni{sub 4.75}(As{sub 1.93}Fe{sub 0.05}Sb{sub 0.02}). According to the high-quality structure refinement, the minor elements were found to replace As in the structure. An atomic position for Ni was found to be partially occupied (75%), thus confirming the non-stoichiometry for the mineral orcelite previously reported in literature. Such a deviation from the stoichiometry could represent the driving force favouring disorder phenomena during the growth of the mineral.

  10. Neutron transmutation doping of gallium arsenide

    International Nuclear Information System (INIS)

    Alexiev, D.

    1987-12-01

    Neutron transmutation doping (NTD) was studied as a means of compensating p-type Cd-doped GaAs. By introducing specific donor concentrations, the net acceptor level was measured and showed a progressive reduction. The NTD constant K = 0.32 donor atoms.cm 3 per cm 2 was also measured. Radiation damage caused by neutron bombardment was annealed and no additional traps were generated

  11. DX centers in indium aluminum arsenide heterostructures

    Science.gov (United States)

    Sari, Huseyin

    DX centers are point defects observed in many n-type doped III-V compound semi conductors. They have unique properties, which include large differences between their optical and thermal ionization energies, and a temperature dependence of the capture cross-sections. As a result of these properties DX centers exhibit a reduction in free carrier concentration and a large persistent photoconductivity (PPC) effect. DX centers also lead to a shift in the threshold voltage of modulation doped field effect transistors (MODFET) structures, at low temperatures. Most of the studies on this defect have been carried out on the Ga xAl1-xAs material system. However, to date there is significantly less work on DX centers in InxAl1-xAs compounds. This is partly due to difficulties associated with the growth of defect free materials other than lattice matched In0.52Al 0.48As on InP and partly because the energy level of the DX center is in resonance with the conduction band in In0.52Al0.48As. The purpose of this dissertation is to extend the DX center investigation to InAlAs compounds, primarily in the indirect portion of the InAlAs bandgap. In this work the indium composition dependence of the DX centers in In xAl1-xAs/InyGa1-yAs-based heterostructure is studied experimentally. Different InxAl 1-xAs epitaxial layers with x = 0.10, x = 0.15, x = 0.20, and x = 0.34 in a MODFET-like heterostructure were grown by Molecular Beam Epitaxy (MBE) on (001) GaAs substrates. In order to compensate the lattice mismatch between epitaxial layers and their substrates, step-graded buffer layers with indium composition increments of x = 0.10, every 2000 A, were used. For the samples grown with different indium contents Hall measurements as a function of both temperature and different cooling biases were performed in order to determine their carrier concentrations. A self consistent Poisson-Schrodinger numerical software is used to model the heterostructures. With the help of this numerical model and the grand canonical ensemble (GCE) the energy levels of the DX centers relative to the conduction band edge were estimated. The optical properties of the DX centers were also investigated using a 1.0 mum thick, Si-doped bulk-like GaAlAs epitaxial layer grown by MBE on a GaAs substrate. A conductivity modulation experiment using a stripe-patterned mask has been performed at 77°K. A conductivity difference, up to 10 4 along parallel and perpendicular directions relative to the stripes, has been measured. The difference in conductivity is a result of the large PPC effect of the DX centers and clearly indicates the localized nature of these deep levels.

  12. Gallium arsenide detectors for minimum ionizing particles

    International Nuclear Information System (INIS)

    Beaumont, S.B.; Bertin, R.; Booth, C.N.; Buttar, C.; Capiluppi, C.; Carraresi, L.; Cindolo, F.; Colocci, M.; Combley, F.H.; D'Auria, S.; Del Papa, C.; Dogru, M.; Edwards, M.; Fiori, F.; Foster, F.; Francescato, A.; Gray, R.; Hill, G.; Hou, Y.; Houston, P.; Hughes, G.; Jones, B.K.; Lynch, J.G.; Lisowsky, B.; Matheson, J.; Nava, F.; Nuti, M.; O'Shea, V.; Pelfer, P.G.; Raine, C.; Santana, J.; Saunders, I.J.; Seller, P.H.; Shankar, K.; Sharp, P.H.; Skillicorn, I.O.; Sloan, T.; Smith, K.M.; Tartoni, N.; Ten Have, I.; Turnbull, R.M.; Vanni, U.; Vinattieri, A.; Zichichi, A.

    1993-01-01

    Progress on the development of GaAs solid state detectors is presented. 80% charge collection efficiency has been achieved, and double sided detectors with metal rectifying contacts have been tested. Measurements of capacitance and tests with SEM are giving more information on the behaviour of these devices. (orig.)

  13. Development of gallium arsenide gamma spectrometric detector

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kuru, I.

    1975-03-01

    GaAs semiconductor material has been considered to be a suitable material for gamma-ray spectrometer operating at room temperature since it has a wid-band gap, larger than that of silicon and germanium. The basic objective of this work is to develop a GaAs gamma-ray spectrometric detector which could be used for gamma spectrometric measurement of uranium and plutonium in nuclear fuel safeguards. Liquid phase epitaxial techniques using iron (Fe) as dopant have been developed in making high purity GaAs crystals suitable for gamma-ray spectrometer operating at room temperature. Concentration of Fe in the epitaxial crystal was controlled by initial growth temperature. The best quality epitaxial crystal was obtained under the following conditions: starting temperature is about 800degC, the proportion of Fe to Ga solvent is 1 to 300. Carrier concentration of epitaxial crystals grown distributed in the ranges of 10 12 cm -3 to 10 14 cm -3 at room temperature. The thickness of the crystals ranged from 38 μm to 120 μm. Au-GaAs surface barrier detector was made of epitaxial crystal. Some of the detector were encapsulated in a can with a 50 μm Be window by welding a can to the detector holder. The detector with high energy resolution and good charge collecting characteristics was selected by alpha spectrometry at room temperature. Energy resolution of the detector for gamma-rays up to about 200 keV was very good at room temperature operation. The best energy resolutions taken with a GaAs detector were 3 keV (fwhm) and 3.8 keV for 241 Am 59.6 keV and 57 Co 122 keV, respectively, at room temperature. In order to study the applicability of the detector for nuclear safeguards, the measurements of 235 U gamma-ray spectrum have been carried out at room temperature. It was clarified that the gamma-ray spectrum of enriched U sample could be measured in high resolution with GaAs detector at room temperature, and that the content of 235 U in enriched U sources could be determined by measuring gamma-ray spectrum with GaAs detector. However, gamma-ray counting efficiency of the detector was not enough to built portable type instrument of gamma-ray spectrometer used for routine works of nuclear safeguards. In order to improve gamma-ray counting efficiency of the detector, double-epitaxial-layer detector has been studied. The preliminary results showed that the improvement of the detector gamma-ray counting efficiency was possible by using double-epitaxial-layer structure. It was also clarified that the good quality GaAs crystal was a key to obtaining a low noise, good charge collection detector

  14. Selenium implantation in epitaxial gallium arsenide layers

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.; Yuge, Y.; Kohzu, H.

    1981-01-01

    Selenium implantation at room temperature in S-doped epitaxial GaAs layers as a means of the formation of n + layers has been investigated. Doping profiles for Se-implanted layers have been examined by a C-V technique and/or a differential Hall effect method. It has been shown that n + layers with a maximum carrier concentration of approx. equal to1.5 x 10 18 cm -3 can be formed by implantation followed by a 15 min annealing at 950 0 C. Contact resistance of ohmic electrodes is reduced by use of the Se-implanted n + layers, resulting in the improvement on GaAs FET performance. Measured minimum noise figure of the Se-implanted GaAs FETs is 0.74 dB at 4 GHz. (orig.)

  15. Gallium Arsenide and Related Compounds, 1986.

    Science.gov (United States)

    1986-01-01

    F-Yiuang, WL,, PK Rhattacharva, UDas, A Chin , IJlackson and D L Persechini 417 -422 High quality lattice matched lnGaAs/InP heterostructures prepared...Sci. Technol. B3 1162. Schwartz G. P. 1983 Thin solid Films 103 3. Spicer W. E., Lindau I., Skeath P. R., Su C Y. and Chye P. W. 19R0 Phys. Rev. Lett... Chin R, Nakano K, and Milano R A 1981 IEEE J. Quantum Electron. QEJJ7, 275. Murgatroyd I J, Norman A G, and Booker G R 1986 Phys. Rev. Lett

  16. Evaluation of thermal neutron cross-sections and resonance integrals of protactinium, americium, curium, and berkelium isotopes

    International Nuclear Information System (INIS)

    Belanova, T.S.

    1994-12-01

    Data on the thermal neutron fission and capture cross-sections as well as their corresponding resonance integrals are reviewed and analysed. The data are classified according to the form of neutron spectra under investigation. The weighted mean values of the cross-sections and resonance integrals for every type of neutron spectra were adopted as evaluated data. (author). 87 refs, 2 tabs

  17. Oxidation-reduction properties of americium, curium, berkelium, californium, einsteinium and fermium, and thermodynamic consequences for the 5f series

    International Nuclear Information System (INIS)

    Samhoun, K.

    1976-01-01

    The amalgamation of 5f elements from Am to Fm has been studied by using 241 Am, 244 Cm, 249 Bk, 249 Cf, 252 Cf, 253 Es, 254 Es, 252 Fm and 255 Fm with two electrochemical methods, radiocoulometry and radiopolarography, perfectly adapted to investigate extremely diluted solutions when the concentration of electroactive species is as low as 10 -16 M. The theory of radiocoulometry has been developed in the general cases of reversible and irreversible electrode process. It has been used to interpret the experimental data on the kinetic curves of amalgamation, and to estimate the standard rate constant of the electrode process in complexing medium (citric). On the other hand the radiopolarographic method has been applied to study the mechanism of reduction at the dropping mercury electrode of cations M 3+ in aqueous medium to the metal M with formation of amalgam. The results are exploited into two directions: 1- Acquisition of some data concerning the oxidation-reduction properties of elements from Am to Fm. Therefore the standard electrode E 0 [M(III-0)] potentials for Bk, Cf and Es, and the standard electrode E 0 [M(II-0)] potential for Fm are estimated and the relative stability of each oxidation state (from II to VII) of 5f elements is discussed; 2- Acquisition of unknown thermodynamic data on transcalifornium elements. Correlations between 4f and 5f elements are precised and some divergences appear for the second half of 4f and 5f series (i.e. for 65 [fr

  18. Narrowing the gap: from semiconductor to semimetal in the homologous series of rare-earth zinc arsenides RE(2-y)Zn4As4·n(REAs) and Mn-substituted derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs) (RE = La-Nd, Sm, Gd).

    Science.gov (United States)

    Lin, Xinsong; Tabassum, Danisa; Mar, Arthur

    2015-12-14

    A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.

  19. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules

    Science.gov (United States)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  20. Clinical evaluation of dentin hypersensitivity treatment with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl Avaliação clínica do tratamento da hiperestesia dentinária com laser de baixa potência de Arseniato de Gálio-Alumínio - AsGaAl

    Directory of Open Access Journals (Sweden)

    Luciana Chucre Gentile

    2004-12-01

    Full Text Available The dentin hypersensitivity is a painful condition rather prevalent in the general population. There are several ways of treatment for such condition, including the low intensity lasers. The proposal of this study was to verify the effectiveness of the Gallium-Aluminum-Arsenide diode laser in the treatment of this painful condition, using a placebo as control. MATERIALS AND METHODS: Thirty-two patients were selected, 22 females and 10 males, with ages ranging from 20 to 52 years old. The 32 patients were randomly distributed into two groups, treated and control; the sample consisted of 68 teeth, 35 in the treated group and 33 in the control group. The treated group was exposed to six laser applications with intervals from 48 to 72 hours, and the control group received, as placebo, applications of a curing light. RESULTS: A significant reduction was observed in the pain condition between the initial phase and after six laser applications; however, such reduction could also be observed for the control group exposed to the placebo. CONCLUSION: Therapy with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl induces a statistically significant reduction in the painful condition after each application and between the beginning and end of treatment, although there was no statistically significant difference between the treated group (laser and the control group (placebo at the end of treatment and after the mediate evaluation results (after 6 weeks, this way impairing the real measurement of laser effectiveness and placebo effect.A hiperestesia dentinária trata-se de uma condição dolorosa bastante prevalente nas populações mundiais. Várias são as modalidades de tratamento para tal condição, entre elas, os lasers de baixa potência. A proposta deste estudo foi a de verificar a efetividade do laser de diodo de Arseniato de Gálio-Alumínio no tratamento desta condição dolorosa, utilizando-se um placebo como controle. MATERIAIS E M

  1. Radiation annealing of gallium arsenide implanted with sulphur

    CERN Document Server

    Ardyshev, V M

    2002-01-01

    Sulfur ions were implanted in a semi-insulating GaAs. Photon annealing (805 deg C/(10-12) s) and the thermal one (800 deg C/30 min) were conducted under SiO sub 2 -films coating obtained by different ways. Contents of GaAs components in films were determined from Rutherford backscattering spectra; concentration profiles of electrons were measured by the voltage-capacitance method. Diffusion of sulfur was shown to go in two directions - to the surface and into bulk of GaAs. The first process was induced by vacancies that had been formed near the surface of semiconductors during the dielectric coating. The coefficient of the bulk-diffusion and diffusion-to-surface of sulfur ions under photon annealing was twice as much as that under thermal one. The doping efficiency was also larger

  2. Supralinear photoconductivity of copper doped semi-insulating gallium arsenide

    Science.gov (United States)

    Schoenbach, K. H.; Joshi, R. P.; Peterkin, F.; Druce, R. L.

    1995-05-01

    The high gain effect was shown to be a threshold effect and was dependent on the photoactivation energy level. For the studied material, laser energy densities in the order of 10 mJ cm(sup - 2) for a laser pulse duration of 200 ps were needed to switch into the high gain mode. The observed supralinear behavior of the peak photoconductivity and the charge carrier lifetime can be accounted by the shifts in quasi Fermi levels and the occupancy of copper states within the forbidden gap. Numerical simulations were also presented that yielded quantitative values for the trapping cross sections and recombination center densities. From the perspective of applications, the GaAs:Si:Cu material had great potential for high-power repetitive switching and photodetection.

  3. Supralinear photoconductivity of copper doped semi-insulating gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbach, K.H.; Joshi, R.P.; Peterkin, F. [Physical Electronics Research Institute, Old Dominion University, Norfolk, Virginia 23529 (United States); Druce, R.L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1995-05-15

    We report on the intensity dependent supralinear photoconductivity in GaAs:Si:Cu material. The results of our measurements show that the effective carrier lifetime can change over two orders of magnitude with variations in the intensity of the optical excitation. A threshold intensity level has been observed and can be related to the occupancy of the deep copper level. Numerical simulations have also been carried out to analyze the trapping dynamics. The intensity dependent lifetimes obtained from the simulations match the experimental data very well. Finally, based on the nonlinear intensity dependence of the effective lifetimes, a possible low-energy phototransistor application for the GaAs:Cu material system is presented. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  5. Temperature dependence of the two photon absorption in indium arsenide

    International Nuclear Information System (INIS)

    Berryman, K.W.; Rella, C.W.

    1995-01-01

    Nonlinear optical processes in semiconductors have long been a source of interesting physics. Two photon absorption (TPA) is one such process, in which two photons provide the energy for the creation of an electron-hole pair. Researchers at other FEL centers have studied room temperature TPA in InSb, InAs, and HgCdTe. Working at the Stanford Picosecond FEL Center, we have extended and refined this work by measuring the temperature dependence of the TPA coefficient in InAs over the range from 80 to 350 K at four wavelengths: 4.5, 5.06, 6.01, and 6.3 microns. The measurements validate the functional dependence of recent band structure calculations with enough precision to discriminate parabolic from non-parabolic models, and to begin to observe smaller effects, such as contributions due to the split-off band. These experiments therefore serve as a strong independent test of the Kane band theory, as well as providing a starting point for detailed observations of other nonlinear absorption mechanisms

  6. Optical verification of the valence band structure of cadmium arsenide

    NARCIS (Netherlands)

    Gelten, M.J.; Es, van C.M.; Blom, F.A.P.; Jongeneelen, J.W.F.

    1980-01-01

    Optical absorption measurements were performed on thin single crystalline samples of Cd3As2 at temperatures of 300 K and 10 K. At low temperature the interband absorption coefficient shows clearly two steps due to direct transitions from the heavy hole and light hole valence bands to the conduction

  7. Shallow doping of gallium arsenide by recoil implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Souza, J.P. de; Rutz, R.F.; Cardone, F.; Norcott, M.H.

    1989-01-01

    Si atoms were recoil-implanted into GaAs by bombarding neutral (As + ) or dopant (Si + ) ions through a thin Si cap. The bombarded samples were subsequently rapid thermally or furnace annealed at 815-1000 degree C in Ar or arsine ambient. The presence of the recoiled Si in GaAs and resulting n + -doping was confirmed by secondary ion mass spectrometry and Hall measurements. It was found that sheet resistance of 19 cm 3 and the annealing temperature was > 850 degree C. The present electrical data show that the recoil implant method is a viable alternative to direct shallow implant for n + doping of GaAs. 7 refs., 3 figs., 1 tab

  8. Electrical properties of gallium arsenide irradiated with electrons and neutrons

    International Nuclear Information System (INIS)

    Kol'chenko, T.I.; Lomako, V.M.

    1975-01-01

    A study was made of changes in the electrical properties of GaAs doped with Te, S, Se, Si, Ge, Sn (n 0 approximately 10 16 -10 18 cm -3 ) and irradiated either with 2.5-28 MeV electrons or with fast reactor neutrons. An analysis of changes in the electron density indicated that the rate of carrier removal by electron bombardment was independent of the dopant but was governed by isolated radiation defects. The change in the mobility due to irradiation with 2.5-10 MeV electrons was also governed by isolated defects. When the electron energy was increased to 28 MeV the main contribution to the change in the mobility was made by defect clusters. In the neutron-irradiation case the changes in the carrier density and mobility were mainly due to defect clusters and the nature of changes in the electrical properties was again independent of the dopant

  9. Nanoscale characterisation of electronic and spintronic nitrides and arsenides

    International Nuclear Information System (INIS)

    Fay, M W; Han, Y; Edmonds, K W; Wang, K; Campion, R P; Gallagher, B L; Foxon, C T; Hilton, K P; Masterton, A; Wallis, D; Balmer, R S; Uren, M J; Martin, T; Brown, P D

    2006-01-01

    The limits of applicability of the nanoscale spatial resolution analysis techniques of EFTEM, CBED and dark field imaging as applied to ohmic contacts to AlGaN/GaN and Mn distribution within Ga 1-x Mn x As epilayers are considered. EFTEM can be limited by acquisition times necessitating the post processing of images to compensate for sample drift. Complementary technique of assessment are required to address problems of peak overlaps in energy loss spectra or signal to noise problems for low elemental concentrations. The use of 002 dark field imaging to appraise Ga 1-x Mn x As epilayers is demonstrated

  10. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    Science.gov (United States)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In-alloyed GaAs. It is found that the PL intensity contrast between bright and dark areas correlates with the ratio of the lifetimes measured using PECS in these areas. Thus, the PL intensity contrast is due to the difference in the carrier lifetimes in the different regions. The carrier lifetimes in the bright and dark regions have different temperature dependences. (Abstract shortened with permission of author.).

  11. Experimental studies on the photoemission of gallium arsenide crystals

    International Nuclear Information System (INIS)

    Westermann, M.

    2003-04-01

    In this thesis the study influence of residual gases on the lifetime, the temperature dependence of the quantum yield, and the influence of activation with potassium on both effects for GaAs-photocathodes is described. (HSI)

  12. Indium arsenide-on-SOI MOSFETs with extreme lattice mismatch

    Science.gov (United States)

    Wu, Bin

    Both molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) have been used to explore the growth of InAs on Si. Despite 11.6% lattice mismatch, planar InAs structures have been observed by scanning electron microscopy (SEM) when nucleating using MBE on patterned submicron Si-on-insulator (SOI) islands. Planar structures of size as large as 500 x 500 nm 2 and lines of width 200 nm and length a few microns have been observed. MOCVD growth of InAs also generates single grain structures on Si islands when the size is reduced to 100 x 100 nm2. By choosing SOI as the growth template, selective growth is enabled by MOCVD. Post-growth pattern-then-anneal process, in which MOCVD InAs is deposited onto unpatterned SOI followed with patterning and annealing of InAs-on-Si structure, is found to change the relative lattice parameters of encapsulated 17/5 nm InAs/Si island. Observed from transmission electron diffraction (TED) patterns, the lattice mismatch of 17/5 nm InAs/Si island reduces from 11.2 to 4.2% after being annealed at 800°C for 30 minutes. High-k Al2O3 dielectrics have been deposited by both electron-beam-enabled physical vapor deposition (PVD) and atomic layer deposition (ALD). Films from both techniques show leakage currents on the order of 10-9A/cm2, at ˜1 MV/cm electric field, breakdown field > ˜6 MV/cm, and dielectric constant > 6, comparable to those of reported ALD prior arts by Groner. The first MOSFETs with extreme lattice mismatch InAs-on-SOI channels using PVD Al2O3 as the gate dielectric are characterized. Channel recess was used to improve the gate control of the drain current.

  13. Sources of spontaneous emission based on indium arsenide

    International Nuclear Information System (INIS)

    Zotova, N. V.; Il'inskaya, N. D.; Karandashev, S. A.; Matveev, B. A.; Remennyi, M. A.; Stus', N. M.

    2008-01-01

    The results obtained for light-emitting diodes based on heterostructures that contain InAs in the active region and are grown by the methods of liquid-phase, molecular-beam, and vapor-phase epitaxy from organometallic compounds are reviewed. The emission intensity, the near-field patterns, and the light-current and current-voltage characteristics of light-emitting diodes that have flip-chip structure or feature a point contact are analyzed.

  14. Sources of spontaneous emission based on indium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Zotova, N V; Il' inskaya, N D; Karandashev, S A; Matveev, B. A., E-mail: bmat@iropt3.ioffe.rssi.ru; Remennyi, M A; Stus' , N M [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2008-06-15

    The results obtained for light-emitting diodes based on heterostructures that contain InAs in the active region and are grown by the methods of liquid-phase, molecular-beam, and vapor-phase epitaxy from organometallic compounds are reviewed. The emission intensity, the near-field patterns, and the light-current and current-voltage characteristics of light-emitting diodes that have flip-chip structure or feature a point contact are analyzed.

  15. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    Science.gov (United States)

    2015-02-09

    13  Figure 11. (a) Contour plot of device EOL efficiency as a function of emitter and i-region thickness for a 1MeV electron...fluence dose of 2x1015cm-2 (b) EOL I-V characteristic of the device...expanded our simulations to include the effect of radiation degradation to assess the end of life ( EOL ) efficiencies of these devices in space. Figure 10

  16. Electrodeposition of epitaxial CdSe on (111) gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Cachet, H.; Cortes, R.; Froment, M. [Universite Pierre et Marie Curie, Paris (France). Phys. des Liquides et Electrochimie; Etcheberry, A. [Institut Lavoisier (IREM) UMR CNRS C0173, Universite de Versailles- St Quentin en Yvelynes, 45 Avenue des Etats Unis, 78035, Versailles (France)

    2000-02-21

    Epitaxial growth of CdSe has been achieved on GaAs(111) by electrodeposition from an aqueous electrolyte. The structure of the film corresponds to the cubic modification of CdSe. The quality of epitaxy has been investigated by reflection high energy electron diffraction, transmission electron microscopy and X-ray diffraction techniques. By XPS measurements the chemistry of the CdSe/GaAs interface and the composition of CdSe are determined. (orig.)

  17. Temperature dependence of electron concentration in cadmium arsenide

    NARCIS (Netherlands)

    Gelten, M.J.; Blom, F.A.P.

    1979-01-01

    From measurements of the temperature dependence of the electron concentration in Cd 3 As 2 , we found values for the conduction-band parameters that are in good agreement with those recently reported by Aubin, Caron, and Jay-Gerin. However, in contrast with these authors we found no small overlap,

  18. Multifunctional homojunction gallium arsenide n–p–m-structure

    Directory of Open Access Journals (Sweden)

    Karimov A. V.

    2009-11-01

    Full Text Available The brief information about created phototransistor nGaAs–рGaAs–Ag-structure are given. The processes of photogeneration of carriers in the base and in the space-charge layers of semiconductor junction as well as of metal — semiconductor junction are analyzed depending on the mode of inclusion. It is shown the multifunctionality of offered homojunction structure that is perspective for creating the optical receiver or the optical transformer.

  19. Electron transport in erbium arsenide:indium gallium(aluminum)arsenide metal/semiconductor nanocomposites for thermoelectric power generation

    Science.gov (United States)

    Bahk, Je-Hyeong

    Electron transport in thin film ErAs:InGa(Al)As metal/semiconductor nanocomposite materials grown by molecular beam epitaxy is investigated experimentally and theoretically for efficient thermoelectric power generation. Thermoelectric properties such as the Seebeck coefficient, the electrical conductivity, and the thermal conductivity are measured for the various compositions of the material up to 840 K. A special sample preparation method is proposed to protect the thin films from damage and/or decomposition, and prevent the parasitic substrate conduction effect during the high temperature measurements. The sample preparation method includes surface passivation, high temperature metallization with a diffusion barrier, and the covalent oxide bonding technique for substrate removal. The experimental results for the nanocomposite materials are analyzed using the Boltzmann transport equation under the relaxation time approximation. The scattering characteristics of free electrons in the InGa(Al)As is defined by four major scattering mechanisms such as the polar optical phonon scattering, the ionized impurity scattering, the alloy scattering, and the acoustic phonon deformation potential scattering. Combining these scattering mechanisms, the electron transport model successfully fits the temperature-dependent thermoelectric properties of Si-doped InGaAlAs materials, and predicts the figure of merits at various doping levels in various Al compositions. The nanoparticle-electron interaction is modeled as a momentum scattering for free electrons caused by the electrostatic potential perturbation around nanoparticles and the band offset at the interface. The ErAs nanoparticles are assumed to be semi-metals that can donate electrons to the matrix, and positively charged after the charge transfer to build up the screened coulomb potential outside them. The nanoparticle scattering rate is calculated for this potential profile using the partial wave method, and used to analyze the enhancement of the Seebeck coefficient. Finally, the experimental results for the various compositions of the ErAs:InGa(Al)As nanocomposites are fit using the electron transport model and the nanoparticle scattering. It is shown that nanoparticle scattering can enhance the power factor via energy-dependent electron scattering in ErAs:InGaAs system. The figure of merit for the 0.6% ErAs:(InGaAs)0.8(InAlAs) 0.2 lattice matched to InP is measured to be 1.3 at 800 K, and the theory predicts that it can reach 1.9 at 1000 K.

  20. Doped Aluminum Gallium Arsenide (AlGaAs)/Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) Fabrication

    Science.gov (United States)

    2016-09-27

    it as-grown and it densifies as the H leaves when annealed above approximately 500 °C. This densification causes the film to contract, becoming...tensile. The final deposition recipe shown in the Appendix, Section 2 was found after numerous trials and results in a minimum between compressive...marks b) ULVAC etch: 500 -W ICP, 50-W RIE, 4 mT, 16-sccm BCl3, 4-sccm Ar, 12 s (~50 nm)  GaAs etches at 7.54 nm/s after 6-s etch delay. PR etches at

  1. Efeito da terapia com laser de arsenieto de gálio e alumínio (660Nm sobre a recuperação do nervo ciático de ratos após lesão por neurotmese seguida de anastomose epineural: análise funcional Effect of gallium-aluminum-arsenide laser therapy (660Nm on recovery of the sciatic nerve in rats following neurotmesis lesion and epineural anastomosis: functional analysis

    Directory of Open Access Journals (Sweden)

    FA Reis

    2008-06-01

    Full Text Available CONTEXTUALIZAÇÃO: As lesões nervosas periféricas podem comprometer atividades diárias de um indivíduo e resultam em perda da sensibilidade e motricidade do território inervado. OBJETIVO: Com o intuito de acelerar os processos regenerativos, objetivou-se analisar a influência da aplicação do laser de arsenieto de gálio e alumínio (AsGaAl, 660Nm sobre a recuperação funcional do nervo ciático de ratos. MATERIAIS E MÉTODOS: O nervo ciático de 12 ratos Wistar foi submetido à lesão por neurotmese e anastomose epineural e divididos em dois grupos: controle e laserterapia. Após a lesão, utilizou-se o laser de GaAlAs, 660Nm, 4J/cm², 26,3mW, feixe de 0,63cm², em três pontos eqüidistantes sobre a lesão, por 20 dias. As impressões das pegadas dos animais foram obtidas antes e após (sete, 14 e 21 dias pós-operatórios o procedimento cirúrgico e calculou-se o índice funcional do ciático (IFC. RESULTADOS: A comparação do IFC não resultou em diferença significante (p>0,05 entre os grupos. CONCLUSÕES: Conclui-se que os parâmetros e métodos empregados na laserterapia demonstram resultados nulos sobre o IFC no período avaliado.CONTEXT: Peripheral nerve injuries result in sensory and motor losses in the innervated area and can hinder individuals’ daily activities. Objective: The objective was to analyze the influence of applying gallium-aluminum-arsenide (GaAlAs laser (660Nm on the functional recovery of the sciatic nerve in rats. METHODS: The sciatic nerve of 12 Wistar rats was subjected to injury consisting of neurotmesis and epineural anastomosis. The rats were divided into two groups: control and laser therapy. After the injury, a GaAlAs laser was used (660Nm, 4J/cm², 26.3mW and 0.63cm² beam at three equidistant points on the injury, for 20 days. Footprint impressions were obtained from the animals before and seven, 14 and 21 days after the surgical procedure and the sciatic functional index (SFI was calculated

  2. Short period strain balanced gallium arsenide nitride/indium arsenide nitride superlattice lattice matched to indium phosphide for mid-infrared photovoltaics

    Science.gov (United States)

    Bhusal, Lekhnath

    Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction thermophotovoltaic devices. Integration of the SL structure, which is lattice matched to InP, in the i region of the p(InGaAs)- i(SL) n(InGaAs) diode allowed the possibility of more than two junction thermophotovoltiac device with the enhanced performance in comparison to the conventional p(InGaAs)n(InGaAs) diode.

  3. Design of Indium Arsenide nanowire sensors for pH and biological sensing and low temperature transport through p-doped Indium Arsenide nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra

    With the goal of real time electrical detection of chemical and biological species, nanowires have shown great promise with high sensitivity due to their large surface to volume ratio. While the focus of such electrical detection has shifted to one dimensional semiconductor nanostuctures, Silicon...

  4. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide; Multiband Gutzwiller-Theorie des Bandmagnetismus von LaO-Eisen-Arsenid

    Energy Technology Data Exchange (ETDEWEB)

    Schickling, Tobias

    2012-02-23

    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T{sub c} = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T{sub c} superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  5. The internal strain parameter of gallium arsenide measured by energy-dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Cousins, C.S.G.; Sheldon, B.J.; Webster, G.E.; Gerward, L.; Selsmark, B.; Staun Olsen, J.

    1989-01-01

    The internal strain parameter of GaAs has been measured by observing the stress-dependence of the integrated intensity of the weak 006 reflection, with the compressive stress along the [1anti 10] axis. An energy-dispersive technique was employed so that the reflection could be obtained at a photon energy close to the minimum in the structure factor, thereby approaching closely the strictly-forbidden condition that applies at any energy in the diamond structure. A value anti A=-0.138±0.005, equivalent to a bond-bending parameter ζ=0.55=0.02, has been found. This is in good agreement with recent theoretical calculations and indirect determinations related to the bandstructure of GaAs. (orig.)

  6. Far-infrared reflection-absorption spectroscopy of amorphous and polycrystalline gallium arsenide films

    International Nuclear Information System (INIS)

    Gregory, J.R.

