WorldWideScience

Sample records for berkeley lab scientists

  1. Diversity, Equity, & Inclusion at Berkeley Lab

    Science.gov (United States)

    Berkeley Lab A-Z Index Directory Search Diversity, Equity, & Inclusion at Berkeley Lab Home Diversity & Inclusion Council Women Scientists & Engineers Council Employee Resource Groups -and culture of inclusion are key to attracting and engaging the brightest minds and furthering our

  2. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  3. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  4. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    International Nuclear Information System (INIS)

    Lawrence Berkeley National Laboratory

    2007-01-01

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material

  5. Guidelines for the segregation characterization management of dry waste at Berkeley Lab

    International Nuclear Information System (INIS)

    1997-05-01

    Managing and disposing of dry low level radioactive waste at Berkeley Lab. is problematic. The Waste Management Group must assure off site treatment, storage, and disposal facilities that dry waste from Berkeley Lab. is free of liquids and regulated metals (such as lead and mercury). RTR (Real Time Radioagraphy) used for waste to be rejected. This pamphlet helps to clarify dry waste management requirements that will ensure that Berkeley Lab. dry waste will be accepted for off site shipment. These issues are critical if we are to have an off site disposal option for your dry radioactive waste

  6. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    International Nuclear Information System (INIS)

    Budinger, Thomas

    2006-01-01

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  7. Berkeley Lab Pilot on External Regulation of DOE National Laboratories by the U.S. NRC

    International Nuclear Information System (INIS)

    Zeman, Gary H.

    1999-01-01

    The US Department of Energy and the US Nuclear Regulatory Commission entered into an agreement in November 1997 to pursue external regulation of radiation safety at DOE national laboratories through a Pilot Program of simulated regulation at 6-10 sites over a 2 year period. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab), the oldest of the DOE national laboratories, volunteered and was selected as the first Pilot site. Based on the similarities and linkages between Berkeley Lab and nearby university research laboratories, Berkeley Lab seemed a good candidate for external regulation and a good first step in familiarizing NRC with the technical and institutional issues involved in regulating laboratories in the DOE complex. NRC and DOE team members visited Berkeley Lab on four occasions between October 1997 and January 1998 to carry out the Pilot. The first step was to develop a detailed Work Plan, then to carry out both a technical review of the radiation safety program and an examination of policy and regulatory issues. The Pilot included a public meeting held in Oakland, CA in December 1997. The Pilot concluded with NRC's assessment that Berkeley Lab has a radiation protection program adequate to protect workers, the public and the environment, and that it is ready to be licensed by the NRC with minor programmatic exceptions. A draft final report of the Pilot was prepared and circulated for comment as a NUREG document (dated May 7, 1998). The report's recommendations include extending NRC regulatory authority to cover all ionizing radiation sources (including accelerators, x-ray units, NARM) at Berkeley Lab. Questions remaining to be resolved include: who should be the licensee (DOE, the Lab, or both)?; dealing with legacy issues and NRC D and D requirements; minimizing dual oversight; quantifying value added in terms of cost savings, enhanced safety, and improved public perception; extrapolating results to other national laboratories; and

  8. UC-Berkeley-area citizens decry waste transfer from lab.

    CERN Multimedia

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  9. Popular Berkeley Lab X-ray Data Booklet reissued

    International Nuclear Information System (INIS)

    Robinson, Art

    2001-01-01

    X-ray scientists and synchrotron-radiation users who have been patiently waiting for an updated version of the popular X-Ray Data Booklet last published in 1986 by the Center for X-Ray Optics at the Lawrence Berkeley National Laboratory can breathe a sigh of relief. The venerable ''little orange book'' has now been reissued under the auspices of CXRO and the Advanced Light Source (ALS) with an April printing of 10,000 paper copies and the posting of a Web edition at http://xdb.lbl.gov

  10. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    International Nuclear Information System (INIS)

    Collier, Michael

    2002-01-01

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle

  11. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Science.gov (United States)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  12. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award; scientist's work on supernovae reveals accelerating Universe

    CERN Multimedia

    2002-01-01

    Saul Perlmutter, from Lawrence Berkeley National Laboratory Physics Division and leader of the Supernova Cosmology Project based there, has won the DOE's 2002 E.O. Lawrence Award in the physics category (2 pages).

  13. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award scientist's work on supernovae reveals accelerating universe

    CERN Multimedia

    2002-01-01

    "Saul Perlmutter, a member of Lawrence Berkeley National Laboratory's Physics Division and leader of the international Supernova Cosmology Project based there, has won the Department of Energy's 2002 E.O. Lawrence Award in the physics category" (1/2 page).

  14. LAB building a home for scientists

    CERN Document Server

    Fishman, Mark C

    2017-01-01

    Laboratories are both monasteries and space stations, redolent of the great ideas of generations past and of technologies to propel the future. Yet standard lab design has changed only little over recent years. Here Mark Fishman describes how to build labs as homes for scientists, to accommodate not just their fancy tools, but also their personalities. This richly illustrated book explores the roles of labs through history, from the alchemists of the Middle Ages to the chemists of the 19th and 20th centuries, and to the geneticists and structural biologists of today, and then turns to the special features of the laboratories Fishman helped to design in Cambridge, Shanghai, and Basel. Anyone who works in, or plans to build a lab, will enjoy this book, which will encourage them to think about how this special environment drives or impedes their important work.

  15. Lawrence Berkeley National Laboratory 2016 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P.; Williams, Kim, P.

    2017-06-27

    FY2016 was a year of significant change and progress at Berkeley Lab. In March, Laboratory Director Michael Witherell assumed his new role when former Lab Director Paul Alivisatos became Vice Chancellor for Research at UC Berkeley. Dr. Witherell has solidified the Lab’s strategy, with a focus on long term science and technology priorities. Large-scale science efforts continued to expand at the Lab, including the Dark Energy Spectroscopic Instrument now heading towards construction, and the LUX-ZEPLIN dark matter detector to be built underground in South Dakota. Another proposed project, the Advanced Light Source-Upgrade, was given preliminary approval and will be the Lab’s largest scientific investment in years. Construction of the Integrative Genomics Building began, and will bring together researchers from the Lab’s Joint Genome Institute, now based in Walnut Creek, and the Systems Biology Knowledgebase (K-Base) under one roof. Investment in the Lab’s infrastructure also continues, informed by the Lab’s Infrastructure Strategic Plan. Another important focus is on developing the next generation of scientists with the talent and diversity needed to sustain Berkeley Lab’s scientific leadership and mission contributions to DOE and the Nation. Berkeley Lab received $897.5M in new FY2016 funding, a 12.5% increase over FY2015, for both programmatic and infrastructure activities. While the Laboratory experienced a substantial increase in funding, it was accompanied by only a modest increase in spending, as areas of growth were partially offset by the completion of several major efforts in FY2015. FY2016 costs were $826.9M, an increase of 1.9% over FY2015. Similar to the prior year, the indirect-funded Operations units worked with generally flat budgets to yield more funding for strategic needs. A key challenge for Berkeley Lab continues to be achieving the best balance to fund essential investments, deliver highly effective operational mission support and

  16. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    International Nuclear Information System (INIS)

    Hargrove, Paul H; Duell, Jason C

    2006-01-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters

  17. Development of an accelerator-based BNCT facility at the Berkeley Lab

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

    1998-01-01

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7 Li(p,n) 7 Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  18. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P

    2017-08-11

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritized and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.

  19. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  20. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  1. Electron Microscope Center Opens at Berkeley.

    Science.gov (United States)

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  2. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    International Nuclear Information System (INIS)

    Cheng, Robert K.

    1999-01-01

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  3. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  4. A Community of Scientists and Educators: The Compass Project at UC Berkeley

    Science.gov (United States)

    Roth, Nathaniel; Schwab, Josiah

    2016-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.

  5. FY2014 LBNL LDRD Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nation by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.

  6. Sit Down with Sabin: Margaret Torn: The Carbon Cycle Like You've Never Seen It (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Sabin; Torn, Margaret

    2011-07-06

    Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.

  7. Sit Down with Sabin: Venkat Srinivasan: The Future of Batteries (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Sabin; Srinivasan, Venkat

    2011-06-29

    Lawrence Berkeley National Laboratory battery scientist Venkat Srinivasan appears June 29, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Over the course of several conversations held at noon in the Building 50 auditorium, Russell and Lab staff will explore the ups and downs of pioneering science — all without the aid of PowerPoints. Brought to you by Berkeley Lab Public Affairs.

  8. Laboratories for the 21st Century: Case Studies, Molecular Foundry, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers.

  9. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  10. Connecting Scientists, College Students, Middle School Students & Elementary Students through Intergenerational Afterschool STEM Programming

    Science.gov (United States)

    Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.

    2015-12-01

    The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.

  11. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    Energy Technology Data Exchange (ETDEWEB)

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  12. Berkeley's Philosophy of Mathematics

    CERN Document Server

    Jesseph, Douglas M

    1993-01-01

    In this first modern, critical assessment of the place of mathematics in Berkeley's philosophy and Berkeley's place in the history of mathematics, Douglas M. Jesseph provides a bold reinterpretation of Berkeley's work. Jesseph challenges the prevailing view that Berkeley's mathematical writings are peripheral to his philosophy and argues that mathematics is in fact central to his thought, developing out of his critique of abstraction. Jesseph's argument situates Berkeley's ideas within the larger historical and intellectual context of the Scientific Revolution. Jesseph begins with Berkeley's r

  13. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2012-06-22

    ...: The Coast Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...

  14. 78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2013-05-17

    ... Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in approximate position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...

  15. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  16. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  17. Berkeley Lab Scientist Named MacArthur "Genius" Fellow for Audio

    Science.gov (United States)

    1, 2015 5776 Views TAGS: awards, people, physics Connect twitter instagram LinkedIn facebook youtube Physics + Cosmology Chemistry + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S Privacy & Security Notice twitter instagram LinkedIn facebook youtube

  18. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Science.gov (United States)

    2011-06-28

    ...-AA00 Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA AGENCY: Coast... the 4th of July Festival Berkeley Marina Fireworks Display. Unauthorized persons or vessels are... display. Background and Purpose The City of Berkeley Marina will sponsor the 4th of July Festival Berkeley...

  19. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  20. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  1. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  2. Web site lets solar scientists inform and inspire students

    Science.gov (United States)

    Hauck, Karin

    2012-07-01

    Where on the Web can a middle school girl ask a female solar scientist about solar storms, the course and behavior of charged solar particles, and the origin of the Sun's dynamo—and also find out what the scientist was like as a child, whether the scientist has tattoos or enjoys snowboarding, what she likes and dislikes about her career, and how she balances her energy for work and family life? These kinds of exchanges happen at Solar Week (http://www.solarweek.org; see Figure 1). Established in 2000, Solar Week is an online resource for middle and lower high school students about the science of the Sun, sponsored by the Center for Science Education at the Space Sciences Laboratory (CSE@SSL) at the University of California, Berkeley (UC Berkeley). The Web site's goals are to educate students about the Sun and solar physics and to encourage future careers in science—especially for girls. One way is by giving solar scientists the chance to be relatable role models, to answer students' questions, and to share their experiences in an online forum.

  3. Fermilab and Berkeley Lab Collaborate with Meyer Tool on Key Component for European Particle Accelerator

    CERN Multimedia

    2004-01-01

    Officials of the U.S. Department of Energy's Fermi National Accelerator Laboratory and Lawrence Berkeley National Laboratory announced yesterday the completion of a key component of the U.S. contribution to the Large Hadron Collider, a particle accelerator under construction at CERN, in Geneva, Switzerland

  4. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Thorson, Patrick

    1998-01-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  5. Berkeley Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    To a regular observer at annual international meetings, progress in particle physics from one year to the next sometimes might seem ponderously slow. But shift the timescale and the result is startling. Opening his summary of the 1986 International Conference on High Energy Physics, held in Berkeley, California, from 16-23 July, Steve Weinberg first recalled the 1966 Conference, also held in Berkeley. Then the preoccupations were current algebra, hadron resonances and the interpretation of scattering in terms of Regge poles, and the theory of weak interactions. Physics certainly has moved.

  6. Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    To a regular observer at annual international meetings, progress in particle physics from one year to the next sometimes might seem ponderously slow. But shift the timescale and the result is startling. Opening his summary of the 1986 International Conference on High Energy Physics, held in Berkeley, California, from 16-23 July, Steve Weinberg first recalled the 1966 Conference, also held in Berkeley. Then the preoccupations were current algebra, hadron resonances and the interpretation of scattering in terms of Regge poles, and the theory of weak interactions. Physics certainly has moved

  7. Brookhaven Lab and Argonne Lab scientists invent a plasma valve

    CERN Multimedia

    2003-01-01

    Scientists from Brookhaven National Laboratory and Argonne National Laboratory have received U.S. patent number 6,528,948 for a device that shuts off airflow into a vacuum about one million times faster than mechanical valves or shutters that are currently in use (1 page).

  8. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.

  9. The radioactive inventory of a Berkeley heat exchanger

    International Nuclear Information System (INIS)

    Hancock, R.

    1988-10-01

    The Central Electricity Generating Board has announced a date for the final shutdown of the first of the Magnox power stations at Berkeley (March 1989), and is in the process of preparing Pre-Decommissioning Safety Reports (PDSR) for the decommissioning of Berkeley and Bradwell. This report supports these PDSR studies and reports work carried out within the Research Division at Berkeley Nuclear Laboratories on the radioactive inventories of the heat exchangers at Berkeley Power Station. At Berkeley, the heat exchangers will be included in stage two decommissioning to which they will contribute the largest mass of contaminated material. The purpose of this report is to bring together all of the available data on the contamination in the heat exchangers at Berkeley Power Station, and to recommend a database from which the options for disposal of the heat exchangers may be formulated. (author)

  10. Environmental research at Berkeley

    CERN Multimedia

    1973-01-01

    The information concerning the Energy and Environment Programme at the Lawrence Berkeley Laboratory is based on a talk given at CERN by A.M. Sessler, one of the initiators of the Programme. (Dr. Sessler has been appointed Director of the Lawrence Berkeley Laboratory, in succession to Prof. E. M. McMillan, from 1 November.) Many of the topics mentioned merit an extended story in themselves but the purpose of this article is simply to give a sketch of what is happening.

  11. Laboratory Directed Research and Development Program, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical nation science and technology problems: accelerators and fusion, chemical sciences, earth sciences, energy and environment, engineering, life sciences, materials, nuclear science, physics, and structural biology (hyperthermophilic microorganisms).

  12. Laboratory Directed Research and Development Program, FY 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical nation science and technology problems: accelerators and fusion, chemical sciences, earth sciences, energy and environment, engineering, life sciences, materials, nuclear science, physics, and structural biology (hyperthermophilic microorganisms)

  13. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    2015-02-02

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.  Created: 2/2/2015 by Office of the Associate Director for Communication (OADC).   Date Released: 2/2/2015.

  14. Treatment of Berkeley boilers in Studsvik. Project description and experiences - Berkeley Boilers Project

    International Nuclear Information System (INIS)

    Saul, Dave; Davidson, Gavin; Wirendal, Bo

    2014-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. In November 2012 Studsvik was awarded a further contract for the remaining ten Berkeley Boilers with the requirement to remove all boilers from the Berkeley site by 31 March 2013. Again this was successfully achieved ahead of programme with all boilers in Sweden by 1 April 2013. A total of nine boilers have now been processed and all remaining boilers will be completed by end of September 2014. The projects have had many challenges including a very tight timescale and both have been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the boilers to date. (authors)

  15. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-01-01

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  16. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  17. Using Videoconferencing in a School-Scientist Partnership: Students' Perceptions and Scientists' Challenges

    Science.gov (United States)

    Falloon, Garry

    2012-01-01

    This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…

  18. STAR FORMATION NEAR BERKELEY 59: EMBEDDED PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosvick, J. M. [Department of Physical Sciences, Thompson Rivers University, 900 McGill Road, Kamloops, BC V2C 0C8 (Canada); Majaess, D. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada)

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (∼2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, {sup 12}CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v {sub LSR} = –15 to –17 km s{sup –1}, which agrees with the velocity adopted for Berkeley 59 (–15.7 km s{sup –1}), while spectral energy distribution models yield an average interstellar extinction A{sub V} and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  19. What Made Berkeley Great? The Sources of Berkeley's Sustained Academic Excellence. Research & Occasional Paper Series CSHE.3.11

    Science.gov (United States)

    Breslauer, George W.

