WorldWideScience

Sample records for berkeley lab scientists

  1. Diversity, Equity, & Inclusion at Berkeley Lab

    Science.gov (United States)

    Berkeley Lab A-Z Index Directory Search Diversity, Equity, & Inclusion at Berkeley Lab Home Diversity & Inclusion Council Women Scientists & Engineers Council Employee Resource Groups -and culture of inclusion are key to attracting and engaging the brightest minds and furthering our

  2. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  3. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award; scientist's work on supernovae reveals accelerating Universe

    CERN Multimedia

    2002-01-01

    Saul Perlmutter, from Lawrence Berkeley National Laboratory Physics Division and leader of the Supernova Cosmology Project based there, has won the DOE's 2002 E.O. Lawrence Award in the physics category (2 pages).

  4. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award scientist's work on supernovae reveals accelerating universe

    CERN Multimedia

    2002-01-01

    "Saul Perlmutter, a member of Lawrence Berkeley National Laboratory's Physics Division and leader of the international Supernova Cosmology Project based there, has won the Department of Energy's 2002 E.O. Lawrence Award in the physics category" (1/2 page).

  5. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  6. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  7. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    International Nuclear Information System (INIS)

    Lawrence Berkeley National Laboratory

    2007-01-01

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material

  8. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  9. UC-Berkeley-area citizens decry waste transfer from lab.

    CERN Multimedia

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  10. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    International Nuclear Information System (INIS)

    Budinger, Thomas

    2006-01-01

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  11. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    International Nuclear Information System (INIS)

    Collier, Michael

    2002-01-01

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle

  12. Popular Berkeley Lab X-ray Data Booklet reissued

    International Nuclear Information System (INIS)

    Robinson, Art

    2001-01-01

    X-ray scientists and synchrotron-radiation users who have been patiently waiting for an updated version of the popular X-Ray Data Booklet last published in 1986 by the Center for X-Ray Optics at the Lawrence Berkeley National Laboratory can breathe a sigh of relief. The venerable ''little orange book'' has now been reissued under the auspices of CXRO and the Advanced Light Source (ALS) with an April printing of 10,000 paper copies and the posting of a Web edition at http://xdb.lbl.gov

  13. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    International Nuclear Information System (INIS)

    Hargrove, Paul H; Duell, Jason C

    2006-01-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters

  14. Guidelines for the segregation characterization management of dry waste at Berkeley Lab

    International Nuclear Information System (INIS)

    1997-05-01

    Managing and disposing of dry low level radioactive waste at Berkeley Lab. is problematic. The Waste Management Group must assure off site treatment, storage, and disposal facilities that dry waste from Berkeley Lab. is free of liquids and regulated metals (such as lead and mercury). RTR (Real Time Radioagraphy) used for waste to be rejected. This pamphlet helps to clarify dry waste management requirements that will ensure that Berkeley Lab. dry waste will be accepted for off site shipment. These issues are critical if we are to have an off site disposal option for your dry radioactive waste

  15. Berkeley Lab Pilot on External Regulation of DOE National Laboratories by the U.S. NRC

    International Nuclear Information System (INIS)

    Zeman, Gary H.

    1999-01-01

    The US Department of Energy and the US Nuclear Regulatory Commission entered into an agreement in November 1997 to pursue external regulation of radiation safety at DOE national laboratories through a Pilot Program of simulated regulation at 6-10 sites over a 2 year period. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab), the oldest of the DOE national laboratories, volunteered and was selected as the first Pilot site. Based on the similarities and linkages between Berkeley Lab and nearby university research laboratories, Berkeley Lab seemed a good candidate for external regulation and a good first step in familiarizing NRC with the technical and institutional issues involved in regulating laboratories in the DOE complex. NRC and DOE team members visited Berkeley Lab on four occasions between October 1997 and January 1998 to carry out the Pilot. The first step was to develop a detailed Work Plan, then to carry out both a technical review of the radiation safety program and an examination of policy and regulatory issues. The Pilot included a public meeting held in Oakland, CA in December 1997. The Pilot concluded with NRC's assessment that Berkeley Lab has a radiation protection program adequate to protect workers, the public and the environment, and that it is ready to be licensed by the NRC with minor programmatic exceptions. A draft final report of the Pilot was prepared and circulated for comment as a NUREG document (dated May 7, 1998). The report's recommendations include extending NRC regulatory authority to cover all ionizing radiation sources (including accelerators, x-ray units, NARM) at Berkeley Lab. Questions remaining to be resolved include: who should be the licensee (DOE, the Lab, or both)?; dealing with legacy issues and NRC D and D requirements; minimizing dual oversight; quantifying value added in terms of cost savings, enhanced safety, and improved public perception; extrapolating results to other national laboratories; and

  16. LAB building a home for scientists

    CERN Document Server

    Fishman, Mark C

    2017-01-01

    Laboratories are both monasteries and space stations, redolent of the great ideas of generations past and of technologies to propel the future. Yet standard lab design has changed only little over recent years. Here Mark Fishman describes how to build labs as homes for scientists, to accommodate not just their fancy tools, but also their personalities. This richly illustrated book explores the roles of labs through history, from the alchemists of the Middle Ages to the chemists of the 19th and 20th centuries, and to the geneticists and structural biologists of today, and then turns to the special features of the laboratories Fishman helped to design in Cambridge, Shanghai, and Basel. Anyone who works in, or plans to build a lab, will enjoy this book, which will encourage them to think about how this special environment drives or impedes their important work.

  17. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Science.gov (United States)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  18. Brookhaven Lab and Argonne Lab scientists invent a plasma valve

    CERN Multimedia

    2003-01-01

    Scientists from Brookhaven National Laboratory and Argonne National Laboratory have received U.S. patent number 6,528,948 for a device that shuts off airflow into a vacuum about one million times faster than mechanical valves or shutters that are currently in use (1 page).

  19. Development of an accelerator-based BNCT facility at the Berkeley Lab

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

    1998-01-01

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7 Li(p,n) 7 Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  20. A Community of Scientists and Educators: The Compass Project at UC Berkeley

    Science.gov (United States)

    Roth, Nathaniel; Schwab, Josiah

    2016-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.

  1. Fermilab and Berkeley Lab Collaborate with Meyer Tool on Key Component for European Particle Accelerator

    CERN Multimedia

    2004-01-01

    Officials of the U.S. Department of Energy's Fermi National Accelerator Laboratory and Lawrence Berkeley National Laboratory announced yesterday the completion of a key component of the U.S. contribution to the Large Hadron Collider, a particle accelerator under construction at CERN, in Geneva, Switzerland

  2. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    Energy Technology Data Exchange (ETDEWEB)

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  3. Berkeley Lab Scientist Named MacArthur "Genius" Fellow for Audio

    Science.gov (United States)

    1, 2015 5776 Views TAGS: awards, people, physics Connect twitter instagram LinkedIn facebook youtube Physics + Cosmology Chemistry + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S Privacy & Security Notice twitter instagram LinkedIn facebook youtube

  4. SCFA lead lab technical assistance at Lawrence Berkeley National Laboratory: Baseline review of three groundwater plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry; et al.

    2002-09-26

    During the closeout session, members of the technical assistance team conveyed to the site how impressed they were at the thoroughness of the site's investigation and attempts at remediation. Team members were uniformly pleased at the skilled detection work to identify sources, make quick remediation decisions, and change course when a strategy did not work well. The technical assistance team also noted that, to their knowledge, this is the only DOE site at which a world-class scientist has had primary responsibility for the environmental restoration activities. This has undoubtedly contributed to the successes observed and DOE should take careful note. The following overall recommendations were agreed upon: (1) The site has done a phenomenal job of characterization and identifying and removing source terms. (2) Technologies selected to date are appropriate and high impact, e.g. collection trenches are an effective remedial strategy for this complicated geology. The site should continue using technology that is adapted to the site's unique geology, such as the collection trenches. (3) The site should develop a better way to determine the basis of cleanup for all sites. (4) The sentinel well system should be evaluated and modified, if needed, to assure that the sentinel wells provide coverage to the current site boundary. Potential modifications could include installation, abandonment or relocation of wells based on the large amount of data collected since the original sentinel well system was designed. (5) Modeling to assist in remedial design and communication should continue. (6) The site should develop a plan to ensure institutional memory. (7) The most likely possibility for improving closure to 2006 is by removing the residual source of the Old Town plume and establishing the efficacy of remediation for the 51/64 plume.

  5. The Seibersdorf Labs Through the Eyes of Visiting Scientists

    International Nuclear Information System (INIS)

    Ralambomanana, Norbertin M.; Ntho, Motlatsi James; Abd Elkareim, Tahani Bashir; Ndiaye, Fatimata

    2014-01-01

    Lesotho: In Lesotho, we are being affected by climate change, meaning we have more and longer droughts, and the rains farmers need for their crops to grow and flourish are often late. We are also seeing more agricultural crops blighted by disease. Therefore I am working to improve sweet potatoes and wheat because of wheat’s importance in the daily diet, and because sweet potatoes could become an equally important staple in the next 10 years if we make a greater effort to promote its consumption. In Lesotho’s Department of Agriculture Research, we are focusing on these two staple foods initially because we want to improve the country’s food security — growing more and better crops to adequately feed the population. Once I return home at the end of my two month fellowship at Seibersdorf, I will be using nuclear and other techniques to improve the drought tolerance, yield, nutritional value and disease resistance of both sweet potato and wheat. Madagascar: “The island of Madagascar has a population of more than 23 million. Over half of its rural dwellers are agricultural workers, particularly in cattle farming. But the country still has to import milk as it is depleting its stock of indigenous Malagasy Zebu cattle in order to keep up with beef exports to neighbouring islands. Therefore, the Madagascar Government is partnering with the IAEA to improve milk and beef production from the indigenous Zebu, Renitelo and Manjani Boina cattle breeds, through selective breeding based on the intimate knowledge of their DNA. Fellowships like the one from which I am benefitting are very important for developing Member States because by training our scientists, the IAEA is giving us the tools we need to meet our own needs now and in the future. Senegal: “In Senegal, we are struggling to adequately feed our population as persistent drought and poor soil quality combine to cause crop failure year after year. My area of focus is the improvement of soil fertility and

  6. ASTRO 101 Labs and the Invasion of the Cognitive Scientists

    Science.gov (United States)

    Slater, Stephanie J.

    2015-04-01

    Since the mid 1800's there has been widespread agreement that we should be about the business of engaging students in the practices of scientific research in order to best teach the methods and practices of science. There has been significantly less agreement on precisely how to teach science by mimicking scientific inquiry in a way that can be empirically supported, even with our ``top students.'' Engaging ``ASTRO 101 students'' in scientific inquiry is a task that has left our astronomy education research community more than a little stymied, to the extent that it is difficult to find non-major science students practicing anything other than confirmation exercises in college labs. Researchers at the CAPER Center for Astronomy & Physics Education Research have struggled with this problem as well, until in our frustration we had to ask: ``Can research tell us anything about how to get students to do research?'' This talk presents an overview of the cognitive science that we've brought to bear in the ASTRO 101 laboratory setting for non-science majoring undergraduates and future teachers, along with the results of early studies that suggest that a ``backwards faded scaffolding'' approach to instruction in Intro Labs can successfully support large numbers of students in enhancing their understanding of the nature of scientific inquiry. Supported by NSF DUE 1312562.

  7. Lab coats in Hollywood science, scientists, and cinema

    CERN Document Server

    Kirby, David A

    2013-01-01

    Stanley Kubrick’s 2001: A Space Odyssey, released in 1968, is perhaps the most scientifically accurate film ever produced. The film presented such a plausible, realistic vision of space flight that many moon hoax proponents believe that Kubrick staged the 1969 moon landing using the same studios and techniques. Kubrick’s scientific verisimilitude in 2001 came courtesy of his science consultants—including two former NASA scientists—and the more than sixty-five companies, research organizations, and government agencies that offered technical advice. Although most filmmakers don’t consult experts as extensively as Kubrick did, films ranging from A Beautiful Mind and Contact to Finding Nemo and The Hulk have achieved some degree of scientific credibility because of science consultants. In Lab Coats in Hollywood, David Kirby examines the interaction of science and cinema: how science consultants make movie science plausible, how filmmakers negotiate scientific accuracy within production constraints, and ...

  8. Berkeley Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    To a regular observer at annual international meetings, progress in particle physics from one year to the next sometimes might seem ponderously slow. But shift the timescale and the result is startling. Opening his summary of the 1986 International Conference on High Energy Physics, held in Berkeley, California, from 16-23 July, Steve Weinberg first recalled the 1966 Conference, also held in Berkeley. Then the preoccupations were current algebra, hadron resonances and the interpretation of scattering in terms of Regge poles, and the theory of weak interactions. Physics certainly has moved.

  9. Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    To a regular observer at annual international meetings, progress in particle physics from one year to the next sometimes might seem ponderously slow. But shift the timescale and the result is startling. Opening his summary of the 1986 International Conference on High Energy Physics, held in Berkeley, California, from 16-23 July, Steve Weinberg first recalled the 1966 Conference, also held in Berkeley. Then the preoccupations were current algebra, hadron resonances and the interpretation of scattering in terms of Regge poles, and the theory of weak interactions. Physics certainly has moved

  10. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    culture and policies at MSD MSD0010: Integrated Safety Management: Principles and Case Studies Calendar ? Click Here! Resources for MSD Safety MSD Safety MSD's Integrated Safety Management Plan [PDF] Safety for MSD classes on Integrated Safety Management MSD0015 Handout - Waste Briefing Document [PDF] Waste

  11. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  12. Demise of Texas collider has made Europe's lab a magnet for scientists

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    Had U.S. politics and science meshed more favorably, physicists from around the world would now be flocking to Waxahachie. The defunct Superconducting Super Collider (SSC) should by now have been smashing atoms, but now Europe's top nuclear research lab offers a more picturesque world capital of physics that the prairie south of Dallas

  13. Helping Students to Think Like Scientists in Socratic Dialogue-Inducing Labs

    Science.gov (United States)

    Hake, Richard

    2012-01-01

    Socratic dialogue-inducing (SDI) labs are based on Arnold Arons' half-century of ethnographic research, listening carefully to students' responses to probing Socratic questions on physics, science, and ways of thinking, and culminating in his landmark "Teaching Introductory Physics." They utilize "interactive engagement" methods and are designed,…

  14. 13 scientists aced their science communication test at the FameLab final

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    On 8 May, the joint CERN and Swiss FameLab final took place in CERN’s Restaurant 1, which was transformed into a cosy setting for the special occasion. The jury selected Oskari Vinko, a Master’s student in synthetic biology at ETH Zurich, as the winner of the Swiss final while Lillian Smestad, a physicist in the Aegis collaboration, will be the first CERN finalist to go to the international final at the Cheltenham Science Festival. In addition, CMS physicist Christos Lazaridis was awarded the audience prize.   

  15. Behind the scenes at FameLab, the international competition for young scientists

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    FameLab is an international science communication competition for young researchers and science teachers aged 18 to 35. At CERN, preparations are under way to recruit participants, advertise the event to the public and organise the regional semi-finals for Suisse Romande, which will take place on Saturday, 4 February 2012 in the Globe of Science and Innovation. The Bulletin looks ahead to the forthcoming event…   As you might have read in the 5 December 2011 issue of the Bulletin, Switzerland is one of the 20 countries participating in the FameLab 2012 competition, and the regional finals for French-speaking Switzerland will take place at CERN in the Globe of Science and Innovation on Saturday, 4 February 2012. “At the moment we’re still recruiting participants through various channels (registration is open till 31 January) and organising the one-day programme of events in the Globe,” says project coordinator Paola Catapano of the CERN Communication ...

  16. Declan FAHY (2015), The New Celebrity Scientists. Out of the Lab and into the Limelight

    OpenAIRE

    Fines-Neuschild, Mirjam

    2016-01-01

    The New Celebrity Scientists est le premier ouvrage de Declan Fahy. Il y fait le portrait de huit scientifiques en suivant leur parcours jusqu’à la célébrité et présente l’influence de leurs propos sur les politiques publiques. De ces huit scientifiques, trois sont physiciens : Stephen Hawking, Brian Greene et Neil de Grasse Tyson. Sont aussi présentés Richard Dawkins, biologiste, Steven Pinker, psychologue cognitiviste, Stephen Jay Gould, paléontologue, Susan Greenfield, pharmacologue, et Ja...

  17. Berkeley's Philosophy of Mathematics

    CERN Document Server

    Jesseph, Douglas M

    1993-01-01

    In this first modern, critical assessment of the place of mathematics in Berkeley's philosophy and Berkeley's place in the history of mathematics, Douglas M. Jesseph provides a bold reinterpretation of Berkeley's work. Jesseph challenges the prevailing view that Berkeley's mathematical writings are peripheral to his philosophy and argues that mathematics is in fact central to his thought, developing out of his critique of abstraction. Jesseph's argument situates Berkeley's ideas within the larger historical and intellectual context of the Scientific Revolution. Jesseph begins with Berkeley's r

  18. Electron Microscope Center Opens at Berkeley.

    Science.gov (United States)

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  19. Environmental research at Berkeley

    CERN Multimedia

    1973-01-01

    The information concerning the Energy and Environment Programme at the Lawrence Berkeley Laboratory is based on a talk given at CERN by A.M. Sessler, one of the initiators of the Programme. (Dr. Sessler has been appointed Director of the Lawrence Berkeley Laboratory, in succession to Prof. E. M. McMillan, from 1 November.) Many of the topics mentioned merit an extended story in themselves but the purpose of this article is simply to give a sketch of what is happening.

  20. Lawrence Berkeley National Laboratory 2016 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P.; Williams, Kim, P.

    2017-06-27

    FY2016 was a year of significant change and progress at Berkeley Lab. In March, Laboratory Director Michael Witherell assumed his new role when former Lab Director Paul Alivisatos became Vice Chancellor for Research at UC Berkeley. Dr. Witherell has solidified the Lab’s strategy, with a focus on long term science and technology priorities. Large-scale science efforts continued to expand at the Lab, including the Dark Energy Spectroscopic Instrument now heading towards construction, and the LUX-ZEPLIN dark matter detector to be built underground in South Dakota. Another proposed project, the Advanced Light Source-Upgrade, was given preliminary approval and will be the Lab’s largest scientific investment in years. Construction of the Integrative Genomics Building began, and will bring together researchers from the Lab’s Joint Genome Institute, now based in Walnut Creek, and the Systems Biology Knowledgebase (K-Base) under one roof. Investment in the Lab’s infrastructure also continues, informed by the Lab’s Infrastructure Strategic Plan. Another important focus is on developing the next generation of scientists with the talent and diversity needed to sustain Berkeley Lab’s scientific leadership and mission contributions to DOE and the Nation. Berkeley Lab received $897.5M in new FY2016 funding, a 12.5% increase over FY2015, for both programmatic and infrastructure activities. While the Laboratory experienced a substantial increase in funding, it was accompanied by only a modest increase in spending, as areas of growth were partially offset by the completion of several major efforts in FY2015. FY2016 costs were $826.9M, an increase of 1.9% over FY2015. Similar to the prior year, the indirect-funded Operations units worked with generally flat budgets to yield more funding for strategic needs. A key challenge for Berkeley Lab continues to be achieving the best balance to fund essential investments, deliver highly effective operational mission support and

  1. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  2. Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics | Berkeley Lab

    Science.gov (United States)

    astrophysics, dark energy, physics Connect twitter instagram LinkedIn facebook youtube This form needs + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S. Department of Energy National twitter instagram LinkedIn facebook youtube

  3. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-01-01

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  4. BERKELEY: Light Source anniversary

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The staff of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory has been too busy to celebrate the first anniversary of the facility's transition from a US Department of Energy construction project to operating third-generation synchrotron radiation source. Based on a 1.5-GeV, low-emittance electron storage ring that accommodates up to ten insertion-device radiation sources optimized primarily for the soft X-ray and vacuum ultra-violet regions of the spectrum, the ALS has completed

  5. BERKELEY: Light Source anniversary

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-10-15

    The staff of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory has been too busy to celebrate the first anniversary of the facility's transition from a US Department of Energy construction project to operating third-generation synchrotron radiation source. Based on a 1.5-GeV, low-emittance electron storage ring that accommodates up to ten insertion-device radiation sources optimized primarily for the soft X-ray and vacuum ultra-violet regions of the spectrum, the ALS has completed.

  6. Laboratories for the 21st Century: Case Studies, Molecular Foundry, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers.

  7. Berkeley automated supernova search

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  8. Berkeley automated supernova search

    International Nuclear Information System (INIS)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  9. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  10. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  11. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Science.gov (United States)

    2011-06-28

    ...-AA00 Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA AGENCY: Coast... the 4th of July Festival Berkeley Marina Fireworks Display. Unauthorized persons or vessels are... display. Background and Purpose The City of Berkeley Marina will sponsor the 4th of July Festival Berkeley...

  12. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P

    2017-08-11

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritized and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.

  13. Lab Aliens, Legendary Fossils, and Deadly Science Potions: Views of Science and Scientists from Fifth Graders in a Free-Choice Creative Writing Program

    Science.gov (United States)

    Hellman, Leslie G.

    This qualitative study uses children's writing to explore the divide between a conception of Science as a humanistic discipline reliant on creativity, ingenuity and out of the box thinking and a persistent public perception of science and scientists as rigid and methodical. Artifacts reviewed were 506 scripts written during 2014 and 2016 by 5th graders participating in an out-of classroom, mentor supported, free-choice 10-week arts and literacy initiative. 47% (237) of these scripts were found to contain content relating to Science, Scientists, Science Education and the Nature of Science. These 237 scripts were coded for themes; characteristics of named scientist characters were tracked and analyzed. Findings included NOS understandings being expressed by representation of Science and Engineering Practices; Ingenuity being primarily linked to Engineering tasks; common portrayals of science as magical or scientists as villains; and a persistence in negative stereotypes of scientists, including a lack of gender equity amongst the named scientist characters. Findings suggest that representations of scientists in popular culture highly influence the portrayals of scientists constructed by the students. Recommendations to teachers include encouraging explicit consideration of big-picture NOS concepts such as ethics during elementary school and encouraging the replacement of documentary or educational shows with more engaging fictional media.

  14. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2012-06-22

    ...: The Coast Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...

  15. 78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2013-05-17

    ... Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in approximate position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...

  16. The Incredible Shrinking Cup Lab: Connecting with Ocean and Great Lakes Scientists to Investigate the Effect of Depth and Water Pressure on Polystyrene

    Science.gov (United States)

    Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.

    2013-01-01

    Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…

  17. Results of the SNS front end commissioning at Berkeley Lab

    International Nuclear Information System (INIS)

    Ratti, A.; Ayers, J.J.; Doolittle, L.; Greer, J.B.; Keller, R.; Lewis, S.; Lionberger, C.; Monroy, M.; Pruyn, J.; Staples, J.W.; Syversrude, D.; Thomae, R.; Virostek, S.; Aleksandrov, A.; Shea, T.; SNS Accelerator Physics Group; SNS Beam Diagnostics Collaboration

    2002-01-01

    The Front-End Systems (FES) for the Spallation Neutron Source (SNS) project comprise an rf-driven H - ion source, an electrostatic 2-lens LEBT, a 2.5 MeV RFQ, followed by a 14-quadrupole, 4-rebuncher MEBT including traveling-wave fast choppers. The nominal 2.5 MeV H - beam has a current of 38 mA at a repetition rate of 60 Hz and 1 ms pulse length, for a macro duty-factor of 6%, and is chopped at a rate of approximately 1 MHz with a mini duty-factor of 68%. The normalized rms beam emittance at the MEBT exit, matching the first tank of a 402.5 MHz Alvarez linac, is measured to be approximately 0.3 π mm mrad. Diagnostic elements include wire scanners, BPMs, fast current monitors, a slit-harp emittance device and RFQ field monitoring probes. The results of the beam commissioning and the operation of the RFQ and diagnostic instrumentation are reported. The entire FES was shut down at LBNL at the end of May 2002 and will be recommissioned at ORNL prior to installation of the drift-tube linac

  18. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  19. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  20. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    International Nuclear Information System (INIS)

    Cheng, Robert K.