    1992-01-01

    We have reported far-infrared reflection absorption spectra (30-320CM -1 ) at 30 and 310K for nine films of non-stoichiometric GaAs. The FIRRAS measurements were performed using the grazing incidence FIR double-modulation spectroscopy technique first described by DaCosta and Coleman. The films were fabricated by molecular beam deposition on metallized substrates for two As/Ga molecular beam flux ratios. The films were characterized by depth profilometry, IRAS, XRD, and x-ray microprobe analysis. Film thicknesses ranged from 800 to 5800 angstrom and compositions were 45-50% As for a MB flux ratio of 0.29 and 60-70% As for a ratio of 1.12. FIRRAS measurements were made and characterizations performed for as-deposited films and for 5 hour anneals at 473, 573, 673 and 723 degrees C. Vibrational spectra of the crystallized films were interpreted in terms of the exact reflectivity of a thin dielectric film on a conducting substrate, using a classical Lorentzian dielectric function for the response of the film. Resonances appearing in the open-quote forbidden close-quote region between the TO and LO frequencies were modelled with an effective medium approximation and are interpreted as arising from small-scale surface roughness. The behavior of the amorphous film spectra were examined within two models. The effective force constant model describes the variation of the reflection-absorption maxima with measured crystallite size in terms of the effective vibration frequency of 1-D atomic chains having force constants distributed according to the parameters of the crystalline-to-amorphous relaxation length and the crystalline to amorphous force constant ratio. The dielectric function continuum model uses the relaxation of the crystal momentum selection rule to calculate the reflection-absorption spectrum based on a dielectric function in which the oscillator strength is the normalized product of a constant dipole strength and the smoothed vibrational density of states

  7. Transport charge of gallium arsenide films synthesized on polycrystalline silicon by ion ablation

    International Nuclear Information System (INIS)

    Kabyshev, A V; Konusov, F V; Remnev, G E; Pavlov, S K

    2014-01-01

    Electrophysical and photoelectric properties of thin GaAs films deposited on polysilicon by pulse ion ablation using high-power ion beams have been investigated. The predominant charge carriers transfer mechanism in films and the type of dark and photoconductivity have been established. A vacuum annealing effect (10 −2 Pa, 300-1000 K) on energetic and kinetic characteristics of dark and photoconductivity, the transfer mechanism and the type of charge carriers have been determined. The most probable causes of changes in the film electric and photoelectric characteristics have been discussed

  8. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers

    International Nuclear Information System (INIS)

    Yau, Waifan.

    1988-04-01

    Substitutional carbon on an arsenic lattice site is the shallowest and one of the most dominant acceptors in semi-insulating Liquid Encapsulated Czochralski (LEC) GaAs. However, the role of this acceptor in determining the well known ''W'' shape spatial variation of neutral EL2 concentration along the diameter of a LEC wafer is not known. In this thesis, we attempt to clarify the issue of the carbon acceptor's effect on this ''W'' shaped variation by measuring spatial profiles of this acceptor along the radius of three different as-grown LEC GaAs wafers. With localized vibrational mode absorption spectroscopy, we find that the profile of the carbon acceptor is relatively constant along the radius of each wafer. Average values of concentration are 8 x 10E15 cm -3 , 1.1 x 10E15 cm -3 , and 2.2 x 10E15 cm -3 , respectively. In addition, these carbon acceptor LVM measurements indicate that a residual donor with concentration comparable to carbon exists in these wafers and it is a good candidate for the observed neutral EL2 concentration variation. 22 refs., 39 figs

  9. Trapping of positron in gallium arsenide: evidencing of vacancies and of ions with a negative charge

    International Nuclear Information System (INIS)

    Pierre, F.

    1989-12-01

    Vacancy type defects in Ga As as grown and irradiated by electrons are characterized by lifetime of positrons. Positron lifetime increases from 230 ps to 258 and 295 ps in presence of native vacancies in n type Ga As. Configuration of native vacancies changes when Fermi level crosses energy levels localized in the forbidden zone at 0.035eV and at 0.10eV from the bottom of the conduction band. Native vacancies are identified to arsenic vacancies with or without other point defects. Positron lifetime increases from 230 to 260 ps in presence of vacancies produced by low temperature irradiation negative ions are also produced. In irradiated Ga As, these ions trap positrons in competition with vacancies produced by irradiation, showing they have a negative charge. Two annealing zones between 180-300K and 300-600K are presented by vacancies. Ions do not anneal below ambient temperature. Vacancies and negative ions are identified respectively to gallium vacancies and gallium antisite [fr

  10. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1989-01-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. The authors have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, they have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling

  11. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1988-10-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. We have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, we have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling. 4 refs., 4 figs., 2 tabs

  12. High-performance indium gallium phosphide/gallium arsenide heterojunction bipolar transistors

    Science.gov (United States)

    Ahmari, David Abbas

    Heterojunction bipolar transistors (HBTs) have demonstrated the high-frequency characteristics as well as the high linearity, gain, and power efficiency necessary to make them attractive for a variety of applications. Specific applications for which HBTs are well suited include amplifiers, analog-to-digital converters, current sources, and optoelectronic integrated circuits. Currently, most commercially available HBT-based integrated circuits employ the AlGaAs/GaAs material system in applications such as a 4-GHz gain block used in wireless phones. As modern systems require higher-performance and lower-cost devices, HBTs utilizing the newer, InGaP/GaAs and InP/InGaAs material systems will begin to dominate the HBT market. To enable the widespread use of InGaP/GaAs HBTs, much research on the fabrication, performance, and characterization of these devices is required. This dissertation will discuss the design and implementation of high-performance InGaP/GaAs HBTs as well as study HBT device physics and characterization.

  13. Hot electron light emission in gallium arsenide/aluminium(x) gallium(1-x) arsenic heterostructures

    Science.gov (United States)

    Teke, Ali

    In this thesis we have demonstrated the operation of a novel tunable wavelength surface light emitting device. The device is based on a p-GaAs, and n-Ga1- xAlxAs heterojunction containing an inversion layer on the p- side, and GaAs quantum wells on the n- side, and, is referred to as HELLISH-2 (Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure-Type 2). The devices utilise hot electron longitudinal transport and, therefore, light emission is independent of the polarity of the applied voltage. The wavelength of the emitted light can be tuned with the applied bias from GaAs band-to-band transition in the inversion layer to e1-hh1 transition in the quantum wells. In this work tunable means that the device can be operated at either single or multiple wavelength emission. The operation of the device requires only two diffused in point contacts. In this project four HELLISH-2 samples coded as ES1, ES2, ES6 and QT919 have been studied. First three samples were grown by MBE and the last one was grown by MOVPE techniques. ES1 was designed for single and double wavelength operation. ES2 was a control sample used to compare our results with previous work on HELLISH-2 and ES6 was designed for single, double and triple wavelength operation. Theoretical modelling of the device operation was carried out and compared with the experimental results. HELLISH-2 structure was optimised for low threshold and high efficiency operation as based on our model calculations. The last sample QT919 has been designed as an optimised device for single and double wavelength operation like ES1. HELLISH-2 has a number of advantages over the conventional light emitters, resulting in some possible applications, such as light logic gates and wavelength division multiplexing in optoelectronic.

  14. Structural analysis of as-deposited and annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1993-04-01

    The structure of GaAs grown at low substrate temperatures (LT-GaAs) by molecular beam epitaxy has been studied using high resolution X-ray diffraction methods. Double crystal rocking curves from the as-deposited LT-GaAs show well defined interference fringes, indicating a high level of structural perfection. Triple crystal diffraction analysis of the as-deposited sample showed significantly less diffuse scattering near the LT-GaAs 004 reciprocal lattice point compared with the substrate 004 reciprocal lattice point, suggesting that despite the incorporation of approximately 1% excess arsenic, the epitaxial layer had superior crystalline perfection than did the GaAs substrate. Triple crystal scans of annealed LT-GaAs showed an increase in the integrated diffuse intensity by approximately a factor of three as the anneal temperature was increased from 700 to 900°C. Analogous to the effects of SiO2 precipitates in annealed Czochralski silicon, the diffuse intensity is attributed to distortions in the epitaxial LT-GaAs lattice by arsenic precipitates.

  15. High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1992-05-01

    High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.

  16. High-pressure phase transition and phase diagram of gallium arsenide

    Science.gov (United States)

    Besson, J. M.; Itié, J. P.; Polian, A.; Weill, G.; Mansot, J. L.; Gonzalez, J.

    1991-09-01

    Under hydrostatic pressure, cubic GaAs-I undergoes phase transitions to at least two orthorhombic structures. The initial phase transition to GaAs-II has been investigated by optical-transmittance measurements, Raman scattering, and x-ray absorption. The structure of pressurized samples, which are retrieved at ambient, has been studied by x-ray diffraction and high-resolution diffraction microscopy. Various criteria that define the domain of stability of GaAs-I are examined, such as the occurrence of crystalline defects, the local variation in atomic coordination number, or the actual change in crystal structure. These are shown not to occur at the same pressure at 300 K, the latter being observable only several GPa above the actual thermodynamic instability pressure of GaAs-I. Comparison of the evolution of these parameters on increasing and decreasing pressure locates the thermodynamic transition region GaAs-I-->GaAs-II at 12+/-1.5 GPa and at 300 K that is lower than generally reported. The use of thermodynamic relations around the triple point, and of regularities in the properties of isoelectronic and isostructural III-V compounds, yields a phase diagram for GaAs which is consistent with this value.

  17. Elaboration of a semiconductive thin film device technology on the basis of monocrystalline gallium arsenide

    International Nuclear Information System (INIS)

    Antoshenko, V.; Taurbaev, T.; Skirnevskaya, E.; Shorin, V.; Mihajlov, L.; Bajganatova, Sh.

    1996-01-01

    The aim of the project: To elaborate the economical technological process of preparing super thin monocrystalline GaAs substrates and device structures for semiconductive electronics. To realize the project it is necessary to solve following problems: o to elaborate and produce the equipment for preparing of separated films and thin film multilayer structures with p-n-junction; - to study conditions of preparing plane crystal perfect separated Ga(Al)As - films; - to optimize regimes of preparing thin film structures with p- and n-conductive - layers; - to determine the optimal methods of transferring autonomous films and structures over the second substrates; - to work out preparing methods of ohmic contacts and electrical commutation; - to optimize the process of repeated use of initial monocrystalline GaAs substrate; - to prepare the samples of discrete thin film photo- and emitting devices. As the result of project realization there will be created cheap ecological technology of heterojunction optoelectronic devices on the basis of GaAs and AlGaAs solid solutions, the laboratory samples of thin film devices will be presented

  18. Magnetoelectric Effect in Gallium Arsenide-Nickel-Tin-Nickel Multilayer Structures

    Science.gov (United States)

    Filippov, D. A.; Tikhonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-02-01

    Experimental data have been presented for the magnetoelectric effect in nickel-tin-nickel multilayer structures grown on a GaAs substrate by cathodic electrodeposition. The method of fabricating these structures has been described, and the frequency dependence of the effect has been demonstrated. It has been shown that tin used as an intermediate layer reduces mechanical stresses due to the phase mismatch at the Ni-GaAs interface and, thus, makes it possible to grow good structures with a 70-μm-thick Ni layer. The grown structures offer good adhesion between layers and a high Q factor.

  19. Synthesis and characterization of rare-earth oxide transition-metal arsenides and selenides

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, Simon Friedrich

    2017-04-06

    The present thesis includes two different quaternary systems that have been studied extensively. On the one hand, several samples of the REFeAsO{sub 1-x}F{sub x} family of iron-based superconductors were prepared using a novel solid state metathesis reaction, which also provided a possibility to prepare late rare-earth compounds of this family at ambient pressure. Comparison of structural and physical properties of those samples with samples from conventional solid state and high pressure syntheses revealed both, commonalities as well as striking differences. The observations gave reason to the conclusion that superconducting properties strongly depend, beside electronic infl uence, on the structural parameters. On the other hand, the quaternary system RE-T-Se-O with T = Ti-Mn was investigated using a NaI/KI flux mediated synthesis route. It has been shown that oC -La{sub 2}O{sub 2}MnSe{sub 2} is exclusively accessible in su fficient purity by the use of a fl ux material. Therefore, further syntheses in this quaternary system were performed by a flux mediated synthesis route leading to a large amount of new materials. Among them, a new polymorph mC-La{sub 2}O{sub 2}MnSe{sub 2} which forms, together with La{sub 4}MnSe{sub 3}O{sub 4} and La{sub 6}MnSe{sub 4}O{sub 6}, the series La{sub 2n+2}MnSe{sub n+2}O{sub 2n+2}. In addition, the alternative preparation method also enabled a large scale synthesis of the first examples of rare-earth chromium oxyselenides with chromium in the oxidation state +II, namely RE{sub 2}CrSe{sub 2}O{sub 2} (RE = La-Nd), which opened the door to study their magnetism in detail by powder neutron diffraction and muon spin rotation techniques. Research into the La-V-Se-O system revealed the first fi ve quaternary compounds of this family with interesting magnetic properties including ferromagnetism, antiferromagnetism, metamagnetism and more complex behaviour. In addition, the crystal structure of two new quaternary titanium containing oxyselenides were identifi ed and revealed unique structural building blocks that have not been observed in these systems before. The results of this thesis demonstrate not only the power of alternative preparation methods, but also the still increasing structural variety in the discussed quaternary systems. Strategic research in the field of transition-metal oxypnictides and oxychalcogenides, which still include a multiplicity of unknown materials, revealed numerous compounds with interesting physical properties and further investigations will probably uncover also new superconducting materials.

  20. Temperature dependent characterization of gallium arsenide X-ray mesa p-i-n photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G., E-mail: G.Lioliou@sussex.ac.uk; Barnett, A. M. [Semiconductor Materials and Devices Laboratory, Department Engineering and Design, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Meng, X.; Ng, J. S. [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2016-03-28

    Electrical characterization of two GaAs p{sup +}-i-n{sup +} mesa X-ray photodiodes over the temperature range 0 °C to 120 °C together with characterization of one of the diodes as an X-ray detector over the temperature range 0 °C to 60 °C is reported as part of the development of photon counting X-ray spectroscopic systems for harsh environments. The randomly selected diodes were fully etched and unpassivated. The diodes were 200 μm in diameter and had 7 μm thick i layers. The leakage current density was found to increase from (3 ± 1) nA/cm{sup −2} at 0 °C to (24.36 ± 0.05) μA/cm{sup −2} at 120 °C for D1 and from a current density smaller than the uncertainty (0.2 ± 1.2) nA/cm{sup −2} at 0 °C to (9.39 ± 0.02) μA/cm{sup −2} at 120 °C for D2 at the maximum investigated reverse bias (15 V). The best energy resolution (FWHM at 5.9 keV) was achieved at 5 V reverse bias, at each temperature; 730 eV at 0 °C, 750 eV at 20 °C, 770 eV at 40 °C, and 840 eV at 60 °C. It was found that the parallel white noise was the main source of the photopeak broadening only when the detector operated at 60 °C, at 5 V, 10 V, and 15 V reverse bias and at long shaping times (>5 μs), whereas the sum of the dielectric noise and charge trapping noise was the dominant source of noise for all the other spectra.

  1. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G.; Barnett, A.M.

    2016-11-11

    Results characterizing GaAs p{sup +}-i-n{sup +} mesa photodiodes with a 10 µm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 µm and 400 µm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm{sup 2} to 67 nA/cm{sup 2} at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. {sup 55}Fe X-ray spectra were obtained using one 200 µm diameter device and one 400 µm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 µm and 740 eV using the 400 µm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. {sup 63}Ni beta particle spectra obtained using the 200 µm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  2. Optimization of the structure of gallium-arsenide-based detectors with taking into account recombination losses

    International Nuclear Information System (INIS)

    Katsoev, L. V.; Katsoev, V. V.; Il'ichev, E. A.

    2009-01-01

    The model describing the physical processes accompanying the interaction of heavy charged particles with an ionizing-radiation semiconductor detector is proposed. The problem of optimization of electrical characteristics and construction of the detector cell is solved. The model makes it possible to calculate the output current of the detector as a function of its active-region's thickness and the voltage applied across the sensor under conditions of the presence of recombination processes.

  3. Positron annihilation measurements in high-energy alpha-irradiated n-type gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sandip; Mandal, Arunava; SenGupta, Asmita [Visva-Bharati, Department of Physics, Santiniketan, West Bengal (India); Roychowdhury, Anirban [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal (India)

    2015-07-15

    Positron annihilation lifetime spectroscopy and Doppler broadening annihilation line-shape measurements have been carried out in 40-MeV alpha-irradiated n-type GaAs. After irradiation, the sample has been subjected to an isochronal annealing over temperature region of 25-800 C with an annealing time of 30 min at each set temperature. After each annealing, the positron measurements are taken at room temperature. Formation of radiation-induced defects and their recovery with annealing temperature are investigated. The lifetime spectra of the irradiated sample have been fitted with two lifetimes. The average positron lifetime τ{sub avg} = 244 ps at room temperature after irradiation indicates the presence of defects, and the value of τ{sub 2} (262 ps) at room temperature suggests that the probable defects are mono-vacancies. Two distinct annealing stages in τ{sub avg} at 400-600 C and at 650-800 C are observed. The variations in line-shape parameter (S) and defect-specific parameter (R) during annealing in the temperature region 25-800 C resemble the behaviour of τ{sub avg} indicating the migration of vacancies, formation of vacancy clusters and the disappearance of defects between 400 and 800 C. (orig.)

  4. Time-Resolved Studies of Laser-Induced Phase Transitions in Gallium Arsenide

    Science.gov (United States)

    Siegal, Yakir

    This thesis describes a series of time-resolved experiments of the linear and nonlinear optical properties of GaAs during laser-induced phase transitions. The first set of experiments consists of a direct determination of the behavior of the linear dielectric constant at photon energies of 2.2 eV and 4.4 eV following excitation of the sample with 1.9-eV, 70-fs laser pulses spanning a fluence range from 0 to 2.5 kJ/m^2. The results from this set of experiments were used to extract the behavior of the second-order optical susceptibility from second-harmonic generation measurements made under identical excitation conditions. These experiments are unique because they provide explicit information on the behavior of intrinsic material properties--the linear and nonlinear optical susceptibilities--during laser-induced phase transitions in semiconductors without the ambiguities in interpretation that are generally inherent in reflectivity and second-harmonic generation measurements. The dielectric constant data indicate a drop in the average bonding-antibonding splitting of GaAs following the laser pulse excitation. This behavior leads to a collapse of the band-gap on a picosecond time scale for excitation at fluences near the damage threshold of 1.0 kJ/m ^2 and even faster at higher excitation fluences. The changes in the electronic band structure result from a combination of electronic screening by the excited free carriers and structural deformation of the lattice caused by the destabilization of the covalent bonds. The behavior of the second-order susceptibility shows that the material loses long-range order before the average bonding-antibonding splitting, which is more sensitive to short-range structure, changes significantly. Loss of long-range order and a drop of more than 2 eV in the average bonding-antibonding splitting are seen even at fluences below the damage threshold, a regime in which the laser-induced changes are reversible.

  5. AASERT: Rare Earth Arsenides, Magnetic Semi-Metal Epitaxy for Opto-Electronics

    National Research Council Canada - National Science Library

    Palmstrom, Chris

    2000-01-01

    ...). An ultra-high vacuum sample transfer system and a variable temperature scanning tunneling microscope were attached to two already existing molecular beam epitaxy systems and surface science equipment...

  6. Photo-Ultrasonic Study of Extrinsic Photoconductivity in N-Gallium Arsenide

    Science.gov (United States)

    Bradshaw, Randall Grant

    We have measured the velocity of piezoelectrically -active, ultrasonic shear waves between 1.5 K and 68 K for undoped and for oxygen-doped n-type GaAs, during and after illumination at 4.2 K. The results reveal photoconductivity, persistent photoconductivity, and thermally stimulated conductivity. In both samples the Fermi level in the dark is controlled by excess non-shallow donors near 0.2 eV below the conduction band. Analysis of these effects in oxygen-doped material indicates that there are mid-gap and much shallower photoionizable levels and that there is an electron trap near 20 meV below the conduction band. The undoped n-GaAs sample exhibits photoconductivity quenching with photons in the range 0.95-1.26 eV which, by analysis of the quenching rate, is attributed to the EL2 defect. In addition, levels with large hole capture coefficients have been detected.

  7. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  8. Gallium arsenide p+–n–p+-structures with impoverished base area

    Directory of Open Access Journals (Sweden)

    Karimov A. V.

    2009-06-01

    Full Text Available It is displayed experimentally, that the current transport’s mechanism through p+GaAs–nGaAs–p+GaAs-structure is formed by injection-tunnel and generation-recombination mechanisms. Injection-tunnel current prevails at modulation of base’s part which contains defects, and generation-recombination currents are determinative at modulation of base’s part with lesser defectiveness. p+GaAs–nGaAs–p+GaAs-structures are of interest for creating voltage suppressors and electronic switches on their base.

  9. Low-temperature electron irradiation induced defects in gallium arsenide: bulk and surface acoustic wave studies

    International Nuclear Information System (INIS)

    Brophy, M.J. Jr.

    1985-01-01

    Irradiation of GaAs with 2.25 to 2.5 MeV electrons at temperatures below 190 K produces two peaks in ultrasonic attenuation versus temperature. The defects responsible for both peaks have trigonal symmetry and were observed in n-type and semi-insulating GaAs with bulk and surface acoustic waves (SAW) respectively. Bulk waves at eight frequencies between 9 and 130 MHz and SAW at 73 and 145 MHz were used. The reorientation kinetics of both peaks follow the Arrhenius law. The annealing of both peaks was studied with isochronal and isothermal anneals in the temperature range 200 to 335 K. Peak I anneals with a spectrum of activation energies in the range 0.7-1.1 eV between 220 and 335 K. Peak II anneals with a single activation energy of about 1.1 eV above 300K. The different annealing characteristics indicate that these peaks represent two distinct defects. The annealing above 300 K has not been seen in electrical resistivity measurements, but was observed in earlier length change experiments. Irradiation of GaAs:Cr produces no Cr-radiation defect complexes. The attenuation peak associated with Cr 2+ decrease with electron dose, but starts to recover at 150 K

  10. Thermo-chemical properties and electrical resistivity of Zr-based arsenide chalcogenides

    OpenAIRE

    A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu. Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich and R. Kniep

    2007-01-01

    Ternary phases in the systems Zr–As–Se and Zr–As–Te were studied using single crystals of ZrAs1.40(1)Se0.50(1) and ZrAs1.60(2)Te0.40(1) (PbFCl-type of structure, space group P4/nmm) as well as ZrAs0.70(1)Se1.30(1) and ZrAs0.75(1)Te1.25(1) (NbPS-type of structure, space group Immm). The characterization covers chemical compositions, crystal structures, homogeneity ranges and electrical resistivities. At 1223 K, the Te-containing phases can be described with the general formula ZrAsxTe2−x, with...

  11. Ab initio calculations of indium arsenide in the wurtzite phase: structural, electronic and optical properties

    International Nuclear Information System (INIS)

    Dacal, Luis C O; Cantarero, A

    2014-01-01

    Most III–V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the Γ–point of the Brillouin zone (E 0 gap) has been recently measured, E 0 =0.46 eV at low temperature. The electronic gap at the A–point of the Brillouin zone (equivalent to the L–point in the zinc-blende structure, E 1 ) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke–Johnson exchange-correlation potential. Both the E 0 and E 1 gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given. (paper)

  12. Ab initio calculations of indium arsenide in the wurtzite phase: structural, electronic and optical properties

    Science.gov (United States)

    Dacal, Luis C. O.; Cantarero, A.

    2014-03-01

    Most III-V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the \\Gamma -point of the Brillouin zone ({{E}_{0}} gap) has been recently measured, {{E}_{0}}=0.46 eV at low temperature. The electronic gap at the A-point of the Brillouin zone (equivalent to the L-point in the zinc-blende structure, {{E}_{1}}) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke-Johnson exchange-correlation potential. Both the {{E}_{0}} and {{E}_{1}} gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given.

  13. Digital gallium arsenide insertion into the OH-58D Scout helicopter

    Science.gov (United States)

    Misko, Timothy; Andrade, Norm

    1990-10-01

    A very-high-speed sensor processor subsystem (MSPS) is described in terms of its design, fabrication techniques, and applications to fielded military systems. Incorporated in the design are high-speed GaAs and Si integrated circuits and an algorithm for aided target recognition and multiple target tracking. The existing Mast Mounted Sight (MMS) system is described, and the MSPS system is described in detail to permit a comparison of the two system processors. The speed of the proposed system is 100 million instructions/s, and the system operates in parallel and offers 24-bit floating point multiplies and ALU operations and 16 bit integer multiplies internal with 24-bit integer operations and external memory access. The processor employs existing form factor, power supply, operational software, and interfaces, and can be operated at about the same cost with reduced operator workload.

  14. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  15. High temperature X-ray topography on silicon and gallium arsenide

    International Nuclear Information System (INIS)

    Krueger, H.E.

    1976-01-01

    Beginning with a review of the different theories of X-ray scattering on perfect and deformed crystals, results of the dynamic theory relevant specifically for X-ray topography are presented. The reflected intensity recorded in a X-ray topogram is discussed as a function of the angle of incidence, crystal thickness and lateral distribution. These results, together with fundamental relations of the DT which are developed in the annex, give insight into the contrasts induced by defects. Using practical examples Borrmann contrast, contrast produced by point defect agglomerates and dislocations and the Burgers vector method are explained. Thus the whole spectrum of contrast phenomena observed in the experimental part of the paper is presented. The experimental results were achieved with a high-temperature X-ray topography facility constructed for this purpose. The facility is described. (orig./HPOE) [de

  16. Formation of defects at high temperature plastic deformation of gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mikhnovich, V.V.

    2006-03-14

    The purpose of the present thesis consists in acquiring more concrete information concerning the mechanism of the movement of dislocations and types of defects that appear during the process of dislocation motion on the basis of systematic experimental studies of the GaAs deformation. Experimental studies concerning the dependence of the stress of the samples from their deformation at different values of the deformation parameters (like temperature and deformation speed) were conducted in this paper. To determine the concentration of defects introduced in samples during the deformation process the positron annihilation spectroscopy (PAS) method was used. The second chapter of this paper deals with models of movement of dislocations and origination of defects during deformation of the samples. In the third chapter channels and models of positron annihilation in the GaAs samples are investigated. In the forth chapter the used experimental methods, preparation procedure of test samples and technical data of conducted experiments are described. The fifth chapter shows the results of deformation experiments. The sixth chapter shows the results of positron lifetime measurements by the PAS method. In the seventh chapter one can find analyses of the values of defects concentration that were introduced in samples during deformation. (orig.)

  17. Mechanism of Doping Gallium Arsenide with Carbon Tetrachloride During Organometallic Vapor-Phase Epitaxy

    National Research Council Canada - National Science Library

    Warddrip, Michael

    1997-01-01

    .... In addition, the reaction of CC14 with the GaAs(001) surface was monitored in ultrahigh vacuum using infrared spectroscopy, temperature programmed desorption, and scanning tunneling microscopy...

  18. Carrier emission from the electronic states of self-assembled indium arsenide quantum dots

    International Nuclear Information System (INIS)

    Lin, S.W.; Song, A.M.; Missous, M.; Hawkins, I.D; Hamilton, B.; Engstroem, O.; Peaker, A.R.

    2006-01-01

    We have used the new technique of high resolution (Laplace) transient spectroscopy to examine the electronic states of ensembles of self-assembled quantum dots of InAs in a GaAs matrix. These have been produced by solid source MBE. We have monitored the s and p state occupancies as a function of time under thermal excitation over a range of temperatures after electrons have been captured by the quantum dots with different Fermi level positions. This can provide more information about the interaction of the dots with the host matrix than is possible with optical techniques and gives new fundamental insights into how such dots may operate in electronic devices such as memory and sensors. The increase in resolution of Laplace transient spectroscopy over conventional experiments reveals quite specific rates of carrier loss which we attribute to tunnelling at low temperatures and a combination of thermal emission and tunnelling as the temperature is increased

  19. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide

    International Nuclear Information System (INIS)

    Schickling, Tobias

    2012-01-01

    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T c = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T c superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  20. Digital Control of the Czochralski Growth of Gallium Arsenide-Controller Software Reference Manual

    Science.gov (United States)

    1987-07-15

    once a parameter was changed. (2) Despite of the fact that there are analog controllers on the market which feature a high degree of automation...single-zone heater is in use.) - 4 - Kfc ^&S^^ p IS’ K: i 1. Digital Control of Czochralski GaAs Crystal Growth (2) Four tachometers which are...34 if either the overlay name or the program version loaded with the overlay do not match the expected data. (It is important not to mix modules

  1. Digital Logic and Reconfigurable Interconnects Using Aluminum Gallium Arsenide Electro-Optic Fredkin Gates

    Science.gov (United States)

    1994-06-01

    electron microscope (SEM) ispection; Carol Isbil for metallizatlon; Wayland Williams for test circuit design and fabrication; and Samuel Adams and...Patterson Air Force Base, OH, Private Conversations, (1990-1994). 156. M. Heiblum, E. E. Mendez and L. Osterling, "Growth by Molecular Beam Epitaxy...and Characterization of High Purity GaAs and AIGaAs," Journal of ADDlied Physics, Vol. 54, 6982, (1983). 157. M. Heiblum, E. E. Mendez and L. Osterling

  2. Radiation and temperature effects in gallium arsenide, indium phosphide, and silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Statler, R. L.

    1987-01-01

    The effects of radiation on performance are determined for both n+p and p+n GaAs and InP cells and for silicon n+p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1-MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation-induced boron-oxygen defect. Comparison of radiation damage in both p+n and n+p GaAs cells yields a decreased radiation resistance for the n+p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n+p configuration is found to have greater radiation resistance than the p+n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/dT, which predicts that increased Voc should result in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP, a result which is attributed to variations in cell processing.

  3. Ballistic magnetotransport and spin-orbit interaction in indium antimonide and indium arsenide quantum wells

    Science.gov (United States)

    Peters, John Archibald

    While charge transport in a two-dimensional electron system (2DES) is fairly well understood, many open experimental and theoretical questions related to the spin of electrons remain. The standard 2DES embedded in Alx Ga1-xAs/GaAs heterostructures is most likely not the optimal candidate for such investigations, since spin effects as well as spin-orbit interactions are small perturbations compared to other effects. This has brought InSb- and InAs-based material systems into focus due to the possibility of large spin-orbit interactions. By utilizing elastic scattering off a lithographic barrier, we investigate the consequence of spin on different electron trajectories observed in InSb and InAs quantum wells. We focus on the physical properties of spin-dependent reflection in a 2DES and we present experimental results demonstrating a method to create spin-polarized beams of ballistic electrons in the presence of a lateral potential barrier. Spatial separation of electron spins using cyclotron motion in a weak magnetic is also achieved via transverse magnetic focusing. We also explore electrostatic gating effects in InSb/InAlSb heterostructures and demonstrate the effective use of polymethylglutarimide (PMGI) as a gate dielectric for InSb. The dependence on temperature and on front gate voltage of mobility and density are also examined, revealing a strong dependence of mobility on density. As regards front gate action, there is saturation in the density once it reaches a limiting value. Further, we investigate antidot lattices patterned on InSb/InAlSb and InAs/AlGaSb heterostructures. At higher magnetic fields, ballistic commensurability features are displayed while at smaller magnetic fields localization and quantized oscillatory phenomena appear, with marked differences between InSb and InAs. Interesting localization behavior is exhibited in InSb, with the strength of the localization peak decreasing exponentially with temperature between 0.4 K and 50 K. InAs on the other hand show a strikingly modified antilocalization behavior, with small-period oscillations in magnetic field superposed. We also observe Altshuler-Aronov-Spivak oscillations in InSb and InAs antidot lattices and extract the phase and spin coherence lengths in InAs. Our experimental results are discussed in the light of localization and anti localization as probes of disorder and of spin dephasing mechanisms, modified by the artificial potential of the antidot lattice.

  4. Proximity annealing of sulfur-implanted gallium arsenide using a strip heater

    International Nuclear Information System (INIS)

    Banerjee, S.; Baker, J.