    2011-01-01

    University of California (UC) Berkeley's chief academic officer explores the historical sources of Berkeley' academic excellence. He identifies five key factors: (1) wealth from many sources; (2) supportive and skilled governors; (3) leadership from key UC presidents; (4) the pioneering ethos within the State of California; and (5) a process of…

  20. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  1. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  2. RoboLab and virtual environments

    Science.gov (United States)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  3. Labs to go up for bid in 2005 University may lose research facilities if it does not have competitive offer

    CERN Multimedia

    Foxman, A

    2003-01-01

    "...When the UC's contracts to run the Los Alamos, Lawrence Livermore and Berkeley National Labs run out in 2005, the UC will have to compete to keep them for the first time in over half a century" (1 page).

  4. Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics | Berkeley Lab

    Science.gov (United States)

    astrophysics, dark energy, physics Connect twitter instagram LinkedIn facebook youtube This form needs + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S. Department of Energy National twitter instagram LinkedIn facebook youtube

  5. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  6. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    International Nuclear Information System (INIS)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-01-01

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an ∼120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes

  7. National facility for advanced computational science: A sustainable path to scientific discovery

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  8. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  9. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  10. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  11. City of Berkeley, California Municipal Tree Resource Analysis

    Science.gov (United States)

    S.E. Maco; E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao

    2005-01-01

    Vibrant, renowned for its livability and cultural wealth, the city of Berkeley maintains trees as an integral component of the urban infrastructure. Research indicates that healthy trees can mitigate impacts associated with the built environment by reducing stormwater runoff, energy consumption, and air pollutants. Put simply, trees improve urban life, making Berkeley...

  12. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  13. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  14. Evaluating the Impact of Open Access at Berkeley: Results from the 2015 Survey of Berkeley Research Impact Initiative (BRII) Funding Recipients

    Science.gov (United States)

    Teplitzky, Samantha; Phillips, Margaret

    2016-01-01

    The Berkeley Research Impact Initiative (BRII) was one of the first campus-based open access (OA) funds to be established in North America and one of the most active, distributing more than $244,000 to support University of California (UC) Berkeley authors. In April 2015, we conducted a qualitative study of 138 individuals who had received BRII…

  15. A Big Bang Lab

    Science.gov (United States)

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  16. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  17. MatLab Programming for Engineers Having No Formal Programming Knowledge

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  18. C. Judson King of UC Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director of the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.

  19. Experimental nuclear physics. Progress report, September 1980-June 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Continuing cooperative research is reported in the areas of, a) In-beam γ-ray spectroscopy with scientists at Oak Ridge and the University of Koeln; b) Coulomb excitation studies at Lawrence Berkeley Laboratory and at GSI, Darmstadt, Germany; c) Maxsive transfer and preequilibrium emission processes in fusion reactions at ORNL; d) Nucleon transfer reaction studies with scientists at ORNL, Los Alamos and Brookhaven; e) delta-electron spectroscopy at the Mas Planck Institute in Heidelberg; f) Heavy ion atomic physics at the ORNL En tandem; g) Studies of nuclei far from stability at UNISOR; and h) Theoretical studies of high spin phenomena with scientists at Lawrence Berkeley, Brookhaven Lab., Univ. of Tubingen, and Copenhagen and of nuclear molecules and their decay processes in very heavy ion collisions with the University of Frankfurt and Vanderbilt theorists. Abstracts of papers published or submitted for publication are presented, and brief reports of work in process are given

  20. Professional Development for Graduate Students through Internships at Federal Labs: an NSF/USGS Collaboration

    Science.gov (United States)

    Snow, E.; Jones, E.; Patino, L. C.; Wasserman, E.; Isern, A. R.; Davies, T.

    2016-12-01

    In 2013 the White House initiated an effort to coordinate STEM education initiatives across federal agencies. This idea spawned several important collaborations, one of which is a set of National Science Foundation programs designed to place graduate students in federal labs for 2-12 months of their Ph.D. training. The Graduate Research Internship Program (GRIP) and the Graduate Student Preparedness program (GSP) each have the goal of exposing PhD students to the federal work environment while expanding their research tools and mentoring networks. Students apply for supplementary support to their Graduate Research Fellowship (GRIP) or their advisor's NSF award (GSP). These programs are available at several federal agencies; the USGS is one partner. At the U.S. Geological Survey, scientists propose projects, which students can find online by searching USGS GRIP, or students and USGS scientists can work together to develop a research project. At NSF, projects are evaluated on both the scientific merit and the professional development opportunities they afford the student. The career development extends beyond the science (new techniques, data, mentors) into the professional activity of writing the proposal, managing the budget, and working in a new and different environment. The USGS currently has 18 GRIP scholars, including Madeline Foster-Martinez, a UC Berkeley student who spent her summer as a GRIP fellow at the USGS Pacific Coastal and Marine Science Center working with USGS scientist Jessica Lacy. Madeline's Ph.D. work is on salt marshes and she has studied geomorphology, accretion, and gas transport using a variety of research methods. Her GRIP fellowship allowed her to apply new data-gathering tools to the question of sediment delivery to the marsh, and build and test a model for sediment delivery along marsh edges. In addition, she gained professional skills by collaborating with a new team of scientists, running a large-scale field deployment, and

  1. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  2. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  3. Helping Students to Think Like Scientists in Socratic Dialogue-Inducing Labs

    Science.gov (United States)

    Hake, Richard

    2012-01-01

    Socratic dialogue-inducing (SDI) labs are based on Arnold Arons' half-century of ethnographic research, listening carefully to students' responses to probing Socratic questions on physics, science, and ways of thinking, and culminating in his landmark "Teaching Introductory Physics." They utilize "interactive engagement" methods and are designed,…

  4. FameLab - Swiss Semi Finals

    CERN Multimedia

    Corinne Pralavorio

    2012-01-01

    Twenty-two young scientists participated in the FameLab semi-final at CERN's Globe of Science and Innovation on 4 February, supported by a large audience and by more than 100 fans following via webcast. A panel of judges chose Lemmer and four other candidates to join five other semi-finalists at the national finals in Zurich on 30 March.

  5. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  6. People and things. CERN Courier, April 1980, v. 20(2)

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: On 22 May Brookhaven National Laboratory will celebrate the twentieth year of operation of the Alternating Gradient Synchrotron; Japanese scientists are becoming involved in extensive collaborations at US high energy physics Laboratories (Argonne, Berkeley, Brookhaven, Fermi lab and Stanford)

  7. THE YOUNG OPEN CLUSTER BERKELEY 55

    Energy Technology Data Exchange (ETDEWEB)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2012-02-15

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster with a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.

  8. BERKELEY/STANFORD: B factory plans

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    For the past several years, accelerator physicists at Lawrence Berkeley Laboratory (LBL) and the Stanford Linear Accelerator Center (SLAC) have been involved in the design of an Asymmetric B Factory to be sited in the tunnel of the PEP electron-positron collider at SLAC

  9. Scientists as citizens and knowers in the detection of deforestation in the Amazon.

    Science.gov (United States)

    Monteiro, Marko; Rajão, Raoni

    2017-08-01

    This paper examines how scientists deal with tensions emerging from their role as providers of objective knowledge and as citizens concerned with how their research influences policy and politics in Brazil. This is accomplished through an ethnographic account of scientists using remote sensing technology, of their knowledge-making activities and of the broader socio-political controversies that permeate the detection of deforestation in the Amazon rainforest. Strategies for mitigating uncertainty are central aspects of the knowledge practices analyzed, bringing controversies 'external' to the laboratory 'into' the lab, making these boundaries conceptually problematic. In particular, the anticipation of alternative interpretations of rainforest cover is a crucial way that scientists bring the world into the lab, helping to shed light on how scientists, usually seen and analyzed as isolated, are in fact often in constant dialogue with the broader political controversies related to their work. These insights help question the idea that the monitoring of deforestation through remote sensing is a form of secluded research, drawing a more complex picture of the dual role of scientists as knowledge producers and concerned citizens.

  10. Extreme Science (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew; Torok, Tamas

    2012-02-27

    On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel.

  11. DOE Lab-to-Lab MPC ampersand A workshop for cooperative tasks with Russian institutes: Focus on critical assemblies and item facilities

    International Nuclear Information System (INIS)

    Bieber, A.M. Jr.; Fishbone, L.G.; Kato, W.Y.; Lazareth, O.W.; Suda, S.C.; Garcia, D.; Haga, R.

    1995-01-01

    Seventeen Russian scientists and engineers representing five different institutes participated in a Workshop on material control and accounting as part of the US-Russian Lab-to-Lab Cooperative Program in Nuclear Materials Protection, Control, and Accounting (MPC ampersand A). In addition to presentations and discussions, the Workshop included an exercise at Brookhaven National Laboratory (BNL) and demonstrations at the Zero Power Physics Reactor (critical-assembly facility) of Argonne National Laboratory-West (ANL-W). The Workshop particularly emphasized procedures for physical inventory-taking at critical assemblies and item facilities, with associated supporting techniques and methods. By learning these topics and applying the methods and experience at their own institutes, the Russian scientists and engineers will be able to determine and verify nuclear material inventories based on sound procedures, including measurements. This will constitute a significant enhancement to MPC ampersand A at the Russian institutes

  12. Lab coats in Hollywood science, scientists, and cinema

    CERN Document Server

    Kirby, David A

    2013-01-01

    Stanley Kubrick’s 2001: A Space Odyssey, released in 1968, is perhaps the most scientifically accurate film ever produced. The film presented such a plausible, realistic vision of space flight that many moon hoax proponents believe that Kubrick staged the 1969 moon landing using the same studios and techniques. Kubrick’s scientific verisimilitude in 2001 came courtesy of his science consultants—including two former NASA scientists—and the more than sixty-five companies, research organizations, and government agencies that offered technical advice. Although most filmmakers don’t consult experts as extensively as Kubrick did, films ranging from A Beautiful Mind and Contact to Finding Nemo and The Hulk have achieved some degree of scientific credibility because of science consultants. In Lab Coats in Hollywood, David Kirby examines the interaction of science and cinema: how science consultants make movie science plausible, how filmmakers negotiate scientific accuracy within production constraints, and ...

  13. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  14. Experimental Nuclear Physics. Progress report, July 1981-July 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The research activities of the experimental nuclear structure group at Vanderbilt for the period July 1981 to July 1982 are reported. This includes continuing cooperative research in the areas of, (a) in-beam γ-ray spectroscopy with scientists at Oak Ridge and the University of Koeln; (b) studies of nuclei far from stability at UNISOR; (c) pre-equilibrium (massive transfer) emission processes in fusion reactions at ORNL; (d) nucleon transfer reaction studies with scientists at ORNL, Los Alamos and Brookhaven; (e) delta-electron spectroscopy at the Max Planck Institute in Heidelberg; (f) theoretical studies with scientists at Lawrence Berkeley Lab., Brookhaven National Lab., University of Frankfurt, and Vanderbilt; and (g) Coulomb excitation studies at GSI, Darmstadt, Germany. In general, abstracts of papers published or submitted for publication in this period make up this report along with brief reports of work in process and complete copies of a few reviews in press

  15. ASTRO 101 Labs and the Invasion of the Cognitive Scientists

    Science.gov (United States)

    Slater, Stephanie J.

    2015-04-01

    Since the mid 1800's there has been widespread agreement that we should be about the business of engaging students in the practices of scientific research in order to best teach the methods and practices of science. There has been significantly less agreement on precisely how to teach science by mimicking scientific inquiry in a way that can be empirically supported, even with our ``top students.'' Engaging ``ASTRO 101 students'' in scientific inquiry is a task that has left our astronomy education research community more than a little stymied, to the extent that it is difficult to find non-major science students practicing anything other than confirmation exercises in college labs. Researchers at the CAPER Center for Astronomy & Physics Education Research have struggled with this problem as well, until in our frustration we had to ask: ``Can research tell us anything about how to get students to do research?'' This talk presents an overview of the cognitive science that we've brought to bear in the ASTRO 101 laboratory setting for non-science majoring undergraduates and future teachers, along with the results of early studies that suggest that a ``backwards faded scaffolding'' approach to instruction in Intro Labs can successfully support large numbers of students in enhancing their understanding of the nature of scientific inquiry. Supported by NSF DUE 1312562.

  16. Calculus for cognitive scientists partial differential equation models

    CERN Document Server

    Peterson, James K

    2016-01-01

    This book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics.  A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.

  17. FameLab: A Communication Skills-Building Program Disguised as an International Competition

    Science.gov (United States)

    Scalice, D.

    2015-12-01

    One of the key pieces of training missing from most graduate studies in science is skills-building in communication. Beyond the responsibility to share their work with the public, good communication skills enhance a scientist's career path, facilitating comprehension of their work by stakeholders and funders, as well as increasing the ability to collaborate interdisciplinarily. FameLab, an American Idol-style communication competition for early career scientists, helps fill this void, and provides an opportunity to pratice communication skills, with the coaching of professionals, in a safe space. The focus is on training and networking with like-minded scientists. NASA's Astrobiology Program has been implementing FameLab in the US since 2011, but over 25 countries take part globally. Come learn about this innovative program, what impact it's had on participants, and how you can get involved.

  18. MATLAB-Like Scripting of Java Scientific Libraries in ScalaLab

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2014-01-01

    Full Text Available Although there are a lot of robust and effective scientific libraries in Java, the utilization of these libraries in pure Java is difficult and cumbersome, especially for the average scientist that does not expertise in software development. We illustrate that ScalaLab presents an easier and productive MATLAB like front end. Also, the main strengths and weaknesses of the core Java libraries of ScalaLab are elaborated. Since performance is of paramount importance for scientific computation, the article discusses extensively performance aspects of the ScalaLab environment. Also, Java bytecode performance is compared to native code.

  19. The Death of the Dinosaurs: 27 Years Later (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Physics

    2006-06-30

    Summer Lecture Series 2006: Rich Muller, a Berkeley Lab physicist, discusses Nobel laureate Luis Alvarez and colleagues' 1979 discovery that an asteroid impact killed the dinosaurs. He also discusses what scientists have learned in the subsequent 27 years. Alvarez's team detected unusual amounts of iridium in sedimentary layers. They attributed the excess iridium to an impact from a large asteroid. His talk was presented June 30, 2006.

  20. George Berkeley e a tradição platônica

    Directory of Open Access Journals (Sweden)

    Costica Bradatan

    2009-12-01

    Full Text Available Existe já uma grande quantidade de literatura dedicada à presença na filosofia inicial de Berkeley de alguns assuntos tipicamente platônicos (arquétipos, o problema da mente de Deus, a relação entre ideias e coisas, etc.. Baseados em alguns desses escritos, nas próprias palavras de Berkeley, assim como no exame de alguns elementos da tradição platônica num amplo sentido, sugiro que, longe de serem apenas tópicos isolados, livremente espalhados nos primeiros escritos de Berkeley, eles formam uma perfeita rede de aspectos, atitudes e modos de pensar platônicos, e que, por mais alusivos ou ambíguos que esses elementos platônicos possam parecer, eles constituem um todo coerente e complexo, desempenhando um papel importante na formação da própria essência do pensamento de Berkeley. Em outras palavras, sugiro que, dadas algumas das ideias apresentadas em suas primeiras obras, foi de certo modo inevitável para George Berkeley, em virtude da lógica interna do desenvolvimento de seu pensamento, chegar a uma obra tão abertamente platônica e especulativa como Siris (1744.

  1. Behind the scenes at FameLab, the international competition for young scientists

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    FameLab is an international science communication competition for young researchers and science teachers aged 18 to 35. At CERN, preparations are under way to recruit participants, advertise the event to the public and organise the regional semi-finals for Suisse Romande, which will take place on Saturday, 4 February 2012 in the Globe of Science and Innovation. The Bulletin looks ahead to the forthcoming event…   As you might have read in the 5 December 2011 issue of the Bulletin, Switzerland is one of the 20 countries participating in the FameLab 2012 competition, and the regional finals for French-speaking Switzerland will take place at CERN in the Globe of Science and Innovation on Saturday, 4 February 2012. “At the moment we’re still recruiting participants through various channels (registration is open till 31 January) and organising the one-day programme of events in the Globe,” says project coordinator Paola Catapano of the CERN Communication ...

  2. Cellscope Aquatic: a Lab Quality, Portable Cellphone-Based Microscope for On-Site Collection of Algae Images

    Science.gov (United States)

    Steinberg, S. J.; Howard, M. D.