    1999-01-01

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  1. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  2. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  3. Connecting Scientists, College Students, Middle School Students & Elementary Students through Intergenerational Afterschool STEM Programming

    Science.gov (United States)

    Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.

    2015-12-01

    The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.

  4. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  5. The decommissioning of Berkeley II

    International Nuclear Information System (INIS)

    Hannan, A.

    2002-01-01

    This paper describes the decommissioning progress at the Magnox site at Berkeley in Gloucestershire.Throughout the work at Berkeley the emphasis has been on conducting decommissioning safely. This has been reflected in the progress of decommissioning starting with removal of the fuel from site and thus much greater than 99% of the radioactive inventory. The major radioactive hazard is the Intermediate Level Waste in the form of fuel element debris (graphite struts and extraneous magnox components removed to increase the packing density of fuel elements in flasks going to Sellafield), miscellaneous activated components, sludges and resins. Approximately 1500 m 3 of such material exists and is stored in underground waste vaults on site. Work is underway to recover and encapsulate the waste in cement so rendering it 'passively safe'. All work on site is covered by a nuclear safety case which has a key objective of minimising the radiological exposures that could accrue to workers. Reflecting this an early decision has been taken to leave work on the Reactor Pressure Vessels themselves for several decades. Also important in protection of the workforce has been control of asbestos.Much material has been removed with redundant plant and equipment, but a programme of remediation in line with government legislation has been required to ensure personnel safety throughout the decommissioning period and into Care and Maintenance.In addition to health and safety matters the site approach to environmental issues has been consistent. Formally such standards as ISO 14001 have been adhered to and the appropriate certification maintained. At a working level the principles of reduce, reuse and recycle have been inculcated

  6. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  7. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.

  8. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  9. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Thorson, Patrick

    1998-01-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  10. A Big Bang Lab

    Science.gov (United States)

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  11. STAR FORMATION NEAR BERKELEY 59: EMBEDDED PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosvick, J. M. [Department of Physical Sciences, Thompson Rivers University, 900 McGill Road, Kamloops, BC V2C 0C8 (Canada); Majaess, D. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada)

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (∼2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, {sup 12}CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v {sub LSR} = –15 to –17 km s{sup –1}, which agrees with the velocity adopted for Berkeley 59 (–15.7 km s{sup –1}), while spectral energy distribution models yield an average interstellar extinction A{sub V} and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  12. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    2015-02-02

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.  Created: 2/2/2015 by Office of the Associate Director for Communication (OADC).   Date Released: 2/2/2015.

  13. BERKELEY/STANFORD: B factory plans

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    For the past several years, accelerator physicists at Lawrence Berkeley Laboratory (LBL) and the Stanford Linear Accelerator Center (SLAC) have been involved in the design of an Asymmetric B Factory to be sited in the tunnel of the PEP electron-positron collider at SLAC

  14. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    International Nuclear Information System (INIS)

    Packard, Richard

    2006-01-01

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He

  15. Superbends expand the scope of Berkeley's ALS

    CERN Document Server

    Robin, D S; Tamura, L S

    2002-01-01

    The first-ever retrofit of superconducting bend magnets into the storage ring of an operating synchrotron radiation source extends the spectrum of Lawrence Berkeley National Laboratory's Advanced Light Source into the hard-X-ray region without compromising soft X-ray availability, or performance. (4 refs).

  16. Altitude Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Altitude Lab evaluates the performance of complete oxygen systems operated in individually controlled hypobaric chambers, which duplicate pressures that would be...

  17. THE YOUNG OPEN CLUSTER BERKELEY 55

    Energy Technology Data Exchange (ETDEWEB)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2012-02-15

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster with a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.

  18. Political-social reactor problems at Berkeley

    International Nuclear Information System (INIS)

    Little, G.A.

    1980-01-01

    For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitioned the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)

  19. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  20. C. Judson King of UC Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director of the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.

  1. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  2. Labs to go up for bid in 2005 University may lose research facilities if it does not have competitive offer

    CERN Multimedia

    Foxman, A

    2003-01-01

    "...When the UC's contracts to run the Los Alamos, Lawrence Livermore and Berkeley National Labs run out in 2005, the UC will have to compete to keep them for the first time in over half a century" (1 page).

  3. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  4. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  5. PD Lab

    Directory of Open Access Journals (Sweden)

    Marcel Bilow

    2015-08-01

    Full Text Available PD Lab explores the applications of building sector related product development.  PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  6. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  7. New nuclear physics at Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    One of the highlights of the summer was the International Conference on Nuclear Physics, held at Berkeley in August. These big meetings provide a periodic focus for the nuclear physics community. Overall, the Conference paid a lot of attention to topics and phenomna which only a few years ago would have been considered exotic. With many novel ideas being put forward and with new projects afoot, a lot of fresh ground could have been covered by the time of the next meeting, scheduled to be held in Florence in a few years

  8. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  9. The radioactive inventory of a Berkeley heat exchanger

    International Nuclear Information System (INIS)

    Hancock, R.

    1988-10-01

    The Central Electricity Generating Board has announced a date for the final shutdown of the first of the Magnox power stations at Berkeley (March 1989), and is in the process of preparing Pre-Decommissioning Safety Reports (PDSR) for the decommissioning of Berkeley and Bradwell. This report supports these PDSR studies and reports work carried out within the Research Division at Berkeley Nuclear Laboratories on the radioactive inventories of the heat exchangers at Berkeley Power Station. At Berkeley, the heat exchangers will be included in stage two decommissioning to which they will contribute the largest mass of contaminated material. The purpose of this report is to bring together all of the available data on the contamination in the heat exchangers at Berkeley Power Station, and to recommend a database from which the options for disposal of the heat exchangers may be formulated. (author)

  10. TELECOM LAB

    CERN Multimedia

    IT-CS-TEL Section

    2001-01-01

    The Telecom Lab is moving from Building 104 to Building 31 S-026, with its entrance via the ramp on the side facing Restaurant n°2. The help desk will thus be closed to users on Tuesday 8 May. On May 9, the Lab will only be able to deal with problems of a technical nature at the new address and it will not be able to process any new subscription requests throughout the week from 7 to 11 May. We apologise for any inconvenience this may cause and thank you for your understanding.

  11. The lab of fame

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    For a third time, CERN is organising the Swiss heat of Famelab, the world’s leading science communication competition that has already gathered over 5,000 young and talented scientists and engineers from all across the planet.   Besides their degrees, the scientists who participate in Famelab have another thing in common: their passion for communicating science. Coming from a variety of scientific fields, from medicine to particle physics and microbiology, the contestants have three minutes to present a science, technology, mathematics or engineering-based talk using only the props he or she can carry onto the stage; PowerPoint presentations are not permitted. The contestants are then judged by a panel of three judges who evaluate the content, clarity and charisma of their talks. What's unique about FameLab is the fact that content is an important aspect of the performance. At the end of their presentation, contestants are often questioned about the scientific relevance of...

  12. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  13. City of Berkeley, California Municipal Tree Resource Analysis

    Science.gov (United States)

    S.E. Maco; E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao

    2005-01-01

    Vibrant, renowned for its livability and cultural wealth, the city of Berkeley maintains trees as an integral component of the urban infrastructure. Research indicates that healthy trees can mitigate impacts associated with the built environment by reducing stormwater runoff, energy consumption, and air pollutants. Put simply, trees improve urban life, making Berkeley...

  14. Treatment of Berkeley boilers in Studsvik. Project description and experiences - Berkeley Boilers Project

    International Nuclear Information System (INIS)

    Saul, Dave; Davidson, Gavin; Wirendal, Bo

    2014-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. In November 2012 Studsvik was awarded a further contract for the remaining ten Berkeley Boilers with the requirement to remove all boilers from the Berkeley site by 31 March 2013. Again this was successfully achieved ahead of programme with all boilers in Sweden by 1 April 2013. A total of nine boilers have now been processed and all remaining boilers will be completed by end of September 2014. The projects have had many challenges including a very tight timescale and both have been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the boilers to date. (authors)

  15. What Made Berkeley Great? The Sources of Berkeley's Sustained Academic Excellence. Research & Occasional Paper Series CSHE.3.11

    Science.gov (United States)

    Breslauer, George W.

    2011-01-01

    University of California (UC) Berkeley's chief academic officer explores the historical sources of Berkeley' academic excellence. He identifies five key factors: (1) wealth from many sources; (2) supportive and skilled governors; (3) leadership from key UC presidents; (4) the pioneering ethos within the State of California; and (5) a process of…

  16. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  17. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  18. UC Berkeley's Celebration of the International Year of Astronomy 2009

    Science.gov (United States)

    Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.

    2010-08-01

    We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.

  19. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  20. BERKELEY: Collaboration on PEP-II

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Since the announcement by President Clinton in October 1993 that the US Department of Energy would going ahead the PEPII Asymmetric B Factory project (a joint proposal of the Stanford Linear Accelerator Center - SLAC, the Lawrence Berkeley National Laboratory - LBNL, and the Lawrence Livermore National Laboratory - LLNL), LBNL has continued its strong support of the project (for a review, see October, page 9). LBNL accelerator physicists have been active in the design of PEP-II since 1988 - shortly after the original concept was suggested by LBNL Deputy Director Pier Oddone. Indeed, the original feasibility study for such a machine was a joint LBNLSLAC- Caltech effort led by Swapan Chattopadhyay, now head of LBNL's Center for Beam Physics (CBP) in the Accelerator & Fusion Research Division (AFRD). The effort grew to include about seven full-time LBNL accelerator physicists (along with about 15 SLAC and LLNL physicists) during the formal design phase, which began in late 1989. This effort encompassed three editions of the Conceptual Design Report, along with innumerable reviews, as is typical of today's accelerator projects. Taking advantage of an experienced engineering staff, fresh from the successful completion of the Advanced Light Source (ALS), LBNL has been assigned lead responsibility for the challenging Low Energy Ring (LER) of the PEP-II project, an entirely new storage ring to be added to the PEP tunnel. The LBNL design team is headed by CBP accelerator physicist Michael Zisman and senior engineers Ron Yourd (who served as the Project Manager for the ALS) and Hank Hsieh (a recent addition to the LBNL staff who was Project Engineer for the NSLS storage rings at BNL and most recently served as Project Engineer for the DAFNE project at Frascati). LBNL is also represented in the overall management of the PEP-II project by Tom Elioff, who serves as Deputy to the Project Director Jonathan Dorfan at SLAC. (Elioff served in the same role for the original

  1. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    International Nuclear Information System (INIS)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-01-01

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an ∼120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes

  2. New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55

    Science.gov (United States)

    Lohr, M. E.; Negueruela, I.; Tabernero, H. M.; Clark, J. S.; Lewis, F.; Roche, P.

    2018-05-01

    As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3^{+1.0}_{-0.8} kpc and an age of 44^{+9}_{-8} Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63^{+12}_{-11} Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales.

  3. Microsoft Licenses Berkeley Lab's Home Energy Saver Code for Its Energy

    Science.gov (United States)

    , energy efficiency Connect twitter instagram LinkedIn facebook youtube This form needs Javascript to + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S. Department of Energy National twitter instagram LinkedIn facebook youtube

  4. A High Resolution Solar Spectrograph for the Berkeley Undergraduate Astronomy Lab

    Science.gov (United States)

    Strickler, R.; Bresloff, C.; Graham, J.

    2005-05-01

    The discovery of extra-solar planets has stimulated interest amongst undergraduates. The Doppler method for detecting exoplanets requires extraction of signals at the 1/1000 of a pixel level. To illustrate this technique, we used a newly built spectrometer to extract sub-pixel Doppler shifts in the solar photosphere. We have used this spectrograph to measure the velocity gradient across the sun and hence infer the solar radius. The limb-to-limb Doppler shift is only 1.8 km/s. A spectral resolution > 100,000 would be required to manifest this motion. Achieving such high spectral resolution is unnecessary since even a small telescope can record high SNR (> 100) spectra. Within a few seconds it is possible to discern solar rotational Doppler shifts at resolutions as low as 10,000. We must also understand coordinate transformation to convert the Doppler signal along the observed diameter to the equatorial rotation speed assuming solid body rotation. The spectrograph system includes an 8-inch Schmidt-Cassegrain stationary telescope; a 100-micron diameter multi-mode fiber; aspheric f-number reformatting optics; a collimating lens; a 110 mm, 80 grooves/mm, θ blaze = 64.5 degree replica echelle grating; and an Apogee 1024 x 1024 thermo-electrically cooled CCD. The spectrometer optics are mounted on a 5-ft x 3-ft optical bench. Operating the spectrometer remotely using VNC and a wireless laptop, we pointed the telescope so that the fiber scanned across a diameter of the solar disk while the CCD took repeated exposures. Although we were "guinea pigs," using the spectrograph for the first time in a class, it worked remarkably well. Combining measurement of the solar radius with observation of the rotation period from sunspots, the earth-sun distance can be deduced. In the future, students may measure the eccentricity of earth's orbit by measuring the sun's radial velocity over the course of a year. This work was supported by the NSF through award DUE-0311536.

  5. BERKELEY: Farewell to the Bevatron/Bevalac

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Nearly a hundred current and former Lawrence Berkeley Laboratory employees gathered at the Bevatron accelerator on 21 February to watch Ed Lofgren turn off the beam for the last time. Lofgren, in charge of the venerable machine from its completion in 1954 until his retirement in 1979, pushed a button that someone long ago labeled ''atom smasher offer'', bringing to an end four decades of accomplishment in high energy and heavy ion physics. Owen Chamberlain, who shared the 1959 physics Nobel with Emilio Segré for the discovery of the antiproton at the Bevatron, was among those present at the closing ceremony. The shutdown came 39 years to the week after Bevatron beam first circulated, and a touching moment came just after Lofgren shut the machine down when the poignant strains of the ''Taps'' salute wafted out over the PA system. The Bevatron - or Bevalac, as it was called after being linked to the Super HILAC linear accelerator in the 1970s - made major contributions in four distinct areas of research: high energy physics, heavy ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space. As well as the discovery of the antiproton, the early years of the Bevatron saw classic studies of the kaon, leading to a deeper understanding of both strong and weak interaction physics. With Luis Alvarez' development of Donald Glaser's original bubble chamber idea into a prolific physics technique, the Bevatron was a major focus of the heady days of resonance hunting in the late 1950s and early 1960s. Most recently the Bevalac (Bevatron-SuperHILAC combination) pioneered relativistic heavy ion physics. The central focus of this research programme was the production and study of extreme conditions in nuclear matter. Highlights include the first definitive evidence of collective flow of nuclear matter at high temperatures and densities, studies of the nuclear

  6. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  7. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and

  8. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  9. FameLab - Swiss Semi Finals

    CERN Multimedia

    Corinne Pralavorio

    2012-01-01

    Twenty-two young scientists participated in the FameLab semi-final at CERN's Globe of Science and Innovation on 4 February, supported by a large audience and by more than 100 fans following via webcast. A panel of judges chose Lemmer and four other candidates to join five other semi-finalists at the national finals in Zurich on 30 March.

  10. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    Science.gov (United States)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  11. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  12. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  13. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  14. Using Videoconferencing in a School-Scientist Partnership: Students' Perceptions and Scientists' Challenges

    Science.gov (United States)

    Falloon, Garry

    2012-01-01

    This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…

  15. Professional Development for Graduate Students through Internships at Federal Labs: an NSF/USGS Collaboration

    Science.gov (United States)

    Snow, E.; Jones, E.; Patino, L. C.; Wasserman, E.; Isern, A. R.; Davies, T.

    2016-12-01

    In 2013 the White House initiated an effort to coordinate STEM education initiatives across federal agencies. This idea spawned several important collaborations, one of which is a set of National Science Foundation programs designed to place graduate students in federal labs for 2-12 months of their Ph.D. training. The Graduate Research Internship Program (GRIP) and the Graduate Student Preparedness program (GSP) each have the goal of exposing PhD students to the federal work environment while expanding their research tools and mentoring networks. Students apply for supplementary support to their Graduate Research Fellowship (GRIP) or their advisor's NSF award (GSP). These programs are available at several federal agencies; the USGS is one partner. At the U.S. Geological Survey, scientists propose projects, which students can find online by searching USGS GRIP, or students and USGS scientists can work together to develop a research project. At NSF, projects are evaluated on both the scientific merit and the professional development opportunities they afford the student. The career development extends beyond the science (new techniques, data, mentors) into the professional activity of writing the proposal, managing the budget, and working in a new and different environment. The USGS currently has 18 GRIP scholars, including Madeline Foster-Martinez, a UC Berkeley student who spent her summer as a GRIP fellow at the USGS Pacific Coastal and Marine Science Center working with USGS scientist Jessica Lacy. Madeline's Ph.D. work is on salt marshes and she has studied geomorphology, accretion, and gas transport using a variety of research methods. Her GRIP fellowship allowed her to apply new data-gathering tools to the question of sediment delivery to the marsh, and build and test a model for sediment delivery along marsh edges. In addition, she gained professional skills by collaborating with a new team of scientists, running a large-scale field deployment, and

  16. Web site lets solar scientists inform and inspire students

    Science.gov (United States)

    Hauck, Karin

    2012-07-01

    Where on the Web can a middle school girl ask a female solar scientist about solar storms, the course and behavior of charged solar particles, and the origin of the Sun's dynamo—and also find out what the scientist was like as a child, whether the scientist has tattoos or enjoys snowboarding, what she likes and dislikes about her career, and how she balances her energy for work and family life? These kinds of exchanges happen at Solar Week (http://www.solarweek.org; see Figure 1). Established in 2000, Solar Week is an online resource for middle and lower high school students about the science of the Sun, sponsored by the Center for Science Education at the Space Sciences Laboratory (CSE@SSL) at the University of California, Berkeley (UC Berkeley). The Web site's goals are to educate students about the Sun and solar physics and to encourage future careers in science—especially for girls. One way is by giving solar scientists the chance to be relatable role models, to answer students' questions, and to share their experiences in an online forum.

  17. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  18. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  19. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  20. Disintegration of the Aged Open Cluster Berkeley 17

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Souradeep; Vaidya, Kaushar [Department of Physics, Birla Institute of Technology and Science, Pilani 333031, Rajasthan (India); Mishra, Ishan [Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Chen, W. P., E-mail: f2012553@pilani.bits-pilani.ac.in [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China)

    2017-10-01

    We present the analysis of the morphological shape of Berkeley 17, the oldest known open cluster (∼10 Gyr), using the probabilistic star counting of Pan-STARRS point sources, and confirm its core-tail shape, plus an antitail, previously detected with the 2MASS data. The stellar population, as diagnosed by the color–magnitude diagram and theoretical isochrones, shows many massive members in the clusters core, whereas there is a paucity of such members in both of the tails. This manifests mass segregation in this aged star cluster with the low-mass members being stripped away from the system. It has been claimed that Berkeley 17 is associated with an excessive number of blue straggler candidates. A comparison of nearby reference fields indicates that about half of these may be field contamination.

  1. Annual site environmental report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.; Pauer, R.O.

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs

  2. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  3. Guide to user facilities at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility

  4. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  5. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  6. Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory; Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Emil [Dalarna Univ., Borlaenge (Sweden). Graphic Art Technology

    2002-12-01

    This report describes the work that is being conducted on power management controls at Berkeley National Laboratory. We can see a significant increasing amount of electronic equipment in our work places and in our every day life. Today's modern society depends on a constant energy flow. The future's increasing need of energy will burden our economy as well as our environment. The project group at Berkeley National Laboratory is working with leading manufacturers of office equipment. The goal is to agree on how interfaces for power management should be presented on office equipment. User friendliness and a more consistent power management interface is the project focus. The project group's role is to analyze data that is relevant to power management, as well as to coordinate communication and discussions among the involved parties.

  7. RoboLab and virtual environments

    Science.gov (United States)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  8. Evaluating the Impact of Open Access at Berkeley: Results from the 2015 Survey of Berkeley Research Impact Initiative (BRII) Funding Recipients

    Science.gov (United States)

    Teplitzky, Samantha; Phillips, Margaret

    2016-01-01

    The Berkeley Research Impact Initiative (BRII) was one of the first campus-based open access (OA) funds to be established in North America and one of the most active, distributing more than $244,000 to support University of California (UC) Berkeley authors. In April 2015, we conducted a qualitative study of 138 individuals who had received BRII…

  9. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  10. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  11. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  12. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  13. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  14. Lawrence Berkeley Laboratory upgrading approaches to existing facilities

    International Nuclear Information System (INIS)

    Engle, H.M. Jr.

    1985-01-01

    The Lawrence Berkeley Laboratory Plant Engineering Department instituted a seismic risk investigation and seismic upgrade program in 1970. This paper covers the upgrade of two buildings with dissimilar framing systems; Building No. 10, a World War II vintage heavy timber frame building, and Building No. 80, a steel frame structure constructed in 1954. The seismic upgrade task for both structures required that the buildings be kept in service during rehabilitation with a minimum of disruption to occupants. Rehabilitations were phased over two and three year periods with construction management and supervision performed by LBL Plant Engineering staff

  15. Magnetic Media Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This lab specializes in tape certification and performance characterization of high density digital tape and isprepared to support the certification of standard size...

  16. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  17. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  18. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  19. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  20. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  1. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  2. A data model for environmental scientists

    Science.gov (United States)

    Kapeljushnik, O.; Beran, B.; Valentine, D.; van Ingen, C.; Zaslavsky, I.; Whitenack, T.

    2008-12-01

    Environmental science encompasses a wide range of disciplines from water chemistry to microbiology, ecology and atmospheric sciences. Studies often require working across disciplines which differ in their ways of describing and storing data such that it is not possible to devise a monolithic one-size-fits-all data solution. Based on our experiences with Consortium of the Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Observations Data Model, Berkeley Water Center FLUXNET carbon-climate work and by examining standards like EPA's Water Quality Exchange (WQX), we have developed a flexible data model that allows extensions without need to altering the schema such that scientists can define custom metadata elements to describe their data including observations, analysis methods as well as sensors and geographical features. The data model supports various types of observations including fixed point and moving sensors, bottled samples, rasters from remote sensors and models, and categorical descriptions (e.g. taxonomy) by employing user-defined-types when necessary. It leverages ADO .NET Entity Framework to provide the semantic data models for differing disciplines, while maintaining a common schema below the entity layer. This abstraction layer simplifies data retrieval and manipulation by hiding the logic and complexity of the relational schema from users thus allows programmers and scientists to deal directly with objects such as observations, sensors, watersheds, river reaches, channel cross-sections, laboratory analysis methods and samples as opposed to table joins, columns and rows.

  3. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  4. Preparations for decommissioning the TRIGA Mark III Berkeley Research Reactor

    International Nuclear Information System (INIS)

    Denton, Michael M.; Lim, Tek. H.

