WorldWideScience

Sample records for berkeley reactor

  1. The Berkeley TRIGA Mark III research reactor

    International Nuclear Information System (INIS)

    The Berkeley Research Reactor went critical on August 10, 1966, and achieved licensed operating power of 1000 kW shortly thereafter. Since then, the reactor has operated, by and large, trouble free on a one-shift basis. The major use of the reactor is in service irradiations, and many scientific programs are accommodated, both on and off campus. The principal off-campus user is the Lawrence Radiation Laboratory at Berkeley. The reactor is also an important instructional tool in the Nuclear Engineering Department reactor experiments laboratory course, and as a source of radioisotopes for two other laboratory courses given by the Department. Finally, the reactor is used in several research programs conducted within the Department, involving studies with neutron beams and in reactor kinetics

  2. Political-social reactor problems at Berkeley

    International Nuclear Information System (INIS)

    For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitioned the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)

  3. Failure of triga fuel cladding at the Berkeley Research Reactor

    International Nuclear Information System (INIS)

    On September 16, 1985, following a long maintenance shutdown, unusually high concentrations of radioisotopes were detected in the reactor-room air on a Constant Air Monitor (CAM) after two and a half hours of full power operation. It was thought that the activity could be coming from some contamination in the pool water. Thus the water was cleaned and the water conductivity was reduced fourfold. However, a full-power operation again showed high count rates on the CAM. A third test was conducted with a germanium detector. Following two hours of operation, three fission-product gasses were identified in the reactor-room air; Kr85, Kr37 and Kr88. Once again no unusual activities could be detected on the CAM filter, in the pool water, or in the demineralizer resins. It was concluded that the gasses must be coming from a leaking fuel element. Three old, instrumented elements with defective thermocouples were selected to be the first ones isolated from the core. After removing the elements, the reactor was operated at full-power for two hours with no abnormal activities detected. New standard elements were loaded and the reactor was again operated at full-power to confirm that no leaking element remained in the core. Since then, the reactor has been operated, with no abnormal activities detected. (Nogami, K.)

  4. Bishop Berkeley

    OpenAIRE

    Bindon, Francis (Irish artist, 1690-1765)

    2008-01-01

    'Berkeley was born at his family home, Dysart Castle, near Thomastown, County Kilkenny, Ireland, the eldest son of William Berkeley, a cadet of the noble family of Berkeley. He was educated at Kilkenny College and attended Trinity College, Dublin, completing a Master's degree in 1707. He remained at Trinity College after completion of his degree as a tutor and Greek lecturer.' (en.wikipedia.org)

  5. A preliminary assessment of individual doses in the environs of Berkeley, Gloucestershire, following the Chernobyl nuclear reactor accident

    International Nuclear Information System (INIS)

    A preliminary assessment has been made of the individual doses to critical group members of the public in the environs of Berkeley arising from fallout resulting from the Chernobyl accident. The assessment was based on measurements of airborne radionuclide concentrations, ground deposition and nuclide concentrations in rainwater, tapwater, grass, milk and green vegetables. The committed effective dose-equivalent was found to be as follows:- Adult - 200 μSv, 1 year old child - 500 μSv, the 10 year old child receiving a dose intermediate between these two values. The estimate accounts only for the nuclides measured and the specific exposure routes considered namely ingestion of milk and vegetables, inhalation and external exposure. However, it is believed that the inclusion of a range of other nuclides of potential significance, which may have been present but not measured, and potential intakes from additional routes is unlikely to increase the above estimates by more than a factor of 2. (author)

  6. Environmental research at Berkeley

    CERN Document Server

    1973-01-01

    The information concerning the Energy and Environment Programme at the Lawrence Berkeley Laboratory is based on a talk given at CERN by A.M. Sessler, one of the initiators of the Programme. (Dr. Sessler has been appointed Director of the Lawrence Berkeley Laboratory, in succession to Prof. E. M. McMillan, from 1 November.) Many of the topics mentioned merit an extended story in themselves but the purpose of this article is simply to give a sketch of what is happening.

  7. El idealismo de Berkeley

    Directory of Open Access Journals (Sweden)

    David Sobrevilla

    1995-12-01

    Full Text Available En esta conferencia se examina en qué consiste el idealismo de Berkeley. Para ello se sigue el mismo camino propuesto por G .J. Warnock: se indaga contra qué se opone Berkeley, el materialismo, y cómo lo entiende, y por qué está en contra del mismo. A continuación se reexamina el idealismo berkeleyano, y en la consideración final se juzgan sus virtudes y defectos: algunas de las críticas fundadas que se le han formulado y la visión de la ciencia que se desprende de los escritos de Berkeley. A este respecto se pone en conexión las ideas del autor con algunos planteamientos del último Husserl y con una interpretación de Popper sobre la sorprendente modernidad de algunas de las ideas berkeleyanas sobre la ciencia.

  8. Berkeley mini-collider

    International Nuclear Information System (INIS)

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  9. Berkeley Low Background Facility

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K. J.; Norman, E. B. [Department of Nuclear Engineering, University of California-Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 (United States); Smith, A. R.; Poon, A. W. P.; Chan, Y. D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 (United States); Lesko, K. T. [Physics Division, Lawrence Berkeley National Laboratory, CA 94720 (United States)

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  10. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  11. 2009 SCDNR Berkeley County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Berkeley County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  12. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Science.gov (United States)

    2011-06-28

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 4th of July Festival Berkeley Marina... Berkeley Pier, Berkeley, CA in support of the 4th of July Festival Berkeley Marina Fireworks Display... used in the fireworks display. Background and Purpose The City of Berkeley Marina will sponsor the...

  13. 78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2013-05-17

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA... enforce the safety zone for the Berkeley Marina Fourth of July Fireworks display in the Captain of the...'19'' W (NAD 83) for the Berkeley Marina Fourth of July Fireworks display listed in 33 CFR...

  14. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  15. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  16. Two amateur astronomers at Berkeley

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    The book on Mechanics of the Physics at Berkeley, by C. Kittel, W.D. Knight and M.A. Ruderman, is proposing at the end of its first chapter some problems of simple astronomy within the solar system. The discussion begins with two amateur astronomers who set for themselves the goal of determining the diameter and mass of the Sun. Here we discuss the problems proposed by the book and some other matters on ancient and modern astronomical studies of the solar system.

  17. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2012-06-22

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA... enforce the safety zone for the Berkeley Marina Fourth of July Fireworks display in the Captain of the... Marina Fourth of July Fireworks display in 33 CFR 165.1191. This safety zone will be in effect from...

  18. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  19. The anticentre old open clusters Berkeley 27, Berkeley 34, and Berkeley 36: new additions to the BOCCE project

    CERN Document Server

    Donati, P; Cignoni, M; Cocozza, G; Tosi, M

    2012-01-01

    In this paper we present the investigation of the evolutionary status of three open clusters: Berkeley 27, Berkeley 34, and Berkeley 36, all located in the Galactic anti-centre direction. All of them were observed with SUSI2@NTT using the Bessel B, V, and I filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method i.e. the direct comparison of the observational CMDs with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC, and FST). This analysis shows that Berkeley 27 has an age between 1.5 and 1.7 Gyr, a reddening E(B-V) in the range 0.40 and 0.50, and a distance modulus (m-M)_0 between 13.1 and 13.3; Berkeley 34 is older with an age in the range 2.1 and 2.5 Gyr, E(B-V) between 0.57 and 0.64, and (m-M)_0 between 14.1 and 14.3; Berkeley 36, with an age between 7.0 and 7.5 Gyr, has a reddening E(B-V)~0.50 and a distance modulus (m-M)_0 between 13.1 and 13.2. For all the clusters our analysis suggests a sub-solar metallicity ...

  20. The Berkeley Digital Seismic Network

    Science.gov (United States)

    Romanowicz, B.; Dreger, D.; Neuhauser, D.; Karavas, W.; Hellweg, M.; Uhrhammer, R.; Lombard, P.; Friday, J.; Lellinger, R.; Gardner, J.; McKenzie, M. R.; Bresloff, C.

    2007-05-01

    Since it began monitoring earthquakes in northern California 120 years ago, the Berkeley Seismological Laboratory (BSL) has been striving to produce the highest quality and most complete seismic data possible in the most modern way. This goal has influenced choices in instrumentation, installation and telemetry, as well as the investment in expertise and manpower. Since the transition to broadband (BB) instrumentation in the mid- 1980s and to a fully digitally telemetered network in the early 1990s, we have continued these efforts. Each of our 25 BB installations includes three component BB seismometers (STS-1s or STS-2) and digital accelerometers to capture the full range of ground motion from distant teleseisms to large, nearby earthquakes (almost 250 dB). The ground motion is recorded on-site by 24 bit dataloggers. Additional environmental parameters, such as temperature and pressure, are also monitored continuously. Many stations record also C-GPS data that is transmitted continuously to the BSL via shared real-time telemetry. The BDSN's first stations were installed in abandoned mines. In the last 15 years, we developed installations using buried shipping containers to reduce environmental noise and provide security and easy access to the equipment. Data are transmitted in real-time at several sampling rates to one or more processing centers, using frame relay, radio, microwave, and/or satellite. Each site has 7-30 days of onsite data storage to guard against data loss during telemetry outages. Each station is supplied with backup batteries to provide power for 3 days. The BDSN real-time data acquisition, earthquake analysis and archiving computers are housed in a building built to "emergency grade" seismic standards, with air conditioning and power backed up by a UPS and a large generator. Data latency and power are monitored by automated processes that alert staff via pager and email. Data completeness and timing quality are automatically assessed on a daily

  1. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  2. THE YOUNG OPEN CLUSTER BERKELEY 55

    Energy Technology Data Exchange (ETDEWEB)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2012-02-15

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster with a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.

  3. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  4. C. Judson King of UC Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director of the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.

  5. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  6. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  7. Three new bricks in the wall: Berkeley 23, Berkeley 31, and King 8

    CERN Document Server

    Cignoni, Michele; Bragaglia, Angela; Tosi, Monica

    2011-01-01

    A comprehensive census of Galactic open cluster properties places unique constraints on the Galactic disc structure and evolution. In this framework we investigate the evolutionary status of three poorly-studied open clusters, Berkeley 31, Berkeley 23 and King 8, all located in the Galactic anti-centre direction. To this aim, we make use of deep LBT observations, reaching more than 6 mag below the main sequence Turn- Off. To determine the cluster parameters, namely age, metallicity, distance, reddening and binary fraction, we compare the observational colour-magnitude diagrams (CMDs) with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC and FST) and metallicities. We find that Berkeley 31 is relatively old, with an age between 2.3 and 2.9 Gyr, and rather high above the Galactic plane, at about 700 pc. Berkeley 23 and King 8 are younger, with best fitting ages in the range 1.1-1.3 Gyr and 0.8-1.3 Gyr, respectively. The position above the Galactic plane is about 500- 600 pc...

  8. Careers in Data Science: A Berkeley Perspective

    Science.gov (United States)

    Koy, K.

    2015-12-01

    Last year, I took on an amazing opportunity to serve as the Executive Director of the new Berkeley Institute for Data Science (BIDS). After a 15-year career working with geospatial data to advance our understanding of the environment, I have been presented with a unique opportunity through BIDS to work with talented researchers from a wide variety of backgrounds. Founded in 2013, BIDS is a central hub of research and education at UC Berkeley designed to facilitate and nurture data-intensive science. We are building a community centered on a cohort of talented data science fellows and senior fellows who are representative of the world-class researchers from across our campus and are leading the data science revolution within their disciplines. Our initiatives are designed to bring together broad constituents of the data science community, including domain experts from the life, social, and physical sciences and methodological experts from computer science, statistics, and applied mathematics. While many of these individuals rarely cross professional paths, BIDS actively seeks new and creative ways to engage and foster collaboration across these different research fields. In this presentation, I will share my own story, along with some insights into how BIDS is supporting the careers of data scientists, including graduate students, postdocs, faculty, and research staff. I will also describe how these individuals we are helping support are working to address a number of data science-related challenges in scientific research.

  9. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  10. The Berkeley gas-filled separator

    CERN Document Server

    Ninov, V; McGrath, C A

    1998-01-01

    The BGS is being constructed at the 88-Inch Cyclotron at LBNL in Berkeley. The magnetic configuration of the BGS will allow a large angular acceptance and good suppression of primary beam particles. BGS operates as a mass spectrometer with a A/ Delta A approximately =200 and as a gas filled separator at pressures between 0.1-50 hPa. The reaction products recoiling off a thin target will be collected with efficiencies from 10-80at the focal plane. A Monte Carlo simulation program of the ion transport through the gas-filled magnets in combination of 3-dimensional TOSCA field maps has been developed and reproduces closely the experimental behavior of BGS. (9 refs).

  11. Junior High Schools of Berkeley, California. Bulletin, 1923, No. 4

    Science.gov (United States)

    Preston, James T.; Clark, W. B.; Glessner, H. H.; Hennessey, D. L.

    1923-01-01

    This bulletin demonstrates that Berkeley, California's educational problem is and has been that of meeting the varied needs of a population such as may be found in any typical American city. The varied population needs, together with the rapid growth, have brought many difficult problems to Berkeley, just has they have to other cities. Based on…

  12. Berkeley UPC编译技术分析%Analysis of the Berkeley UPC Compile Technique

    Institute of Scientific and Technical Information of China (English)

    文延华; 黄传信; 漆锋滨

    2004-01-01

    UPC是一种可以在多种体系结构的并行系统上进行移植的基于全局地址空间(GAS)访问的并行编程语言.本文主要介绍了Berkeley UPC编译器的结构特点,分析了它对文本的支持程度和对并行的实现效率.

  13. Radioactive ion beam development in Berkeley

    CERN Document Server

    Wutte, D C; Leitner, M A; Xie, Z Q

    1999-01-01

    Two radioactive ion beam projects are under development at the 88" Cyclotron, BEARS (Berkeley Experiment with accelerated radioactive species) and the 14O experiment. The projects are initially focused on the production of 11C and 14O, but it is planned to expand the program to 17F, 18F, 13N and 76Kr. For the BEARS project, the radioactivity is produced in form of either CO2 or N2O in a small medical 10 MeV proton cyclotron. The activity is then transported through a 300 m long He-jet line to the 88" cyclotron building, injected into the AECR-U ion source and accelerated through the 88" cyclotron to energies between 1 to 30 MeV/ nucleon. The 14O experiment is a new experiment at the 88" cyclotron to measure the energy-shape of the beta decay spectrum. For this purpose, a target transfer line and a radioactive ion beam test stand has been constructed. The radioactivity is produced in form of CO in a hot carbon target with a 20 MeV 3He from the 88" Cyclotron. The activity diffuses through an 8m long stainless s...

  14. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  15. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  16. Former Fermilab boss to lead Lawrence Berkeley National Laboratory

    Science.gov (United States)

    Gwynne, Peter

    2016-03-01

    Particle physicist Michael Witherell - current vice-chancellor for research at the University of California, Santa Barbara (UCSB) - has been appointed the next director of the Lawrence Berkeley National Laboratory (LBL).

  17. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed.

  18. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  19. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E.; Pauer, R.O. (eds.)

    1990-08-01

    The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the US Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1989 are presented, and general trends are discussed. 17 refs., 12 figs., 23 tabs.

  20. Pass-Fail Grading at Berkeley: Facts and Opinions.

    Science.gov (United States)

    Suslow, Sidney

    The facts and opinions regarding pass/no pass grading at Berkeley discussed in this report are based on three sources of information. These sources include a survey of faculty conducted in the spring quarter 1970, a survey of undergraduate students in the winter quarter 1971, and the records routinely generated in the Registrar's Office for the…

  1. UC-Berkeley-area citizens decry waste transfer from lab.

    CERN Multimedia

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  2. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs.

  3. Integration Defended: Berkeley Unified's Strategy to Maintain School Diversity

    Science.gov (United States)

    Chavez, Lisa; Frankenberg, Erica

    2009-01-01

    In June 2007, the Supreme Court limited the tools that school districts could use to voluntarily integrate schools. In the aftermath of the decision, educators around the country have sought models of successful plans that would also be legal. One such model may be Berkeley Unified School District's (BUSD) plan. Earlier this year, the California…

  4. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  5. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  6. Results of a monitoring programme in the environs of Berkeley aimed at collecting Chernobyl data for foodchain model validation

    International Nuclear Information System (INIS)

    The results of a fallout measurement programme which was carried out in the environs of Berkeley Nuclear Laboratory in the United Kingdom following the Chernobyl reactor accident in April 1986 are presented in this report. The programme was aimed at establishing a time-dependent data base of concentrations of Chernobyl fallout radionuclides in selected agricultural products. Results were obtained for milk, grass, silage, soil and wheat over an eighteen month period from May 1986. It is intended to use the data to validate the CEGB's dynamic foodchain model, which is incorporated in the FOODWEB module of the NECTAR environmental code. (author)

  7. Hydrogeology and tritium transport in Chicken Creek Canyon,Lawrence Berkeley National Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Javandel, Iraj

    2007-10-31

    This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow. Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.

  8. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    International Nuclear Information System (INIS)

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  9. Calibration of the Berkeley EUV Airglow Rocket Spectrometer

    Science.gov (United States)

    Cotton, Daniel M.; Chakrabarti, Supriya; Siegmund, Oswald

    1989-01-01

    The Berkeley Extreme-ultraviolet Airglow Rocket Spectrometer (BEARS), a multiinstrument sounding rocket payload, made comprehensive measurements of the earth's dayglow. The primary instruments consisted of two near-normal Rowland mount spectrometers: one channel to measure several atomic oxygen features at high spectral resolution (about 1.5 A) in the band passes 980-1040 and 1300-1360 A, and the other to measure EUV dayglow and the solar EUV simultaneously in a much broader bandpass (250-1150 A) at moderate resolution (about 10 A). The payload also included a hydrogen Lyman-alpha photometer to monitor the solar irradiance and goecoronal emissions. The instrument was calibrated at the EUV calibration facility at the University of California at Berkeley, and was subsequently launched successfully on September 30, 1988 aboard a four-stage experimental sounding rocket, Black Brant XII flight 12.041 WT. The calibration procedure and resulting data are presented.

  10. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  11. Annual site environmental report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E.; Pauer, R.O. (eds.)

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs.

  12. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  13. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  14. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  15. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  16. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    CERN Document Server

    Collier, M

    2002-01-01

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  17. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  18. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  19. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    International Nuclear Information System (INIS)

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle

  20. Stability of the Zagreb Carnegie-Mellon-Berkeley model

    CERN Document Server

    Osmanović, H; Švarc, A; Hadžimehmedović, M; Stahov, J

    2011-01-01

    In ref. [1] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions, and that it can reliably predict the pole positions of the fitted partial wave amplitudes.

  1. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  2. USING DOE-2.1 AT LAWRENCE BERKELEY LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Building Energy Analysis Group.; Authors, Various

    1980-09-01

    The purpose of this manual is to assist the DOE-2 user to run DOE-2 and its utility programs at Lawrence Berkeley Laboratory (LBL). It is organized to reflect the facts that every DOE-2 job run at LBL requires certain steps, and that there are options related to DOE-2 job runs available to any DOE-2 user. The standard steps for running a DOE-2 job are as follows: 1. Prepare a job deck 2. Process a job deck 3. Obtain standard output reports.

  3. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Michael

    2002-12-17

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  4. Lipoprotein subclasses in genetic studies: The Berkeley Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.; Williams, P.T.; Blanche, P.J.; Cavanaugh, A.; Holl, L.G. [Lawrence Berkeley Lab., CA (United States); Austin, M.A. [Washington Univ., Seattle, WA (United States). Dept. of Epidemiology

    1992-10-01

    Data from the Berkeley Data Set was used to investigate familial correlations of HDL-subclasses. Analysis of the sibling intraclass correlation coefficient by HDL particle diameter showed that sibling HDL levels were significantly correlated for HDL{sub 2b}, HDL{sub 3a} and HDL{sub 3b} subclasses. The percentage of the offsprings` variance explained by their two parents. Our finding that parents and offspring-have the highest correlation for HDL{sub 2b} is consistent with published reports that show higher heritability estimates for HDL{sub 2} compared with HDL{sub 3}{minus} cholesterol.

  5. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    Science.gov (United States)

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII. PMID:20733778

  6. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  7. Seismic Protection of Laboratory Contents: The UC Berkeley Science Building Case Study

    OpenAIRE

    Comerio, Mary C.

    2003-01-01

    The research described in this report is a part of the Disaster Resistant University (DRU) initiative funded by the Federal Emergency Management Agency (FEMA) and the University of California, Berkeley. The first phase of the Disaster Resistant University initiative produced a study of potential earthquake losses at UC Berkeley together with an analysis of the economic impacts. In that report, Comerio (2000) found that despite the extraordinary building retrofit program, the UC Berkeley cam...