    2016-02-01

    Collecting algae samples from the field presents issues of specimen damage or degradation caused by preservation methods, handling and transport to laboratory facilities for identification. Traditionally, in-field collection of high quality microscopic images has not been possible due to the size, weight and fragility of high quality instruments and training of field staff in species identification. Scientists at the Southern California Coastal Water Research Project (SCCWRP) in collaboration with the Fletcher Lab, University of California Berkeley, Department of Bioengineering, tested and translated Fletcher's original medical CellScope for use in environmental monitoring applications. Field tests conducted by SCCWRP in 2014 led to modifications of the clinical CellScope to one better suited to in-field microscopic imaging for aquatic organisms. SCCWRP subsequently developed a custom cell-phone application to acquire microscopic imagery using the "CellScope Aquatic "in combination with other cell-phone derived field data (e.g. GPS location, date, time and other field observations). Data and imagery collected in-field may be transmitted in real-time to a web-based data system for tele-taxonomy evaluation and assessment by experts in the office. These hardware and software tools was tested in field in a variety of conditions and settings by multiple algae experts during the spring and summer of 2015 to further test and refine the CellScope Aquatic platform. The CellScope Aquatic provides an easy-to-use, affordable, lightweight, professional quality, data collection platform for environmental monitoring. Our ongoing efforts will focus on development of real-time expert systems for data analysis and image processing, to provide onsite feedback to field scientists.

  3. The experiment editor: supporting inquiry-based learning with virtual labs

    Science.gov (United States)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  4. Political-social reactor problems at Berkeley

    International Nuclear Information System (INIS)

    Little, G.A.

    1980-01-01

    For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitioned the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)

  5. Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory; Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Emil [Dalarna Univ., Borlaenge (Sweden). Graphic Art Technology

    2002-12-01

    This report describes the work that is being conducted on power management controls at Berkeley National Laboratory. We can see a significant increasing amount of electronic equipment in our work places and in our every day life. Today's modern society depends on a constant energy flow. The future's increasing need of energy will burden our economy as well as our environment. The project group at Berkeley National Laboratory is working with leading manufacturers of office equipment. The goal is to agree on how interfaces for power management should be presented on office equipment. User friendliness and a more consistent power management interface is the project focus. The project group's role is to analyze data that is relevant to power management, as well as to coordinate communication and discussions among the involved parties.

  6. Demise of Texas collider has made Europe's lab a magnet for scientists

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    Had U.S. politics and science meshed more favorably, physicists from around the world would now be flocking to Waxahachie. The defunct Superconducting Super Collider (SSC) should by now have been smashing atoms, but now Europe's top nuclear research lab offers a more picturesque world capital of physics that the prairie south of Dallas

  7. BERKELEY: Light Source anniversary

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The staff of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory has been too busy to celebrate the first anniversary of the facility's transition from a US Department of Energy construction project to operating third-generation synchrotron radiation source. Based on a 1.5-GeV, low-emittance electron storage ring that accommodates up to ten insertion-device radiation sources optimized primarily for the soft X-ray and vacuum ultra-violet regions of the spectrum, the ALS has completed

  8. BERKELEY: Light Source anniversary

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-10-15

    The staff of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory has been too busy to celebrate the first anniversary of the facility's transition from a US Department of Energy construction project to operating third-generation synchrotron radiation source. Based on a 1.5-GeV, low-emittance electron storage ring that accommodates up to ten insertion-device radiation sources optimized primarily for the soft X-ray and vacuum ultra-violet regions of the spectrum, the ALS has completed.

  9. Increasing Shore-based Participation of Scientists & Students in Telepresence-enabled Nautilus Expeditions

    Science.gov (United States)

    Bell, K. L. C.; Raineault, N.; Carey, S.; Eberli, G. P.; John, B. E.; Cheadle, M. J.; German, C. R.; Mirmalek, Z.; Pallant, A.

    2016-02-01

    As the US oceanographic research fleet shrinks, reducing seagoing opportunities for scientists and students, remote participation in cruises via telepresence will become increasingly vital. The Nautilus Exploration Program is improving the experience of shoreside participants through the development of new tools and methodologies for connecting them to expeditions in real time increasing accessibility to oceanographic cruises. The Scientist Ashore Program is a network of scientists around the world who participate in Exploration Vessel Nautilus expeditions from their own labs or homes. We have developed a suite of collaboration tools to allow scientists to view video and data in real time, as well as to communicate with ship-based and other shore-based participants to enable remote participation in cruises. Post-cruise, scientists and students may access digital data and biological and geological samples from our partner shore-based repositories: the University of Rhode Island Inner Space Center, Harvard Museum of Comparative Zoology, and URI Marine Geological Samples Lab. We present examples of successful shore-based participation by scientists and students in Nautilus expeditions. In 2013, Drs. Cheadle and John stood watch 24/7 with ten undergraduate and graduate students at the University of Wyoming, recording geologic features and samples, during a cruise to the Cayman Rise. The Straits of Florida & Great Bahama Bank cruise was co-led by Dr. Eberli at the University of Miami in 2014, greatly complementing existing data. That same year, the ISC hosted four early career scientists and their twelve undergraduate students who led dives from shore in collaboration with Dr. Carey, Lead Scientist at sea on the Kick'em Jenny Volcano & the Barbados Mud Volcanoes cruise. In 2015, 12 Scientists Ashore worked in collaboration with the ship-based team on the exploration of Galapagos National Park, and more than 20 are working with OET on post-cruise data & sample analysis.

  10. UC Berkeley's Celebration of the International Year of Astronomy 2009

    Science.gov (United States)

    Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.

    2010-08-01

    We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.

  11. Natural Alternatives for Chemicals Used in Histopathology Lab- A Literature Review.

    Science.gov (United States)

    Ramamoorthy, Ananthalakshmi; Ravi, Shivani; Jeddy, Nadeem; Thangavelu, Radhika; Janardhanan, Sunitha

    2016-11-01

    Histopathology lab is the place where the specimen gets processed and stained to view under microscope for interpretation. Exposure to the chemicals used in these processes cause various health hazards to the laboratory technicians, pathologists, and scientists working in the laboratory. Hence, there is a dire need to introduce healthy and bio-friendly alternatives in the field. This literature review explores the natural products and their efficiency to be used as alternatives for chemicals in the histopathology lab.

  12. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    Science.gov (United States)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  13. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    culture and policies at MSD MSD0010: Integrated Safety Management: Principles and Case Studies Calendar ? Click Here! Resources for MSD Safety MSD Safety MSD's Integrated Safety Management Plan [PDF] Safety for MSD classes on Integrated Safety Management MSD0015 Handout - Waste Briefing Document [PDF] Waste

  14. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  15. Dynamic magnetic particle actuation for integrated lab-on-chip biosensing

    NARCIS (Netherlands)

    Jong, de A.M.; Reenen, van A.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for in-vitro diagnostic testing. We study the use of magnetic particles actuated by magnetic fields to perform different microfluidic handling steps of an integrated

  16. It's a wonderful life: a career as an academic scientist.

    Science.gov (United States)

    Vale, Ronald D

    2010-01-01

    Many years of training are required to obtain a job as an academic scientist. Is this investment of time and effort worthwhile? My answer is a resounding "yes." Academic scientists enjoy tremendous freedom in choosing their research and career path, experience unusual camaraderie in their lab, school, and international community, and can contribute to and enjoy being part of this historical era of biological discovery. In this essay, I further elaborate by listing my top ten reasons why an academic job is a desirable career for young people who are interested in the life sciences.

  17. The lab of fame

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    For a third time, CERN is organising the Swiss heat of Famelab, the world’s leading science communication competition that has already gathered over 5,000 young and talented scientists and engineers from all across the planet.   Besides their degrees, the scientists who participate in Famelab have another thing in common: their passion for communicating science. Coming from a variety of scientific fields, from medicine to particle physics and microbiology, the contestants have three minutes to present a science, technology, mathematics or engineering-based talk using only the props he or she can carry onto the stage; PowerPoint presentations are not permitted. The contestants are then judged by a panel of three judges who evaluate the content, clarity and charisma of their talks. What's unique about FameLab is the fact that content is an important aspect of the performance. At the end of their presentation, contestants are often questioned about the scientific relevance of...

  18. Superbends expand the scope of Berkeley's ALS

    CERN Document Server

    Robin, D S; Tamura, L S

    2002-01-01

    The first-ever retrofit of superconducting bend magnets into the storage ring of an operating synchrotron radiation source extends the spectrum of Lawrence Berkeley National Laboratory's Advanced Light Source into the hard-X-ray region without compromising soft X-ray availability, or performance. (4 refs).

  19. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  20. Disintegration of the Aged Open Cluster Berkeley 17

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Souradeep; Vaidya, Kaushar [Department of Physics, Birla Institute of Technology and Science, Pilani 333031, Rajasthan (India); Mishra, Ishan [Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Chen, W. P., E-mail: f2012553@pilani.bits-pilani.ac.in [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China)

    2017-10-01

    We present the analysis of the morphological shape of Berkeley 17, the oldest known open cluster (∼10 Gyr), using the probabilistic star counting of Pan-STARRS point sources, and confirm its core-tail shape, plus an antitail, previously detected with the 2MASS data. The stellar population, as diagnosed by the color–magnitude diagram and theoretical isochrones, shows many massive members in the clusters core, whereas there is a paucity of such members in both of the tails. This manifests mass segregation in this aged star cluster with the low-mass members being stripped away from the system. It has been claimed that Berkeley 17 is associated with an excessive number of blue straggler candidates. A comparison of nearby reference fields indicates that about half of these may be field contamination.

  1. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  2. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    Science.gov (United States)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  3. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    Science.gov (United States)

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  4. New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55

    Science.gov (United States)

    Lohr, M. E.; Negueruela, I.; Tabernero, H. M.; Clark, J. S.; Lewis, F.; Roche, P.

    2018-05-01

    As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3^{+1.0}_{-0.8} kpc and an age of 44^{+9}_{-8} Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63^{+12}_{-11} Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales.

  5. Mix of physics and politics may produce lab in mine

    CERN Multimedia

    Glanz, J

    2001-01-01

    A century-old gold mine in the town of Lead, South Dakota, would be converted into the world's deepest underground physics laboratory under a bill passed in the Senate last week. The laboratory would cost 281 million dollars to create and up to 1 billion once scientific experiments like a huge neutrino detector are installed. The site would enable scientists to detect neutrinos because it is shielded by 7,400 feet of earth and rock from cosmic rays. However taxpayers, environmentalists and even some scientists still need to be convinced of the worth of the proposed lab.

  6. 13 scientists aced their science communication test at the FameLab final

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    On 8 May, the joint CERN and Swiss FameLab final took place in CERN’s Restaurant 1, which was transformed into a cosy setting for the special occasion. The jury selected Oskari Vinko, a Master’s student in synthetic biology at ETH Zurich, as the winner of the Swiss final while Lillian Smestad, a physicist in the Aegis collaboration, will be the first CERN finalist to go to the international final at the Cheltenham Science Festival. In addition, CMS physicist Christos Lazaridis was awarded the audience prize.   

  7. The Seibersdorf Labs Through the Eyes of Visiting Scientists

    International Nuclear Information System (INIS)

    Ralambomanana, Norbertin M.; Ntho, Motlatsi James; Abd Elkareim, Tahani Bashir; Ndiaye, Fatimata

    2014-01-01

    Lesotho: In Lesotho, we are being affected by climate change, meaning we have more and longer droughts, and the rains farmers need for their crops to grow and flourish are often late. We are also seeing more agricultural crops blighted by disease. Therefore I am working to improve sweet potatoes and wheat because of wheat’s importance in the daily diet, and because sweet potatoes could become an equally important staple in the next 10 years if we make a greater effort to promote its consumption. In Lesotho’s Department of Agriculture Research, we are focusing on these two staple foods initially because we want to improve the country’s food security — growing more and better crops to adequately feed the population. Once I return home at the end of my two month fellowship at Seibersdorf, I will be using nuclear and other techniques to improve the drought tolerance, yield, nutritional value and disease resistance of both sweet potato and wheat. Madagascar: “The island of Madagascar has a population of more than 23 million. Over half of its rural dwellers are agricultural workers, particularly in cattle farming. But the country still has to import milk as it is depleting its stock of indigenous Malagasy Zebu cattle in order to keep up with beef exports to neighbouring islands. Therefore, the Madagascar Government is partnering with the IAEA to improve milk and beef production from the indigenous Zebu, Renitelo and Manjani Boina cattle breeds, through selective breeding based on the intimate knowledge of their DNA. Fellowships like the one from which I am benefitting are very important for developing Member States because by training our scientists, the IAEA is giving us the tools we need to meet our own needs now and in the future. Senegal: “In Senegal, we are struggling to adequately feed our population as persistent drought and poor soil quality combine to cause crop failure year after year. My area of focus is the improvement of soil fertility and

  8. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    International Nuclear Information System (INIS)

    Packard, Richard

    2006-01-01

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He

  9. A data model for environmental scientists

    Science.gov (United States)

    Kapeljushnik, O.; Beran, B.; Valentine, D.; van Ingen, C.; Zaslavsky, I.; Whitenack, T.

    2008-12-01

    Environmental science encompasses a wide range of disciplines from water chemistry to microbiology, ecology and atmospheric sciences. Studies often require working across disciplines which differ in their ways of describing and storing data such that it is not possible to devise a monolithic one-size-fits-all data solution. Based on our experiences with Consortium of the Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Observations Data Model, Berkeley Water Center FLUXNET carbon-climate work and by examining standards like EPA's Water Quality Exchange (WQX), we have developed a flexible data model that allows extensions without need to altering the schema such that scientists can define custom metadata elements to describe their data including observations, analysis methods as well as sensors and geographical features. The data model supports various types of observations including fixed point and moving sensors, bottled samples, rasters from remote sensors and models, and categorical descriptions (e.g. taxonomy) by employing user-defined-types when necessary. It leverages ADO .NET Entity Framework to provide the semantic data models for differing disciplines, while maintaining a common schema below the entity layer. This abstraction layer simplifies data retrieval and manipulation by hiding the logic and complexity of the relational schema from users thus allows programmers and scientists to deal directly with objects such as observations, sensors, watersheds, river reaches, channel cross-sections, laboratory analysis methods and samples as opposed to table joins, columns and rows.

  10. Berkeley automated supernova search

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  11. Berkeley automated supernova search

    International Nuclear Information System (INIS)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  12. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  13. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    Science.gov (United States)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  14. The Earth is our lab: Ten years of geoscience school lab in Potsdam

    Science.gov (United States)

    Nikolaus Küppers, Andreas

    2016-04-01

    Starting in 2004, a geoscientific school lab for senior high school students was developed in the historical "Großer Refraktor" premises on the Telegraphenberg in Potsdam. Based on a one-day course architecture, laboratory days were developed covering singular themes: - Magnetic field of the Earth - Geographical Information Systems and geodata - Gravity field of the Earth - Geodynamics: seismology and seismics - Geoscience math - Geodata Brandenburg (Geological mapping with aerophotographs, remote sensing, underground data processing) With a focus on geophysical methodologies, course days generally focused on the field work around the Telegraphenberg site while introducing into the art of handling original professional equipment. Field data were afterwards compiled, analysed and interpreted in the group. Single days could be combined as clusters of up to one week and were bookable for national and international groups of max. 25 students. The courses were taught by active scientists with the assistance of student guides as the larger groups had to be split up. The paper gives an overview over the development history of the school lab and explains the course contents, the teaching methods and several employed escorting measures. Possible impact on the professional career decisions of the students is discussed.

  15. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  16. Observations of Local ISM Emission with the Berkeley EUV/FUV Shuttle Telescope

    Science.gov (United States)

    Martin, C.; Bowyer, S.

    1984-01-01

    The Berkeley extreme ultraviolet/far ultraviolet shuttle telescope (BEST) will be launched on the Space Shuttle as part of the NASA UVX project. The Berkeley spectrometer will make observations of the cosmic diffuse background in the 600 to 1900 A band, with a spectral resolution of 10 A. The sensitivity and spectral resolution of the instrument make it ideal for the study of components of the interstellar medium in the 10 to the 4th power to 10 to the 6th power K range.

  17. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  18. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  19. Large hadron collider (LHC) project quality assurance plan

    International Nuclear Information System (INIS)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-01-01

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4)

  20. Radionuclide Air Emission Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Linnea

    2010-06-01

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

  1. Long-life cathode for the Berkeley-type ion source

    International Nuclear Information System (INIS)

    Fink, J.H.; Biagi, L.A.

    1977-01-01

    Preliminary experiments indicate that a hollow cathode, made from impregnated tungsten emitters, can be adapted for the Lawrence Berkeley Laboratory (LBL)/Lawrence Livermore Laboratory (LLL) ion source. Such cathodes could be the basis of a long life, continuously operated positive-ion source

  2. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  3. The decommissioning of Berkeley II

    International Nuclear Information System (INIS)

    Hannan, A.