    1985-01-01

    A graphite strip heater has been employed for rapid (-- 30 s) thermal annealing (RTA), at temperatures between 850 and 1150 0 C, of Cr-doped GaAs implanted with 120 keV 32 S + with doses between 10 13 and 10 15 cm -2 . In order to minimize the incongruent evaporation of As, proximity anneals were employed by protecting the implanted samples with GaAs cover pieces. RTA yields electrical activation and donor mobilities better than or comparable to furnace annealing, with less redistribution of the implanted S and background Cr. (author)

  5. Synthesis and characterization of rare-earth oxide transition-metal arsenides and selenides

    International Nuclear Information System (INIS)

    Peschke, Simon Friedrich

    2017-01-01

    The present thesis includes two different quaternary systems that have been studied extensively. On the one hand, several samples of the REFeAsO_1_-_xF_x family of iron-based superconductors were prepared using a novel solid state metathesis reaction, which also provided a possibility to prepare late rare-earth compounds of this family at ambient pressure. Comparison of structural and physical properties of those samples with samples from conventional solid state and high pressure syntheses revealed both, commonalities as well as striking differences. The observations gave reason to the conclusion that superconducting properties strongly depend, beside electronic infl uence, on the structural parameters. On the other hand, the quaternary system RE-T-Se-O with T = Ti-Mn was investigated using a NaI/KI flux mediated synthesis route. It has been shown that oC -La_2O_2MnSe_2 is exclusively accessible in su fficient purity by the use of a fl ux material. Therefore, further syntheses in this quaternary system were performed by a flux mediated synthesis route leading to a large amount of new materials. Among them, a new polymorph mC-La_2O_2MnSe_2 which forms, together with La_4MnSe_3O_4 and La_6MnSe_4O_6, the series La_2_n_+_2MnSe_n_+_2O_2_n_+_2. In addition, the alternative preparation method also enabled a large scale synthesis of the first examples of rare-earth chromium oxyselenides with chromium in the oxidation state +II, namely RE_2CrSe_2O_2 (RE = La-Nd), which opened the door to study their magnetism in detail by powder neutron diffraction and muon spin rotation techniques. Research into the La-V-Se-O system revealed the first fi ve quaternary compounds of this family with interesting magnetic properties including ferromagnetism, antiferromagnetism, metamagnetism and more complex behaviour. In addition, the crystal structure of two new quaternary titanium containing oxyselenides were identifi ed and revealed unique structural building blocks that have not been observed in these systems before. The results of this thesis demonstrate not only the power of alternative preparation methods, but also the still increasing structural variety in the discussed quaternary systems. Strategic research in the field of transition-metal oxypnictides and oxychalcogenides, which still include a multiplicity of unknown materials, revealed numerous compounds with interesting physical properties and further investigations will probably uncover also new superconducting materials.

  6. Atomistic simulation studies of iron sulphide, platinum antimonide and platinum arsenide

    CSIR Research Space (South Africa)

    Ngoepe, PE

    2005-09-01

    Full Text Available The authors present the results of atomistic simulations using derived interatomic potentials for the pyrite-structured metal chalcogenides FeS2, PtSb2 and PtAs2. Structural and elastic constants were calculated and compared with experimental...

  7. Studies on deep electronic levels in silicon and aluminium gallium arsenide alloys

    International Nuclear Information System (INIS)

    Pettersson, H.

    1993-01-01

    This thesis reports on investigations of the electrical and optical properties of deep impurity centers, related to the transition metals (TMs) Ti, Mo, W, V and Ni, in silicon. Emission rates, capture cross sections and photoionization cross sections for these impurities were determined by means of various Junction Space Charge Techniques (JSCTs), such as Deep Level Transient Spectroscopy (DLTS), dark capacitance transient and photo capacitance transient techniques. Changes in Gibbs free energy as a function of temperature were calculated for all levels. From this temperature dependence, the changes in enthalpy and entropy involved in the electron and hole transitions were deduced. The influence of high electric fields on the electronic levels in chalcogen-doped silicon were investigated using the dark capacitance transient technique. The enhancement of the electron emission from the deep centers indicated a more complex field enhancement model than the expected Poole-Frenkel effect for coulombic potentials. The possibility to determine charge states of defects using the Poole-Frenkel effect, as often suggested, is therefore questioned. The observation of a persistent decrease of the dark conductivity due to illumination in simplified AlGaAs/GaAs high Electron Mobility Transistors (HEMTs) over the temperature range 170K< T<300K is reported. A model for this peculiar behavior, based on the recombination of electrons in the two-dimensional electron gas (2DEG) located at the AlGaAs/GaAs interface with holes generated by a two-step excitation process via the deep EL2 center in the GaAs epilayer, is put forward

  8. Size-effects in indium gallium arsenide nanowire field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zota, Cezar B., E-mail: cezar.zota@eit.lth.se; Lind, E. [Department of Electrical and Information Technology, Lund University, Lund 22101 (Sweden)

    2016-08-08

    We fabricate and analyze InGaAs nanowire MOSFETs with channel widths down to 18 nm. Low-temperature measurements reveal quantized conductance due to subband splitting, a characteristic of 1D systems. We relate these features to device performance at room-temperature. In particular, the threshold voltage versus nanowire width is explained by direct observation of quantization of the first sub-band, i.e., band gap widening. An analytical effective mass quantum well model is able to describe the observed band structure. The results reveal a compromise between reliability, i.e., V{sub T} variability, and on-current, through the mean free path, in the choice of the channel material.

  9. A photoemission study of evaporated manganese on gallium arsenide at elevated temperatures

    International Nuclear Information System (INIS)

    James, D.; Tadich, A.; Riley, J.; Leckey, R.; Emtsev, K.; Seyller, T.; Ley, L.

    2004-01-01

    Full text: The interaction between metals and semiconductors has been extensively researched to achieve an understanding of the formation of Schottky barriers and conditions for low resistance electrical connections to devices. The possibility of the use of magnetic materials to generate spin polarised currents, so called spintronics, and has extended this interest to metals that have not traditionally been used for such contacts. Manganese has recently been used as one element in GaAs and ZnSe based devices so its interaction with such surfaces is of interest. An interest that motivates this study is the possibility of lattice-matched growth of transition metal layers on semiconductors. Lattice mismatch initially appeared to inhibit single crystal transition metal growth, but it has been reported that lattice matched growth can occur in some cases. It is thought that reactions at the interface form a buffer layer, which allows for epitaxial growth via a more comparable lattice constant. We report studies of the growth of manganese films on GaAs(100) at several substrate temperatures using angle resolved photoemission, the diffusion of the Mn in the GaAs substrates using SIMS and the morphology of the layers using AFM images

  10. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Science.gov (United States)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  11. A Study on the Transversal Optical Mode in Amorphous Gallium Arsenide

    OpenAIRE

    Grado-Caffaro, M. A.; Grado-Caffaro, M.

    1998-01-01

    Contributions to the far-infrared spectrum corresponding to both dynamical and structural disorders in a-GaAs are examined when frequency coincides with the transversal optical mode. Under these circumstances, dipole moment matrix element is discussed.

  12. Theoretical study of IR and photoelectron spectra of small gallium-arsenide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pouchan, Claude; Marchal, Rémi; Hayashi, Shinsuke [Université de Pau et des Pays de l' Adour, IPREM/ECP, UMR CNRS 5254 (France)

    2015-01-22

    Relative stabilities of small Ga{sub n}As{sub m} clusters, as well as their structural electronic and vibrational properties, were computed and analysed using a CCSD(T) reference method since experimental data in this area are sparse or unknown. With the aim of investigating larger clusters, we explored several DFT functionals and basis sets able to mimic the reliable CCSD(T) approach. Among them, the PBE0/SBKJC+sp,d appears as the most efficient to describe the structural and vibrational properties since average differences of about 0.042Å and 5.1cm{sup −1} were obtained for bond lengths and fundamental vibrational frequencies, respectively for the first small clusters [1] of the series found from our GSAM method [2]. As further test, this model is used in order to investigate and revisit an experimental IR spectrum of Ga{sub n}As{sub m} mixture previously published by Li et al. [3]. More complicated is the difficulty which arises in the electronic description due to the presence of numerous low lying electronic states nearly degenerated to correctly describe the electronic structure. The case of Ga{sub 2}As will be discussed and the photoelectron spectra of the Ga{sub 2}As anion reanalyzed on the ground of our calculations [4] comparatively to the experimental spectra obtained by Neumark and co-workers [5].

  13. Quasilinear quantum magnetoresistance in pressure-induced nonsymmorphic superconductor chromium arsenide.

    Science.gov (United States)

    Niu, Q; Yu, W C; Yip, K Y; Lim, Z L; Kotegawa, H; Matsuoka, E; Sugawara, H; Tou, H; Yanase, Y; Goh, Swee K

    2017-06-05

    In conventional metals, modification of electron trajectories under magnetic field gives rise to a magnetoresistance that varies quadratically at low field, followed by a saturation at high field for closed orbits on the Fermi surface. Deviations from the conventional behaviour, for example, the observation of a linear magnetoresistance, or a non-saturating magnetoresistance, have been attributed to exotic electron scattering mechanisms. Recently, linear magnetoresistance has been observed in many Dirac materials, in which the electron-electron correlation is relatively weak. The strongly correlated helimagnet CrAs undergoes a quantum phase transition to a nonmagnetic superconductor under pressure. Here we observe, near the magnetic instability, a large and non-saturating quasilinear magnetoresistance from the upper critical field to 14 T at low temperatures. We show that the quasilinear magnetoresistance may arise from an intricate interplay between a nontrivial band crossing protected by nonsymmorphic crystal symmetry and strong magnetic fluctuations.

  14. Pseudogap from preformed Cooper pairs in a platinum-iron-arsenide superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Surmach, M.A.; Brueckner, F.; Kamusella, S.; Sarkar, R.; Portnichenko, P.Y.; Klauss, H.H.; Inosov, D.S. [TU Dresden (Germany); Park, J.T. [MLZ, Garching (Germany); Luetkens, H.; Biswas, P. [PSI, Villigen (Switzerland); Choi, W.J.; Seo, Y.I.; Kwon, Y.S. [DGIST, Daegu (Korea, Republic of)

    2015-07-01

    Using a combination of μSR, INS and NMR, we investigated the novel iron-based superconductor with a triclinic crystal structure (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8} (T{sub c}=13 K). The T-dependence of the superfluid density from our μSR relaxation-rate measurements indicates the presence of two superconducting gaps. According to our INS measurements, commensurate spin fluctuations are centered at the (π, 0) wave vector. Their intensity is unchanged across T{sub c}, indicating the absence of a spin resonance typical for many Fe-based superconductors. Instead, we observed a peak in the spin-excitation spectrum around ℎω{sub 0}=7 meV at the same wave vector, which persists above T{sub c}. The temperature dependence of magnetic intensity at 7 meV revealed an anomaly around T*=45 K related to the disappearance of this new mode. A suppression of the spin-lattice relaxation rate, 1/T{sub 1}T, observed by NMR immediately below T* without any notable subsequent anomaly at T{sub c}, indicates that T* could mark the onset of a pseudogap in (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8}, which is likely associated with the emergence of preformed Cooper pairs.

  15. Computer modeling characterization, and applications of Gallium Arsenide Gunn diodes in radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    El- Basit, Wafaa Abd; El-Ghanam, Safaa Mohamed; Kamh, Sanaa Abd El-Tawab [Electronics Research Laboratory, Physics Department, Faculty of Women for Arts, Science and Education, Ain-Shams University, Cairo (Egypt); Abdel-Maksood, Ashraf Mosleh; Soliman, Fouad Abd El-Moniem Saad [Nuclear Materials Authority, Cairo (Egypt)

    2016-10-15

    The present paper reports on a trial to shed further light on the characterization, applications, and operation of radar speed guns or Gunn diodes on different radiation environments of neutron or γ fields. To this end, theoretical and experimental investigations of microwave oscillating system for outer-space applications were carried out. Radiation effects on the transient parameters and electrical properties of the proposed devices have been studied in detail with the application of computer programming. Also, the oscillation parameters, power characteristics, and bias current were plotted under the influence of different γ and neutron irradiation levels. Finally, shelf or oven annealing processes were shown to be satisfactory techniques to recover the initial characteristics of the irradiated devices.

  16. Group III nitride-arsenide long wavelength lasers grown by elemental source molecular beam epitaxy

    International Nuclear Information System (INIS)

    Coldren, C. W.; Spruytte, S. G.; Harris, J. S.; Larson, M. C.

    2000-01-01

    Elemental source molecular beam epitaxy was used to grow InGaNAs quantum well samples, edge-emitting laser diodes, and vertical-cavity laser diodes on GaAs substrates. The quantum well samples exhibited an as-grown room temperature photoluminescence peak beyond 1310 nm which both increased dramatically in intensity and blueshifted with thermal annealing. Edge emitting laser diodes had threshold current densities as low as 450 and 750 A/cm 2 for single and triple quantum well active regions, respectively, and emitted light at 1220-1250 nm. The vertical cavity laser diodes emitted light at 1200 nm and had threshold current densities of 3 kA/cm 2 and efficiencies of 0.066 W/A. (c) 2000 American Vacuum Society

  17. Combined angle-resolved X-ray photoelectron spectroscopy, density functional theory and kinetic study of nitridation of gallium arsenide

    Science.gov (United States)

    Mehdi, H.; Monier, G.; Hoggan, P. E.; Bideux, L.; Robert-Goumet, C.; Dubrovskii, V. G.

    2018-01-01

    The high density of interface and surface states that cause the strong Fermi pinning observed on GaAs surfaces can be reduced by depositing GaN ultra-thin films on GaAs. To further improve this passivation, it is necessary to investigate the nitridation phenomena by identifying the distinct steps occurring during the process and to understand and quantify the growth kinetics of GaAs nitridation under different conditions. Nitridation of the cleaned GaAs substrate was performed using N2 plasma source. Two approaches have been combined. Firstly, an AR-XPS (Angle Resolved X-ray Photoelectron Spectroscopy) study is carried out to determine the chemical environments of the Ga, As and N atoms and the composition depth profile of the GaN thin film which allow us to summarize the nitridation process in three steps. Moreover, the temperature and time treatment have been investigated and show a significant impact on the formation of the GaN layer. The second approach is a refined growth kinetic model which better describes the GaN growth as a function of the nitridation time. This model clarifies the exchange mechanism of arsenic with nitrogen atoms at the GaN/GaAs interface and the phenomenon of quasi-saturation of the process observed experimentally.

  18. Lead-germanium ohmic contact on to gallium arsenide formed by the solid phase epitaxy of germanium: A microstructure study

    Science.gov (United States)

    Radulescu, Fabian

    2000-12-01

    Driven by the remarkable growth in the telecommunication market, the demand for more complex GaAs circuitry continued to increase in the last decade. As a result, the GaAs industry is faced with new challenges in its efforts to fabricate devices with smaller dimensions that would permit higher integration levels. One of the limiting factors is the ohmic contact metallurgy of the metal semiconductor field effect transistor (MESFET), which, during annealing, induces a high degree of lateral diffusion into the substrate. Because of its limited reaction with the substrate, the Pd-Ge contact seems to be the most promising candidate to be used in the next generation of MESFET's. The Pd-Ge system belongs to a new class of ohmic contacts to compound semiconductors, part of an alloying strategy developed only recently, which relies on solid phase epitaxy (SPE) and solid phase regrowth to "un-pin" the Fermi level at the surface of the compound semiconductor. However, implementing this alloy into an integrated process flow proved to be difficult due to our incomplete understanding of the microstructure evolution during annealing and its implications on the electrical properties of the contact. The microstructure evolution and the corresponding solid state reactions that take place during annealing of the Pd-Ge thin films on to GaAs were studied in connection with their effects on the electrical properties of the ohmic contact. The phase transformations sequence, transition temperatures and activation energies were determined by combining differential scanning calorimetry (DSC) for thermal analysis with transmission electron microscopy (TEM) for microstructure identification. In-situ TEM annealing experiments on the Pd/Ge/Pd/GaAs ohmic contact system have permitted real time determination of the evolution of contact microstructure. The kinetics of the solid state reactions, which occur during ohmic contact formation, were determined by measuring the grain growth rates associated with each phase from the videotape recordings. With the exception of the Pd-GaAs interactions, it was found that four phase transformations occur during annealing of the Pd:Ge thin films on top of GaAs. The microstructural information was correlated with specific ohmic contact resistivity measurements performed in accordance with the transmission line method (TLM) and these results demonstrated that the Ge SPE growth on top of GaAs renders the optimal electrical properties for the contact. By using the focused ion beam (FIB) method to produce microcantilever beams, the residual stress present in the thin film system was studied in connection with the microstructure. Although, the PdGe/epi-Ge/GaAs seemed to be the optimal microstructural configuration, the presence of PdGe at the interface with GaAs did not damage the contact resistivity significantly. These results made it difficult to establish a charge transport mechanism across the interface but they explained the wide processing window associated with this contact.

  19. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance

    Science.gov (United States)

    Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.

    2018-05-01

    The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.

  20. Symmetry and structure of carbon-nitrogen complexes in gallium arsenide from infrared spectroscopy and first-principles calculations

    Science.gov (United States)

    Künneth, Christopher; Kölbl, Simon; Wagner, Hans Edwin; Häublein, Volker; Kersch, Alfred; Alt, Hans Christian

    2018-04-01

    Molecular-like carbon-nitrogen complexes in GaAs are investigated both experimentally and theoretically. Two characteristic high-frequency stretching modes at 1973 and 2060 cm-1, detected by Fourier transform infrared absorption (FTIR) spectroscopy, appear in carbon- and nitrogen-implanted and annealed layers. From isotopic substitution, it is deduced that the chemical composition of the underlying complexes is CN2 and C2N, respectively. Piezospectroscopic FTIR measurements reveal that both centers have tetragonal symmetry. For density functional theory (DFT) calculations, linear entities are substituted for the As anion, with the axis oriented along the 〈1 0 0 〉 direction, in accordance with the experimentally ascertained symmetry. The DFT calculations support the stability of linear N-C-N and C-C-N complexes in the GaAs host crystal in the charge states ranging from + 3 to -3. The valence bonds of the complexes are analyzed using molecular-like orbitals from DFT. It turns out that internal bonds and bonds to the lattice are essentially independent of the charge state. The calculated vibrational mode frequencies are close to the experimental values and reproduce precisely the isotopic mass splitting from FTIR experiments. Finally, the formation energies show that under thermodynamic equilibrium CN2 is more stable than C2N.

  1. Grown-in beryllium diffusion in indium gallium arsenide: An ab initio, continuum theory and kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Liu, Wenyuan; Sk, Mahasin Alam; Manzhos, Sergei; Martin-Bragado, Ignacio; Benistant, Francis; Cheong, Siew Ann

    2017-01-01

    A roadblock in utilizing InGaAs for scaled-down electronic devices is its anomalous dopant diffusion behavior; specifically, existing models are not able to explain available experimental data on beryllium diffusion consistently. In this paper, we propose a more comprehensive model, taking self-interstitial migration and Be interaction with Ga and In into account. Density functional theory (DFT) calculations are first used to calculate the energy parameters and charge states of possible diffusion mechanisms. Based on the DFT results, continuum modeling and kinetic Monte Carlo simulations are then performed. The model is able to reproduce experimental Be concentration profiles. Our results suggest that the Frank-Turnbull mechanism is not likely, instead, kick-out reactions are the dominant mechanism. Due to a large reaction energy difference, the Ga interstitial and the In interstitial play different roles in the kick-out reactions, contrary to what is usually assumed. The DFT calculations also suggest that the influence of As on Be diffusion may not be negligible.

  2. Experimental evidence for an associated defect model for the neutron generated As/sub Ga/ center in gallium arsenide

    International Nuclear Information System (INIS)

    Golzene, A.; Meyer, B.; Schwab, C.

    1984-01-01

    The thermal dependence of EPR spectra of fast neutron irradiated n-type GaAs over the whole 4.2 to 300 K temperature range has been studied using the decomposition of spectra into a quadruplet of four identical Gaussian lines and a Lorentzian singlet. Quadruplet and singlet spectra as well as their proper parameters (inverse of paramagnetic susceptibility, hyperfine constants) could be determined separately. Experiments give evidence that the neutron generated anionic antisites As/sub Ga/ in GaAs are constituting associated defect centers, most likely of intrinsic nature

  3. Dissipative and electrostatic force spectroscopy of indium arsenide quantum dots by non-contact atomic force microscopy

    Science.gov (United States)

    Stomp, Romain-Pierre

    This thesis is devoted to the studies of self-assembled InAs quantum dots (QD) by low-temperature Atomic Force Microscopy (AFM) in frequency modulation mode. Several spectroscopic methods are developed to investigate single electron charging from a two-dimensional electron gas (2DEG) to an individual InAs QD. Furthermore, a new technique to measure the absolute tip-sample capacitance is also demonstrated. The main observables are the electrostatic force between the metal-coated AFM tip and sample as well as the sample-induced energy dissipation, and therefore no tunneling current has to be collected at the AFM tip. Measurements were performed by recording simultaneously the shift in the resonant frequency and the Q-factor degradation of the oscillating cantilever either as a function of tip-sample voltage or distance. The signature of single electron charging was detected as an abrupt change in the frequency shift as well as corresponding peaks in the dissipation. The main experimental features in the force agree well with the semi-classical theory of Coulomb blockade by considering the free energy of the system. The observed dissipation peaks can be understood as a back-action effect on the oscillating cantilever beam due to the fluctuation in time of electrons tunneling back and forth between the 2DEG and the QD. It was also possible to extract the absolute value of the tip-sample capacitance, as a consequence of the spectroscopic analysis of the electrostic force as a function of tip-sample distance for different values of the applied voltage. At the same time, the contact potential difference and the residual non-capacitive force could also be determined as a function of tip-sample distance.

  4. Physicochemical conditions for the stability of manganese-doped nanolayers of gallium arsenide and its iso-electronic analogues

    Directory of Open Access Journals (Sweden)

    Yu. V. Terenteva

    2015-03-01

    Full Text Available In this paper research of stability of nanolayers of manganese doped materials of AIIIBV and AIIBIVСV2 types holding much promise as spintronic semiconductor compounds is described. The method of non-local density functional has been applied to calculate bonding energies {εij (r} in atomic pairs for structures of AIIIBV and AIIBIVСV2 types and for MnAs. According to the calculations of internal energy, entropy and free energy of Helmholtz (Т = 298К, in the context of used models, addition of manganese to the arsenide’s AIIIBV and AIIBIVСV2 nanolayers affects its stability in different ways depending on its morphology and substitution mode. However, a critical instability in nanofilm leading to the tendency of growing of a new phase germ may be formed under any manganese concentrations. This leads to deterioration of electrophysical parameters of magnetic semiconductor compounds that is agreed with experimental data.

  5. The crystal structure of the diluted magnetic semiconductor zinc manganese arsenide (Zn1-xMnx)3As2)

    NARCIS (Netherlands)

    de Vries, G.C.; Frikkee, E.; Helmholdt, R.B.; Kopinga, K.; Jonge, de W.J.M.

    1989-01-01

    The crystal structure of (Zn1-xMnx)3As2 has been determined with neutron powder diffraction for x = 0, 0.08 and 0.135. The structure of these compounds turned out to be the same as that of the a-phase of Cd3As2, space group I41cd. The diffraction for a sample with nominal x = 0.2 indicates the

  6. Scattering and mobility in indium gallium arsenide channel, pseudomorphic high electron mobility transistors (InGaAs pHEMTs)

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1999-03-01

    Extensive transport measurements have been completed on deep and shallow-channelled InGaAs p-HEMTs of varying growth temperature, indium content, spacer thickness and doping density, with a view to a thorough characterisation, both in the metallic and the localised regimes. Particular emphasis was given to MBE grown layers, with characteristics applicable for device use, but low measurement temperatures were necessary to resolve the elastic scattering mechanisms. Measurements made in the metallic regime included transport and quantum mobility - the former over a range of temperatures between 1.5K to 300K. Conductivity measurements were also acquired in the strong localisation regime between about 1.5K and 100K. Experimentally determined parameters were tested for comparison with those predicted by an electrostatic model. Excellent agreement was obtained for carrier density. Other parameters were less well predicted, but the relevant experimental measurements, including linear depletion of the 2DEG, were sensitive to any excess doping above a 'critical' value determined by the model. At low temperature (1.5K), it was found that in all samples tested, transport mobility was strongly limited at all carrier densities by a large q mechanism, possibly intrinsic to the channel. This was ascribed either to scattering by the long-range potentials arising from the indium concentration fluctuations or fluctuations in the thickness of the channel layer. This mechanism dominates the transport at low carrier densities for all samples, but at high carrier density, an additional mechanism is significant for samples with the thinnest spacers tested (2.5nm). This is ascribed to direct electron interaction with the states of the donor layer, and produces a characteristic transport mobility peak. At higher carrier densities, past the peak, quantum mobility was found only to increase monotonically in value. Remote ionised impurity scattering while significant, particularly for samples with intermediate (5nm) and thin (2.5nm) spacers, was never found to dominate. As has been reported for similar structures, anisotropy of transport mobility was found, with the [011] direction having a higher mobility than the [011-bar] direction ((100) GaAs substrate nominally aligned ±0.1 deg.). Intermediate directions had intermediate mobilities. The anisotropy increased with indium content and growth temperature, and persisted to at least 300K. In addition, we found that quantum mobility was independent of direction suggesting that the mechanism responsible is dominated by short-range, large q scattering. Both transport and quantum, mobility were reduced when donor layer correlations were removed using the process of bias cooling. Quantum mobility was more sensitive to this process although excess donors in the doping layer also affected values at high carrier densities. Applying Matthiessen's rule to both correlated and uncorrelated transport mobility data, strongly suggested that remote ionised impurity scattering was consistent with theory for samples with a 5nm spacer, but that an additional mechanism, as mentioned above, must exist in the samples with a 2.5nm spacer. Variable temperature studies further revealed that at low carrier densities, weak localisation was present, with strong, temperature dependent, activated transport also apparent at higher depletion. At high carrier densities in the thinnest spacer samples (2.5nm), a transport mobility peak evolved with decreasing temperature. The mechanism responsible was undetermined, but it was reminiscent of weak localisation-like behaviour. (author)

  7. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong-Uk [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Product and Test Engineering Team, System LSI Division, Samsung Electronics Co., Ltd, Yongin 446-711 (Korea, Republic of); Jung, Woo-Shik [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jin-Hong, E-mail: jhpark9@skku.edu [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-02-01

    Highlights: • We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. • 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. • InAs and InGaAs formed by this process decrease an electron barrier height. • Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, J–V measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  8. Hard X-ray test and evaluation of a prototype 32x32 pixel gallium-arsenide array

    International Nuclear Information System (INIS)

    Erd, C.; Owens, A.; Brammertz, G.; Bavdaz, M.; Peacock, A.; Laemsae, V.; Nenonen, S.; Andersson, H.; Haack, N.

    2002-01-01

    We report X-ray measurements on a prototype 1.1 cm 2 , 32x32 GaAs pixel array with a pixel size of 350x350 μm 2 produced to assess the technological feasibility of making large area, almost Fano-limited arrays, which operate near room temperature. Measurements were carried out on four widely separated pixels both in our laboratories and using monochromatic X-ray pencil beams at the HASYLAB synchrotron research facility in Hamburg, Germany. The pixels were found to be very uniform both in their energy and spatial responses. For example, typical energy resolutions of ∼280 eV at 10.5 keV, rising to ∼560 eV at 60 keV were achieved. The corresponding resolutions measured under full-pixel illumination were found to be the same within statistics, indicating uniform crystallinity and stoichiometry. Likewise, by scanning a 15 keV, 15x15 μm 2 beam across the entire surface of each of the pixels, the gain uniformity across the pixels (and by implication the entire array) was determined to be statistically flat

  9. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa; Ahmed, Rashid; Shaari, Amiruddin; Saeed, Mohammad Alam; Ul Haq, Bakhtiar; Goumri-Said, Souraya

    2013-01-01

    our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice

  10. Next Generation Thermal Management Materials: Boron Arsenide for Isotropic Diamond Like Thermal Conductivity - Affordable BAs Processing Innovations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this SBIR phase I proposal is to design, develop and carry out the materials and process engineering studies to demonstrate the feasibility of...

  11. Growth rate and surfactant-assisted enhancements of rare-earth arsenide InGaAs nanocomposites for terahertz generation

    Directory of Open Access Journals (Sweden)

    R. Salas

    2017-09-01

    Full Text Available We report the effects of the growth rate on the properties of iii-v nanocomposites containing rare-earth-monopnictide nanoparticles. In particular, the beneficial effects of surfactant-assisted growth of LuAs:In0.53Ga0.47As nanocomposites were found to be most profound at reduced LuAs growth rates. Substantial enhancement in the electrical and optical properties that are beneficial for ultrafast photoconductors was observed and is attributed to the higher structural quality of the InGaAs matrix in this new growth regime. The combined enhancements enabled a >50% increase in the amount of LuAs that could be grown without degrading the quality of the InGaAs overgrowth. Dark resistivity increased by ∼25× while maintaining carrier mobilities over 3000 cm2/V s; carrier lifetimes were reduced by >2×, even at high depositions of LuAs. The combined growth rate and surfactant enhancements offer a previously unexplored regime to enable high-performance fast photoconductors that may be integrated with telecom components for compact, broadly tunable, heterodyne THz source and detectors.

  12. The influence of electron irradiation at the various temperatures and annealing on carriers mobility at the low temperatures in neutron transmutation doped gallium arsenide

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Kurilovich, N.F.; Prokhorenko, T.A.; Troshchinskii, V.T.; Shesholko, V.K.

    1999-01-01

    The influence of electron irradiation at the various temperatures and annealing on measured at T=100 K carriers mobility in neutron transmutation doped GaAs have been investigated. It was detected that rate of mobility decreasing with irradiation dose increasing decreases when irradiation temperature increases. It was shown that at the same time it take place the radiation defects creating and their particular or full annealing (in the dependence on irradiation temperature). Radiation stimulated annealing (annealing that take place during irradiation at the elevated temperatures) is more effective than the annealing at the same temperatures that take place after crystals are irradiated at room temperature. It means that any defects annealing during irradiation at elevated temperatures take place at more low temperatures than that during annealing after irradiation at room temperature

  13. Atomic-Scale Structure of the Tin DX Center and Other Related Defects in Aluminum Gallium Arsenide Semiconductors Using Moessbauer Spectroscopy.

    Science.gov (United States)

    Greco, Luigi Alessandro

    The DX center in III-V alloys has limited the use of these materials for electronic devices since the defect acts as an electron trap. To be able to control or eliminate the DX center, its atomic scale structure should be understood. Mossbauer spectroscopy has proven to be a valuable technique in probing the atomic-scale structure of certain atomic species. The dopant studied here is ^{119}Sn. The thermal diffusion of Sn in Al_ {rm x}Ga_{rm 1-x }As using different temperatures, times, sample geometries and As_4 overpressures in evacuated and sealed fused silica ampoules was studied by x-ray diffraction (XRD), secondary ion mass spectroscopy and electrochemical capacitance versus voltage measurements. The AlGaAs surfaces decomposed into various Sn, Si, Ga and As oxides when an As_4 overpressure was introduced during annealing. However, annealing under ambient As_4 and furnace cooling eliminated surface decomposition although the Sn diffusion depth was less than that for a 0.5 atm As_4 overpressure. SiO_{rm x} and Si_{rm x }N_{rm y} RF-sputtered thin film capping layers deposited on AlGaAs were studied by XRD and Auger electron spectroscopy. For the annealed SiO_{rm x} films the AlGaAs surface was preserved, independent of the cooling technique used. Mossbauer spectroscopy was conducted on ^{rm 119m} Sn-implanted Al_ {rm x } Ga_{rm 1-x} As (x = 0.22 and 0.25) used for the source experiments and ^{119}Sn-doped Al _{rm x}Ga _{rm 1-x}As (x = 0.15, N _{rm Sn} ~2 times 10 ^{18} cm^{ -3}) for the absorber experiment. The source samples were capped with 120 nm of SiO_ {rm x} to preserve the surface during the systematic study of annealing temperature versus site occupation and electrical activation via Mossbauer spectroscopy at 76 K and 4 K in the dark and in the light (to observe persistent photoconductivity (PPC) due to the DX center). For all of the annealing conditions used the x = 0.22 sample showed little evidence of PPC possibly due to compensating defects and/or radiation-induced capture. After annealing the x = 0.25 sample at 1000^circC for 2 hours under a Ga + Al overpressure, evidence of PPC was found via Hall measurements but no effect was seen by Mossbauer suggesting radiation-induced capture and/or non-nearest-neighbor lattice relaxation. The Ga + Al overpressure also served to decrease the loss of Sn through the SiO _{rm x} film, possibly through the removal of Ga and Al vacancies. The x = 0.15 absorber showed a persistent 15-18% change in the electrical resistance (10% change in n) between the light and dark. However, the observation of this effect was not apparent, even assuming negative-U (2 electron) behavior, in the Mossbauer measurements. This was also consistent with EXAFS results. These studies do not support the broken-bond model of Chadi and Chang, which is considered to be a widely accepted atomic-scale model of the DX center. A defect complex consisting of a substitutional Sn_{rm Ga(Al) }^+ site, and a (V_{ rm III}^-Al_{ rm As}^{-2}) complex, which localizes 3 electrons and may not be a nearest-neighbor to the donor, was chosen for the DX center in the x = 0.15 sample which supports EXAFS, recent positron annihilation and these Mossbauer studies.