  8. Development of an accelerator-based BNCT facility at the Berkeley Lab

    International Nuclear Information System (INIS)

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7Li(p,n)7Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  9. Early History of Heavy Isotope Research at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Glenn T. Seaborg

    1976-06-01

    I have had the idea for some time that it would be interesting and worthwhile to put together an account of the early work on heavy isotopes at Berkeley. Of a special interest is the discovery of plutonium (atomic number 94) and the isotope U{sup 233}, and the demonstration of their fission with slow neutrons. This work served as a prelude to the subsequent Plutonium Project (Metallurgical Project) centered at the University of Chicago, in connection with which I have also had the idea of putting together a history of the work of my chemistry group. I have decided that it would be an interesting challenge to write this account on a day-to-day basis in a style that would be consistent with the entries having been written at the end of each day. The aim would be to make this history as accurate as possible by going back to the original records and using them with meticulous care.

  10. BVI photometry of the very old open cluster Berkeley 17

    CERN Document Server

    Bragaglia, A; Marconi, G; Tosi, M; Andreuzzi, Gloria; Bragaglia, Angela; Marconi, Gianni; Tosi, Monica

    2006-01-01

    We have obtained BVI CCD imaging of Berkeley 17, an anticentre open cluster that competes with NGC 6791 as the oldest known open cluster. Using the synthetic colour magnitude diagrams (CMD) technique with three sets of evolutionary tracks we have determined that its age is 8.5 - 9.0 Gyr, it distance modulus is (m-M)_0 = 12.2, with a reddening of E(B-V) = 0.62 - 0.60. Differential reddening, if present, is at the 5 % level. All these values have been obtained using models with metallicity about half of solar (Z=0.008 or Z=0.01 depending on the stellar evolution tracks), which allows us to reproduce the features of the cluster CMD better than other metallicities. Finally, from the analysis of a nearby comparison field we think to have intercepted a portion of the disrupting Canis Major dwarf galaxy.

  11. Berkeley Program Offers New Option for Financing Residential PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax

  12. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  13. Status of the UC-Berkeley SETI Efforts

    CERN Document Server

    Korpela, Eric J; Bankay, Robert; Cobb, Jeff; Howard, Andrew; Lebofsky, Matt; Siemion, Andrew P V; von Korff, Joshua; Werthimer, Dan

    2011-01-01

    We summarize radio and optical SETI programs based at the University of California, Berkeley. The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths using an automated 30 inch telescope. The ongoing SERENDIP V.v sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with ~1.6 Hz spectral resolution. SETI@home uses the desktop computers of volunteers to analyze over 160 TB of data at taken at Arecibo looking for two types of continuous wave signals and two types of pulsed signals. A version to be released this summer adds autocorrelation analysis to look for complex wave forms that have been repeated (and overlayed) after a short delay. SETI@home will soon be processing data of Kepler exoplanet systems collected at the GBT. The Astropulse project is the first SETI search for $\\mu$s time scale dispersed pulses in the radio spectrum. We recently reobserved 114 sky loc...

  14. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    Science.gov (United States)

    Hargrove, Paul H.; Duell, Jason C.

    2006-09-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters.

  15. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    International Nuclear Information System (INIS)

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES ampersand H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES ampersand H awareness at all staff levels and in identifying ES ampersand H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES ampersand H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES ampersand H program. 4 figs., 24 tabs

  16. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, L.D. (ed.)

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations.

  17. A study of the old galactic star cluster Berkeley 32

    CERN Document Server

    Richtler, T; Richtler, Tom; Sagar, Ram

    2001-01-01

    We present new CCD photometry of the distant old open star cluster Berkeley 32 in Johnson V and Cousins I passbands. A total of about 3200 stars have been observed in a field of 13X13 arcmin**2. The colour-magnitude diagram in V, (V-I) has been generated down to V = 22 mag. A broad but well defined main sequence is clearly visible. Some blue stragglers, a well developed subgiant branch and a Red Clump are also seen. By fitting isochrones to this CMD as well as to other CMDs available in the literature, and using the Red Clump location, the reddening, distance and age of the star cluster have been determined. The cluster has a distance of 3.3 kpc, its radius is about 2.4 pc; the reddening E(B-V) is 0.08 mag and the age is 6.3 Gyr. By comparison with theoretical isochrones, a metallicity of [Fe/H]= -0.2 dex has been estimated. We find a much flatter mass function than what has been found for young clusters. If the mass function is a power law dN/dm = const.*m**alpha, then we get alpha = -0.5+-0.3 in the mass ra...

  18. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    International Nuclear Information System (INIS)

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters

  19. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  20. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  1. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  2. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  3. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  5. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  6. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  7. Berkeley e o papel das hipóteses na filosofia natural Berkeley and the role of hypothesis in natural philosophy

    Directory of Open Access Journals (Sweden)

    Silvio Seno Chibeni

    2010-09-01

    Full Text Available A questão do estatuto epistemológico das hipóteses que postulam entes e mecanismos inobserváveis tornou-se proeminente com o advento da ciência moderna, no século XVII. Uma das razões para isso é que, por um lado, as novas teorias científicas passaram a empregá-las amplamente na explicação dos fenômenos naturais, enquanto que, por outro lado, a epistemologia empirista, geralmente adotada desde então para a análise da ciência, parecia proscrever seu uso. Neste artigo analisam-se as soluções propostas por George Berkeley para essa tensão. Mostra-se que nos Princípios do conhecimento humano ele introduz uma nova noção de explicação científica, segundo a qual a ciência poderia prescindir de hipóteses sobre inobserváveis, quaisquer que sejam. Depois, para acomodar epistemologicamente a mecânica newtoniana, ele propõe, no De motu, a interpretação instrumentalista das hipóteses sobre forças, que são centrais nessa teoria, considerada por ele "a melhor chave para a ciência natural". Finalmente, em sua obra tardia, Siris, Berkeley envolve-se, de forma aparentemente realista, na discussão e defesa de uma série de hipóteses sobre fluidos inobserváveis. Examina-se brevemente, no final do artigo, a possibilidade de conciliar essa posição com os princípios fundamentais da epistemologia e metafísica de Berkeley.The issue of the epistemological status of hypotheses postulating unobservable entities became prominent with the advent of modern science, in the 17th century. The basic reason is that such entities were widely employed by the new scientific theories in the explanation and prediction of natural phenomena, whereas empiricist epistemology, which at that time became very popular among philosophers and scientists, formed a clearly inhospitable background for unobservable elements in general. This paper examines the stands adopted, and the proposals made on this topic by George Berkeley, one of the most important

  8. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Science.gov (United States)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  9. The Indirect Perception of Distance: Interpretive Complexities in Berkeley's Theory of Vision

    Directory of Open Access Journals (Sweden)

    Michael James Braund

    2007-12-01

    Full Text Available The problem of whether perception is direct or if it depends on additional, cognitive contributions made by the perceiving subject, is posed with particular force in an Essay towards a New Theory of Vision (NTV. It is evident from the recurrent treatment it receives therein that Berkeley considers it to be one of the central issues concerning perception. Fittingly, the NTV devotes the most attention to it. In this essay, I deal exclusively with Berkeley's treatment of the problem of indirect distance perception, as it is presented in the context of that work.

  10. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  11. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  12. 77 FR 75448 - Welded Tube-Berkeley Including On-Site Leased Workers From Snelling, Aerotek and Express...

    Science.gov (United States)

    2012-12-20

    ... Employment and Training Administration Welded Tube--Berkeley Including On-Site Leased Workers From Snelling... Worker Adjustment Assistance on October 10, 2012, applicable to workers of Welded Tube--Berkeley... Register on October 29, 2012 (77 FR 65583). At the request of South Carolina State, the Department...

  13. Searching the "Nuclear Science Abstracts" Data Base by Use of the Berkeley Mass Storage System

    Science.gov (United States)

    Herr, J. Joanne; Smith, Gloria L.

    1972-01-01

    Advantages of the Berkeley Mass Storage System (MSS) for information retrieval other than its size are: high serial-read rate, archival data storage; and random-access capability. By use of this device, the search cost in an SDI system based on the Nuclear Science Abstracts" data base was reduced by 20 percent. (6 references) (Author/NH)

  14. The Berkeley Puppet Interview: A Screening Instrument for Measuring Psychopathology in Young Children

    Science.gov (United States)

    Stone, Lisanne L.; van Daal, Carlijn; van der Maten, Marloes; Engels, Rutger C. M. E.; Janssens, Jan M. A. M.; Otten, Roy

    2014-01-01

    Background: While child self-reports of psychopathology are increasingly accepted, little standardized instruments are utilized for these practices. The Berkeley Puppet Interview (BPI) is an age-appropriate instrument for self-reports of problem behavior by young children. Objective: Psychometric properties of the Dutch version of the BPI will be…

  15. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    International Nuclear Information System (INIS)

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954

  16. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    Science.gov (United States)

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  17. Fermilab and Berkeley Lab Collaborate with Meyer Tool on Key Component for European Particle Accelerator

    CERN Multimedia

    2004-01-01

    Officials of the U.S. Department of Energy's Fermi National Accelerator Laboratory and Lawrence Berkeley National Laboratory announced yesterday the completion of a key component of the U.S. contribution to the Large Hadron Collider, a particle accelerator under construction at CERN, in Geneva, Switzerland

  18. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  19. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    Science.gov (United States)

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  20. Information Access for a Digital Library: Cheshire II and the Berkeley Environmental Digital Library.

    Science.gov (United States)

    Larson, Ray R.; Carson, Chad

    1999-01-01

    Reviews the characteristics of the Cheshire II system that is being used to implement full-text and fielded searching of bibliographic information for the University of California Berkeley Digital Library Initiative. Examines its performance when applied to a collection of large full-text documents in the TREC Interactive Retrieval Track and its…

  1. Cyclist safety on bicycle boulevards and parallel arterial routes in Berkeley, California.

    Science.gov (United States)

    Minikel, Eric

    2012-03-01

    This study compares the safety of bicyclists riding on bicycle boulevards to those riding on parallel arterial routes in Berkeley, California. Literature on the impact of motor vehicle traffic characteristics on cyclist safety shows that high motor vehicle speeds and volumes and the presence of heavy vehicles are all detrimental to cyclist safety. This suggests that cyclists may be safer on side streets than on busy arterials. Bicycle boulevards-traffic-calmed side streets signed and improved for cyclist use-purport to offer cyclists a safer alternative to riding on arterials. Police-reported bicycle collision data and manually collected cyclist count data from bicycle boulevards and parallel arterial routes in Berkeley, California from 2003 to 2010 are used to test the hypothesis that Berkeley's bicycle boulevards have lower cyclist collision rates and a lower proportion of bicycle collisions resulting in severe injury. While no significant difference is found in the proportion of collisions that are severe, results show that collision rates on Berkeley's bicycle boulevards are two to eight times lower than those on parallel, adjacent arterial routes. The difference in collision rate is highly statistically significant, unlikely to be caused by any bias in the collision and count data, and cannot be easily explained away by self-selection or safety in numbers. Though the used dataset is limited and the study design is correlational, this study provides some evidence that Berkeley's bicycle boulevards are safer for cyclists than its parallel arterial routes. The results may be suggestive that, more generally, properly implemented bicycle boulevards can provide cyclists with a safer alternative to riding on arterials. PMID:22269506

  2. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  3. Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond

    CERN Document Server

    Katz, Mikhail G; 10.1007/s10670-012-9370-y

    2012-01-01

    Many historians of the calculus deny significant continuity between infinitesimal calculus of the 17th century and 20th century developments such as Robinson's theory. Robinson's hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, Robinson regards Berkeley's criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley's criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz's infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but ...

  4. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs.

  5. A Community of Scientists and Educators: The Compass Project at UC Berkeley

    Science.gov (United States)

    Roth, Nathaniel; Schwab, Josiah

    2016-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.

  6. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  7. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs

  8. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  9. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    Energy Technology Data Exchange (ETDEWEB)

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  10. Status of the Berkeley small cyclotron AMS [accelerator mass spectrometry] project

    International Nuclear Information System (INIS)

    A small, low-energy cyclotron has been designed and built at Berkeley for direct detection dating of 14C. The system combines the use of a negative ion source to reject 14N with the high resolution of a cyclotron to reject other background ions. In order to allow the dating of old and small samples, the present system incorporates a high-current external ion source and injection beamline. The system is expected to be operational by mid-1987

  11. La critique du réalisme leibnizien dans le De Motu de Berkeley.

    Directory of Open Access Journals (Sweden)

    Luc Peterschmitt

    2005-04-01

    Full Text Available L’objet de Berkeley dans le De Motu est de marquer l’autonomie de la mécanique (ou dynamique et de la métaphysique, en montrant que le concept de force tel qu’on l’utilise en mécanique ne peut servir à déterminer ce qu’il en est de la nature des choses. Pour établir cette distinction entre ces deux domaines du savoir, Berkeley à la fois s’appuie sur et critique la notion leibnizienne de force : Leibniz assure la réalité de la force dérivative (concept mécanique en la fondant sur la forme substantielle des corps, ou force primitive (concept métaphysique, qui permet d’attribuer aux corps une efficace causale. En récusant la forme substantielle comme inconcevable, Berkeley ruine alors le réalisme leibnizien, en vertu du lien posé par Leibniz lui-même entre sa métaphysique et sa dynamique. Mais du coup, cela permet à Berkeley d’instaurer un nouveau rôle à la métaphysique face à la mécanique : non plus un rôle fondateur comme celui que lui assigne Leibniz, mais un rôle critique, celui d’une instance qui dit les conditions sous lesquelles l’usage des concept est valide en science.

  12. Strategic Plan for Loss Reduction and Risk Management: University of California, Berkeley

    OpenAIRE

    Office of the Vice Provost, University of California, Berkeley; Disaster-Resistant University Steering Committee, University of California, Berkeley

    2000-01-01

    In the nearly three years since Chancellor Berdahl announced the creation of the Seismic Action plan for Facilities Enhancement and Renewal (SAFER), the UC Berkeley campus has intensified its attention to seismic safety issues. SAFER Program initiatives have changed the organizational structure, altered the landscape, and increased our understanding of the complex operational needs of the campus. This Strategic Risk Management Plan grows out of the SAFER Program, and advances its twin goals o...

  13. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    International Nuclear Information System (INIS)

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed

  14. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed.

  15. An Introduction to the 2001 Issue of the Berkeley Planning Journa

    OpenAIRE

    Dowall, David

    2001-01-01

    Planners have always been deeply interested in and concerned about the effects of technology on human settlements. There is a rich and var­ ied literature on technics and civilization, to borrow from Mumford's brilliant account ( 193 4). Whether looking at machines, autos, comput­ ers or the Internet, this literature provides a rich treasure-trove of social and historical analysis. This issue of the Berkeley Planningjournal makes a contribution to this topic by examining the effects of techno...

  16. Progress Report on the Berkeley/Anglo-Australian Observatory High-redshift Supernova Search

    Science.gov (United States)

    Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R. A.; Couch, W.; Boyle, B.

    1990-11-01

    There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring {Omega}. It is the latter that I want to discuss in this paper.

  17. The little-studied cluster Berkeley 90. II. The foreground ISM

    CERN Document Server

    Apellániz, J Maíz; Sota, A; Simón-Díaz, S

    2015-01-01

    Context: Nearly one century after their discovery, the carrier(s) of Diffuse Interstellar Bands is/are still unknown and there are few sightlines studied in detail for a large number of DIBs. Aims: We want to study the ISM sightlines towards LS III +46 11 and LS III +46 12, two early-O-type stellar systems, and LS III +46 11 B, a mid-B-type star. The three targets are located in the stellar cluster Berkeley 90 and have a high extinction. Methods: We use the multi-epoch high-S/N optical spectra presented in paper I (Ma\\'iz Apell\\'aniz et al. 2015), the extinction results derived there, and additional spectra. Results: We have measured equivalent widths, velocities, and FWHMs for a large number of absorption lines in the rich ISM spectrum in front of Berkeley 90. The absorbing ISM has at least two clouds at different velocities, one with a lower column density (thinner) in the K I lines located away from Berkeley 90 and another one with a higher column density (thicker) associated with the cluster. The first cl...

  18. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    International Nuclear Information System (INIS)

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  19. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Robert K.

    1999-07-07

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

  20. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  1. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award; scientist's work on supernovae reveals accelerating Universe

    CERN Multimedia

    2002-01-01

    Saul Perlmutter, from Lawrence Berkeley National Laboratory Physics Division and leader of the Supernova Cosmology Project based there, has won the DOE's 2002 E.O. Lawrence Award in the physics category (2 pages).

  2. Hayward Fault rate constraints at Berkeley: Evaluation of the 335-meter Strawberry Creek offset

    Science.gov (United States)

    Williams, P. L.

    2007-12-01

    At UC Berkeley the active channel of Strawberry Creek is offset 335 meters by the Hayward fault and two abandoned channels of Strawberry Creek are laterally offset 580 and 730 meters. These relationships record the displacement of the northern Hayward fault at Berkeley over a period of tens of millennia. The Strawberry Creek site has a similar geometry to the central San Andreas fault's Wallace Creek site, which arguably provides the best geological evidence of "millennial" fault kinematics in California (Sieh and Jahns, 1984). Slip rate determinations are an essential component of overall hazard evaluation for the Hayward fault, and this site is ripe to disclose a long-term form of this parameter, to contrast with geodetic and other geological rate evidence. Large offsets at the site may lower uncertainty in the rate equation relative to younger sites, as the affect of stream abandonment age, generally the greatest source of rate uncertainty, is greatly reduced. This is helpful here because it more-than-offsets uncertainties resulting from piercing projections to the fault. Strawberry Creek and its ancestral channels suggest west-side-up vertical deformation across the Hayward fault at this location. The development of the vertical deformation parameter will complement ongoing geodetic measurements, particularly InSAR, and motivate testing of other geological constraints. Up-to-the-west motion across the Hayward fault at Berkeley has important implications for the partitioning of strain and kinematics of the northern Hayward fault, and may explain anomalous up-on-the-west landforms elsewhere along the fault. For example, geological features of the western Berkeley Hills are consistent with rapid and recent uplift to the west of the fault. On the basis of a preliminary analysis of the offset channels of Strawberry Creek, up-to-the-west uplift is about 0.5mm/yr across the Hayward fault at Berkeley. If this is in fact the long-term rate, the 150 m height of the Hills

  3. Costs, Culture, and Complexity: An Analysis of Technology Enhancements in a Large Lecture Course at UC Berkeley

    OpenAIRE

    Harley, Diane; Henke, Jonathan; Lawrence, Shannon; McMartin, Flora; Maher, Michael; Gawlik, Marytza; Muller, Parisa

    2003-01-01

    As colleges and universities nationwide anticipate enrolling more than two million new students over the next decade, UC Berkeley is exploring options for serving more students, more cost effectively, in large lecture courses. This research project analyzes economic and pedagogical questions related to the use of on-line lecture and laboratory material in a large introductory chemistry course at UC Berkeley. We undertook a quasi-experimental two-year study to determine if the utilization of o...

  4. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  5. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  6. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  7. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  8. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  9. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  10. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  11. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  12. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  13. High energy nucleus--nucleus studies at the Berkeley Bevalac. [Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L.S.

    1976-09-01

    A survey of high-energy nucleus--nucleus experiments performed at the Berkeley Bevalac Facility is presented. Experimental results are divided into the general areas of peripheral and central collisions. Results on projectile and target fragmentation, total cross-section measurements, pion and photon production, and charged-particle multiplicities are stressed. Recently, there have been theoretical predictions concerning the possibility of observing new phenomena such as shock waves, pion condensates, or collapsed nuclear matter. Existing data relevant to some of these speculations are discussed. A brief discussion of future developments with high-energy nuclear beams is also presented. 27 figures, 1 table.

  14. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  15. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  16. Searching for multiple stellar populations in the massive, old open cluster Berkeley 39

    CERN Document Server

    Bragaglia, A; Carretta, E; D'Orazi, V; Sneden, C; Lucatello, S

    2012-01-01

    The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemical composition of several clusters with masses of a few 10^4 Msun to establish the lower mass limit for the multiple stellar population phenomenon. Using FLAMES@VLT spectra we determine abundances of Fe, O, Na, and several other elements (alpha, Fe-peak, and neutron-capture elements) in the old open cluster Berkeley 39. This is a massive open cluster: M~10^4 Msun, approximately at the border between small globular clusters and large open clusters. Our sample size of about 30 stars is one of the largest studied for abundances in any open cluster to date, and will be useful to determine improved cluster parameters, such as age, distance, and reddening when coupled with precise, well-calibrated photometry. We find that Berkeley 39 is slightly metal-poor, =-0.20, in ag...