    2002-01-01

    This paper describes the decommissioning progress at the Magnox site at Berkeley in Gloucestershire.Throughout the work at Berkeley the emphasis has been on conducting decommissioning safely. This has been reflected in the progress of decommissioning starting with removal of the fuel from site and thus much greater than 99% of the radioactive inventory. The major radioactive hazard is the Intermediate Level Waste in the form of fuel element debris (graphite struts and extraneous magnox components removed to increase the packing density of fuel elements in flasks going to Sellafield), miscellaneous activated components, sludges and resins. Approximately 1500 m 3 of such material exists and is stored in underground waste vaults on site. Work is underway to recover and encapsulate the waste in cement so rendering it 'passively safe'. All work on site is covered by a nuclear safety case which has a key objective of minimising the radiological exposures that could accrue to workers. Reflecting this an early decision has been taken to leave work on the Reactor Pressure Vessels themselves for several decades. Also important in protection of the workforce has been control of asbestos.Much material has been removed with redundant plant and equipment, but a programme of remediation in line with government legislation has been required to ensure personnel safety throughout the decommissioning period and into Care and Maintenance.In addition to health and safety matters the site approach to environmental issues has been consistent. Formally such standards as ISO 14001 have been adhered to and the appropriate certification maintained. At a working level the principles of reduce, reuse and recycle have been inculcated

  4. Integrated lab-on-chip biosensing systems based on magnetic particle actuation : a comprehensive review

    NARCIS (Netherlands)

    Reenen, van A.; Jong, de A.M.; Toonder, den J.M.J.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop inno-vative lab-on-chip technologies for in-vitro diagnostic testing. To fulfill the medical needs, the tests should be rapid, sensitive, quantitative, miniaturizable, and need to integrate all steps

  5. The Indirect Perception of Distance: Interpretive Complexities in Berkeley's Theory of Vision

    Directory of Open Access Journals (Sweden)

    Michael James Braund

    2007-12-01

    Full Text Available The problem of whether perception is direct or if it depends on additional, cognitive contributions made by the perceiving subject, is posed with particular force in an Essay towards a New Theory of Vision (NTV. It is evident from the recurrent treatment it receives therein that Berkeley considers it to be one of the central issues concerning perception. Fittingly, the NTV devotes the most attention to it. In this essay, I deal exclusively with Berkeley's treatment of the problem of indirect distance perception, as it is presented in the context of that work.

  6. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy's inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  7. Development of an Embedded Solar Tracking System with LabVIEW Motion Control

    International Nuclear Information System (INIS)

    Oh, Seung Jin; Hyun, Jun Ho; Oh, Won Jong; Kim, Yeong Min; Lee, Yoon Joon; Chun, Won Gee

    2010-01-01

    Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device such as a hydraulic pump, linear actuator, or an electric motor. The motion control is widely used in the packaging, printing, textile, semiconductor production, and power plants. National Instruments LabVIEW is a graphical programming language that has its roots in automation control and data acquisition. Its graphical representation, similar to a process flow diagram, was created to provide an intuitive programming environment for scientist and engineers. Crystal River Nuclear Plant engineers developed automated testing system of nuclear plant control modules in an aging nuclear power plant using LabVIEW to improve performance and reliability and reduce cost. In this study, an embedded two-axis solar tracking system was developed using LabVIEW motion control module

  8. Learning by Viewing - Nobel Labs 360

    Science.gov (United States)

    Mather, John C.

    2013-01-01

    First of all, my thanks to the Nobel Lindau Foundation for their inspiration and leadership in sharing the excitement of scientific discovery with the public and with future scientists! I have had the pleasure of participating twice in the Lindau meetings, and recently worked with the Nobel Labs 360 project to show how we are building the world's greatest telescope yet, the James Webb Space Telescope (JWST). For the future, I see the greatest challenges for all the sciences in continued public outreach and inspiration. Outreach, so the public knows why we are doing what we are doing, and what difference it makes for them today and in the long-term future. Who knows what our destiny may be? It could be glorious, or not, depending on how we all behave. Inspiration, so that the most creative and inquisitive minds can pursue the scientific and engineering discoveries that are at the heart of so much of human prosperity, health, and progress. And, of course, national and local security depend on those discoveries too; scientists have been working with "the government" throughout recorded history. For the Lindau Nobel experiment, we have a truly abundant supply of knowledge and excitement, through the interactions of young scientists with the Nobelists, and through the lectures and the video recordings we can now share with the whole world across the Internet. But the challenge is always to draw attention! With 7 billion inhabitants on Earth, trying to earn a living and have some fun, there are plenty of competing opportunities and demands on us all. So what will draw attention to our efforts at Lindau? These days, word of mouth has become word of (computer) mouse, and ideas propagate as viruses ( or memes) across the Internet according to the interests of the participants. So our challenge is to find and match those interests, so that the efforts of our scientists, photographers, moviemakers, and writers are rewarded by our public. The world changes every day, so there

  9. New nuclear physics at Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    One of the highlights of the summer was the International Conference on Nuclear Physics, held at Berkeley in August. These big meetings provide a periodic focus for the nuclear physics community. Overall, the Conference paid a lot of attention to topics and phenomna which only a few years ago would have been considered exotic. With many novel ideas being put forward and with new projects afoot, a lot of fresh ground could have been covered by the time of the next meeting, scheduled to be held in Florence in a few years

  10. Manuscript 101: A Data-Driven Writing Exercise For Beginning Scientists

    OpenAIRE

    Ralston, Amy; Halbisen, Michael

    2017-01-01

    Learning to write a scientific manuscript is one of the most important and rewarding scientific training experiences, yet most young scientists only embark on this experience relatively late in graduate school, after gathering sufficient data in the lab. Yet, familiarity with the process of writing a scientific manuscript and receiving peer reviews, often leads to a more focused and driven experimental approach. To jump-start this training, we developed a protocol for teaching manuscript writ...

  11. Schmandt Receives 2013 Keiiti Aki Young Scientist Award: Response

    Science.gov (United States)

    Schmandt, Brandon

    2014-09-01

    I appreciate Karen's generous words, and I am sincerely honored to receive this year's Aki Award. I would like to acknowledge that my research has been enabled by excellent mentors and colleagues and by a unique community of scientists. I was particularly lucky to wander into Gene Humphrey's office as a first-year graduate student with a curiosity about western U.S. tectonics and seismology. Gene always matched my energy and enthusiasm and allowed me to find my path. Later, as a postdoc, I benefited from a similarly flexible and supportive environment in the Seismo Lab at Caltech. I also feel fortunate to be part of the seismology community. It is a special community that will strive to collect a world-class data set, such as the EarthScope seismic data, and then openly put those data in the hands of any eager scientist. This unselfish and open-minded perspective is a great motivation for me, and I expect it is for many young scientists. I am excited for the future as a member of the seismology community.

  12. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  13. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  14. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  15. What happens in the lab does not stay in the lab [corrected]: Applying midstream modulation to enhance critical reflection in the laboratory.

    Science.gov (United States)

    Schuurbiers, Daan

    2011-12-01

    In response to widespread policy prescriptions for responsible innovation, social scientists and engineering ethicists, among others, have sought to engage natural scientists and engineers at the 'midstream': building interdisciplinary collaborations to integrate social and ethical considerations with research and development processes. Two 'laboratory engagement studies' have explored how applying the framework of midstream modulation could enhance the reflections of natural scientists on the socio-ethical context of their work. The results of these interdisciplinary collaborations confirm the utility of midstream modulation in encouraging both first- and second-order reflective learning. The potential for second-order reflective learning, in which underlying value systems become the object of reflection, is particularly significant with respect to addressing social responsibility in research practices. Midstream modulation served to render the socio-ethical context of research visible in the laboratory and helped enable research participants to more critically reflect on this broader context. While lab-based collaborations would benefit from being carried out in concert with activities at institutional and policy levels, midstream modulation could prove a valuable asset in the toolbox of interdisciplinary methods aimed at responsible innovation.

  16. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  17. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    McKone, T.E.; Brand, K.P.; Shan, C.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  18. Economic impact

    Energy Technology Data Exchange (ETDEWEB)

    Technology Transfer Department

    2001-06-01

    In federal fiscal year 2000 (FY00), Berkeley Lab had 4,347 full- and part-time employees. In addition, at any given time of the year, there were more than 1,000 Laboratory guests. These guests, who also reside locally, have an important economic impact on the nine-county Bay Area. However, Berkeley Lab's total economic impact transcends the direct effects of payroll and purchasing. The direct dollars paid to the Lab's employees in the form of wages, salaries, and benefits, and payments made to contractors for goods and services, are respent by employees and contractors again and again in the local and greater economy. Further, while Berkeley Lab has a strong reputation for basic scientific research, many of the Lab's scientific discoveries and inventions have had direct application in industry, spawning new businesses and creating new opportunities for existing firms. This analysis updates the Economic Impact Analysis done in 1996, and its purpose is to describe the economic and geographic impact of Laboratory expenditures and to provide a qualitative understanding of how Berkeley Lab impacts and supports the local community. It is intended as a guide for state, local, and national policy makers as well as local community members. Unless otherwise noted, this analysis uses data from FY00, the most recent year for which full data are available.

  19. Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks

    Science.gov (United States)

    Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline

    2017-07-01

    This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists portrayed in the Lebanese national science textbooks that are used in Basic Education. An analytical framework, based on an extensive review of the relevant literature, was constructed that served as a tool for analyzing the textbooks. Based on evidence-based stereotypes, the framework focused on the individual and work-related characteristics of scientists. Fifteen science textbooks were analyzed using both quantitative and qualitative measures. Our analysis of the textbooks showed the presence of a number of stereotypical images. The scientists are predominantly white males of European descent. Non-Western scientists, including Lebanese and/or Arab scientists are mostly absent in the textbooks. In addition, the scientists are portrayed as rational individuals who work alone, who conduct experiments in their labs by following the scientific method, and by operating within Eurocentric paradigms. External factors do not influence their work. They are engaged in an enterprise which is objective, which aims for discovering the truth out there, and which involves dealing with direct evidence. Implications for science education are discussed.

  20. Dr. Monaco Examines Lab-on a-Chip

    Science.gov (United States)

    2003-01-01

    Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  1. The evolution of Jefferson Lab's control system

    International Nuclear Information System (INIS)

    K. S. White; M. Bickley; W. Watson

    1999-01-01

    Thomas Jefferson National Accelerator Facility's (Jefferson Lab) accelerator controls were initially implemented as a proprietary in-house system. During machine commissioning, problems were encountered leading to a decision to migrate to the Experimental Physics and Industrial Controls System (EPICS). Since then, the accelerator and all other laboratory controls have been successfully converted. In addition to implementing Jefferson Lab's controls using EPICS, new data visualization tools have been developed and existing programs have been enhanced with new capabilities. In order to provide a more generic interface for high level applications development, a device abstraction layer, called Common DEVice (CDEV), was implemented. These additions have been made available to other laboratories and are in use at many sites, including some that do not use EPICS. Control System development is not limited to computer scientists; operators, engineers and physicists frequently add capabilities using EPICS, CDEV, Tel/tk, and other tools. These contributions have tailored the control system for many different types of customers. For the future, the authors envision more intelligent processing and more capable tools for data storage, retrieval and visualization

  2. A Radiation Homeland Security Workshop Presented to the City of Berkeley Fire Department

    Science.gov (United States)

    Matis, Howard

    2005-04-01

    A radiation incident in a community, ranging from a transportation accident to a dirty bomb, is expected to be rare, but still can occur. First responders to such an incident must be prepared. City of Berkeley officials met with members of the Lawrence Berkeley National Laboratory staff and agreed that the laboratory participants would create material and teach it to all of their fire fighting staff. To design such a course, nuclear physicists, biologists and health physicists merged some of their existing teaching material together with previous homeland security efforts to produce a course that lasted one full day. The material was designed to help alleviate the myths and fear of radiation experienced by many first responders. It included basic nuclear physics information, biological effects, and methods that health physicists use to detect and handle radiation. The curriculum included several hands on activities which involved working directly with the meters the Berkeley Fire Department possessed. In addition, I will discuss some observations from teaching this course material plus some unusual problems that we encountered, such as suddenly the whole class responding to a fire.

  3. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  4. Strategic investments in non-communicable diseases (NCD) research in Africa: the GSK Africa NCD Open Lab.

    Science.gov (United States)

    Hall, Matthew D; Dufton, Ann M; Katso, Roy M; Gatsi, Sally A; Williams, Pauline M; Strange, Michael E

    2015-01-01

    In March 2014, GSK announced a number of new strategic investments in Africa. One of these included investment of up to 25 million Pounds Sterling (£25 million) to create the world's first R&D Open Lab to increase understanding of non-communicable diseases (NCDs) in Africa. The vision is to create a new global R&D effort with GSK working in partnership with major funders, academic centres and governments to share expertise and resources to conduct high-quality research. The Africa NCD Open Lab will see GSK scientists collaborate with scientific research centres across Africa. An independent advisory board of leading scientists and clinicians will provide input to develop the strategy and selection of NCD research projects within a dynamic and networked open-innovation environment. It is hoped that these research projects will inform prevention and treatment strategies in the future and will enable researchers across academia and industry to discover and develop new medicines to address the specific needs of African patients.

  5. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  6. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  7. FOREWORD: Jefferson Lab: A Long Decade of Physics

    Science.gov (United States)

    Montgomery, Hugh

    2011-04-01

    scientists, associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics. Hugh Montgomery, Director Hugh Montgomery signature

  8. Jefferson Lab: A Long Decade of Physics

    International Nuclear Information System (INIS)

    Montgomery, Hugh

    2011-01-01

    Jefferson Lab was created in 1984 and started operating in about 1996. 2011 is an appropriate time to try to take a look at the results that have appeared, what has been learned, and what has been exciting for our scientific community. Rather than attempt to construct a coherent view with a single author or at least a small number, we have, instead, invited small groups of people who have been intimately involved in the work itself to make contributions. These people are accelerator experts, experimentalists and theorists, staff and users. We have, in the main, sought reviews of the actual sub-fields. The primary exception is the first paper, which sets the scene as it was, in one person's view, at the beginning of Jefferson Lab. In reviewing the material as it appeared, I was impressed by the breadth of the material. Major advances are documented from form factors to structure functions, from spectroscopy to physics beyond the standard model of nuclear and particle physics. Recognition of the part played by spin, the helicities of the beams, the polarizations of the targets, and the polarizations of final state particles, is inescapable. Access to the weak interaction amplitudes through measurements of the parity violating asymmetries has led to quantification of the strange content of the nucleon and the neutron radius of lead, and to measurements of the electroweak mixing angle. Lattice QCD calculations flourished and are setting the platform for understanding of the spectroscopy of baryons and mesons. But the star of the game was the accelerator. Its performance enabled the physics and also the use of the technology to generate a powerful free electron laser. These important pieces of Jefferson Lab physics are given their place. As the third Director of Jefferson Lab, and on behalf of the other physicists and others presently associated with the lab, I would like to express my admiration and gratitude for the efforts of the directors, chief scientists

  9. Seeing the Light (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Brunger, Axel; Segalman, Rachel; Westphal, Andrew

    2011-09-12

    Berkeley Lab's Science at the Theater event "Seeing the Light" took place on Sept 12, 2011, at Berkeley Repertory's Roda Theatre. Learn how the Advanced Light Source is improving medicine, paving the way for clean energy, changing the future of computers, and much more. Featured speakers are Berkeley Lab's Roger Falcone, Rachel Segalman, Andrew Westphal, and Stanford University's Axel Brunger. Rachel Segalman: The future of clean energy technology relies on a better understanding of materials at the nanoscale. Berkeley Lab's Rachel Segalman uses the ALS to conduct this research, which could lead to improved photovoltaics and fuel cells. Axel Brunger: Improved treatment for human diseases hinges on understanding molecular-scale processes. Stanford University's Axel Brunger will discuss a new melanoma drug that was developed by a local company, Plexxikon, using the ALS for X-ray data collection. Andrew Westphal: What's comet dust made of? Andrew Westphal of UC Berkeley's Space Sciences Laboratory uses the ALS to study comet dust and interplanetary space dust collected by a NASA spacecraft. Moderated by Roger Falcone, Division Director of the Advanced Light Source

  10. Site environmental report for 2003, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Pauer, Ronald

    2004-06-21

    Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is a multiprogram scientific facility operated by the University of California for the Department of Energy (DOE). The Laboratory's research is directed toward the physical, biological, environmental, and computational sciences--in order to deliver the scientific knowledge and discoveries pertinent to DOE's missions. To provide the highest degree of protection for its workers, the public, and the environment, Berkeley Lab employs a system called Integrated Safety Management (ISM). ISM is a comprehensive DOE management system that involves five core functions: work planning, hazard and risk analysis, establishment of controls, work performance in accordance with the controls, and feedback and improvement. These five core functions are applied to all activities at Berkeley Lab. Laboratory activities are planned and conducted with full regard to protecting the public and the environment and complying with appropriate environmental laws and regulations. Both radiological and nonradiological activities are thoroughly monitored to assess their potential impacts on public health and the environment. Berkeley Lab has committed to developing a focused Environmental Management System (EMS), which will be integrated with the Lab's ISM System. When practical, ISM processes will be used to support environmental performance improvement and compliance management. In calendar year (CY) 2003, Berkeley Lab developed an EMS action plan, which was submitted to DOE, and program implementation began. To that end, training was provided to an EMS Core Team that was formed and to Environment, Health, and Safety Division staff who will support the Laboratory's EMS efforts. Implementation of the EMS will continue in CY 2004. This annual Site Environmental Report covers activities conducted in CY 2003. The format and content of this report satisfy the requirements of DOE Order 231.1, &apos

  11. Guide to user facilities at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility

  12. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  13. SPAGHETTILENS: A software stack for modeling gravitational lenses by citizen scientists

    Science.gov (United States)

    Küng, R.