  14. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  15. Electronic Properties of III-V Semiconductors under [111] Uniaxial Strain; a Tight-Binding Approach: I. Arsenides and Gallium Phosphide

    Directory of Open Access Journals (Sweden)

    Miguel E. Mora-Ramos

    2009-01-01

    Full Text Available Empleando un esquema de cálculo tight-binding que usa una base de orbitales sp3s*d5, se estudian propiedades de la estructura electrónica de un grupo de materiales semiconductores IIIV los cuales son de notable interés para la tecnología de dispositivos electrónicos y optoelectrónicos. En específico, se analiza la influencia sobre estas propiedades de una tensión aplicada según la dirección cristalográfica [111], haciendo uso de una formulación basada en la teoría de la elasticidad para establecer las posiciones relativas de los iones vecinos más próximos. Especial atención se presta a la inclusión del efecto de deformación interna de la red cristalina. Para cada material de los estudiados presentamos las dependencias de las brechas energéticas asociadas a los puntos L, X y L de la zona de Brillouin como funciones de la tensión uniaxial en AlAs, GaAs, InAs y GaP. Asimismo, reportamos expresiones de ajuste para los valores de las masas efectivas de conducción en esos cuatro materiales. La comparación de la variación de la brecha de energía en X para el GaP, calculada con nuestro modelo, y recientes resultados experimentales para la transición indirecta entre la banda de huecos pesados y la banda X de conducción arroja una muy buena concordancia.

  16. Formation of scandium nitride (ScN) layer on gallium arsenide (GaAs) substrate using a combined technique of e-beam evaporator and ammonia annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yong Shee Meng, Alvin [Institute of Nano Optoelectronics Research and Technology (INOR), sains@usm, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang (Malaysia); Zainal, Norzaini, E-mail: norzaini@usm.my [Nano Optoelectronics Research and Laboratory, Universiti Sains Malaysia, sains@usm, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang (Malaysia); Hassan, Zainuriah; Ibrahim, Kamarulazizi [Institute of Nano Optoelectronics Research and Technology (INOR), sains@usm, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang (Malaysia)

    2015-12-30

    Graphical abstract: - Highlights: • Forming ScN layer using electron e-beam evaporator with successive NH{sub 3} annealing thermal has been successfully demonstrated. • NH{sub 3} annealing played the role in changing the grain structure of the ScN layer. • The existence of Sc−N bonds was confirmed by XPS measurement. • The 900 °C annealed ScN layer showed the best structural and optical characteristics. • ScN layer annealed at 980 °C exhibited poor structural and optical characteristics. - Abstract: A demonstration on a new technique of growing ScN using electron beam (e-beam) evaporator, coupled with successive ammonia (NH{sub 3}) annealing treatment is presented in this paper. The annealing temperature was varied at 750, 800, 850, 900 and 980 °C in order to obtain the best ScN layer. It was found that as the annealing temperature increased, the surface morphology of the ScN layer changed and ScN grains formed abundantly on the surface. The best surface of ScN layer was found in the 900 °C annealed sample. However, the roughness of the ScN increased with temperature. The photoluminescence (PL) peak of the near-to-band-edge (NBE) of ScN was observable in all samples and its intensity was the highest in the 900 °C annealed sample. Note that when the annealing treatment was conducted at 980 °C, the GaN PL peak is observable. Raman peaks of TO(X) of ScN were much evident at the annealing temperature above 900 °C. The formation of Sc−N bonds was confirmed by X-ray spectroscopy (XPS) measurement. In the end of this work, we propose that the formation of ScN using the above techniques was successful, with thermal annealing at the temperature of 900 °C.

  17. Formation of scandium nitride (ScN) layer on gallium arsenide (GaAs) substrate using a combined technique of e-beam evaporator and ammonia annealing treatment

    International Nuclear Information System (INIS)

    Yong Shee Meng, Alvin; Zainal, Norzaini; Hassan, Zainuriah; Ibrahim, Kamarulazizi

    2015-01-01

    Graphical abstract: - Highlights: • Forming ScN layer using electron e-beam evaporator with successive NH_3 annealing thermal has been successfully demonstrated. • NH_3 annealing played the role in changing the grain structure of the ScN layer. • The existence of Sc−N bonds was confirmed by XPS measurement. • The 900 °C annealed ScN layer showed the best structural and optical characteristics. • ScN layer annealed at 980 °C exhibited poor structural and optical characteristics. - Abstract: A demonstration on a new technique of growing ScN using electron beam (e-beam) evaporator, coupled with successive ammonia (NH_3) annealing treatment is presented in this paper. The annealing temperature was varied at 750, 800, 850, 900 and 980 °C in order to obtain the best ScN layer. It was found that as the annealing temperature increased, the surface morphology of the ScN layer changed and ScN grains formed abundantly on the surface. The best surface of ScN layer was found in the 900 °C annealed sample. However, the roughness of the ScN increased with temperature. The photoluminescence (PL) peak of the near-to-band-edge (NBE) of ScN was observable in all samples and its intensity was the highest in the 900 °C annealed sample. Note that when the annealing treatment was conducted at 980 °C, the GaN PL peak is observable. Raman peaks of TO(X) of ScN were much evident at the annealing temperature above 900 °C. The formation of Sc−N bonds was confirmed by X-ray spectroscopy (XPS) measurement. In the end of this work, we propose that the formation of ScN using the above techniques was successful, with thermal annealing at the temperature of 900 °C.

  18. Inflammatory process decrease by gallium-aluminium-arsenide (GaAlAs) low intensity laser irradiation on postoperative extraction of impacted lower third molar

    International Nuclear Information System (INIS)

    Atihe, Mauricio Martins

    2002-01-01

    This study aimed the observation of inflammatory process decrease by the use of GaAlAs Low Intensity Laser (λ=830 nm; 40 mW) irradiation. Five patients were selected and submitted to surgery of impacted lower third molars, both right and left sides at different occasions. On a first stage, a tooth of a random chosen side - right or left - was extracted by conventional surgery, without LILT. The inflammatory process was measured at postoperative on the first, third and seventh days. This side was then called 'control side'. After 21 days, period in which the inflammatory process of the first surgery was terminated, the other side surgery took place, this time using LILT (4 J at four spots) at postoperative, first and third days. As the previous surgery, the inflammatory process was also measured at postoperative on the first, third and seventh days. This side was called 'experimental or lased side'. The inflammatory process was evaluated by measuring its four characteristic signs: swelling, pain, color and temperature. It was clearly observed a decrease for swelling, pain and color on the lased side which presented significant inference and descriptive statistics. It can be concluded that GaAlAs Low Intensity Laser (λ=830 nm) can surely be used as an additional and important anti-inflammatory source on impacted lower third molar surgeries. (author)

  19. Synergic phototoxic effect of visible light or Gallium-Arsenide laser in the presence of different photo-sensitizers on Porphyromonas gingivalis and Fusobacterium nucleatum

    Directory of Open Access Journals (Sweden)

    Habibollah Ghanbari

    2015-01-01

    Conclusion: Within the limitations of this study, the synergic phototoxic effect of visible light in combination with each of the photosensitizers on P. gingivalis and F. nucleatum. However, the synergic phototoxic effect of laser exposure and hydrogen peroxide and curcumin as photosensitizers on F. nucleatum was not shown.

  20. Thermal conductivity and electrical resistivity of cadmium arsenide (Cd3As2) in the temperature range 4.2-40K1

    International Nuclear Information System (INIS)

    Bartkowski, K.; Ratalowicz, J.; Zdanowicz, W.

    1986-01-01

    Results on electrical resistivity and thermal conductivity measured in the temperature range 4.2-40 K are presented for single-crystal and polycrystalline samples of Cd 3 As 2 . Hall effect has been studied at temperatures of 4.2, 77, and 300K. The calculated value of the conduction electron concentration was in the range 1.87-1.95 10 24 m -3 . Electrical resistivity of all investigated samples was independent of temperature up to about 10K and increased slowsly at higher temperatures. The thermal conductivity shows a maximum in the region in which the lattice component of thermal conductivity dominates. The strong anistropy of the lattice component determines the anisotropy of the total thermal conductivity. The electronic component of thermal conductivity does not exhibit any anisotropy and shows a maximum at a temperature of about 300 K

  1. Time-resolved characterization of InAs/InGaAs quantum dot gain material for 1.3 µm lasers on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, Andrea; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature....

  2. Characterization and modeling of the intrinsic properties of 1.5-micrometer gallium indium nitrogen arsenic antimonide/gallium arsenide laser

    Science.gov (United States)

    Goddard, Lynford

    2005-12-01

    Low cost access to optical communication networks is needed to satisfy the rapidly increasing demands of home-based high-speed Internet. Existing light sources in the low-loss 1.2--1.6mum telecommunication wavelength bandwidth are prohibitively expensive for large-scale deployment, e.g. incorporation in individual personal computers. Recently, we have extended the lasing wavelength of room-temperature CW GaInNAs(Sb) lasers grown monolithically on GaAs by MBE up to 1.52mum in an effort to replace the traditional, more expensive, InP-based devices. Besides lower cost wafers, GaInNAs(Sb) opto-electronic devices have fundamental material advantages over InP-based devices: a larger conduction band offset which reduces temperature sensitivity and enhances differential gain, a lattice match to a material with a large refractive index contrast, i.e. AlAs, which decreases the necessary number of mirror pairs in DBRs for VCSELs, and native oxide apertures for current confinement. High performance GaInNAs(Sb) edge-emitting lasers, VCSELs, and DFB lasers have been demonstrated throughout the entire telecommunication band. In this work, we analyze the intrinsic properties of the GaInNAsSb material system, e.g. recombination, gain, band structure and renormalization, and efficiency. Theoretical modeling is performed to calculate a map of the bandgap and effective masses for various material compositions. We also present device performance results, such as: room temperature CW threshold densities below 450A/cm2, quantum efficiencies above 50%, and over 425mW of total power from a SQW laser when mounted epi-up and minimally packaged. These results are generally 2--4x better than previous world records for GaAs based devices at 1.5mum. The high CW power and low threshold exhibited by these SQW lasers near 1.5mum make feasible many novel applications, such as broadband Raman fiber amplifiers and uncooled WDM at the chip scale. Device reliability of almost 500 hours at 200mW CW output power has also been demonstrated. Comparative experiments using innovative characterization techniques, such as: the multiple section absorption/gain method to explore the band structure, as well as the Z-parameter to analyze the dominant recombination processes, have identified the physical mechanisms responsible for improved performance. Also, by measuring the temperature dependence of relevant laser parameters, we have been able to simulate device operation while varying temperature and device geometry.

  3. Safety analysis report for packaging: neutron shipping cask, model 0.5T

    International Nuclear Information System (INIS)

    Peterson, R.T.

    1976-01-01

    The Safety Analysis Report for Packaging demonstrates that the neutron shipping cask can safely transport, in solid or powder form, all isotopes of uranium, plutonium, americium, curium, berkelium, californium, einsteinium, and fermium. The shipping cask and its contents are described. It also evaluates transport conditions, structural parameters (e.g., load resistance, pressure and impact effects, lifting and tiedown devices), and shielding. Finally, it discusses compliance with Chapter 0529 of the Energy Research and Development Administration Manual

  4. Directed evolution of the periodic table: probing the electronic structure of late actinides.

    Science.gov (United States)

    Marsh, M L; Albrecht-Schmitt, T E

    2017-07-25

    Recent investigations of the coordination chemistry and physical properties of berkelium (Z = 97) and californium (Z = 98) have revealed fundamental differences between post-curium elements and lighter members of the actinide series. This review highlights these developments and chronicles key findings and concepts from the last half-century that have helped usher in a new understanding of the evolution of electronic structure in the periodic table.

  5. Advanced semiconductor detector development: Development of a room-temperature, gamma ray detector using gallium arsenide to develop an electrode detector. Progress report, September 30, 1994--September 29, 1995

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-07-01

    Devices fabricated from wide bandgap materials that can be operated without cooling suffer from poor energy resolution and are limited to very small volumes; this arises largely from poor hole mobility in compound semiconductors. Three different device configurations are being investigated for possibly overcoming this limitation: buried grid-single carrier devices, trenched single carrier devices, and devices using patterned coplanar electrodes (CdZnTe). In the first, leakage problems were encountered. For the second, a set of specifications has been completed, and electron cyclotron resonance etching will be done at an off-campus facility. For the third, Aurora will supply 3 different CdZnTe detectors. An analytical study was done of the patterned electrode approach

  6. Interdigitated Back-Surface-Contact Solar Cell Modeling Using Silvaco Atlas

    Science.gov (United States)

    2015-06-01

    and Gallium Arsenide, and triple -junction cells with Indium Gallium Phosphide, Gallium Arsenide, and Germanium. Work was also done by Fotis [4] on...output power at various points on the IV curve, from [15]. ............................18 Figure 15. IV curve with the MPP. The orange area is...53 Figure 35. Simulation results of cell power output at maximum power point for varying bulk thicknesses

  7. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    Science.gov (United States)

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  8. PROCEEDINGS OF THE SYMPOSIUM COMMEMORATING THE 25th ANNIVERSARY OF ELEMENTS 97 and 98 HELD ON JAN. 20, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.; Street Jr., Kenneth; Thompson, Stanley G.; Ghiorso, Albert

    1976-07-01

    This volume includes the talks given on January 20, 1975, at a symposium in Berkeley on the occasion of the celebration of the 25th anniversary of the discovery of berkelium and californium. Talks were given at this symposium by the four people involved in the discovery of these elements and by a number of people who have made significant contributions in the intervening years to the investigation of their nuclear and chemical properties. The papers are being published here, without editing, in the form in which they were submitted by the authors in the months following the anniversary symposium, and they reflect rather faithfully the remarks made on that occasion.

  9. Radiological safety considerations in the design and operation of the ORNL Transuranium Research Laboratory (TRL)

    International Nuclear Information System (INIS)

    Haynes, C.E.

    1976-01-01

    The Transuranium Research Laboratory (TRL) is the central facility at Oak Ridge National Laboratory (ORNL) for chemical and physical research involving transuranium elements. Transuranium Research Laboratory investigations are about equally divided between studies of inorganic and structural chemistry of the heavy elements and nuclear structure and properties of their isotopes. Elements studied include neptunium, plutonium, americium, curium, berkelium, californium, and einsteinium, each in microgram-to-gram quantities depending upon availability and experimental requirements. This paper describes an eight-step safety procedure followed in planning and approving individual research projects. This procedure should provide an optimum margin of safety and should permit the accomplishment of successful research

  10. Composition containing transuranic elements for use in the homeopathic treatment of aids

    International Nuclear Information System (INIS)

    Lustig, D.

    1996-01-01

    A homeopathic remedy consisting of a composition containing one or more transuranic elements, particularly plutonium, for preventing and treating acquired immunodeficiency syndrome (AIDS) in humans, as well as seropositivity for human immunodeficiency virus (HIV). Said composition is characterized in that it uses any chemical or isotopic form of one or more transuranic elements (neptunium, plutonium, americium, curium, berkelium, californium or einsteinium), particularly plutonium, said form being diluted and dynamized according to conventional homeopathic methods, particularly the so-called Hahnemann and Korsakov methods, and provided preferably but not exclusively in the form of lactose and/or saccharose globules or granules impregnated with the active principle of said composition. (author)

  11. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  12. Safety analysis report for packaging: neutron shipping cask, model 4T

    International Nuclear Information System (INIS)

    Peterson, R.T.

    1977-01-01

    This Safety Analysis Report for Packaging demonstrates that the neutron shipping cask can safely transport, in solid or powder form, all isotopes of uranium, plutonium, americium, curium, berkelium, californium, einsteinium, and fermium. The cask and its contents are described. It also evaluates transport conditions, structural parameters (e.g., load resistance, pressure and impact effects, lifting and tiedown devices), and shielding. Finally, it discusses compliance with Chapter 0529 of the Energy Research and Development Administration Manual, Safety Standards for the Packaging of Fissile and Other Radioactive Materials

  13. TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas

    2012-03-01

    This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

  14. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  15. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  16. POLLUTION PREVENTION IN THE SEMICONDUCTOR INDUSTRY THROUGH RECOVERY AND RECYCLING OF GALLIUM AND ARSENIC FROM GAAS POLISHING WASTES

    Science.gov (United States)

    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  17. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  18. Activities of the Solid State Physics Research Institute

    Science.gov (United States)

    1985-01-01

    Topics addressed include: muon spin rotation; annealing problems in gallium arsenides; Hall effect in semiconductors; computerized simulation of radiation damage; single-nucleon removal from Mg-24; and He-3 reaction at 200 and 400 MeV.

  19. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    van Wanum, Maurice; Lebouille, Tom; Visser, Guido; van Vliet, Frank Edward

    2009-01-01

    Abstract In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are silicon, gallium arsenide and gallium nitride. The diodes in the diverse semiconductor technologies themselves are

  20. OM85. Basic Properties of Optical Materials Summaries of Papers.

    Science.gov (United States)

    1985-05-01

    1984. [2] D. Marcuse : IEEE J. QE-14, 736 (1978). 163 ... . . . .. . . .. . . CALORIMETRIC MEASUREMENT OF OPTICAL ABSORPTION IN SAPPHIRE AT VISIBLE...ARSENIDE Herbert S. Bennett Semiconductor Devices and Circuits Division National Bureau of Standards Gaithersburg, MD 20899 Introduction Lasers, opto

  1. RF-MMW Dipole Antenna Arrays From Laser Illuminated GaAs

    National Research Council Canada - National Science Library

    Umphenour, D

    1998-01-01

    High resistivity photoconductive Gallium Arsenide (GaAs) can be used as elemental Hertzian dipole antenna arrays in which the time varying dipole current is produced by temporally modulating a laser (0.63um...

  2. Electrically Driven Photonic Crystal Nanocavity Devices

    Science.gov (United States)

    2012-01-01

    material, here gallium arsenide and indium arsenide self- assembled quantum dots (QDs). QDs are preferred for the gain medium because they can have...blue points ) and 150 K (green points ). The black lines are linear fits to the above threshold output power of the lasers, which are used to find the...SHAMBAT et al.: ELECTRICALLY DRIVEN PHOTONIC CRYSTAL NANOCAVITY DEVICES 1707 Fig. 13. (a) Tilted SEM picture of a fabricated triple cavity device. The in

  3. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  4. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    International Nuclear Information System (INIS)

    Moeller, M.; Lima, M. M. Jr. de; Cantarero, A.; Dacal, L. C. O.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-01-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm -1 reveals an E 1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  5. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    Science.gov (United States)

    Möller, M.; Dacal, L. C. O.; de Lima, M. M.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.; Cantarero, A.

    2011-12-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm-1 reveals an E1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  6. Inflammatory process decrease by gallium-aluminium-arsenide (GaAlAs) low intensity laser irradiation on postoperative extraction of impacted lower third molar; Reducao de processo inflamatorio com aplicacao de laser de arseneto de galio aluminio ({lambda}=830 nm) em pos-operatorio de exodontia de terceiros molares inferiores inclusos ou semi-inclusos

    Energy Technology Data Exchange (ETDEWEB)

    Atihe, Mauricio Martins

    2002-07-01

    This study aimed the observation of inflammatory process decrease by the use of GaAlAs Low Intensity Laser ({lambda}=830 nm; 40 mW) irradiation. Five patients were selected and submitted to surgery of impacted lower third molars, both right and left sides at different occasions. On a first stage, a tooth of a random chosen side - right or left - was extracted by conventional surgery, without LILT. The inflammatory process was measured at postoperative on the first, third and seventh days. This side was then called 'control side'. After 21 days, period in which the inflammatory process of the first surgery was terminated, the other side surgery took place, this time using LILT (4 J at four spots) at postoperative, first and third days. As the previous surgery, the inflammatory process was also measured at postoperative on the first, third and seventh days. This side was called 'experimental or lased side'. The inflammatory process was evaluated by measuring its four characteristic signs: swelling, pain, color and temperature. It was clearly observed a decrease for swelling, pain and color on the lased side which presented significant inference and descriptive statistics. It can be concluded that GaAlAs Low Intensity Laser ({lambda}=830 nm) can surely be used as an additional and important anti-inflammatory source on impacted lower third molar surgeries. (author)

  7. Inflammatory process decrease by gallium-aluminium-arsenide (GaAlAs) low intensity laser irradiation on postoperative extraction of impacted lower third molar; Reducao de processo inflamatorio com aplicacao de laser de arseneto de galio aluminio ({lambda}=830 nm) em pos-operatorio de exodontia de terceiros molares inferiores inclusos ou semi-inclusos

    Energy Technology Data Exchange (ETDEWEB)

    Atihe, Mauricio Martins

    2002-07-01

    This study aimed the observation of inflammatory process decrease by the use of GaAlAs Low Intensity Laser ({lambda}=830 nm; 40 mW) irradiation. Five patients were selected and submitted to surgery of impacted lower third molars, both right and left sides at different occasions. On a first stage, a tooth of a random chosen side - right or left - was extracted by conventional surgery, without LILT. The inflammatory process was measured at postoperative on the first, third and seventh days. This side was then called 'control side'. After 21 days, period in which the inflammatory process of the first surgery was terminated, the other side surgery took place, this time using LILT (4 J at four spots) at postoperative, first and third days. As the previous surgery, the inflammatory process was also measured at postoperative on the first, third and seventh days. This side was called 'experimental or lased side'. The inflammatory process was evaluated by measuring its four characteristic signs: swelling, pain, color and temperature. It was clearly observed a decrease for swelling, pain and color on the lased side which presented significant inference and descriptive statistics. It can be concluded that GaAlAs Low Intensity Laser ({lambda}=830 nm) can surely be used as an additional and important anti-inflammatory source on impacted lower third molar surgeries. (author)

  8. Native copper in Permian Mudstones from South Devon: A natural analogue of copper canisters for high-level radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Werme, L.; Oversby, V.M.

    2001-01-01

    Native copper (>99.9% Cu) sheets associated with complex uraniferous and vanadiferous concretions in Upper Permian Mudstones from south Devon (United Kingdom) have been studied as a 'natural analogue' for copper canisters designed to be used in the isolation of spent fuel and high-level radioactive wastes (HLW) for deep geological disposal. Detailed analysis demonstrates that the copper formed before the mudstones were compacted. The copper displays complex corrosion and alteration. The earliest alteration was to copper oxides, followed sequentially by the formation of copper arsenides, nickel arsenide and copper sulphide, and finally nickel arsenide accompanied by nickel-copper arsenide, copper arsenide and uranium silicates. Petrographic observations demonstrate that these alteration products also formed prior to compaction. Consideration of the published history for the region indicates that maximum compaction of the rocks will have occurred by at least the Lower Jurassic (i.e. over 176 Ma ago). Since that time the copper sheets have remained isolated by the compacted mudstones and were unaffected by further corrosion until uplift and exposure to present-day surface weathering

  9. Chemical consequences of radioactive decay. 1. Study of 249Cf ingrowth into crystalline 249BkBr3: a new crystalline phase of CfBr3

    International Nuclear Information System (INIS)

    Young, J.P.; Haire, R.G.; Peterson, J.R.; Ensor, D.D.; Fellows, R.L.

    1980-01-01

    Spectrophotometric and x-ray powder diffraction methods have been applied to a study of the ingrowth of californium-249 by β - decay of berkelium-249 in crystalline 249 BkBr 3 . It was found that the Cf daughter grows in with the same oxidation state and crystal structure as the parent. Thus, six-coordinate BkBr 3 (AlCl 3 -type monoclinic structure) generates six-coordinate CfBr 3 , and eight-coordinate BkBr 3 (PuBr 3 -type orthorhombic structure) generates eight-coordinate CfBr 3 , a previously unknown form of CfBr 3 . It was also found that the daughter Cf(III) in the BkBr 3 parent compound can be reduced to Cf(II) by treatment with H 2 , as it can in pure CfBr 3 . 5 figures

  10. Reactor production of 252Cf and transcurium isotopes

    International Nuclear Information System (INIS)

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, 252 Cf, 253 Es, and 255 Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of 254g Es from 252 Cf will be discussed. 14 refs., 5 tabs

  11. Nuclear fission and the transuranium elements

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs

  12. Nuclear fission and the transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  13. Peeled film GaAs solar cell development

    International Nuclear Information System (INIS)

    Wilt, D.M.; Thomas, R.D.; Bailey, S.G.; Brinker, D.J.; DeAngelo, F.L.

    1990-01-01

    Thin film, single crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/Kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity (>10 6 ) of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofloric acid (HF). The intent of this work is to demonstrate the feasibility of using the peeled film technique to fabricate high efficiency, low mass GaAs solar cells. We have successfully produced a peeled film GaAs solar cell. The device, although fractured and missing the aluminum gallium arsenide (Al x Ga 1 - x As) window and antireflective (AR) coating, had a Voc of 874 mV and a fill factor of 68% under AMO illumination

  14. Ion implantation in semiconductor bodies

    International Nuclear Information System (INIS)

    Badawi, M.H.

    1984-01-01

    Ions are selectively implanted into layers of a semiconductor substrate of, for example, semi-insulating gallium arsenide via a photoresist implantation mask and a metallic layer of, for example, titanium disposed between the substrate surface and the photoresist mask. After implantation the mask and metallic layer are removed and the substrate heat treated for annealing purposes. The metallic layer acts as a buffer layer and prevents possible contamination of the substrate surface, by photoresist residues, at the annealing stage. Such contamination would adversely affect the electrical properties of the substrate surface, particularly gallium arsenide substrates. (author)

  15. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    Science.gov (United States)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  16. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  17. Coherent light scattering from a buried dipole in a high-aperture optical system

    International Nuclear Information System (INIS)

    Vamivakas, A N; Mueller, T; Atatuere, M; Yurt, A; Koeklue, F H; Uenlue, M S

    2011-01-01

    We develop a theoretical formulation to calculate the absolute and differential transmission of a focused laser beam through a high-aperture optical system. The focused field interacts with a point dipole that is buried in a high-index material, and is situated at the Gaussian focus of the focusing and collection two-lens system. The derived expressions account for the vectorial nature of the focused electromagnetic field and the inhomogeneous focal region environment. The results obtained are in agreement with recent resonant light-scattering experiments where the buried emitter is an indium arsenide semiconductor quantum dot in gallium arsenide.

  18. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    Science.gov (United States)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  19. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    Science.gov (United States)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  20. Structural phase transition and elastic properties of AnAs (An= Th, U, Np, Pu) compounds at high pressure

    International Nuclear Information System (INIS)

    Aynyas, Mahendra; Arya, B.S.; Srivastava, Vipul; Sanyal, Sankar P.

    2006-01-01

    The high pressure behavior and pressure induced structural phase transition of mono arsenides (AnAs; An = Th, U, Np, Pu) have been investigated by using a three body interaction potential (TBI). This method has been found quite satisfactory in the case of other Rare-Earth compounds. The calculated compression curves of mono-arsenides obtained so have been compared with high pressure X-ray diffraction work. The theoretically predicted phase transition pressure and other structural properties for these compounds agree reasonably well with the measured values. (author)

  1. Variations in first principles calculated defect energies in GaAs and ...

    Indian Academy of Sciences (India)

    Keywords. Ab initio calculations; semi-insulating GaAs; point defects. ... We are focusing on gallium arsenide. .... gallium vacancy in S & L, P et al and N & Z will exist in triple ... gallium antisite defect that include relaxation, a negative. U-effect is ...

  2. Low temperature transport in p-doped InAs nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra; Jespersen, Thomas Sand; Madsen, Morten Hannibal

    2013-01-01

    We present low temperature electrical measurements of p-type Indium Arsenide nanowires grown via molecular beam epitaxy using Beryllium as a dopant. Growth of p-type wires without stacking faults is demonstrated. Devices in field-effect geometries exhibit ambipolar behavior, and the temperature...

  3. Face to Face The IGBT and its Creator

    Indian Academy of Sciences (India)

    IAS Admin

    HC: At RPI you had the chance to work on Indium Gallium Arsenide (InGaAs) ..... Safe operating area denotes the current and voltage conditions under which ... conditioning, refrigeration and so on, but what is the impact on the environment?

  4. Determination of trace elements in electronic materials by NAA

    International Nuclear Information System (INIS)

    Kobayashi, Kenji

    1986-01-01

    Trace amounts of elements in electronic materials were determined by instrumental neutron activation analysis (INAA), re-activation analysis and substoichiometric radioactivation analysis using gamma-ray spectrometry. Ten elements (Cr, Cu, Fe, Zn, Co, Eu, Ir, Sb, Sc, Tb) in gallium arsenide single crystal were determined by INAA and substoichiometric radioactivation analysis. Trace level of chromium (10 13 atoms/cm 3 ) and zinc (10 14 atoms/cm 3 ) in gallium arsenide single crystal were determined by INAA. The chromium concentrations in horizontal Bridgmangrown semi-insulating gallium arsenide ingot were ranged from 1.2 x 10 16 atoms/cm 3 at seed end to 3.5 x 10 16 atoms/cm 3 at tail end. The trace determinations of iron (10 14 atoms/cm 3 ) and copper (10 14 atoms/cm 3 ) in silicon, gallium arsenide and indium phoshide single crystals were carried out by substoichiometric radioactivation analysis. The reactivation analysis for the multielement determination of indium phosphide single crystal was carried out and nineteen elements were determined simultaneously by gamma-ray spectrometry. Eleven elements (Ag, As, Br, Co, Cr, Fe, K, Mn, Sb, Sc, Zn) in four NIES standard reference materials (Pond Sediment, Chlorella, Mussel and Tea Leaves) and seven elements (Co, Cr, Eu, Fe, Sc, Tb, Yb) in two NBS glasses (SRM-615 and SRM-613) were determined by INAA and substoichiometric radioactivation analysis and the analytical results obtained by the methods were in good agreement with certified values by NIES and NBS. (author)

  5. InP solar cell with window layer

    Science.gov (United States)

    Jain, Raj K. (Inventor); Landis, Geoffrey A. (Inventor)

    1994-01-01

    The invention features a thin light transmissive layer of the ternary semiconductor indium aluminum arsenide (InAlAs) as a front surface passivation or 'window' layer for p-on-n InP solar cells. The window layers of the invention effectively reduce front surface recombination of the object semiconductors thereby increasing the efficiency of the cells.

  6. 500 MHz transient digitizers based on GaAs CCDs

    International Nuclear Information System (INIS)

    Bryman, D.; Cresswell, J.V.; LeNoble, M.; Poutissou, R.

    1990-10-01

    A wide bandwidth transient digitizer based on a recently produced gallium arsenide charged coupled device is under development. The CCDs have 128 pixels and operate at 500 MHz. Initial testing of prototype modules in Experiment 787 at Brookhaven National Laboratory is reported. (Author) (8 refs., 10 figs.)

  7. Tunable structures and modulators for THz light

    Czech Academy of Sciences Publication Activity Database

    Kužel, Petr; Kadlec, Filip

    2008-01-01

    Roč. 9, - (2008), 197-214 ISSN 1631-0705 R&D Projects: GA AV ČR KJB100100512; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz radiation * tunable devices * photonic crystals * strontium titanate * gallium arsenide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.164, year: 2008

  8. An in-vacuum diffractometer for resonant elastic soft x-ray scattering

    Czech Academy of Sciences Publication Activity Database

    Hawthorn, D.G.; He, F.; Venema, L.; Davis, H.; Achkar, A.J.; Zhang, J.; Sutarto, R.; Wadati, H.; Radi, A.; Wilson, T.; Wright, G.; Shen, K.M.; Geck, J.; Zhang, H.; Novák, Vít; Sawatzky, G.A.