  17. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  18. NGC 1817, NGC 2141, and Berkeley 81: three BOCCE clusters of intermediate age

    CERN Document Server

    Donati, P; Bragaglia, A; Cignoni, M; Tosi, M

    2013-01-01

    In this paper we analyse the evolutionary status of three open clusters: NGC 1817, NGC 2141, and Berkeley 81. They are all of intermediate age, two are located in the Galactic anti-centre direction while the third one is located in the Galactic centre direction. All of them were observed with LBC@LBT using the Bessel B, V, and I filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMDs with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC, and FST). This analysis shows that NGC 1817 has subsolar metallicity, age between 0.8 and 1.2 Gyr, reddening E(B-V) in the range 0.21 and 0.34, and distance modulus (m-M)_0 of about 10.9; NGC 2141 is older, with age in the range 1.25 and 1.9 Gyr, E(B-V) between 0.36 and 0.45, (m-M)_0 between 11.95 and 12.21, and subsolar metallicity; Berkeley~81 has metallicity about solar, with age between 0.75 and 1.0 Gyr, has reddening E(B-V)~0.90...

  19. The old anticentre open cluster Berkeley 32: membership and fundamental parameters

    CERN Document Server

    D'Orazi, V; Fabrizio, L D; Held, E V; Tosi, M

    2006-01-01

    We have obtained medium-low resolution spectroscopy and BVI CCD imaging of Berkeley 32, an old open cluster which lies in the anticentre direction. From the radial velocities of 48 stars in the cluster direction we found that 31 of them, in crucial evolutionary phases, are probable cluster members, with an average radial velocity of +106.7 (sigma = 8.5) km/s. From isochrone fitting to the colour magnitude diagrams of Berkeley 32 we have obtained an age of 6.3 Gyr, (m-M)0 = 12.48 and E(B-V) = 0.10. The best fit is obtained with Z=0.008. A consistent distance, (m-M)0 ~= 12.6 +/- 0.1, has been derived from the mean magnitude of red clump stars with confirmed membership; we may assume (m-M)0 ~= 12.55 +/- 0.1. The colour magnitude diagram of the nearby field observed to check for field stars contamination looks intriguingly similar to that of the Canis Major overdensity.

  20. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  1. U.C. Berkeley Nuclear Engineering curriculum and research enhancement. Final report for award DE-FG03-94ER-76010 and progress report for award DE-FG03-95NE-38105, February 15, 1993--September 29, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.; Peterson, P.F.

    1996-10-24

    This report discusses the progress achieved during the multi-year program for curriculum and research enhancement for the Department of Nuclear Engineering at the University of California, Berkeley. Due to its declining utility for research, six years ago the department decommissioned the TRIGA research reactor, to make the space available for an accelerator-driven rotating target neutron source for fusion studies. The DOE has traditionally supported these university reactors, in part because they provide a vital educational experience for undergraduate students in reactor operations. Thus in 1993 the department was determined to use its DOE award to replace the undergraduate education that the research reactor formerly provided with an equal or superior educational experience. As this progress report indicates, they can now make a compelling argument that the effort has been successful. Students now have the opportunity to spend a full week at the Diablo Canyon Nuclear Power Plant, after spending two weeks full time at Berkeley studying plant operations. The students spend a full day operating the plant using the full-scale simulator, spend a day each individually and in small groups with operations and engineering personnel, and by the end of the week are intimately familiar with the basics of nuclear power plant operations, at a depth that can not be achieved with a university research reactor. A primary mission for nuclear engineering departments will remain the education of the engineers who will be responsible for the safe operation of the nation`s existing nuclear power plants. In the past, university research reactors have provided a crucial element in that education. As more research reactors are decommissioned in response to evolving research needs, the program developed may serve as a useful model for other nuclear engineering departments.

  2. Environmental assessment for the recycling of slightly activated copper coil windings from the 184-Inch Cyclotron at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-02

    The proposed action is to recycle slightly activated copper that is currently stored in a warehouse leased by Lawrence Berkeley Laboratory (LBL) to a scrap metal dealer. Subsequent reutilization of the copper would be unrestricted. This document addresses the potential environmental effects of recycling and reutilizing the activated copper. In addition, the potential environmental effects of possible future uses by the dealer are addressed. Direct environmental effects from the proposed action are assessed, such as air emissions from reprocessing the activated copper, as well as indirect beneficial effects, such as averting air emissions that would result from mining and smelting an equivalent quantity of copper ore. Evaluation of the human health impacts of the proposed action focuses on the pertinent issues of radiological doses and protection of workers and the public. Five alternatives to the proposed action are considered, and their associated potential impacts are addressed. The no-action alternative is the continued storage of the activated copper at the LBL warehouse. Two recycling alternatives are considered: recycling the activated copper at the Scientific Ecology Group (SEG) facility for re-use at a DOE facility and selling or giving the activated copper to a foreign government. In addition, two disposal alternatives evaluate the impacts attributable to disposing of the activated copper either at a local sanitary landfill or at the Hanford Low-Level Waste Burial Site. The proposed project and alternatives include no new construction or development of new industry.

  3. Reactor container

    International Nuclear Information System (INIS)

    A reactor container has a suppression chamber partitioned by concrete side walls, a reactor pedestal and a diaphragm floor. A plurality of partitioning walls are disposed in circumferential direction each at an interval inside the suppression chamber, so that independent chambers in a state being divided into plurality are formed inside the suppression chamber. The partition walls are formed from the bottom portion of the suppression chamber up to the diaphragm floor to isolate pool water in a divided state. Operation platforms are formed above the suppression chamber and connected to an access port. Upon conducting maintenance, inspection or repairing, a pump is disposed in the independent chamber to transfer pool water therein to one or a plurality of other independent chambers to make it vacant. (I.N.)

  4. NEUTRONIC REACTORS

    Science.gov (United States)

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  5. Photometric study of W UMa type binaries in the old open cluster Berkeley 39

    Institute of Scientific and Technical Information of China (English)

    Kandulapati Sriram; Yellapragada Ravi Kiron; Pasagada Vivekananda Rao

    2009-01-01

    The study of W UMa binary systems gives a wealth of information about their nature as well as their parent bodies(if any).like clusters.In this paper,we present the Ⅰ passband photometric solutions of four W UMa binaries in the open cluster Berkeley 39 using the latest version of the W-D program.The result shows that two binary systems are W-subtype W UMa binary systems and the other two systems are H-subtype W UMa binary systems.No third body has been found in any of the four systems.we found a correlation between the period and mass-ratio as well as temperature and mass-ratio for the respective variables,which is similar to the relationship between mass ratio and total mass of the contact binaries as shown by van't Veer and Li et al.

  6. Studies, Transport and Treatment Concept for Boilers from Berkeley NPP, England - 13599

    International Nuclear Information System (INIS)

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. Four boilers have been processed and the fifth is planned for completion by end of December 2012.The project had many challenges including a very tight timescale and has been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the first four boilers. It is the first UK project to send large components overseas for recycling and provides new insight into the processing of Magnox gas-circuit components. (authors)

  7. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    Science.gov (United States)

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  8. Studies, Transport and Treatment Concept for Boilers from Berkeley NPP, England - 13599

    Energy Technology Data Exchange (ETDEWEB)

    Wirendal, Bo [Studsvik Nuclear AB (Sweden); Saul, David; Robinson, Joe; Davidson, Gavin [Studsvik UK Ltd (United Kingdom)

    2013-07-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. Four boilers have been processed and the fifth is planned for completion by end of December 2012.The project had many challenges including a very tight timescale and has been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the first four boilers. It is the first UK project to send large components overseas for recycling and provides new insight into the processing of Magnox gas-circuit components. (authors)

  9. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server cedrcd.lbl.gov''. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill lbl.gov) if you wish to make use of the data.

  10. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-03-12

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 89 CD-ROM diskettes (approximately 45 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access.

  11. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server ``cedrcd.lbl.gov``. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill@lbl.gov) if you wish to make use of the data.

  12. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award scientist's work on supernovae reveals accelerating universe

    CERN Multimedia

    2002-01-01

    "Saul Perlmutter, a member of Lawrence Berkeley National Laboratory's Physics Division and leader of the international Supernova Cosmology Project based there, has won the Department of Energy's 2002 E.O. Lawrence Award in the physics category" (1/2 page).

  13. Assessing Information Literacy among Undergraduates: A Discussion of the Literature and the University of California-Berkeley Assessment Experience.

    Science.gov (United States)

    Maughan, Patricia Davitt

    2001-01-01

    Since 1994, the Teaching Library at the University of California-Berkeley has conducted an ongoing Survey of Information Literacy Competencies in selected academic departments to measure the "lower-order" information literacy skills of graduating seniors. The survey reveals that students think they know more about accessing information and…

  14. Nuclear research reactors

    International Nuclear Information System (INIS)

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.)

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    A nuclear reactor is described in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assemblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters in the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters in the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance

  16. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  17. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. Reactor container

    International Nuclear Information System (INIS)

    Purpose: To prevent shocks exerted on a vent head due to pool-swell caused within a pressure suppression chamber (disposed in a torus configuration around the dry well) upon loss of coolant accident in BWR type reactors. Constitution: The following relationship is established between the volume V (m3) of a dry well and the ruptured opening area A (m2) at the boundary expected upon loss of coolant accident: V >= 30340 (m) x A Then, the volume of the dry well is made larger than the ruptured open area, that is, the steam flow rate of leaking coolants upon loss of coolant accident to decrease the pressure rise in the dry well at the initial state where loss of coolant accident is resulted. Accordingly, the pressure of non-compressive gases jetted out from the lower end of the downcomer to the pool water is decreased to suppress the pool-swell. (Ikeda, J.)

  20. Genotoxicity and antigenotoxicity assessment of shiitake (Lentinula edodes (Berkeley Pegler using the Comet assay

    Directory of Open Access Journals (Sweden)

    CK Miyaji

    2004-01-01

    Full Text Available The mushroom shiitake (Lentinula edodes (Berkeley Pegler is been widely consumed in many countries, including Brazil, because of its pleasant flavor and reports of its therapeutic properties, although there is little available information on the genotoxicity and/or antigenotoxicity of this mushroom. We used the Comet assay and HEp-2 cells to evaluate the in vitro genotoxic and antigenotoxic activity of aqueous extracts of shiitake prepared in three different concentrations (0.5, 1.0 and 1.5 mg/mL and three different temperatures (4, 22 and 60 °C, using methyl methanesulfonate (MMS as a positive control and untreated cells as a negative control. Two concentrations (1.0 and 1.5 mg/mL of extract prepared at 4 °C and all of the concentrations prepared at 22 ± 2 and 60 °C showed moderate genotoxic activity. To test the protective effect of the three concentrations of the extracts against the genotoxicity induced by methyl methanesulfonate, three protocols were used: pre-treatment, simultaneous-treatment and post-treatment. Treatments were repeated for all combinations of preparation temperature and concentration. Two extracts (22 ± 2 °C 1.0 mg/mL (simultaneous-treatment and 4 °C 0.5 mg/mL (post-treatment showed antigenotoxic activity.

  1. Berkeley Supernova Ia Program II: Initial Analysis of Spectra Obtained Near Maximum Brightness

    CERN Document Server

    Silverman, Jeffrey M; Filippenko, Alexei V

    2012-01-01

    In this second paper in a series we present measurements of spectral features of 432 low-redshift (z < 0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20 d of maximum brightness. The data were obtained from 1989 through the end of 2008 as part of the Berkeley SN Ia Program (BSNIP) and are presented in BSNIP I (Silverman et al., submitted). We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEW), spectral feature depths, and fluxes at the centre and endpoints of each of nine major spectral feature complexes. A sanity check of the consistency of our measurements is performed using our data (as well as a separate spectral dataset). We investigate how velocity and pEW evolve with time and how they correlate with each other. Various spectral classification schemes are employed and quantitative spectral differences a...

  2. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  3. Analysis, Design, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.

    2010-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and future directions for improvements. Copyright © 2010 by ASME.

  4. Design, Analysis, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.

    2012-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and the future directions for improvements. © 2012 American Society of Mechanical Engineers.

  5. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-10-01

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s).

  6. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-10-01

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s).

  7. Compte rendu de : Luc Peterschmitt, Berkeley et la chimie. Une philosophie pour la chimie au XVIIIe siècle

    Directory of Open Access Journals (Sweden)

    François Pépin

    2012-03-01

    Full Text Available Ce livre, issu d’une thèse de doctorat sur Berkeley et les sciences, constitue la première étude systématique des rapports entre Berkeley et la chimie. C’est aussi une tentative originale pour examiner la cohérence et la pertinence d’un des derniers textes de Berkeley, la Siris, souvent considérée comme un ouvrage mineur, voire comme une erreur de vieillesse. Ces deux projets novateurs se croisent, puisque c’est par la philosophie de la chimie que Luc Peterschmitt cherche à montrer l’intérêt ...

  8. Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, O., E-mail: makarov@anl.gov [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hilgart, M.; Ogata, C.; Pothineni, S. [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cork, C. [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-09-01

    GM/CA-CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  9. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

  10. Transportation Periodicals And Newsletters Currently Received At The Institute Of Transportation Studies Library, University Of California At Berkeley

    OpenAIRE

    Hernandez, Paul A.

    2000-01-01

    This publication is intended to serve as a convenient reference to selected transportation periodicals and newsletters currently (2000) received by UC Berkeley's Harmer E. Davis Transportation Li-brary. This latest version of Transportation Periodicals and Newsletters represents a thourough revision of earlier editions (1989, 1993, and 1995) published under the same (or similar) title. The subject content of this listing reflects the subject strengths of the H.E. Davis Transportation Library:...

  11. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  12. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    Science.gov (United States)

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software.

  13. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    Science.gov (United States)

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  14. Reactor Physics Training

    International Nuclear Information System (INIS)

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  15. Brief History of Herpetology in the Museum of Vertebrate Zoology, University of California, Berkeley, with a List of Type Specimens of Recent Amphibians and Reptiles

    OpenAIRE

    Rodríguez-Robles, Javier A; Good, David A; Wake, David B

    2003-01-01

    An overview of the herpetological program of the Museum of Vertebrate Zoology (MVZ), University of California, Berkeley, is presented. The history of herpetological activities in the MVZ and more generally at Berkeley is summarized. Although the MVZ has existed since 1908, until 1945 there was no formal curator for the collection of amphibians and nonavian reptiles. Since that time Robert C. Stebbins, David B. Wake, Harry W. Greene, Javier A. Rodríguez-Robles (in an interim capacity), and Cra...

  16. Safeguarding research reactors

    International Nuclear Information System (INIS)

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  17. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  18. Target Selection and Deselection at the Berkeley StructuralGenomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

    2005-03-22

    At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the

  19. Heavy ion facilities and heavy ion research at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-10-01

    Lawrence Berkeley Laboratory has been heavily involved since 1956 in the construction and adaptation of particle accelerators for the acceleration of heavy ions. At the present time it has the most extensive group of accelerators with heavy-ion capability in the United States: The SuperHILAC, the 88-Inch Cyclotron, and the Bevatron/Bevalac. An extensive heavy-ion program in nuclear and particle physics, in nuclear chemistry, and in the study of biological effects of heavy-ion irradiations has been supported in the past; and the Laboratory has a strong interest in expanding both its capabilities for heavy-ion acceleration and its participation in heavy-ion science. The first heavy-ion accelerator at LBL was the HILAC, which began operation in 1957. A vigorous program of research with ion beams of masses 4 through 40 began at that time and continued until the machine was shut down for modifications in February 1971. At that time, a grant of $3 M had been received from the AEC for a total reconstruction of the HILAC, to turn it into an upgraded accelerator, the SuperHILAC. This new machine is designed for the acceleration of all ions through uranium to an energy of 8.5 MeV/u. The SuperHILAC is equipped with two injectors. The lower energy injector, a 750-kV Cockcroft-Walton machine, was put into service in late 1972 for acceleration of ions up through {sup 40}Ar. By spring of 1973, operation of the SuperHILAC with this injector exceeded the performance of the original HILAC. The second injector, a 2.5-MV Dynamitron, was originally designed for the Omnitron project and built with $1 M of Omnitron R and D funds. Commissioning of this injector began in 1973 and proceeded to the point where nanoampere beams of krypton were available for a series of research studies in May and June. The first publishable new results with beams heavier than {sup 40}Ar were obtained at that time. Debugging and injector improvement projects will continue in FY 74.

  20. Analysis of background distributions of metals in the soil at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, David; Baskin, David; Brown, Dennis; Lund, Loren; Najita, Julie; Javandel, Iraj

    2009-03-15

    As part of its Resource Conservation and Recovery Act (RCRA) Corrective Action Program (CAP), the Lawrence Berkeley National Laboratory (LBNL) Environmental Restoration Program conducted an evaluation of naturally occurring metals in soils at the facility. The purpose of the evaluation was to provide a basis for determining if soils at specific locations contained elevated concentrations of metals relative to ambient conditions. Ambient conditions (sometimes referred to as 'local background') are defined as concentrations of metals in the vicinity of a site, but which are unaffected by site-related activities (Cal-EPA 1997). Local background concentrations of 17 metals were initially estimated by LBNL using data from 498 soil samples collected from borings made during the construction of 71 groundwater monitoring wells (LBNL 1995). These concentration values were estimated using the United States Environmental Protection Agency's (USEPA's) guidance that was available at that time (USEPA 1989). Since that time, many more soil samples were collected and analyzed for metals by the Environmental Restoration Program. In addition, the California Environmental Protection Agency (Cal-EPA) subsequently published a recommended approach for calculating background concentrations of metals at hazardous waste sites and permitted facilities (Cal-EPA 1997). This more recent approach differs from that recommended by the USEPA and used initially by LBNL (LBNL 2002). The purpose of the 2002 report was to apply the recommended Cal-EPA procedure to the expanded data set for metals that was available at LBNL. This revision to the 2002 report has been updated to include more rigorous tests of normality, revisions to the statistical methods used for some metals based on the results of the normality tests, and consideration of the depth-dependence of some sample results. As a result of these modifications, estimated background concentrations for some metals have been

  1. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  2. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  3. Reactor System Design

    International Nuclear Information System (INIS)

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  4. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  5. Fossil nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Maurette, M.

    1976-01-01

    The discussion of fossil nuclear reactors (the Oklo phenomenon) covers the earth science background, neutron-induced isotopes and reactor operating conditions, radiation-damage studies, and reactor modeling. In conclusion possible future studies are suggested and the significance of the data obtained in past studies is summarized. (JSR)

  6. Validity and Reliability of Preschool, First and Second Grade Versions of Berkeley Parenting Self-Efficacy Scale

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Tajeri

    2009-02-01

    Full Text Available "nObjective: The purpose of this study is to examine the factor structure, internal consistency, and construct validity of preschool, first and second grade versions of Berkeley Parenting self-efficacy scale. "nMethod:  The subjects were 317 mothers: (102 mothers of preschool children, 111 mothers of first grade children and 104 mothers of second grade children who were randomly selected from schools in Tehran. They completed Berkeley parenting self-efficacy and Rotter `s locus of control scales. Factor analysis using the principle component method was used to identify the factor structure of parenting self-efficacy scale. Cronbach`s alpha coefficient was used to identify the reliability of parenting self efficacy scale. "nResults: Results of this study indicated that the cronbach`s alpha coefficient was 0.84, 0.87, 0.64 for preschool, first grade and second grade versions respectively. Based on the scree test ,,factor analysis produced two factors of maternal strategy and child outcome, and it also produced the highest level of total variance explained by these 2 factors. The Parenting self-efficacy scale was negatively associated with measure of locus of control(r=-0.54 for the preschool version, -0.64 for the first grade version and -0.54 for the second grade version. "nConclusion: Due to relatively high reliability and validity of preschool, first and second grade versions of Berkeley Parenting Self-Efficacy scale, this scale could be used as a reliable and valid scale in other research areas

  7. Berkeley Supernova Ia Program I: Observations, Data Reduction, and Spectroscopic Sample of 582 Low-Redshift Type Ia Supernovae

    OpenAIRE

    Silverman, Jeffrey M.; Foley, Ryan J.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Barth, Aaron J.; Chornock, Ryan; Griffith, Christopher V.; Kong, Jason J.; Lee, Nicholas; Leonard, Douglas C.; Matheson, Thomas; Miller, Emily G.; Steele, Thea N.; Barris, Brian J.; Bloom, Joshua S.