    2018-04-01

    The 2020s are expected to see tens of thousands of lens discoveries. Mass reconstruction or modeling of these lenses will be needed, but current modeling methods are time intensive for specialists and expert human resources do not scale. SpaghettiLens approaches this challenge with the help of experienced citizen scientist volunteers who have already been involved in finding lenses. A top level description is as follows. Citizen scientists look at data and provide a graphical input based on Fermat's principle which we call a Spaghetti Diagram. This input works as a model configuration. It is followed by the generation of the model, which is a compute intensive task done server side though a task distribution system. Model results are returned in graphical form to the citizen scientist, who examines and then either forwards them for forum discussion or rejects the model and retries. As well as configuring models, citizen scientists can also modify existing model configurations, which results in a version tree of models and makes the modeling process collaborative. SpaghettiLens is designed to be scalable and could be adopted to problems with similar characteristics. It is licensed under the MIT license, released at http://labs.spacewarps.org and the source code is available at https://github.com/RafiKueng/SpaghettiLens.

  14. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  15. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  16. Annual site environmental report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.; Pauer, R.O.

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs

  17. Nuclear materials teaching and research at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Olander, D.R.; Roberts, J.T.A.

    1985-01-01

    In academic nuclear engineering departments, research and teaching in the specialized subdiscipline of nuclear materials is usually a one-person or at best a two-person operation. These subcritical sizes invariably result in inadequate overall representation of the many topics in nuclear materials in the research program of the department, although broader coverage of the field is possible in course offerings. Even in course-work, the full range of materials problems important in nuclear technology cannot be dealt with in detail because the small number of faculty involved restricts staffing to as little as a single summary course and generally no more than three courses in this specialty. The contents of the two nuclear materials courses taught at the University of California at Berkeley are listed. Materials research in most US nuclear engineering departments focuses on irradiation effects on metals, but at UC Berkeley, the principal interest is in the high-temperature materials chemistry of UO 2 fuel and Zircaloy cladding

  18. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action

    NARCIS (Netherlands)

    Pawlik, A.; Gelder, C.W.G. van; Nenadic, A.; Palagi, P.M.; Korpelainen, E.; Lijnzaad, P.; Marek, D.; Sansone, S.A.; Hancock, J.; Goble, C.

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training

  19. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action.

    Science.gov (United States)

    Pawlik, Aleksandra; van Gelder, Celia W G; Nenadic, Aleksandra; Palagi, Patricia M; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

  20. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  1. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  2. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  3. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  4. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  5. Beyond Classroom, Lab, Studio and Field

    Science.gov (United States)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  6. E-Labs - Learning with Authentic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G. [Fermilab; Wayne, Mitchell [Notre Dame U.

    2016-01-01

    the success teachers have had providing an opportunity for students to: • Organize and conduct authentic research. • Experience the environment of scientific collaborations. • Possibly make real contributions to a burgeoning scientific field. We've created projects that are problem-based, student driven and technology dependent. Students reach beyond classroom walls to explore data with other students and experts and share results, publishing original work to a worldwide audience. Students can discover and extend the research of other students, modeling the processes of modern, large-scale research projects. From start to finish e-Labs are student-led, teacher-guided projects. Students need only a Web browser to access computing techniques employed by professional researchers. A Project Map with milestones allows students to set the research plan rather than follow a step-by-step process common in other online projects. Most importantly, e-Labs build the learning experience around the students' own questions and let them use the very tools that scientists use. Students contribute to and access shared data, most derived from professional research databases. They use common analysis tools, store their work and use metadata to discover, replicate and confirm the research of others. This is where real scientific collaboration begins. Using online tools, students correspond with other research groups, post comments and questions, prepare summary reports, and in general participate in the part of scientific research that is often left out of classroom experiments. Teaching tools such as student and teacher logbooks, pre- and post-tests and an assessment rubric aligned with learner outcomes help teachers guide student work. Constraints on interface designs and administrative tools such as registration databases give teachers the "one-stop-shopping" they seek for multiple e-Labs. Teaching and administrative tools also allow us to track usage and assess the

  7. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  8. Designing inquiry learning spaces for online labs in the Go-Lab platform

    NARCIS (Netherlands)

    de Jong, Ton; Gillet, Dennis; Sotiriou, Sofoklis; Agogi, Ellinogermaniki; Zacharia, Zacharias

    2015-01-01

    The Go-Lab project (http://www.go-lab-project.eu/) aims to enable the integration of online labs through inquiry-based learning approaches into science classrooms. Through the use of an advanced plug and play technological solution the Go-Lab project opens up remote science laboratories, data

  9. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  10. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  11. Lawrence Berkeley Laboratory upgrading approaches to existing facilities

    International Nuclear Information System (INIS)

    Engle, H.M. Jr.

    1985-01-01

    The Lawrence Berkeley Laboratory Plant Engineering Department instituted a seismic risk investigation and seismic upgrade program in 1970. This paper covers the upgrade of two buildings with dissimilar framing systems; Building No. 10, a World War II vintage heavy timber frame building, and Building No. 80, a steel frame structure constructed in 1954. The seismic upgrade task for both structures required that the buildings be kept in service during rehabilitation with a minimum of disruption to occupants. Rehabilitations were phased over two and three year periods with construction management and supervision performed by LBL Plant Engineering staff

  12. Lab Aliens, Legendary Fossils, and Deadly Science Potions: Views of Science and Scientists from Fifth Graders in a Free-Choice Creative Writing Program

    Science.gov (United States)

    Hellman, Leslie G.

    This qualitative study uses children's writing to explore the divide between a conception of Science as a humanistic discipline reliant on creativity, ingenuity and out of the box thinking and a persistent public perception of science and scientists as rigid and methodical. Artifacts reviewed were 506 scripts written during 2014 and 2016 by 5th graders participating in an out-of classroom, mentor supported, free-choice 10-week arts and literacy initiative. 47% (237) of these scripts were found to contain content relating to Science, Scientists, Science Education and the Nature of Science. These 237 scripts were coded for themes; characteristics of named scientist characters were tracked and analyzed. Findings included NOS understandings being expressed by representation of Science and Engineering Practices; Ingenuity being primarily linked to Engineering tasks; common portrayals of science as magical or scientists as villains; and a persistence in negative stereotypes of scientists, including a lack of gender equity amongst the named scientist characters. Findings suggest that representations of scientists in popular culture highly influence the portrayals of scientists constructed by the students. Recommendations to teachers include encouraging explicit consideration of big-picture NOS concepts such as ethics during elementary school and encouraging the replacement of documentary or educational shows with more engaging fictional media.

  13. Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.

  14. Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Michael; Hansen, Todd, editors

    2000-07-01

    The FY 2001-2005 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  15. Access to public drinking water fountains in Berkeley, California: a geospatial analysis.

    Science.gov (United States)

    Avery, Dylan C; Smith, Charlotte D

    2018-01-24

    In January 2015, Berkeley, California became the first city in the Unites States to impose a tax on sugar-sweetened beverages. The tax is intended to discourage purchase of sugary beverages and promote consumption of healthier alternatives such as tap water. The goal of the study was to assess the condition of public drinking water fountains and determine if there is a difference in access to clean, functioning fountains based on race or socio-economic status. A mobile-GIS App was created to locate and collect data on existing drinking water fountains in Berkeley, CA. Demographic variables related to race and socio-economic status (SES) were acquired from the US Census - American Community Survey database. Disparities in access to, or condition of drinking water fountains relative to demographics was explored using spatial analyses. Spatial statistical-analysis was performed to estimate demographic characteristics of communities near the water fountains and logistic regression was used to examine the relationship between household median income or race and condition of fountain. Although most fountains were classified as functioning, some were dirty, clogged, or both dirty and clogged. No spatial relationships between demographic characteristics and fountain conditions were observed. All geo-located data and a series of maps were provided to the City of Berkeley and the public. The geo-database created as an outcome of this study is useful for prioritizing maintenance of existing fountains and planning the locations of future fountains. The methodologies used for this study could be applied to a wide variety of asset inventory and assessment projects such as clinics or pharmaceutical dispensaries, both in developed and developing countries.

  16. Communicating Synthetic Biology: from the lab via the media to the broader public

    OpenAIRE

    Kronberger, Nicole; Holtz, Peter; Kerbe, Wolfgang; Strasser, Ewald; Wagner, Wolfgang

    2009-01-01

    We present insights from a study on communicating Synthetic Biology conducted in 2008. Scientists were invited to write press releases on their work; the resulting texts were passed on to four journalists from major Austrian newspapers and magazines. The journalists in turn wrote articles that were used as stimulus material for eight group discussions with select members of the Austrian public. The results show that, from the lab via the media to the general public, communication is character...

  17. Lab-on a-Chip

    Science.gov (United States)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  18. Higher Retail Prices of Sugar-Sweetened Beverages 3 Months After Implementation of an Excise Tax in Berkeley, California.

    Science.gov (United States)

    Falbe, Jennifer; Rojas, Nadia; Grummon, Anna H; Madsen, Kristine A

    2015-11-01

    We assessed the short-term ability to increase retail prices of the first US 1-cent-per-ounce excise tax on the distribution of sugar-sweetened beverages (SSBs), which was implemented in March 2015 by Berkeley, California. In 2014 and 2015, we examined pre- to posttax price changes of SSBs and non-SSBs in a variety of retailers in Berkeley and in the comparison cities Oakland and San Francisco, California. We examined price changes by beverage, brand, size, and retailer type. For smaller beverages (≤ 33.8 oz), price increases (cents/oz) in Berkeley relative to those in comparison cities were 0.69 (95% confidence interval [CI] = 0.36, 1.03) for soda, 0.47 (95% CI = 0.08, 0.87) for fruit-flavored beverages, and 0.47 (95% CI = 0.25, 0.69) for SSBs overall. For 2-liter bottles and multipacks of soda, relative price increases were 0.46 (95% CI = 0.03, 0.89) and 0.49 (95% CI = 0.21, 0.77). We observed no relative price increases for nontaxed beverages overall. Approximately 3 months after the tax was implemented, SSB retail prices increased more in Berkeley than in nearby cities, marking a step in the causal pathway between the tax and reduced SSB consumption.

  19. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  20. Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina; Canaria, Christie; Celnicker, Susan; Karpen, Gary

    2012-04-23

    In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Gary Karpen explores how environmental factors shape genome function and disease through epigenetics.

  1. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  2. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    Science.gov (United States)

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  3. Site Environmental Report for 2007 Volume I

    International Nuclear Information System (INIS)

    Lackner, Regina E.; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea

    2008-01-01

    The Site Environmental Report is an integrated report on Berkeley Lab's environmental programs to satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting. It summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2007. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratory's environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities

  4. "A Woman's World": The University of California, Berkeley, during the Second World War

    Science.gov (United States)

    Dorn, Charles

    2008-01-01

    During World War II, female students at the University of California, Berkeley--then the most populous undergraduate campus in American higher education--made significant advances in collegiate life. In growing numbers, women enrolled in male-dominated academic programs, including mathematics, chemistry, and engineering, as they prepared for…

  5. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  6. GeneLab for High Schools: Data Mining for the Next Generation

    Science.gov (United States)

    Blaber, Elizabeth A.; Ly, Diana; Sato, Kevin Y.; Taylor, Elizabeth

    2016-01-01

    Modern biological sciences have become increasingly based on molecular biology and high-throughput molecular techniques, such as genomics, transcriptomics, and proteomics. NASA Scientists and the NASA Space Biology Program have aimed to examine the fundamental building blocks of life (RNA, DNA and protein) in order to understand the response of living organisms to space and aid in fundamental research discoveries on Earth. In an effort to enable NASA funded science to be available to everyone, NASA has collected the data from omics studies and curated them in a data system called GeneLab. Whilst most college-level interns, academics and other scientists have had some interaction with omics data sets and analysis tools, high school students often have not. Therefore, the Space Biology Program is implementing a new Summer Program for high-school students that aims to inspire the next generation of scientists to learn about and get involved in space research using GeneLabs Data System. The program consists of three main components core learning modules, focused on developing students knowledge on the Space Biology Program and Space Biology research, Genelab and the data system, and previous research conducted on model organisms in space; networking and team work, enabling students to interact with guest lecturers from local universities and their fellow peers, and also enabling them to visit local universities and genomics centers around the Bay area; and finally an independent learning project, whereby students will be required to form small groups, analyze a dataset on the Genelab platform, generate a hypothesis and develop a research plan to test their hypothesis. This program will not only help inspire high-school students to become involved in space-based research but will also help them develop key critical thinking and bioinformatics skills required for most college degrees and furthermore, will enable them to establish networks with their peers and connections

  7. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  8. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and

  9. The Teacher As Scientist: A Role Model for Inspiring the Next Generation of Explorers

    Science.gov (United States)

    Gabrys, R.; Wasilewski, P. J.

    2003-12-01

    NASA GSFC Education is directly involved with scientists in studies of ice and snow as they seek to gain insight into the effects of snow and ice on the Earth's weather and climate. In parts of the world the water equivalent in the snow has significant cultural and economic consequences. Better techniques for remote determination of water content in the snowpacks depend on the in situ validation of satellite remote sensing. These in situ measurements and supporting lab studies are used by those who support the NASA efforts, and evaluate avalanche hazard are the same measurements and techniques that we teach in our teacher as scientist education program held annually at Lake Placid,New York -the home of the 1932 and 1980 winter Olympics. We developed this program called HOW (History of Winter) in conjunction with scientist Peter Wasilewski, GSFC Laboratory for Extraterrestrial Physics. The program brings together teachers and scientists (the latter having 55 expeditions to the Polar regions and numerous years of Lake Ice studies in their backgrounds) to broadly decipher the history of winter embedded in the measurable record of snowfall and details in lake ice. The concept is to have scientists create the mindset and framework for teacher scientists who can then facilitate the motivation of student scientists via an inquiry based structure. Additionally, we strive to have students view their science teachers not only as teachers, but also as scientists who are actively engaged in research projects in order to provide a stimulus to the students to not only consider teaching as an exciting career, but also science itself. This session will describe how the teachers are directly involved annually in the science role during a 7 day campaign in February, and then follow up with their students upon returning to the classroom. The structure of the program and protocols will be described.

  10. Declan FAHY (2015), The New Celebrity Scientists. Out of the Lab and into the Limelight

    OpenAIRE

    Fines-Neuschild, Mirjam

    2016-01-01

    The New Celebrity Scientists est le premier ouvrage de Declan Fahy. Il y fait le portrait de huit scientifiques en suivant leur parcours jusqu’à la célébrité et présente l’influence de leurs propos sur les politiques publiques. De ces huit scientifiques, trois sont physiciens : Stephen Hawking, Brian Greene et Neil de Grasse Tyson. Sont aussi présentés Richard Dawkins, biologiste, Steven Pinker, psychologue cognitiviste, Stephen Jay Gould, paléontologue, Susan Greenfield, pharmacologue, et Ja...

  11. Searching for multiple stellar populations in the massive, old open cluster Berkeley 39

    Science.gov (United States)

    Bragaglia, A.; Gratton, R. G.; Carretta, E.; D'Orazi, V.; Sneden, C.; Lucatello, S.