    2011-01-01

    Roč. 82, č. 7 (2011), 073104/1-073104/8 ISSN 0034-6748 Institutional research plan: CEZ:AV0Z10100521 Keywords : gallium arsenide * lanthanum compounds * manganese compounds * neodymium * reflectivity * semiconductor thin films * strontium compounds * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.367, year: 2011

  9. Comparison of charge collection in semiconductor detectors and timing resolution, using a sub-nanosecond transimpedance amplifier

    International Nuclear Information System (INIS)

    Rudge, A.

    1995-01-01

    A transimpedance amplifier, with a risetime of <600 ps and a noise of <1000 RMS electrons in a 500 MHz bandwidth, has been used for comparison of charge collection times in silicon, gallium arsenide and diamond detectors. The use of silicon detectors as trigger counters/hodoscopes is demonstrated, together with measured timing characteristics. (orig.)

  10. Comparison of charge collection in semiconductor detectors and timing resolution, using a sub-nanosecond transimpedance amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Rudge, A. [European Organization for Nuclear Research, Geneva (Switzerland)

    1995-06-01

    A transimpedance amplifier, with a risetime of <600 ps and a noise of <1000 RMS electrons in a 500 MHz bandwidth, has been used for comparison of charge collection times in silicon, gallium arsenide and diamond detectors. The use of silicon detectors as trigger counters/hodoscopes is demonstrated, together with measured timing characteristics. (orig.).

  11. Configurational rearrangements of bistable centers in covalent semiconductors - phase transitions of the second type

    International Nuclear Information System (INIS)

    Ivanyukovich, V.A.; Karas', V.I.; Lomako, V.M.

    1989-01-01

    A new radiation configurational-bistable defect diffring from the known similar defects by the fact that it possessestemperature inversion of states is detected in gallium arsenide. Configurational-bistable rearrangements are shown to be considered as phase transitions of the second type

  12. The 20 and 30 GHz MMIC technology for future space communication antenna system

    Science.gov (United States)

    Anzic, G.; Connolly, D. J.

    1984-10-01

    The development of fully monolithic gallium arsenide receive and transmit modules is described. These modules are slated for phased array antenna applications in future 30/20 gigahertz communications satellite systems. Performance goals and various approaches to achieve them are discussed. The latest design and performance results of components, submodules and modules are presented.

  13. Mining and Metal Pollution: Assessment of Water Quality in the ...

    African Journals Online (AJOL)

    Michael

    2017-12-02

    Dec 2, 2017 ... arsenides and metallic sulphides of As, Au, Cu, Fe,. Zn, Pb and Sb. In gold .... hydroxides of aluminium, iron, manganese and lead. Reactive minerals such ..... seen to form the complex Fe(OH)3, representing 83. % of the total ...

  14. Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures

    DEFF Research Database (Denmark)

    Frederiksen, Rune Schøneberg; Alarcon-Llado, Esther; Madsen, Morten H.

    2015-01-01

    High aspect ratio nanostructures have gained increasing interest as highly sensitive platforms for biosensing. Here, well-defined biofunctionalized vertical indium arsenide nanowires are used to map the interaction of light with nanowires depending on their orientation and the excitation waveleng...

  15. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    Science.gov (United States)

    Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    Today’s consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...

  16. Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy

    NARCIS (Netherlands)

    Prins, M.W.J.; Jansen, R.; Kempen, van H.

    1996-01-01

    We describe a model as well as experiments on spin-polarized tunneling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate

  17. The Effects of Strain on the Electrical Properties of Thin Evaporated Films of Semiconductor Compounds

    Science.gov (United States)

    Steel, G. G.

    1970-01-01

    Reports on project intended to establish how electrical resistance, Hall voltage, and magnetoresistance change when a thin film specimen is subjected to mechanical strain. Found resistance of semiconducting film of indium arsenide and indium antimonide decreases with tension and increases with compression. (LS)

  18. Fast Clock Recovery for Digital Communications

    Science.gov (United States)

    Tell, R. G.

    1985-01-01

    Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).

  19. Spin-dependent transport in metal/semiconductor tunnel junctions

    NARCIS (Netherlands)

    Prins, M.W.J.; Kempen, van H.; Leuken, Van H.; Groot, de R.A.; Roy, van W.; De Boeck, J.

    1995-01-01

    This paper describes a model as well as experiments on spin-polarized tunnelling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to

  20. 500 MHz transient digitizers based on GaAs CCDs

    International Nuclear Information System (INIS)

    Bryman, D.A.; Constable, M.; Cresswell, J.V.; Daviel, A.; LeNoble, M.; Mildenberger, J.; Poutissou, R.

    1996-11-01

    A system of 500 MHz transient digitizers based on gallium arsenide resistive gate charged coupled devices has been developed for an experiment studying rare K decays. CCDs with dynamic range of 8-bits and 128 or 320 pixels are used as analog pipelines. The CCD's are driven by a single phase transport system. Data readout and manipulation occurs at 15.6 MHz. (authors)

  1. West Europe Report, Science and Technology

    Science.gov (United States)

    1986-01-16

    according to operational needs in discrete supplies at from 200 to 350 bars. Inventories of the propellants UDMH [unsymmetric dimethylhydrazine] and N5nü...Philips, Siemens and Thomson, on advanced microprocessors, gallium arsenide integrated circuits, microwave components, high- density memories, flat-panel...centers concerned must indicate their desire to associate and regroup themselves according to flexible formulas and variable configurations. In

  2. STANFORD: Highly polarized SLC electron beams

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Using specialized photocathodes made with 'strained' gallium arsenide, physicists at the Stanford Linear Accelerator Center (SLAC) have generated electron beams with polarizations in excess of 60 percent a year ahead of schedule. Together with recent luminosity increases, this breakthrough will have a major impact on the physics output of the Stanford Linear Collider (SLC). Beam polarization was almost tripled using photocathodes in which a gallium arsenide layer was grown epitaxially over a substrate of gallium arsenide phosphide. The mismatch between these two layers deforms the crystal structure and removes a degeneracy in the valence band structure, permitting selective optical pumping of one unique spin state. Whereas conventional gallium arsenide photocathodes are limited to 50 percent polarization because of this degeneracy (and realistic cathodes fall substantially below this theoretical limit), such strained crystal lattices have the potential to yield polarizations close to 100 percent. Polarization enhancement with strained lattices was first demonstrated in 1991 by a SLAC/Wisconsin/ Berkeley group (May 1991, page 6) with a 71 percent polarization in a laboratory experiment. More recently this group has achieved polarization in excess of 90 percent, reported last November at the Nagoya Spin Symposium. (In a complementary development, a Japanese KEK/ Nagoya/KEK obtains polarized beams using a 'superlattice' - May 1991, page 4.) The 1993 SLC run, the strained gallium arsenide photocathode technique's debut in an operating particle accelerator, has proved to be a resounding, unqualified success - as have physics experiments on the Z particles produced by the highly polarized beam. A conservative approach was called for, due to concerns about possible charge saturation effects. A relatively thick (0.3 micron) gallium arsenide layer was used for the photocathode in the SLC polarized electron source. With a titanium

  3. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  4. Nuclear Chemistry Institute, Mainz University. Annual Report 1995

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1996-03-01

    The annual report of the Institut fuer Kernchemie addresses inter alia three main research activities. The first belongs to the area of basic research, covering studies in the fields of nuclear fission, chemistry of the super-heavy elements and of heavy-ion reactions extending from the Coulomb barrier to relativistic energies, and nuclear astrophysics in connection with the ''r process''. By means of laser technology, high-precision data could be measured of the ionization energies of berkelium and californium. Studies of atomic clusters in the vacuum of an ionization trap revealed interesting aspects. The second major activity was devoted to the analysis of environmental media, applying inter alia neutron activation analysis and resonance ionization mass spectroscopy (RIMS). The third activity resulted in the development of novel processes, or the enhancement of existing processes or methods, for applications in basic research work and in environmental analytics. Another item of interest is the summarizing report on the operation of the TRIGA research reactor. (orig./SR) [de

  5. The Transplutonium. The superheavy nuclei found in the micas of Madagascar and their interests

    International Nuclear Information System (INIS)

    Raoelina Andriambololona

    1976-01-01

    Since June 1976, evidence for the existence of superheavy elements is discussed about. After having recalled artificial elements with atomic numbers Z of wich go from Z=95 (Americium) to Z=107 (built in 1976), superheavy elements having Z greater than 110 are considered. They have been discovered by american searchers in giant halos seen in Madagascar micas. The samples have been recoked in the Fort-Dauphin region (Haut Mandrare). The corresponding numbers Z are 114, 115, 116, 124, 125, 125, 126, 127. It seems that the existence of Z=126 element should be accepted with a greater degree of confidence. But different experiences done by other groups seem to show the evidence of superheavy elements in micas looks weaker. Nevertheless, it is interesting to investigate the evidence or the non-evidence of those elements. We estimate the mass numbers A of those superheavy elements in the liquid drop model if we assume that they are stable versus β. The results thus obtained agree with the shell-model ones within 4 % approximation. We propose if the evidence of superheavies is confirmed to give the name of madagascarium to one of them (Z=126) by similitude with francium, lutetium, polonium, berkelium, americium, europium, ...Their evidence was first conjectured in Madagascar micas in 1976. Superheavy nuclei are to be distinguished from hypernuclei. [fr

  6. Identification of the new isotope sup 2 sup 4 sup 1 Bk

    CERN Document Server

    Asai, M; Ichikawa, S; Nagame, Y; Nishinaka, I; Akiyama, K; Toyoshima, A; Kaneko, T; Sakama, M; Haba, H; Oura, Y; Kojima, Y; Shibata, M

    2003-01-01

    A new neutron-deficient berkelium isotope sup 2 sup 4 sup 1 Bk produced in the sup 2 sup 3 sup 9 Pu( sup 6 Li, 4n) reaction has been identified using a gas-jet coupled on-line isotope separator. Cm K and L X-rays associated with the EC decay of sup 2 sup 4 sup 1 Bk were observed in the mass-241 fraction, and three gamma transitions were attributed to the EC decay of sup 2 sup 4 sup 1 Bk through X-gamma coincidences. The half-life of sup 2 sup 4 sup 1 Bk was determined to be 4.6+-0.4 min which is 1/2-1/4 of that of theoretical predictions. The half-life value and the observed gamma transitions can be consistently explained as a consequence of the allowed EC transition of pi 7/2 sup + [633] -> nu 7/2 sup + [624]. (orig.)

  7. The creation of new nuclei

    International Nuclear Information System (INIS)

    Armbruster, P.; Hessberger, F.P.

    1998-01-01

    In the last 60 years physicists have created 20 artificial elements beyond uranium. In 1934 Enrico Fermi predicted the creation of new elements by bombarding atoms with neutrons. This method led to the discovery of neptunium (Z=93), plutonium, americium, curium, berkelium, californium, einsteinium and fermium (Z=100). In fact the capture of a neutron is followed by a beta-decay which increases the atomic number (Z) by one unit. Beyond Z=100 beta-decay no more occurs so a new approach was necessary. Between the American Lawrence Berkeley Laboratory and the Russian Dubna Institute a fierce competition broke out to produce new elements by bombarding transuranium nuclei with light elements such as helium, carbon, nitrogen. This new method required heavy equipment: ion accelerator and detectors but led to the creation of all the elements from Z=101 to Z=106. A new idea was to provoke the fusion of heavy nuclei such as lead and bismuth with colliding argon, nickel or zinc ion beams. This method called 'cold fusion' opened the way to reach the nuclei beyond Z=107. In 1996 the element Z=112 was the last discovered. The next step could be the element Z=114 for which a particular stability is expected. (A.C.)

  8. Actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO{sub 2}OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH{sup 2+} for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  9. Management of nuclear materials in an R ampersand D environment at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Behrens, R.G.; Roth, S.B.; Jones, S.R.

    1991-01-01

    Los Alamos National Laboratory is a multidisciplinary R ampersand D organization and, as such, its nuclear materials inventory is diverse. Accordingly, major inventories of isotopes such as Pu-238, Pu-239, Pu-242, U-235, Th, tritium, and deuterium, and lesser amounts of isotopes of Am, Cm, Np and exotic isotopes such as berkelium must be managed in accordance with Department of Energy Orders and Laboratory policies. Los Alamos also acts as a national resource for many one-of-a-kind materials which are supplied to universities, industry, and other government agencies within the US and throughout the world. Management of these materials requires effective interaction and communication with many nuclear materials custodians residing in over forty technical groups as well as effective interaction with numerous outside organizations. This paper discusses the role, philosophy, and organizational structure of Nuclear Materials Management at Los Alamos and also briefly presents results of two special nuclear materials management projects: 1- Revision of Item Description Codes for use in the Los Alamos nuclear material data base and 2- The recommendation of new economic discard limits for Pu-239. 2 refs., 1 fig

  10. Extraction of transplutonium elements from carbonate solutions by alkylpyrocatechol

    International Nuclear Information System (INIS)

    Karalova, Z.K.; Myasoedov, B.F.; Rodionova, L.M.; Kuznetsova, V.S.

    1983-01-01

    Extraction of americium, berkelium as well as Ce, Eu, Th, U, Zr, Cs, Fe with solution of 4(α, α-dioctylethyl)pyrocatechol (DOP) in toluene from carbonate solutions to determine conditions of their separation has been studied. It is established that americium extraction is quite sensitive to the changes of potassium carbonate concentration. The maximum extraction of americium (R >90%) is observed in the case of 0.1-0.5 mol/l of K 2 CO 3 solutions and the minimum one (R=2.5%) - in the case of 8 mol/l K 2 CO 3 . Americium extraction increases sharply when sodium hydroxide is introduced in carbonate solutions. It is shown that varying sodium hydroxide concentration it is possible to achieve qualitative extraction of americium even from saturated solution of potassium carbonate. Reextraction of TPE is easily realized with 3 mol/l HCl solution. The system K 2 CO 3 (KOH)-DOP proved to be perspective for Am separation from Bk, Ce, Cs, actinoid elements as well as from Fe

  11. Actinide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO 2 OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH 2+ for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  12. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A.

    2000-01-01

    Although originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element 107 Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided

  13. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J; Gaeggeler, H; Herlach, D; Junker, K; Kettle, P -R; Kubik, P; Zehnder, A [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  14. Investigations for the influence of geochemical parameters on the sorption and desorption of lanthanides and uranium onto opalinus clay as potential host rock for a repository

    International Nuclear Information System (INIS)

    Moeser, Christina

    2010-01-01

    The development of a disposal in deep geological formations for radioactive waste is a very important task for the future. The safety assessment for more than a hundred thousand years needs a full understanding of all processes of interaction between the radioactive waste and the surrounded formations. This work contributes to this understanding. The interaction between lanthanides (homologues of the actinides americium, curium and berkelium) / uranium and the host rock opalinus clay under influence of organic substances (NOM) have been analyzed and discussed. The complex system was split into 3 binary basic systems with the following interactions - Interactions between lanthanides / uranium and NOM - Interactions between lanthanides / uranium and the opalinus clay - Interactions between NOM and opalinus clay All binary systems can be influenced by geological parameters like pH, ion strength and competing cations. The sorption / desorption of the lanthanides onto the opalinus clay is analyzed via inductively coupled plasma mass spectrometry. For the investigation of the complexation behavior of metals with NOM we used capillary electrophoresis coupled with inductively coupled plasma mass spectrometry. Under these conditions the chosen model organic humic acid affected the sorption of the lanthanides onto opalinus clay favorably. The smaller organic compounds, which dominate in the composition of the clay organics, remobilized the metals after sorption onto clay and the sorption can be inhibited by NOM. Due to the reduced metal sorption onto Opalinus clay by NOM, a migration through the clay may be possible.

  15. Fluorescence and excitation spectra of Bk3+, Cf3+, and Es3+ ions in single crystals of LaCl3

    International Nuclear Information System (INIS)

    Hessler, J.P.; Caird, J.A.; Carnall, W.T.; Crosswhite, H.M.; Sjoblom, R.K.; Wagner, F. Jr.

    1978-01-01

    Dye laser techniques have been used to study the energy level structure of the heavier actinides in single crystals of lanthanum chloride. In the case of einsteinium, fluorescence was detected and measured from the following manifolds: J = 5 at 0.984 μm -1 , J = 4 at 1.572 μm -1 , J = 6 at 2.930 μm -1 . This fluorescence was observed to the five lowest manifolds: J = 8, 5, 7, 2, 6. For californium, fluorescence has been detected from the manifolds: J = 11/2 at 1.190 μm -1 , J = 7/2 at 1.389 μm -1 , J = 5/2 at 1.977 μm -1 . This fluorescence was observed to the three lowest manifolds: J = 15/2, 9/2, 11/2. The fluorescence manifolds of berkelium are J = 6 at 1.540 μm -1 , and J = 4 at 1.953 μm -1 . The three lowest manifolds, J = 6, 5, and 4, have been observed in fluorescence. Absorption spectra data have yielded crystal-field splitting measurements in the higher manifolds of Es + . The location of the manifolds in general confirmed earlier approximate free-ion level structure calculations based on assumed regularities in the energy level parameters derived from spectra of the actinide ions through Cf + . 2 figures

  16. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  17. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  18. Study and characterization of semi-conductor materials III-V for their applications to the ionizing radiation detection

    International Nuclear Information System (INIS)

    Moulin, H.

    1989-01-01

    This work is the study of photoconduction in volume of gallium arsenide and of indium phosphide doped with iron for their applications to X-ray detection which is carried out directly in the material. After having recalled the physical characterization of materials and the principle of photoconduction, we describe two informatic simulations. The first supposes the spatial uniformity of the electric field on the semiconductor, the second takes the spatial and temporal variations of the field into consideration. Then we show the advantage of a first irradiation to neutrons of the photoconductors. With the gallium arsenide there is swiftness improvement of the detectors to the detriment of the sensitivity. The second part studies first the characterizations in the obscurity of the photoconductors according to the electric polarization field and to the neutron dose they received before and then their characterizations under X radiation. 77 refs., 221 figs., 33 tabs., 6 photos., 3 annexes

  19. Solar-Electrochemical Power System for a Mars Mission

    Science.gov (United States)

    Withrow, Colleen A.; Morales, Nelson

    1994-01-01

    This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.

  20. Accurate determination of light elements by charged particle activation analysis

    International Nuclear Information System (INIS)

    Shikano, K.; Shigematsu, T.

    1989-01-01

    To develop accurate determination of light elements by CPAA, accurate and practical standardization methods and uniform chemical etching are studied based on determination of carbon in gallium arsenide using the 12 C(d,n) 13 N reaction and the following results are obtained: (1)Average stopping power method with thick target yield is useful as an accurate and practical standardization method. (2)Front surface of sample has to be etched for accurate estimate of incident energy. (3)CPAA is utilized for calibration of light element analysis by physical method. (4)Calibration factor of carbon analysis in gallium arsenide using the IR method is determined to be (9.2±0.3) x 10 15 cm -1 . (author)

  1. Properties of GaAs:Cr-based Timepix detectors

    Science.gov (United States)

    Smolyanskiy, P.; Bergmann, B.; Chelkov, G.; Kotov, S.; Kruchonak, U.; Kozhevnikov, D.; Mora Sierra, Y.; Stekl, I.; Zhemchugov, A.

    2018-02-01

    The hybrid pixel detector technology brought to the X-ray imaging a low noise level at a high spatial resolution, thanks to the single photon counting. However, silicon as the most widespread detector material is marginally sensitive to photons with energies above 30 keV. Therefore, the high-Z alternatives to silicon such as gallium arsenide and cadmium telluride are increasingly attracting attention of the community for the development of X-ray imaging systems. The results of our investigations of the Timepix detectors bump bonded to sensors made of gallium arsenide compensated by chromium (GaAs:Cr) are presented in this work. The following properties are most important from the practical point of view: the IV characteristics, the charge transport characteristics, photon detection efficiency, operational stability, homogeneity, temperature dependence, as well as energy and spatial resolution are considered. The applicability of these detectors for spectroscopic X-ray imaging is discussed.

  2. Metamaterial-Enhanced Nonlinear Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang X.

    2013-03-01

    Full Text Available We demonstrate large nonlinear terahertz responses in the gaps of metamaterial split ring resonators in several materials and use nonlinear THz transmission and THz-pump/THz-probe spectroscopy to study the nonlinear responses and dynamics. We use the field enhancement in the SRR gaps to initiate high-field phenomena at lower incident fields. In vanadium dioxide, we drive the insulator-to-metal phase transition with high-field THz radiation. The film conductivity increases by over two orders of magnitude and the phase transition occurs on a several picosecond timescale. In gallium arsenide, we observe high-field transport phenomena, including mobility saturation and impact ionization. The carrier density increases by up to ten orders of magnitude at high fields. At the highest fields, we demonstrate THz-induced damage in both vanadium dioxide and gallium arsenide.

  3. Inter-granular current in iron-oxypnictide superconductors

    International Nuclear Information System (INIS)

    Tamegai, T.; Tsuchiya, Y.; Nakajima, Y.; Kamihara, Y.; Hosono, H.

    2010-01-01

    Inter- and intragranular currents, J c inter and J c intra , in LaFePO 0.94 F 0.06 polycrystalline sample are evaluated by measuring the remanent-state field profile using magneto-optical imaging method. Obtained images show the absence of magnetic field modulation associated with the weak-link nature of grain boundaries, indicating that J c inter and J c intra are comparable in magnitude in contrast to other iron-arsenide superconductors. J c inter is estimated to be 2 x 10 4 A/cm 2 in the limit of T = 0 K, which is larger than the values in other iron-arsenide superconductors. Implication of these J c behavior is discussed in relation with possible pairing symmetries.

  4. Surface temperature measurements for ion-bombarded Si and GaAs at 1.0 to 2.0 MeV

    International Nuclear Information System (INIS)

    Lowe, L.F.; Kennedy, J.K.; Davies, D.E.; Deane, M.L.; Eyges, L.J.

    1975-01-01

    Surface temperatures of ion-bombarded silicon and gallium arsenide have been measured using an infrared detector. Ion beams of N + , N + 2 , O + , O + 2 , C + , CO + , and H + were used at energies from 1--2.0 MeV and at current densities up to 12 μAcenter-dotcm/sup -2/. No temperature dependence was found on ion species, energy, or current. The change in temperature depended only on beam power, target material, and sample mounting technique. With proper mounting temperature increases of 20 degreeC for silicon and 65 degreeC for gallium arsenide were observed for a beam power density of 1.0 Wcenter-dotcm/sup -2/

  5. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    Science.gov (United States)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  6. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  7. The geology of the Collins Bay uranium deposit, Saskatchewan

    International Nuclear Information System (INIS)

    Jones, B.E.

    1980-01-01

    The Collins Bay deposit lies within the Churchill Province on the western edge of the Wollaston lithostructural domain where it underlies the eastern edge of the Helikian Athabasca Formation. It is 6 miles north-northeast of the Rabbit Lake mine. Two principal zones of uranium mineralization are described. The A zone, a partly eroded, high-grade pod of metal oxide and arsenides sheathed by clay-like minerals, which trends north-northeast and lies under 25 to 40 feet of water; and the B zone, which lies 6 000 ft south of the A, subcrops under till cover and is a partly eroded zone composed of metal oxide and arsenides which occur within variably altered Athabasca Formation. The deposit is typical of the unconformity-type uranium-nickel deposits of the Athabasca Basin. Observed features fit well with the diagenetic-hydrothermal model for such deposts. (auth)

  8. MOCVD process technology for affordable, high-yield, high-performance MESFET structures. Phase 3: MIMIC

    Science.gov (United States)

    1993-01-01

    Under the MIMIC Program, Spire has pursued improvements in the manufacturing of low cost, high quality gallium arsenide MOCVD wafers for advanced MIMIC FET applications. As a demonstration of such improvements, Spire was tasked to supply MOCVD wafers for comparison to MBE wafers in the fabrication of millimeter and microwave integrated circuits. In this, the final technical report for Spire's two-year MIMIC contract, we report the results of our work. The main objectives of Spire's MIMIC Phase 3 Program, as outlined in the Statement of Work, were as follows: Optimize the MOCVD growth conditions for the best possible electrical and morphological gallium arsenide. Optimization should include substrate and source qualification as well as determination of the optimum reactor growth conditions; Perform all work on 75 millimeter diameter wafers, using a reactor capable of at least three wafers per run; and Evaluate epitaxial layers using electrical, optical, and morphological tests to obtain thickness, carrier concentration, and mobility data across wafers.

  9. Geology and mineralogy of the Cu-Ni-Co-U ore deposits at Talmessi and Meskani, Central Iran

    International Nuclear Information System (INIS)

    Tarkian, M.; Bock, W.D.; Neumann, M.

    1983-01-01

    Polymetallic hydrothermal veins and impregnations carry copper-iron sulphides (bornite, chalcopyrite, digenite, chalcocite) and nickel-cobalt arsenides (niccolite, rammelsbergite, safflorite, skutterudite) with bismuth and uranium as well as some copper arsenides (domeykite, koutekite etc.) in two dormant mines in the Anarak District. The geological and tectonic framework and the mineral associations of both occurrences have been investigated in detail. Both mineralization can be attributed to Tertiary magmatism, but were deposited in two temporally distinct periods. The older copper sulphide minerealization is structurally controlled by pre-middle Eocene tectronics and is linked to Eocene shoshonitic volcanism. The second, younger nickel-cobalt-silver-bismuth-uranium mineralization might be attributed to a granitic magmatism linked to a Miocene phase of movement. (Authors)

  10. Organometallic compounds of the 2-6 group elements of periodic system as perspective substances for microelectrnics

    International Nuclear Information System (INIS)

    Fedorov, V.A.

    1986-01-01

    Results of investigating methods of preparation and analysis of organometallic compounds (OMC) of the 2B-6B group elements, behaviour of microimpurities in the process of their complete purification, physical-chemical properties for developing rational flowsheets of OMC purification are presented. Results of microimpurities quantitative transition from OMC to gallium arsenide epitaxial layers are presented. Prospects for OMC application in microelectronics are discussed

  11. Super-Planckian Thermophotovoltaics Without Vacuum Gaps

    Science.gov (United States)

    Mirmoosa, M. S.; Biehs, S.-A.; Simovski, C. R.

    2017-11-01

    We introduce the concept of a thermophotovoltaic system whose emitter is separated from the photovoltaic cell by an intermediate thick slab of gallium arsenide. Owing to the engineered structure of the emitter (a multilayer structure of negative- and positive-ɛ layers) together with a high refractiveindex and transparency of the intermediate slab, we achieve a super-Planckian and frequency-selective spectrum of radiative heat transfer which is desirable for the efficient performance of thermophotovoltaic systems.

  12. Space and Missile Systems Center Standard: Technical Requirements for Electronic Parts, Materials, and Processes used in Space Vehicles

    Science.gov (United States)

    2013-04-12

    glass or oxide passivation over junctions . 4.3 Screening (100 percent). Screening (100 percent) shall be in accordance with section 1400 for the JAN...75 VCE = 75 IC = 75 VCE = 75 IC = 75 Hetero - junction Bipolar Transistor Gallium Arsenide 3/ 105 125 N/A N/A 75 75 Current...HDBK-339 Custom Large Scale Integrated Circuit Development and Acquisition for Space Vehicles MIL-STD-403C Preparation for and Installation of

  13. Neutron activation determination of phosphorus and sulfur in semiconductor materials by 32P-isotope

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Gol'dshtejn, M.M.; Gil'bert, Eh.N.; Verevkin, G.V.; Yudelevich, I.G.

    1977-01-01

    A neutron-activation method has been developed for determining phosphorus and sulphur in germanium, gallium, gallium arsenide, and silicon structures using 32 P isotope. The dioctyl-sulphoxide (DOSO) extraction of phosphoric molybdenum acid (PMA) has been used to separate 32 P in a radiochemically pure form. Correction factors have been calculated due to the 2nd order interference on 30 Si nuclei in determining phosphorus in silicon for various irradiation times and at various cadmium proportions

  14. Proceedings of the Fiber Optics in the Nuclear Environment Symposium 25-27 March 1980. Volume II. Radiation Physics,

    Science.gov (United States)

    1980-04-30

    800 900 1000 Wavelength (nm) 4. Comparison of material dispersion characteristic between Corning and ITT graded index fiber. 170 _0 10 e 1060 mn Corning...Accelerator (REBA) subjected this device and conmercially available photodiodes (made from silicon, germanium, and indium gallium arsenide phosphide ) to...of wavelength and is shown in Fig. 2. Since approximately one-third of the incident light is reflected at the top surface due to index of refraction

  15. 1997 IEEE/LEOS Summer Topical Meeting on Gallium Nitride Materials, Processing and Devices Held in Montreal, Quebec, Canada on 11-15 August 1997

    Science.gov (United States)

    1998-01-01

    refractive index differences in the two branches, their respective dispersion curves will intersect at a certain wavelength, according to our design...wavelengths, DBRs are usually grown lattice- matched to InP using quaternary and ternary phosphide alloys in spite of the low refractive in- dex...validating the refractive index model. In a third step, mirrors based on arsenide-antimonide materials were designed to operate at 1.3 ^.m

  16. Space-Based Solar Power System Architecture

    Science.gov (United States)

    2012-12-01

    to this thesis, “the Boeing 702 offers a range of power up to 18 kW. Dual and triple -junction gallium arsenide solar cells enable such high power...CONCLUSIONS ........................................................................................................85 A. KEY POINTS AND...USAF. Without the proper starting point and frame of reference, this thesis would not have been possible. Thank you to everyone who had an influence on

  17. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  18. Synthesis and characterization of actinide metal compounds formed by combustion

    International Nuclear Information System (INIS)

    Behrens, R.G.; King, M.A.

    1985-01-01

    This paper briefly describes the results of attempts to synthesize arsenides, phosphides, and antimonides of uranium and thorium using Self-Propagating High-Temperature Synthesis (SHS) techniques. This paper first summarizes the chemistry and thermodynamics of these chemical systems, describes SHS synthesis techniques, and then describes the results of the syntheses using data from powder x-ray diffraction, metallographic, and electron microprobe analyses

  19. Tritium-Powered Radiation Sensor Network

    Science.gov (United States)

    2015-09-01

    Photomultiplier Tube, Scintillator, Geiger counter, Zigbee, Wireless Network, Radiation detector, Dirty Bomb 16. SECURITY CLASSIFICATION OF: 17...operational lifetime of 150 years. Persistent sensing of the environment with vibration and radiation (electromagnetic [ EM ], acoustic, gamma, etc.) in...Transportation E-field electric field EH electron-hole EM electromagnetic GaAs gallium arsenide GPS global positioning system InGaP indium gallium

  20. Terahertz Technology for Defense and Security-Related Applications

    OpenAIRE

    Iwaszczuk, Krzysztof; Jepsen, Peter Uhd; Heiselberg, Henning

    2012-01-01

    Denne afhandling omhandler udvalgte aspekter af terahertz (THz) teknologi med potentiale i forsvars- og sikkerheds-relaterede applikationer. En ny metode til samtidig dataopsamling i tidsopløst THz spektroskopi eksperimenter er blevet udviklet. Denne teknik demonstreres ved bestemmelse af fladekonduktiviteten af fotogenererede ladningsbrere i semiisolerende gallium arsenid. En sammenligning med resultater opnået ved hjælp af en standard dataopsamlingsprocedure viser at den nye metode minimere...

  1. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  2. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  3. Potential means of support for materials processing in space. A history of government support for new technology

    Science.gov (United States)

    Mckannan, E. C.

    1983-01-01

    Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.

  4. The growth of materials processing in space - A history of government support for new technology

    Science.gov (United States)

    Mckannan, E. C.

    1983-01-01

    Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.

  5. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lundeberg, T.; Zhou, J.