    2012-01-01

    In this first paper in a series we present 1298 low-redshift (z\\leq0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 through 2008 as part of the Berkeley SN Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have...

  8. Nuclear reactor repairing device

    International Nuclear Information System (INIS)

    Purpose: To enable free repairing of an arbitrary position in an LMFBR reactor. Constitution: A laser light emitted from a laser oscillator installed out of a nuclear reactor is guided into a portion to be repaired in the reactor by using a reflecting mirror, thereby welding or cutting it. The guidance of the laser out of the reactor into the reactor is performed by an extension tube depending into a through hole of a rotary plug, and the guidance of the laser light into a portion to be repaired is performed by the transmitting and condensing action of the reflecting mirror. (Kamimura, M.)

  9. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  10. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  11. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  12. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  13. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  14. Multipurpose research reactors

    International Nuclear Information System (INIS)

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  15. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  16. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  17. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  18. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  19. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Peterson, Per [Univ. of California, Berkeley, CA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  20. Renewal of safety circuitry on a zero-energy research reactor using microprocessor units

    International Nuclear Information System (INIS)

    The conventional hard-wired safety-circuitry of the zero-energy research reactor at the Central Electricity Generating Board's Berkeley Nuclear Laboratories is being replaced by microprocessor-based units. The Paper describes how levels of reliability that are necessary for safety circuitry have been achieved by the use of two entirely different guard line systems based on a Motorola 6800 microprocessor and an Intel 8085A microprocessor. The two systems operate in parallel and either will trip the reactor. Each has been programmed by a different programmer using different philosophies. The two units and the test programme involving over 106 simulated guard line trips are described. An overall reliability of better than 10-6 per annum is claimed. (author)

  1. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  2. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects.

  3. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects

  4. One piece reactor removal

    International Nuclear Information System (INIS)

    Japan Research Reactor No.3 (JRR-3) was the first reactor consisting of 'Japanese-made' components alone except for fuel and heavy water. After reaching its initial critical state in September 1962, JRR-3 had been in operation for 21 years until March 1983. It was decided that the reactor be removed en-bloc in view of the work schedule, cost and management of the reactor following the removal. In the special method developed jointly by the Japanese Atomic Energy Research Institute and Shimizu Construction Co., Ltd., the reactor main unit was cut off from the building by continuous core boring, with its major components bound in the block with biological shield material (heavy concrete), and then conveyed and stored in a large waste store building constructed near the reactor building. Major work processes described in this report include the cutting off, lifting, horizontal conveyance and lowering of the reactor main unit. The removal of the JRR-3 reactor main unit was successfully carried out safely and quickly by the en-block removal method with radiation exposure dose of the workers being kept at a minimum. Thus the high performance of the en-bloc removal method was demonstrated and, in addition, valuable knowhow and other data were obtained from the work. (Nogami, K.)

  5. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  6. Light water reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  7. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 1014 n/cm2/sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  8. TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  9. Mirror reactor surface study

    International Nuclear Information System (INIS)

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  10. Iris reactor conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V. [Westinghouse Electric Comp., Pittsburgh, PA (United States); Galvin, M.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Lombardi, C.V.; Maldari, F.; Ricotti, M.E. [Politecnico di Milano, Milan (Italy); Cinotti, L. [Ansaldo SpA, Genoa (Italy)

    2001-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  11. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  12. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  13. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  14. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  15. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  16. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  17. A Tale of Three Campuses: Planning and Design in Response to the Cultural Heritages at Mills College, the University of California, Berkeley, and Stanford University

    Science.gov (United States)

    Fiene, Karen; Sabbatini, Robert

    2011-01-01

    How do forward-looking institutions with rich landscape and architectural heritages integrate contemporary programming and design? This article explores the evolution of the Mills College campus and compares it with two larger western universities: the University of California, Berkeley (UCB) and Leland Stanford, Jr., University (Stanford…

  18. Assessing Young Children's Views of Their Academic, Social, and Emotional Lives: An Evaluation of the Self-Perception Scales of the Berkeley Puppet Interview.

    Science.gov (United States)

    Measelle, Jeffrey R.; Ablow, Jennifer C.; Cowan, Philip A.; Cowan, Carolyn P.

    1998-01-01

    Examined psychometric properties of self-perception scales of the Berkeley Puppet Interview (BPI) with children at preschool, kindergarten, and first grade. Found that young children have a multidimensional self-concept that can be reliably measured. The BPI was sensitive to normative change and individual differences. Support for validity was…

  19. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  20. Safety of research reactors

    International Nuclear Information System (INIS)

    The number of research reactors that have been constructed worldwide for civilian applications is about 651. Of the reactors constructed, 284 are currently in operation, 258 are shut down and 109 have been decommissioned. More than half of all operating research reactors worldwide are over thirty years old. During this long period of time national priorities have changed. Facility ageing, if not properly managed, has a natural degrading effect. Many research reactors face concerns with the obsolescence of equipment, lack of experimental programmes, lack of funding for operation and maintenance and loss of expertise through ageing and retirement of the staff. Other reactors of the same vintage maintain effective ageing management programmes, conduct active research programmes, develop and retain high calibre personnel and make important contributions to society. Many countries that operate research reactors neither operate nor plan to operate power reactors. In most of these countries there is a tendency not to create a formal regulatory body. A safety committee, not always independent of the operating organization, may be responsible for regulatory oversight. Even in countries with nuclear power plants, a regulatory regime differing from the one used for the power plants may exist. Concern is therefore focused on one tail of a continuous spectrum of operational performance. The IAEA has been sending missions to review the safety of research reactors in Member States since 1972. Some of the reviews have been conducted pursuant to the IAEA' functions and responsibilities regarding research reactors that are operated within the framework of Project and Supply Agreements between Member States and the IAEA. Other reviews have been conducted upon request. All these reviews are conducted following procedures for Integrated Safety Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety

  1. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    International Nuclear Information System (INIS)

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR concept, and it

  2. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  3. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  4. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  5. Test reactor technology

    International Nuclear Information System (INIS)

    The Reactor Development Program created a need for engineering testing of fuels and materials. The Engineering Test Reactors were developed around the world in response to this demand. The design of the test reactors proved to be different from that of power reactors, carrying the fuel elements closer to the threshold of failure, requiring more responsive instrumentation, more rapid control element action, and inherent self-limiting behavior under accident conditions. The design of the experimental facilities to exploit these reactors evolved a new, specialized, branch of engineering, requiring a very high-lvel scientific and engineering team, established a meticulous concern with reliability, the provision for recovery from their own failures, and detailed attention to possible interactions with the test reactors. This paper presents this technology commencing with the Materials Testing Reactor (MTR) through the Fast Flux Test Facility, some of the unique experimental facilities developed to exploit them, but discusses only cursorily the experiments performed, since sample preparation and sample analyses were, and to some extent still are, either classified or proprietary. The Nuclear Engineering literature is filled with this information

  6. An Economic Analysis of Generation IV Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J S; Lamont, A D; Rothwell, G S; Smith, C F; Greenspan, E; Brown, N; Barak, A

    2002-03-01

    This report examines some conditions necessary for Generation IV Small Modular Reactors (SMRs) to be competitive in the world energy market. The key areas that make nuclear reactors an attractive choice for investors are reviewed, and a cost model based on the ideal conditions is developed. Recommendations are then made based on the output of the cost model and on conditions and tactics that have proven successful in other industries. The Encapsulated Nuclear Heat Source (ENHS), a specific SMR design concept, is used to develop the cost model and complete the analysis because information about the ENHS design is readily available from the University of California at Berkeley Nuclear Engineering Department. However, the cost model can be used to analyze any of the current SMR designs being considered. On the basis of our analysis, we determined that the nuclear power industry can benefit from and SMRs can become competitive in the world energy market if a combination of standardization and simplification of orders, configuration, and production are implemented. This would require wholesale changes in the way SMRs are produced, manufactured and regulated, but nothing that other industries have not implemented and proven successful.

  7. A geografia histórico-cultural da Escola de Berkeley: um precursor ao surgimento da História Ambiental The Berkeley School's cultural-historical Geography: a precursor to Environmental History's emergence

    Directory of Open Access Journals (Sweden)

    Kent Mathewson

    2008-06-01

    Full Text Available No decorrer das últimas três décadas, a história ambiental se tornou um subcampo reconhecido com seus próprios clássicos, um grande número de monografias notáveis, um fluxo contínuo de artigos publicados e mais do que mil pesquisadores ativos em vários continentes, incluindo uma comunidade crescente na América Latina. Um olhar para além dos limites disciplinares da história mostra que há também outras tradições que se enquadram perfeitamente na temática. A geografia histórico-cultural da Escola de Berkeley sob a égide de Carl Sauer talvez seja uma dessas perspectivas alternativas conhecidas. Muitos estudos de Sauer, seus alunos e colaboradores podem ser considerados pesquisas em história ambiental; muitas delas se baseiam em matérias sobre a América Latina. Neste artigo, procuramos traçar o desenvolvimento dessa corrente alternativa para a história ambiental que se iniciou com a tese de doutoramento de Carl Sauer em 1915 e se consolidou nos anos 50, tendo sua continuidade no presente através dos trabalhos de diversos geógrafos.Over the past three decades environmental history has become a recognized subfield, with a cannon of classics, many dozens of distinguished monographs, a steady flow of published articles, and more than one thousand active practitioners on several continents, including a growing cohort in Latin America. If one looks beyond history's disciplinary bounds, one finds other traditions that equally fit perfectly into the array of environmental history. Perhaps the broadest and deepest current is represented by Carl Sauer's Berkeley School of cultural-historical geography. Much of the work of Sauer, his students, and his associates, can be considered environmental history. Moreover, much of it is based on Latin American materials. In this paper, we trace the development of an alternative current within environmental history - one that began with Carl Sauer's doctoral dissertation in 1915, became well

  8. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  9. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  10. Licensed operating reactors

    International Nuclear Information System (INIS)

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  11. nuclear reactor design calculations

    International Nuclear Information System (INIS)

    In this work , the sensitivity of different reactor calculation methods, and the effect of different assumptions and/or approximation are evaluated . A new concept named error map is developed to determine the relative importance of different factors affecting the accuracy of calculations. To achieve this goal a generalized, multigroup, multi dimension code UAR-DEPLETION is developed to calculate the spatial distribution of neutron flux, effective multiplication factor and the spatial composition of a reactor core for a period of time and for specified reactor operating conditions. The code also investigates the fuel management strategies and policies for the entire fuel cycle to meet the constraints of material and operating limitations

  12. Course on reactor physics

    International Nuclear Information System (INIS)

    In Germany only few students graduate in nuclear technology, therefore the NPP operating companies are forced to develop their own education and training concepts. AREVA NP has started together with the Technical University of Dresden a one-week course ''reactor physics'' that includes the know-how of the nuclear power plant construction company. The Technical University of Dresden has the training reactor AKR-2 that is retrofitted by modern digital instrumentation and control technology that allows the practical training of reactor control.

  13. PWR type reactor

    International Nuclear Information System (INIS)

    From a PWR with a primary circuit, consisting of a reactor pressure vessel, a steam generator and a reactor coolant pump, hot coolant is removed by means of an auxiliary system containing h.p. pumps for feeding water into the primary circuit and being connected with a pipe, originating at the upper part, which has got at least one isolating value. This is done by opening an outlet in a part of the auxiliary system that has got a lower pressure than the reactor vessel. Preferably a water jet pump is used for mixing with the water of the auxiliary system. (orig.)

  14. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  15. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  16. NEUTRONIC REACTOR FUEL COMPOSITION

    Science.gov (United States)

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  17. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  18. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  19. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  20. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  1. Experience with Kamini reactor

    International Nuclear Information System (INIS)

    Kamini is a 233U fuelled, 30 kW(th) research reactor. It is one of the best neutron source facility with a core average flux of 1012 n/cm2/s in IGCAR used for neutron radiography of active and nonradioactive objects, activation analysis and radiation physics research. The core consists of nine plate type fuel elements with a total fuel inventory of 590 g of 233U. Two safety control plates made of cadmium are used for start up and shutdown of the reactor. Three beam tubes, two-thimble irradiation site outside reflector and one irradiation site nearer to the core constitute the testing facilities of Kamini. Kamini attained first criticality on 29th October 96 and nominal power of 30 kW in September 1997. This paper covers the design features of the reactor, irradiation facilities and their utilities and operating experience of the reactor. (author)

  2. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  3. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  4. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  5. Special lecture on nuclear reactor

    International Nuclear Information System (INIS)

    This book gives a special lecture on nuclear reactor, which is divided into two parts. The first part has explanation on nuclear design of nuclear reactor and analysis of core with theories of integral transports, diffusion Nodal, transports Nodal and Monte Carlo skill parallel computer and nuclear calculation and speciality of transmutation reactor. The second part deals with speciality of nuclear reactor and control with nonlinear stabilization of nuclear reactor, nonlinear control of nuclear reactor, neural network and control of nuclear reactor, control theory of observer and analysis method of Adomian.

  6. Thermal-hydraulic analysis for the lead-bismuth eutectic cooled reactor. System analysis by MSG-COPD code

    International Nuclear Information System (INIS)

    The feasibility study for fast breeder reactors (FBRs) including related nuclear fuel cycle systems has been started from the 1999 fiscal year by Japan Nuclear Cycle Development Institute (JNC). Phase 1 studies were finished at the end of March, 2000. Various options of FBRs plant systems was studied and concept of Lead-Bismuth Eutectic (LBE) cooled FBRs have been selected as one of these options. In the United States, the LBE cooled reactor has been examined by Generation IV. Plant dynamics analyses on 2 type of LBE-cooled reactors, forced circulation type which designed by JNC and natural circulation type which was designed by University of California, Berkeley, have been performed to understand the basic thermal-hydraulic characteristics of the reactors. As a result of the analysis on JNC forced circulation reactor, it has been clarified that hot coolant remains in the upper plenum by the thermal stratification in case of a manual trip condition. And the characteristics of pump coast down influences core exit high-temperature in case of a loss of power condition. In addition, as a result of analysis on the natural circulation reactor, the flow-redistribution effect in ductless core channels by the buoyancy force has been evaluated for a candidate duct core channels. (author)

  7. Jet-Stirred Reactors

    OpenAIRE

    Herbinet, Olivier; Guillaume, Dayma

    2013-01-01

    The jet-stirred reactor is a type of ideal continuously stirred-tank reactor which is well suited for gas phase kinetic studies. It is mainly used to study the oxidation and the pyrolysis of hydrocarbon and oxygenated fuels. These studies consist in recording the evolution of the conversion of the reactants and of the mole fractions of reaction products as a function of different parameters such as reaction temperature, residence time, pressure and composition of the inlet gas. Gas chromatogr...

  8. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  9. OECD Halden reactor project

    International Nuclear Information System (INIS)

    This report summarizes the activities of the OECD Halden Reactor Project for the year 1976. The main items reported on are: a) the process supervision and control which have focused on core monitoring and control, and operator-process communication; b) the fuel performance and safety behavior which have provided data and analytical descriptions of the thermal, mechanical and chemical behavior of fuel under various operating conditions; c) the reactor operations and d) the administration and finance

  10. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  11. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  12. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  13. BWR type nuclear reactor

    International Nuclear Information System (INIS)

    Purpose: To simplify the structure of an emergency core cooling system while suppressing the flow out of coolants upon rapture accidents in a coolant recycling device of BWR type reactors. Constitution: Recirculation pumps are located at a position higher than the reactor core in a pressure vessel, and the lower plenum is bisected vertically by a partition plate. Further, a gas-liquid separator is surrounded with a wall and the water level at the outer side of the wall is made higher than the water level in the inside of the wall. In this structure, coolants are introduced from the upper chamber in the lower plenum into the reactor core, and the steams generated in the reactor core are separated in the gas-liquid separator, whereby the separated liquid is introduced as coolants by way of the inner chamber into the lower chamber of the lower plenum and further sent by way of the outer chamber into the reactor core. Consequently, idle rotation of the recycling pumps due to the flow-in of saturated water is prevented and loss of coolants in the reactor core can also be prevented upon raptures in the pipeway and the driving section of the pump connected to the pressure vessel and in the bottom of the pressure vessel. (Horiuchi, T.)

  14. OECD Halden reactor project

    International Nuclear Information System (INIS)

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  15. Advanced Test Reactor National Scientific User Facility Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

  16. Berkeley Supernova Ia Program I: Observations, Data Reduction, and Spectroscopic Sample of 582 Low-Redshift Type Ia Supernovae

    CERN Document Server

    Silverman, Jeffrey M; Filippenko, Alexei V; Ganeshalingam, Mohan; Barth, Aaron J; Chornock, Ryan; Griffith, Christopher V; Kong, Jason J; Lee, Nicholas; Leonard, Douglas C; Matheson, Thomas; Miller, Emily G; Steele, Thea N; Barris, Brian J; Bloom, Joshua S; Cobb, Bethany E; Coil, Alison L; Desroches, Louis-Benoit; Gates, Elinor L; Ho, Luis C; Jha, Saurabh W; Kandrashoff, Michael T; Li, Weidong; Mandel, Kaisey S; Modjaz, Maryam; Moore, Matthew R; Mostardi, Robin E; Papenkova, Marina S; Park, Sung; Perley, Daniel A; Poznanski, Dovi; Reuter, Cassie A; Scala, James; Serduke, Franklin J D; Shields, Joseph C; Swift, Brandon J; Tonry, John L; Van Dyk, Schuyler D; Wang, Xiaofeng; Wong, Diane S

    2012-01-01

    In this first paper in a series we present 1298 low-redshift (z < 0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 through 2008 as part of the Berkeley SN Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10,400 Ang., roughly twice as wide as spectra from most previously published datasets. We present our observing and reduction procedures, and we describe the resulting SN Database (SNDB), which will be an online, public, searchable database containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilizing our newly constructed set of SNID ...

  17. Reactor physics and economic aspects of the CANDU reactor system

    International Nuclear Information System (INIS)

    A history of the development of the CANDU system is given along with a fairly detailed description of the 600 MW(e) CANDU reactor. Reactor physics calculation methods are described, as well as comparisons between calculated reactor physics parameters and those measured in research and power reactors. An examination of the economics of CANDU in the Ontario Hydro system and a comparison between fossil fuelled and light water reactors is presented. Some physics, economics and resources aspects are given for both low enriched uranium and thorium-fuelled CANDU reactors. Finally the RβD program in Advanced Fuel Cycles is briefly described

  18. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  19. Fast breeder reactor research

    International Nuclear Information System (INIS)

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  20. DISCURSO E VERDADE: SEIS CONFERÊNCIAS DADAS POR MICHEL FOUCAULT, EM BERKELEY, ENTRE OUTUBRO E NOVEMBRO DE 1983, SOBRE A PARRHESIA - APRESENTAÇÃO

    Directory of Open Access Journals (Sweden)

    Os Editores da Prometeus

    2013-10-01

    Full Text Available O presente trabalho é a tradução, produzida pela equipe de tradutores daPrometeus, de O Discurso e a Verdade: a problematização da parrhesia, seisconferências de Michel Foucault proferidas em inglês na Universidade daCalifórnia, em Berkeley, entre outubro e novembro de 1983. A transcrição que nosserviu de base para a tradução foi editada em inglês em 1985 por Joseph Pearson ecompilada a partir das gravações das conferências, disponíveis para download no sítiodo Media Resources Center da Moffitt Library (UC Berkeley1. Essa transcrição foireeditada em 1999 por www.repb.net.

  1. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3He, 6Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  2. ERDA summer study of heavy ions for inertial fusion, Oakland/Berkeley, California, July 19--30, 1976. Final report

    International Nuclear Information System (INIS)

    Technical summaries are given for the following areas: (1) target and reactor design, (2) ion sources, (3) low-velocity acceleration, (4) atomic and molecular physics, (5) accelerator parameters, (6) beam manipulations, (7) induction linac, (8) final focusing and transmission to the target, (9) systems and cost studies, and (10) alternatives. Several groups of appendices are given that relate to these technical summaries

  3. ERDA summer study of heavy ions for inertial fusion, Oakland/Berkeley, California, July 19--30, 1976. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bangerter, R.O.; Herrmannsfeldt, W.B.; Judd, D.L.; Smith, L.