    1988-01-01

    On December 20, 1986 the chancellor of UC Berkeley announced his decision to decommission the 20 year old Berkeley Research Reactor citing as principal reasons a decline in use and a need to erect a new computer science building over the reactor's site. In order to meet the University's construction timetable for the new building, the reactor staff together with other units of the campus administration have initiated a program to remove the reactor structure and clear the room for unlicensed use as expediently as possible. Due to the sequence of events which must occur in a limited amount of time, the University adopted a policy to contract out as much of the work as possible, including generation of the defueling and decommissioning plans.The first physical step in the decommissioning project is the removal of the irradiated fuel. This task is largely contracted out to a commercial firm with experience in the transport of radioactive materials and reactor fuel. As suggested by the NRC, the reactor will be defueled under the current operating license. This requires that all fuel must be off-site before the DP can be approved. Therefore any delay in defueling in-turn delays the decommissioning. The NRC has given no commitment or date for completion of their review. Informal discussion with NRC project managers and the experience from other facilities indicate that the review process will take between six and nine months

  5. Reforming Cookbook Labs

    Science.gov (United States)

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  6. Payments to the Lab

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management the Lab Make payments for event registrations, sponsorships, insurance, travel, other fees. Contact Treasury Team (505) 667-4090 Email If you need to make a payment to the Lab for an event registration

  7. Guidelines for Urban Labs

    DEFF Research Database (Denmark)

    Scholl, Christian; Agger Eriksen, Mette; Baerten, Nik

    2017-01-01

    urban lab initiatives from five different European cities: Antwerp (B), Graz and Leoben (A), Maastricht (NL) and Malmö (S). We do not pretend that these guidelines touch upon all possible challenges an urban lab may be confronted with, but we have incorporated all those we encountered in our...

  8. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  9. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  10. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy's inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  11. Cellscope Aquatic: a Lab Quality, Portable Cellphone-Based Microscope for On-Site Collection of Algae Images

    Science.gov (United States)

    Steinberg, S. J.; Howard, M. D.

    2016-02-01

    Collecting algae samples from the field presents issues of specimen damage or degradation caused by preservation methods, handling and transport to laboratory facilities for identification. Traditionally, in-field collection of high quality microscopic images has not been possible due to the size, weight and fragility of high quality instruments and training of field staff in species identification. Scientists at the Southern California Coastal Water Research Project (SCCWRP) in collaboration with the Fletcher Lab, University of California Berkeley, Department of Bioengineering, tested and translated Fletcher's original medical CellScope for use in environmental monitoring applications. Field tests conducted by SCCWRP in 2014 led to modifications of the clinical CellScope to one better suited to in-field microscopic imaging for aquatic organisms. SCCWRP subsequently developed a custom cell-phone application to acquire microscopic imagery using the "CellScope Aquatic "in combination with other cell-phone derived field data (e.g. GPS location, date, time and other field observations). Data and imagery collected in-field may be transmitted in real-time to a web-based data system for tele-taxonomy evaluation and assessment by experts in the office. These hardware and software tools was tested in field in a variety of conditions and settings by multiple algae experts during the spring and summer of 2015 to further test and refine the CellScope Aquatic platform. The CellScope Aquatic provides an easy-to-use, affordable, lightweight, professional quality, data collection platform for environmental monitoring. Our ongoing efforts will focus on development of real-time expert systems for data analysis and image processing, to provide onsite feedback to field scientists.

  12. Scientists planning new internet

    CERN Multimedia

    Cookson, C

    2000-01-01

    British scientists are preparing to build the next generation internet - 'The Grid'. The government is expected to announce about 100 million pounds of funding for the project, to be done in collaboration with CERN (1/2 p).

  13. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... This can be a stressful experience for many. For scientists, the experience may be further complicated by the specialist nature of the data and the fact that most self-help books are aimed at business or social situations...

  14. Scientists vs. the administration

    CERN Multimedia

    2004-01-01

    Article denouncing the supposed impartiality of signatories of a report released by the Union of Concerned Scientists (UCS), which accused the Bush administration of systemically suborning objective science to a political agenda (1 page).

  15. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  16. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  17. Kinematic Labs with Mobile Devices

    Science.gov (United States)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  18. The Advanced Light Source at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.L.; Perera, R.C.C.; Schlachter, A.S.

    1991-10-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL), scheduled to be operational in the spring of 1993 as a US Department of Energy national user facility, will be a next- generation source of soft x-ray and ultraviolet (XUV) synchrotron radiation. Undulators will provide the world's brightest synchrotron radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes above 10 keV. These capabilities will support an extensive research program in a broad spectrum of scientific and technological areas in which XUV radiation is used to study and manipulate matter in all its varied gaseous, liquid, and solid forms. The ALS will also serve those interested in developing the fabrication technology for micro- and nanostructures, as well as characterizing them

  19. LAUE lens development at UC Berkeley: status and prospects

    Science.gov (United States)

    Barrière, Nicolas M.; Tomsick, John A.; Ackermann, Marcelo D.; Bastie, Pierre; Boggs, Steven E.; Hanlon, Lorraine; Jentschel, Michael; Lowell, Alexander; Roudil, Gilles; von Ballmoos, Peter; Wade, Colin

    2013-09-01

    We report on the status of the Laue lens development effort led by UC Berkeley, where a dedicated X-ray beamline and a Laue lens assembly station were built. This allowed the realization of a first lens prototype in June 2012. Based on this achievement, and thanks to a new NASA APRA grant, we are moving forward to enable Laue lenses. Several parallel activities are in progress. Firstly, we are refining the method to glue quickly and accurately crystals on a lens substrate. Secondly, we are conducting a study of high-Z crystals to diffract energies up to 900 keV efficiently. And thirdly, we are exploring new concepts of Si-based lenses that could further improve the focusing capabilities, and thus the sensitivity of Laue lenses.

  20. Radioactive waste management research at CEGB Berkeley nuclear laboratories

    International Nuclear Information System (INIS)

    Bradbury, D.

    1988-01-01

    The CEGB is the major electric utility in the United Kingdom. This paper discusses how, at the research laboratories at Berkeley (BNL), several programs of work are currently taking place in the radioactive waste management area. The theme running through all this work is the safe isolation of radionuclides from the environment. Normally this means disposal of waste in solid form, but it may also be desirable to segregate and release nonradioactive material from the waste to reduce volume or improve the solid waste characteristics (e.g., the release of liquid or gaseous effluents after treatment to convert the radioactivity to solid form). The fuel cycle and radioactive waste section at BNL has a research program into these aspects for wastes arising from the operation or decommissioning of power stations. The work is done both in-house and on contract, with primarily the UKAEA

  1. Environmental surveillance program of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-04-01

    The major radiological environmental impact of the Lawrence Berkeley Laboratory is due to the operation of four particle accelerators. Potential sources of population exposure at the Laboratory are discussed. The major source of population exposure due to accelerator operation arises from the prompt radiation field which consists principally of neutrons and photons. Release of small quantities of radionuclides is also a potential source of population exposure but is usually an order of magnitude less significant. Accelerator produced radiation levels at the Laboratory boundary are comparable with the magnitudes of the fluctuations found in the natural background radiation. Environmental monitoring of accelerator-produced radiation and of radionuclides is carried on throughout the Laboratory, at the Laboratory perimeter, and in the regions surrounding the Laboratory. The techniques used are described. The models used to calculate population exposure are described and discussed

  2. Early History of Heavy Isotope Research at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Glenn T. Seaborg

    1976-06-01

    I have had the idea for some time that it would be interesting and worthwhile to put together an account of the early work on heavy isotopes at Berkeley. Of a special interest is the discovery of plutonium (atomic number 94) and the isotope U{sup 233}, and the demonstration of their fission with slow neutrons. This work served as a prelude to the subsequent Plutonium Project (Metallurgical Project) centered at the University of Chicago, in connection with which I have also had the idea of putting together a history of the work of my chemistry group. I have decided that it would be an interesting challenge to write this account on a day-to-day basis in a style that would be consistent with the entries having been written at the end of each day. The aim would be to make this history as accurate as possible by going back to the original records and using them with meticulous care.

  3. Decommissioning of fuel PIE caves at Berkeley Nuclear Laboratories

    International Nuclear Information System (INIS)

    Brant, A.W.

    1990-01-01

    This paper describes the first major contract awarded to private industry to carry out decommissioning of a facility with significant radiation levels. The work required operatives to work in pressurised suits, entry times were significantly affected by sources of radiation in the Caves, being as low as thirty minutes per day initially. The Caves at Berkeley Nuclear Laboratories carry out post irradiation examination of fuel elements support units and reactor core components from CEGB power stations. The decommissioning work is part of an overall refurbishment of the facility to allow the receipt of AGR Fuel Stringer Component direct from power stations. The paper describes the decommissioning and decontamination of the facility from the remote removal and clean up work carried out by the client to the hands-on work. It includes reference to entry times, work patterns, interfaces with the client and the operations of the laboratory. Details of a specially adapted size reduction method are given. (Author)

  4. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  5. Young Cluster Berkeley 59: Properties, Evolution, and Star Formation

    Science.gov (United States)

    Panwar, Neelam; Pandey, A. K.; Samal, Manash R.; Battinelli, Paolo; Ogura, K.; Ojha, D. K.; Chen, W. P.; Singh, H. P.

    2018-01-01

    Berkeley 59 is a nearby (∼1 kpc) young cluster associated with the Sh2-171 H II region. We present deep optical observations of the central ∼2.5 × 2.5 pc2 area of the cluster, obtained with the 3.58 m Telescopio Nazionale Galileo. The V/(V–I) color–magnitude diagram manifests a clear pre-main-sequence (PMS) population down to ∼0.2 M ⊙. Using the near-infrared and optical colors of the low-mass PMS members, we derive a global extinction of A V = 4 mag and a mean age of ∼1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2–28 M ⊙ and 0.2–1.5 M ⊙ are ‑1.33 and ‑1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds. Within the observed area, we derive a total mass of ∼103 M ⊙ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more closely the Trapezium cluster.

  6. Berkeley 51 Kümesinin Temel ve Astrofiziksel Parametrelerinin Belirlenmesi

    Directory of Open Access Journals (Sweden)

    İnci Akkaya Oralhan

    2016-10-01

    Full Text Available Galaksimizin birinci çeyreğinde bulunan ve daha önce çok az çalışılmış açık yıldız kümelerinden biri olan Berkeley 51 kümesinin temel astrofiziksel ve yapısal parametreleri CCD UBV(RIC ve 2MASS JHKS verileri kullanılarak elde edilmiştir. Kümeye ait CCD UBV(RIC verileri Meksika’da bulunan San Pedro Martir Ulusal Gözlemevi’nden 84cm’lik teleskop ile alınmıştır. Küme üyeliklerinin belirlenmesinde ise PPMXL kataloğundaki öz hareket verileri kullanılmıştır. Buna küre bu küme için elde edilen limit yarıçap Rlim=2.5 yay dakikası, kızarma E(B-V=0.85±0.05 kadir, E(J-H=0.28±0.02 kadir, uzaklık modülü DM=(m-M0=10.66±0.04 pc, uzaklığı d=1355±27 pc ve logaritmik yaş log(A=9.54±0.03 Myıl olarak bulunmuştur. Küme için ilk kez bulunan metal ve ağır element bolluğu ise sırasıyla [Fe/H]=-0.38 ve Z=0.006 olarak elde edilmiştir.Anahtar kelimeler: Açık yıldız kümeleri-Berkeley 51

  7. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  8. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  9. The Udall Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Udall lab is interested in genome evolution and cotton genomics.The cotton genus ( Gossypium) is an extraordinarily diverse group with approximately 50 species...

  10. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua

    2015-01-01

    be advantageous if an ELN was Integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to Open......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management......, thus making Open-Lab Framework more attractive for laboratories that seek to increase productivity through electronic data management....

  11. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  12. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  13. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  14. Sit Down with Sabin: Margaret Torn: The Carbon Cycle Like You've Never Seen It (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Sabin; Torn, Margaret

    2011-07-06

    Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.

  15. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  16. Talk Like a Scientist

    Science.gov (United States)

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  17. Ethics for life scientists

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.; Bogers, R.J.

    2004-01-01

    In this book we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good insight into business ethics, a branch of applied ethics that until now is far ahead of ethics for life scientists. In the second part, ethics

  18. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  19. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  20. Modernizing Natural History: Berkeley's Museum of Vertebrate Zoology in Transition.

    Science.gov (United States)

    Sunderland, Mary E

    2013-01-01

    Throughout the twentieth century calls to modernize natural history motivated a range of responses. It was unclear how research in natural history museums would participate in the significant technological and conceptual changes that were occurring in the life sciences. By the 1960s, the Museum of Vertebrate Zoology at the University of California, Berkeley, was among the few university-based natural history museums that were able to maintain their specimen collections and support active research. The MVZ therefore provides a window to the modernization of natural history. This paper concentrates on the directorial transitions that occurred at the MVZ between 1965 and 1971. During this period, the MVZ had four directors: Alden H. Miller (Director 1940-1965), an ornithologist; Aldo Starker Leopold (Acting Director 1965-1966), a conservationist and wildlife biologist; Oliver P. Pearson (Director 1966-1971), a physiologist and mammalogist; and David B. Wake (Director 1971-1998), a morphologist, developmental biologist, and herpetologist. The paper explores how a diversity of overlapping modernization strategies, including hiring new faculty, building infrastructure to study live animals, establishing new kinds of collections, and building modern laboratories combined to maintain collections at the MVZ's core. The paper examines the tensions between the different modernization strategies to inform an analysis of how and why some changes were institutionalized while others were short-lived. By exploring the modernization of collections-based research, this paper emphasizes the importance of collections in the transformation of the life sciences.

  1. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    International Nuclear Information System (INIS)

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES ampersand H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES ampersand H awareness at all staff levels and in identifying ES ampersand H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES ampersand H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES ampersand H program. 4 figs., 24 tabs

  2. Spin-Off Successes of SETI Research at Berkeley

    Science.gov (United States)

    Douglas, K. A.; Anderson, D. P.; Bankay, R.; Chen, H.; Cobb, J.; Korpela, E. J.; Lebofsky, M.; Parsons, A.; von Korff, J.; Werthimer, D.

    2009-12-01

    Our group contributes to the Search for Extra-Terrestrial Intelligence (SETI) by developing and using world-class signal processing computers to analyze data collected on the Arecibo telescope. Although no patterned signal of extra-terrestrial origin has yet been detected, and the immediate prospects for making such a detection are highly uncertain, the SETI@home project has nonetheless proven the value of pursuing such research through its impact on the fields of distributed computing, real-time signal processing, and radio astronomy. The SETI@home project has spun off the Center for Astronomy Signal Processing and Electronics Research (CASPER) and the Berkeley Open Infrastructure for Networked Computing (BOINC), both of which are responsible for catalyzing a smorgasbord of new research in scientific disciplines in countries around the world. Futhermore, the data collected and archived for the SETI@home project is proving valuable in data-mining experiments for mapping neutral galatic hydrogen and for detecting black-hole evaporation.

  3. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    International Nuclear Information System (INIS)

    Stephens, L.D.

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations

  4. Berkeley SuperNova Ia Program (BSNIP): Initial Spectral Analysis

    Science.gov (United States)

    Silverman, Jeffrey; Kong, J.; Ganeshalingam, M.; Li, W.; Filippenko, A. V.

    2011-01-01

    The Berkeley SuperNova Ia Program (BSNIP) has been observing nearby (z analysis of this dataset consists of accurately and robustly measuring the strength and position of various spectral features near maximum brightness. We determine the endpoints, pseudo-continuum, expansion velocity, equivalent width, and depth of each major feature observed in our wavelength range. For objects with multiple spectra near maximum brightness we investigate how these values change with time. From these measurements we also calculate velocity gradients and various flux ratios within a given spectrum which will allow us to explore correlations between spectral and photometric observables. Some possible correlations have been studied previously, but our dataset is unique in how self-consistent the data reduction and spectral feature measurements have been, and it is a factor of a few larger than most earlier studies. We will briefly summarize the contents of the full dataset as an introduction to our initial analysis. Some of our measurements of SN Ia spectral features, along with a few initial results from those measurements, will be presented. Finally, we will comment on our current progress and planned future work. We gratefully acknowledge the financial support of NSF grant AST-0908886, the TABASGO Foundation, and the Marc J. Staley Graduate Fellowship in Astronomy.

  5. Design, operational experiences and beam results obtained with the SNS H- ion source and LEBT at Berkeley Lab

    International Nuclear Information System (INIS)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-01-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H - ion beams to the Spallation Neutron Source (SNS)** Front End and the accelerator chain have been developed into a mature unit that fully satisfies the operational requirements through the commissioning and early operating phases of SNS. Compared to the early R and D version, many features of the ion source have been improved, and reliable operation at 6% duty factor has been achieved producing beam currents in the 35-mA range and above. LEBT operation proved that the purely electrostatic focusing principle is well suited to inject the ion beam into the RFQ accelerator, including the steering and pre-chopping functions. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on commissioning results obtained with the SNS RFQ and Medium-Energy Beam Transport (MEBT) system. Prospects for further improvements will be outlined in concluding remarks

  6. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  7. Scientists want more children.

    Science.gov (United States)

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  8. On Responsibility of Scientists

    Science.gov (United States)

    Burdyuzha, Vladimir

    The situation of modern world is analised. It is impossible for our Civilization when at least half of the World Scientists are engaged in research intended to solve military problems. Civilization cannot be called reasonable so long as it spends a huge portion of national incomes on armaments. For resolution of our global problems International Scientific Center - Brain Trust of planet must be created, the status of which should be defined and sealed by the UN organization.

  9. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  10. Modifying Cookbook Labs.

    Science.gov (United States)

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  11. Environmental Justice Screening Method (EJSM) Score, San Joaquin Valley CA, 2013, Occidental College and UC Berkeley

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Cumulative Impacts (CI) screening method is jointly being developed by Manuel Pastor, Jim Sadd (Occidental College), and Rachel Morello-Frosch (UC Berkeley) ....

  12. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  13. Proposed University of California Berkeley fast pulsar search machine

    International Nuclear Information System (INIS)

    Kulkarni, S.R.; Backer, D.C.; Werthimer, D.; Heiles, C.

    1984-01-01

    With the discovery of 1937+21 by Backer et al. (1982) there is much renewed interest in an all sky survey for fast pulsars. University of California Berkeley has designed and is in the process of building an innovative and powerful, stand-alone, real-time, digital signal-processor to conduct an all sky survey for pulsars with rotation rates as high as 2000 Hz and dispersion measures less than 120 cm -3 pc at 800 MHz. The machine is anticipated to be completed in the Fall of 1985. The search technique consists of obtaining a 2-dimensional Fourier transform of the microwave signal. The transform is effected in two stages: a 64-channel, 3-level digital autocorrelator provides the radio frequency to delay transform and a fast 128K-point array processor effects the time to intensity fluctuation frequency transform. The use of a digital correlator allows flexibility in the choice of the observing radio frequency. Besides, the bandwidth is not fixed as in a multi-channel filter bank. In the machine, bandwidths can range from less than a MHz to 40 MHz. In the transform plane, the signature of a pulsar consists of harmonically related peaks which lie on a straight line which passes through the origin. The increased computational demand of a fast pulsar survey will be met by a combination of multi-CPU processing and pipeline design which involves a fast array processor and five commercial 68,000-based micro-processors. 6 references, 3 figures

  14. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  15. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  16. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  17. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  18. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    Campbell, J.

    1998-01-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  19. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  20. Soviet scientists speak out

    International Nuclear Information System (INIS)

    Holloway, D.

    1993-01-01

    In this article, Russian bomb designers answer the KGB's claim that espionage, not science, produced the Soviet bomb. Yuli Khariton and Yuri Smirnov wholly reject the argument that Soviet scientists can claim little credit for the first Soviet bomb. In a lecture delivered at the Kurchatov Institute, established in 1943 when Igor Kurchatov became the director of the Soviet nuclear weapons project, Khariton and Smironov point to the work done by Soviet nuclear physicists before 1941 and refute assertions that have been made in Western literature regarding the hydrogen bomb

  1. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  2. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  3. It's a wonderful life: a career as an academic scientist.

    Science.gov (United States)

    Vale, Ronald D

    2010-01-01

    Many years of training are required to obtain a job as an academic scientist. Is this investment of time and effort worthwhile? My answer is a resounding "yes." Academic scientists enjoy tremendous freedom in choosing their research and career path, experience unusual camaraderie in their lab, school, and international community, and can contribute to and enjoy being part of this historical era of biological discovery. In this essay, I further elaborate by listing my top ten reasons why an academic job is a desirable career for young people who are interested in the life sciences.

  4. Digital Social Science Lab

    DEFF Research Database (Denmark)

    Svendsen, Michael; Lauersen, Christian Ulrich

    2015-01-01

    At the Faculty Library of Social Sciences (part of Copenhagen University Library) we are currently working intensely towards the establishment of a Digital Social Science Lab (DSSL). The purpose of the lab is to connect research, education and learning processes with the use of digital tools...... at the Faculty of Social Sciences. DSSL will host and facilitate an 80 m2 large mobile and intelligent study- and learning environment with a focus on academic events, teaching and collaboration. Besides the physical settings DSSL has two primary functions: 1. To implement relevant social scientific software...... and hardware at the disposal for students and staff at The Faculty of Social Sciences along with instruction and teaching in the different types of software, e.g. Stata, Nvivo, Atlas.ti, R Studio, Zotero and GIS-software. 2. To facilitate academic events focusing on use of digital tools and analytic software...

  5. Guidelines for Urban Labs

    DEFF Research Database (Denmark)

    Scholl, Christian; Agger Eriksen, Mette; Baerten, Nik

    2017-01-01

    These guidelines are intended for team members and managers of urban labs and, more generally, for civil servants and facilitators in cities working with experimental processes to tackle complex challenges. They aim to support the everyday practice of collaboratively experimenting and learning ho...... the result is inspiring and instructive for all those who want to wrap their minds around experimental co-creative approaches to urban governance and city development....

  6. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lab-to-Lab Cooperative Threat Reduction

    Science.gov (United States)

    Hecker, Siegfried S.

    2017-11-01

    It is difficult to imagine today how dramatically global nuclear risks changed 25 years ago as the Soviet Union disintegrated. Instead of the threat of mutual nuclear annihilation, the world became concerned that Russia and the other 14 former Soviet states would lose control of their huge nuclear assets - tens of thousands of nuclear weapons, more than a million kilograms of fissile materials, hundreds of thousands of nuclear workers, and a huge nuclear complex. I will describe how scientists and engineers at the DOE laboratories, with a focus on Los Alamos, Lawrence Livermore and Sandia national laboratories, joined forces with those at the Russian nuclear weapon institutes for more than 20 years to avoid what looked like the perfect nuclear storm - a story told in the two-volume book Doomed to Cooperate1 published in 2016. Due to an internal processing error, an incorrect version of this article was published on 15 November 2017 that omitted the footnotes. AIP Publishing apologizes for this error. An updated version of this article, including the missing footnotes, was published on 21 November 2017.

  8. Python for scientists

    CERN Document Server

    Stewart, John M

    2017-01-01

    Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.