    1989-01-01

    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  6. Investigation and Development of Advanced Surface Microanalysis Techniques and Methods

    Science.gov (United States)

    1983-04-01

    California 94402 and Stephen L. Grube Watkins-Johnson 440 Kings Village Road Scotts Valley, California 95066 as published in Analytical Chemistry , 1985, 57...34 E. Silberg , T. Y. Chang, E. A. Caridi, C. A. Evans Jr. and C. J. Hitzman in Gallium Arsenide and Related Compounds 1982, 10th International Symposium...Spectrometry," P. K. Chu and S. L. Grube, Analytical Chemistry . 13. "Direct Lateral and In-Depth Distributional Analysis for Ionic - Contaminants in

  7. High-Temperature Superconductivity in Doped BaFe2As2

    International Nuclear Information System (INIS)

    Martin, Marianne

    2011-01-01

    This thesis provides a detailed look on the synthesis, structural features and physical properties of iron arsenides. Especially the properties of BaFe 2 As 2 and the solid solutions (Ba 1-x K x )Fe 2 As 2 , (Ba 1-x Sr x )Fe 2 As 2 and BaFe 2 (As 1-x P x ) 2 which were all synthesized by solid state reactions by heating mixtures of the elements, were intensively investigated.

  8. Effect of ion-beam gettering on the GaAs transistor structure parameters under neutron irradiation

    International Nuclear Information System (INIS)

    Obolenskij, S.V.; Skupov, V.D.

    2000-01-01

    It is established that the neutron irradiation negative effect on the parameters of the field transistors with the Schottky shut-off on the basis of the epitaxial gallium arsenide is essentially reduced when the argon ions are preliminary implanted into structure on the substrate side. The above effect is explained through remotely controlled gettering by ion irradiation of admixtures and defects in the transistor active areas related with origination of deep levels under the neutron fluence [ru

  9. Low Level (Sub Threshold), Large Spot Laser Irradiations of the Foveas of Macaca Mulatta.

    Science.gov (United States)

    1981-11-01

    spherules. In a portion of the block containing the macula a degenerating patch is seen, displaying considerable edema, with pyknotic and missing nuclei...6 Peripheral areas 11 Macula 11 Eye # 3 M31 2KD 15 (enucleated 7 days after focal irradiation jby gallium arsenide laser). Control areas 15 Neodymium...laser irradiations peripheral areas 23 Macula 28 TABLE OF CONTENTS continued Page Eye # 5 M443 2JD Patched Eye 32 Most areas 32 area nasal to optic disc

  10. Effect of antimony substitution in iron pnictide compounds

    OpenAIRE

    Schmidt, D.; Braun, H. F.

    2015-01-01

    In the present study we have examined the effect of negative chemical pressure in iron pnictides. We have synthesized substitution series replacing arsenic by antimony in a number of 1111- and 122-iron arsenides and present their crystallographic and physical properties. The SDW transition temperature in LaFeAs$_{\\mathrm{1-x}}$Sb$_{\\mathrm{x}}$O decreases with increasing antimony content, while the superconducting transition temperature in LaFeAs$_{\\mathrm{1-x}}$Sb$_{\\mathrm{x}}$O$_{\\mathrm{0...

  11. Unconstrained Heterogeneous Colloidal Quantum Dots Embedded in GaAs/GaSb Nanovoids

    Science.gov (United States)

    2014-04-17

    hexadecylamine ( HDA ), and 5 mL of TOP were added to a three-neck flask, which was then degassed in a vacuum and heated to 130 C for 1.5 hours. Next...arsenide GaSb – gallium antimonide HDA – hexadecylamine HDD – hexadecanediol HR-SEM – high-resolution scanning electron microscope HR-TEM – high

  12. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1946-01-01

    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  13. Experimental study on the production of high density electron bunches from a GaAs photocathode

    International Nuclear Information System (INIS)

    Calabrese, R.; Masoli, F.; Gong, J.M.; Guidi, V.; Tecchio, L.

    1991-01-01

    In order to obtain a high charge, low emittance electron source, useful for FEL electron injector and for e + e - collider experiments, we performed a test experiment on a gallium arsenide photocathode, activated by negative electron affinity technique and illuminated with a 10 ns long laser pulse of 532 nm wavelength. We measured a maximum charge delivered, at relatively low potentials, of about 18 nC/bunch. The mean lifetime is greater than 60 h. (orig.)

  14. Results from the high efficiency solar panel experiment flown on CRRES

    International Nuclear Information System (INIS)

    Ray, K.P.; Mullen, E.G.; Trumble, T.M.

    1993-01-01

    This paper presents results from the High Efficiency Solar Panel Experiment (HESP) flown on the Combined Release and Radiation Effects Satellite (CRRES). The on-orbit solar cell degradation is correlated with the proton and electron environments. Comparisons between gallium arsenide germanium (GaAs/Ge) and silicon (Si) solar cells are presented, and results from three different annealing methods of like GaAs solar cells are compared

  15. Situation and perspectives of the development of investigation on photovoltage conversion of solar energy in Kazakhstan

    International Nuclear Information System (INIS)

    Mansurov, Z.A.; Taurbaev, T.I.; Mikhailov, L.V.; Bychkov, S.G.

    1997-01-01

    The article presents the talk on the research and development on photovoltaic conversion of solar energy in Kazakhstan given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. It is shown that the use of solar energy devices in particular on the basis of photovoltaic cells has the economical advantage in Kazakhstan arid lands. The description of some photovoltaic cells on the basis of aluminium and gallium arsenide is presented. (A.A.D.)

  16. Ab initio study of hot electrons in GaAs

    OpenAIRE

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation...

  17. 500 MHz transient digitizers based on GaAs CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D A; Constable, M; Cresswell, J V; Daviel, A; LeNoble, M; Mildenberger, J; Poutissou, R

    1996-11-01

    A system of 500 MHz transient digitizers based on gallium arsenide resistive gate charged coupled devices has been developed for an experiment studying rare K decays. CCDs with dynamic range of 8-bits and 128 or 320 pixels are used as analog pipelines. The CCD`s are driven by a single phase transport system. Data readout and manipulation occurs at 15.6 MHz. (authors). 12 refs., 15 figs.

  18. Heat load of a GaAs photocathode in an SRF electron gun

    International Nuclear Information System (INIS)

    Wang Erdong; Zhao Kui; Jorg Kewisch; Ilan Ben-Zvi; Andrew Burrill; Trivini Rao; Wu Qiong; Animesh Jain; Ramesh Gupta; Doug Holmes

    2011-01-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs. (authors)

  19. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  20. Actinide production in the reaction of heavy ions with curium-248

    International Nuclear Information System (INIS)

    Moody, K.J.

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z=91) to mendelevium (Z=101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of 248 Cm with 18 O, 86 Kr and 136 Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from 48 Ca and 238 U bombardments of 248 Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like 136 Xe and 238 U the new species 248 Am, 249 Am and 247 Pu should be produced with large cross sections from a 248 Cm target. A preliminary, unsuccessful attempt to isolate 247 Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from 251 Bk decay, necessary for calculating the 251 Bk cross section, are also determined

  1. Radiochemical studies of neutron deficient actinide isotopes

    International Nuclear Information System (INIS)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, 242 Bk, was produced with a cross-section of approximately 10 μb in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, αxn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,αxn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z 1 + Z 2 = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,αxn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of 228 Pu, 230 Pu, 232 Cm, or 238 Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes

  2. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  3. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A. [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  4. Minor Actinides Recycling in PWRs

    International Nuclear Information System (INIS)

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-01-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  5. Transuranium Processing Plant semiannual report of production, status, and plans for period ending December 31, 1975

    International Nuclear Information System (INIS)

    King, L.J.; Bigelow, J.E.; Collins, E.D.

    1976-10-01

    Between July 1, 1975, and December 31, 1975, maintenance was conducted at TRU for a period of three months, 295 g of curium oxide (enough for approximately 26 HFIR targets) were prepared, 100 mg of high-purity 248 Cm, were separated from 252 Cf that had been purified during earlier periods, 11 HFIR targets were fabricated, and 28 product shipments were made. No changes were made in the chemical processing flowsheets normally used at TRU during this report period. However, three equipment racks were replaced (with two new racks) during this time. In Cubicle 6, the equipment replaced was that used to decontaminate the transplutonium elements from rare earth fission products and to separate curium from the heavier elements by means of the LiCl-based anion-exchange process. In Cubicle 5, the equipment used to separate the transcurium elements by high-pressure ion exchange and to purify berkelium by batch solvent extraction was replaced. Two neutron sources were fabricated, bringing the total fabricated to 79. One source that had been used in a completed project was returned to the TRU inventory and is available for reissue. Three sources, for which no further use was foreseen, were processed to isolate and recover the ingrown 248 Cm and the residual 252 Cf. Eight pellets, each containing 100 μg of high-purity 248 Cm were prepared for irradiation in HFIR to study the production of 250 Cm. The values currently being used for transuranium element decay data and for cross-section data in planning irradiation-processing cycles, calculating production forecasts, and assaying products are tabulated

  6. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    Science.gov (United States)

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (particles for comparative studies of their cytotoxic potential in macrophage (THP-1) and lung epithelial (BEAS-2B) cell lines. We found that nanosized III-V arsenides, including GaAs and InAs, could induce significantly more cytotoxicity over a 24-72 h observation period. In contrast, GaP and InP particulates of all sizes as well as ionic GaCl3 and InCl3 were substantially less hazardous. The principal mechanism of III-V arsenide nanoparticle toxicity is dissolution and shedding of toxic As(III) and, to a lesser extent, As(V) ions. GaAs dissolves in the cell culture medium as well as in acidifying intracellular compartments, while InAs dissolves (more slowly) inside cells. Chelation of released As by 2,3-dimercapto-1-propanesulfonic acid interfered in GaAs toxicity. Collectively, these results demonstrate that III-V arsenides, GaAs and InAs nanoparticles, contribute in a major way to the toxicity of III-V materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  7. Medical Applications and Toxicities of Gallium Compounds

    Directory of Open Access Journals (Sweden)

    Christopher R. Chitambar

    2010-05-01

    Full Text Available Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  8. Nonlinear THz spectroscopy on n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Gaal, Peter

    2008-06-23

    In this thesis, the ultrafast dynamics of conduction band electrons in semiconductors are investigated by nonlinear terahertz (THz) spectroscopy. In particular, n-doped gallium arsenide samples with doping concentrations in the range of 10{sup 16} cm{sup -3} to 10{sup 17} cm{sup -3} are studied. A novel source for the generation of intense THz radiation is developed which yields single-cycle THz transients with field amplitudes of more then 400 kV/cm. The THz source uses ultrashort optical laser pulses provided by a Ti:sapphire oscillator. In addition, a two-color THz-pump mid-infrared-probe setup is implemented, which allows for two-dimensional time-resolved experiments in the far-infrared wavelength range. Field ionization of neutral shallow donors in gallium arsenide with intense, ultrashort THz pulses and subsequent coherent radiative recombination of electrons to impurity ground states is observed at room temperature. The superradiant decay of the nonlinear polarization results in the emission of a coherent signal with picosecond lifetimes. Such nonlinear signals, which exhibit a lifetime ten times longer than in the linear regime are observed for the first time. At low temperatures and THz field strengths below 5 kV/cm, Rabi flopping on shallow donor transitions is demonstrated. For the first time, the polar electron-LO phonon interaction is directly measured in the quantum kinetic transport regime. Quasi-instantaneous acceleration of conduction band electrons in the polar gallium arsenide lattice by the electric field of intense THz pulses and subsequent probing of the mid-infrared transmission reveals a modulation of the transmission along the THz-mid-infrared delay coordinate with the frequency of the LO phonon. These modulations directly display the relative phase between the electron motion and its surrounding virtual phonon cloud. Quantum kinetic model calculations fully account for the observed phenomena. (orig.)

  9. Joint Services Electronics Program: Basic Research in Electronics (JSEP) at the University of Texas at Austin. Appendix.

    Science.gov (United States)

    1986-12-31

    applications in tration on the temperature response, an effect also found the processing of Si and III-V compound semiconductors in silicon by Seidel et al. (5...Dannefaer, B. Hogg, and D. Kerr, "Defect Characterization in V. Ckil mo and Cofmment Gallium Arsenide By Positron Annihilation ," in Thirteenth We...unnecessary In "A ’I.I %’ S. 4 Brower et l. A schematic of the experimental arrangement emplSyed for application of the homodyne spectroscopy technique to

  10. Materials processing in zero gravity. [space manufacturing

    Science.gov (United States)

    Wuenscher, H. F.

    1973-01-01

    Manufacturing processes which are expected to show drastic changes in a space environment due to the absence of earth gravity are classified according to (1) buoyancy and thermal convection sensitive processes and (2) processes where molecular forces like cohesion and adhesion remain as the relatively strongest and hence controlling factors. Some specific process demonstration experiments carried out during the Apollo 14 mission and in the Skylab program are described. These include chemical separation by electrophoresis, the M551 metals melting experiment, the M552 exothermic brazing experiment, the M553 sphere forming experiment, the M554 composite casting experiment, and the M555 gallium arsenide crystal growth experiment.

  11. Lasers Induced Damage in Optical Materials: 1985. Proceedings of the Symposium on Optical Materials for High-Power Lasers (17th) Held in Boulder, Colorado on October 28-30, 1985

    Science.gov (United States)

    1988-07-01

    1985, pp. 1626-1633. [2] S. Dannefaer, B. Hogg, and D. Kerr, "Defect Characterization in Gallium Arsenide by Positron Annihilation ," Thirteenth...23, No. 4, 5, . " J. J.R. ;-!cteil, G.A. Al-Jumaily, K.C. Jungling, and A.C. Barron, "Properties of TiO2 , aridSiO 2 Thin Films Deposited Using ion...Sputter Deposited SiO 2 / TiO2 Coatings J. R. Sites and H. Demiryont Physics Department, Colorado State University Fort Collins, CO 80523 A-ray

  12. Formation of radiation-induced point defects in silicon doped thin films upon ion implantation and activating annealing

    International Nuclear Information System (INIS)

    Bublik, V.T.; Shcherbachev, K.D.; Komarnitskaya, E.A.; Parkhomenko, Yu.N.; Vygovskaya, E.A.; Evgen'ev, S.B.

    1999-01-01

    The formation and relaxation processes for radiation-induced defects in the implantation of 50 keV Si + ions into gallium arsenide and subsequent 10-min annealing in arsine at 850 deg. C have been studied by the triple-crystal X-ray diffractometry and secondary-ion mass spectroscopy techniques. It is shown that the existence of the vacancy-enriched layer stimulating diffusion of introduced dopants into the substrate surface can significantly affect the distribution profile of the dopant in the course of preparation of thin implanted layers

  13. Integration, gap formation, and sharpening of III-V heterostructure nanowires by selective etching

    DEFF Research Database (Denmark)

    Kallesoe, C.; Mølhave, Kristian; Larsen, K. F.

    2010-01-01

    Epitaxial growth of heterostructure nanowires allows for the definition of narrow sections with specific semiconductor composition. The authors demonstrate how postgrowth engineering of III-V heterostructure nanowires using selective etching can form gaps, sharpening of tips, and thin sections...... lithography is used for deposition of catalyst particles on trench sidewalls and the lateral growth of III-V nanowires is achieved from such catalysts. The selectivity of a bromine-based etch on gallium arsenide segments in gallium phosphide nanowires is examined, using a hydrochloride etch to remove the III...

  14. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    International Nuclear Information System (INIS)

    Miah, M. Idrish; Kityk, I.V.; Gray, E. MacA.

    2007-01-01

    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage

  15. Using of solar energy in Republic of Georgia

    International Nuclear Information System (INIS)

    Meladze, N.

    1997-01-01

    The article presents the talk on the use of solar energy in Georgia given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. The main use of solar energy in the Republic is in solar heating systems developed and produced in Georgia. Presently 12 projects are in progress for effective use of renewable energy sources. Among them the research and development on photovoltaic cells on the basis of silicon and gallium arsenide solar cells. (A.A.D.)

  16. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au; Kityk, I.V. [Institute of Physics, J. Dlugosz University Czestochowa, PL-42201 Czestochowa (Poland); Gray, E. MacA. [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2007-10-15

    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage.

  17. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.

    2010-06-17

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  18. Initial development of a laser altimeter

    Science.gov (United States)

    Gilio, J. P.

    1985-09-01

    A design study was carried out of a small, expendable, self-contained laser altimeter for overwater operation at low altitude. A .904 micrometer Gallium Arsenide laser was used to build a prototype transmitter/ receiver at a cost of less than $600 and small enough to fit inside a 5 inch diameter cylinder, 5 inches long. Tests at a height of 120 feet above the surface of a lake resulted in a signal-to-noise ratio of 6, and validated the trade-off equation used in this study. A second test model, with design improvements incorporated, is predicted to yield a SNR of over 20 for an altitude of 150 meters.

  19. Infrared and millimeter waves v.14 millimeter components and techniques, pt.V

    CERN Document Server

    Button, Kenneth J

    1985-01-01

    Infrared and Millimeter Waves, Volume 14: Millimeter Components and Techniques, Part V is concerned with millimeter-wave guided propagation and integrated circuits. In addition to millimeter-wave planar integrated circuits and subsystems, this book covers transducer configurations and integrated-circuit techniques, antenna arrays, optoelectronic devices, and tunable gyrotrons. Millimeter-wave gallium arsenide (GaAs) IMPATT diodes are also discussed. This monograph is comprised of six chapters and begins with a description of millimeter-wave integrated-circuit transducers, focusing on vario

  20. Plating on difficult-to-plate metals: what's new

    International Nuclear Information System (INIS)

    Wiesner, H.J.

    1980-01-01

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required

  1. The semiconductor doping with radiation defects via proton and alpha-particle irradiation. Review

    CERN Document Server

    Kozlov, V A

    2001-01-01

    Paper presents an analytical review devoted to semiconductor doping with radiation defects resulted from irradiation by light ions, in particular, by protons and alpha-particles. One studies formation of radiation defects in silicon, gallium arsenide and indium phosphide under light ion irradiation. One analyzes effect of proton and alpha-particle irradiation on electric conductivity of the above-listed semiconducting materials. Semiconductor doping with radiation defects under light ion irradiation enables to control their electrophysical properties and to design high-speed opto-, micro- and nanoelectronic devices on their basis

  2. Impacts of satellite power system technology

    Energy Technology Data Exchange (ETDEWEB)

    Moses, H.

    1979-01-01

    In the Satellite Power System (SPS) considered here, energy from the sun is collected by an array, 5 km*10.5 km in area, located in geostationary orbit. The array contains either silicon or gallium aluminum arsenide photovoltaic cells whose output is transformed to 2.45 GHz microwaves. These are beamed to earth to a 10 km*15 km rectifying antenna (rectenna) which rectifies the microwaves and interfaces the power with utility power lines. This paper deals with an assessment of both the environmental and societal aspects of an SPS. Under environmental aspects, attention is devoted to the health and ecological effects of both microwave radiation and other effects. 15 refs.

  3. Ab-initio study of the electronic structure of sup 1 sup 9 F implanted in GaAs and GaN crystals

    CERN Document Server

    Park, J H; Cho, H S; Shin, Y N

    1998-01-01

    We have studied the nuclear quadrupole interaction of a fluorine atom implanted in gallium arsenide and gallium nitride cluster models using the ab-initio Hartree-Fock theory. For the three possible fluorine sites in GaAs and GaN, we have determined the location of the implanted fluorine atom by using a self-consistent calculation, the electric field gradient at the implanted atom, and the electronic structure. Good agreement is found with experimental data wherever they are available. Predictions are made for the implanted fluorine site associated with the total energy and the electric field gradient which are expected to be measurable by a variety of experimental techniques.

  4. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    CERN Document Server

    Castaldini, A; Polenta, L; Canali, C; Nava, F

    1999-01-01

    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  5. Radiation performance of AlGaAs concentrator cells and expected performance of cascade structures

    International Nuclear Information System (INIS)

    Curtis, H.B.; Swartz, C.K.; Hart, R.E. Jr.

    1987-01-01

    Aluminum gallium arsenide, GaAs, silicon and InGaAs cells have been irradiated with 1 MeV electrons and 37 MeV protons. These cells are candidates for individual cells in a cascade structure. Data is presented for both electron and proton irradiation studies for one sun and a concentration level of 100X AMO. Results of calculations on the radiation resistance of cascade cell structures based on the individual cell data are also presented. Both series connected and separately connected structures are investigated

  6. Site control technique for quantum dots using electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Kanji; Jung, JaeHun; Yokota, Hiroshi [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Minami-saitama, Saitama 3458501 (Japan)

    2014-05-15

    To develop simple and high throughput sit definition technique for quantum dots (QDs), the electron beam induced deposition (EBID) method was used as desorption guide of phosphorus atoms form InP substrate. As the results one or a few indium (In) droplets (DLs) were created in the carbon grid pattern by thermal annealing at a temperature of 450°C for 10 min in the ultra high vacuum condition. The size of In DLs was larger than QDs, but arsenide DLs by molecular beam in growth chamber emitted wavelength of 1.028μm at 50K by photoluminescence measurement.

  7. Site control technique for quantum dots using electron beam induced deposition

    International Nuclear Information System (INIS)

    Iizuka, Kanji; Jung, JaeHun; Yokota, Hiroshi

    2014-01-01

    To develop simple and high throughput sit definition technique for quantum dots (QDs), the electron beam induced deposition (EBID) method was used as desorption guide of phosphorus atoms form InP substrate. As the results one or a few indium (In) droplets (DLs) were created in the carbon grid pattern by thermal annealing at a temperature of 450°C for 10 min in the ultra high vacuum condition. The size of In DLs was larger than QDs, but arsenide DLs by molecular beam in growth chamber emitted wavelength of 1.028μm at 50K by photoluminescence measurement

  8. The state of the art of thin-film photovoltaics

    International Nuclear Information System (INIS)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future

  9. Studies of the phase transitions in UAs with neutron scattering

    International Nuclear Information System (INIS)

    Sinha, S.K.; Lander, G.H.; Shapiro, S.M.; Vogt, O.

    1980-01-01

    Uranium arsenide is known to order with the type-I antiferromagnetic (AF) structure at approx. 126 K, and exhibit a first-order transition to the type-IA AF structure at T/sub N//2. We have now reexamined these transitions with a single crystal. Above T/sub N/ UAs exhibits critical scattering suggesting a tendency to order with an incommensurate wavevector, but then suddenly orders with the AF-I structure. The analysis of the data shows the need to consider anisotropic exchange interactions of cubic symmetry between U moments

  10. Cold electronics for the liquid argon hadronic end-cap calorimeter of ATLAS

    International Nuclear Information System (INIS)

    Ban, J.; Brettel, H.; Cwienk, W.D.; Fent, J.; Kurchaninov, L.; Ladygin, E.; Oberlack, H.; Schacht, P.; Stenzel, H.; Strizenec, P.

    2006-01-01

    This paper describes the on-detector electronics of the ATLAS hadronic end-cap calorimeter (HEC). The electronics is operated in liquid argon; therefore attention is paid to its performance at low temperatures. The core of the electronics are Gallium Arsenide (GaAs) preamplifiers. We present design, layout and results of various tests of the preamplifier chips and summing boards. The calibration and signal cables have been studied under laboratory conditions and the signal distortion is modeled. All parts of the electronics have been produced, tested and assembled on the calorimeter modules. The summary of the commissioning tests is presented

  11. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.

    Science.gov (United States)

    Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S

    2006-01-01

    Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.

  12. Microscopic analysis of the valence band and impurity band theories of (Ga,Mn)As

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Máca, František; Kudrnovský, Josef; Makarovský, O.; Eaves, L.; Campion, R. P.; Edmonds, K. W.; Rushforth, A.W.; Foxon, C. T.; Gallagher, B. L.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 105, č. 22 (2010), 227202/1-227202/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0456; GA MŠk LC510; GA AV ČR KAN400100652 EU Projects: European Commission(XE) 215368 - SemiSpinNet; European Commission(XE) 214499 - NAMASTE Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100520 Keywords : gallium arsenide * semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  13. Small-scale and large-scale testing of photo-electrochemically activated leaching technology in Aprelkovo and Delmachik Mines

    Science.gov (United States)

    Sekisov, AG; Lavrov, AYu; Rubtsov, YuI

    2017-02-01

    The paper gives a description of tests and trials of the technology of heap gold leaching from rebellious ore in Aprelkovo and Delmachik Mines. Efficiency of leaching flowsheets with the stage-wise use of activated solutions of different reagents, including active forms of oxygen, is evaluated. Carbonate-peroxide solutions are used at the first stage of leaching to oxidize sulfide and sulfide-arsenide ore minerals to recover iron and copper from them. The second stage leaching uses active cyanide solutions to leach encapsulated and disperse gold and silver.

  14. Measurements of electrophysical characteristics of semiconductor structures with the use of microwave photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Usanov, D. A., E-mail: UsanovDA@info.sgu.ru [Chernyshevsky National Research State University (Russian Federation); Nikitov, S. A. [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics (Russian Federation); Skripal, A. V.; Ponomarev, D. V.; Latysheva, E. V. [Chernyshevsky National Research State University (Russian Federation)

    2016-12-15

    A method is proposed for the measurement of the electrophysical characteristics of semiconductor structures: the electrical conductivity of the n layer, which plays the role of substrate for a semiconductor structure, and the thickness and electrical conductivity of the strongly doped epitaxial n{sup +} layer. The method is based on the use of a one-dimensional microwave photonic crystal with a violation of periodicity containing the semiconductor structure under investigation. The characteristics of epitaxial gallium-arsenide structures consisting of an epitaxial layer and the semi-insulating substrate measured by this method are presented.

  15. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    Science.gov (United States)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  16. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    Science.gov (United States)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  17. Possible power source found for fiber optic lasers

    International Nuclear Information System (INIS)

    Krupa, Tyler J.

    2000-01-01

    Scientists at the US Department of Energy's Sandia National Laboratory are researching ways to use a new semiconductor alloy, indium gallium arsenide nitride (InGaAsN), as as photovoltaic power source for lasers in fiber optics and space communication satellites. The efficiency of electricity-generating solar cells utilizing InGaAsN is predicted to be 40%-nearly twice the efficiency rate of a standard silicon solar cell. The use of InGaAsN in solar cells is a potential power source for satellites and other space systems. (AIP) (c)

  18. Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators

    Science.gov (United States)

    Curtis, H. B.

    1976-01-01

    Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.

  19. The fractional quantum Hall effect goes organic

    International Nuclear Information System (INIS)

    Smet, Jurgen

    2000-01-01

    Physicists have been fascinated by the behaviour of two-dimensional electron gases for the past two decades. All of these experiments were performed on inorganic semiconductor devices, most of them based on gallium arsenide. Indeed, until recently it was thought that the subtle effects that arise due to electron-electron interactions in these devices required levels of purity that could not be achieved in other material systems. However, Hendrik Schoen, Christian Kloc and Bertram Batlogg of Bell Laboratories in the US have now observed the fractional quantum Hall effect - the most dramatic signature of electron-electron interactions - in two organic semiconductors. (U.K.)

  20. Precision density measuring equipment: Design, selected examples

    International Nuclear Information System (INIS)

    Karasinski, T.; Patzelt, K.; Dieker, C.; Hansen, H.; Wenzl, H.; Schober, T.

    1987-06-01

    The report deals with solids density measurement using the pyknometer, the hydrostatic balance, or the floating specimen method. The mathematical relations are derived, and error sources are shown. A detailed description is given of a measuring set-up for measuring the density of solids and liquids. An error calculation is presented. After explaining the determination of density of a standard solid body, the report describes the density measurement of monocrystalline germanium, of niobium-tritide, Ni 3 Al, Ge-Si, and gallium arsenide, the determination of space-lattice expansion by hydrogen isotopes, and of the purity of H-D mixtures. (GG) [de

  1. Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1993-01-01

    Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.

  2. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  3. Intact mammalian cell function on semi-conductor nanowire arrays: new perspectives for cell-based biosensing

    DEFF Research Database (Denmark)

    Berthing, Trine; Bonde, Sara; Sørensen, Claus Birger

    2011-01-01

    . A selection of critical cell functions and pathways are shown not to be impaired, including cell adhesion, membrane integrity, intracellular enzyme activity, DNA uptake, cytosolic and membrane protein expression, and the neuronal maturation pathway. The results demonstrate the low invasiveness of InAs NW......Nanowires (NWs) are attracting more and more interest due to their potential cellular applications, such as delivery of compounds or sensing platforms. Arrays of vertical indium-arsenide (InAs) NWs are interfaced with human embryonic kidney cells and rat embryonic dorsal root ganglion neurons...

  4. The effect of laser radiation on eyesight and determination of safety distance when using laser simulators

    International Nuclear Information System (INIS)

    Rakochevicj, S.; Dugandzhija, S.

    1989-01-01

    The influence of laser emission from the GaAs laser in a spectrum close infrared range on human eye and skin has been discussed. The application of gallium arsenide laser injections includes laser simulators. Analytic expression is defined. It is used to calculate the safety distance for the given parameters. There is a diagram of the programme procedure for calculation and graphical analysis of safety distance. Typical dependences of safety distance on the energy and divergency of laser radiation are discussed. (author). 5 refs.; 14 figs

  5. Photovoltaic energy technologies: Health and environmental effects document

    Science.gov (United States)

    Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Rowe, M. D.

    1980-09-01

    The potential health and environmental consequences of producing electricity by photovoltaic energy systems was analyzed. Potential health and environmental risks are identified in representative fuel and material supply cycles including extraction, processing, refining, fabrication, installation, operation, and isposal for four photovoltaic energy systems (silicon N/P single crystal, silicon metal/insulator/semiconductor (MIS) cell, cadmium sulfide/copper sulfide backwall cell, and gallium arsenide heterojunction cell) delivering equal amounts of useful energy. Each step of the fuel and material supply cycles, materials demands, byproducts, public health, occupational health, and environmental hazards is identified.

  6. Inherent polarization entanglement generated from a monolithic semiconductor chip

    DEFF Research Database (Denmark)

    Horn, Rolf T.; Kolenderski, Piotr; Kang, Dongpeng

    2013-01-01

    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built...... a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral...... as a serious contender on which to build large scale implementations of optical quantum processing devices....

  7. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    Science.gov (United States)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  8. The origin of the Avram Iancu U-Ni-Co-Bi-As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania

    Science.gov (United States)

    Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc

    2015-10-01

    The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide

  9. An EXAFS spectrometer on beam line 10B at the Photon Factory

    International Nuclear Information System (INIS)

    Oyanagi, Hiroyuki; Matsushita, Tadashi; Ito, Masahisa; Kuroda, Haruo.

    1984-03-01

    An EXAFS spectrometer installed on the beam line 10B at the Photon Factory is designed to cover the photon energy between 4 and 30 keV. Utilizing either a channel-cut or two flat silicon crystals as a monochromator, a beam intensity between 10 8 and 10 9 photons/sec is obtained at 9 keV with a resolution of 1 eV. The performance of the spectrometer, such as a signal-to-noise ratio or an energy resolution is demonstrated with examples of K edge absorption spectra of bromine, germanium, gallium arsenide, and zinc selenide. (author)

  10. Rhodium. Suppl. Vol. B1

    International Nuclear Information System (INIS)

    Griffith, W.P.; Jehn, H.; McCleverty, J.A.; Raub, C.J.; Robinson, S.D.

    1982-01-01

    The present rhodium vol. B1 is concerned largely with linary compounds and coordination complexes of this important metal, which is used either alone or in alloy form for fabrication of other materials or for heterogeneous catalysis. In first two chapters are devoted for hydrides, oxides, ternary and quaternary oxorhodates. Third chapter is on different type of complexes with nitrogen. From chapter four to seven is on halogen complexes with this metal. Next chapters are on sulphides, sulphoxide and sulphito complexes, sulphates and sulphato complexes, selenides and tellurides, borides, borane complexes, carbides, carbonato, cyno, fulminato and thiocyanato complexes. Finally, silicide, phosphides, phosphito and arsenides are treated over here. (AB)

  11. Research of the voltage and current stabilization processes by using the silicon field-effect transistor

    International Nuclear Information System (INIS)

    Karimov, A.V.; Yodgorova, D.M.; Kamanov, B.M.; Giyasova, F.A.; Yakudov, A.A.

    2012-01-01

    The silicon field-effect transistors were investigated to use in circuits for stabilization of current and voltage. As in gallium arsenide field-effect transistors, in silicon field-effect transistors with p-n-junction a new mechanism of saturation of the drain current is experimentally found out due to both transverse and longitudinal compression of channel by additional resistance between the source and the gate of the transistor. The criteria for evaluating the coefficients of stabilization of transient current suppressors and voltage stabilizator based on the field-effect transistor are considered. (authors)

  12. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.; Andrews, S. R.