    2012-12-01

    The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemical composition of several clusters with masses of a few 104 M⊙ to establish the lower mass limit for the multiple stellar population phenomenon. Using VLT/FLAMES spectra we determine abundances of Fe, O, Na, and several other elements (α, Fe-peak, and neutron-capture elements) in the old open cluster Berkeley 39. This is a massive open cluster: M ~ 104 M⊙, approximately at the border between small globular clusters and large open clusters. Our sample size of about 30 stars is one of the largest studied for abundances in any open cluster to date, and will be useful to determine improved cluster parameters, such as age, distance, and reddening when coupled with precise, well-calibrated photometry. We find that Berkeley 39 is slightly metal-poor, ⟨[Fe/H]⟩ = -0.20, in agreement with previous studies of this cluster. More importantly, we do not detect any star-to-star variation in the abundances of Fe, O, and Na within quite stringent upper limits. The rms scatter is 0.04, 0.10, and 0.05 dex for Fe, O, and Na, respectively. This small spread can be entirely explained by the noise in the spectra and by uncertainties in the atmospheric parameters. We conclude that Berkeley 39 is a single-population cluster. Based on observations collected at ESO telescopes under programme 386.B-0009.Tables 2 and 3 are available in electronic form at http://www.aanda.org

  12. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed.

  13. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    International Nuclear Information System (INIS)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed

  14. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study.

    Directory of Open Access Journals (Sweden)

    Lynn D Silver

    2017-04-01

    Full Text Available Taxes on sugar-sweetened beverages (SSBs meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake.Methods included comparison of pre-taxation (before 1 January 2015 and first-year post-taxation (1 March 2015-29 February 2016 measures of (1 beverage prices at 26 Berkeley stores; (2 point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3 a representative telephone survey (17.4% cooperation rate of 957 adult Berkeley residents. Key hypotheses were that (1 the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2 sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3 consumer spending per transaction (checkout episode would not increase in Berkeley stores; and (4 self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce, beverage sales (ounces, consumers' spending measured as store revenue (inflation-adjusted dollars per transaction in two large chains, and usual beverage intake (grams/day and kilocalories/day. Tax pass-through (changes in the price after imposition of the tax for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001 and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004, partial in pharmacies (+0.45¢/oz, p = 0.03, and negative in independent corner stores and

  15. Fun and games in Berkeley: the early years (1956-2013).

    Science.gov (United States)

    Tinoco, Ignacio

    2014-01-01

    Life at Berkeley for the past 57 years involved research on the thermodynamics, kinetics, and spectroscopic properties of RNA to better understand its structures, interactions, and functions. We (myself and all the graduate students and postdocs who shared in the fun) began with dinucleoside phosphates and slowly worked our way up to megadalton-sized RNA molecular motors. We used UV absorption, circular dichroism, circular intensity differential scattering, fluorescence, NMR, and single-molecule methods. We learned a lot and had fun doing it.

  16. Particle production in high energy nucleus--nucleus experiments at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1976-09-01

    A review of high energy nucleus-nucleus experiments performed at the Berkeley Bevalac is presented. Earlier results on projectile and target fragmentation and pion production are briefly summarized. More recent results on Coulomb effects in projectile fragmentation, heavy ion total cross-sections, γ-ray production, and charged particle multiplicities are presented. Also, recent experiments which may shed light on phenomena arising from the central collision of two energetic nuclei, including recent evidence for and against the observation of nuclear shock waves, are reviewed

  17. Five Decades of Achievement, Future Challenges in Focus at Ceremony Marking IAEA Labs Anniversary

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: In the 50 years since they opened, the IAEA's laboratories in Seibersdorf have improved the lives of millions of people through work using sophisticated scientific techniques, IAEA Director General Yukiya Amano said today at a ceremony to mark the anniversary. Work at the labs has made a difference in controlling animal diseases in more than 30 countries in Africa and Asia, and contributed to the development of hardier and more nutritious crops such as barley that can grow in the High Andes of Peru. Scientists at the labs have helped communities identify the best sources of underground water and ensure that this scarce resource is used effectively. They have worked on safe ways to preserve food, and provided vital technical support for cancer treatment and other medical uses of nuclear technology. New challenges abound in the present and the future, Director General Amano said. ''Member States want us to do more in almost all areas of nuclear applications. This includes climate-smart agriculture, with priority on helping countries to adapt to climate change while improving food security. It includes improving preparedness for responding to nuclear emergencies and especially for dealing with radiological contamination in food and agriculture.'' The Director General also said the IAEA would contribute more to controlling mosquitoes that transmit malaria by using techniques that, together with pest control programmes, have helped control other insects. IAEA scientists at the eight nuclear applications laboratories and the safeguards laboratories carry out research and development and provide technical services to the IAEA's 158 Member States. The labs also regularly host fellows and scientific visitors, with more than 2 000 benefiting from this opportunity to learn in the past 50 years. (IAEA)

  18. Berkeley 51 Kümesinin Temel ve Astrofiziksel Parametrelerinin Belirlenmesi

    Directory of Open Access Journals (Sweden)

    İnci Akkaya Oralhan

    2016-10-01

    Full Text Available Galaksimizin birinci çeyreğinde bulunan ve daha önce çok az çalışılmış açık yıldız kümelerinden biri olan Berkeley 51 kümesinin temel astrofiziksel ve yapısal parametreleri CCD UBV(RIC ve 2MASS JHKS verileri kullanılarak elde edilmiştir. Kümeye ait CCD UBV(RIC verileri Meksika’da bulunan San Pedro Martir Ulusal Gözlemevi’nden 84cm’lik teleskop ile alınmıştır. Küme üyeliklerinin belirlenmesinde ise PPMXL kataloğundaki öz hareket verileri kullanılmıştır. Buna küre bu küme için elde edilen limit yarıçap Rlim=2.5 yay dakikası, kızarma E(B-V=0.85±0.05 kadir, E(J-H=0.28±0.02 kadir, uzaklık modülü DM=(m-M0=10.66±0.04 pc, uzaklığı d=1355±27 pc ve logaritmik yaş log(A=9.54±0.03 Myıl olarak bulunmuştur. Küme için ilk kez bulunan metal ve ağır element bolluğu ise sırasıyla [Fe/H]=-0.38 ve Z=0.006 olarak elde edilmiştir.Anahtar kelimeler: Açık yıldız kümeleri-Berkeley 51

  19. Radionuclide Air Emissions Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Linnea [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Berkeley Lab operates facilities where radionuclides are produced, handled, store d, and potentially emitted . These facilities are subject to the EPA radioactive air emission regulations in 40 CFR 61, Subpart H (EPA 1989a). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2012, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]) . These minor sources include d about 140 stack sources and no diffuse sources . T here were no unplanned airborne radionuclide emissions from Berkeley Lab operations . Emissions from minor sources were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building- specific and common parameters, Laboratory personnel applied the EPA -approved computer code s, CAP88-PC and COMPLY , to calculate doses to the maximally exposed individual (MEI) at any offsite point where there is a residence, school, business, or office. Because radionuclides are used at three noncontiguous locations (the main site, Berkeley West Bio center, and Joint BioEnergy Institute), three different MEIs were identified.

  20. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs

  1. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs.

  2. Kinematic Labs with Mobile Devices

    Science.gov (United States)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  3. Site Environmental Report for 2007 Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Regina E.; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea

    2008-09-15

    The Site Environmental Report is an integrated report on Berkeley Lab's environmental programs to satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting. It summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2007. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratory's environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities.

  4. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  5. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  6. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  7. Lab-on-a-Chip Instrument Development for Titan Exploration

    Science.gov (United States)

    Willis, P. A.; Greer, F.; Fisher, A.; Hodyss, R. P.; Grunthaner, F.; Jiao, H.; Mair, D.; Harrison, J.

    2009-12-01

    This contribution will describe the initial stages of a new ASTID-funded research program initiated in Fall 2009 aimed at lab-on-a-chip system development for astrobiological investigations on Titan. This technology development builds off related work at JPL and Berkeley [1-3] on the ultrasensitive compositional and chiral analysis of amino acids on Mars in order to search for signatures of past or present life. The Mars-focused instrument system utilizes a microcapillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps for automated liquid sample handling, on-chip derivitization of samples with fluorescent tags, dilution, and mixing with standards for data calibration. It utilizes a four-layer wafer stack design with CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The Titan specific lab-on-a-chip system under development here focuses its attention on the unique organic chemistry of Titan. In order to chromatographically separate mixtures of neutral organics such as polycyclic aromatic hydrocarbons (PAHs), the Titan-specific microfluidic platform utilizes the related technique of microcapillary electrochromatography (μCEC). This technique differs from conventional μCE in that microchannels are filled with a porous stationary phase that presents surfaces upon which analyte species can adsorb/desorb. It is this additional surface interaction that enables separations of species critical to the understanding of the astrobiological potential of Titan that are not readily separated by the μCE technique. We have developed two different approaches for the integration

  8. Environmental Justice Screening Method (EJSM) Score, San Joaquin Valley CA, 2013, Occidental College and UC Berkeley

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Cumulative Impacts (CI) screening method is jointly being developed by Manuel Pastor, Jim Sadd (Occidental College), and Rachel Morello-Frosch (UC Berkeley) ....

  9. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua

    2015-01-01

    be advantageous if an ELN was Integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to Open......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management......, thus making Open-Lab Framework more attractive for laboratories that seek to increase productivity through electronic data management....

  10. Outreach Opportunities for Early Career Scientists at the Phoenix ComiCon

    Science.gov (United States)

    Horodyskyj, L.; Walker, S. I.; Forrester, J. H.

    2014-12-01

    The Phoenix ComiCon (PCC) is a rapidly growing annual four-day pop culture event, featuring guests, costuming, exhibits, and discussion panels for popular sci-fi, fantasy, horror, and anime franchises. In 2013, PCC began experimenting with science discussion panels. The popularity of the science programming resulted in an expansion of the track for 2014, which Horodyskyj was responsible for coordinating. Thirty hours of programming were scheduled, including 25 discussion panels, NASA's FameLab, and a Mars room. Panelists included industry specialists, established scientists, STEM outreach enthusiasts, and early career scientists. The majority of the panelists were early career scientists recruited from planetary sciences and biology departments at ASU and UA. Panel topics included cosmology, biotechnology, artificial intelligence, space exploration, astrobiology, and the cross-linkages of each with pop culture. Formats consisted of Q&A, presentations, and interactive game shows. Although most panels were aimed at the general audience, some panels were more specialized. PCC 2014 attracted 77,818 attendees. The science programming received rave reviews from the audience, the PCC management, and the panelists themselves. Many panel rooms were filled to capacity and required crowd control to limit attendance. We observed the formation of science "groupies" who sought out the science panels exclusively and requested more information on other science public events in the Phoenix area. We distributed surveys to several select sessions to evaluate audience reasons for attending the science panels and their opinion of the scientists they observed. We will present the results of these surveys. As the PCC continues to grow at an exponential rate, the science programming will continue to expand. We will discuss ideas for continued expansion of the PCC science programming both to serve the public and as a unique public outreach opportunity for early career scientists.

  11. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    Science.gov (United States)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  12. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  13. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study.

    Science.gov (United States)

    Silver, Lynn D; Ng, Shu Wen; Ryan-Ibarra, Suzanne; Taillie, Lindsey Smith; Induni, Marta; Miles, Donna R; Poti, Jennifer M; Popkin, Barry M

    2017-04-01

    Taxes on sugar-sweetened beverages (SSBs) meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake. Methods included comparison of pre-taxation (before 1 January 2015) and first-year post-taxation (1 March 2015-29 February 2016) measures of (1) beverage prices at 26 Berkeley stores; (2) point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3) a representative telephone survey (17.4% cooperation rate) of 957 adult Berkeley residents. Key hypotheses were that (1) the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2) sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3) consumer spending per transaction (checkout episode) would not increase in Berkeley stores; and (4) self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce), beverage sales (ounces), consumers' spending measured as store revenue (inflation-adjusted dollars per transaction) in two large chains, and usual beverage intake (grams/day and kilocalories/day). Tax pass-through (changes in the price after imposition of the tax) for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001) and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004), partial in pharmacies (+0.45¢/oz, p = 0.03), and negative in independent corner stores and

  14. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    International Nuclear Information System (INIS)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954

  15. Preparations for decommissioning the TRIGA Mark III Berkeley Research Reactor

    International Nuclear Information System (INIS)

    Denton, Michael M.; Lim, Tek. H.

    1988-01-01

    On December 20, 1986 the chancellor of UC Berkeley announced his decision to decommission the 20 year old Berkeley Research Reactor citing as principal reasons a decline in use and a need to erect a new computer science building over the reactor's site. In order to meet the University's construction timetable for the new building, the reactor staff together with other units of the campus administration have initiated a program to remove the reactor structure and clear the room for unlicensed use as expediently as possible. Due to the sequence of events which must occur in a limited amount of time, the University adopted a policy to contract out as much of the work as possible, including generation of the defueling and decommissioning plans.The first physical step in the decommissioning project is the removal of the irradiated fuel. This task is largely contracted out to a commercial firm with experience in the transport of radioactive materials and reactor fuel. As suggested by the NRC, the reactor will be defueled under the current operating license. This requires that all fuel must be off-site before the DP can be approved. Therefore any delay in defueling in-turn delays the decommissioning. The NRC has given no commitment or date for completion of their review. Informal discussion with NRC project managers and the experience from other facilities indicate that the review process will take between six and nine months

  16. Scientists in Gray Flannel Suits: Ernest Lawrence and the Development of Color Television

    Science.gov (United States)

    Roebke, Joshua

    Physicists and historians typically remember Ernest Lawrence for one of two activities, his development of the cyclotron or his advocacy for atomic weapons. The two labs that he established in support of such endeavors are still named after him in California: Lawrence Berkeley and Lawrence Livermore. But there was a third accomplishment for which Lawrence believed he would always be remembered: the development of color television. In 1950, he sold a half stake of his company, Chromatic Television Laboratories, to Paramount Pictures for 1 million. That decade, Lawrence and his employees, especially Luis Alvarez and Edwin McMillan, designed cathode-ray tubes for color televisions while they championed hydrogen bombs. Although their commitment to the second was attributed to patriotism and their interest in the first was dismissed as a hobby, it is not so easy to disentangle their motives. Color screens were needed for more than variety shows and sitcoms; they displayed incoming missiles in vivid color. No company has ever been led by three future Nobel Laureates, yet Chromatic Television Laboratories was a failure. Even so, Lawrence had a profound influence on the development of color television, and I will tell this story for the first time.

  17. Young Cluster Berkeley 59: Properties, Evolution, and Star Formation

    Science.gov (United States)

    Panwar, Neelam; Pandey, A. K.; Samal, Manash R.; Battinelli, Paolo; Ogura, K.; Ojha, D. K.; Chen, W. P.; Singh, H. P.

    2018-01-01

    Berkeley 59 is a nearby (∼1 kpc) young cluster associated with the Sh2-171 H II region. We present deep optical observations of the central ∼2.5 × 2.5 pc2 area of the cluster, obtained with the 3.58 m Telescopio Nazionale Galileo. The V/(V–I) color–magnitude diagram manifests a clear pre-main-sequence (PMS) population down to ∼0.2 M ⊙. Using the near-infrared and optical colors of the low-mass PMS members, we derive a global extinction of A V = 4 mag and a mean age of ∼1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2–28 M ⊙ and 0.2–1.5 M ⊙ are ‑1.33 and ‑1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds. Within the observed area, we derive a total mass of ∼103 M ⊙ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more closely the Trapezium cluster.