  9. Voices of Romanian scientists

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    As Romania has now become a Member State of CERN, Romanian scientists share their thoughts about this new era of partnership for their community.   Members of ATLAS from Romanian institutes at CERN (from left to right): Dan Ciubotaru, Michele Renda, Bogdan Blidaru, Alexandra Tudorache, Marina Rotaru, Ana Dumitriu, Valentina Tudorache, Adam Jinaru, Calin Alexa. On 17 July 2016, Romania became the twenty-second Member State of CERN, 25 years after the first cooperation agreement with the country was signed. “CERN and Romania already have a long history of strong collaboration”, says Emmanuel Tsesmelis, head of Relations with Associate Members and Non-Member States. “We very much look forward to strengthening this collaboration as Romania becomes CERN’s twenty-second Member State, which promises the development of mutual interests in scientific research, related technologies and education,” he affirms. Romania&...

  10. Forgotten women the scientists

    CERN Document Server

    Tsjeng, Zing

    2018-01-01

    The women who shaped and were erased from our history. The Forgotten Women series will uncover the lost histories of the influential women who have refused over hundreds of years to accept the hand they've been dealt and, as a result, have formed, shaped and changed the course of our futures. The Scientists celebrates 48* unsung scientific heroines whose hugely important, yet broadly unacknowledged or incorrectly attributed, discoveries have transformed our understanding of the scientific world. Mary Anning, the amateur paleontologist whose fossil findings changed scientific thinking about prehistoric life Emmy Noether, dubbed "The Mighty Mathematician You've Never Heard Of" Ynés Mexía, the Mexican-American botanist who discovered over 500 new plant species Wangari Maathai, who started an environmental and ecological revolution in Kenya Margaret Sanger, the maverick nurse who paved the way for the legalization of contraception Chapters including Earth & Universe; Biology & N...

  11. A Serendipitous Scientist.

    Science.gov (United States)

    Lefkowitz, Robert J

    2018-01-06

    Growing up in a middle-class Jewish home in the Bronx, I had only one professional goal: to become a physician. However, as with most of my Vietnam-era MD colleagues, I found my residency training interrupted by the Doctor Draft in 1968. Some of us who were academically inclined fulfilled this obligation by serving in the US Public Health Service as commissioned officers stationed at the National Institutes of Health. This experience would eventually change the entire trajectory of my career. Here I describe how, over a period of years, I transitioned from the life of a physician to that of a physician-scientist; my 50 years of work on cellular receptors; and some miscellaneous thoughts on subjects as varied as Nobel prizes, scientific lineages, mentoring, publishing, and funding.

  12. Radiation Technician Scientist service

    International Nuclear Information System (INIS)

    Prieto Miranda, Enrique; Barrera Gonzalez, Gisela; Guerra Torres, Mercedes; Mora Lopez, Leonor; Altanes Valentin, Sonia; Rapado Paneque, Manuel; Plasencia Gutierrez, Manuel

    2003-01-01

    The irradiation service is part of the specialized technician scientist services of the Center of Technological Applications and Nuclear Development it belonging to the Radiobiological Department it provides a self shielded laboratory irradiator, PX y 30 type with Cobalt 60 sources, it destined for searches studies, so much basic as applying, in several branches of the science, like the radiobiology, the radiation chemistry, the solid state physics, the medicine, the agriculture and the Pharmaceutical- Medical Industry and besides offering the irradiation service properly with the which have been gotten significant economical outputs. The radiation processing is controlled by means of the dosimetric systems of Freckle, ceric cerous sulfate, Perspex (red, clear and Amber) and dose indicators

  13. Jefferson Lab: A Long Decade of Physics

    International Nuclear Information System (INIS)

    Montgomery, Hugh

    2011-01-01

    Jefferson Lab was created in 1984 and started operating in about 1996. 2011 is an appropriate time to try to take a look at the results that have appeared, what has been learned, and what has been exciting for our scientific community. Rather than attempt to construct a coherent view with a single author or at least a small number, we have, instead, invited small groups of people who have been intimately involved in the work itself to make contributions. These people are accelerator experts, experimentalists and theorists, staff and users. We have, in the main, sought reviews of the actual sub-fields. The primary exception is the first paper, which sets the scene as it was, in one person's view, at the beginning of Jefferson Lab. In reviewing the material as it appeared, I was impressed by the breadth of the material. Major advances are documented from form factors to structure functions, from spectroscopy to physics beyond the standard model of nuclear and particle physics. Recognition of the part played by spin, the helicities of the beams, the polarizations of the targets, and the polarizations of final state particles, is inescapable. Access to the weak interaction amplitudes through measurements of the parity violating asymmetries has led to quantification of the strange content of the nucleon and the neutron radius of lead, and to measurements of the electroweak mixing angle. Lattice QCD calculations flourished and are setting the platform for understanding of the spectroscopy of baryons and mesons. But the star of the game was the accelerator. Its performance enabled the physics and also the use of the technology to generate a powerful free electron laser. These important pieces of Jefferson Lab physics are given their place. As the third Director of Jefferson Lab, and on behalf of the other physicists and others presently associated with the lab, I would like to express my admiration and gratitude for the efforts of the directors, chief scientists

  14. George Berkeley e a tradição platônica

    Directory of Open Access Journals (Sweden)

    Costica Bradatan

    2009-12-01

    Full Text Available Existe já uma grande quantidade de literatura dedicada à presença na filosofia inicial de Berkeley de alguns assuntos tipicamente platônicos (arquétipos, o problema da mente de Deus, a relação entre ideias e coisas, etc.. Baseados em alguns desses escritos, nas próprias palavras de Berkeley, assim como no exame de alguns elementos da tradição platônica num amplo sentido, sugiro que, longe de serem apenas tópicos isolados, livremente espalhados nos primeiros escritos de Berkeley, eles formam uma perfeita rede de aspectos, atitudes e modos de pensar platônicos, e que, por mais alusivos ou ambíguos que esses elementos platônicos possam parecer, eles constituem um todo coerente e complexo, desempenhando um papel importante na formação da própria essência do pensamento de Berkeley. Em outras palavras, sugiro que, dadas algumas das ideias apresentadas em suas primeiras obras, foi de certo modo inevitável para George Berkeley, em virtude da lógica interna do desenvolvimento de seu pensamento, chegar a uma obra tão abertamente platônica e especulativa como Siris (1744.

  15. Mix of physics and politics may produce lab in mine

    CERN Multimedia

    Glanz, J

    2001-01-01

    A century-old gold mine in the town of Lead, South Dakota, would be converted into the world's deepest underground physics laboratory under a bill passed in the Senate last week. The laboratory would cost 281 million dollars to create and up to 1 billion once scientific experiments like a huge neutrino detector are installed. The site would enable scientists to detect neutrinos because it is shielded by 7,400 feet of earth and rock from cosmic rays. However taxpayers, environmentalists and even some scientists still need to be convinced of the worth of the proposed lab.

  16. The Indirect Perception of Distance: Interpretive Complexities in Berkeley's Theory of Vision

    Directory of Open Access Journals (Sweden)

    Michael James Braund

    2007-12-01

    Full Text Available The problem of whether perception is direct or if it depends on additional, cognitive contributions made by the perceiving subject, is posed with particular force in an Essay towards a New Theory of Vision (NTV. It is evident from the recurrent treatment it receives therein that Berkeley considers it to be one of the central issues concerning perception. Fittingly, the NTV devotes the most attention to it. In this essay, I deal exclusively with Berkeley's treatment of the problem of indirect distance perception, as it is presented in the context of that work.

  17. Observations of Local ISM Emission with the Berkeley EUV/FUV Shuttle Telescope

    Science.gov (United States)

    Martin, C.; Bowyer, S.

    1984-01-01

    The Berkeley extreme ultraviolet/far ultraviolet shuttle telescope (BEST) will be launched on the Space Shuttle as part of the NASA UVX project. The Berkeley spectrometer will make observations of the cosmic diffuse background in the 600 to 1900 A band, with a spectral resolution of 10 A. The sensitivity and spectral resolution of the instrument make it ideal for the study of components of the interstellar medium in the 10 to the 4th power to 10 to the 6th power K range.

  18. FY2014 LBNL LDRD Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nation by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.

  19. ERLN Technical Support for Labs

    Science.gov (United States)

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  20. Aircraft Lighting and Transparency Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Lighting and Transparencies with Night Combat Lab performs radiometric and photometric measurements of cockpit lighting and displays. Evaluates the day,...

  1. Young Scientist in Classroom

    Science.gov (United States)

    Doran, Rosa

    very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets or the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Participants will also have the opportunity to use one of the radio antennas devoted for education from the EUHOU Consortium (European Hands-on Universe). A map of the arms of our galaxy will be built during the training session. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies to the construction of colour images, from making movies exhibiting the circular motion of the Sun to Jupiter Moons dance around the planet. e-learning repositories - In the ICT age it is very important that educators have support and know where to find meaningful and curriculum adapted resources for the construction of modern lessons. Some repositories will be presented in this session. Examples of such repositories are: Discover the Cosmos and EUHOU or a congregator of such repositories with quite advanced possibilities to support the work of teachers, the Open Discovery Space portal. This type of sessions are being successfully implemented by the Galileo Teacher Training Program team in Portugal under the scope of the EC funded GO-LAB project. This is a project devoted to demonstrate innovative ways to involve teachers and students in e-Science through the use of virtual labs, that

  2. Lab at Home: Hardware Kits for a Digital Design Lab

    Science.gov (United States)

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  3. RemoteLabs Platform

    Directory of Open Access Journals (Sweden)

    Nils Crabeel

    2012-03-01

    Full Text Available This paper reports on a first step towards the implementation of a framework for remote experimentation of electric machines – the RemoteLabs platform. This project was focused on the development of two main modules: the user Web-based and the electric machines interfaces. The Web application provides the user with a front-end and interacts with the back-end – the user and experiment persistent data. The electric machines interface is implemented as a distributed client server application where the clients, launched by the Web application, interact with the server modules located in platforms physically connected the electric machines drives. Users can register and authenticate, schedule, specify and run experiments and obtain results in the form of CSV, XML and PDF files. These functionalities were successfully tested with real data, but still without including the electric machines. This inclusion is part of another project scheduled to start soon.

  4. Learning by Viewing - Nobel Labs 360

    Science.gov (United States)

    Mather, John C.

    2013-01-01

    First of all, my thanks to the Nobel Lindau Foundation for their inspiration and leadership in sharing the excitement of scientific discovery with the public and with future scientists! I have had the pleasure of participating twice in the Lindau meetings, and recently worked with the Nobel Labs 360 project to show how we are building the world's greatest telescope yet, the James Webb Space Telescope (JWST). For the future, I see the greatest challenges for all the sciences in continued public outreach and inspiration. Outreach, so the public knows why we are doing what we are doing, and what difference it makes for them today and in the long-term future. Who knows what our destiny may be? It could be glorious, or not, depending on how we all behave. Inspiration, so that the most creative and inquisitive minds can pursue the scientific and engineering discoveries that are at the heart of so much of human prosperity, health, and progress. And, of course, national and local security depend on those discoveries too; scientists have been working with "the government" throughout recorded history. For the Lindau Nobel experiment, we have a truly abundant supply of knowledge and excitement, through the interactions of young scientists with the Nobelists, and through the lectures and the video recordings we can now share with the whole world across the Internet. But the challenge is always to draw attention! With 7 billion inhabitants on Earth, trying to earn a living and have some fun, there are plenty of competing opportunities and demands on us all. So what will draw attention to our efforts at Lindau? These days, word of mouth has become word of (computer) mouse, and ideas propagate as viruses ( or memes) across the Internet according to the interests of the participants. So our challenge is to find and match those interests, so that the efforts of our scientists, photographers, moviemakers, and writers are rewarded by our public. The world changes every day, so there

  5. Seven scientists advise

    International Nuclear Information System (INIS)

    1959-01-01

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  6. Seven scientists advise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  7. Sit Down with Sabin: Venkat Srinivasan: The Future of Batteries (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Sabin; Srinivasan, Venkat

    2011-06-29

    Lawrence Berkeley National Laboratory battery scientist Venkat Srinivasan appears June 29, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Over the course of several conversations held at noon in the Building 50 auditorium, Russell and Lab staff will explore the ups and downs of pioneering science — all without the aid of PowerPoints. Brought to you by Berkeley Lab Public Affairs.

  8. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  9. GitLab repository management

    CERN Document Server

    Hethey, Jonathan

    2013-01-01

    A simple, easy to understand tutorial guide on how to build teams and efficiently use version control, using GitLab.If you are a system administrator in a company that writes software or are in charge of an infrastructure, this book will show you the most important features of GitLab, including how to speed up the overall process

  10. Report from the banding lab

    Science.gov (United States)

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  11. Ntal/Lab/Lat2

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Jensen, Bettina M; Gilfillan, Alasdair M

    2007-01-01

    T cells. As demonstrated in monocytes and B cells, phosphorylated NTAL/LAB/LAT2 recruits signaling molecules such as Grb2, Gab1 and c-Cbl into receptor-signaling complexes. Although gene knock out and knock down studies have indicated that NTAL/LAB/LAT2 may function as both a positive and negative...

  12. An Evaluation of the New Curriculum at the University of California, Berkeley, School of Optometry.

    Science.gov (United States)

    Harris, Michael G.; Kashani, Sandy; Saroj, Namrata

    2001-01-01

    Evaluated the new curriculum at the University of California, Berkeley, School of Optometry by comparing the content of the new curriculum to the old curriculum and by surveying faculty and students regarding their opinion of the new curriculum. Findings indicated that the curriculum is successful in implementing desired changes, including reduced…

  13. Long-life cathode for the Berkeley-type ion source

    International Nuclear Information System (INIS)

    Fink, J.H.; Biagi, L.A.

    1977-01-01

    Preliminary experiments indicate that a hollow cathode, made from impregnated tungsten emitters, can be adapted for the Lawrence Berkeley Laboratory (LBL)/Lawrence Livermore Laboratory (LLL) ion source. Such cathodes could be the basis of a long life, continuously operated positive-ion source

  14. "A Woman's World": The University of California, Berkeley, during the Second World War

    Science.gov (United States)

    Dorn, Charles

    2008-01-01

    During World War II, female students at the University of California, Berkeley--then the most populous undergraduate campus in American higher education--made significant advances in collegiate life. In growing numbers, women enrolled in male-dominated academic programs, including mathematics, chemistry, and engineering, as they prepared for…

  15. Dilepton (e+e-) production recent pp and pd studies with DLS at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1991-09-01

    The use of dileptons as probes of hot, dense hadronic matter is described. Preliminary results on dileptons produced in p-p and p-d interactions at the Bevalac are presented along with potential ramifications for existing model calculations of dileptons at these energies. Future directions of the dilepton program at Berkeley are outlined. 14 refs., 3 figs

  16. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    International Nuclear Information System (INIS)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954

  17. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    Science.gov (United States)

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  18. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    Science.gov (United States)

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  19. The evolution of Jefferson Lab's control system

    International Nuclear Information System (INIS)

    K. S. White; M. Bickley; W. Watson

    1999-01-01

    Thomas Jefferson National Accelerator Facility's (Jefferson Lab) accelerator controls were initially implemented as a proprietary in-house system. During machine commissioning, problems were encountered leading to a decision to migrate to the Experimental Physics and Industrial Controls System (EPICS). Since then, the accelerator and all other laboratory controls have been successfully converted. In addition to implementing Jefferson Lab's controls using EPICS, new data visualization tools have been developed and existing programs have been enhanced with new capabilities. In order to provide a more generic interface for high level applications development, a device abstraction layer, called Common DEVice (CDEV), was implemented. These additions have been made available to other laboratories and are in use at many sites, including some that do not use EPICS. Control System development is not limited to computer scientists; operators, engineers and physicists frequently add capabilities using EPICS, CDEV, Tel/tk, and other tools. These contributions have tailored the control system for many different types of customers. For the future, the authors envision more intelligent processing and more capable tools for data storage, retrieval and visualization

  20. Beyond Classroom, Lab, Studio and Field

    Science.gov (United States)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  1. E-Labs - Learning with Authentic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G. [Fermilab; Wayne, Mitchell [Notre Dame U.

    2016-01-01

    the success teachers have had providing an opportunity for students to: • Organize and conduct authentic research. • Experience the environment of scientific collaborations. • Possibly make real contributions to a burgeoning scientific field. We've created projects that are problem-based, student driven and technology dependent. Students reach beyond classroom walls to explore data with other students and experts and share results, publishing original work to a worldwide audience. Students can discover and extend the research of other students, modeling the processes of modern, large-scale research projects. From start to finish e-Labs are student-led, teacher-guided projects. Students need only a Web browser to access computing techniques employed by professional researchers. A Project Map with milestones allows students to set the research plan rather than follow a step-by-step process common in other online projects. Most importantly, e-Labs build the learning experience around the students' own questions and let them use the very tools that scientists use. Students contribute to and access shared data, most derived from professional research databases. They use common analysis tools, store their work and use metadata to discover, replicate and confirm the research of others. This is where real scientific collaboration begins. Using online tools, students correspond with other research groups, post comments and questions, prepare summary reports, and in general participate in the part of scientific research that is often left out of classroom experiments. Teaching tools such as student and teacher logbooks, pre- and post-tests and an assessment rubric aligned with learner outcomes help teachers guide student work. Constraints on interface designs and administrative tools such as registration databases give teachers the "one-stop-shopping" they seek for multiple e-Labs. Teaching and administrative tools also allow us to track usage and assess the

  2. Natural Alternatives for Chemicals Used in Histopathology Lab- A Literature Review.

    Science.gov (United States)

    Ramamoorthy, Ananthalakshmi; Ravi, Shivani; Jeddy, Nadeem; Thangavelu, Radhika; Janardhanan, Sunitha

    2016-11-01

    Histopathology lab is the place where the specimen gets processed and stained to view under microscope for interpretation. Exposure to the chemicals used in these processes cause various health hazards to the laboratory technicians, pathologists, and scientists working in the laboratory. Hence, there is a dire need to introduce healthy and bio-friendly alternatives in the field. This literature review explores the natural products and their efficiency to be used as alternatives for chemicals in the histopathology lab.

  3. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    Science.gov (United States)

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  4. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  5. MATLAB-Like Scripting of Java Scientific Libraries in ScalaLab

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2014-01-01

    Full Text Available Although there are a lot of robust and effective scientific libraries in Java, the utilization of these libraries in pure Java is difficult and cumbersome, especially for the average scientist that does not expertise in software development. We illustrate that ScalaLab presents an easier and productive MATLAB like front end. Also, the main strengths and weaknesses of the core Java libraries of ScalaLab are elaborated. Since performance is of paramount importance for scientific computation, the article discusses extensively performance aspects of the ScalaLab environment. Also, Java bytecode performance is compared to native code.

  6. MatLab Programming for Engineers Having No Formal Programming Knowledge

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  7. Refugee scientists under the spotlight

    Science.gov (United States)

    Extance, Andy

    2017-07-01

    Thousands of people are forced to flee war-torn regions every year, but the struggles of scientists who have to leave their homeland often goes under the radar. Andy Extance reports on initiatives to help

  8. Microbial Cell Dynamics Lab (MCDL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microbial Cell Dynamics Laboratory at PNNL enables scientists to study the molecular details of microbes under relevant environmental conditions. The MCDL seeks...

  9. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  10. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  11. An Annotated Math Lab Inventory.

    Science.gov (United States)

    Schussheim, Joan Yares

    1980-01-01

    A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)

  12. Pollution hazard closes neutrino lab

    CERN Multimedia

    Jones, Nicola

    2003-01-01

    "A leading astrophysics laboratory in Italy has closed down all but one of its experiments over concerns that toxic polluants could leak form the underground lab into the local water supply" (0.5 page)

  13. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  14. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, F.

    1990-01-01

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  15. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  16. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  17. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs.

  18. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  19. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs

  20. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    International Nuclear Information System (INIS)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed

  1. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed.

  2. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  3. Progress report on the Berkeley/Anglo-Australian Observatory high-redshift supernova search

    International Nuclear Information System (INIS)

    Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R.A.; Couch, W.; Boyle, B.

    1990-11-01

    There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring Ω. It is the latter that I want to discuss in this paper. 3 refs., 18 figs

  4. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  5. A Radiation Homeland Security Workshop Presented to the City of Berkeley Fire Department

    Science.gov (United States)

    Matis, Howard

    2005-04-01

    A radiation incident in a community, ranging from a transportation accident to a dirty bomb, is expected to be rare, but still can occur. First responders to such an incident must be prepared. City of Berkeley officials met with members of the Lawrence Berkeley National Laboratory staff and agreed that the laboratory participants would create material and teach it to all of their fire fighting staff. To design such a course, nuclear physicists, biologists and health physicists merged some of their existing teaching material together with previous homeland security efforts to produce a course that lasted one full day. The material was designed to help alleviate the myths and fear of radiation experienced by many first responders. It included basic nuclear physics information, biological effects, and methods that health physicists use to detect and handle radiation. The curriculum included several hands on activities which involved working directly with the meters the Berkeley Fire Department possessed. In addition, I will discuss some observations from teaching this course material plus some unusual problems that we encountered, such as suddenly the whole class responding to a fire.

  6. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  7. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  8. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  9. Integrated lab-on-chip biosensing systems based on magnetic particle actuation : a comprehensive review

    NARCIS (Netherlands)

    Reenen, van A.; Jong, de A.M.; Toonder, den J.M.J.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop inno-vative lab-on-chip technologies for in-vitro diagnostic testing. To fulfill the medical needs, the tests should be rapid, sensitive, quantitative, miniaturizable, and need to integrate all steps

  10. Dynamic magnetic particle actuation for integrated lab-on-chip biosensing

    NARCIS (Netherlands)

    Jong, de A.M.; Reenen, van A.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for in-vitro diagnostic testing. We study the use of magnetic particles actuated by magnetic fields to perform different microfluidic handling steps of an integrated

  11. Lab-on a-Chip

    Science.gov (United States)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  12. The Earth is our lab: Ten years of geoscience school lab in Potsdam

    Science.gov (United States)

    Nikolaus Küppers, Andreas

    2016-04-01

    Starting in 2004, a geoscientific school lab for senior high school students was developed in the historical "Großer Refraktor" premises on the Telegraphenberg in Potsdam. Based on a one-day course architecture, laboratory days were developed covering singular themes: - Magnetic field of the Earth - Geographical Information Systems and geodata - Gravity field of the Earth - Geodynamics: seismology and seismics - Geoscience math - Geodata Brandenburg (Geological mapping with aerophotographs, remote sensing, underground data processing) With a focus on geophysical methodologies, course days generally focused on the field work around the Telegraphenberg site while introducing into the art of handling original professional equipment. Field data were afterwards compiled, analysed and interpreted in the group. Single days could be combined as clusters of up to one week and were bookable for national and international groups of max. 25 students. The courses were taught by active scientists with the assistance of student guides as the larger groups had to be split up. The paper gives an overview over the development history of the school lab and explains the course contents, the teaching methods and several employed escorting measures. Possible impact on the professional career decisions of the students is discussed.

  13. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  14. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  15. Calculus for cognitive scientists partial differential equation models

    CERN Document Server

    Peterson, James K

    2016-01-01

    This book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics.  A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.

  16. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  17. FameLab: A Communication Skills-Building Program Disguised as an International Competition

    Science.gov (United States)

    Scalice, D.

    2015-12-01

    One of the key pieces of training missing from most graduate studies in science is skills-building in communication. Beyond the responsibility to share their work with the public, good communication skills enhance a scientist's career path, facilitating comprehension of their work by stakeholders and funders, as well as increasing the ability to collaborate interdisciplinarily. FameLab, an American Idol-style communication competition for early career scientists, helps fill this void, and provides an opportunity to pratice communication skills, with the coaching of professionals, in a safe space. The focus is on training and networking with like-minded scientists. NASA's Astrobiology Program has been implementing FameLab in the US since 2011, but over 25 countries take part globally. Come learn about this innovative program, what impact it's had on participants, and how you can get involved.