    2010-01-01

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  13. Magnetoelectric effect in a sandwich structure of gallium arsenide–nickel–tin–nickel

    Science.gov (United States)

    Galichyan, T. A.; Filippov, D. A.; Tihonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-04-01

    The results of investigation of the magnetoelectric effect in a nickel-tin-nickel sandwich structure obtained by galvanic deposition of gallium arsenide on a substrate are presented. The technology of constructing such structures is described and the experimental results of the frequency dependence of the effect are presented. It is shown that the use of tin as an intermediate layer reduces the mechanical stresses resulting from the incommensurability of the phases, which permits obtaining qualitative structures with the nickel thickness of about 70 μm. The resulting structures exhibit good adhesion between the layers and have a high quality factor.

  14. Fundamental investigation of high temperature operation of field effect transistor devices

    Science.gov (United States)

    Chern, Jehn-Huar

    In this dissertation copper germanium (CuGe)-based materials were investigated as potential ohmic contacts to n-type gallium arsenide (GaAs). The CuGe-based contacts to GaAs were found to not form any reaction products with GaAs and to have low contact resistance comparable to that of nickel gold germanium (NiAuGe) ohmic contacts to GaAs. The potential for high temperature applications using CuGe ohmic contacts was investigated. A guideline for further reduction of the contact resistance has been achieved after investigating the detailed mechanism of the formation of binary CuGe contacts over a wide range of Ge concentrations. The thermal stability of CuGe contacts was significantly enhanced and improved by introducing a diffusion barrier, titanium tungsten nitride (TiWNx), and a gold (Au) overlayer for high temperature applications. Novel approaches such as epitaxial thulium phosphide (TmP) Schottky contacts and the utilization of low temperature (LT)-aluminum gallium arsenide (AlGaAs) were also investigated in this dissertation and likely will be the standard technologies for a new generation of high-temperature electronics. Inserting a layer of aluminum arsenide (AlAs) underneath the channel of a GaAs-based MESFET was found to reduce substrate leakage currents by a factor of 30 compared with the same MESFET directly fabricated on a semi-insulating GaAs substrate. In addition to AlAs, and AlxGa1-xAs materials, new materials grown at low temperatures such as LT-AlGaAs were used in heterojunction FET structures as a back wall barrier. Low drain leakage currents were achieved using AlAs and LT-AlGaAs as the back wall barriers. Some fundamental properties regarding these materials are of great interest and in need of further characterization. Part of the work in this dissertation was devoted to the characterization of device performance for different structure designs at elevated temperatures. The suitability of GaAs-based and gallium arsenide (GaN)-based MESFET

  15. Study of the background noise in microwave GaAsFET devices

    International Nuclear Information System (INIS)

    Serrano S, A.

    1984-01-01

    One of the most important properties of the gallium arsenide field effect transistor is its low noise figure in the microwave frequency range (approx. 1 dB, 4 GHz). The applications of this device in components and systems in the high frequency range require analysis of background noise in terms of basic static and dynamic properties of the device. The purpose of this paper is to review GaAsFET noise properties; from this review, a description of precise noise measurement techniques is made. Some experimental and theoretical results on the minimum noise figure are shown for several GaAsFET devices. (author)

  16. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    International Nuclear Information System (INIS)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-01-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  17. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G. [Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom); Sharples, Steve D. [Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom)

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  18. Proceedings of the ninth symposium on thermophysical properties: special symposium Issue 5

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Among the topics discussed in this volume of the symposium are: the establishment of accuracy limits and standards for comparative thermal conductivity measurements; thermal conductivity and electrical resistivity of cadmium arsenide in the temperature range 4.2-40 K; suggestions regarding thermal diffusivity measurements on pyrolytic graphite and pyrolytic boron nitride by the laser pulse method; experimental study of the viscosity of lithium vapor at high temperatures and pressures; transport coefficients of fluid mixtures; an equation of state for isobutane-isopentane mixtures with corrections for impurities, and the importance of thermophysical data in process simulation

  19. Indium and thallium

    International Nuclear Information System (INIS)

    1976-01-01

    The physical and the chemical properties and methods for producing indium and its main compounds have been studied. Presented are the major fields of application of the metal, inclusive of the atomic and space engineering. Described are the natural occurrence and the types of deposits of this disseminated element. Given are the main methods for extracting In from various raw materials, the methods being also evaluated economically. It is inferred, that all the conditions being equal, the extraction technique yields In at a lesser cost, a higher recovery and higher labour productivity. Described are methods for manufacturing the frequently used In compounds, such as the antimonide, arsenide, phosphide

  20. Magnetic properties changes of MnAs thin films irradiated with highly charged ions

    OpenAIRE

    Trassinelli , Martino; Gafton , V.; Eddrief , Mahmoud; Etgens , Victor H.; Hidki , S.; Lacaze , Emmanuelle; Lamour , Emily; Luo , X.; Marangolo , Massimiliano; Merot , Jacques; Prigent , Christophe; Reuschl , Regina; Rozet , Jean-Pierre; Steydli , S.; Vernhet , Dominique

    2013-01-01

    International audience; We present the first investigation on the effect of highly charged ion bombardment on a manganese arsenide thin film. The MnAs films, 150~nm thick, are irradiated with 90 keV Ne$^{9+}$ ions with a dose varying from $1.6\\times10^{12}$ to $1.6\\times10^{15}$~ions/cm$^2$. The structural and magnetic properties of the film after irradiation are investigated using different techniques, namely, X-ray diffraction, magneto-optic Kerr effect and magnetic force microscope. Prelim...

  1. High thermal conductivity materials for thermal management applications

    Science.gov (United States)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    2018-05-29

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  2. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces

    International Nuclear Information System (INIS)

    Klapetek, Petr; Ohlidal, Ivan; Bilek, Jindrich

    2004-01-01

    In this paper, the influence of atomic force microscope tip on the multifractal analysis of rough surfaces is discussed. This analysis is based on two methods, i.e. on the correlation function method and the wavelet transform modulus maxima method. The principles of both methods are briefly described. Both methods are applied to simulated rough surfaces (simulation is performed by the spectral synthesis method). It is shown that the finite dimensions of the microscope tip misrepresent the values of the quantities expressing the multifractal analysis of rough surfaces within both the methods. Thus, it was concretely shown that the influence of the finite dimensions of the microscope tip changed mono-fractal properties of simulated rough surface to multifractal ones. Further, it is shown that a surface reconstruction method developed for removing the negative influence of the microscope tip does not improve the results obtained in a substantial way. The theoretical procedures concerning both the methods, i.e. the correlation function method and the wavelet transform modulus maxima method, are illustrated for the multifractal analysis of randomly rough gallium arsenide surfaces prepared by means of the thermal oxidation of smooth gallium arsenide surfaces and subsequent dissolution of the oxide films

  3. Generalized Synthesis of EAs [E = Fe, Co, Mn, Cr] Nanostructures and Investigating Their Morphology Evolution

    Directory of Open Access Journals (Sweden)

    P. Desai

    2015-01-01

    Full Text Available This paper illustrates a novel route for the synthesis of nanostructured transition metal arsenides including those of FeAs, CoAs, MnAs, and CrAs through a generalized protocol. The key feature of the method is the use of one-step hot-injection and the clever use of a combination of precursors which are low-melting and highly reactive such as metal carbonyls and triphenylarsine in a solventless setup. This method also facilitates the formation of one-dimensional nanostructures as we move across the periodic table from CrAs to CoAs. The chemical basis of this reaction is simple redox chemistry between the transition metals, wherein the transition metal is oxidized from elemental state (E0 to E3+in lieu of reduction of As3+ to As3−. While the thermodynamic analysis reveals that all these conversions are spontaneous, it is the kinetics of the process that influences morphology of the product nanostructures, which varies from extremely small nanoparticles to nanorods. Transition metal pnictides show interesting magnetic properties and these nanostructures can serve as model systems for the exploration of their intricate magnetism as well as their applications and can also function as starting materials for the arsenide based nanosuperconductors.

  4. Tandem for power generation. New sandwich concentrator cell with over 30% efficiency; Im Tandem Strom erzeugen. Neue Mehrschicht-Konzentratorzelle erzielt ueber 30% Wirkungsgrad

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-11-01

    The Fraunhofer-Institut fuer Solare Energiesysteme at Freiburg, Germany, claims a 'best ever' efficiency of a monolithic tandem concentrator solar cell with a sandwich structure based on gallium-indium arsenide and gallium-indium phosphide. The new solar cell can be produced in a single process based on an Aixtron AG (Aachen, Germany) separator which is also used for industrial production of solar cells for aerospace applications. [German] Das Fraunhofer-Institut fuer Solare Energiesysteme in Freiburg hat einen neuen Wirkungsgradrekord fuer monolithische Tandem-Konzentratorsolarzellen gemeldet. Die Wissenschaftler am Fraunhofer-Institut fuer Solare Energiesysteme (Fraunhofer ISE) haben neue Schichtstrukturen auf der Basis von Gallium-Indium-Arsenid und Gallium-Inidum-Phosphid entwickelt. Die neue Solarzelle kann in einem einzigen Prozess hergestellt werden. Fuer diesen Prozess setzen die Freiburger Solarzellenforscher eine Abscheideanlage der Firma Aixtron AG aus Aachen ein, wie sie auch in der Industrie zur Herstellung von Solarzellen fuer Anwendungen im Weltraum genutzt wird. (orig.)

  5. Hybrid solar collector using nonimaging optics and photovoltaic components

    Science.gov (United States)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  6. Fermi Surface with Dirac Fermions in CaFeAsF Determined via Quantum Oscillation Measurements

    Science.gov (United States)

    Terashima, Taichi; Hirose, Hishiro T.; Graf, David; Ma, Yonghui; Mu, Gang; Hu, Tao; Suzuki, Katsuhiro; Uji, Shinya; Ikeda, Hiroaki

    2018-02-01

    Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we comprehensively determine the Fermi surface in the antiferromagnetic state of CaFeAsF, a 1111 iron-arsenide parent compound, by performing quantum oscillation measurements and band-structure calculations. The determined Fermi surface consists of a symmetry-related pair of Dirac electron cylinders and a normal hole cylinder. From analyses of quantum-oscillation phases, we demonstrate that the electron cylinders carry a nontrivial Berry phase π . The carrier density is of the order of 10-3 per Fe. This unusual metallic state with the extremely small carrier density is a consequence of the previously discussed topological feature of the band structure which prevents the antiferromagnetic gap from being a full gap. We also report a nearly linear-in-B magnetoresistance and an anomalous resistivity increase above about 30 T for B ∥c , the latter of which is likely related to the quantum limit of the electron orbit. Intriguingly, the electrical resistivity exhibits a nonmetallic temperature dependence in the paramagnetic tetragonal phase (T >118 K ), which may suggest an incoherent state. Our study provides a detailed knowledge of the Fermi surface in the antiferromagnetic state of 1111 parent compounds and moreover opens up a new possibility to explore Dirac-fermion physics in those compounds.

  7. Transformational III-V Electronics

    KAUST Repository

    Nour, Maha A.

    2014-04-01

    Flexible electronics using III-V materials for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. This thesis describes a complementary metal oxide semiconductor (CMOS) compatible process for transforming traditional III-V materials based electronics into flexible one. The thesis reports releasing 200 nm of Gallium Arsenide (GaAs) from 200 nm GaAs / 300 nm Aluminum Arsenide (AlAs) stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes that contributes to the better transparency (45 % at 724 nm wavelengths) observed. Fabrication of metal oxide semiconductor capacitor (MOSCAPs) on GaAs is followed by releasing it to have devices on flexible 200 nm GaAs. Similarly, flexible GaSb and InP fabrication process is also reported to transform traditional electronics into large-area flexible electronics.

  8. Heat load of a P-doped GaAs photocathode in SRF electron gun

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-01-01

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  9. Voltage adjusting characteristics in terahertz transmission through Fabry-Pérot-based metamaterials

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2015-10-01

    Full Text Available Metallic electric split-ring resonators (SRRs with featured size in micrometer scale, which are connected by thin metal wires, are patterned to form a periodically distributed planar array. The arrayed metallic SRRs are fabricated on an n-doped gallium arsenide (n-GaAs layer grown directly over a semi-insulating gallium arsenide (SI-GaAs wafer. The patterned metal microstructures and n-GaAs layer construct a Schottky diode, which can support an external voltage applied to modify the device properties. The developed architectures present typical functional metamaterial characters, and thus is proposed to reveal voltage adjusting characteristics in the transmission of terahertz waves at normal incidence. We also demonstrate the terahertz transmission characteristics of the voltage controlled Fabry-Pérot-based metamaterial device, which is composed of arrayed metallic SRRs. To date, many metamaterials developed in earlier works have been used to regulate the transmission amplitude or phase at specific frequencies in terahertz wavelength range, which are mainly dominated by the inductance-capacitance (LC resonance mechanism. However, in our work, the external voltage controlled metamaterial device is developed, and the extraordinary transmission regulation characteristics based on both the Fabry-Pérot (FP resonance and relatively weak surface plasmon polariton (SPP resonance in 0.025-1.5 THz range, are presented. Our research therefore shows a potential application of the dual-mode-resonance-based metamaterial for improving terahertz transmission regulation.

  10. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET

    Science.gov (United States)

    Bala, Shashi; Khosla, Mamta

    2018-04-01

    A double-gate tunnel field-effect transistor (DG tunnel FET) has been designed and investigated for various channel materials such as silicon (Si), gallium arsenide (GaAs), alminium gallium arsenide (Al x Ga1‑x As) and CNT using a nano ViDES Device and TCAD SILVACO ATLAS simulator. The proposed devices are compared on the basis of inverse subthreshold slope (SS), I ON/I OFF current ratio and leakage current. Using Si as the channel material limits the property to reduce leakage current with scaling of channel, whereas the Al x Ga1‑x As based DG tunnel FET provides a better I ON/I OFF current ratio (2.51 × 106) as compared to other devices keeping the leakage current within permissible limits. The performed silmulation of the CNT based channel in the double-gate tunnel field-effect transistor using the nano ViDES shows better performace for a sub-threshold slope of 29.4 mV/dec as the channel is scaled down. The proposed work shows the potential of the CNT channel based DG tunnel FET as a futuristic device for better switching and high retention time, which makes it suitable for memory based circuits.

  11. Local emission spectroscopy of surface micrograins in A{sup III}B{sup V} semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, N. D., E-mail: ndzhukov@rambler.ru; Gluhovskoy, E. G.; Mosiyash, D. S. [Saratov State University (Russian Federation)

    2016-07-15

    The density-of-states spectra and the parameters of levels of electron states in locally chosen surface micrograins of indium antimonide and arsenide and gallium arsenide are studied with a tunneling electron microscope in the field-emission mode of measurements. By correlating the current–voltage characteristics with the formula for the probability of emission via levels, the activation energies of the levels (ψ) and the lifetimes of electrons at the levels (τ) are determined. Two types of levels for electron localization are identified. These are levels in the micrograin bulk (ψ ≈ 0.75, 1.15, and 1.59 eV for n-InSb, n-InAs, and n-GaAs, respectively; τ ~ 10{sup –8}–10{sup –7} s) and in the surface region of an i-InSb micrograin (ψ ~ 0.73, 1.33, 1.85, 2.15, 5.1 eV; τ ≈ 5 × 10{sup –8}–3 × 10{sup –7} s). A physical model involving the Coulomb-interaction-induced localization of light electrons and their size quantization determined by the electron effective mass, energy, and concentration and by the surface curvature of the micrograin is proposed.

  12. Diffusion in Intrinsic and Highly Doped III-V Semiconductors

    CERN Multimedia

    Stolwijk, N

    2002-01-01

    %title\\\\ \\\\Diffusion plays a key role in the fabrication of semiconductor devices. The diffusion of atoms in crystals is mediated by intrinsic point defects. Investigations of the diffusion behaviour of self- and solute atoms on the Ga sublattice of gallium arsenide led to the conclusion that in intrinsic and n-type material charged Ga vacancies are involved in diffusion processes whereas in p-type material diffusion if governed by charged Ga self-interstitials. Concerning the As sublattice of gallium arsenide there is a severe lack of reliable diffusion data. The few available literature data on intrinsic GaAs are not mutually consistent. A systematic study of the doping dependence of diffusion is completely missing. The most basic diffusion process - self-diffusion of As and its temperature and doping dependence - is practically not known. For GaP a similar statement holds.\\\\ \\\\The aim of the present project is to perform a systematic diffusion study of As diffusion in intrinsic and doped GaAs and in GaP. P...

  13. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    Science.gov (United States)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  14. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S M

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a

  15. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  16. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots. (orig.)

  17. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  18. (CaFeAs)10PtzAs8 superconductors and related compounds

    International Nuclear Information System (INIS)

    Stuerzer, Tobias

    2015-01-01

    The main topic of this dissertation is the identification of new compounds, structure determination, and substitution dependent investigation of properties in this new branch of the family of iron arsenide superconductors (Chapter 2). Chapter 2.1 presents the identification of the superconducting compounds and the corresponding structure elucidation identifying two dif-ferent species (CaFeAs) 10 Pt 3 As 8 and (CaFeAs) 10 Pt 4 As 8 in this family (abbreviated as 1038 and 1048 according to their stoichiometry). However, a closer look revealed a more challenging structure chemistry which is covered in Chapter 2.2. The following two Chapters 2.3 and 2.4 are devoted to (CaFeAs) 10 Pt 3 As 8 and more detailed investigations on this parent compound of the new superconductor family. Furthermore, transition metal substitution series (CaFe 1-x M x As) 10 Pt 3 As 8 were synthesized to investigate the resemblance to model systems Ba(Fe 1-x M x ) 2 As x and LaO(Fe 1-x M x )As in the scope of structural changes and superconductivity as described in Chapter 2.5. Initially amazing differences in superconducting properties com-paring 1038 and 1048 compounds are analyzed in Chapter 2.6 establishing an universal dop-ing model in the (CaFe 1-x M x As) 10 Pt z As 8 family. Additionally substituent dependent properties upon rare earth substitution in electron doped (Ca 1-y RE y FeAs) 10 Pt 3 As 8 are investigated in Chapter 2.7, while a detailed study of superconducting properties and magnetism in (Ca 1-y La y FeAs) 10 Pt 3 As 8 by the local μSR technique is presented in Chapter 2.8. In Chapter 2.9 a comparison of direct and electron doping is discussed based on codoping experiments in (Ca 1-y La y Fe 1-x Pt x As) 10 Pt 3 As 8 and (CaFe 1-x Pt x As) 10 Pt 4 As 8 . Finally, in Chapter 2.10 electron doping in stoichiometric 1048 is studied by charge compensation experiments in (Ca 1-y Na y FeAs) 10 Pt 4 As 8 . Chapter 3 is dedicated to a new family of calcium iron arsenides featuring

  19. Scanning near-field infrared microscopy on semiconductor structures

    International Nuclear Information System (INIS)

    Jacob, Rainer

    2011-01-01

    literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots. (orig.)

  20. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  1. Minor Actinide Burning in Thermal Reactors. A Report by the Working Party on Scientific Issues of Reactor Systems

    International Nuclear Information System (INIS)

    Hesketh, K.; Porsch, D.; Rimpault, G.; Taiwo, T.; Worrall, A.

    2013-01-01

    The actinides (or actinoids) are those elements in the periodic table from actinium upwards. Uranium (U) and plutonium (Pu) are two of the principal elements in nuclear fuel that could be classed as major actinides. The minor actinides are normally taken to be the triad of neptunium (Np), americium (Am) and curium (Cm). The combined masses of the remaining actinides (i.e. actinium, thorium, protactinium, berkelium, californium, einsteinium and fermium) are small enough to be regarded as very minor trace contaminants in nuclear fuel. Those elements above uranium in the periodic table are known collectively as the transuranics (TRUs). The operation of a nuclear reactor produces large quantities of irradiated fuel (sometimes referred to as spent fuel), which is either stored prior to eventual deep geological disposal or reprocessed to enable actinide recycling. A modern light water reactor (LWR) of 1 GWe capacity will typically discharge about 20-25 tonnes of irradiated fuel per year of operation. About 93-94% of the mass of uranium oxide irradiated fuel is comprised of uranium (mostly 238 U), with about 4-5% fission products and ∼1% plutonium. About 0.1-0.2% of the mass is comprised of neptunium, americium and curium. These latter elements accumulate in nuclear fuel because of neutron captures, and they contribute significantly to decay heat loading and neutron output, as well as to the overall radio-toxic hazard of spent fuel. Although the total minor actinide mass is relatively small - approximately 20-25 kg per year from a 1 GWe LWR - it has a disproportionate impact on spent fuel disposal, and thus the longstanding interest in transmuting these actinides either by fission (to fission products) or neutron capture in order to reduce their impact on the back end of the fuel cycle. The combined masses of the trace actinides actinium, thorium, protactinium, berkelium and californium in irradiated LWR fuel are only about 2 parts per billion, which is far too low for

  2. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner

    CERN Document Server

    Gubeli, J; Grippo, A; Jordan, K; Shinn, M; Siggins, T

    2001-01-01

    Jefferson Laboratory's Free Electron Laser (FEL) incorporates a cesiated gallium arsenide (GaAs) DC photocathode gun as its electron source. By using a set of scanning mirrors, the surface of the GaAs wafer is illuminated with a 543.5nm helium-neon laser. Measuring the current flow across the biased photocathode generates a quantum efficiency (QE) map of the 1-in. diameter wafer surface. The resulting QE map provides a very detailed picture of the efficiency of the wafer surface. By generating a QE map in a matter of minutes, the photocathode scanner has proven to be an exceptional tool in quickly determining sensitivity and availability of the photocathode for operation.

  3. Peculiarities of the determination of shallow impurity concentrations in semiconductors from the analysis of exciton luminescence spectra

    CERN Document Server

    Glinchuk, K D

    2002-01-01

    An analysis was made of the applicability limits of the method for the determination of the content of shallow acceptors and donors in semiconductors from the ratio of the low-temperature (T = 1.8-4.2 K) luminescence intensities of exciton bands, in particular, induces by radiative annihilation of excitons bound to acceptors (donors) and free excitons. It is shown that correct data about the concentrations of shallow acceptors and donors as well as data on changes in their content as a result of various treatments may be obtained if the occupancy of the defects in question by holes and electrons does not depend on the excitation intensity or external treatments. A way to check the fulfillment of criteria for the method application is suggested. An example is given is given of the method application for determination of thermally stimulated changes in the concentration of shallow acceptors and donors in gallium arsenide

  4. Micro and nano devices in passive millimetre wave imaging systems

    Science.gov (United States)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  5. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light.

    Science.gov (United States)

    Rivas, David; Muñoz-Matutano, Guillermo; Canet-Ferrer, Josep; García-Calzada, Raúl; Trevisi, Giovanna; Seravalli, Luca; Frigeri, Paola; Martínez-Pastor, Juan P

    2014-02-12

    In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.

  6. Neutron activation determination of phosphorus in semiconductor materials

    International Nuclear Information System (INIS)

    Verevkin, G.V.; Gil'bert, Eh.N.; Gol'dshtejn, M.M.; Yudelevich, I.G.; Yurchenko, V.K.

    1976-01-01

    The solvent extraction of molybdophosphoric acid (MPA) with benzene and dichloroethane solutions of dioctylsulphoxide has been studied. A neutron-activation method has been worked out of determining phosphorus in semiconductor silicon, high purity gallium, and homoepitaxial films of gallium arsenide. The method is based on separation of radiochemically pure phosphorus in the form of MPA by extraction with 0.2 M solution of dioctylsulphoxide in benzene and measurement of 32 P activity on a liquid scintillation spectrometer. The method makes it possible to determine phosphorus in the materials enumerated with a limit of detection of 1.9x10 -10 g and a relative standard deviation of not more than 0.05

  7. Alternative wavelengths for sutureless laser microvascular anastomosis: a preliminary study on acute samples.

    Science.gov (United States)

    Bass, L S; Oz, M C; Libutti, S K; Treat, M R

    1992-06-01

    Attempts to improve the speed and patency of microvascular anastomosis with laser-assisted techniques have provided a modest reduction in operative time and comparable success rates. Using sutureless microvascular anastomoses, 30 end-to-end anastomoses were created in the rat carotid artery using the gallium-aluminum-arsenide diode laser (808 nm). Indocyanine green and fibrinogen were applied to enhance tissue absorption of the laser energy and strengthen the bond created. These were compared with previously reported welds using the THC:YAG laser (2150 nm). Mean welding times were 140 and 288 s, and mean bursting pressures immediately after welding were 515 and 400 mmHg for the diode and THC:YAG laser groups, respectively. Histologically, both lateral and vertical spread of thermal damage was limited. Since both lasers create welds of adequate initial strength without stay sutures and are faster and easier to use than existing systems, evaluation of long-term patency would be worthwhile.

  8. Positron annihilation and Wheeler complexes in semiconductors

    International Nuclear Information System (INIS)

    Prokop'ev, E.P.

    1995-01-01

    Properties of Ps-Ex (positron-exciton) complex nature Wheeler complexes that may be formed at irradiation of semiconductors and ion crystals by positrons at low temperature under conditions of optical excitation by excitons are studied. Binding energy of similar and more complex systems regarding decomposition in Ps and Ex and/or Ex ± exceeds, at least, 0.1 eV, while lifetime regarding biquantum-self-annihilation constitutes τ 2γ ∼5.02x10 - 10 κ c 3 c (κ c -phenomenological parameter of the effective mass method). The lifetime estimations enabled to conclude that Ps-Ex complexes may be detected in some oxide semiconductors, in zinc sulfide, as well as, in alkaline-haloid crystals. At the same time, in silicon, gallium arsenide and in other semiconductors of A 3 B 5 and A 2 B 6 it is highly improbable to observe these complexes. 27 refs

  9. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  10. Features of copper etching in chlorine-argon plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Svettsov, V.I.

    1995-01-01

    Chlorine mixtures with inert gases including argon exhibit promise as plasma feed gases for etching metals and semiconductors in the microelectronics industry. It was shown that even strong dilution of reactive gas with an inert gas (up to 80-90% of the latter) has virtually no effect in decreasing the rate of plasma etching of materials such as silicon and gallium arsenide, compared to etching in pure chlorine. The principal reactive species responsible for etching these substrates are chlorine atoms therefore, a possible explanation of the effect is an increase in the rate of bulk generation of chlorine atoms in the presence of argon. In this work the authors studied the influence of argon on the rate of copper etching in chlorine, because copper, unlike the above substrates, reacts effectively not only with the atoms but with the ground-state molecules of chlorine

  11. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    Science.gov (United States)

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  12. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor

    2017-12-05

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  13. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  14. Pulling the trigger on LHC electronics

    CERN Document Server

    CERN. Geneva

    2001-01-01

    The conditions at CERN's Large Hadron Collider pose severe challenges for the designers and builders of front-end, trigger and data acquisition electronics. A recent workshop reviewed the encouraging progress so far and discussed what remains to be done. The LHC experiments have addressed level one trigger systems with a variety of high-speed hardware. The CMS Calorimeter Level One Regional Trigger uses 160 MHz logic boards plugged into the front and back of a custom backplane, which provides point-to-point links between the cards. Much of the processing in this system is performed by five types of 160 MHz digital applications-specific integrated circuits designed using Vitesse submicron high-integration gallium arsenide gate array technology. The LHC experiments make extensive use of field programmable gate arrays (FPGAs). These offer programmable reconfigurable logic, which has the flexibility that trigger designers need to be able to alter algorithms so that they can follow the physics and detector perform...

  15. Substrate effects on the formation of flat Ag films on (110) surfaces of III-V compound semiconductors

    International Nuclear Information System (INIS)

    Chao, K.; Zhang, Z.; Ebert, P.; Shih, C.K.

    1999-01-01

    Ag films grown at 135 K on (110) surfaces of III-V compound semiconductors and annealed at room temperature are investigated by scanning tunneling microscopy and low-energy electron diffraction. Ag films on Ga-V semiconductors are well ordered, atomically flat, and exhibit a specific critical thickness, which is a function of the substrate material. Films grown on In-V semiconductors are still rather flat, but significantly more disordered. The (111) oriented Ag films on III-arsenides and III-phosphides exhibit a clear twofold superstructure. Films on III-antimonides exhibit threefold low-energy electron diffraction images. The morphology of the Ag films can be explained on the basis of the electronic growth mechanism. copyright 1999 The American Physical Society

  16. Recent Accomplishments in Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Fikes, John C.; Henley, Mark W.; Mankins, John C.; Howell, Joe T.; Fork, Richard L.; Cole, Spencer T.; Skinner, Mark

    2003-01-01

    Wireless power transmission can be accomplished over long distances using laser power sources and photovoltaic receivers. Recent research at AMOS has improved our understanding of the use of this technology for practical applications. Research by NASA, Boeing, the University of Alabama-Huntsville, the University of Colorado, Harvey Mudd College, and the Naval Postgraduate School has tested various commercial lasers and photovoltaic receiver configurations. Lasers used in testing have included gaseous argon and krypton, solid-state diodes, and fiber optic sources, at wavelengths ranging from the visible to the near infra-red. A variety of Silicon and Gallium Arsenide photovoltaic have been tested with these sources. Safe operating procedures have been established, and initial tests have been conducted in the open air at AMOS facilities. This research is progressing toward longer distance ground demonstrations of the technology and practical near-term space demonstrations.

  17. PERFORMANCE ANALYSIS OF RECTANGULAR MPA USING DIFFERENT SUBSTRATE MATERIALS FOR WLAN APPLICATION

    Directory of Open Access Journals (Sweden)

    E Aravindraj

    2017-03-01

    Full Text Available In this paper, a rectangular microstrip patch antenna (MPA is designed using different substrate materials for analyzing the performance of the MPA. Alumina (Al2O3, Bakelite, Beryllium oxide (BeO, Gallium Arsenide (GaAs, RT-Duroid and Flame Retardant 4 (FR-4 are the six different substrate used in the design. The size of the rectangular microstrip patch antenna varies according to the dielectric constant of substrate materials used. The operating frequency taken for this analysis is 5.8 GHz. The proposed design provides the study on the performance of rectangular microstrip patch antenna for different substrate materials using the same frequency. This study conveys that which substrate material provides better performance. Moreover, this comparative study conveys that which substrate material provides better performance. The simulation parameters are investigated using HFSS.

  18. The ATLAS inner detector semiconductor tracker (Si and GaAs strips): review of the 1995 beam tests at the CERN SPS H8 beamline

    International Nuclear Information System (INIS)

    Moorhead, G.F.

    1995-01-01

    This talk will consist of a brief review of the ATLAS Inner Detector (ID) Semiconductor Tracker (SCT) strip detector (both silicon and gallium arsenide) beam tests conducted at the ATLAS test beam facility at the CERN SPS H8 beamline. It will include a brief overview of the H8 facilities, the experimental layout of the SCT/Strip apparatus, the data acquisition system, some of the online software tools and the high precision silicon hodoscope and timing modules used. A very brief indication of some of the main varieties of detector systems tested and the measurements performed will be given. Throughout some emphasis will be placed on the contributions and-interests of members of the Melbourne group. (author)

  19. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  20. Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects

    Science.gov (United States)

    Turquet, Léo; Kakko, Joona-Pekko; Karvonen, Lasse; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri; Kauranen, Martti; Bautista, Godofredo

    2017-08-01

    Non-diffractive Bessel beams are receiving significant interest in optical microscopy due to their remarkably large depth of field. For example, studies have shown the superiority of Bessel beams over Gaussian beams for volumetric imaging of three-dimensionally thick or extended samples. However, the vectorial aspects of the focal fields of Bessel beams are generally obscured when traditional methods are used to characterize their three-dimensional point-spread function in space, which contains contributions from all optical field components. Here, we show experimentally the three-dimensional spatial distribution and enhanced depth of field of the longitudinal electric field components of a focused linearly-polarized Bessel beam. This is done through second-harmonic generation from well-defined vertically-aligned gallium-arsenide nanowires, whose second-order response is primarily driven by the longitudinal fields at the beam focus.

  1. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    International Nuclear Information System (INIS)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions

  2. Dynamic kirigami structures for integrated solar tracking

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  3. Old and new ideas in ferroelectric liquid crystal technology

    Science.gov (United States)

    Lagerwall, Sven T.; Matuszczyk, M.; Matuszczyk, T.