  18. Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Donadee, Jon; Lai, Judy; Megel, Olivier; Bhattacharya, Prajesh; Siddiqui, Afzal

    2011-02-06

    Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to commercialize Berkeley Lab's optimizing program, the Distributed Energy Resources Customer Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. In this way, energy efficiency and/or carbon minimizing strategies could be made readily available to commercial and industrial facilities. Specialized versions of DER-CAM dedicated to solving OSIsoft's customer problems have been set up on a server at Berkeley Lab. The objective of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, or combinations thereof. DER-CAM determines which technologies should be installed and operated based on specific site load, price information, and performance data for available equipment options. An established user of OSIsoft's PI software suite, the University of California, Davis (UCD), was selected as a demonstration site for this project. UCD's participation in the project is driven by its motivation to reduce its carbon emissions. The campus currently buys electricity economically through the Western Area Power Administration (WAPA). The campus does not therefore face compelling cost incentives to improve the efficiency of its operations, but is nonetheless motivated to lower the carbon footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric (PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to consider the variability of carbon emissions throughout the day and seasons. Two

  19. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Aleksandra Pawlik

    2017-07-01

    Full Text Available Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

  20. Dilepton (e+e-) production recent pp and pd studies with DLS at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1991-09-01

    The use of dileptons as probes of hot, dense hadronic matter is described. Preliminary results on dileptons produced in p-p and p-d interactions at the Bevalac are presented along with potential ramifications for existing model calculations of dileptons at these energies. Future directions of the dilepton program at Berkeley are outlined. 14 refs., 3 figs

  1. The Conference on the Dynamics of Molecular Collisions Held at Snowbird, Utah on 14-19 July 1985.

    Science.gov (United States)

    1985-07-01

    Berkeley Lab. (701) 237-8906 Berkeley, CA 94720 S(415) 486-6 4 47 Dr. F. Borondo Dept. de Quimica Fisica y Quimica CuanticA Dr. Frank Budenholzer...F. Martin and M. Yaez. Departamento de Quimica Fisica y Quimica Cudntica Facultad de Ciencias. C-XIV. Universidad Aut6noma de Madrid. Cantoblanco

  2. Frontier Scientists' project probes audience science interests with website, social media, TV broadcast, game, and pop-up book

    Science.gov (United States)

    O'Connell, E. A.

    2017-12-01

    The Frontier Scientists National Science Foundation project titled Science in Alaska: Using Multimedia to Support Science Education produced research products in several formats: videos short and long, blogs, social media, a computer game, and a pop-up book. These formats reached distinctly different audiences. Internet users, public TV viewers, gamers, schools, and parents & young children were drawn to Frontier Scientists' research in direct and indirect ways. The analytics (our big data) derived from this media broadcast has given us insight into what works, what doesn't, next steps. We have evidence for what is needed to present science as an interesting, vital, and a necessary component for the general public's daily information diet and as an important tool for scientists to publicize research and to thrive in their careers. Collaborations with scientists at several Universities, USGS, Native organizations, tourism organizations, and Alaska Museums promoted accuracy of videos and increased viewing. For example, Erin Marbarger, at Anchorage Museum, edited, and provided Spark!Lab to test parents & child's interest in the pop-up book titled: The Adventures of Apun the Arctic Fox. Without a marketing budget Frontier Scientist's minimum publicity, during the three year project, still drew an audience. Frontier Scientists was awarded Best Website 2016 by the Alaska Press Club, and won a number of awards for short videos and TV programs.

  3. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  4. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  5. Progress report on the Berkeley/Anglo-Australian Observatory high-redshift supernova search

    International Nuclear Information System (INIS)

    Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R.A.; Couch, W.; Boyle, B.

    1990-11-01

    There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring Ω. It is the latter that I want to discuss in this paper. 3 refs., 18 figs

  6. "Carbon in Underland": A multidisciplinary approach to producing an informative animated video for the Center for Nanoscale Control of Geological CO2

    Science.gov (United States)

    Molins, S.; Cappuccio, J. A.; Berry, I.; Miller, J.; Bourg, I. C.; Kelly, L. M.

    2011-12-01

    As part of the 'Science for Our Nation's Energy Future, Summit and Forum', each of the 46 Energy Frontier Research Centers (EFRCs) created in 2009 by the US Department of Energy was invited to design a short, engaging film with the central goal to educate, inspire, and entertain an intelligent but not expert audience about the extraordinary science, innovation and people in their center. The Center for Nanoscale Control of Geological CO2 (NCGC) is an EFRC that is building a next generation understanding of molecular-to-pore-scale processes critical to controlling the flow,transport, and ultimate mineralization in porous rock media, in particular as applied to geologic sequestration of CO2. In response to the invitation, the NCGC assembled a team that included several young scientists, the Center project manager, and members from the Public Affairs and Creative Services Office of the Lawrence Berkeley National Laboratory with the objective of preparing a submission. A videographer from the Creative Services Office was responsible for overall management including production, art direction, and editing, while scientists from the Center were responsible for scientific content and original storyline concept. The Center project manager facilitated the communication between team members. A group of scientists together with the project manager developed the original idea, which was refined and given shape as a script in dialogue form by a science writer from Public Affairs. The objective was to communicate scientific content in an entertaining manner with a simple storyline. In a second phase, the script was revised further by scientists for content. Clips from experiments and modeling simulations were requested from the Center's scientists to illustrate the scientific content. Video production and animation were done by the videographer and an animator in an iterative process that involve feedback from the Center team. The final cut was edited to meet the maximum length

  7. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  8. Scientists Must Not Film but Must Appear on Screen!

    Science.gov (United States)

    Gerdes, A.; Madlener, S.

    2013-12-01

    Film production in science has affected its subjects in a truly remarkable way. Where scientists were once perceived to be poor communicators with an overwhelming aptitude for numbers and figures, audiences now have access to scientists they can understand and even relate to. Over the years, scientists have grown accustomed to involving and using the media in their research and exposing their science to wider audiences, making them better communicators. This is a huge development, and one that is especially noticeable at MARUM, the Center for Marine Environmental Sciences at the University of Bremen/Germany. Over time, the collaboration between the scientists and public relations staff has taught us all to be better at what we do. A unique characteristic of MARUM TV is that more or less all videos are produced 'in house'; we have established the small yet effective infrastructure necessary do develop, execute, and distribute semi-professional videos to access broader audiences and increase world-wide visibility. MARUM TV relies on our research scientists to operate cameras and capture important moments offshore on expedition, and to cooperate with us as we shoot footage of them and conduct interviews onshore in the lab. In turn, we promote their research and help increase their accessibility. At the forefront of our success is the relatively recent implementation of HD cameras on MARUM's fleet of remotely operated vehicles, which capture stunning video footage of the deep sea. Furthermore, sustained collaborations with national tv stations, online media portals, and large production companies helps inform our process and increases MARUM's visibility. The result is an extensive suite of about 70 short and long format science videos with some of the highest view counts on YouTube compared to other marine institutes. In the session PA011 'Scientists must film!' we intent to address issues regarding roadblocks to bridging science and media: a) Science communication

  9. Contract 98, Appendix F self-assessment report for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Albert (Editor), Rich

    2003-10-15

    This report summarizes the Ernest Orlando Lawrence Berkeley National Laboratory internal assessment of Laboratory operational and administrative performance in key support functions for Fiscal Year (FY) 2003. The report provides documentation of ongoing performance-based management and oversight processes required by the Department of Energy (DOE) to monitor, measure, and evaluate Berkeley Lab work.

  10. Lawrence Berkeley laboratory neutral-beam engineering test facility power-supply system

    International Nuclear Information System (INIS)

    Lutz, I.C.; Arthur, C.A.; deVries, G.J.; Owren, H.M.

    1981-10-01

    The Lawrence Berkeley Laboratory is upgrading the neutral beam source test facility (NBSTF) into a neutral beam engineering test facility (NBETF) with increased capabilities for the development of neutral beam systems. The NBETF will have an accel power supply capable of 170 kV, 70 A, 30 sec pulse length, 10% duty cycle; and the auxiliary power supplies required for the sources. This paper describes the major components, their ratings and capabilities, and the flexibility designed to accomodate the needs of source development

  11. Enter FameLab and become the new face of science in Switzerland

    CERN Multimedia

    Paola Catapano, FameLab@Cern Project coordinator, Communication Group

    2011-01-01

    Are you 18 to 35 years old and studying or working in science in Switzerland? Are you passionate about your job and keen on exciting public imagination with a vision of the 21st century of science? Then this competition is for you!   FameLab is an international science communication competition for young researchers. It aims to find the new voices of science and engineering across the world. CERN has been chosen as the venue of the regional semi-finals for Switzerland. To compete, all you have to do is prepare a 3-minute talk that is scientifically accurate but also engaging to a non-scientific audience and impress your jury and your audience on Saturday 4 Februrary, 2012 at the Globe of Science and Innovation. Famelab aims to provide new opportunities for scientists to develop their skills as communicators. FameLab was set up in 2005 by Cheltenham Festivals, one of the UK’s premier cultural organisations, in partnership with NESTA (Nat...

  12. In Defense of the National Labs and Big-Budget Science

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, J R

    2008-07-29

    The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tapped in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider

  13. Lab at Home: Hardware Kits for a Digital Design Lab

    Science.gov (United States)

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  14. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  15. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  16. Installation and experimental uses of RTNS-I at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Belian, A.P.; Morse, E.C.; Tobin, M.

    1996-01-01

    The National Ignition Facility (NIF) features optical components with line-of-sight access to the 14 MeV neutrons generated by fusion reactions in the target. Two of these components are a final focusing lens, made of fused silica, and a frequency conversion crystal comprised of two potassium dihydrogen phosphate (KDP) crystals. The Rotating Target Neutron Source (RTNS-I), which was previously operated at Lawrence Livermore National Laboratory (LLNL), has now been re-installed at UC Berkeley and is being used for the studies of neutron irradiation of fused silica and KDP. The machine has been installed so as to re-utilize the concrete structure that once housed the Berkeley Research Reactor, now decommissioned. The RTNS uses a 2 - 5 mA beam of deuterons impinging upon a spinning internally cooled tritiated copper target with a 110 Ci tritium inventory. Maximum beam energy is 399 KeV. The 14 MeV neutron production rate is 1.0x10 12 n/sec. Some new features of the machine include fiber-optic coupled microprocessor control of accelerator parameters, a cryogenic tritium collection system, and a scrubber system for exhaust tritium management. 15 refs., 4 figs

  17. PD Lab

    Directory of Open Access Journals (Sweden)

    Marcel Bilow

    2015-08-01

    Full Text Available PD Lab explores the applications of building sector related product development.  PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  18. The structure of a cholesterol-trapping protein

    Science.gov (United States)

    cholesterol-trapping protein Contact: Dan Krotz, dakrotz@lbl.gov Berkeley Lab Science Beat Lab website index Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares

  19. Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, O., E-mail: makarov@anl.gov [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hilgart, M.; Ogata, C.; Pothineni, S. [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cork, C. [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-09-01

    GM/CA-CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  20. Exploring linear algebra labs and projects with Mathematica

    CERN Document Server

    Arangala, Crista

    2014-01-01

    Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...

  1. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  2. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study

    Science.gov (United States)

    Ryan-Ibarra, Suzanne; Taillie, Lindsey Smith; Induni, Marta

    2017-01-01

    Background Taxes on sugar-sweetened beverages (SSBs) meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake. Methods and findings Methods included comparison of pre-taxation (before 1 January 2015) and first-year post-taxation (1 March 2015–29 February 2016) measures of (1) beverage prices at 26 Berkeley stores; (2) point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3) a representative telephone survey (17.4% cooperation rate) of 957 adult Berkeley residents. Key hypotheses were that (1) the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2) sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3) consumer spending per transaction (checkout episode) would not increase in Berkeley stores; and (4) self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce), beverage sales (ounces), consumers’ spending measured as store revenue (inflation-adjusted dollars per transaction) in two large chains, and usual beverage intake (grams/day and kilocalories/day). Tax pass-through (changes in the price after imposition of the tax) for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001) and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004), partial in pharmacies (+0.45¢/oz, p = 0.03), and

  3. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    Science.gov (United States)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  4. From big data analysis in the cloud to robotic pot drumming: tales from the Met Office Informatics Lab

    Science.gov (United States)

    Robinson, Niall; Tomlinson, Jacob; Prudden, Rachel; Hilson, Alex; Arribas, Alberto

    2017-04-01

    The Met Office Informatics Lab is a small multidisciplinary team which sits between science, technology and design. Our mission is simply "to make Met Office data useful" - a deliberately broad objective. Our prototypes often trial cutting edge technologies, and so far have included projects such as virtual reality data visualisation in the web browser, bots and natural language interfaces, and artificially intelligent weather warnings. In this talk we focus on our latest project, Jade, a big data analysis platform in the cloud. It is a powerful, flexible and simple to use implementation which makes extensive use of technologies such as Jupyter, Dask, containerisation, Infrastructure as Code, and auto-scaling. Crucially, Jade is flexible enough to be used for a diverse set of applications: it can present weather forecast information to meteorologists and allow climate scientists to analyse big data sets, but it is also effective for analysing non-geospatial data. As well as making data useful, the Informatics Lab also trials new working practises. In this presentation, we will talk about our experience of making a group like the Lab successful.

  5. Luis Alvarez, the Hydrogen Bubble Chamber, Tritium, and Dinosaurs

    Science.gov (United States)

    Dinosaurs Resources with Additional Information * Patents Luis Alvarez Courtesy Lawrence Berkeley National JFK Assassination, and the End of the Dinosaurs Memorial Tribute for Luis W. Alvarez The Fruitful and Luis Alvarez (1911 - 1988) Why Dinosaurs Are Extinct Berkeley Scientists Report First Evidence that

  6. LIB LAB the Library Laboratory: hands-on multimedia science communication

    Science.gov (United States)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  7. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  8. SCFA lead lab technical assistance at Lawrence Berkeley National Laboratory: Baseline review of three groundwater plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry; et al.

    2002-09-26

    During the closeout session, members of the technical assistance team conveyed to the site how impressed they were at the thoroughness of the site's investigation and attempts at remediation. Team members were uniformly pleased at the skilled detection work to identify sources, make quick remediation decisions, and change course when a strategy did not work well. The technical assistance team also noted that, to their knowledge, this is the only DOE site at which a world-class scientist has had primary responsibility for the environmental restoration activities. This has undoubtedly contributed to the successes observed and DOE should take careful note. The following overall recommendations were agreed upon: (1) The site has done a phenomenal job of characterization and identifying and removing source terms. (2) Technologies selected to date are appropriate and high impact, e.g. collection trenches are an effective remedial strategy for this complicated geology. The site should continue using technology that is adapted to the site's unique geology, such as the collection trenches. (3) The site should develop a better way to determine the basis of cleanup for all sites. (4) The sentinel well system should be evaluated and modified, if needed, to assure that the sentinel wells provide coverage to the current site boundary. Potential modifications could include installation, abandonment or relocation of wells based on the large amount of data collected since the original sentinel well system was designed. (5) Modeling to assist in remedial design and communication should continue. (6) The site should develop a plan to ensure institutional memory. (7) The most likely possibility for improving closure to 2006 is by removing the residual source of the Old Town plume and establishing the efficacy of remediation for the 51/64 plume.

  9. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  10. Reforming Cookbook Labs

    Science.gov (United States)

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  11. Institutional plan. FY 1997-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The FY 1997-2002 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. Of particular significance this year is the role of computing sciences in supporting a broad range of research activities, at Berkeley Lab in particular and throughout the entire Department of Energy system in general. The Institutional Plan is a management report for integration with the Department of Energy`s mission and programs and is an element of Department of Energy`s strategic management planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives.

  12. The Portuguese Contribution for lab2go - pt.lab2go

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2013-01-01

    Full Text Available Online experimentation provides innovative and valuable tools for use in academy, in high schools, in industry and in medical areas. It has also become a precious tool for educational and training purposes in any of those areas. Looking at online experimentation as a pure distance learning tool it represents a very efficient way of sharing hands-on capabilities, for example with developing countries. In Portugal a new consortium of online experimentation was created for fostering the national potential, using the Portuguese version of lab2go web platform, pt.lab2go. The authors pretend to demonstrate some of capabilities of the consortium in sharing online labs.

  13. Environmental surveillance program of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-04-01

    The major radiological environmental impact of the Lawrence Berkeley Laboratory is due to the operation of four particle accelerators. Potential sources of population exposure at the Laboratory are discussed. The major source of population exposure due to accelerator operation arises from the prompt radiation field which consists principally of neutrons and photons. Release of small quantities of radionuclides is also a potential source of population exposure but is usually an order of magnitude less significant. Accelerator produced radiation levels at the Laboratory boundary are comparable with the magnitudes of the fluctuations found in the natural background radiation. Environmental monitoring of accelerator-produced radiation and of radionuclides is carried on throughout the Laboratory, at the Laboratory perimeter, and in the regions surrounding the Laboratory. The techniques used are described. The models used to calculate population exposure are described and discussed

  14. The Advanced Light Source at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.L.; Perera, R.C.C.; Schlachter, A.S.