  18. Increasing Shore-based Participation of Scientists & Students in Telepresence-enabled Nautilus Expeditions

    Science.gov (United States)

    Bell, K. L. C.; Raineault, N.; Carey, S.; Eberli, G. P.; John, B. E.; Cheadle, M. J.; German, C. R.; Mirmalek, Z.; Pallant, A.

    2016-02-01

    As the US oceanographic research fleet shrinks, reducing seagoing opportunities for scientists and students, remote participation in cruises via telepresence will become increasingly vital. The Nautilus Exploration Program is improving the experience of shoreside participants through the development of new tools and methodologies for connecting them to expeditions in real time increasing accessibility to oceanographic cruises. The Scientist Ashore Program is a network of scientists around the world who participate in Exploration Vessel Nautilus expeditions from their own labs or homes. We have developed a suite of collaboration tools to allow scientists to view video and data in real time, as well as to communicate with ship-based and other shore-based participants to enable remote participation in cruises. Post-cruise, scientists and students may access digital data and biological and geological samples from our partner shore-based repositories: the University of Rhode Island Inner Space Center, Harvard Museum of Comparative Zoology, and URI Marine Geological Samples Lab. We present examples of successful shore-based participation by scientists and students in Nautilus expeditions. In 2013, Drs. Cheadle and John stood watch 24/7 with ten undergraduate and graduate students at the University of Wyoming, recording geologic features and samples, during a cruise to the Cayman Rise. The Straits of Florida & Great Bahama Bank cruise was co-led by Dr. Eberli at the University of Miami in 2014, greatly complementing existing data. That same year, the ISC hosted four early career scientists and their twelve undergraduate students who led dives from shore in collaboration with Dr. Carey, Lead Scientist at sea on the Kick'em Jenny Volcano & the Barbados Mud Volcanoes cruise. In 2015, 12 Scientists Ashore worked in collaboration with the ship-based team on the exploration of Galapagos National Park, and more than 20 are working with OET on post-cruise data & sample analysis.

  19. A Simple, Successful Capacitor Lab

    Science.gov (United States)

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  20. The Telecom Lab is moving

    CERN Multimedia

    IT Department

    2009-01-01

    As of 2nd March 2009, the Telecom Lab will move to Building 58 R-017. The Telecom Lab is the central point for all support questions regarding CERN mobile phone services (provision of SIM cards, requests for modifications of subscriptions, diagnostics for mobile phone problems, etc.). The opening hours as well as the contact details for the Telecom Lab remain unchanged: New location: Building 58 R-017 Opening hours: Every week day, from 11 a.m. to 12 a.m. Phone number: 72480 Email address: labo.telecom@cern.ch This change has no impact on support requests for mobile services. Users can still submit their requests concerning mobile phone subscriptions using the usual EDH form (https://edh.cern.ch/Document/GSM). The automatic message sent to inform users of their SIM card availability will be updated to indicate the new Telecom Lab location. You can find all information related to CERN mobile phone services at the following link: http://cern.ch/gsm CS Section - IT/CS group

  1. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    Science.gov (United States)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  2. Featured Image: Making Dust in the Lab

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  3. Electronic lab notebooks: can they replace paper?

    Science.gov (United States)

    Kanza, Samantha; Willoughby, Cerys; Gibbins, Nicholas; Whitby, Richard; Frey, Jeremy Graham; Erjavec, Jana; Zupančič, Klemen; Hren, Matjaž; Kovač, Katarina

    2017-05-24

    Despite the increasingly digital nature of society there are some areas of research that remain firmly rooted in the past; in this case the laboratory notebook, the last remaining paper component of an experiment. Countless electronic laboratory notebooks (ELNs) have been created in an attempt to digitise record keeping processes in the lab, but none of them have become a 'key player' in the ELN market, due to the many adoption barriers that have been identified in previous research and further explored in the user studies presented here. The main issues identified are the cost of the current available ELNs, their ease of use (or lack of it) and their accessibility issues across different devices and operating systems. Evidence suggests that whilst scientists willingly make use of generic notebooking software, spreadsheets and other general office and scientific tools to aid their work, current ELNs are lacking in the required functionality to meet the needs of the researchers. In this paper we present our extensive research and user study results to propose an ELN built upon a pre-existing cloud notebook platform that makes use of accessible popular scientific software and semantic web technologies to help overcome the identified barriers to adoption.

  4. Poll of radiation health scientists

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1986-01-01

    A sampling of 210 university-employed radiation health scientists randomly selected from the membership lists of the Health Physics Society and the Radiation Research Society was polled in a secret ballot. The results support the positions that the public's fear of radiation is substantially greater than realistic, that TV, newspapers and magazines substantially exaggerate the dangers of radiation, that the amount of money now being spent on radiation protection is sufficient, and that the openness and honesty of U.S. government agencies about dangers of radiation were below average before 1972 but have been above average since then. Respondents give very high credibility ratings to BEIR, UNSCEAR, ICRP, and NCRP and to the individual scientists associated with their reports, and very low credibility ratings to those who have disputed them

  5. Access to public drinking water fountains in Berkeley, California: a geospatial analysis.

    Science.gov (United States)

    Avery, Dylan C; Smith, Charlotte D

    2018-01-24

    In January 2015, Berkeley, California became the first city in the Unites States to impose a tax on sugar-sweetened beverages. The tax is intended to discourage purchase of sugary beverages and promote consumption of healthier alternatives such as tap water. The goal of the study was to assess the condition of public drinking water fountains and determine if there is a difference in access to clean, functioning fountains based on race or socio-economic status. A mobile-GIS App was created to locate and collect data on existing drinking water fountains in Berkeley, CA. Demographic variables related to race and socio-economic status (SES) were acquired from the US Census - American Community Survey database. Disparities in access to, or condition of drinking water fountains relative to demographics was explored using spatial analyses. Spatial statistical-analysis was performed to estimate demographic characteristics of communities near the water fountains and logistic regression was used to examine the relationship between household median income or race and condition of fountain. Although most fountains were classified as functioning, some were dirty, clogged, or both dirty and clogged. No spatial relationships between demographic characteristics and fountain conditions were observed. All geo-located data and a series of maps were provided to the City of Berkeley and the public. The geo-database created as an outcome of this study is useful for prioritizing maintenance of existing fountains and planning the locations of future fountains. The methodologies used for this study could be applied to a wide variety of asset inventory and assessment projects such as clinics or pharmaceutical dispensaries, both in developed and developing countries.

  6. Searching for multiple stellar populations in the massive, old open cluster Berkeley 39

    Science.gov (United States)

    Bragaglia, A.; Gratton, R. G.; Carretta, E.; D'Orazi, V.; Sneden, C.; Lucatello, S.

    2012-12-01

    The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemical composition of several clusters with masses of a few 104 M⊙ to establish the lower mass limit for the multiple stellar population phenomenon. Using VLT/FLAMES spectra we determine abundances of Fe, O, Na, and several other elements (α, Fe-peak, and neutron-capture elements) in the old open cluster Berkeley 39. This is a massive open cluster: M ~ 104 M⊙, approximately at the border between small globular clusters and large open clusters. Our sample size of about 30 stars is one of the largest studied for abundances in any open cluster to date, and will be useful to determine improved cluster parameters, such as age, distance, and reddening when coupled with precise, well-calibrated photometry. We find that Berkeley 39 is slightly metal-poor, ⟨[Fe/H]⟩ = -0.20, in agreement with previous studies of this cluster. More importantly, we do not detect any star-to-star variation in the abundances of Fe, O, and Na within quite stringent upper limits. The rms scatter is 0.04, 0.10, and 0.05 dex for Fe, O, and Na, respectively. This small spread can be entirely explained by the noise in the spectra and by uncertainties in the atmospheric parameters. We conclude that Berkeley 39 is a single-population cluster. Based on observations collected at ESO telescopes under programme 386.B-0009.Tables 2 and 3 are available in electronic form at http://www.aanda.org

  7. Mathematics for the Student Scientist

    Science.gov (United States)

    Lauten, A. Darien; Lauten, Gary N.

    1998-03-01

    The Earth Day:Forest Watch Program, introduces elementary, middle, and secondary students to field laboratory, and satellite-data analysis methods for assessing the health of Eastern White Pine ( Pinus strobus). In this Student-Scientist Partnership program, mathematics, as envisioned in the NCTM Standards, arises naturally and provides opportunities for science-mathematics interdisciplinary student learning. School mathematics becomes the vehicle for students to quantify, represent, analyze, and interpret meaningful, real data.

  8. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  9. The Scientist as Sentinel (Invited)

    Science.gov (United States)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  10. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    Science.gov (United States)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  11. Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  12. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  13. Lawrence Berkeley laboratory neutral-beam engineering test facility power-supply system

    International Nuclear Information System (INIS)

    Lutz, I.C.; Arthur, C.A.; deVries, G.J.; Owren, H.M.

    1981-10-01

    The Lawrence Berkeley Laboratory is upgrading the neutral beam source test facility (NBSTF) into a neutral beam engineering test facility (NBETF) with increased capabilities for the development of neutral beam systems. The NBETF will have an accel power supply capable of 170 kV, 70 A, 30 sec pulse length, 10% duty cycle; and the auxiliary power supplies required for the sources. This paper describes the major components, their ratings and capabilities, and the flexibility designed to accomodate the needs of source development

  14. Fun and games in Berkeley: the early years (1956-2013).

    Science.gov (United States)

    Tinoco, Ignacio

    2014-01-01

    Life at Berkeley for the past 57 years involved research on the thermodynamics, kinetics, and spectroscopic properties of RNA to better understand its structures, interactions, and functions. We (myself and all the graduate students and postdocs who shared in the fun) began with dinucleoside phosphates and slowly worked our way up to megadalton-sized RNA molecular motors. We used UV absorption, circular dichroism, circular intensity differential scattering, fluorescence, NMR, and single-molecule methods. We learned a lot and had fun doing it.

  15. The LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1987-03-01

    A description is presented of the conceptual design of the 1 to 2 GeV Synchrotron Radiation Source proposed for construction at Lawrence Berkeley Laboratory. This facility is designed to produce ultraviolet and soft x-ray radiation. The accelerator complex consists of an injection system (linac plus booster synchrotron) and a low-emittance storage ring optimized for insertion devices. Eleven straight sections are available for undulators and wigglers, and up to 48 photon beam lines may ultimately emanate from bending magnets. Design features of the radiation source are the high brightness of the photon beams, the very short pulses (tens of picoseconds), and the tunability of the radiation

  16. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  17. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  18. Particle production in high energy nucleus--nucleus experiments at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1976-09-01

    A review of high energy nucleus-nucleus experiments performed at the Berkeley Bevalac is presented. Earlier results on projectile and target fragmentation and pion production are briefly summarized. More recent results on Coulomb effects in projectile fragmentation, heavy ion total cross-sections, γ-ray production, and charged particle multiplicities are presented. Also, recent experiments which may shed light on phenomena arising from the central collision of two energetic nuclei, including recent evidence for and against the observation of nuclear shock waves, are reviewed

  19. Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks

    Science.gov (United States)

    Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline

    2017-07-01

    This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists portrayed in the Lebanese national science textbooks that are used in Basic Education. An analytical framework, based on an extensive review of the relevant literature, was constructed that served as a tool for analyzing the textbooks. Based on evidence-based stereotypes, the framework focused on the individual and work-related characteristics of scientists. Fifteen science textbooks were analyzed using both quantitative and qualitative measures. Our analysis of the textbooks showed the presence of a number of stereotypical images. The scientists are predominantly white males of European descent. Non-Western scientists, including Lebanese and/or Arab scientists are mostly absent in the textbooks. In addition, the scientists are portrayed as rational individuals who work alone, who conduct experiments in their labs by following the scientific method, and by operating within Eurocentric paradigms. External factors do not influence their work. They are engaged in an enterprise which is objective, which aims for discovering the truth out there, and which involves dealing with direct evidence. Implications for science education are discussed.

  20. In Defense of the National Labs and Big-Budget Science

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, J R

    2008-07-29

    The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tapped in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider

  1. Schmandt Receives 2013 Keiiti Aki Young Scientist Award: Response

    Science.gov (United States)

    Schmandt, Brandon

    2014-09-01

    I appreciate Karen's generous words, and I am sincerely honored to receive this year's Aki Award. I would like to acknowledge that my research has been enabled by excellent mentors and colleagues and by a unique community of scientists. I was particularly lucky to wander into Gene Humphrey's office as a first-year graduate student with a curiosity about western U.S. tectonics and seismology. Gene always matched my energy and enthusiasm and allowed me to find my path. Later, as a postdoc, I benefited from a similarly flexible and supportive environment in the Seismo Lab at Caltech. I also feel fortunate to be part of the seismology community. It is a special community that will strive to collect a world-class data set, such as the EarthScope seismic data, and then openly put those data in the hands of any eager scientist. This unselfish and open-minded perspective is a great motivation for me, and I expect it is for many young scientists. I am excited for the future as a member of the seismology community.

  2. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  3. Lab-on-a-Chip Instrument Development for Titan Exploration

    Science.gov (United States)

    Willis, P. A.; Greer, F.; Fisher, A.; Hodyss, R. P.; Grunthaner, F.; Jiao, H.; Mair, D.; Harrison, J.

    2009-12-01

    This contribution will describe the initial stages of a new ASTID-funded research program initiated in Fall 2009 aimed at lab-on-a-chip system development for astrobiological investigations on Titan. This technology development builds off related work at JPL and Berkeley [1-3] on the ultrasensitive compositional and chiral analysis of amino acids on Mars in order to search for signatures of past or present life. The Mars-focused instrument system utilizes a microcapillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps for automated liquid sample handling, on-chip derivitization of samples with fluorescent tags, dilution, and mixing with standards for data calibration. It utilizes a four-layer wafer stack design with CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The Titan specific lab-on-a-chip system under development here focuses its attention on the unique organic chemistry of Titan. In order to chromatographically separate mixtures of neutral organics such as polycyclic aromatic hydrocarbons (PAHs), the Titan-specific microfluidic platform utilizes the related technique of microcapillary electrochromatography (μCEC). This technique differs from conventional μCE in that microchannels are filled with a porous stationary phase that presents surfaces upon which analyte species can adsorb/desorb. It is this additional surface interaction that enables separations of species critical to the understanding of the astrobiological potential of Titan that are not readily separated by the μCE technique. We have developed two different approaches for the integration

  4. FOREWORD: Jefferson Lab: A Long Decade of Physics

    Science.gov (United States)

    Montgomery, Hugh

    2011-04-01

    scientists, associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics. Hugh Montgomery, Director Hugh Montgomery signature

  5. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  6. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    McKone, T.E.; Brand, K.P.; Shan, C.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  7. DOE Lab-to-Lab MPC ampersand A workshop for cooperative tasks with Russian institutes: Focus on critical assemblies and item facilities

    International Nuclear Information System (INIS)

    Bieber, A.M. Jr.; Fishbone, L.G.; Kato, W.Y.; Lazareth, O.W.; Suda, S.C.; Garcia, D.; Haga, R.

    1995-01-01

    Seventeen Russian scientists and engineers representing five different institutes participated in a Workshop on material control and accounting as part of the US-Russian Lab-to-Lab Cooperative Program in Nuclear Materials Protection, Control, and Accounting (MPC ampersand A). In addition to presentations and discussions, the Workshop included an exercise at Brookhaven National Laboratory (BNL) and demonstrations at the Zero Power Physics Reactor (critical-assembly facility) of Argonne National Laboratory-West (ANL-W). The Workshop particularly emphasized procedures for physical inventory-taking at critical assemblies and item facilities, with associated supporting techniques and methods. By learning these topics and applying the methods and experience at their own institutes, the Russian scientists and engineers will be able to determine and verify nuclear material inventories based on sound procedures, including measurements. This will constitute a significant enhancement to MPC ampersand A at the Russian institutes

  8. Nuclear materials teaching and research at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Olander, D.R.; Roberts, J.T.A.

    1985-01-01

    In academic nuclear engineering departments, research and teaching in the specialized subdiscipline of nuclear materials is usually a one-person or at best a two-person operation. These subcritical sizes invariably result in inadequate overall representation of the many topics in nuclear materials in the research program of the department, although broader coverage of the field is possible in course offerings. Even in course-work, the full range of materials problems important in nuclear technology cannot be dealt with in detail because the small number of faculty involved restricts staffing to as little as a single summary course and generally no more than three courses in this specialty. The contents of the two nuclear materials courses taught at the University of California at Berkeley are listed. Materials research in most US nuclear engineering departments focuses on irradiation effects on metals, but at UC Berkeley, the principal interest is in the high-temperature materials chemistry of UO 2 fuel and Zircaloy cladding

  9. Installation and experimental uses of RTNS-I at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Belian, A.P.; Morse, E.C.; Tobin, M.

    1996-01-01

    The National Ignition Facility (NIF) features optical components with line-of-sight access to the 14 MeV neutrons generated by fusion reactions in the target. Two of these components are a final focusing lens, made of fused silica, and a frequency conversion crystal comprised of two potassium dihydrogen phosphate (KDP) crystals. The Rotating Target Neutron Source (RTNS-I), which was previously operated at Lawrence Livermore National Laboratory (LLNL), has now been re-installed at UC Berkeley and is being used for the studies of neutron irradiation of fused silica and KDP. The machine has been installed so as to re-utilize the concrete structure that once housed the Berkeley Research Reactor, now decommissioned. The RTNS uses a 2 - 5 mA beam of deuterons impinging upon a spinning internally cooled tritiated copper target with a 110 Ci tritium inventory. Maximum beam energy is 399 KeV. The 14 MeV neutron production rate is 1.0x10 12 n/sec. Some new features of the machine include fiber-optic coupled microprocessor control of accelerator parameters, a cryogenic tritium collection system, and a scrubber system for exhaust tritium management. 15 refs., 4 figs

  10. Incorporating lab experience into computer security courses

    NARCIS (Netherlands)

    Ben Othmane, L.; Bhuse, V.; Lilien, L.T.

    2013-01-01

    We describe our experience with teaching computer security labs at two different universities. We report on the hardware and software lab setups, summarize lab assignments, present the challenges encountered, and discuss the lessons learned. We agree with and emphasize the viewpoint that security

  11. Scientists as citizens and knowers in the detection of deforestation in the Amazon.

    Science.gov (United States)

    Monteiro, Marko; Rajão, Raoni

    2017-08-01

    This paper examines how scientists deal with tensions emerging from their role as providers of objective knowledge and as citizens concerned with how their research influences policy and politics in Brazil. This is accomplished through an ethnographic account of scientists using remote sensing technology, of their knowledge-making activities and of the broader socio-political controversies that permeate the detection of deforestation in the Amazon rainforest. Strategies for mitigating uncertainty are central aspects of the knowledge practices analyzed, bringing controversies 'external' to the laboratory 'into' the lab, making these boundaries conceptually problematic. In particular, the anticipation of alternative interpretations of rainforest cover is a crucial way that scientists bring the world into the lab, helping to shed light on how scientists, usually seen and analyzed as isolated, are in fact often in constant dialogue with the broader political controversies related to their work. These insights help question the idea that the monitoring of deforestation through remote sensing is a form of secluded research, drawing a more complex picture of the dual role of scientists as knowledge producers and concerned citizens.

  12. Safety Protocols at MAT Lab

    International Nuclear Information System (INIS)

    Wadawale, A.; Chopade, S.; Chaudhury, K.; Pal, M.K.; Kushwah, N.; Shah, A.Y.; Kedarnath, G.; Priyadarsini, K.I.; Jain, V.K.

    2017-01-01

    MAT Lab of Chemistry Division, BARC (A Class 10000 Clean room laboratory) has been in operation since 2004 for process development of ultra-purification of several strategically important materials (Ga, As, Sb, In, CsI and Ge) and synthesis of their organometallic compounds. Of these, work related to purification of As, Sb, and In, has been discontinued. Due to high toxicity and pyrophoric nature of some of the compounds, stringent safety regulations were formulated and subsequently implemented by the division

  13. A scientist at the seashore

    CERN Document Server

    Trefil, James S

    2005-01-01

    ""A marvelous excursion from the beach to the ends of the solar system . . . captivating.""-The New York Times""So easy to understand yet so dense with knowledge that you'll never look at waves on a beach the same way again.""-San Francisco Chronicle""One of the best popular science books.""-The Kansas City Star""Perfect for the weekend scientist.""-The Richmond News-LeaderA noted physicist and popular science writer heads for the beach to answer common and uncommon questions about the ocean. James S. Trefil, author of Dover Publications' The Moment of Creation: Big Bang Physics from Before th

  14. Give Young Scientists a Break

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2009-11-01

    There has been much concern about the impact of tight funding on the careers of young scientists. When only a small percentage of grants are approved, even the smallest problem or error with an application can push it out of the funding range. Unfortunately, the relative lack of grant writing skills by new investigators often has this effect. To avoid a situation where only experienced investigators with polished writing skills are funded, the National Institutes of Health has instituted a more generous ranking scale for new investigators. Not surprisingly, some senior investigators have protested, calling it reverse discrimination. I say that their anger is misplaced. New investigators do deserve a break.

  15. Dr. Monaco Examines Lab-on a-Chip

    Science.gov (United States)

    2003-01-01

    Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  16. Environmental assessment for the recycling of slightly activated copper coil windings from the 184-Inch Cyclotron at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-02

    The proposed action is to recycle slightly activated copper that is currently stored in a warehouse leased by Lawrence Berkeley Laboratory (LBL) to a scrap metal dealer. Subsequent reutilization of the copper would be unrestricted. This document addresses the potential environmental effects of recycling and reutilizing the activated copper. In addition, the potential environmental effects of possible future uses by the dealer are addressed. Direct environmental effects from the proposed action are assessed, such as air emissions from reprocessing the activated copper, as well as indirect beneficial effects, such as averting air emissions that would result from mining and smelting an equivalent quantity of copper ore. Evaluation of the human health impacts of the proposed action focuses on the pertinent issues of radiological doses and protection of workers and the public. Five alternatives to the proposed action are considered, and their associated potential impacts are addressed. The no-action alternative is the continued storage of the activated copper at the LBL warehouse. Two recycling alternatives are considered: recycling the activated copper at the Scientific Ecology Group (SEG) facility for re-use at a DOE facility and selling or giving the activated copper to a foreign government. In addition, two disposal alternatives evaluate the impacts attributable to disposing of the activated copper either at a local sanitary landfill or at the Hanford Low-Level Waste Burial Site. The proposed project and alternatives include no new construction or development of new industry.

  17. Designing inquiry learning spaces for online labs in the Go-Lab platform

    NARCIS (Netherlands)

    de Jong, Ton; Gillet, Dennis; Sotiriou, Sofoklis; Agogi, Ellinogermaniki; Zacharia, Zacharias

    2015-01-01

    The Go-Lab project (http://www.go-lab-project.eu/) aims to enable the integration of online labs through inquiry-based learning approaches into science classrooms. Through the use of an advanced plug and play technological solution the Go-Lab project opens up remote science laboratories, data

  18. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in ... and more with our Ask a Scientist video series. Dr. Sheldon Miller answers questions about color blindness, ...