    1976-12-01

    Technical summaries are given for the following areas: (1) target and reactor design, (2) ion sources, (3) low-velocity acceleration, (4) atomic and molecular physics, (5) accelerator parameters, (6) beam manipulations, (7) induction linac, (8) final focusing and transmission to the target, (9) systems and cost studies, and (10) alternatives. Several groups of appendices are given that relate to these technical summaries. (MOW)

  4. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  5. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi; Iida, Masaaki; Moriki, Yasuyuki

    1994-10-18

    A reactor core is divided into a plurality of coolants flowrate regions, and electromagnetic pumps exclusively used for each of the flowrate regions are disposed to distribute coolants flowrates in the reactor core. Further, the flowrate of each of the electromagnetic pumps is automatically controlled depending on signals from a temperature detector disposed at the exit of the reactor core, so that the flowrate of the region can be controlled optimally depending on the burning of reactor core fuels. Then, the electromagnetic pumps disposed for every divided region are controlled respectively, so that the coolants flowrate distribution suitable to each of the regions can be attained. Margin for fuel design is decreased, fuels are used effectively, as well as an operation efficiency can be improved. Moreover, since the electromagnetic pump has less flow resistance compared with a mechanical type pump, and flow resistance of the reactor core flowrate control mechanism is eliminated, greater circulating flowrate can be ensured after occurrence of accident in a natural convection using a buoyancy of coolants utilizable for after-heat removal as a driving force. (N.H.).

  6. Reactor coolant cleanup facility

    International Nuclear Information System (INIS)

    A depressurization device is disposed in pipelines upstream of recycling pumps of a reactor coolant cleanup facility to reduce a pressure between the pressurization device and the recycling pump at the downstream, thereby enabling high pressure coolant injection from other systems by way of the recycling pumps. Upon emergency, the recycling pumps of the coolant cleanup facility can be used in common to an emergency reactor core cooling facility and a reactor shutdown facility. Since existent pumps of the emergency reactor core cooling facility and the reactor shutdown facility which are usually in a stand-by state can be removed, operation confirmation test and maintenance for equipments in both of facilities can be saved, so that maintenance and reliability of the plant are improved and burdens on operators can also be mitigated. Moreover, low pressure design can be adopted for a non-regenerative heat exchanger and recycling coolant pumps, which enables to improve the reliability and economical property due to reduction of possibility of leakage. (N.H.)

  7. EBT reactor analysis

    International Nuclear Information System (INIS)

    This report summarizes the results of a recent ELMO Bumpy Torus (EBT) reactor study that includes ring and core plasma properties with consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. Within this operating window, physics and engineering systems analysis and cost sensitivity studies indicate that reactors with approx. 6 to 10%, P approx. 1200 to 1700 MW(e), wall loading approx. 1.0 to 2.5 MW/m2, and recirculating power fraction (including ring-sustaining power and all other reactors auxiliaries) approx. 10 to 15% are possible. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters. These include, but are not limited to, the use of: (1) supplementary coils or noncircular mirror coils to improve magnetic geometry and reduce size, (2) energetic ion rings to improve ring power requirements, (3) positive potential to enhance confinement and reduce size, and (4) profile control to improve stability and overall fusion power density

  8. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  9. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS [Lawrence Berkeley Laboratory Advanced Light Source] Booster Dipole Magnets

    International Nuclear Information System (INIS)

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs

  10. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  11. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  12. Methanation assembly using multiple reactors

    Science.gov (United States)

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  13. MINT research reactor safety program

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad Idris bin Taib [Division of Special Project, Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    2000-11-01

    Malaysian Institute for Nuclear Technology Research (MINT) Research Reactor Safety Program has been done along with Reactor Power Upgrading Project, Reactor Safety Upgrading Project and Development of Expert System for On-Line Nuclear Process Control Project. From 1993 up to date, Neutronic and Thermal-hydraulics analysis, Probabilistic Safety Assessment as well as installation of New 2 MW Secondary Cooling System were done. Installations of New Reactor Building Ventilation System, Reactor Monitoring System, Updating of Safety Analysis Report and Upgrading Primary Cooling System are in progress. For future activities, Reactor Modeling will be included to add present activities. (author)

  14. AN INTRODUCTION TO EXPLORING LAW, DISABILITY, AND THE CHALLENGE OF EQUALITY IN CANADA AND THE UNITED STATES: PAPERS FROM THE BERKELEY SYMPOSIUM

    Directory of Open Access Journals (Sweden)

    Laverne Jacobs

    2015-10-01

    Full Text Available It brings me great pleasure to write this Introduction to Exploring Law, Disability, and the Challenge of Equality in Canada and the United States. This special collection of articles in the Windsor Yearbook of Access to Justice [WYAJ] stems from a symposium of the same name held at the Berkeley Law School at the University of California on 5 December 2014. Writing this introduction allows me to bring together my identities as a law and disability scholar, the principal organizer and convener of the Berkeley Symposium, and editor-in-chief of the WYAJ. In these roles, I have had the opportunity to engage with this set of articles and their authors in a distinct way – from the early versions of these articles through to the final peer-reviewed publications. The Berkeley Symposium is the first conference, of which we are aware, to bring together scholars and experts from both Canada and the United States to present research and exchange ideas on equality issues affecting persons with disabilities in both countries.1 Each academic was invited to write about an equality issue of their choice that is of contemporary concern to persons with disabilities, and to focus on Canada, the United States,or both, at their  option. The result is a set of articles that is simultaneously introspective and comparative.

  15. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  16. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  17. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  18. Licensed operating reactors

    International Nuclear Information System (INIS)

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  19. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  20. Reactor safety equipments

    International Nuclear Information System (INIS)

    Purpose: To positively recover radioactive substances discharged in a dry well at the time of failure of a reactor. Constitution: In addition to the emergency gas treating system fitted to a reactor building, a purification system connected through a pipeline to the dry well is arranged in the reactor building. This purification system is connected through pipes fitted to the dry well to forced circulation device, heat exchanger, and purification device. The atmosphere of high pressure steam gases in the dry well is derived to the heat exchanger for cooling, and then radioactive substances which are contained in the gases are removed by filter sets charged with the HEPA filters and the HECA filters. At last, there gases are returned to dry well by circulation pump, repeat this process. (Kamimura, M.)

  1. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  2. Welding and reactor safety

    International Nuclear Information System (INIS)

    The high safety requirements which must be demanded of the quality of the welded joints in reactor technique have so far not been fulfilled in all cases. The errors occuring have caused considerable loss of availability and high material costs. They were not, however, so serious that one need have feared any immediate danger to the personnel or to the environment. The safety devices of reactor plants were only called upon in a few cases and to these they responded perfectly. The intensive efforts to complete and improve the specifications are to contribute to that in future, the reactor plants can be counted even more so as one of the safest technical plants ever. (orig./LH)

  3. Backfitting swimming pool reactors

    International Nuclear Information System (INIS)

    Calculations based on measurements in a critical assembly, and experiments to disclose fuel element surface temperatures in case of accidents like stopping of primary coolant flow during full power operation, have shown that the power of the swimming pool type research reactor FRG-2 (15 MW, operating since 1967) might be raised to 21 MW within the present rules of science and technology, without major alterations of the pool buildings and the cooling systems. A backfitting program is carried through to adjust the reactor control systems of FRG-2 and FRG-1 (5 MW, housed in the same reactor hall) to the present safety rules and recommendations, to ensure FRG-2 operation at 21 MW for the next decade. (author)

  4. Reactor operation experience

    International Nuclear Information System (INIS)

    Since the TRIGA Users Conference in Helsinki 1970 the TRIGA reactor Vienna was in operation without any larger undesired shutdown. The integrated thermal power production by August 15 1972 accumulated to 110 MWd. The TRIGA reactor is manly used for training of students, for scientific courses and research work. Cooperation with industry increased in the last two years either in form of research or in performing training courses. Close cooperation is also maintained with the IAEA, samples are irradiated and courses on various fields are arranged. Maintenance work was performed on the heat exchanger and to replace the shim rod magnet. With the view on the future power upgrading nine fuel elements type 110 have been ordered recently. Experiments, performed currently on the reactor are presented in details

  5. The MNSR reactor

    International Nuclear Information System (INIS)

    This tank-in-pool reactor is based on the same design concept as the Canadian Slowpoke. The core is a right circular cylinder, 24 cm diameter by 25 cm long, containing 411 fuel pin positions. The pins are HEU-Aluminium alloy, 0.5 cm in diameter. Critical mass is about 900 g. The reactor has a single cadmium control rod. The back-up shutdown system is the insertion of a cadmium capsule in a core position. Excess reactivity is limited to 3.5mk. In both the MNSR and Slowpoke, the insertion of the maximum excess reactivity results in a power transient limited by the coolant/moderator temperature to safe values, independent of any operator action. This reactor is used primarily in training and neutron activation analysis. Up to 64 elements have been analyzed in a great variety of different disciplines. (author)

  6. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  7. Fusion reactor materials

    International Nuclear Information System (INIS)

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  8. Safety systems of heavy water reactors and small power reactors

    International Nuclear Information System (INIS)

    After introductional descriptions of heavy water reactors and natural circulation boiling water reactors the safety philosophy and safety systems like ECCS, residual heat removal, protection systems etc., are described. (RW)

  9. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  10. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  11. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  12. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  13. Diagnostics for hybrid reactors

    International Nuclear Information System (INIS)

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  14. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  15. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  16. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  17. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  18. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  19. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  20. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  1. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  2. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  3. Out-of-band exposure characterization with the SEMATECH Berkeley 0.3-NA microfield exposure tool

    Energy Technology Data Exchange (ETDEWEB)

    George, Simi A.; Nauleau, Patrick; Rekawa, Senajith; Gullikson, Eric; Kemp, Charles D.

    2009-02-23

    For the commercialization of extreme ultraviolet lithography (EUVL), discharge or laser produced, pulsed plasma light sources are being considered. These sources are known to emit into a broad range of wavelengths that are collectively referred to as the out-of-band (OOB) radiation by lithographers. Multilayer EUV optics reflect OOB radiation emitted by the EUV sources onto the wafer plane resulting in unwanted background exposure of the resist (flare) and reduced image contrast. The reflectivity of multilayer optics at the target wavelength of 13.5 nm is comparable to that of their reflectivity in the deep ultraviolet (DUV) and UV regions from 100-350 nm. The aromatic molecular backbones of many of the resists used for EUV are equally absorptive at specific DUV wavelengths as well. In order to study the effect of these wavelengths on imaging performance in a real system, we are in the process of integrating a DUV source into the SEMATECH Berkeley 0.3-NA Microfield Exposure Tool (MET). The MET plays an active role in advanced research in resist and mask development for EUVL and as such, we will utilize this system to systematically evaluate the imaging impact of DUV wavelengths in a EUV system. In this paper, we present the optical design for the new DUV component and the simulation-based imaging results predicting the potential impact of OOB based on known resist, mask, and multilayer conditions. It should be noted that because the projection optics work equally well as imaging optics at DUV wavelengths, the OOB radiation cannot be treated simply as uniform background or DC flare.

  4. Spent fuel working group report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities

    International Nuclear Information System (INIS)

    Each Site Team, consisting of M ampersand O contractor and Operations Office personnel, performed data collection and identified ES ampersand H concerns relative to RINM storage by preparing responses to the detailed question set for each storage facility at the site. These responses formed the basis for the Site Team reports. These reports are contained in this volume and are from the following facilities: Hanford Site, Idaho National Engineering Laboratory Site, Savannah River Site, Oak Ridge Site, West Valley Demonstration Project Site, Los Alamos National Laboratory, Brookhaven National Laboratory, Sandia National Laboratories, General Atomics, San Diego, Babcock ampersand Wilcox, Lynchburg Technical Center, Argonne National Laboratory - East, Naval Reactors Facilities, Rocky Flats Critical Mass Laboratory, EG ampersand G Mound Applied Technologies, Ohio, Lawrence Berkeley Laboratory, and Battelle Columbus Laboratory. This volume also contains information received from the sites that were not visited. These sites include the Naval Reactor Facility at the INEL, EG ampersand G Mound Applied Technologies, The Catholic University of America, Rocky Flats Site, Lawrence Livermore National Laboratory, Stanford Linear Accelerator Laboratory, Energy Technology Engineering Center, and Lawrence Berkeley Laboratory. Information received through the Chicago Operations Office for University Reactors, Massachusetts Institute of Technology, and Battelle Columbus Laboratory is also included. Materials contained in this volume consist of information, data and site documents. They are unedited

  5. Risk prevention during reactor shutdown

    International Nuclear Information System (INIS)

    During reactor shutdown potential risks are issued of a number of maintenance operations. In this text we analyse these operations and give the modifications of technical specifications to ameliorate the reactor safety. 4 figs

  6. Power calibrations for TRIGA reactors

    International Nuclear Information System (INIS)

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than ± 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to ± 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  7. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  8. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  9. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  10. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  11. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  12. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  13. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  14. Thermal Reactor Safety

    International Nuclear Information System (INIS)

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods

  15. NEUTRONIC REACTOR FUEL ELEMENT

    Science.gov (United States)

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  16. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  17. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  18. Pressure tube type reactor

    International Nuclear Information System (INIS)

    Heretofore, a pressure tube type reactor has a problem in that the evaluation for the reactor core performance is complicate and no sufficient consideration is made for the economical property, to increase the size of a calandria tank and make the cost expensive. Then, in the present invention, the inner diameter of a pressure tube is set to greater than 50% of the lattice gap in a square lattice like arrangement, and the difference between the inner and the outer diameters of the calandria tube is set smaller than 20% of the lattice gap. Further, the inner diameter of the pressure tube is set to greater than 40% and the difference between the inner and the outer diameters of the calandria tube is set smaller than 30% of the lattice gap in a triangle lattice arrangement. Then, heavy water-to-fuel volume ratio can be determined appropriately and the value for the coolant void coefficient is made more negative side, to improve the self controllability inherent to the reactor. In particular, when 72 to 90 fuel rods are arranged per one pressure tube, the power density per one fuel rod is can be increased by about twice. Accordingly, the number of the pressure tubes can be reduced about to one-half, thereby enabling to remarkably decrease the diameter of the reactor core and to reduce the size of the calandria, which is economical. (N.H.)

  19. Fusion reactor materials

    International Nuclear Information System (INIS)

    At the Belgian Nuclear Research Centre SCK-CEN, activities related to fusion focus on environmental tolerance of opto-electronic components. The objective of this program is to contribute to the knowledge on the behaviour, during and after neutron irradiation, of fusion-reactor materials and components. The main scientific activities for 1997 are summarized

  20. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  1. Nuclear reactor building

    Science.gov (United States)

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  2. Studies on reactor physics

    International Nuclear Information System (INIS)

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  3. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude

  4. Cermet fuel reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  5. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  6. The Chernobyl reactor accident

    International Nuclear Information System (INIS)

    The documentation abstracted contains a complete survey of the broadcasts transmitted by the Russian wire service of the Deutsche Welle radio station between April 28 and Mai 15, 1986 on the occasion of the Chernobyl reactor accident. Access is given to extracts of the remarkable eastern and western echoes on the broadcasts of the Deutsche Welle. (HP)

  7. SRP reactor safety evolution

    International Nuclear Information System (INIS)

    The Savannah River Plant reactors have operated for over 100 reactor years without an incident of significant consequence to on or off-site personnel. The reactor safety posture incorporates a conservative, failure-tolerant design; extensive administrative controls carried out through detailed operating and emergency written procedures; and multiple engineered safety systems backed by comprehensive safety analyses, adapting through the years as operating experience, changes in reactor operational modes, equipment modernization, and experience in the nuclear power industry suggested. Independent technical reviews and audits as well as a strong organizational structure also contribute to the defense-in-depth safety posture. A complete review of safety history would discuss all of the above contributors and the interplay of roles. This report, however, is limited to evolution of the engineered safety features and some of the supporting analyses. The discussion of safety history is divided into finite periods of operating history for preservation of historical perspective and ease of understanding by the reader. Programs in progress are also included. The accident at Three Mile Island was assessed for its safety implications to SRP operation. Resulting recommendations and their current status are discussed separately at the end of the report. 16 refs., 3 figs

  8. Fusion reactor materials

    International Nuclear Information System (INIS)

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  9. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  10. Department of reactor technology

    International Nuclear Information System (INIS)

    The activities of the Department of Reactor Technology at Risoe during 1980 are described. The work is presented in three chapters: General Information on the Department, Summary of the Department's Development during 1980, and Activities of the Department. Lists of staff, publications, computer programs, and test facilities are included. (author)

  11. The AP1000 reactor

    International Nuclear Information System (INIS)

    The design of the AP1000 reactor began 20 years ago when Westinghouse launched the AP600 reactor project. In fact by re-assessing AP600's safety margins Westinghouse realized that the its power output could be raised without putting at risk its safety standard. The AP1000 was born, it yields 1100 MWe. The main AP1000's design features is its passive safety (particularly after the Fukushima accident) and its modularity. The passive safety of the AP1000 implies: -) no humane intervention needed for 72 hours at least after the incident; -) no necessity for redundant complex safety systems. The modularity means that the plant, the reactor and other buildings are constructed from a choice of 300 modular units. These units can be built off-site and fit together on site. The modularity allows more construction activities to be led simultaneously and more chances to cope with the construction schedule. The NRC has approved the operation license for 30 years of the first AP1000 being built in the Usa (Vogtle plant in Georgia). 4 AP1000 are being built in China (Sanmen and Haiyang sites) and 6 others are planned in the Usa. Westinghouse is convinced that the AP1000's passive safety makes it more attractive. Let us not forget that Westinghouse was at the origin of the concept of pressurized water reactors, an idea adopted for half the nuclear power stations in the world and for all the plants now active in France. (A.C.)

  12. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarises the fast reactor research carried out at the Netherlands Energy Research Centre during the year 1981. The neutron and fission product cross sections of various isotopes have been evaluated. In the fuel performance programme, some preliminary results are given and irradiation facilities described. Creep experiments on various stainless steel components are reported

  13. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  14. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  15. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  16. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis

  17. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  18. Reactor physics problems on HCPWR

    International Nuclear Information System (INIS)

    Reactor physics problems on high conversion pressurized water reactors (HCPWRs) are discussed. Described in this report are outline of the HCPWR, expected accuracy for the various reactor physical qualities, and method for K-effective calculation in the resonance energy area. And requested further research problems are shown. The target value of the conversion ratio are also discussed. (author)

  19. Berkeley Lighting Cone

    Energy Technology Data Exchange (ETDEWEB)

    Lask, Kathleen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gadgil, Ashok [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-24

    A lighting cone is a simple metal cone placed on the fuel bed of a stove during ignition to act as a chimney, increasing the draft through the fuel bed. Many stoves tend to be difficult to light due to poor draft through the fuel bed, so lighting cones are used in various parts of the world as an inexpensive accessory to help with ignition.