    1998-02-01

    Ferroelectric liquid crystals (FLC) are to conventional liquid crystal what Gallium Arsenide is to Silicon in the semiconductor area. The first generation of FLC displays in now present on the market and has some outstanding features based on the symmetric bistability which may be achieved in these materials. One of the greatest challenges for the next generation is to achieve an analog grey scale out of an essentially digital principle. We will analyze in some detail which major problems had to be solved to reach the present state and show how the final steps could be taken toward a new state-of-the-art level in liquid crystal devices. In the last decade university research and industrial R and D have almost equally contributed to treat the very serious complications caused by the so-called chevron structures We will review this important topic in particular detail.

  4. CMOS compatible route for GaAs based large scale flexible and transparent electronics

    KAUST Repository

    Nour, Maha A.; Ghoneim, Mohamed T.; Droopad, Ravi; Hussain, Muhammad Mustafa

    2014-01-01

    Flexible electronics using gallium arsenide (GaAs) for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. Here we describe a state-of-the-art CMOS compatible batch fabrication process of transforming traditional electronic circuitry into large-area flexible, semitransparent platform. We show a simple release process for peeling off 200 nm of GaAs from 200 nm GaAs/300 nm AlAs stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes which contributes to the better transparency (45 % at 724 nm wavelength) observed.

  5. Evaluation and comparison of SN and Monte-Carlo charged particle transport calculations

    International Nuclear Information System (INIS)

    Hadad, K.

    2000-01-01

    A study was done to evaluate a 3-D S N charged particle transport code called SMARTEPANTS 1 and another 3-D Monte Carlo code called Integrated Tiger Series, ITS 2 . The evaluation study of SMARTEPANTS code was based on angular discretization and reflected boundary sensitivity whilst the evaluation of ITS was based on CPU time and variance reduction. The comparison of the two code was based on energy and charge deposition calculation in block of Gallium Arsenide with embedded gold cylinders. The result of evaluation tests shows that an S 8 calculation maintains both accuracy and speed and calculations with reflected boundaries geometry produces full symmetrical results. As expected for ITS evaluation, the CPU time and variance reduction are opposite to a point beyond which the history augmentation while increasing the CPU time do not result in variance reduction. The comparison test problem showed excellent agreement in total energy deposition calculations

  6. PDT in non-surgical treatment of periodontitis in kidney transplanted patients: a split-mouth, randomized clinical trial

    Science.gov (United States)

    Marinho, Kelly C. T.; Giovani, Elcio M.

    2016-03-01

    This study was to evaluate clinical and microbiological effectiveness of photodynamic therapy (PDT) in the treatment of periodontal disease in kidney-transplanted patients. Eight kidney transplanted patients treated at Paulista University were arranged in two groups: SRP performed scaling and root planning by ultrasound; SRP+PDT- in the same patient, which was held to PDT in the opposite quadrant, with 0.01% methylene blue and red laser gallium aluminum arsenide, wavelength 660 nm, power 100 mW. There was reduction in probing pocket depth after 45 days and 3 months regardless the group examined; plaque and bleeding index showed improvement over time, regardless the technique used, and bleeding index in the SRP+PDT group was lower when compared with the baseline the other times. There was no difference in the frequency of pathogens. Photodynamic therapy may be an option for treatment of periodontal disease in renal-transplanted patients and its effectiveness is similar to conventional therapy.

  7. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  8. Micro-coolers fabricated as a component in an integrated circuit

    International Nuclear Information System (INIS)

    Glover, James; Oxley, Chris H; Khalid, Ata; Cumming, David; Stephen, Alex; Dunn, Geoff

    2015-01-01

    The packing density and power capacity of integrated electronics is increasing resulting in higher thermal flux densities. Improved thermal management techniques are required and one approach is to include thermoelectric coolers as part of the integrated circuit. An analysis will be described showing that the supporting substrate will have a large influence on the cooling capacity of the thermoelectric cooler. In particular, for materials with a low ZT figure of merit (for example gallium arsenide (GaAs) based compounds) the substrate will have to be substantially thinned to obtain cooling, which may preclude the use of thermoelectric coolers, for example, as part of a GaAs based integrated circuit. Further, using experimental techniques to measure only the small positive cooling temperature difference (ΔT) between the anode (T h ) and the cathode (T c ) contacts can be misinterpreted as cooling when in fact it is heating. (paper)

  9. Characterization of GaAs and hetero-structures of GaAs-(AlGa)As films, by Hall effect

    International Nuclear Information System (INIS)

    Diniz, R.P.

    1989-08-01

    Hall effect measurements were performed on a series of semiconductor gallium arsenide (GaAs) films, intentionally or unitentionally doped, grown by molecular beam epitaxy (MBE). These measurements made possible both the evaluation of the films quality and the calibration of the dopants (Si and Be) effusion cells on the growing machine. Measurements on modulation doped single interface heterostructures also grown by MBE followed. The two dimensional electron gas in the heterostructures shows low temperature high mobility. The application of a strong magnetic field perpendicular to the plane of the gas eliminated its degrees of freedom completely and permitted the observation of Schubnikov-deHaas oscillations and integer quantum Hall effect. During the work we have deviced and developed apparatus in order to make ohmic contacts and perform litography to semiconductors. (author) [pt

  10. The Role of III-V Substrate Roughness and Deoxidation Induced by Digital Etch in Achieving Low Resistance Metal Contacts

    Directory of Open Access Journals (Sweden)

    Florent Ravaux

    2017-06-01

    Full Text Available To achieve low contact resistance between metal and III-V material, transmission-line-model (TLM structures of molybdenum (Mo were fabricated on indium phosphide (InP substrate on the top of an indium gallium arsenide (InGaAs layer grown by molecular beam epitaxy. The contact layer was prepared using a digital etch procedure before metal deposition. The contact resistivity was found to decrease significantly with the cleaning process. High Resolution Transmission & Scanning Electron Microscopy (HRTEM & HRSTEM investigations revealed that the surface roughness of treated samples was increased. Further analysis of the metal-semiconductor interface using Energy Electron Loss Spectroscopy (EELS showed that the amount of oxides (InxOy, GaxOy or AsxOy was significantly decreased for the etched samples. These results suggest that the low contact resistance obtained after digital etching is attributed to the combined effects of the induced surface roughness and oxides removal during the digital etch process.

  11. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-09-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  12. Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2013-10-01

    Full Text Available The toxic element arsenic (As occurs widely in solid and liquid mine wastes. Aqueous forms of arsenic are taken up in As-bearing sulfides, arsenides, sulfosalts, oxides, oxyhydroxides, Fe-oxides, -hydroxides, -oxyhydroxides and -sulfates, and Fe-, Ca-Fe- and other arsenates. Although a considerable body of research has demonstrated that microbes play a significant role in the precipitation and dissolution of these As-bearing minerals, and in the alteration of the redox state of As, in natural and simulated mining environments, the molecular-scale mechanisms of these interactions are still not well understood. Further research is required using traditional and novel mineralogical, spectroscopic and microbiological techniques to further advance this field, and to help design remediation schemes.

  13. Theory of weak localization in ferromagnetic (Ga,Mn)As

    Czech Academy of Sciences Publication Activity Database

    Garate, I.; Sinova, J.; Jungwirth, Tomáš; MacDonald, A.

    2009-01-01

    Roč. 79, č. 15 (2009), 155702/1-155702/13 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 214499 - NAMASTE; European Commission(XE) 015728 - NANOSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : electrical conductivity * exchange interactions (electron) * ferromagnetic materials * gallium arsenide * magnetic semiconductors * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://link.aps.org/doi/10.1103/PhysRevB.79.155207

  14. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  15. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  16. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  17. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials.

    Science.gov (United States)

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-10-27

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.

  18. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Directory of Open Access Journals (Sweden)

    Yunfei Shang

    2015-10-01

    Full Text Available Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous, gallium arsenide (GaAs solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed

  19. Micro-cooler enhancements by barrier interface analysis

    International Nuclear Information System (INIS)

    Stephen, A.; Dunn, G. M.; Glover, J.; Oxley, C. H.; Bajo, M. Montes; Kuball, M.; Cumming, D. R. S.; Khalid, A.

    2014-01-01

    A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance

  20. Linear electro-optic effect in cubic silicon carbide

    Science.gov (United States)

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.

    1991-01-01

    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  1. Mean field diffusion models for precipitation in crystalline GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Kimmerle, Sven-Joachim [Humboldt-Univ. Berlin (Germany). Dept. of Mathematics

    2009-07-01

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first class of models treats the diffusion-controlled regime of interface motion, while the second class is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. We consider homogenised models, where different length scales of the experimental situation have been exploited in order to simplify the equations. These homogenised models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald ripening. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  2. Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice sets forth requirements to ensure consistency in neutron-induced displacement damage testing of silicon and gallium arsenide electronic piece parts. This requires controls on facility, dosimetry, tester, and communications processes that affect the accuracy and reproducibility of these tests. It provides background information on the technical basis for the requirements and additional recommendations on neutron testing. In addition to neutrons, reactors are used to provide gamma-ray pulses of intensities and durations that are not achievable elsewhere. This practice also provides background information and recommendations on gamma-ray testing of electronics using nuclear reactors. 1.2 Methods are presented for ensuring and validating consistency in neutron displacement damage testing of electronic parts such as integrated circuits, transistors, and diodes. The issues identified and the controls set forth in this practice address the characterization and suitability of the radiation environm...

  3. Recent developments in low cost silicon solar cells for terrestrial applications. [sheet production methods

    Science.gov (United States)

    Leipold, M. H.

    1978-01-01

    A variety of techniques may be used for photovoltaic energy systems. Concentrated or not concentrated sunlight may be employed, and a number of materials can be used, including silicon, gallium arsenide, cadmium sulfide, and cadmium telluride. Most of the experience, however, has been obtained with silicon cells employed without sunlight concentration. An industrial base exists at present for producing solar cells at a price in the range from $15 to $30 per peak watt. A major federal program has the objective to reduce the price of power provided by silicon solar systems to approximately $1 per peak watt in the early 1980's and $0.50 per watt by 1986. The approaches considered for achieving this objective are discussed.

  4. Performace of Dilute Nitride Triple Junction Space Solar Cell Grown by MBE

    Directory of Open Access Journals (Sweden)

    Aho Arto

    2017-01-01

    Full Text Available Dilute nitride arsenide antimonide compounds offer widely tailorable band-gaps, ranging from 0.8 eV to 1.4 eV, for the development of lattice-matched multijunction solar cells with three or more junctions. Here we report on the performance of GaInP/GaAs/GaInNAsSb solar cell grown by molecular beam epitaxy. An efficiency of 27% under AM0 conditions is demonstrated. In addition, the cell was measured at different temperatures. The short circuit current density exhibited a temperature coefficient of 0.006 mA/cm2/°C while the corresponding slope for the open circuit voltage was −6.8 mV/°C. Further efficiency improvement, up to 32%, is projected by better current balancing and structural optimization.

  5. Interplay of light transmission and catalytic exchange current in photoelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Lewerenz, Hans J. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-10-27

    We develop an analytic current-voltage expression for a variable junction photoelectrochemical (PEC) cell and use it to investigate and illustrate the influence of the optical and electrical properties of catalysts on the optoelectronic performance of PEC devices. Specifically, the model enables a simple, yet accurate accounting of nanostructured catalyst optical and electrical properties through incorporation of an optical transmission factor and active catalytic area factor. We demonstrate the utility of this model via the output power characteristics of an exemplary dual tandem solar cell with indium gallium phosphide and indium gallium arsenide absorbers with varying rhodium catalyst nanoparticle loading. The approach highlights the importance of considering interactions between independently optimized components for optimal PEC device design.

  6. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  7. The Laser MicroJet (LMJ): a multi-solution technology for high quality micro-machining

    Science.gov (United States)

    Mai, Tuan Anh; Richerzhagen, Bernold; Snowdon, Paul C.; Wood, David; Maropoulos, Paul G.

    2007-02-01

    The field of laser micromachining is highly diverse. There are many different types of lasers available in the market. Due to their differences in irradiating wavelength, output power and pulse characteristic they can be selected for different applications depending on material and feature size [1]. The main issues by using these lasers are heat damages, contamination and low ablation rates. This report examines on the application of the Laser MicroJet(R) (LMJ), a unique combination of a laser beam with a hair-thin water jet as a universal tool for micro-machining of MEMS substrates, as well as ferrous and non-ferrous materials. The materials include gallium arsenide (GaAs) & silicon wafers, steel, tantalum and alumina ceramic. A Nd:YAG laser operating at 1064 nm (infra red) and frequency doubled 532 nm (green) were employed for the micro-machining of these materials.

  8. Photoconductive properties of organic-inorganic Ag/p-CuPc/n-GaAs/Ag cell

    Energy Technology Data Exchange (ETDEWEB)

    Karimov, Khasan Sanginovich; Saeed, Muhammad Tariq; Khalid, Fazal Ahmad [GIK Institute of Engineering Sciences and Technology, Top 23640, Swabi, Khyber Pakhtunkhwa (Pakistan); Karieva, Zioda Mirzoevna, E-mail: tariqchani@hotmail.com [Tajik Technical University, Rajabov St.10, Dushanbe, 734000 (Tajikistan)

    2011-07-15

    A thin film of copper phthalocyanine (CuPc), a p-type semiconductor, was deposited by thermal evaporation in vacuum on an n-type gallium arsenide (GaAs) single-crystal semiconductor substrate. Then semi-transparent Ag thin film was deposited onto the CuPc film also by thermal evaporation to fabricate the Ag/p-CuPc/n-GaAs/Ag cell. Photoconduction of the cell was measured in photoresistive and photodiode modes of operation. It was observed that with an increase in illumination, the photoresistance decreased in reverse bias while it increased in forward bias. The photocurrent was increased in reverse bias operation. In forward bias operation with an increase in illumination, the photocurrent showed a different behavior depending on the voltage applied. (semiconductor physics)

  9. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CMOS compatible route for GaAs based large scale flexible and transparent electronics

    KAUST Repository

    Nour, Maha A.

    2014-08-01

    Flexible electronics using gallium arsenide (GaAs) for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. Here we describe a state-of-the-art CMOS compatible batch fabrication process of transforming traditional electronic circuitry into large-area flexible, semitransparent platform. We show a simple release process for peeling off 200 nm of GaAs from 200 nm GaAs/300 nm AlAs stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes which contributes to the better transparency (45 % at 724 nm wavelength) observed.

  11. Innovation in crystal growth: A personal perspective

    Science.gov (United States)

    Mullin, J. B.

    2008-04-01

    The evolution of crystal growth has been crucially dependent on revolutionary innovations and initiatives involving ideas, technology and communication. A personal perspective is presented on some of these aspects in connection with the early history of semiconductors that have helped evolve our knowledge and advance the science and technology of crystal growth. The presentation considers examples from work on germanium, silicon, indium antimonide, gallium arsenide, indium phosphide, gallium phosphide and mercury cadmium telluride. In connection with metal organic vapour phase epitaxy (MOVPE), the influence of adduct purification for alkyls is noted together with the growth of Hg xCd 1-xTe. The role of crystal growth organisations together with initiatives in the publication of the Journal of Crystal Growth (JCG) and the pivotal role of the International Organisation of Crystal Growth (IOCG) are also highlighted in the quest for scientific excellence.

  12. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    Science.gov (United States)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  13. First tests of a Medipix-1 pixel detector for X-ray dynamic defectoscopy

    CERN Document Server

    Vavrik, D; Visschers, J; Pospísil, S; Ponchut, C; Zemankova, J

    2002-01-01

    Recent theoretical damage material models describe the dynamic development of voids and microcracks in materials under plastic deformation. For these models, experimental verification is needed. We propose direct and non-destructive observation of the propagation of material damage by measuring changes in transmission of X-rays penetrating a stressed material, using a photon-counting X-ray imager. The present contribution aims to demonstrate the applicability of silicon and gallium-arsenide devices for X-ray transmission measurements with a specimen of high-ductile aluminium alloy under study. The first experiments to determine the resolution and the sensitivity of the proposed method with the Medipix-1 pixel detector are presented.

  14. A 128 x 128 InGaAs detector array for 1.0-1.7 microns

    International Nuclear Information System (INIS)

    Olsen, G.; Joshi, A.; Lange, M.; Woodruff, W.; Mykietyn, E.; Gay, D.; Erickson, G.; Ackley, D.; Ban, V.; Staller, C.

    1990-01-01

    This paper reports on a two-dimensional 128 x 128 detector array for the 1.0 - 1.7 um spectral region that has been demonstrated with indium gallium arsenide (In .53 Ga .47 As). The 30 um square pixels had 60 um spacing in both directions and were designed to be compatible with a two-dimensional Reticon multiplexer. Dark currents below 100 pA, capacitance near 0.1 pF (-5V, room temperature) and quantum efficiencies about 80% (at 1.3 um) were measured. Probe maps of dark current and quantum efficiency are presented along with pixel dropout data and wafer yield which was as high as 99.89% (7 dropouts) in an area of 6528 pixels and 99.37% (103 dropouts) over an entire 128 x 128 pixel region

  15. Surface impedance of BaFe2-xNixAs2 in the radio frequency range

    Directory of Open Access Journals (Sweden)

    A. Abbassi

    2012-08-01

    Full Text Available We report measurements of the temperature dependence of the surface impedance in superconducting BaFe1.93Ni0.07As2 crystals using the radiofrequency reflection technique in the 5arsenide superconductors BaFe2-xNixAs2 has attracted much interest. For a Ni doping level of 7% the superconducting phase transition is found around 20K. The temperature dependence of the superconducting penetration depth was determined.

  16. Interplay of light transmission and catalytic exchange current in photoelectrochemical systems

    International Nuclear Information System (INIS)

    Fountaine, Katherine T.; Lewerenz, Hans J.; Atwater, Harry A.

    2014-01-01

    We develop an analytic current-voltage expression for a variable junction photoelectrochemical (PEC) cell and use it to investigate and illustrate the influence of the optical and electrical properties of catalysts on the optoelectronic performance of PEC devices. Specifically, the model enables a simple, yet accurate accounting of nanostructured catalyst optical and electrical properties through incorporation of an optical transmission factor and active catalytic area factor. We demonstrate the utility of this model via the output power characteristics of an exemplary dual tandem solar cell with indium gallium phosphide and indium gallium arsenide absorbers with varying rhodium catalyst nanoparticle loading. The approach highlights the importance of considering interactions between independently optimized components for optimal PEC device design.

  17. Influence of photon recycling effects in the operation and design of GaAs solar cells; Influencia del reciclaje de fotones en el funcionamiento y del diseno de las celulas solares de Arsenico de Galio

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui Manzanares, J. L.

    2005-07-01

    Photon recycling (PR) is the process by which photons internally emitted in a semiconductor can be re-absorbed by the material, giving as result new electron-hole pairs. Although this process has been receiving some international research from the Sixties, because their effects revealed as relevant in certain devices and materials (as in gallium arsenide), its influence in the operation of solar cells has been scarcely considered in the past. Thus deposited it has been demonstrated that one of its major effects is an enhancement of the radiative carrier lifetine, photon recycling is not usually taken into account in photovoltaic, neither in device modelling and simulation, nor from the perspective of taking advantage of the phenomenon to improve the efficiency of solar cells. This work describes the results of our investigations in the field of photon recycling. (Author)

  18. GLOBECOM '84 - Global Telecommunications Conference, Atlanta, GA, November 26-29, 1984, Conference Record. Volume 3

    Science.gov (United States)

    Attention is given to aspects of quality assurance methodologies in development life cycles, optical intercity transmission systems, multiaccess protocols, system and technology aspects in the case of regional/domestic satellites, advances in SSB-AM radio transmission over terrestrial and satellite network, and development environments for telecommunications systems. Other subjects studied are concerned with business communication networks for voice and data, VLSI in local network and communication protocol, product evaluation and support, an update regarding Videotex, topics in communication theory, topics in radio propagation, a status report regarding societal effects of technology in the workplace, digital image processing, and adaptive signal processing for communications. The management of the reliability function in the development process is considered along with Giga-bit technologies for long distance large capacity optical transmission equipment. The application of gallium arsenide analog and digital integrated circuits for high-speed fiber optical communications, and a simple algorithm for image data coding.

  19. Study and characterization of the III-V semiconductor materials for applications in the detection of ionizing radiation

    International Nuclear Information System (INIS)

    Moulin, H.

    1989-11-01

    The photoconduction in the bulk of the gallium arsenide (GaAs) and of the indium phosphide doped with iron (InP:Fe) is investigated. These compounds are to be applied in devices for X-ray detection. In such semiconductor materials the detection of X-rays occurs in the bulk. The photoconduction theory and the characteristics of the materials are reviewed. Two computerized simulation models for studying the response of the photoconductors to the radiation pulses are described. The results concerning the following measurements are presented: the characterization of GaAs and InP:Fe photoconductors, in obscurity, as a function of the electric field of polarization and of the neutrons dose; and their characterization under X-ray radiation [fr

  20. Study and characterization of III-V semiconductor materials for applications in ionizing radiation detection

    International Nuclear Information System (INIS)

    Moulin, H.

    1989-11-01

    The photoconduction in the bulk of the gallium arsenide (GaAs) and of the indium phosphide doped with iron (InP:Fe) is investigated. These semiconductor materials are to be applied in X rays detection. The photoconduction theory and the physical characteristics of those materials are reviewed. The computer simulation models for studying the photoconductor responses to the radiation pulses are described. The experimental results are discussed. They include the following aspects: the characterization of the GaAs and InP:Fe, in the obscurity, as a function of the polarized electric field and of the neutrons dose; the characterization under X ray. Continuous X rays and pulsed synchrotron radiation are applied [fr

  1. Ion beam analysis of aluminium in thin layers

    International Nuclear Information System (INIS)

    Healy, M.J.F.; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A.

    2002-01-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the 27 Al(d,p 01 ) 28 Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest

  2. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  3. Buffer layer between a planar optical concentrator and a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Manuel E. [Departamento de Ingeniería Matemática and CI" 2 MA, Universidad de Concepción, Concepción, Casilla 160-C (Chile); Barber, Greg D. [Penn State Institute of Energy and the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Faryad, Muhammad [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Monk, Peter B. [Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 (United States); Mallouk, Thomas E. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  4. A Bayesian Approach to Magnetic Moment Determination Using μSR

    Science.gov (United States)

    Blundell, S. J.; Steele, A. J.; Lancaster, T.; Wright, J. D.; Pratt, F. L.

    A significant challenge in zero-field μSR experiments arises from the uncertainty in the muon site. It is possible to calculate the dipole field (and hence precession frequency v) at any particular site given the magnetic moment μ and magnetic structure. One can also evaluate f(v), the probability distribution function of v assuming that the muon site can be anywhere within the unit cell with equal probability, excluding physically forbidden sites. Since v is obtained from experiment, what we would like to know is g(μjv), the probability density function of μ given the observed v. This can be obtained from our calculated f(v/μ) using Bayes' theorem. We describe an approach to this problem which we have used to extract information about real systems including a low-moment osmate compound, a family of molecular magnets, and an iron-arsenide compound.

  5. Efficient frequency comb generation in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2016-01-01

    The combination of nonlinear and integrated photonics enables Kerr frequency comb generation in stable chip-based microresonators. Such a comb system will revolutionize applications, including multi-wavelength lasers, metrology, and spectroscopy. Aluminum gallium arsenide (AlGaAs) exhibits very...... high material nonlinearity and low nonlinear loss. However, difficulties in device processing and low device effective nonlinearity made Kerr frequency comb generation elusive. Here, we demonstrate AlGaAs-on-insulator as a nonlinear platform at telecom wavelengths with an ultra-high device nonlinearity....... We show high-quality-factor (Q > 105) micro-resonators where optical parametric oscillations are achieved with milliwatt-level pump threshold powers, which paves the way for on-chip pumped comb generation....

  6. Single-photon manipulation in Nanophotonic Circuits

    DEFF Research Database (Denmark)

    Hansen, Sofie Lindskov

    Quantum dots in photonic nanostructures has long been known to be a very powerful and versatile solid-state platform for conducting quantum optics experiments. The present PhD thesis describes experimental demonstrations of single-photon generation and subsequent manipulation all realized...... on a gallium arsenide platform. This platform offers near-unity coupling between embedded single-photon emitters and a photonic mode, as well as the ability to suppress decoherence mechanisms, making it highly suited for quantum information applications. In this thesis we show how a single-photon router can...... be realized on a chip with embedded quantum dots. This allows for on-chip generation and manipulation of single photons. The router consists of an on-chip interferometer where the phase difference between the arms of the interferometer is controlled electrically. The response time of the device...

  7. Mechanical design of a low concentration ratio solar array for a space station application

    Science.gov (United States)

    Biss, M. S.; Hsu, L.

    1983-01-01

    This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.

  8. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings

    Science.gov (United States)

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.

    2018-04-01

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  9. Effect of hydrogen on change carrier dissipation in 60Co irradiated by γ-quanta and non-alloyed n-type GaAs

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Kurilovich, N.F.; Prokhorenko, T.A.; Shesholko, V.K.; Bumaj, Yu.A.

    2001-01-01

    The pretreatment in hydrogen plasma (the hydrogenation) influences on the charge carrier dissipation processes in the non-alloyed gallium arsenide of n-type with no = (5...7) centre dot 10 15 cm -3 and μo = (5...6) centre dot 10 13 cm 2 / (V centre dot c) irradiated by γ-quantum 60 Co was studied. The comparison of experimental dependence μ (T) with the designed one in the temperature range 77...291 K for non-hydrogenized and hydrogenized non irradiated and γ-quantum irradiated crystals was carried out. It is shown that the main dissipative mechanism that determine the charged carrier mobility in the non hydrogenized material is the dissipation on the charged centers - the radiation defects in the γ-quantum irradiated GaAs; the presence of double ionized defects is possible

  10. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging

    International Nuclear Information System (INIS)

    Berthing, Trine; Bonde, Sara; Rostgaard, Katrine R; Martinez, Karen L; Madsen, Morten Hannibal; Sørensen, Claus B; Nygård, Jesper

    2012-01-01

    The perspectives offered by vertical arrays of nanowires for biosensing applications in living cells depend on the access of individual nanowires to the cell interior. Recent results on electrical access and molecular delivery suggest that direct access is not always obtained. Here, we present a generic approach to directly visualize the membrane conformation of living cells interfaced with nanowire arrays, with single nanowire resolution. The method combines confocal z-stack imaging with an optimized cell membrane labelling strategy which was applied to HEK293 cells interfaced with 2–11 μm long and 3–7 μm spaced nanowires with various surface coatings (bare, aminosilane-coated or polyethyleneimine-coated indium arsenide). We demonstrate that, for all commonly used nanowire lengths, spacings and surface coatings, nanowires generally remain enclosed in a membrane compartment, and are thereby not in direct contact with the cell interior. (paper)

  11. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    Energy Technology Data Exchange (ETDEWEB)

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc, E-mail: jean-luc.pelouard@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), Route de Nozay, 91460 Marcoussis (France); Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); Haïdar, Riad [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); École Polytechnique, Département de Physique, F-91128 Palaiseau (France)

    2014-07-07

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  12. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    International Nuclear Information System (INIS)

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc; Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel; Haïdar, Riad

    2014-01-01

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  13. Graphite based Schottky diodes formed semiconducting substrates

    Science.gov (United States)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  14. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    Science.gov (United States)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  15. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    Science.gov (United States)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  16. Specific features of electroluminescence in heterostructures with InSb quantum dots in an InAs matrix

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomenko, Ya. A.; Ivanov, E. V.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-11-15

    The electrical and electroluminescence properties of a single narrow-gap heterostructure based on a p-n junction in indium arsenide, containing a single layer of InSb quantum dots in the InAs matrix, are studied. The presence of quantum dots has a significant effect on the shape of the reverse branch of the current-voltage characteristic of the heterostructure. Under reverse bias, the room-temperature electroluminescence spectra of the heterostructure with quantum dots, in addition to a negative-luminescence band with a maximum at the wavelength {lambda} = 3.5 {mu}m, contained a positive-luminescence emission band at 3.8 {mu}m, caused by radiative transitions involving localized states of quantum dots at the type-II InSb/InAs heterointerface.

  17. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    Energy Technology Data Exchange (ETDEWEB)

    Helm, T. [MPI-CPFS (Germany); Bachmann, M. [MPI-CPFS (Germany); Moll, P.J.W. [MPI-CPFS (Germany); Balicas, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramshaw, Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcdonald, Ross David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Eric Dietzgen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ronning, Filip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    Electronic nematicity appears in proximity to unconventional high-temperature superconductivity in the cuprates and iron-arsenides, yet whether they cooperate or compete is widely discussed. While many parallels are drawn between high-Tc and heavy fermion superconductors, electronic nematicity was not believed to be an important aspect in their superconductivity. We have found evidence for a field-induced strong electronic in-plane symmetry breaking in the tetragonal heavy fermion superconductor CeRhIn5. At ambient pressure and zero field, it hosts an anti-ferromagnetic order (AFM) of nominally localized 4f electrons at TN=3.8K(1). Moderate pressure of 17kBar suppresses the AFM order and a dome of superconductivity appears around the quantum critical point. Similarly, a density-wave-like correlated phase appears centered around the field-induced AFM quantum critical point. In this phase, we have now observed electronic nematic behavior.

  18. Characterization of GaN films grown on GaAs by AP-MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis, H; Sanchez-R, V M; Escobosa, A, E-mail: heber_vil@hotmail.co [Department of Electrical Engineering, CINVESTAV-IPN, Av. Instituto Politecnico Nacional 2508 Col. San Pedro Zacatenco C.P. 07360 Mexico D.F (Mexico)

    2009-05-01

    In this paper we present the results of the synthesis of GaN in an AP-MOVPE system heated by infrared lamps starting from gallium nitride films obtained by nitridation of gallium arsenide. Although dependence of the characteristics of the different parameters of the deposition process on the properties of the layers has been widely studied, the influence of the nature and design of the heating source has been only scarcely reported. We show that the ratio between the two phases depends on the characteristics of the heating source, as well as on other growth parameters. Our results show a compromise between the characteristics of the photoluminescence spectra, the surface morphology and the cubic phase to hexagonal phase ratio. The growth conditions can be adjusted for optimal performance.

  19. Diffusion of Ni, Ga, and As in the surface layer of GaAs and characteristics of the Ni/GaAs contact

    International Nuclear Information System (INIS)

    Uskov, V.A.; Fedotov, A.B.; Erofeeva, E.A.; Rodionov, A.I.; Dzhumakulov, D.T.

    1987-01-01

    The authors investigate the low-temperature codiffusion of Ni, Ga, and As in the surface layer of gallium arsenide and study its effect on the current-voltage characteristics of a Ni/GaAs rectifier contact. The concentration distribution of atoms in the function layer of a Ni-GaAs system was investigated by the methods of layerwise radiometric and neutron-activation analyses. It was found that interdiffusion of components takes place in the Ni-GaAs system in an elastic stress field, generated by the differences in the lattice parameters and thermal-expansion coefficients of Ni, GaAs, and the intermetallic compound which form. The form and parameters of the current-voltage characteristics of a Ni/GaAs contact are determined by the phase composition and the structure of the junction layer

  20. Transient effects of ionizing radiation in Si, InGaAsP, GaAlSb, and Ge photodiodes

    International Nuclear Information System (INIS)

    Wiczer, J.J.; Barnes, C.E.; Dawson, L.R.

    1980-01-01

    Certain military applications require the continuous operation of optoelectronic information transfer systems during exposure to ionizing radiation. In such an environment the optical detector can be the system element which limits data transmission. We report here the measured electrical and optical characteristics of an irradiation tolerant photodiode fabricated from a double heterojunction structure in the gallium aluminum antimonide (GaAlSb) ternary semiconductor system. A series of tests at Sandia Laboratories' Relativistic Electron Beam Accelerator (REBA) subjected this device and commercially available photodiodes (made from silicon, germanium, and indium gallium arsenide phosphide) to dose rate levels of 10 7 to 10 8 rads/sec. The results of these tests show that the thin GaAlSb double heterojunction photodiode structure generates significantly less unwanted radiation induced current density than that of the next best commercial device