  19. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  20. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’ ... a scientist? Click to Watch What is an optical illusion? Click to Watch What is color blindness? Click ...

  1. Young scientists in the making

    CERN Multimedia

    Corinne Pralavorio

    2011-01-01

    Some 700 local primary-school children will be trying out the scientific method for themselves from February to June. After "Draw me a physicist", the latest project "Dans la peau d’un chercheur" ("Be a scientist for a day") is designed to give children a taste of what it's like to be a scientist. Both schemes are the fruit of a partnership between CERN, "PhysiScope" (University of Geneva) and the local education authorities in the Pays de Gex and the Canton of Geneva.   Juliette Davenne (left) and Marie Bugnon (centre) from CERN's Communication Group prepare the mystery boxes for primary schools with Olivier Gaumer (right) of PhysiScope. Imagine a white box that rattles and gives off a strange smell when you shake it… How would you go about finding out what's inside it without opening it? Thirty primary-school teachers from the Pays de Gex and the Canton of Geneva tried out this exercise on Wednesday 26 ...

  2. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  3. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  4. Manuscript 101: A Data-Driven Writing Exercise For Beginning Scientists

    OpenAIRE

    Ralston, Amy; Halbisen, Michael

    2017-01-01

    Learning to write a scientific manuscript is one of the most important and rewarding scientific training experiences, yet most young scientists only embark on this experience relatively late in graduate school, after gathering sufficient data in the lab. Yet, familiarity with the process of writing a scientific manuscript and receiving peer reviews, often leads to a more focused and driven experimental approach. To jump-start this training, we developed a protocol for teaching manuscript writ...

  5. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  6. Research project management 101: insiders' tips from Early Career Scientists

    Science.gov (United States)

    Cristini, Luisa; Pabortsava, Katsiaryna; Stichel, Torben

    2016-04-01

    From the very beginning of their career, it is important for Early Career Scientists (ECS) to develop project management skills to be able to organise their research efficiently. ECS are often in charge of specific tasks within their projects or for their teams. However, without specific training or tools, the successful completion of these assignments will depend entirely on the organisational skills of individual researchers. ECS are thus facing "sink-or-swim" situations, which can be either instructive or disastrous for their projects. Here we provide experience-based tips from fellow ECS that can help manage various project activities, including: 1. Communication with supervisors and peers 2. Lab management 3. Field trips (e.g., oceanographic campaigns) 4. Internships and collaborations with other institutions 5. Literature/background research 6. Conference convening These are potential "life buoys" for ECS, which will help them to carry out these tasks efficiently and successfully.

  7. Is evaluation of scientist's objective

    CERN Document Server

    Wold, A

    2000-01-01

    There is ample data demonstrating that female scientists advance at a far slower rate than their male colleagues. The low numbers of female professors in European and North American universities is, thus, not solely an effect of few women in the recruitment pool but also to obstacles specific to the female gender. Together with her colleague Christine Wennerås, Agnes Wold conducted a study of the evaluation process at the Swedish Medical Research Council. Evaluators judged the "scientific competence", "research proposal" and "methodology" of applicants for post-doctoral positions in 1995. By relating the scores for "scientific competence" to the applicants' scientific productivity and other factors using multiple regression, Wennerås and Wold demonstrated that the applicant's sex exerted a strong influence on the "competence" score so that male applicants were perceived as being more competent than female applicants of equal productivity. The study was published in Nature (vol 387, p 341-3, 1997) and inspir...

  8. Refugee scientists and nuclear energy

    International Nuclear Information System (INIS)

    Segre, E.

    1985-01-01

    The coming together of many of the world's experts in nuclear physics in the 1930's was largely the result of the persecution of Jews in Germany and later in Italy. Initially this meant there were no jobs for young physicists to go into as the senior scientists had been sacked. Later, it resulted in the assembly of many of the world's foremost physicists in the United States, specifically at the Los Alamos Laboratory to work on the Manhattan Project. The rise of antisemitism in Italy (to where many physicists had fled at first) provoked the emigration of Fermi, the leading expert on neutrons at that time. The politics, physics and personalities in the 1930's, relevant to the development of nuclear energy, are discussed. (UK)

  9. LHCb Early Career Scientist Awards

    CERN Multimedia

    Patrick Koppenburg for the LHCb Collaboration

    2016-01-01

    On 15 September 2016, the LHCb collaboration awarded the first set of prizes for outstanding contributions of early career scientists.   From left to right: Guy Wilkinson (LHCb spokesperson), Sascha Stahl, Kevin Dungs, Tim Head, Roel Aaij, Conor Fitzpatrick, Claire Prouvé, Patrick Koppenburg (chair of committee) and Sean Benson. Twenty-five nominations were submitted and considered by the committee, and 5 prizes were awarded to teams or individuals for works that had a significant impact within the last year. The awardees are: Roel Aaij, Sean Benson, Conor Fitzpatrick, Rosen Matev and Sascha Stahl for having implemented and commissioned the revolutionary changes to the LHC Run-2 high-level-trigger, including the first widespread deployment of real-time analysis techniques in High Energy Physics;   Kevin Dungs and Tim Head for having launched the Starterkit initiative, a new style of software tutorials based on modern programming methods. “Starterkit is a group of ph...

  10. Scientists Must Not Film but Must Appear on Screen!

    Science.gov (United States)

    Gerdes, A.; Madlener, S.

    2013-12-01

    Film production in science has affected its subjects in a truly remarkable way. Where scientists were once perceived to be poor communicators with an overwhelming aptitude for numbers and figures, audiences now have access to scientists they can understand and even relate to. Over the years, scientists have grown accustomed to involving and using the media in their research and exposing their science to wider audiences, making them better communicators. This is a huge development, and one that is especially noticeable at MARUM, the Center for Marine Environmental Sciences at the University of Bremen/Germany. Over time, the collaboration between the scientists and public relations staff has taught us all to be better at what we do. A unique characteristic of MARUM TV is that more or less all videos are produced 'in house'; we have established the small yet effective infrastructure necessary do develop, execute, and distribute semi-professional videos to access broader audiences and increase world-wide visibility. MARUM TV relies on our research scientists to operate cameras and capture important moments offshore on expedition, and to cooperate with us as we shoot footage of them and conduct interviews onshore in the lab. In turn, we promote their research and help increase their accessibility. At the forefront of our success is the relatively recent implementation of HD cameras on MARUM's fleet of remotely operated vehicles, which capture stunning video footage of the deep sea. Furthermore, sustained collaborations with national tv stations, online media portals, and large production companies helps inform our process and increases MARUM's visibility. The result is an extensive suite of about 70 short and long format science videos with some of the highest view counts on YouTube compared to other marine institutes. In the session PA011 'Scientists must film!' we intent to address issues regarding roadblocks to bridging science and media: a) Science communication

  11. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  12. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    Science.gov (United States)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  13. Lab, Field, Gallery and Beyond

    DEFF Research Database (Denmark)

    Binder, Thomas; Koskinen, Ilpo; Redström, Johan

    2009-01-01

    Over the last ten years we have seen a growing number of researchers integrating design experiments in their research inquiries. Initially, this work borrowed heavily from neighboring fields, employing a dual strategy in which design experiments and their evaluation were largely treated as separate...... processes that were often carried out by different people. More recently, design researchers have developed several approaches that integrate design-specific work methods to research. This paper takes a methodological look at three such established approaches that we call Lab, Field, and Gallery. We...

  14. Double success for neutrino lab

    CERN Multimedia

    2010-01-01

    "The Gran Sasso National Laboratory in Italy is celebrating two key developments in the field of neutrino physics. Number one is the first ever detection, by the OPERA experiement, of possible tau neutrino that has switched its identity from a muon neutrino as it travelled form its origins at CERN in Switzerland to the Italian lab. Number two is the successful start-up of the ICARUS detector, which, like OPERA, is designed to study neutrinos that "oscillate" between types" (0.5 pages)

  15. A green chemistry lab course

    International Nuclear Information System (INIS)

    Rank, J.; Lenoir, D.; Bahadir, M.; Koning, B.

    2006-01-01

    The traditional course content of chemistry classes must change to achieve better awareness of the important issues of sustainability in chemistry within the next generation of professional chemists. To provide the necessary material for the organic chemistry teaching lab course, which is part of almost all study programs in chemistry, material was developed and collected (http://www.oc-praktikum.de/en) that allows students and teachers to assess reactions beyond the experimental set up, reaction mechanism and chemical yield. Additional parameters like atom economy of chemical transformations, energy efficiency, and questions of waste, renewable feed stocks, toxicity and ecotoxicity, as well as the safety measures for the chemicals used are discussed. (author)

  16. Laser safety in the lab

    CERN Document Server

    Barat, Ken L

    2012-01-01

    There is no more challenging setting for laser use than a research environment. In almost every other setting the laser controls count on engineering controls, and human exposure is kept to a minimum. In research, however, the user often manipulates the optical layout and thereby places him or herself in peril, but this does not mean that accidents and injury are unavoidable. On the contrary, laser accidents can be avoided by following a number of simple approaches. [i]Laser Safety in the Lab[/i] provides the laser user and laser safety officer with practical guidelines from housekeeping to ey

  17. Remote Lab for Robotics Applications

    Directory of Open Access Journals (Sweden)

    Robinson Jiménez

    2018-01-01

    Full Text Available This article describes the development of a remote lab environment used to test and training sessions for robotics tasks. This environment is made up of the components and devices based on two robotic arms, a network link, Arduino card and Arduino shield for Ethernet, as well as an IP camera. The remote laboratory is implemented to perform remote control of the robotic arms with visual feedback by camera, of the robots actions, where, with a group of test users, it was possible to obtain performance ranges in tasks of telecontrol of up to 92%.

  18. Digital media labs in libraries

    CERN Document Server

    Goodman, Amanda L

    2014-01-01

    Families share stories with each other and veterans reconnect with their comrades, while teens edit music videos and then upload them to the web: all this and more can happen in the digital media lab (DML), a gathering of equipment with which people create digital content or convert content that is in analog formats. Enabling community members to create digital content was identified by The Edge Initiative, a national coalition of leading library and local government organizations, as a library technology benchmark. Surveying academic and public libraries in a variety of settings and sharing a

  19. Lawrence Berkeley National Laboratory 1995 site environmental report: Volume 2, Data appendix

    International Nuclear Information System (INIS)

    1996-07-01

    Ernest Orlando Lawrence Berkeley National Laboratory presents Volume II, Data Appendix as a reference document to supplement the 1995 Site Environmental Report. Volume II contains the raw environmental monitoring and sampling data used to generate many of the summary results included in the main report. Supplemental data is provided for sitewide activities involving the media of stack and ambient air quality, rainwater, surface water, stormwater, wastewater, and soil and sediment. Volume II also contains supplemental data on the special preoperational monitoring study for the new Hazardous Waste Handling Facility. The Table of Contents provides a cross-reference to the data tables of the main report and this appendix. Data are given in System International (SI) units

  20. Interviews with Michael Baxandall, February 3rd and 4th, 1994, Berkeley, CA

    Directory of Open Access Journals (Sweden)

    Allan Langdale

    2009-12-01

    Full Text Available The following interviews with Michael Baxandall were conducted in Berkeley on February 3rd and 4th of 1994. The content of these interviews include general responses about developments in art history in the years between 1960 and 1985, a period of dramatic modifications in the discipline. Among the issues are the rise of the social history of art and the sources from anthropology that informed Baxandall’s concept of the ‘Period Eye’. Baxandall talks about his own work, his personal intellectual history, and the scholars of past and current generations who influenced him. Other topics include Baxandall’s professional trajectory, the Warburg Library, and aspects of cultural history having to do with Renaissance Humanism. These interviews first appeared as an appendix to the PhD dissertation by Allan Langdale, Art History and Intellectual History: Michael Baxandall’s Work between 1963 and 1985, U. C. Santa Barbara, 1995.

  1. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    Science.gov (United States)

    Osmanović, H.; Ceci, S.; Švarc, A.; Hadžimehmedović, M.; Stahov, J.

    2011-09-01

    In Hadžimehmedović [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.84.035204 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  2. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    International Nuclear Information System (INIS)

    Osmanovic, H.; Hadzimehmedovic, M.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-01-01

    In Hadzimehmedovicet al.[Phys. Rev. C 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  3. Studies, Transport and Treatment Concept for Boilers from Berkeley NPP, England - 13599

    International Nuclear Information System (INIS)

    Wirendal, Bo; Saul, David; Robinson, Joe; Davidson, Gavin

    2013-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. Four boilers have been processed and the fifth is planned for completion by end of December 2012.The project had many challenges including a very tight timescale and has been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the first four boilers. It is the first UK project to send large components overseas for recycling and provides new insight into the processing of Magnox gas-circuit components. (authors)

  4. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  5. The experiment editor: supporting inquiry-based learning with virtual labs

    Science.gov (United States)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  6. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-03-12

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 89 CD-ROM diskettes (approximately 45 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access.

  7. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server ``cedrcd.lbl.gov``. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill@lbl.gov) if you wish to make use of the data.

  8. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server cedrcd.lbl.gov''. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill lbl.gov) if you wish to make use of the data.

  9. Presentation of the National Center for Research in Vocational Education [Berkeley, California] at the AVA Annual Conference.

    Science.gov (United States)

    National Center for Research in Vocational Education, Berkeley, CA.

    This collection contains the following conference presentations about the National Center for Research in Vocational Education at the University of California at Berkeley: "Visions and Principles" (Charles Benson); "How the Center Sees Its Role" (Gordon Swanson); "The Research Agenda" (Sue Berryman); "The Service…

  10. Higher Retail Prices of Sugar-Sweetened Beverages 3 Months After Implementation of an Excise Tax in Berkeley, California.

    Science.gov (United States)

    Falbe, Jennifer; Rojas, Nadia; Grummon, Anna H; Madsen, Kristine A

    2015-11-01

    We assessed the short-term ability to increase retail prices of the first US 1-cent-per-ounce excise tax on the distribution of sugar-sweetened beverages (SSBs), which was implemented in March 2015 by Berkeley, California. In 2014 and 2015, we examined pre- to posttax price changes of SSBs and non-SSBs in a variety of retailers in Berkeley and in the comparison cities Oakland and San Francisco, California. We examined price changes by beverage, brand, size, and retailer type. For smaller beverages (≤ 33.8 oz), price increases (cents/oz) in Berkeley relative to those in comparison cities were 0.69 (95% confidence interval [CI] = 0.36, 1.03) for soda, 0.47 (95% CI = 0.08, 0.87) for fruit-flavored beverages, and 0.47 (95% CI = 0.25, 0.69) for SSBs overall. For 2-liter bottles and multipacks of soda, relative price increases were 0.46 (95% CI = 0.03, 0.89) and 0.49 (95% CI = 0.21, 0.77). We observed no relative price increases for nontaxed beverages overall. Approximately 3 months after the tax was implemented, SSB retail prices increased more in Berkeley than in nearby cities, marking a step in the causal pathway between the tax and reduced SSB consumption.

  11. Jefferson Lab, a status report

    International Nuclear Information System (INIS)

    Dunham, B.M.

    1996-01-01

    Thomas Jefferson National Accelerator Facility (Jefferson Lab; formerly known as CEBAF), operates a 4 GeV, 200 microA continuous wave (CW) electron accelerator that re-circulates the beam five times through two superconducting 400 MeV linacs. Electrons can be extracted from any of the five recirculation passes and beam can be simultaneously delivered to the three experimental halls. As the commissioning stage nears completion, the accelerator is becoming a fully operational machine. Experiments in Hall C have been underway since November 1995 with beam powers of over 300 kW at various energies. Hall A has received beam for spectrometer commissioning, while Hall B is expected to receive its first beam in the fall of 1996. Accelerator availability of greater than 70% during physics runs and excellent beam quality have contributed to making Jefferson Lab a world class laboratory for accelerator-based electromagnetic nuclear physics. With the high performance of the superconducting RF cavities, machine upgrades to 6 GeV, and eventually 8 to 10 GeV are now in the planning stages. Operational and commissioning details concerning all aspects of the machine will be discussed

  12. Jefferson Lab, a status report

    International Nuclear Information System (INIS)

    Dunham, B.M.

    1996-01-01

    Thomas Jefferson National Accelerator Facility (Jefferson Lab; formerly known as CEBAF), operates a 4 GeV, 200 μA continuous wave (CW) electron accelerator that re-circulates the beam five times through two superconducting 400 MeV linacs. Electrons can be extracted from any of the five recirculation passes and beam can be simultaneously delivered to the three experimental halls. As the commissioning stage nears completion, the accelerator is becoming a fully operational machine. Experiments in Hall C have been underway since November 1995 with beam powers of over 300 kW at various energies. Hall A has received beam for spectrometer commissioning, while Hall B is expected to receive its first beam in the fall of 1996. Accelerator availability of greater than 70% during physics runs and excellent beam quality have contributed to making Jefferson Lab a world class laboratory for accelerator-based electromagnetic nuclear physics. With the high performance of the superconducting RF cavities, machine upgrades to 6 GeV, and eventually 8 to 10 GeV are now in the planning stages. Operational and commissioning details concerning all aspects of the machine will be discussed. (author)

  13. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action

    NARCIS (Netherlands)

    Pawlik, A.; Gelder, C.W.G. van; Nenadic, A.; Palagi, P.M.; Korpelainen, E.; Lijnzaad, P.; Marek, D.; Sansone, S.A.; Hancock, J.; Goble, C.

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training

  14. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  15. SuperFormLab: showing SuperFormLab

    DEFF Research Database (Denmark)

    2013-01-01

    bachelor program, followed by two years of master studies. The courses are offered equally to students from other design disciplines, e.g. industrial design. Teaching is mainly in English as the program is attended by a relatively large group of non-Danish students, who seek exactly this combination......3D-printing in clay and ceramic objects shaped by your own sounds and movements! Digital form transferred via CNC-milling to ornamental ceramic wall-cladding. Brave New World… Students and their teacher at SuperFormLab, the new ceramic workshop of the School of Design at the Royal Danish Academy...... of Fine Arts in Copenhagen, will be showing results of their investigations into the potential of combining digital technologies with ceramic materials. It is now possible to shape the most complex mathematical, virtual 3D objects through the use of advanced software-programs. And more than that – you can...

  16. Communicating Synthetic Biology: from the lab via the media to the broader public

    OpenAIRE

    Kronberger, Nicole; Holtz, Peter; Kerbe, Wolfgang; Strasser, Ewald; Wagner, Wolfgang

    2009-01-01

    We present insights from a study on communicating Synthetic Biology conducted in 2008. Scientists were invited to write press releases on their work; the resulting texts were passed on to four journalists from major Austrian newspapers and magazines. The journalists in turn wrote articles that were used as stimulus material for eight group discussions with select members of the Austrian public. The results show that, from the lab via the media to the general public, communication is character...

  17. Development of an Embedded Solar Tracking System with LabVIEW Motion Control

    International Nuclear Information System (INIS)

    Oh, Seung Jin; Hyun, Jun Ho; Oh, Won Jong; Kim, Yeong Min; Lee, Yoon Joon; Chun, Won Gee

    2010-01-01

    Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device such as a hydraulic pump, linear actuator, or an electric motor. The motion control is widely used in the packaging, printing, textile, semiconductor production, and power plants. National Instruments LabVIEW is a graphical programming language that has its roots in automation control and data acquisition. Its graphical representation, similar to a process flow diagram, was created to provide an intuitive programming environment for scientist and engineers. Crystal River Nuclear Plant engineers developed automated testing system of nuclear plant control modules in an aging nuclear power plant using LabVIEW to improve performance and reliability and reduce cost. In this study, an embedded two-axis solar tracking system was developed using LabVIEW motion control module

  18. EGU's Early Career Scientists Network

    Science.gov (United States)

    Roberts Artal, L.; Rietbroek, R.

    2017-12-01

    The EGU encourages early career scientists (ECS) to become involved in interdisciplinary research in the Earth, planetary and space sciences, through sessions, social events and short courses at the annual General Assembly in April and throughout the year. Through division-level representatives, all ECS members can have direct input into matters of the division. A Union-wide representative, who sits on the EGU Council, ensures that ECS are heard at a higher level in the Union too. After a brief introduction as to how the network is organised and structured, this presentation will discuss how EGU ECS activities have been tailored to the needs of ECS members and how those needs have been identified. Reaching and communicating opportunities to ECS remains an ongoing challenge; they will be discussed in this presentation too, as well as some thoughts on how to make them more effective. Finally, the service offered to EGU ECS members would certainly benefit from building links and collaboration with other early career networks in the geosciences. This presentation will outline some of our efforts in that direction and the challenges that remain.

  19. GeneLab: Open Science For Exploration

    Science.gov (United States)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  20. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  1. Frederic Joliot-Curie, a tormented scientist

    International Nuclear Information System (INIS)

    Pinault, M.

    2000-01-01

    This article is a short biography of the French scientist Frederic Joliot-Curie. His fight for a peaceful use of atomic energy, his responsibilities as nuclear physicist and as the first director of the French atomic commission (CEA) have led him to face contradictions very difficult to manage. All along his career as a scientist and as a high ranked civil servant, F.Joliot-Curie tried to find an ethical way for scientists in modern societies. (A.C.)

  2. Exploring Scientists' Working Timetable: A Global Survey

    OpenAIRE

    Wang, Xianwen; Peng, Lian; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides differen...

  3. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  4. Chinese Scientists | Women in Science | Initiatives | Indian Academy ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Chinese Scientists. Chinese Scientists. One third Chinese scientists are women [What about India?] ... scientists, at a young age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  5. Magnetic Viscous Drag for Friction Labs

    Science.gov (United States)

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  6. Hydrogel Beads: The New Slime Lab?

    Science.gov (United States)

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  7. Innovation - A view from the Lab

    Science.gov (United States)

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  8. mQoL smart lab

    DEFF Research Database (Denmark)

    De Masi, Alexandre; Ciman, Matteo; Gustarini, Mattia

    2016-01-01

    serve quality research in all of them. In this paper, we present own "mQoL Smart Lab" for interdisciplinary research efforts on individuals' "Quality of Life" improvement. We present an evolution of our current in-house living lab platform enabling continuous, pervasive data collection from individuals...

  9. Programming Arduino with LabVIEW

    CERN Document Server

    Schwartz, Marco

    2015-01-01

    If you already have some experience with LabVIEW and want to apply your skills to control physical objects and make measurements using the Arduino sensor, this book is for you. Prior knowledge of Arduino and LabVIEW is essential to fully understand the projects detailed in this book.

  10. Chinese, US scientists find new particle

    CERN Multimedia

    2003-01-01

    "Chinese and US scientists have discovered a new particle at the Beijing Electron Position Collider, which is hard to be explained with any known particles, according to scientists from the Institute of High Energy Physics under the Chinese Academy of Sciences Wednesday" (1/2 page).

  11. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    Science.gov (United States)

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  12. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  13. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  14. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  15. How Middle Schoolers Draw Engineers and Scientists

    Science.gov (United States)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  16. Communicating Like a Scientist with Multimodal Writing

    Science.gov (United States)

    McDermott, Mark; Kuhn, Mason

    2012-01-01

    If students are to accurately model how scientists use written communication, they must be given opportunities to use creative means to describe science in the classroom. Scientists often integrate pictures, diagrams, charts, and other modes within text and students should also be encouraged to use multiple modes of communication. This article…

  17. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  18. How Scientists Develop Competence in Visual Communication

    Science.gov (United States)

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  19. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series ...