  20. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  1. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  2. Reactor vessel support system. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  3. Reactor monitoring using antineutrino detectors

    Science.gov (United States)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  4. Reactor physics activities in Japan

    International Nuclear Information System (INIS)

    This report reviews the research activity in reactor physics field in Japan during July, 1992 - July, 1993. The review was performed in the following fields : nuclear data evaluation, calculational method development, fast reactor physics, thermal reactor physics, advanced core design, fusion reactor neutronics, nuclear criticality safety, shielding, incineration of radioactive nuclear wastes, noise analysis and control and national programs. The main references were taken from journals and reports published during this period. The research committee of reactor physics is responsible for the review work. (author)

  5. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  6. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIMtm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  7. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  8. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  9. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    In 1998, the NNSA organized to complete the nuclear safety review on the test loop in-reactor operation of the High-flux Engineering Experimental Reactor (HFEER) and the re-operation of the China Pulsed Reactor and the Uranium-water Criticality Facility. The NNSA conducted the nuclear safety review on the CP application of the China Experimental Fast Reactor (CEFR) and the siting of China Advanced Research Reactor (CARR), and carried out the construction supervision on HTR-10, and dealt with the event about the technological tube breakage of HWRR and other events

  10. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  11. Elk River Reactor dismantling

    International Nuclear Information System (INIS)

    The dismantling program was carried out in three overlapping phases: the planning phase which included the preliminary planning and selection of the dismantling approach, the dismantling phase which included all work performed to remove the reactor facility and restore the site to its pre-reactor condition, and the closeout phase which included the final site survey and efforts necessary to terminate the AEC license and contract. Of particular interest was the use of a remotely operated plasma cutting torch to section the pressure vessel internals, the pressure vessel and the outer thermal shield, the use of explosives in removal of the biological shield and the method of establishment of the criteria for material disposal

  12. REACTOR MODERATOR STRUCTURE

    Science.gov (United States)

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  13. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  14. Decommissioning of research reactors

    International Nuclear Information System (INIS)

    Research reactors of WWR-S type were built in countries under Soviet influence in '60, last century and consequently reached their service life. Decommissioning implies removal of all radioactive components, processing, conditioning and final disposal in full safety of all sources on site of radiological pollution. The WWR-S reactor at Bucuresti-Magurele was put into function in 1957 and operated until 1997 when it was stopped and put into conservation in view of decommissioning. Presented are three decommissioning variants: 1. Reactor shut-down for a long period (30-50 years) what would entail a substantial decrease of contamination with lower costs in dismantling, mechanical, chemical and physical processing followed by final disposal of the radioactive wastes. The drawback of this solution is the life prolongation of a non-productive nuclear unit requiring funds for personnel, control, maintenance, etc; 2. Decommissioning in a single stage what implies large funds for a immediate investment; 3. Extending the operation on a series of stages rather phased in time to allow a more convenient flow of funds and also to gather technical solutions, better than the present ones. This latter option seems to be optimal for the case of the WWR-S Research at Bucharest-Magurele Reactor. Equipment and technologies should be developed in order to ensure the technical background of the first operations of decommissioning: equipment for scarification, dismantling, dismemberment in a highly radioactive environment; cutting-to-pieces and disassembling technologies; decontamination modern technologies. Concomitantly, nuclear safety and quality assurance regulations and programmes, specific to decommissioning projects should be implemented, as well as a modern, coherent and reliable system of data acquisition, recording and storing. Also the impact of decommissioning must be thoroughly evaluated. The national team of specialists will be assisted by IAEA experts to ensure the

  15. Nuclear reactor container

    International Nuclear Information System (INIS)

    Upon reactor accident, hydrogen and oxygen are generated by water-zirconium reaction and radiolysis of water, which are accumulated in the reactor. If the concentration of hydrogen and oxygen exceeds a burning limit, there is a possibility of hydrogen burning to cause a danger of deteriorating the integrity of the reactor container and the equipments therein. The limit for the occurrence of the detonation is determined by a relationship between the scale of a detonation cell and the size of the container, and if the scale is greater than the container, the detonation does not occur. The scale of the cell is determined by a gas combustion rate and, if the combustion reaction is suppressed, detonation does not occur even in a large container. Then, an appropriate diluent is added to increase heat capacity of a gas mixture to thereby suppress the temperature elevation of the gas. Incombustible gases having a great heat capacity are preferred for the diluent, and CO2 is used. As the concentration of the CO2 gas to be added is increased, the detonation cell is made greater. Thus, occurrence of detonation due to combustion of the accumulated hydrogen can be prevented. (N.H.)

  16. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    In the middle of 21st century, the population on the earth is expected to double, and the energy that mankind consumes to triple. The nuclear fusion which is said the ultimate energy source for mankind is expected to solve this energy problem. As for fusion reactors, fuel materials exist inexhaustibly, distributing evenly, they have high safety in principle, the product of burning is harmless nonradioactive substance that does not require the treatment and disposal, and the attenuation of induced radioactivity due to neutrons is quick and the effect to global environment is little. The basic plan of second stage nuclear fusion research and development was decided in 1975, aiming at attaining the critical plasma condition. JT-60 has attained it in 1987. The project of international thermonuclear fusion experimental reactor (ITER) was started, and the conceptual design was carried out. Under such background, the third stage basic plan was decided in 1992, and its objective is self ignition condition, long time burning and the basis of the reactor engineering technology. The engineering design of the ITER is investigated. (K.I.)

  17. High temperature gas reactor

    International Nuclear Information System (INIS)

    The present invention provides a reflector block structure of a high temperature gas reactor in which graphite blocks are not failed even a containing cylinder loaded to a fuel exchanger collides against to secured reflectors upon loading and withdrawing fuel constitutional elements. Namely, a protection plate made of a metal material such as stainless steel is covered on the secured reflector blocks disposed to the upper most step among secured graphite reflector blocks constituting the reactor core. In addition, positioning guide grooves are formed on the protection plate for guiding the containing cylinder loaded to the fuel exchanger to the column of the reactor core constitutional elements. With such a constitution, even if the containing cylinder of fuel exchanger is hoisted down and collided against the inner circumferential edge of the secured reflector blocks due to deviation of the position and the direction upon exchange of fuels, the reflector blocks are not failed since the above-mentioned portion is covered with the metal protection plate. In addition, the positioning guide grooves lead the fuel exchanger to a predetermined column correctly. (I.S.)

  18. BWR type reactor

    International Nuclear Information System (INIS)

    In a coolant circulation in BWR type reactors, since the mixed stream of steam fluid undergoes a great resistance, the pressure loss due to the flow rate distribution when the coolants flow from the upper plenum into the stand pipe is increased upon passing stand pipe. Also in the spontaneous recycling reactor, pressure loss is still left upon passing the swirling blade of a gas-liquid separator. In view of the above, a plurality of vertical members each having a lower end opened to a gas-liquid two phase boundary and an upper end directly suspended from a steam dryer to the gas-liquid separator. The liquid droplets from the 2-phase boundary heated in the reactor core and formed into a mixed gas-liquid 2-phase stream is directed in the vertical direction accompanied with the steam. The liquid droplets spontaneously fallen by gravity from greater ones successively and the droplets in the steam abutted against the vertical member are fallen as a liquid membrane. Thus, the gas-liquid separation is conducted, the dry steam is directly flown into the steam dryer, thereby capable of providing a gas-liquid separator having gas-liquid separation performance with lower loss than usual. (N.H.)

  19. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  20. Fusion reactor safety

    International Nuclear Information System (INIS)

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  1. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units are provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  2. OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    The OECD Halden Reactor project is an agreement between OECD member countries. It was first signed in 1958 and since then regularly renewed every third year. The activities at the Project is centred around the Halden heavy water rector, the HBWR. The reseach programme comprizes studies of fuel performance under various operating conditions, and the application of computers for process control. The HBWR is equipped for exposing fuel rods to temperatures and pressures, and at heat ratings met in modern BWR's and PWR's. A range of in-core instruments are available, permitting detailed measurements of the reactions of the fuel, including mechanical deformations, thermal behaviour, fission gas release, and corrosion. In the area of computer application, the studies of the communication between operator and process, and the surveillance and control of the reactor core, are of particular interst for reactor operation. 1988 represents the 30th year since the Project was started, and this publication is produced to mark this event. It gives and account of the activities and achievements of the Project through the years 1958-1988

  3. STAR: The Secure Transportable Autonomous Reactor System - Encapsulated Fission Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2003-10-31

    OAK-B135 The Encapsulated Nuclear Heat Source (ENHS) is a novel 125 MWth fast spectrum reactor concept that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor. It uses Pb-Bi or other liquid-metal coolant and is intended to be factory manufactured in large numbers to be economically competitive. It is anticipated to be most useful to developing countries. The US team studying the feasibility of the ENHS reactor concept consisted of the University of California, Berkeley, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL) and Westinghouse. Collaborating with the US team were three Korean organizations: Korean Atomic Energy Research Institute (KAERI), Korean Advanced Institute for Science and Technology (KAIST) and the University of Seoul, as well as the Central Research Institute of the Electrical Power Industry (CRIEPI) of Japan. Unique features of the ENHS include at least 20 years of operation without refueling; no fuel handling in the host country; no pumps and valves; excess reactivity does not exceed 1$; fully passive removal of the decay heat; very small probability of core damaging accidents; autonomous operation and capability of load-following over a wide range; very long plant life. In addition it offers a close match between demand and supply, large tolerance to human errors, is likely to get public acceptance via demonstration of superb safety, lack of need for offsite response, and very good proliferation resistance. The ENHS reactor is designed to meet the requirements of Generation IV reactors including sustainable energy supply, low waste, high level of proliferation resistance, high level of safety and reliability, acceptable risk to capital and, hopefully, also competitive busbar cost of electricity.

  4. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  5. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  6. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The purpose of this technical paper is to provide status of the United State domestic Research Reactor Infrastructure (RRI) Program at the Idaho National Laboratory. This paper states the purpose of the program, lists the universities operating TRIGA reactors that are supported by the program, identifies anticipated fresh fuel needs for the reactor facilities, discusses spent fuel activities associated with the program, and addresses successes and planned activities for the program. (author)

  7. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic

  8. Applications of Research Reactors

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of the earlier publication, The Application of Research Reactors, IAEA-TECDOC-1234, was to present descriptions of the typical forms of research reactor use. The necessary criteria to enable an application to be performed were outlined for each one, and, in many cases, the minimum as well as the desirable requirements were given. This revision of the publication over a decade later maintains the original purpose and now specifically takes into account the changes in service requirements demanded by the relevant stakeholders. In particular, the significant improvements in

  9. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  10. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices

  11. Jane Eyre de Michael Berkeley et de David Malouf : La transposition opératique d’un grand classique de la littérature anglaise Jane Eyre by Michael Berkeley and David Malouf: The Operatic Rewriting of a Great Classic English Novel

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Héberlé

    2009-10-01

    Full Text Available This article discusses Michael Berkeley’s opera Jane Eyre. Premiered on June 30, 2000 by Music Theatre Wales at the Cheltenham International Festival of Music, this opera is based on the novel by Charlotte Brontë and the libretto is written by the Australian poet, novelist, playwright and librettist, David Malouf. It was risky and daring to try to adapt this famous and long novel for the stage. We will particularly focus on the similarities and differences between the novel and the opera as well as on the strategies used both by David Malouf and Michael Berkeley to adapt it. Through the analysis of the similarities we will see how Michael Berkeley set to music some of the great themes and elements of the novel: passion, a sense of entrapment, the “Gothic” atmosphere. On the other hand, the analysis of the discrepancies between the novel and the opera as they appear in both the libretto and the music will lead us to a modern apprehension of the characterization of madness as well as of the metafictional dimension of the rewriting of Jane Eyre by David Malouf and Michael Berkeley.  

  12. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Paper dwells upon the design and the operation of one of the German test reactors, namely, the TRIGA Mainz one (TRIGA: Training Research Isotope Production General Atomic). The TRIGA reactor is a pool test reactor the core of which contains a graphite reflector and is placed into 2 m diameter and 6.25 m height aluminum vessel. There are 75 fuel elements in the reactor core, and any of them contains about 36 g of 235U. The TRIGA reactors under the stable operation enjoy wide application to ensure tests and irradiation, namely: neutron activation analysis, radioisotope production, application of a neutron beam to ensure the physical, the chemical and the medical research efforts. Paper presents the reactor basic experimental program lines

  13. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  14. Industrializing the liquid metal reactor

    International Nuclear Information System (INIS)

    Commercial acceptance of the liquid metal reactor had its beginning with the Fermi reactor, over two decades ago. The pattern of industrialization since that time is discussed, contrasting domestic and foreign experience. The recent termination of the Clinch River reactor project marks a watershed in the U.S. approach towards commercialization. The increased emphasis on achieving cost competitive designs reflects an awareness that barriers to industrialization are institutional and financial, and not technological

  15. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  16. Hydrogen Production in Fusion Reactors

    OpenAIRE

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  17. Fast reactor programme in India

    Indian Academy of Sciences (India)

    P Chellapandi; P R Vasudeva Rao; Prabhat Kumar

    2015-09-01

    Role of fast breeder reactor (FBR) in the Indian context has been discussed with appropriate justification. The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the same are the major highlights of this paper.

  18. Turning points in reactor design

    International Nuclear Information System (INIS)

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems

  19. Optimal control of nuclear reactors

    International Nuclear Information System (INIS)

    The modern control theory is applied to the design of control systems for experimental nuclear reactors that do not belong to power reactors, the component forms of optimal control systems for nuclear reactors are demonstrated. The adoption of output quadratic integral criterion and incomplete state feedback technique can make these systems both efficient and economical. Moreover, approximate handling methods are given so as to simplify the calculations in design. In addition, the adoptable reference values of parameters are given in the illustration

  20. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  1. Acceptability of reactors in space

    International Nuclear Information System (INIS)

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it does not appear that reactors add measurably to the risk associated with the Space Transportation System

  2. Advanced Fission Reactor Program objectives

    International Nuclear Information System (INIS)

    The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors

  3. Reactor safety - an international task

    International Nuclear Information System (INIS)

    The dimensions and the significance of the task of ensuring reactor safety can be defined on the basis of experiences gained from Harrisburg and Chernobyl. The countries that use nuclear energy are tied together to a community by virtue of the risk they share. Therefore the GRS is working in close cooperation with the EC, OECD, IAEO and COMECON. This results in safety examinations of the Greifswald reactor, safety analyses of nuclear reactors in Germany, France and the USA and also considerations on the safety demands to be placed on new reactor concepts. (DG)

  4. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  5. Integrated modular water reactor: IMR

    International Nuclear Information System (INIS)

    The Mitsubishi Heavy Industries, Ltd. Has investigated on a concept on small scale reactor with economical efficiency comparable with large scale one. Aims of development on the integrated modular water reactor (IMR) of a small scale reactor plant concept consist in large construction cost reduction through adoption of technique specific to the small scale reactor and integrated production of plural units and in establishment of high safety target without reality in a large scale reactor to realize reduction of operation and maintenance costs by this reduction to simplification of operation and maintenance. Its concrete developmental targets are to make an integrated reactor with vessel size actually producible and the largest output, to remove feasibility of coolant loss accident (LOCA), to remove an accident with feasibility related to fuel fracture, to remove feasibility of nuclear reactor coolant to leak out from a storage vessel, to secure safety of plant without necessity of human and physical assistances from other plants at all on an accident, to make numbers of operators per unit output equal to those of large scale reactor, and to make working amounts at maintenance per unit output equal to large scale reactor by simplification of apparatus practice of rotation on main apparatus such as SG, and so on. Here were described on design concept and plan to realization. (G.K.)

  6. 3. Interindustry conference on reactor materials science

    International Nuclear Information System (INIS)

    This document contains abstracts on papers presented at the Third Interindustry Conference on Reactor Materials Science (Dimitrovgrad, 27-30 October 1992). The subject scope of the papers is a follows: fuel and fuel elements of power reactors; structural materials of fast breeder reactors and thermonuclear reactors; structural materials of WWER and RBMK type reactors; absorbers and moderators

  7. An advanced educational program for nuclear professionals with social scientific literacy. A collaborative initiative by UC Berkeley and Univ. of Tokyo on the Fukushima accident

    International Nuclear Information System (INIS)

    The authors have collaborated for over three years in developing an advanced educational program to cultivate leading engineers who can productively interact with other stakeholders. The program is organized under a partnership between the Nuclear Engineering Department of University of California, Berkeley (UCBNE) and the Global COE Program 'Nuclear Education and Research Initiative' (GoNERI) of the University of Tokyo, and is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan. We conducted two 'summer schools' in 2009 and 2010 as trial cases of the educational program. This year, in response to the Fukushima Daiichi nuclear accident, we decided to make our third summer school a venue for preliminary, yet multi-dimensional learning from that event. This school was held in Berkeley, CA, in the first week of August, with 12 lecturers and 18 students from various fields and countries. In this paper, we will explain the concept, aim, and design of our program; do a preliminary assessment of its effectiveness; introduce a couple of intriguing discussions held by participants; and discuss the program's implications for the post-Fukushima nuclear context. (author)

  8. Helias reactor studies

    International Nuclear Information System (INIS)

    The Helias reactor is an upgraded version of the Wendelstein 7-X experiment. The magnetic field has 5 field periods and the main optimization principle is the reduction of the Pfirsch-Schlueter currents and the Shafranov shift, which has been verified by computations with the NEMEC and MFBE-codes. The modular coil system comprises 50 coils, which are constructed using NbTi-superconducting cables. The basic dimensions are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 5 T, maximum field on the coils 10 T. Forces and stresses in the coil system have been investigated with the aid of the ANSYS code, which found maximum stress values of about 650 MPa in the coil casing. Helias configurations with 4 and 3 field periods have been constructed by starting from the 5-period case and by eliminating one or two periods while the shape of the coils is kept nearly invariant. In a first survey blanket concepts, developed for the DEMO tokamak, have been adapted to the Helias geometry, in particular, the solid breeder concept developed by FZK (Karlsruhe) has been extrapolated to the Helias geometry identifying the drawbacks and advantages of this concept. Furthermore, the liquid breeder concept using Li7-Pb83 and water-cooling is an interesting alternative for the Helias reactor. Maintenance of blanket and plasma facing components is possible through the portholes between modular coils. Numerical simulations of the start-up phase of the Helias reactor using the TOTAL-P code have confirmed the zero-dimensional modeling of the fusion plasma with the aid of empirical scaling laws. (author)

  9. Progress in the Development of the Modular Pebble-Bed Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    This review article summarizes recent progress by students and faculty at U.C. Berkeley working on the development of the Pebble-Bed Advanced High Temperature Reactor (PB-AHTR). The 410-MWe PBAHTR is a liquid salt cooled reactor that operates at near atmospheric pressure and high power density (20 to 30 MW/m3, compared to 4.8 MW/m3 for helium cooled reactors). Operating with a core inlet temperature of 600 deg. C and outlet temperature of 704 deg. C, the PB-AHTR uses well understood materials of construction including Alloy 800H with Hastelloy N cladding for the reactor vessel and primary loop components, and graphite for core and reflector structures. Recent work by the NE 170 senior design class has developed physical arrangements for the major reactor and power conversion components, along with the structural design for the reactor building and turbine hall featuring seismic base isolation, design for aircraft crash protection, shielding analysis, and design of a multiple-zone ventilation and containment system to provide effective control of radioactive and chemical contamination. The resulting total building volume is 260 m3/MWe, compared to 343 m3/MWe to 486 m3/MWe for current large (1150 to 1600 MWe) LWR designs. These results suggest the potential for significant reductions in construction time and cost. Neutronics studies have verified the capability to design the PB-AHTR with negative fuel and coolant temperature reactivity coefficients, for both LEU and deep-burn TRU fuels. Depletion analysis was also performed to identify optimal core designs to maximize fuel utilization. The additional moderation provided by the coolant simplifies design to achieve optimal moderation, and the spent fuel volume is approximately half that of helium cooled reactors. In collaboration with the Czech Nuclear Research Institute, initial zero-power critical tests were performed to validate PB-AHTR neutronics models. Liquid salts are unique among candidate reactor coolants due

  10. Reactor coolant pump flywheel

    Science.gov (United States)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  11. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the errata page

  12. FUEL ASSAY REACTOR

    Science.gov (United States)

    Spinrad, B.I.; Sandmeier, H.A.; Martens, F.H.

    1962-12-25

    A reactor having maximum sensitivity to perturbations is described comprising a core consisting of a horizontally disposed, rectangular, annular fuel zone containing enriched uranium dioxide dispersed in graphite, the concentration of uranium dioxide increasing from the outside to the inside of the fuel zone, an internal reflector of graphite containing an axial test opening disposed within the fuel zone, an external graphite reflector, means for changing the neutron spectrum in the test opening, and means for measuring perturbations in the neutron flux caused by the introduction of different fuel elements into the test opening. (AEC)

  13. Shutting down two reactors

    International Nuclear Information System (INIS)

    Nuclear power will be phased out of the swedish energy system during the first decades of the next century. Commissioned by the swedish government, the National Energy Administration reports a study on the possibilities for, and consequences of, an earlier shut down (1994-1996) of two of the twelve swedish power reactors. Some of the questions studied are: How much will the electricity price raise ?; How will the electricity consumption be affected ?; What are the alternatives to nuclear power ?; What will the cost be ? and What will the environmental effects be ?. (L.E.)