  20. The Teacher As Scientist: A Role Model for Inspiring the Next Generation of Explorers

    Science.gov (United States)

    Gabrys, R.; Wasilewski, P. J.

    2003-12-01

    NASA GSFC Education is directly involved with scientists in studies of ice and snow as they seek to gain insight into the effects of snow and ice on the Earth's weather and climate. In parts of the world the water equivalent in the snow has significant cultural and economic consequences. Better techniques for remote determination of water content in the snowpacks depend on the in situ validation of satellite remote sensing. These in situ measurements and supporting lab studies are used by those who support the NASA efforts, and evaluate avalanche hazard are the same measurements and techniques that we teach in our teacher as scientist education program held annually at Lake Placid,New York -the home of the 1932 and 1980 winter Olympics. We developed this program called HOW (History of Winter) in conjunction with scientist Peter Wasilewski, GSFC Laboratory for Extraterrestrial Physics. The program brings together teachers and scientists (the latter having 55 expeditions to the Polar regions and numerous years of Lake Ice studies in their backgrounds) to broadly decipher the history of winter embedded in the measurable record of snowfall and details in lake ice. The concept is to have scientists create the mindset and framework for teacher scientists who can then facilitate the motivation of student scientists via an inquiry based structure. Additionally, we strive to have students view their science teachers not only as teachers, but also as scientists who are actively engaged in research projects in order to provide a stimulus to the students to not only consider teaching as an exciting career, but also science itself. This session will describe how the teachers are directly involved annually in the science role during a 7 day campaign in February, and then follow up with their students upon returning to the classroom. The structure of the program and protocols will be described.

  1. Exploring linear algebra labs and projects with Mathematica

    CERN Document Server

    Arangala, Crista

    2014-01-01

    Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...

  2. Analysis, Design, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.; Peiffer, Antoine; Tom, Nathan; Matlak, Tomasz

    2010-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and future directions for improvements. Copyright © 2010 by ASME.

  3. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  4. 1-2 GeV synchrotron radiation facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1985-10-01

    The Advanced Light Source (ALS), a dedicated synchrotron radiation facility optimized to generate soft x-ray and vacuum ultraviole (XUV) light using magnetic insertion devices, was proposed by the Lawrence Berkeley Laboratory in 1982. It consists of a 1.3-GeV injection system, an electron storage ring optimized at 1.3 GeV (with the capability of 1.9-GeV operation), and a number of photon beamlines emanating from twelve 6-meter-long straight sections, as shown in Fig. 1. In addition, 24 bending-magnet ports will be avialable for development. The ALS was conceived as a research tool whose range and power would stimulate fundamentally new research in fields from biology to materials science (1-4). The conceptual design and associated cost estimate for the ALS have been completed and reviewed by the US Department of Energy (DOE), but preliminary design activities have not yet begun. The focus in this paper is on the history of the ALS as an example of how a technical construction project was conceived, designed, proposed, and validated within the framwork of a national laboratory funded largely by the DOE

  5. The Advanced Light Source at Lawrence Berkeley Laboratory: a new tool for research in atomic physics

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Robinson, A.L.

    1991-01-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ps) will be ideal for time-resolved measurements. Undulators will generate high-brightness partially coherent soft X-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV; this radiation is plane polarized. Wigglers and bend magnets will extend the spectrum by generating high fluxes of X-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in allk its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy), and in biology, such as X-ray microscopy with element-specific sensitivity; the high flux will allow measurements in atomic physics and chemistry to be made with tenuous gas-phase targets. Technological applications could include lithography and nano-fabrication. (orig.)

  6. Design, Analysis, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.; Peiffer, Antoine; Tom, Nathan; Matlak, Tomasz

    2012-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and the future directions for improvements. © 2012 American Society of Mechanical Engineers.

  7. Introduction to the 1975 Berkeley Summer Study. [On efficient use of energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dean, E

    1977-05-01

    The 1975 Berkeley Summer Study on the Efficient Use of Energy in Buildings was held to bring together designers and researchers from the building profession, universities, and government agencies for an intensive examination of the problems of improved efficiencies of energy use for the heating and cooling of buildings. The focus of the Study was the development of an understanding of the maximum potential for the use of natural heat and light in what has become known as the ''passive mode'', as well as of the practical difficulties involved. Consequently much of the work is centered on window systems, daylighting, and ventilation. The motivation for the organization of the Study was the fact that buildings in general are not designed, constructed, or operated well from the point of view of energy use, and that the appropriate strategies for maximum energy efficiency are not well understood. There was, in addition, a certain reluctance to refer to the content of the work of the Study as ''energy conservation'' because of the suggestion that seems to occur to the public and the policymakers that conservation means some form of deprivation of a ''lower standard of living''.

  8. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-10-01

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s).

  9. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-10-01

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s).

  10. Photometric search for variable stars in the young open cluster Berkeley 59

    Science.gov (United States)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period dispersal of the discs of relatively massive stars.

  11. Genotoxicity and antigenotoxicity assessment of shiitake (Lentinula edodes (Berkeley Pegler using the Comet assay

    Directory of Open Access Journals (Sweden)

    CK Miyaji

    2004-01-01

    Full Text Available The mushroom shiitake (Lentinula edodes (Berkeley Pegler is been widely consumed in many countries, including Brazil, because of its pleasant flavor and reports of its therapeutic properties, although there is little available information on the genotoxicity and/or antigenotoxicity of this mushroom. We used the Comet assay and HEp-2 cells to evaluate the in vitro genotoxic and antigenotoxic activity of aqueous extracts of shiitake prepared in three different concentrations (0.5, 1.0 and 1.5 mg/mL and three different temperatures (4, 22 and 60 °C, using methyl methanesulfonate (MMS as a positive control and untreated cells as a negative control. Two concentrations (1.0 and 1.5 mg/mL of extract prepared at 4 °C and all of the concentrations prepared at 22 ± 2 and 60 °C showed moderate genotoxic activity. To test the protective effect of the three concentrations of the extracts against the genotoxicity induced by methyl methanesulfonate, three protocols were used: pre-treatment, simultaneous-treatment and post-treatment. Treatments were repeated for all combinations of preparation temperature and concentration. Two extracts (22 ± 2 °C 1.0 mg/mL (simultaneous-treatment and 4 °C 0.5 mg/mL (post-treatment showed antigenotoxic activity.

  12. Final Report for UC Berkeley Terascale Optimal PDE Solvers TOPS DOE Award Number DE-FC02-01ER25478 9/15/2001-9/14/2006

    International Nuclear Information System (INIS)

    James Demmel

    2007-01-01

    In many areas of science, physical experimentation may be too dangerous, too expensive or even impossible. Instead, large-scale simulations, validated by comparison with related experiments in well-understood laboratory contexts, are used by scientists to gain insight and confirmation of existing theories in such areas, without benefit of full experimental verification. The goal of the TOPS ISIC was to develop and implement algorithms and support scientific investigations performed by DOE-sponsored researchers. A major component of this effort is to provide software for large scale parallel computers capable of efficiently solving the enormous systems of equations arising from the nonlinear PDEs underlying these simulations. Several TOPS supported packages where designed in part (ScaLAPACK) or in whole (SuperLU) at Berkeley, and are widely used beyond SciDAC and DOE. Beyond continuing to develop these codes, our main effort focused on automatic performance tuning of the sparse matrix kernels (eg sparse-matrix-vector-multiply, or SpMV) at the core of many TOPS iterative solvers. Based on the observation that the fastest implementation of SpMV (and other kernels) can depend dramatically both on the computer and the matrix (the latter of which is not known until run-time), we developed and released a system called OSKI (Optimized Sparse Kernel Interface) that will automatically produce optimized version of SpMV (and other kernels), hiding complicated implementation details from the user. OSKI led to a 2x speedup in SpMV in a DOE accelerator design code, a 2x speedup in a commercial lithography simulation, and has been downloaded over 500 times. In addition to a stand-alone version, OSKI was also integrated into the TOPS-supported PETSc system

  13. Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, O., E-mail: makarov@anl.gov [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hilgart, M.; Ogata, C.; Pothineni, S. [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cork, C. [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-09-01

    GM/CA-CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  14. BErkeley Atmospheric CO2 Network (BEACON) - Bringing Measurements of CO2 Emissions to a School Near You

    Science.gov (United States)

    Teige, V. E.; Havel, E.; Patt, C.; Heber, E.; Cohen, R. C.

    2011-12-01

    The University of California at Berkeley in collaboration with the Chabot Space and Science Center describe a set of educational programs, workshops, and exhibits based on a multi-node greenhouse gas and air quality monitoring network being deployed over Oakland, California. Examining raw numerical data using highly engaging and effective geo-data visualization tools like Google Earth can make the science come alive for students, and provide a hook for drawing them into deeper investigations. The Climate Science Investigations teacher workshop at the Chabot Space and Science Center will make use of Google Earth, Excel, and other geo-data visualization tools to step students through the process from data acquisition to discovery. Using multiple data sources, including output from the BErkeley Atmospheric CO2 Network (BEACON) project, participants will be encouraged to explore a variety of different modes of data display toward producing a unique, and ideally insightful, illumination of the data.

  15. Jefferson Lab's Distributed Data Acquisition

    International Nuclear Information System (INIS)

    Trent Allison; Thomas Powers

    2006-01-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) occasionally experiences fast intermittent beam instabilities that are difficult to isolate and result in downtime. The Distributed Data Acquisition (Dist DAQ) system is being developed to detect and quickly locate such instabilities. It will consist of multiple Ethernet based data acquisition chassis distributed throughout the seven-eights of a mile CEBAF site. Each chassis will monitor various control system signals that are only available locally and/or monitored by systems with small bandwidths that cannot identify fast transients. The chassis will collect data at rates up to 40 Msps in circular buffers that can be frozen and unrolled after an event trigger. These triggers will be derived from signals such as periodic timers or accelerator faults and be distributed via a custom fiber optic event trigger network. This triggering scheme will allow all the data acquisition chassis to be triggered simultaneously and provide a snapshot of relevant CEBAF control signals. The data will then be automatically analyzed for frequency content and transients to determine if and where instabilities exist

  16. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    Science.gov (United States)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  17. Designing Viable Business Models for Living Labs

    Directory of Open Access Journals (Sweden)

    Bernhard R. Katzy

    2012-09-01

    Full Text Available Over 300 regions have integrated the concept of living labs into their economic development strategy since 2006, when the former Finnish Prime Minister Esko Aho launched the living lab innovation policy initiative during his term of European presidency. Despite motivating initial results, however, success cases of turning research into usable new products and services remain few and uncertainty remains on what living labs actually do and contribute. This practitioner-oriented article presents a business excellence model that shows processes of idea creation and team mobilization, new product development, user involvement, and entrepreneurship through which living labs deliver high-potential investment opportunities. Customers of living labs are identified as investors such as venture capitalists or industrial firms because living labs can generate revenue from them to create their own sustainable business model. The article concludes that living labs provide extensive support “lab” infrastructure and that it remains a formidable challenge to finance it, which calls for a more intensive debate.

  18. Baseball Physics: A New Mechanics Lab

    Science.gov (United States)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  19. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  20. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  1. The Design:Lab as platform in participatory design research

    DEFF Research Database (Denmark)

    Binder, Thomas; Brandt, Eva

    2008-01-01

    The notion of laboratory or simply 'lab' has become popular in recent years in areas outside science and technology development. Learning Labs, Innovation Labs, Usability Labs, Media and Communication Labs and even Art Labs designate institutions or fora dedicated to change and experimentation...... as others have frequently used other metaphors like workshop, studio or atelier in design research. In this article we will argue that the laboratory metaphor is particularly suitable and useful for the design:lab, and we will give examples of how we have worked with the design:lab as a platform...

  2. Development of a Methodology for Hydrogeological Characterization of Faults: Progress of the Project in Berkeley, California

    Science.gov (United States)

    Goto, J.; Moriya, T.; Yoshimura, K.; Tsuchi, H.; Karasaki, K.; Onishi, T.; Ueta, K.; Tanaka, S.; Kiho, K.

    2010-12-01

    The Nuclear Waste Management Organization of Japan (NUMO), in collaboration with Lawrence Berkeley National Laboratory (LBNL), has carried out a project to develop an efficient and practical methodology to characterize hydrologic property of faults since 2007, exclusively for the early stage of siting a deep underground repository. A preliminary flowchart of the characterization program and a classification scheme of fault hydrology based on the geological feature have been proposed. These have been tested through the field characterization program on the Wildcat Fault in Berkeley, California. The Wildcat Fault is a relatively large non-active strike-slip fault which is believed to be a subsidiary of the active Hayward Fault. Our classification scheme assumes the contrasting hydrologic features between the linear northern part and the split/spread southern part of the Wildcat Fault. The field characterization program to date has been concentrated in and around the LBNL site on the southern part of the fault. Several lines of electrical and reflection seismic surveys, and subsequent trench investigations, have revealed the approximate distribution and near-surface features of the Wildcat Fault (see also Onishi, et al. and Ueta, et al.). Three 150m deep boreholes, WF-1 to WF-3, have been drilled on a line normal to the trace of the fault in the LBNL site. Two vertical holes were placed to characterize the undisturbed Miocene sedimentary formations at the eastern and western sides of the fault (WF-1 and WF-2 respectively). WF-2 on the western side intersected the rock formation, which was expected only in WF-1, and several of various intensities. Therefore, WF-3, originally planned as inclined to penetrate the fault, was replaced by the vertical hole further to the west. It again encountered unexpected rocks and faults. Preliminary results of in-situ hydraulic tests suggested that the transmissivity of WF-1 is ten to one hundred times higher than WF-2. The monitoring

  3. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model

    Directory of Open Access Journals (Sweden)

    Watthanai Pinthong

    2016-07-01

    Full Text Available Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software.

  4. SETI with Help from Five Million Volunteers: The Berkeley SETI Efforts

    Science.gov (United States)

    Korpela, E. J.; Anderson, D. P.; Bankay, R.; Cobb, J.; Foster, G.; Howard, A.; Lebofsky, M.; Marcy, G.; Parsons, A.; Siemion, A.; von Korff, J.; Werthimer, D.; Douglas, K. A.

    2009-12-01

    We summarize radio and optical SETI programs based at the University of California, Berkeley. The ongoing SERENDIP V sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with 1.6 Hz spectral resolution. Frequency stepping allows the spectrometer to cover the full 300 MHz band of the Arecibo L-band receivers. The final configuration will allow data from all 14 receivers in the Arecibo L-band Focal Array to be monitored simultaneously with over 1.8 billion simultaneous channels. SETI@home uses desktop computers volunteers to analyze over 100 TB of at taken at Arecibo. Over 5 million volunteers have run SETI@home during its 10 year history. The SETI@home sky survey is 10 times more sensitive than SERENDIP V but it covers only a 2.5 MHz band, centered on 1420 MHz. SETI@home searches a much wider parameter space, including 14 octaves of signal bandwidth and 15 octaves of pulse period with Doppler drift corrections from -100 Hz/s to +100 Hz/s. The ASTROPULSE project is the first SETI search for μs time scale pulses in the radio spectrum. Because short pulses are dispersed by the interstellar medium, and amount of dispersion is unknown, ASTROPULSE must search through 30,000 possible dispersions. Substantial computing power is required to conduct this search, so the project will use volunteers and their personal computers to carry out the computation (using distributed computing similar to SETI@home). The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F,G,K and M stars, globular cluster and galaxies.

  5. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Scientist Video Series Why can’t you see colors well in the dark? Do fish have eyelids? ... video series. Dr. Sheldon Miller answers questions about color blindness, whether it can be treated, and how ...

  6. Meet EPA Physical Scientist Lukas Oudejans

    Science.gov (United States)

    Lukas Oudejans, Ph.D. is a physical scientist working in EPA’s National Homeland Security Research Center. His research focuses on preparing cleanup options for the agency following a disaster incident.

  7. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Disease Education Program Glaucoma Education Program Low Vision Education Program ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ...

  8. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  9. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... video below to get answers to questions like these and more with our Ask a Scientist video ... Is perfect vision real? Click to Watch Are these common eye-related myths true or false? Click ...

  10. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI for Kids >> Ask a Scientist Video Series ... can see clearly from 25 feet away. NEI Home Contact Us A-Z Site Map NEI on ...

  11. Elements of ethics for physical scientists

    CERN Document Server

    Greer, Sandra C

    2017-01-01

    This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems. After introductions to the philosophy of ethics and the philosophy of science, the book discusses research integrity, with a unique emphasis on how scientists make mistakes and how they can avoid them. It goes on to cover personal interactions among scientists, including authorship, collaborators, predecessors, reviewers, grantees, mentors, and whistle-blowers. It considers underrepresented groups in science as an ethical issue that matters not only to those groups but also to the development of scien...

  12. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  13. The persistent stereotype: children's images of scientists

    Science.gov (United States)

    Emens McAdam, Janice

    1990-03-01

    Through their reading children learn to regard scientists as eccentrics. It is shown that this stereotype has persisted for over thirty years and affects many adult attitudes. Some methods of breaking the author-reader cycle are suggested.

  14. CGH Short Term Scientist Exchange Program (STSEP)

    Science.gov (United States)

    STSEP promotes collaborative research between established U.S. and foreign scientists from low, middle, and upper-middle income countries (LMICs) by supporting, in part, exchange visits of cancer researchers between U.S. and foreign laboratories.

  15. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in the dark? ... Miller answers questions about color blindness, whether it can be treated, and how people become color blind. ...

  16. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Photos and Images Spanish Language Information Grants and Funding Extramural Research Division of Extramural Science Programs Division ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ...

  17. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Accomplishments Budget and Congress About the NEI Director History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors ...

  18. Yelavarthy Nayudamma: Scientist, Leader, and Mentor Extraordinary

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Yelavarthy Nayudamma: Scientist, Leader, and Mentor Extraordinary. J Raghava Rao T Ramasami. General Article Volume 19 Issue 10 October 2014 pp 887-899 ...

  19. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home » NEI for Kids » Ask a Scientist Video Series ... can see clearly from 25 feet away. NEI Home Contact Us A-Z Site Map NEI on ...

  20. Challenges before Women Scientists, Technologists & Engineers

    Indian Academy of Sciences (India)

    NATIONAL INSTITUTE OF TECHNOLOGY. ROURKELA ... oBjectives. To provide a common platform for women scientists, engineers and technologists ... particularly from companies involving women entrepreneurs and managers. expected ...

  1. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors ... Emily Y. Chew, M.D., Deputy Clinical Director Education Programs National Eye Health Education Program (NEHEP) Diabetic ...

  2. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  3. Microspectroscopy At Beamline 73 MAX-lab

    International Nuclear Information System (INIS)

    Engdahl, Anders

    2010-01-01

    Presentation of some projects at the infrared microspectroscopy experimental station at beamline 73 MAX-lab. Among the subjects are found identification of organic residues in fossil material and examination of the chemistry in an old oak wood wreck.

  4. Airborne Low-Frequency Sonar (ALFS) Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The ALFS lab is dedicated to support acoustic data analysis and processing software support to the AN/AQS-22 dipping sonar system. It includes stand-alone Software...

  5. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  6. Cockle Temperature Exposure Lab Experiment (2016)

    Data.gov (United States)

    U.S. Environmental Protection Agency — We carried out a lab experiment in which we exposed cockles to a range of air temperatures to simulate the physiological rigors of exposure to sunlight and air at...

  7. Los Alamos National Lab: National Security Science

    Science.gov (United States)

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Museum New Hires Publications Research Library Mission Science & Innovation Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Lab Organizations Science Programs

  8. The Jefferson Lab Trigger Supervisor System

    International Nuclear Information System (INIS)

    Ed Jastrzembsi; David Abbott; Graham Heyes; R.W. MacLeod; Carl Timmer; Elliott Wolin

    2000-01-01

    We discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. We also discuss the enhanced features of a new Trigger Supervisor Module now under construction

  9. The Jefferson Lab Trigger Supervisor System

    International Nuclear Information System (INIS)

    Jastrzembski, E.; Abbott, D.J.; Heyes, W.G.; MacLeod, R.W.; Timmer, C.; Wolin, E.

    1999-01-01

    The authors discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. They also discuss the enhanced features of a new Trigger Supervisor Module now under construction

  10. Generator Inspection Report: Bio - Lab, Inc.

    Science.gov (United States)

    Contains report from Georgia Department of Natural Resources of July 21, 1999 inspection of the Bio - Lab Incorporated Plant 4 in Conyers, Rockdale County, Georgia, reporting that no violations were observed.

  11. Online labs and the MARVEL experience

    Directory of Open Access Journals (Sweden)

    Dieter Mueller

    2005-06-01

    Full Text Available MARVEL is a Leonardo da Vinci project that provides a framework to analyse the pedagogic effectiveness of online labs in various heterogeneous areas that include solar energy, robotics, electronics and electro-pneumatics. It is also used as a test bench to compare the implementation of purely remote labs, where all devices are real, versus mixed-reality environments, where real devices work together with simulation models. This paper describes the basic concepts underlying the implementation of such online labs and presents two case studies (which are openly available to the public. A final section discusses the main pedagogical implications of online labs and presents the research directions that are being considered as a follow-up from this project.

  12. Virtual labs in Leonardo da Vinci

    Directory of Open Access Journals (Sweden)

    Stanislaw Nagy

    2006-10-01

    Full Text Available This paper discusses the problem of virtual lab capabilities in the e-learning. Using combination of web conferencing and "virtual labs" capabilities, a new quality distance learning teaching is now in preparation and will be included in the course teaching to produce interactive, online simulations for the natural gas engineering studies. The activities are designed to enhance the existing curriculum and to include online assessments. A special care is devoted to the security problem between a server and a client computer. Several examples of the virtual labs related to the PVT thermodynamics, fluid flow, the natural gas well-testing, and thev gas network flow are prepared and tested. A major challenge for the 'CELGAS' system is in managing the delicate balance between the student collaboration and the isolation. Students may be encouraged to collaborate and work with each other, simulating their exploration of the lab material.

  13. Scientists' views of the philosophy of science

    OpenAIRE

    Riesch, H.

    2008-01-01

    Many studies in public understanding of science emphasise that learning how to do science also involves learning about the philosophical issues surrounding the nature of science. This thesis aims to find out how scientists themselves talk and write about these philosophical topics, and how these topics get used in scientific thought. It contrasts scientists' opinions on these issues with how they are portrayed in popular science, and also contrasts them with how philosophers themselves have j...

  14. Photonics4All Crossword: Light Scientist

    OpenAIRE

    Dr. Adam, Aurèle

    2015-01-01

    Photonics4All developed the quiz “The Optics Scientist“. It tests our knowledge regarding famous people in optics & photonics. 14 famous scientists you should know, if you consider yourself a photoncis experts, are presented! For instance: Do you know the Dutch scientist who lived in Delft and invented the microscope? …find our more & test yourself, your friends, co-workers, students or family members!

  15. Technology Roadmap: Lab-on-a-Chip

    OpenAIRE

    Pattharaporn Suntharasaj; Tugrul U Daim

    2010-01-01

    With the integration of microfluidic and MEMS technologies, biochips such as the lab-on-a-chip (LOC) devices are at the brink of revolutionizing the medical disease diagnostics industries. Remarkable advancements in the biochips industry are making products resembling Star Trek.s "tricorder" and handheld medical scanners a reality. Soon, doctors can screen for cancer at the molecular level without costly and cumbersome equipments, and discuss treatment plans based on immediate lab results. Th...

  16. German lab wins linear collider contest

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    Particle physicists have chosen to base the proposed International Linear Collider on superconducting technology developed by an international collaboration centred on the DESY lab in Germany. The superconducting approach was chosen by an internatinal panel ahead of a rival technology developed at Stanford in the US and the KEK lab in Japan. The eagerly-awaited decision was announced at the International Conference on High Energy Physics in Beijing today (½ page)

  17. Fifteen years experience: Egyptian metabolic lab

    Directory of Open Access Journals (Sweden)

    Ekram M. Fateen

    2014-10-01

    Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder screening by using simple diagnostic techniques like thin layer chromatography and colored tests in urine which by time updated and upgraded the methods to diagnose a wide range of disorders. This study shows the most common diagnosed inherited inborn errors of metabolism among the Egyptian population.

  18. Evaluation of oral microbiology lab curriculum reform.

    Science.gov (United States)

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  19. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  20. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  1. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  2. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    Science.gov (United States)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  3. Scientists in Gray Flannel Suits: Ernest Lawrence and the Development of Color Television

    Science.gov (United States)

    Roebke, Joshua

    Physicists and historians typically remember Ernest Lawrence for one of two activities, his development of the cyclotron or his advocacy for atomic weapons. The two labs that he established in support of such endeavors are still named after him in California: Lawrence Berkeley and Lawrence Livermore. But there was a third accomplishment for which Lawrence believed he would always be remembered: the development of color television. In 1950, he sold a half stake of his company, Chromatic Television Laboratories, to Paramount Pictures for 1 million. That decade, Lawrence and his employees, especially Luis Alvarez and Edwin McMillan, designed cathode-ray tubes for color televisions while they championed hydrogen bombs. Although their commitment to the second was attributed to patriotism and their interest in the first was dismissed as a hobby, it is not so easy to disentangle their motives. Color screens were needed for more than variety shows and sitcoms; they displayed incoming missiles in vivid color. No company has ever been led by three future Nobel Laureates, yet Chromatic Television Laboratories was a failure. Even so, Lawrence had a profound influence on the development of color television, and I will tell this story for the first time.

  4. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  5. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Fang, Jin-Qing; Liu, Qiang

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  6. Target Selection and Deselection at the Berkeley StructuralGenomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

    2005-03-22

    At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the

  7. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action.

    Science.gov (United States)

    Pawlik, Aleksandra; van Gelder, Celia W G; Nenadic, Aleksandra; Palagi, Patricia M; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

  8. Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration

    Science.gov (United States)

    Noguera, Magdy; Budden, Michael Craig; Silva, Alberto

    2011-01-01

    This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…

  9. The Rehabilitation Medicine Scientist Training Program

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  10. Assessing scientists for hiring, promotion, and tenure.

    Science.gov (United States)

    Moher, David; Naudet, Florian; Cristea, Ioana A; Miedema, Frank; Ioannidis, John P A; Goodman, Steven N

    2018-03-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process.

  11. Assessing scientists for hiring, promotion, and tenure

    Science.gov (United States)

    Naudet, Florian; Cristea, Ioana A.; Miedema, Frank; Ioannidis, John P. A.; Goodman, Steven N.

    2018-01-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process. PMID:29596415

  12. Women Young Scientists of INSA | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Women Young Scientists of INSA. Women Young Scientists of INSA. INSA - Indian National Science Academy .... Charusita Chakravarty, one of the stars of our community of women scientists, at a young ...

  13. Validity and Reliability of Preschool, First and Second Grade Versions of Berkeley Parenting Self-Efficacy Scale

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Tajeri

    2009-02-01

    Full Text Available "nObjective: The purpose of this study is to examine the factor structure, internal consistency, and construct validity of preschool, first and second grade versions of Berkeley Parenting self-efficacy scale. "nMethod:  The subjects were 317 mothers: (102 mothers of preschool children, 111 mothers of first grade children and 104 mothers of second grade children who were randomly selected from schools in Tehran. They completed Berkeley parenting self-efficacy and Rotter `s locus of control scales. Factor analysis using the principle component method was used to identify the factor structure of parenting self-efficacy scale. Cronbach`s alpha coefficient was used to identify the reliability of parenting self efficacy scale. "nResults: Results of this study indicated that the cronbach`s alpha coefficient was 0.84, 0.87, 0.64 for preschool, first grade and second grade versions respectively. Based on the scree test ,,factor analysis produced two factors of maternal strategy and child outcome, and it also produced the highest level of total variance explained by these 2 factors. The Parenting self-efficacy scale was negatively associated with measure of locus of control(r=-0.54 for the preschool version, -0.64 for the first grade version and -0.54 for the second grade version. "nConclusion: Due to relatively high reliability and validity of preschool, first and second grade versions of Berkeley Parenting Self-Efficacy scale, this scale could be used as a reliable and valid scale in other research areas

  14. SPAGHETTILENS: A software stack for modeling gravitational lenses by citizen scientists

    Science.gov (United States)

    Küng, R.

    2018-04-01

    The 2020s are expected to see tens of thousands of lens discoveries. Mass reconstruction or modeling of these lenses will be needed, but current modeling methods are time intensive for specialists and expert human resources do not scale. SpaghettiLens approaches this challenge with the help of experienced citizen scientist volunteers who have already been involved in finding lenses. A top level description is as follows. Citizen scientists look at data and provide a graphical input based on Fermat's principle which we call a Spaghetti Diagram. This input works as a model configuration. It is followed by the generation of the model, which is a compute intensive task done server side though a task distribution system. Model results are returned in graphical form to the citizen scientist, who examines and then either forwards them for forum discussion or rejects the model and retries. As well as configuring models, citizen scientists can also modify existing model configurations, which results in a version tree of models and makes the modeling process collaborative. SpaghettiLens is designed to be scalable and could be adopted to problems with similar characteristics. It is licensed under the MIT license, released at http://labs.spacewarps.org and the source code is available at https://github.com/RafiKueng/SpaghettiLens.

  15. Science communication a practical guide for scientists

    CERN Document Server

    Bowater, Laura

    2012-01-01

    Science communication is a rapidly expanding area and meaningful engagement between scientists and the public requires effective communication. Designed to help the novice scientist get started with science communication, this unique guide begins with a short history of science communication before discussing the design and delivery of an effective engagement event. Along with numerous case studies written by highly regarded international contributors, the book discusses how to approach face-to-face science communication and engagement activities with the public while providing tips to avoid potential pitfalls. This book has been written for scientists at all stages of their career, including undergraduates and postgraduates wishing to engage with effective science communication for the first time, or looking to develop their science communication portfolio.

  16. Phobias and underutilization of university scientists

    International Nuclear Information System (INIS)

    Mandra, Y.T.

    1992-01-01

    This paper reports that there is an urgent need for a large scale, nationwide education program designed to correct the almost ubiquitous misconceptions that exist because of the public's misinformation about commercial nuclear power. It is suggested that this program use only university professors and that it have a precisely defined target of community colleges. To do this a Distinguished Visiting Scientist Program needs to be established by the Department of Energy. This would be the means by which these visiting scientists could get invited for 2-day visits at community colleges. When on campus the visiting scientist would give lectures in the morning and it the afternoon to student and professors on just two topics dealing with commercial nuclear power: nuclear plants and disposal of the waste. It is suggested that a pilot program be done in California and selected hub-centers, and that it be evaluated by an independent agency so that it can be improved

  17. Scientists warn DOE of dwindling funding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Fusion scientists have raised their voices to let the Department of Energy know that they are concerned about the DOE's commitment to fusion research. In a letter dated February 28, 1994, 37 scientists from 21 institutions noted that open-quotes US funding for fusion has steadily decreased: It is now roughly half its level of 1980. This peculiar and painful circumstance has forced the program to contract drastically, losing skilled technical personnel, even as it faces its most exciting opportunities.close quotes The letter was addressed to Martha Krebs, the DOE's director of the Office of Energy Research, and N. Anne Davies, associated director for fusion energy. The scientists wanted to make two points. The first was that fusion energy research, only midway between concept and commercialization, deserves major reinvestment. The second was that basic scientific knowledge in the area of fusion, not just applied engineering, must remain a priority

  18. The Normative Orientations of Climate Scientists.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  19. Women scientists joining Rokkasho women to sciences

    Energy Technology Data Exchange (ETDEWEB)

    Aratani, Michi [Office of Regional Collaboration, Institute for Environmental Sciences, Rokkasho, Aomori (Japan); Sasagawa, Sumiko

    1999-09-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  20. A distant light scientists and public policy

    CERN Document Server

    2000-01-01

    A collection of essays by a Nobel Prize Laureate on a wide range of critical issues facing the world, and the role of scientists in solving these problems. Kendall has been closely involved with the Union of Concerned Scientists, a group that began as an informal assocation at MIT in 1969 to protest US involvement in Vietnam and is today an organization with an annual budget exceeding $6 million, with 100,000 supporters worldwide. UCD is today a voice of authority in US government science policy, particularly with regard to environment issues, most recently the worldwide initiatives on global warming. Together, these essays represent both the sucessses and failures of science to impact public policy, the challenges facing scientists, and offers practical guidelines for involvement in science policy. The essays are roughly chronological, organized by subject with introductions, beginning with the controversies on nuclear power safety and Three Mile Island,then followed by sections on national security issues, ...

  1. Women scientists joining Rokkasho women to sciences

    International Nuclear Information System (INIS)

    Aratani, Michi; Sasagawa, Sumiko

    1999-01-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  2. Results of a monitoring programme in the environs of Berkeley aimed at collecting Chernobyl data for foodchain model validation

    International Nuclear Information System (INIS)

    Nair, S.; Darley, P.J.; Shaer, J.

    1989-03-01

    The results of a fallout measurement programme which was carried out in the environs of Berkeley Nuclear Laboratory in the United Kingdom following the Chernobyl reactor accident in April 1986 are presented in this report. The programme was aimed at establishing a time-dependent data base of concentrations of Chernobyl fallout radionuclides in selected agricultural products. Results were obtained for milk, grass, silage, soil and wheat over an eighteen month period from May 1986. It is intended to use the data to validate the CEGB's dynamic foodchain model, which is incorporated in the FOODWEB module of the NECTAR environmental code. (author)

  3. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  4. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-10

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  5. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    Science.gov (United States)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  6. Boosting Big National Lab Data

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-02-21

    tissue sample and the gradual effect is observed as more of the substance is injected, providing better insights into the natural processes that are occurring, as well as result driven sampling adjustment to capture particularly interesting features --- as they emerge. The Department of Energy’s Pacific Northwest National Laboratory (PNNL) is recognized for it’s expertise in the development of new measurement techniques and their application to challenges of national importance. So it was obvious to us to address the need for in-situ analysis of large scale experimental data. We have a wide range of experimental instruments on site, in facilities such as DOE’s national scientific user facility, the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). Commonly, scientists would create an individual analysis pipeline for each of those instruments; but even the same type of instrument would not necessarily share the same analysis tools. With the rapid increase of data volumes and rates we were facing two key challenges: how to bring a wider set of capabilities to bear to achieve in-situ analysis, and how to do so across a wide range of heterogeneous instruments at affordable costs and in a reasonable timeframe. We decided to take an unconventional approach to the problem, rather than developing customized, one-off solutions for specific instruments we wanted to explore if a more common solution could be found that would go beyond shared, basic infrastructures such as data movement and workflow engines.

  7. Media and the making of scientists

    Science.gov (United States)

    O'Keeffe, Moira

    This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the

  8. Career Management for Scientists and Engineers

    Science.gov (United States)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  9. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  10. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Scientists' coping strategies in an evolving research system: the case of life scientists in the UK

    NARCIS (Netherlands)

    Morris, Norma; Rip, Arie

    2006-01-01

    Scientists in academia have struggled to adjust to a policy climate of uncertain funding and loss of freedom from direction and control. How UK life scientists have negotiated this challenge, and with what consequences for their research and the research system, is the empirical entrance point of

  12. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  13. A Moodle extension to book online labs

    Directory of Open Access Journals (Sweden)

    Antonio C. Cardoso

    2005-11-01

    Full Text Available The social constructivist philosophy of Moodle makes it an excellent choice to deliver e-learning contents that require collaborative activities, such as those that are associated with online labs. In the case of online labs that enable web access to real devices (remote workbenches, access time should be reserved beforehand. A booking tool will avoid access conflicts and at the same time will help the students to organise their time and activities. This paper presents a Moodle extension that was developed within the Leonardo da Vinci MARVEL project, with the objective of meeting this requirement. The booking tool presented enables resource sharing in general and may be used to organise access to any type of scarce resources, such as to online labs and to the videoconferencing rooms that are needed to support collaborative activities.

  14. eComLab: remote laboratory platform

    Science.gov (United States)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  15. Environment monitoring using LabVIEW

    International Nuclear Information System (INIS)

    Hawtree, J.

    1995-01-01

    A system has been developed for electronically recording and monitoring temperature, humidity, and other environmental variables at the Silicon Detector Facility located in Lab D. The data is collected by LabVIEW software, which runs in the background on an Apple Macintosh. The software is completely portable between Macintosh, MS Windows, and Sun platforms. The hardware includes a Macintosh with 8 MB of RAM; an external ADC-1 analog-to-digital converter that uses a serial port; LabVIEW software; temperature sensors; humidity sensors; and other voltage/current sensing devices. ADC values are converted to ASCII strings and entered into files which are read over Ethernet. Advantages include automatic logging, automatic recovery after power interruptions, and the availability of stand-alone applications for other locations with inexpensive software and hardware

  16. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  17. Study Labs Kortlægningsrapport UCSJ

    DEFF Research Database (Denmark)

    Jørnø, Rasmus Leth Vergmann; Hestbech, Astrid Margrethe; Gynther, Karsten

    2015-01-01

    Rapporten er en delleverance i det regionale forprojekt S​tudy Labs,​der udføres som et samarbejde mellem Holbæk, Odsherred og Kalundborg kommune og University College Sjælland (UCSJ). Samarbejdet er delvist medfinansieret af Region Sjælland. Rapporten behandler projektets etableringsfase...... for at nå de kommunale målsætninger. De potentielle målgrupper er blevet kortlagt. Samtidig er undersøgelser i brugergrupperne blevet gjort håndgribelige i form af Personaer. Kommunerne har, faciliteret af Educationlab, gennemført designworkshops og er fremkommet med designs for Study Labs, der som...

  18. Digital Design with KP-Lab

    Directory of Open Access Journals (Sweden)

    D. Ponta

    2007-08-01

    Full Text Available KP-Lab is an EU Integrated Project envisioning a learning system that facilitates innovative practices of sharing, creating and working with knowledge in education and workplaces. The project exploits a novel pedagogical view, the knowledge-creation metaphor of learning. According to such “trialogical” approach, cognition arises through collaborative work in systematically developing shared “knowledge artefacts”, such as concepts, plans, material products, or social practices. The paper presents the plan of a pilot course to test the KP-Lab methodologies and tools in the field of Digital Design.

  19. Communicating Synthetic Biology: from the lab via the media to the broader public.

    Science.gov (United States)

    Kronberger, Nicole; Holtz, Peter; Kerbe, Wolfgang; Strasser, Ewald; Wagner, Wolfgang

    2009-12-01

    We present insights from a study on communicating Synthetic Biology conducted in 2008. Scientists were invited to write press releases on their work; the resulting texts were passed on to four journalists from major Austrian newspapers and magazines. The journalists in turn wrote articles that were used as stimulus material for eight group discussions with select members of the Austrian public. The results show that, from the lab via the media to the general public, communication is characterized by two important tendencies: first, communication becomes increasingly focused on concrete applications of Synthetic Biology; and second, biotechnology represents an important benchmark against which Synthetic Biology is being evaluated.

  20. Frontier Scientists' project probes audience science interests with website, social media, TV broadcast, game, and pop-up book

    Science.gov (United States)

    O'Connell, E. A.

    2017-12-01

    The Frontier Scientists National Science Foundation project titled Science in Alaska: Using Multimedia to Support Science Education produced research products in several formats: videos short and long, blogs, social media, a computer game, and a pop-up book. These formats reached distinctly different audiences. Internet users, public TV viewers, gamers, schools, and parents & young children were drawn to Frontier Scientists' research in direct and indirect ways. The analytics (our big data) derived from this media broadcast has given us insight into what works, what doesn't, next steps. We have evidence for what is needed to present science as an interesting, vital, and a necessary component for the general public's daily information diet and as an important tool for scientists to publicize research and to thrive in their careers. Collaborations with scientists at several Universities, USGS, Native organizations, tourism organizations, and Alaska Museums promoted accuracy of videos and increased viewing. For example, Erin Marbarger, at Anchorage Museum, edited, and provided Spark!Lab to test parents & child's interest in the pop-up book titled: The Adventures of Apun the Arctic Fox. Without a marketing budget Frontier Scientist's minimum publicity, during the three year project, still drew an audience. Frontier Scientists was awarded Best Website 2016 by the Alaska Press Club, and won a number of awards for short videos and TV programs.

  1. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and ...

  2. Scientists riff on fabric of the universe

    CERN Multimedia

    2008-01-01

    Their music may be the scourge of parents, but the thrashing guitars of heavy metal bands like Metallica and Iron Maiden could help explain the mysteries of the universe. The string vibrations from the frantic strumming of rock guitarists form the basis of String Theory, a mathematic theory that seeks to explain what the world is made of, says scientist Mark Lewney.

  3. Do Doctors differ from Medical Laboratory Scientists?

    African Journals Online (AJOL)

    Background: Doctors and laboratory scientists are at risk of infection from blood borne pathogens during routine clinical duties. After over 20 years of standard precautions, health care workers knowledge and compliance is not adequate. Aim: This study is aimed at comparing adherence and knowledge of standard ...

  4. A scientist's guide to engaging decision makers

    Science.gov (United States)

    Vano, J. A.

    2015-12-01

    Being trained as a scientist provides many valuable tools needed to address society's most pressing environmental issues. It does not, however, provide training on one of the most critical for translating science into action: the ability to engage decision makers. Engagement means different things to different people and what is appropriate for one project might not be for another. However, recent reports have emphasized that for research to be most useful to decision making, engagement should happen at the beginning and throughout the research process. There are an increasing number of boundary organizations (e.g., NOAA's Regional Integrated Sciences and Assessment program, U.S. Department of the Interior's Climate Science Centers) where engagement is encouraged and rewarded, and scientists are learning, often through trial and error, how to effectively include decision makers (a.k.a. stakeholders, practitioners, resource managers) in their research process. This presentation highlights best practices and practices to avoid when scientists engage decision makers, a list compiled through the personal experiences of both scientists and decision makers and a literature review, and how this collective knowledge could be shared, such as through a recent session and role-playing exercise given at the Northwest Climate Science Center's Climate Boot Camp. These ideas are presented in an effort to facilitate conversations about how the science community (e.g., AGU researchers) can become better prepared for effective collaborations with decision makers that will ultimately result in more actionable science.

  5. Scientists' internal models of the greenhouse effect

    Science.gov (United States)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  6. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Accomplishments Budget and Congress About the NEI Director History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors National Advisory Eye Council (NAEC) Donating to the NEI Contact Us Visiting the NIH Campus Mission Statement As part ...

  7. Knowledge transfer activities of scientists in nanotechnology

    NARCIS (Netherlands)

    Zalewska-Kurek, Katarzyna; Egedova, Klaudia; Geurts, Petrus A.T.M.; Roosendaal, Hans E.

    In this paper, we present a theory of strategic positioning that explains scientists’ strategic behavior in knowledge transfer from university to industry. The theory is based on the drivers strategic interdependence and organizational autonomy and entails three modes of behavior of scientists:

  8. A Systematic Identification of Scientists on Twitter

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Q.; Ahn, Y.Y.; Sugimoto, C.R.

    2016-07-01

    There is an increasing use of Twitter and other social media to estimate the broader social impacts of scholarship. However, without systematic understanding of the entities that participate in conversations about science, efforts to translate altmetrics into impact indicators may produce highly misleading results. Here we present a systematic approach to identifying scientists on Twitter. (Author)

  9. Alexandre Gustave Eiffel: An Engineer Scientist

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Alexandre Gustave Eiffel: An Engineer Scientist. Ananth Ramaswamy. General Article Volume 14 Issue 9 September 2009 pp 840-848. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ... Employee Emergency Information NEI Intranet (Employees Only) *PDF files require the free Adobe® Reader® software for viewing. ...

  11. Scientists hope collider makes a big bang

    CERN Multimedia

    Nickerson, Colin

    2007-01-01

    "In a 17-ile circular tunnel curving beneath the Swiss-French border, scientists are poised to recreate the universe's first trillionth of a second. The aim of the audacious undertaking is to solve one of the most perturbing puzzles of physics: How did matter attain mass and form the cosmos? (2 pages)

  12. The Political Scientist as Local Campaign Consultant

    Science.gov (United States)

    Crew, Robert E., Jr.

    2011-01-01

    During my 45 years as an academic, I have followed the admonition sometimes attributed to the legendary Jedi warrior Obi-Wan Kenobe that political scientists should "use [their] power for good and not for evil." In this spirit, I have devoted substantial portions of my career to public service by providing strategic advice and campaign management…

  13. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Search the NEI Website search NEI on Social Media | Search A-Z | en español | Text size S M L About NEI NEI Research Accomplishments Budget and Congress About the NEI Director History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors ...

  14. Engineers, scientists to benefit from CERN agreement

    CERN Multimedia

    2008-01-01

    Prime Minister Lawrence Gonzi will later this week sign a memorandum of understanding with the European Laboratory for Particle Physics in Geneva (CERN), the largest laboratory of its kind in the world, which will create new opportunities for Maltese engineers and scientists.

  15. Careers in Science: Being a Soil Scientist

    Science.gov (United States)

    Bryce, Alisa

    2015-01-01

    Being a soil scientist is a fascinating and certainly diverse career, which can indeed involve working in a laboratory or diagnosing sick orange trees. However it often involves much, much more. In 2015, as part of the United Nations' "International Year of Soils," Soil Science Australia's (SSA) "Soils in Schools" program…

  16. New initiative links scientists and entertainers

    Science.gov (United States)

    Gwynne, Peter

    2009-01-01

    The US National Academy of Sciences has teamed up with Hollywood to improve the quality of science portrayed in films, TV shows and video games. The new Science and Entertainment Exchange (SEE) aims to create better links between entertainment-industry professionals and scientists to improve the credibility of programming related to science.

  17. Exploring Native American Students' Perceptions of Scientists

    Science.gov (United States)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  18. Educational Mismatch and the Careers of Scientists

    Science.gov (United States)

    Bender, Keith A.; Heywood, John S.

    2011-01-01

    Previous research confirms that many employees work in jobs not well matched to their skills and education, resulting in lower pay and job satisfaction. While this literature typically uses cross-sectional data, we examine the evolution of mismatch and its consequences over a career, by using a panel data set of scientists in the USA. The results…

  19. Life as a Mother-Scientist

    Science.gov (United States)

    Louis, Lucille

    2006-01-01

    In this article, the author shares the difficulties she faced as she tried to reach a balance between her career as a scientist and her role as a mother. She speaks of how she often found problems in putting her children into day care centers. She also relates that the confidence mothers have in their academic careers is correlated to the quality…

  20. University scientists test Mars probe equipment

    CERN Multimedia

    2002-01-01

    Scientists at Leicester University have spent four years researching and designing the Flight Model Position Adjustable Workbench (PAW) at the university. It will be attached to the Beagle 2 probe before being sent to the Red Planet in the spring (1/2 page).