  14. Measurement in nuclear reactors

    International Nuclear Information System (INIS)

    A nuclear reactor construction has a flux detector comprising a bundle of fibre optics each having a bead incorporating a substance which scintillates on being struck by neutrons or gamma radiations. The other ends of the fibre optics terminate at an image intensifier. The optical fibres may be of glass made from a mixture of silica, alkaline earth metal oxide, cerous oxide and alkali metal oxide. The beads may be incorporated in a disc forming a detector head, which is in a protective guide tube, through which an inert gas may be passed. (author)

  15. TRIGA reactor operating experience

    International Nuclear Information System (INIS)

    The Oregon State TRIGA Reactor (OSTR) has been in operation 3 years. Last August it was upgraded from 250 kW to 1000 kW. This was accomplished with little difficulty. During the 3 years of operation no major problems have been experienced. Most of the problems have been minor in nature and easily corrected. They came from lazy susan (dry bearing), Westronics Recorder (dead spots in the range), The Reg Rod Magnet Lead-in Circuit (a new type lead-in wire that does not require the lead-in cord to coil during rod withdrawal hss been delivered, much better than the original) and other small corrections

  16. Reactor system safety assurance

    International Nuclear Information System (INIS)

    The philosophy of reactor safety is that design should follow established and conservative engineering practices, there should be safety margins in all modes of plant operation, special systems should be provided for accidents, and safety systems should have redundant components. This philosophy provides ''defense in depth.'' Additionally, the safety of nuclear power plants relies on ''safety systems'' to assure acceptable response to design basis events. Operating experience has shown the need to study plant response to more frequent upset conditions and to account for the influence of operators and non-safety systems on overall performance. Defense in depth is being supplemented by risk and reliability assessment

  17. The Oklo reactors

    International Nuclear Information System (INIS)

    The Oklo reactors comprise up to nine 235-U depleted zones in an uranium ore in the Republic of Gabon in West Africa. The depletion in fissile U-235 has been proved to have caused by nuclear chain reactions. The study of the Oklo phenomenon indicates that very efficient retardation mechanisms may operate in nature - at least under special conditions. A closer study of these processes ought to be made to establish the limitations to their occurrence. The Oklo sandstone formation today would probably be considered unacceptable as a host rock for a repository. (EG)

  18. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  19. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  20. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  1. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  2. Reactor system on barge

    International Nuclear Information System (INIS)

    Floating electrical power plants or power plant barges add new dimensions to utility planners and agencies in the world. Intrinsically safe and economical reactors (ISER) employ steel reactor pressure vessels, which significantly reduce the weight as compared with PIUS, and provide siting versatility including barge-mounted plants. In this paper, the outline of power plant barges and barge-mounted ISERs is described. Besides their mobility, power plant barges have the salient advantages such as short delivery time and better quality control due to the outfitting in shipyards. These power plant barges may be temporarily moored or permanently grounded in shallow water at the centers of industrial complexes or the suitable areas adjacent to them, and satisfy the increasing needs for electric power. A cost-effective and technically perfect barge positioning system should be designed to meet the specific requirement for the location and its condition. Offshore siting away from coast may be applicable only to large plants of 1,000 MWe or more, and inshore siting and coastal or river siting are considered for an ISER-200 barge-mounted plant. The system of a barge-mounted ISER plant is discussed in the case of a floating type and the type on a seismic base isolator. (Kako, I.)

  3. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  4. The EPR reactor NDE

    International Nuclear Information System (INIS)

    In May 2006, Electricite de France decided to launch the building of the first EPRR Reactor on the Flamanville site in Normandy. The 'Flamanville 3' EPR unit is the first one to be subjected to the French Ministerial Orders of the 10 November 1999 and of the 13 December 2005 from the design phase. According to these orders, the non destructive examination (NDE) planned for the in service inspection (ISI) and for the pre service inspection (PSI) must be operational with a compulsory formal qualification. The PSI is a complete inspection of the main primary and secondary systems. The PSI's objective is to perform before the first core loading all the NDE planned for the future ISI in the same conditions, in order to have a reliable reference for the detection or for the evaluation of the possible damages during the ISI. The 'Flamanville 3' PSI is planned to start end 2010. The program consists of the development and the qualification of the NDE compatible with this new generation reactor's challenges. The paper is about: - the main EPR's objectives and the technological evolutions, - the main component modifications (which have an impact on the NDE), - the place of ISI in the general safety demonstration, - the main inspection objectives, - the NDE qualification process, - the approach to set up the ISI program, - the ISI program. (authors)

  5. Status of Japanese university reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Yoshiaki [Research Reactor Institute, Kyoto Univ., Kumatori, Osaka (Japan)

    1999-08-01

    Status of Japanese university reactors, their role and value in research and education, and the spent fuel problem are presented. Some of the reactors are now faced by severe difficulties in continuing their operation services. The point of measures to solve the difficulties is suggested. (author)

  6. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  7. Reactor Neutrino Physics -- An Update

    OpenAIRE

    Boehm, Felix

    1999-01-01

    We review the status and the results of reactor neutrino experiments. Long baseline oscillation experiments at Palo Verde and Chooz have provided limits for the oscillation parameters while the recently proposed Kamland experiment at a baseline of more than 100km is now in the planning stage. We also describe the status of neutrino magnetic moment experiments at reactors.

  8. Chemical-vapor-deposition reactor

    Science.gov (United States)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  9. Cooling system for reactor container

    International Nuclear Information System (INIS)

    Purpose: To effectively cool a reactor container upon reactor shutdown with no intrusion of metal corrosion products in coolants into the main steam pipe in a BWR type reactor. Constitution: A clean up system comprising a pipeway, a recycling pump, a non-regenerative heat exchanger and a primary coolant purifier and a regenerative heat exchanger is provided branched from a residual heat removing system and the clean up system is connected by way of a valve to a feedwater pipeway, as well as connected by way of the pipeway to the main steam pipeway at the midway of two main steam separation valves outside of the reactor container. This enables to prevent metal corrosion products floating on the surface of reactor water from introducing into the main steam pipe when the pressure vessel is filled with water. Then, since the pressure vessel is filled with primary coolants, the pressure vessel can be cooled uniformly in a short time. (Ikeda, J.)

  10. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  11. Directions in advanced reactor technology

    International Nuclear Information System (INIS)

    Successful nuclear power plant concepts must simultaneously performance in terms of both safety and economics. To be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal, it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focuses upon safety and upon economics using each coolant are being pursued worldwide. These programs are discussed

  12. Simulator for materials testing reactors

    International Nuclear Information System (INIS)

    A real-time simulator for both reactor and irradiation facilities of a materials testing reactor, “Simulator of Materials Testing Reactors”, was developed for understanding reactor behavior and operational training in order to utilize it for nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor), and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation components, hardware specification and operation procedure of the simulator. (author)

  13. Antineutrino Monitoring of Thorium Reactors

    CERN Document Server

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  14. Fast reactors and nuclear nonproliferation

    International Nuclear Information System (INIS)

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (author)

  15. Automated reactor records evaluation framework

    International Nuclear Information System (INIS)

    The only truly reliable method for core physics code validation is comparison against experimental data – and for power nuclear reactors, the only reasonably acquirable kind of experimental data are the reactor records. However, the amount of the data coming from the reactor operation is often so vast that it can be discouraging for the code developers to use it properly. Thus, the validation package is further reduced because the data is hard to use. This paper presents an elaborate, fully automated framework, which was designed and implemented in our institute, for reactor records processing and its use for core physics code validation. The workflow, implemented as a Web 2.0 application, provides a practical and painless solution for use of reactor records data for code development and validation. (author)

  16. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  17. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  18. Licensed operating reactors

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission's annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar 1990) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1 capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided

  19. Reactor safety systems

    International Nuclear Information System (INIS)

    The spectrum of possible accidents may become characterized by the 'maximum credible accident', which will/will not happen. Similary, the performance of safety systems in a multitude of situations is sometimes simplified to 'the emergency system will/will not work' or even 'reactors are/ are not safe'. In assessing safety, one must avoid this fallacy of reducing a complicated situation to the simple black-and-white picture of yes/no. Similarly, there is a natural tendency continually to improve the safety of a system to assure that it is 'safe enough'. Any system can be made safer and there is usually some additional cost. It is important to balance the increased safety against the increased costs. (orig.)

  20. Reactor control rod

    International Nuclear Information System (INIS)

    Object: To enable quick descent of a control rod body even when some relative phase deviation between upper drive means and wrapper tube is produced, while permitting a coolant to effectively flow into a protective tube irrespective of the position of the control rod body. Structure: In a control rod used for a nuclear reactor such as a fast breeder, an orifice which dispenses with a cylindrical guide tube and has a greater inner diameter than the outer diameter of the protective tube of the control rod body is provided on the inner side of a wrapper tube, thus permitting smooth operation of the control rod body and also permitting the coolant to effectively flow into the protective tube irrespective of the control rod body. (Horiuchi, T.)

  1. Nuclear reactor spacer assembly

    International Nuclear Information System (INIS)

    A fuel assembly for a nuclear reactor is disclosed wherein the fuel element receiving and supporting grid is comprised of a first metal, the guide tubes which pass through the grid assembly are comprised of a second metal and the grid is supported on the guide tubes by means of expanded sleeves located intermediate the grid and guide tubes. The fuel assembly is fabricated by inserting the sleeves, of initial outer diameter commensurate with the guide tube outer diameters, through the holes in the grid assembly provided for the guide tubes and thereafter expanding the sleeves radially outwardly along their entire length such that the guide tubes can subsequently be passed through the sleeves. The step of radial expansion, as a result of windows provided in the sleeves having dimensions commensurate with the geometry of the grid, mechanically captures the grid and simultaneously preloads the sleeve against the grid whereby relative motion between the grid and guide tube will be precluded

  2. Nuclear reactor measurement system

    International Nuclear Information System (INIS)

    An instrument to detect the temperature and flow-rate of the liquid metal current of a coolant fluid sample from adjacent sub-assemblies of a liquid metal-cooled nuclear reactor is described. It includes three thermocouple hot junctions mounted in series, each intended for exposure to a sample-current from a single sub-assembly, electromagnetic coils being mounted around an induction core which detects variations in the liquid metal flow-rate by deformation of the lines of flux. The instrument may also include a thermocouple to detect the mean temperature of the sample-current of coolant fluid from several sources, the result being that the temperature of the coolant fluid current in a sub-assembly may be inferred from the three temperature readings associated with this sub-assembly

  3. OECD: Halden reactor project

    International Nuclear Information System (INIS)

    The work at the Project has continued in the two main fields: test fuel irradiation and fuel research, and computer based process supervision and control. Organizations participating in the Project continue to have their fuel irradiated in the Halden Reactor in instrumented test assemblies designed and manufactured by the Project. The Project's fuel studies continue to focus on specific subjects such as fuel pellet/cladding interaction and heat transfer, fission product release and fuel behavior under loss of coolant conditions. The work on process control and supervision continues in the highly relevant fields of core control and operator-process communication. A system for predictive core control is being developed while special mathematical methods for core power distribution control are being studied. Operator-process communication studies comprise use of computer simulation on colour display as important ingredients, while the work on developing a system for interactive plant disturbance analysis continues

  4. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  5. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  6. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    The NNSA organized mainly in 1999 to complete the verification loop in core of the high flux experimental reactor with the 2000 kW fuel elements, the re-starting of China Pulsed Reactor, review and assessment on nuclear safety for the restarting of the Uranium-water critical Facility and treat the fracture event with the fuel tubes in the HWRR

  7. Power Reactors. Appendix VIII

    International Nuclear Information System (INIS)

    Decommissioning of nuclear facilities in many countries has evolved into a mature industry that has benefited from experience gained from previous projects and decommissioning costs can now be estimated to a good degree of accuracy. As a result of lessons learned, future decommissioning projects can be performed with higher levels of efficiency. Decommissioning of old power reactors is in progress in several countries. In some cases, decommissioning has been completed (i.e. plant sites have been released from regulatory control), while in other countries decommissioning is still in progress. Several large power reactors have been successfully decommissioned since 1995. The key areas of particular importance for decommissioning are decontamination, radiation protection, dismantling and demolition. The technologies which can be used for these tasks are commonly available on the market, but effective decommissioning still depends on an optimal choice of technologies, including site specific developments. It is not possible to recommend the use of a single specific technology for dismantling, demolition, segmentation or decontamination; rather, it is good practice to take into account as much information as possible from other decommissioning projects and to draw comparisons between various techniques in order to choose the one with the best performance in a particular situation. The exchange of information on all types of decommissioning experience, including decommissioning techniques and their applicability as well as disadvantages for specific tasks, is taking place on various levels, such as: — Collaborative working groups established by international organizations such as the IAEA, the OECD Nuclear Energy Agency and the European Commission and the publication of technical reports by such organizations; — National and international conferences; — Bilateral or multilateral cooperation and information exchange between organizations with responsibilities for

  8. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  9. Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Following the accident at Chernobyl nuclear reactor, WHO organized on 6 May 1986 in Copenhagen a one day consultation of experts with knowledge in the fields of meteorology, radiation protection, biological effects, reactor technology, emergency procedures, public health and psychology in order to analyse the development of events and their consequences and to provide guidance as to the needs for immediate public health action. The present report provides detailed information on the transportation and dispersion of the radioactive material in the atmosphere, especially volatile elements, during the release period 26 April - 5 May. Presented are the calculated directions and locations of the radioactive plume over Europe in the first 5 days after the accident, submitted by the Swedish Meteorological and Hydrological Institute. The calculations have been made for two heights, 1500m and 750m and the plume directions are grouped into five periods, covering five European areas. The consequences of the accident inside the USSR and the radiological consequences outside the USSR are presented including the exposure routes and the biological effects, paying particular attention to iodine-131 effects. Summarized are the first reported measured exposure rates above background, iodine-131 deposition and concentrations in milk and the remedial actions taken in various European countries. Concerning the cesium-137 problem, based on the UNSCEAR assessment of the consequences of the nuclear fallout, one concludes that the cesium contamination outside the USSR is not likely to cause any serious problems. Finally, the conclusions and the recommendations of the meeting, taking into account both the short-term and longer term considerations are presented

  10. Nuclear reactor fuelling machine

    International Nuclear Information System (INIS)

    The refuelling machine described comprises a rotatable support structure having a guide tube attached to it by a parellel linkage mechanism, whereby the guide tube can be displaced sideways from the support structure. A gripper unit is housed within the guide tube for gripping the end of a fuel assembly or other reactor component and has means for maintenance in the engaging condition during travel of the unit along the guide tube, except for a small portion of the travel at one end of the guide tube, where the inner surface of the guide tube is shaped so as to maintain the gripper unit in a disengaging condition. The gripper unit has a rotatable head, means for moving it linearly within the guide tube so that a component carried by the unit can be housed in the guide tube, and means for rotating the head of the unit through 1800 relative to its body, to effect rotation of a component carried by the unit. The means for rotating the head of the gripper unit comprises ring and pinion gearing, operable through a series of rotatable shafts interconnected by universal couplings. The reason for provision for 1800 rotation is that due to the variation in the neutron flux across the reactor core the side of a fuel assembly towards the outside of the core will be subjected to a lower neutron flux and therefore will grow less than the side of the fuel assembly towards the inside of the core. This can lead to bowing and possible jamming of the fuel assemblies. Full constructional details are given. See also BP 1112384. (U.K.)

  11. Reliability of reactor materials

    International Nuclear Information System (INIS)

    This report is the final technical report of the fracture mechanics part of the Reliability of Reactor Materials Programme, which was carried out at the Technical Research Centre of Finland (VTT) through the years 1981 to 1983. Research and development work was carried out in five major areas, viz. statistical treatment and modelling of cleavage fracture, crack arrest, ductile fracture, instrumented impact testing as well as comparison of numerical and experimental elastic-plastic fracture mechanics. In the area of cleavage fracture the critical variables affecting the fracture of steels are considered in the frames of a statistical model, so called WST-model. Comparison of fracture toughness values predicted by the model and corresponding experimental values shows excellent agreement for a variety of microstructures. different posibilities for using the model are discussed. The development work in the area of crack arrest testing was concentrated in the crack starter properties, test arrangement and computer control. A computerized elastic-plastic fracture testing method with a variety of test specimen geometries in a large temperature range was developed for a routine stage. Ductile fracture characteristics of reactor pressure vessel steel A533B and comparable weld material are given. The features of a new, patented instrumented impact tester are described. Experimental and theoretical comparisons between the new and conventional testers indicated clearly the improvements achieved with the new tester. A comparison of numerical and experimental elastic-plastic fracture mechanics capabilities at VTT was carried out. The comparison consisted of two-dimensional linear elastic as well as elastic-plastic finite element analysis of four specimen geometries and equivalent experimental tests. (author)

  12. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.

    2004-07-29

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  13. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  14. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  15. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    Science.gov (United States)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  16. Physics on your feet Berkeley graduate exam questions : or ninety minutes of shame but a PhD for the rest of your life!

    CERN Document Server

    Budker, Dmitry; Demas, Vasiliki

    2015-01-01

    Physics on Your Feet gives a collection of physics problems covering the broad range of topics in classical and modern physics that were, or could have been, asked at oral PhD exams at Berkeley. The questions are easy to formulate, but some of them can only be answered using an out-of-the-box approach. Detailed solutions are provided, from which the reader is guaranteed to learn a lot about the physicists' way of thinking. The book is also packed full of cartoons and dry humour to help take the edge off the stress and anxiety surrounding exams. This is a helpful guide to students preparing for their exams, as well as to University lecturers looking for good instructive problems. No exams are necessary to enjoy the book!

  17. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  18. On reactor type comparisons for the next generation of reactors

    International Nuclear Information System (INIS)

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs

  19. Ageing management for research reactors

    International Nuclear Information System (INIS)

    During the past several years, ageing of research reactor facilities continues to be an important safety issue. Despite the efforts exerted by operating organizations and regulatory authorities worldwide to address this issue, the need for an improved strategy as well as the need for establishing and implementing a systematic approach to ageing management at research reactors was identified. This paper discusses, on the basis of the IAEA Safety Standards, the effect of ageing on the safety of research reactors and presents a proactive strategy for ageing management. A systematic approach for ageing management is developed and presented together with its key elements, along with practical examples for their application. (author)

  20. Fueling of tandem mirror reactors

    International Nuclear Information System (INIS)

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design

  1. Concept for LEU Burst Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    Design and performance of a proposed LEU burst reactor are sketched. Salient conclusions reached are the following: size would be ~1,500 kg or greater, depending on the size of the central cavity; internal stresses during burst require split rings for relief; the reactor would likely require multiple control and safety rods for fine control; the energy spectrum would be comparable to that of HEU machines; and burst yields and steady-state power levels will be significantly greater in an LEU reactor.

  2. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  3. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  4. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  5. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  6. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  7. Breeder Reactors, Understanding the Atom Series.

    Science.gov (United States)

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  8. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  9. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  10. Conceptual design study of JSFR reactor building

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T.; Katoh, A.; Chikazawa, Y. [Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Ohya, T.; Iwasaki, M.; Hara, H.; Akiyama, Y. [Mitsubishi FBR Systems, Inc. MFBR, 34-17, Jingumae 2-chome, Shibuya, Tokyo 150-0001 (Japan)

    2012-07-01

    Japan Sodium-cooled Fast Reactor (JSFR) is planning to adopt the new concepts of reactor building. One is that the steel plate reinforced concrete is adopted for containment vessel and reactor building. The other is the advanced seismic isolation system. This paper describes the detail of new concepts for JSFR reactor building and engineering evaluation of the new concepts. (authors)

  11. FASTER test reactor preconceptual design report summary

    International Nuclear Information System (INIS)

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  12. Light water reactor safety research

    International Nuclear Information System (INIS)

    As the technology of light water reactors (LWR) was being commercialized, the German Federal Government funded the reactor safety research program, which was conducted by national research centers, universities, and industry, and which led to the establishment, in early 1972, of the Nuclear Safety Project in Karlsruhe. In the seventies, the PNS project mainly studied the loss-of-coolant accident. Numerous experiments were run and computer codes developed for this purpose. In the eighties, the Karlsruhe Nuclear Research Center contributed to the German Risk Study, investigating especially core meltdown accidents under the impact of the events at Three Mile Island-2 and Chernobyl-4. Safety research in the nineties is concentrated on the requirements of future reactor generations, such as the European Pressurized Water Reactor (EPR) or potential approaches which, at the present time, are discernible only as tentative theoretical designs. (orig.)

  13. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  14. Fuel for advanced CANDU reactors

    International Nuclear Information System (INIS)

    The CANDU reactor system has proven itself to be a world leader in terms of station availability and low total unit energy cost. In 1985 for example, four of the top ten reactor units in the world were CANDU reactors operating in South Korea and Canada. This excellent operating record requires an equivalent performance record of the low-cost, natural uranium fuel. Future CANDU reactors will be an evolution of the present design. Engineering work is under way to refine the existing CANDU 600 and to incorporate state-of-the-art technology, reducing the capital cost and construction schedule. In addition, a smaller CANDU 300 plant has been designed using proven CANDU 600 technology and components but with an innovative new plant layout that makes it cost competitive with coal fired plants. For the long term, work on advanced fuel cycles and major system improvements is underway ensuring that CANDU plants will stay competitive well into the next century

  15. Conceptual design of RFC reactor

    International Nuclear Information System (INIS)

    A parametic analysis and a preliminary conceptual design for RFC reactor (including cusp field) with and without alpha particle heating are described. Steady state operations can be obtained for various RF ponderomotive potential in cases of alpha particle heating. (author)

  16. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...... microorganism into methane. In thermophilic biogas reactors,, acetate oxidizing cultures occupied the niche of Methanothrix species, aceticlastic methanogens which dominate at low acetate concentrations in mesophilic systems. Normally, thermophilic biogas reactors are operated at temperatures from 52 to 560 C....... Experiments using biogas reactors fed with cow manure showed that the same biogas yield found at 550 C could be obtained at 610 C after a long adaptation period. However, propionate degradation was inhibited by increasing the temperature....

  17. Teaching About Nature's Nuclear Reactors

    CERN Document Server

    Herndon, J M

    2005-01-01

    Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

  18. RA reactor operation and maintenance

    International Nuclear Information System (INIS)

    This volume includes the final report on RA reactor operation and utilization of the experimental facilities in 1962, detailed analysis of the system for heavy water distillation and calibration of the system for measuring the activity of the air

  19. Technique of nuclear reactors controls

    International Nuclear Information System (INIS)

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author)

  20. Jules Horowitz Reactor, basic design

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P

    2003-07-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  1. Unique features of space reactors

    Science.gov (United States)

    Buden, David

    Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K.

  2. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  3. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Advanced Carbothermal Electric (ACE) reactor to efficiently extract oxygen from lunar regolith. Unlike state-of-the-art carbothermal...

  4. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase 1 effort was to demonstrate the technical feasibility of the Advanced Carbothermal Electric (ACE) Reactor concept. Unlike...

  5. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  6. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  7. Material test reactor fuel research at the BR2 reactor

    International Nuclear Information System (INIS)

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  8. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo

    1996-06-21

    In an LMFBR type reactor, partitions are disposed to a coolant channel at positions lower than the free liquid level, and the width of the partitions is adapted to have a predetermined condition. Namely, when low temperature fluid overflowing the wall of the coolant channel, flows down and collided against the free liquid surface in the coolant channel, since the dropping speed thereof is reduced abruptly, large pressure waves are caused by kinetic force of the low temperature fluid. However, if appropriate numbers of partitions having an appropriate shape are formed, the dropping speed of the low temperature fluid is moderated to reduce the pressure waves. In addition, since the pressure waves are dispersed to the circumferential and lateral directions of the coolant flow channel respectively, the propagation of the pressure waves can be prevented effectively. Further, when the flow of the low temperature fluid is changed to the circumferential direction, for example, by earthquakes, since the partitions act as members resisting against the circumferential change of the low temperature fluid, the change of the direction can be suppressed. (N.H.)

  9. Natural convection type reactor

    International Nuclear Information System (INIS)

    In a natural convection type nuclear reactor, recycling flow rate of coolants is increased and the amount of entrained bubbles are increased as the driving force is increased, so that bubbles are not separated completely even if a stagnation region is disposed. Then, a space opened only at the upper portion is disposed at the outer circumference of the upper end of a riser for storing overflown coolants temporarily. The flow of coolants incorporating steam bubbles uprising in the riser turns into the horizontal direction at the upper end of the riser wall and flows into the coolant reservoir. In the coolant reservoir, since the momentum of the coolants is lost and the flow is stagnated, the bubbles are easily released to the upper space. Coolants, after releasing the bubbles, further overflow and descend in the downcomer. Then, the bubbles can be separated undergoing no influence of the driving force caused as the sum of the uprising force in the riser and the water head pressure in the downcomer, to prevent increase of carry under due to increase of the driving force. (N.H.)

  10. Reactor Simulator Testing Overview

    Science.gov (United States)

    Schoenfeld, Michael P.

    2013-01-01

    Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  11. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  12. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  13. OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    The OECD Halden Reactor Project is both the oldest and the only one still in operation of the three major joint undertakings established at the inception of the OECD Nuclear Energy Agency. This publication has been printed in connection with its twenty-fifth anniversary as an international project. After presentation of the history and organization of the project, a thorough description of the past and present activities in the field of fuel performance and process control and surveillance is given. The projects's fuel testing programme is now focuessed on an investigation to define safety margins under normal operations as well as under various kinds of accident situations. Fuel research is also concerned with the characterisation of long term effects with regard to efficiency, operational safety and mapping of reliability and durability in the case of accidents with loss of coolant. In the field of process control and surveillance, research work is directly linked to the use of computers and colour graphics as tools in the control room. A fullscale simulator-based model and experimental control room has been constructed. The first experiments to be carried out in this laboratory will investigate the advantage of analysing alarms before they are presented to the operator. (RF)

  14. Nuclear reactor container

    International Nuclear Information System (INIS)

    A gas containing vessel has a water pool which is in communication with a dry well containing a reactor pressure vessel by way of a communication pipe is disposed. A capacity of a gas phase portion of the gas containing chamber, a capacity of the dry well, a water depth of a bent tube communicating the dry well with a pressure suppression pool of a pressure suppression chamber and a water depth of the communication pipe are determined so as to satisfy specific conditions. Since the water depth of the communication pipe is less than the water depth of the bent tube, incondensible gases and steams in the dry well flow into the water pool of the gas containing chamber at the initial stage of loss of coolant accident. Subsequently, steams in the dry well flow into the pressure suppression pool of the pressure suppression chamber by way of the bent tube. Accordingly, since the incondensible gases in the dry well do not flow into the pressure suppression chamber, pool swelling phenomenon in the pressure suppression chamber is not caused even if the water depth of the bent tube which leads to the pressure suppression chamber is great. Further, pressure increase due to transfer of the incondensible gases is decreased. (I.N.)

  15. OECD Halden reactor project

    International Nuclear Information System (INIS)

    A major part of the current research programme is devoted to irradiation experiments with a wide variety of heavily instrumented test fuel assemblies, in order to study the thermal and mechanical behavior of fuel rods through in-core measurements, in particular various forms of deformation of cladding and fuel as related to operational conditions and fuel rod design parameters. From these measurements mathematical models are being developed to explain quantitatively the deformation behavior, as well as the thermal properties of the fuel. During 1974, fifty-six instrumented fuel assemblies were irradiated in these experiments. Another major part of the Halden programme is aimed at the development and demonstration of advanced computer-based methods for plant and reactor core control, for safety and protection, and for overall supervision of nuclear power stations. Both the control methods themselves and the associated measurement and control apparatus are being elaborated, and during the year particular progress was made with the ''OPCOM'' process operator communication system

  16. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    Science.gov (United States)

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  17. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.)

  18. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  19. Stellarator fusion reactors - an overview

    International Nuclear Information System (INIS)

    The stellarator system offers a distinct alternative to the mainline approaches to magnetic fusion power and has several potentially major advantages. Since the first proposal of the stellarator concept many reactor studies have been published and these studies reflect the large variety of stellarator configurations. The main representatives are the continuous-coil configurations and the modular-coil configurations. As a continuation of the LHD experiment two reactor configurations, FFHR1 and FFHR2, have been investigated, which use continuous helical windings for providing the magnetic field. The modular coil concept has been realized in the MHH-reactor study (USA 1997) and in the Helias reactor. The Helias reactor combines the principle of plasma optimisation with a modular coil system. The paper also discusses the issues associated with the blanket and the maintenance process. Stellarator configurations with continuous coils such as LHD possess a natural helical divertor, which can be used favourably for impurity control. In advanced stellarators with modular coils the same goal can be achieved by the island divertor. Plasma parameters in the various stellarator reactors are computed on the basis of presently known scaling laws showing that confinement is sufficiently good to provide ignition and self-sustained burn. (author)

  20. Materials requirements for fusion reactors

    International Nuclear Information System (INIS)

    Once the physics of fusion devices is understood, one or more experimental power reactors (EPR) are planned which will produce net electrical power. The structural material for the device will probably be a modification of an austenitic stainless steel. Unlike fission reactors, whose pressure boundaries are subjected to no or only light irradiation, the pressure boundary of a fusion reactor is subjected to high atomic displacement-damage and high production rates of transmutation products, e.g., helium and hydrogen. The design data base must include irradiated materials. Since in situ testing to obtain tensile, fatigue, creep, crack-growth, stress-rupture, and swelling data is currently impossible for fusion reactor conditions, a program of service-temperature irradiations in fission reactors followed by postirradiation testing, simulation of fusion conditions, and low-fluence 14 MeV neutron-irradiation tests are planned. For the Demonstration Reactor (DEMO) expected to be built within ten years after theEPR, higher heat fluxes may require the use of refractory metals, at least for the first 20 cm. A partial data base may be provided by high-flux 14 MeV neutron sources being planned. Many materials other than those for structural components will be required in the EPR and DEMO. These include superconducting magnets, insulators, neutron reflectors and shields, and breeding materials. The rest of the device should utilize conventional materials except that portion involved in tritium confinement and recovery

  1. The safety of light water reactors

    International Nuclear Information System (INIS)

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  2. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  3. ICONE-4: Proceedings. Volume 2: Advanced reactors

    International Nuclear Information System (INIS)

    The proceedings for this conference are contained in 5 volumes. This volume is divided into the following areas: advanced reactor requirements; advanced reactor design and analysis; arrangement and construction; specific reactor designs; demonstration testing; safety systems and analysis; component demonstration testing; advanced reactor containment design; licensing topics and updates; accelerator applications and spallation sources; and advanced reactor development. Separate abstracts were prepared for most papers in this volume

  4. Molten-Salt Depleted-Uranium Reactor

    OpenAIRE

    Dong, Bao-Guo; Dong, Pei; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results...

  5. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  6. Analysis of higher power research reactors' parameters

    International Nuclear Information System (INIS)

    The objective of this monograph was to analyze and compare parameters of different types of research reactors having higher power. This analysis could be used for decision making and choice of a reactor which could possibly replace the existing ageing RA reactor in Vinca. Present experimental and irradiation needs are taken into account together with the existing reactors operated in our country, RB and TRIGA reactor

  7. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  8. Prometheus Project Reactor Module Final Report, For Naval Reactors Information

    International Nuclear Information System (INIS)

    The Naval Reactors Prime Contractor Team (NRPCT) led the development of a power plant for a civilian nuclear electric propulsion (NEP) system concept as part of the Prometheus Project. This report provides a summary of the facts, technical insights, and programmatic perspectives gained from this two-year program. The Prometheus Project experience has been extensively documented to better position the US for future space reactor development. Major Technological and engineering challenges exist to develop a system that provides useful electric power from a nuclear fission heat source operating in deep space. General issues include meeting mission requirements in a system that has a mass low enough to launch from earth while assuring public safety and remaining safely shutdown during credible launch accidents. These challenges may be overcome in the future if there is a space mission with a compelling need for nuclear power to drive development. Past experience and notional mission requirements indicate that any useful space reactor system will be unlike past space reactors and existing terrestrial reactors

  9. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  10. Operating experiences of the research reactors

    International Nuclear Information System (INIS)

    Nuclear research reactors are devices of wide importance, being used for different scientific research tasks, for testing and improving reactor systems and components, for the production of radioisotopes, for the purposes of defence, for staff training and for other purposes. There are three research reactors in Yugoslavia: RA, RB and TRIGA. Reactors RA and RB at the 'Boris Kidric' Institute of Nuclear Sciences are of heavy water type power being 6500 and 10 kW, and maximum thermal neutron flux of 1014 and 1011(n/cm2s), respectively. TRIGA reactor at the 'Jozef Stefan' Institute in Ljubljana is of 250 kW power and maximum thermal neutron flux of 1013(n/cm2s). Reactors RA and RB use soviet fuel in the form of uranium dioxide (80% enriched) and metallic uranium (2%). Besides, RB reactor operates with natural uranium too. TRIGA reactor uses american uranium fuel 70% and 20% enriched, uranium being mixed homogeneously with moderator (ZrH). Experiences in handling and controlling the fuel before irradiation in the reactor, in reactor and after it are numerous and valuable, involving either the commercial arrangements with foreign producers, or optimal burn up in reactor or fuel treatment after the reactor irradiation. Twenty years of operating experience of these reactors have great importance especially having in mind the number of trained staff. Maintenance of reactors systems and fluids in continuous operation is valuable experience from the point of view of water reactor utilization. The case of the RA reactor primary cycle cobalt decontamination and other events connected with nuclear and radiation security for all three reactors are also specially emphasized. Owing to our research reactors, numerous theoretical, numerical and experimental methods are developed for nuclear and other analyses and design of research and power reactors,as well as methods for control and protection of radiation. (author)

  11. Establishment of licensing process for development reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik (and others)

    2006-02-15

    A study on licensing processes for development reactors has been performed to prepare the licensing of development reactors developed in Korea. The contents and results of the study are summarized as follows. The licensing processes for nuclear reactors in Korea, U.S.A., Japan, France, U.K., Canada, and IAEA were surveyed and analyzed to obtain technical bases necessary for establishing licensing processes applicable to development reactors in Korea. Based on the technical bases obtained the above analysis, the purpose, power output, and design characteristics of development reactors were analyzed in detail. The analysis results suggested that development reactors should be classified as a new reactor category (called as 'development reactor') separated from the current reactor categories such as the research reactor and the power reactor. Therefore, it is proposed to establish a new reactor category classified as 'development reactor' for the development reactors. And licensing processes, including licensing technical requirements, licensing document requirements, and other regulatory requirements, were also proposed for the development reactors. In order to institutionalize the licensing processes developed in this study, it is necessary to revise the current laws. Therefore, draft provisions of Atomic Energy Act, Enforcement Decree of the Atomic Energy Act, and Enforcement Regulation of the Atomic Energy Act have been developed for the preparation of the future legalization of the licensing processes proposed for the development reactors. Conclusively, a proposal of licensing processes and draft provisions of laws have been developed for the development reactors. The results proposed in this study can be applied directly to the licensing of the future development reactors. Furthermore, they will also contribute to establishing successfully the licensing processes of the development reactors.

  12. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors

    Science.gov (United States)

    Zweibaum, Nicolas

    The development of advanced nuclear reactor technology requires understanding of complex, integrated systems that exhibit novel phenomenology under normal and accident conditions. The advent of passive safety systems and enhanced modular construction methods requires the development and use of new frameworks to predict the behavior of advanced nuclear reactors, both from a safety standpoint and from an environmental impact perspective. This dissertation introduces such frameworks for scaling of integral effects tests for natural circulation in fluoride-salt-cooled, high-temperature reactors (FHRs) to validate evaluation models (EMs) for system behavior; subsequent reliability assessment of passive, natural- circulation-driven decay heat removal systems, using these validated models; evaluation of life cycle carbon dioxide emissions as a key environmental impact metric; and recommendations for further work to apply these frameworks in the development and optimization of advanced nuclear reactor designs. In this study, the developed frameworks are applied to the analysis of the Mark 1 pebble-bed FHR (Mk1 PB-FHR) under current investigation at the University of California, Berkeley (UCB). (Abstract shortened by UMI.).

  13. Nordic study on reactor waste

    International Nuclear Information System (INIS)

    In 1981, 14 nuclear power reactors are in operation and 2 under construction in the Nordic countries. So far, the reactor waste originating from day-to-day operation of these plants has been stored in solidified form at the reactor sites. Within a few years a satisfactory disposal procedure needs to be established. While the main R and D effects in the waste field have earlier been devoted to the question of irradiated fuel and waste from reprocessing, there is therefore now an increased interest in reactor waste with its much lower radioactivity but somewhat larger volumes. Since 1977, efforts have been made in a joint Nordic study to examine which facts need to be known in order to perform a comprehensive safety assessment of a reactor waste management system. In the present study a Reference system related to the waste generated over 30 years from six 500 MW-reactors is examined. The dominating radionuclides during storage and transportation accident scenarios are Cs-134, Cs-137 and Co-60. For most of the release scenarios from repositories Cs-137 and Sr-90 are dominating. Some scenarios are, however, dominated by the very longlived nuclides I-129 and C-14. A closer examination of the concentration in the waste of these nuclides and of their leaching properties indicates that their small - but significant - influence, as calculated, is probably grossly overestimated. The mechanical stability obtained in routine solidification processes of reactor waste products in conjunction with the outer container (steel drum, transport container, etc.) turns out to be sufficient. Difficulties were encountered in applying ICRP methodology and available dose calculation methods to calculation of population doses due to small activity releases, and effects extending into the far future. (EG)

  14. When reactors reach old age

    International Nuclear Information System (INIS)

    While the battle over whether to build new nuclear plants has quieted in recent times, a second struggle is shaping up in the United States as reactors approach a new stage of life: retirement. Four decades into the nuclear power age, questions of how best to dismantle and dispose of a nuclear power plant remain largely unanswered. The debates have been mainly academic until now - although reactors have operated for 25 years, decommissioning retired reactors has simply not been fully planned in this country. But the Shippingport Atomic Power Station in Pennsylvania, the first large-scale power reactor to be retired, is now being decommissioned. The work has rekindled the debates in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. Virtually all groups involved in decommissioning a reactor in the United States - the utility, the Nuclear Regulatory Commission, the U.S. Department of Energy, the U.S. Environmental Protection Agency, state public service commissions, and citizen organizations - agree that for the most part the technology to dismantle and dispose of a reactor safely is available. They disagree, however, on which technical option is the safest or cheapest and on who should pay for dismantlement. And there are further complications: Which regulations must be complied with. How much radiation exposure for workers and the public is acceptable. Even with answers to these questions, uncertainty about where to dispose of the radioactive waste and about how much residual radiation can be left at a former reactor site plagues the architects of decommissioning. This article discusses these questions

  15. Market introduction of innovative reactors

    International Nuclear Information System (INIS)

    Besides the development of evolutionary and passive LWR, also that of innovative reactors is attractive, because other applications (new markets) besides base load electricity generation can be thought of, and interesting new features on the area of safety or waste incineration can be shown. For market introduction however, a (partial) new infrastructure and a demonstration plant are required. Taking the abundance of fossil fuels and the accompanying low fuel prices today and in the near future into account, the funds to finance this will only become available when 1)the projected energy generating costs will be substantially lower than those of today, and 2)the costs of market introduction (i.e. the demonstration plant and the required infrastructure) will be limited. Generally speaking, there are two ways to seek competitiveness of a reactor type: 1)application of economy of scale, and 2)simplification. In this paper, an example of the second possibility is pursued for an innovative reactor type. The HR1 is a 40 MWth high temperature gas cooled reactor for heat and power cogeneration, a simplified version of the German HTR Module. The power level is chosen so small that additional safety features become apparent. For example, after a total loss of coolant the fuel remains fully intact, even if the reactor shutdown system fails and the reactor goes critical again after a number of hours. These safety features are used to omit certain components, like the emergency core cooling system, or to select a cheaper version of components, e.g. replacing the containment building by a confinement. Moreover, degradation of the safety class of certain components comes within the realm of possibilities. The cost reduction offered by these two measures are used to more than offset the economy-of-scale disadvantage of this small reactor system. (author)

  16. University of Florida training reactor. Annual progress report, September 1, 1984-August 31, 1985

    International Nuclear Information System (INIS)

    This annual progress report of the University of Florida Training Reactor discusses: reactor operation; personnel; modifications made to the reactors; reactor maintenance; and testing of reactor systems

  17. Reactivity determination in accelerator driven reactors using reactor noise analysis

    Directory of Open Access Journals (Sweden)

    Kostić Ljiljana 1

    2002-01-01

    Full Text Available Feynman-alpha and Rossi-alpha methods are used in traditional nuclear reactors to determine the subcritical reactivity of a system. The methods are based on the measurement of the mean value, variance and the covariance of detector counts for different measurement times. Such methods attracted renewed attention recently with the advent of the so-called accelerator driven reactors (ADS proposed some time ago. The ADS systems, intended to be used either in energy generation or transuranium transmutation, will use a subcritical core with a strong spallation source. A spallation source has statistical properties that are different from those traditionally used by radioactive sources. In such reactors the monitoring of the subcritical reactivity is very important, and a statistical method, such as the Feynman-alpha method, is capable of resolving this problem.

  18. Fast Reactor Development Strategy in China

    International Nuclear Information System (INIS)

    As one of the largest developing countries, China needs a reliable energy supplement. At the same time, China should improve the energy structure to decrease CO2 emissions. Nuclear and renewable energies are the main solutions to these issues. According to the research results, the nuclear capacity should increase to 400 GW(e) up to 2050. Fast reactors must be developed considering the limitation of uranium resources. In order to deploy fast reactor technology, the ‘experimental reactor, demonstration reactor and commercial reactor’ strategy has been suggested. China has finished the construction of the China Experimental Fast Reactor (CEFR) and gained necessary experience about fast reactors. The China Institute of Atomic Energy (CIAE) has begun to design the CFR-600, a 600 MW(e) demonstration fast reactor. This reactor will be put into operation before 2025. After that, a larger commercial reactor will be constructed. Besides fast reactors, all of other key sectors of fuel cycle will be developed at the same time such as reprocessing, fast reactor fuel, etc. There are two main tasks of fast reactors, one of which is to raise the utility ratio of uranium, and the other one is to transmute the long life waste of light water reactors. The fast reactor will be designed as a breeder and burner, respectively. (author)

  19. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  20. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and