    1991-10-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL), scheduled to be operational in the spring of 1993 as a US Department of Energy national user facility, will be a next- generation source of soft x-ray and ultraviolet (XUV) synchrotron radiation. Undulators will provide the world's brightest synchrotron radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes above 10 keV. These capabilities will support an extensive research program in a broad spectrum of scientific and technological areas in which XUV radiation is used to study and manipulate matter in all its varied gaseous, liquid, and solid forms. The ALS will also serve those interested in developing the fabrication technology for micro- and nanostructures, as well as characterizing them

  15. An Evaluation of the New Curriculum at the University of California, Berkeley, School of Optometry.

    Science.gov (United States)

    Harris, Michael G.; Kashani, Sandy; Saroj, Namrata

    2001-01-01

    Evaluated the new curriculum at the University of California, Berkeley, School of Optometry by comparing the content of the new curriculum to the old curriculum and by surveying faculty and students regarding their opinion of the new curriculum. Findings indicated that the curriculum is successful in implementing desired changes, including reduced…

  16. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  17. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  18. Validity and Reliability of Preschool, First and Second Grade Versions of Berkeley Parenting Self-Efficacy Scale

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Tajeri

    2009-02-01

    Full Text Available "nObjective: The purpose of this study is to examine the factor structure, internal consistency, and construct validity of preschool, first and second grade versions of Berkeley Parenting self-efficacy scale. "nMethod:  The subjects were 317 mothers: (102 mothers of preschool children, 111 mothers of first grade children and 104 mothers of second grade children who were randomly selected from schools in Tehran. They completed Berkeley parenting self-efficacy and Rotter `s locus of control scales. Factor analysis using the principle component method was used to identify the factor structure of parenting self-efficacy scale. Cronbach`s alpha coefficient was used to identify the reliability of parenting self efficacy scale. "nResults: Results of this study indicated that the cronbach`s alpha coefficient was 0.84, 0.87, 0.64 for preschool, first grade and second grade versions respectively. Based on the scree test ,,factor analysis produced two factors of maternal strategy and child outcome, and it also produced the highest level of total variance explained by these 2 factors. The Parenting self-efficacy scale was negatively associated with measure of locus of control(r=-0.54 for the preschool version, -0.64 for the first grade version and -0.54 for the second grade version. "nConclusion: Due to relatively high reliability and validity of preschool, first and second grade versions of Berkeley Parenting Self-Efficacy scale, this scale could be used as a reliable and valid scale in other research areas

  19. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  20. Site Environmental Report for 2001

    Energy Technology Data Exchange (ETDEWEB)

    Pauer, Ron

    2002-07-01

    The mission of Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is to continue the long tradition of outstanding research that has made it a premier national and international multiprogram laboratory. In order to provide the highest degree of protection for the public and the environment, Berkeley Lab employs Integrated Safety Management (ISM). ISM is a comprehensive U.S. Department of Energy management system that involves five core functions (work planning, hazard and risk analysis, establishment of controls, work performance, and feedback and improvement). These five core functions are applied to all activities at Berkeley Lab. Laboratory activities are planned and conducted with full regard to protecting the public and the environment and complying with appropriate environmental laws and regulations. Both radiological and nonradiological activities are thoroughly monitored to assess their potential impact on public health and the environment. This annual Site Environmental Report covers activities for calendar year (CY) 2001. Volume I summarizes environmental protection performance and environmental monitoring activities. Volume II contains individual analytical data summarized in the first volume. Volume II is available on request. (For details, see the Preface.) Data are presented in the report using the International System of Units measuring system, more commonly referred to as the metric system. For the convenience of readers, both volumes of this report can be accessed on the Web from the Berkeley Lab Environmental Services home page, which is located at http://www.lbl.gov/ehs/esg. Readers are encouraged to comment on this report by completing either the survey card included with the distributed hard copy of the report or the survey form in the Web version of the report. The format and content of this report satisfy the requirements of United States Department of Energy (DOE) Order 231.1, Environment, Safety and Health Reporting,1 and

  1. LAUE lens development at UC Berkeley: status and prospects

    Science.gov (United States)

    Barrière, Nicolas M.; Tomsick, John A.; Ackermann, Marcelo D.; Bastie, Pierre; Boggs, Steven E.; Hanlon, Lorraine; Jentschel, Michael; Lowell, Alexander; Roudil, Gilles; von Ballmoos, Peter; Wade, Colin

    2013-09-01

    We report on the status of the Laue lens development effort led by UC Berkeley, where a dedicated X-ray beamline and a Laue lens assembly station were built. This allowed the realization of a first lens prototype in June 2012. Based on this achievement, and thanks to a new NASA APRA grant, we are moving forward to enable Laue lenses. Several parallel activities are in progress. Firstly, we are refining the method to glue quickly and accurately crystals on a lens substrate. Secondly, we are conducting a study of high-Z crystals to diffract energies up to 900 keV efficiently. And thirdly, we are exploring new concepts of Si-based lenses that could further improve the focusing capabilities, and thus the sensitivity of Laue lenses.

  2. Disrupting mobility impacts of sharing economy and innovative transportation on cities

    CERN Document Server

    Shaheen, Susan

    2017-01-01

    This book explores the opportunities and challenges of the sharing economy and innovative transportation technologies with regard to urban mobility. Written by government experts, social scientists, technologists and city planners from North America, Europe and Australia, the papers in this book address the impacts of demographic, societal and economic trends and the fundamental changes arising from the increasing automation and connectivity of vehicles, smart communication technologies, multimodal transit services, and urban design. The book is based on the Disrupting Mobility Summit held in Cambridge, MA (USA) in November 2015, organized by the City Science Initiative at MIT Media Lab, the Transportation Sustainability Research Center at the University of California at Berkeley, the LSE Cities at the London School of Economics and Politics and the Innovation Center for Mobility and Societal Change in Berlin.

  3. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  4. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    Science.gov (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  5. TELECOM LAB

    CERN Multimedia

    IT-CS-TEL Section

    2001-01-01

    The Telecom Lab is moving from Building 104 to Building 31 S-026, with its entrance via the ramp on the side facing Restaurant n°2. The help desk will thus be closed to users on Tuesday 8 May. On May 9, the Lab will only be able to deal with problems of a technical nature at the new address and it will not be able to process any new subscription requests throughout the week from 7 to 11 May. We apologise for any inconvenience this may cause and thank you for your understanding.

  6. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  7. Communicating Synthetic Biology: from the lab via the media to the broader public.

    Science.gov (United States)

    Kronberger, Nicole; Holtz, Peter; Kerbe, Wolfgang; Strasser, Ewald; Wagner, Wolfgang

    2009-12-01

    We present insights from a study on communicating Synthetic Biology conducted in 2008. Scientists were invited to write press releases on their work; the resulting texts were passed on to four journalists from major Austrian newspapers and magazines. The journalists in turn wrote articles that were used as stimulus material for eight group discussions with select members of the Austrian public. The results show that, from the lab via the media to the general public, communication is characterized by two important tendencies: first, communication becomes increasingly focused on concrete applications of Synthetic Biology; and second, biotechnology represents an important benchmark against which Synthetic Biology is being evaluated.

  8. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    Science.gov (United States)

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  9. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server cedrcd.lbl.gov''. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill lbl.gov) if you wish to make use of the data.

  10. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  11. The development of an artificial organic networks toolkit for LabVIEW.

    Science.gov (United States)

    Ponce, Hiram; Ponce, Pedro; Molina, Arturo

    2015-03-15

    Two of the most challenging problems that scientists and researchers face when they want to experiment with new cutting-edge algorithms are the time-consuming for encoding and the difficulties for linking them with other technologies and devices. In that sense, this article introduces the artificial organic networks toolkit for LabVIEW™ (AON-TL) from the implementation point of view. The toolkit is based on the framework provided by the artificial organic networks technique, giving it the potential to add new algorithms in the future based on this technique. Moreover, the toolkit inherits both the rapid prototyping and the easy-to-use characteristics of the LabVIEW™ software (e.g., graphical programming, transparent usage of other softwares and devices, built-in programming event-driven for user interfaces), to make it simple for the end-user. In fact, the article describes the global architecture of the toolkit, with particular emphasis in the software implementation of the so-called artificial hydrocarbon networks algorithm. Lastly, the article includes two case studies for engineering purposes (i.e., sensor characterization) and chemistry applications (i.e., blood-brain barrier partitioning data model) to show the usage of the toolkit and the potential scalability of the artificial organic networks technique. © 2015 Wiley Periodicals, Inc.

  12. Institutional Plan FY 2003 - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Michael; Hansen, Todd

    2003-01-27

    The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the

  13. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  14. Presentation of the National Center for Research in Vocational Education [Berkeley, California] at the AVA Annual Conference.

    Science.gov (United States)

    National Center for Research in Vocational Education, Berkeley, CA.

    This collection contains the following conference presentations about the National Center for Research in Vocational Education at the University of California at Berkeley: "Visions and Principles" (Charles Benson); "How the Center Sees Its Role" (Gordon Swanson); "The Research Agenda" (Sue Berryman); "The Service…

  15. Site Environmental Report for 2005 Volume I and Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, Michael

    2006-07-07

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current

  16. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  17. Payments to the Lab

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management the Lab Make payments for event registrations, sponsorships, insurance, travel, other fees. Contact Treasury Team (505) 667-4090 Email If you need to make a payment to the Lab for an event registration

  18. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  20. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  1. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  2. ScalaLab and GroovyLab: Comparing Scala and Groovy for Scientific Computing

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2015-01-01

    Full Text Available ScalaLab and GroovyLab are both MATLAB-like environments for the Java Virtual Machine. ScalaLab is based on the Scala programming language and GroovyLab is based on the Groovy programming language. They present similar user interfaces and functionality to the user. They also share the same set of Java scientific libraries and of native code libraries. From the programmer's point of view though, they have significant differences. This paper compares some aspects of the two environments and highlights some of the strengths and weaknesses of Scala versus Groovy for scientific computing. The discussion also examines some aspects of the dilemma of using dynamic typing versus static typing for scientific programming. The performance of the Java platform is continuously improved at a fast pace. Today Java can effectively support demanding high-performance computing and scales well on multicore platforms. Thus, both systems can challenge the performance of the traditional C/C++/Fortran scientific code with an easier to use and more productive programming environment.

  3. Early History of Heavy Isotope Research at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Glenn T. Seaborg

    1976-06-01

    I have had the idea for some time that it would be interesting and worthwhile to put together an account of the early work on heavy isotopes at Berkeley. Of a special interest is the discovery of plutonium (atomic number 94) and the isotope U{sup 233}, and the demonstration of their fission with slow neutrons. This work served as a prelude to the subsequent Plutonium Project (Metallurgical Project) centered at the University of Chicago, in connection with which I have also had the idea of putting together a history of the work of my chemistry group. I have decided that it would be an interesting challenge to write this account on a day-to-day basis in a style that would be consistent with the entries having been written at the end of each day. The aim would be to make this history as accurate as possible by going back to the original records and using them with meticulous care.

  4. Spin-Off Successes of SETI Research at Berkeley

    Science.gov (United States)

    Douglas, K. A.; Anderson, D. P.; Bankay, R.; Chen, H.; Cobb, J.; Korpela, E. J.; Lebofsky, M.; Parsons, A.; von Korff, J.; Werthimer, D.

    2009-12-01

    Our group contributes to the Search for Extra-Terrestrial Intelligence (SETI) by developing and using world-class signal processing computers to analyze data collected on the Arecibo telescope. Although no patterned signal of extra-terrestrial origin has yet been detected, and the immediate prospects for making such a detection are highly uncertain, the SETI@home project has nonetheless proven the value of pursuing such research through its impact on the fields of distributed computing, real-time signal processing, and radio astronomy. The SETI@home project has spun off the Center for Astronomy Signal Processing and Electronics Research (CASPER) and the Berkeley Open Infrastructure for Networked Computing (BOINC), both of which are responsible for catalyzing a smorgasbord of new research in scientific disciplines in countries around the world. Futhermore, the data collected and archived for the SETI@home project is proving valuable in data-mining experiments for mapping neutral galatic hydrogen and for detecting black-hole evaporation.

  5. Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing: A Case Study on the BerkeleyGW Software

    Energy Technology Data Exchange (ETDEWEB)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek; Barnes, Taylor; Wichmann, Nathan; Raman, Karthik; Sasanka, Ruchira; Louie, Steven G.

    2016-10-06

    We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW method is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.

  6. Easy research data handling with an OpenEarth DataLab for geo-monitoring research

    Science.gov (United States)

    Vanderfeesten, Maurice; van der Kuil, Annemiek; Prinčič, Alenka; den Heijer, Kees; Rombouts, Jeroen

    2015-04-01

    OpenEarth DataLab is an open source-based collaboration and processing platform to enable streamlined research data management from raw data ingest and transformation to interoperable distribution. It enables geo-scientists to easily synchronise, share, compute and visualise the dynamic and most up-to-date research data, scripts and models in multi-stakeholder geo-monitoring programs. This DataLab is developed by the Research Data Services team of TU Delft Library and 3TU.Datacentrum together with coastal engineers of Delft University of Technology and Deltares. Based on the OpenEarth software stack an environment has been developed to orchestrate numerous geo-related open source software components that can empower researchers and increase the overall research quality by managing research data; enabling automatic and interoperable data workflows between all the components with track & trace, hit & run data transformation processing in cloud infrastructure using MatLab and Python, synchronisation of data and scripts (SVN), and much more. Transformed interoperable data products (KML, NetCDF, PostGIS) can be used by ready-made OpenEarth tools for further analyses and visualisation, and can be distributed via interoperable channels such as THREDDS (OpenDAP) and GeoServer. An example of a successful application of OpenEarth DataLab is the Sand Motor, an innovative method for coastal protection in the Netherlands. The Sand Motor is a huge volume of sand that has been applied along the coast to be spread naturally by wind, waves and currents. Different research disciplines are involved concerned with: weather, waves and currents, sand distribution, water table and water quality, flora and fauna, recreation and management. Researchers share and transform their data in the OpenEarth DataLab, that makes it possible to combine their data and to see influence of different aspects of the coastal protection on their models. During the project the data are available only for the

  7. Barriers to communication and cooperation in addressing community impacts of radioactive releases from research facilities

    International Nuclear Information System (INIS)

    Harrach, R J; Peterson, S.

    1999-01-01

    Two instances of research facilities responding to public scrutiny will be discussed. The first concerns emissions from a tritium labeling facility operated at Lawrence Berkeley National Laboratory (LBNL); the second deals with releases of plutonium from Lawrence Livermore National Laboratory (LLNL). There are many parallels between these two cases, both of which are still ongoing. In both, the national laboratory is the acknowledged source of low-level (by regulatory standards) radioactive contamination in the community. A major purpose of both investigations is to determine the degree of the contamination and the threat it poses to public health and the environment. The examining panel or committee is similarly constituted in the two cases, including representatives from all four categories of stakeholders: decision makers; scientists and other professionals doing the analysis/assessment; environmental activist or public interest groups; and ordinary citizens (nearly everyone else not in one or more of the first three camps). Both involved community participation from the beginning. The levels of outrage over the events triggering the assessment are comparable; though discovered or appreciated only a few years ago, the release of radiation in both cases occurred or began occurring more than a decade ago. The meetings have been conducted in a similar manner, with comparable frequency, often utilizing the services of professional facilitators. In both cases, the sharply contrasting perceptions of risk commonly seen between scientists and activists were present from the beginning, though the contrast was sharper and more problematical in the Berkeley case. Yet, the Livermore case seems to be progressing towards a satisfactory resolution, while the Berkeley case remains mired in ill-will, with few tangible results after two years of effort. We perceive a wide gap in negotiation skills (at the very least), and a considerable difference in willingness to compromise

  8. Tele-Lab IT-Security: an Architecture for an online virtual IT Security Lab

    Directory of Open Access Journals (Sweden)

    Christoph Meinel

    2008-05-01

    Full Text Available Recently, Awareness Creation in terms of IT security has become a big thing – not only for enterprises. Campaigns for pupils try to highlight the importance of IT security even in the user’s early years. Common practices in security education – as seen in computer science courses at universities – mainly consist of literature and lecturing. In the best case, the teaching facility offers practical courses in a dedicated isolated computer lab. Additionally, there are some more or less interactive e-learning applications around. Most existing offers can do nothing more than impart theoretical knowledge or basic information. They all lack of possibilities to provide practical experience with security software or even hacker tools in a realistic environment. The only exceptions are the expensive and hard-to-maintain dedicated computer security labs. Those can only be provided by very few organizations. Tele-Lab IT-Security was designed to offer hands-on experience exercises in IT security without the need of additional hardware or maintenance expenses. The existing implementation of Tele-Lab even provides access to the learning environment over the Internet – and thus can be used anytime and anywhere. The present paper describes the extended architecture on which the current version of the Tele-Lab server is built.

  9. Featured Image: Making Dust in the Lab

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  10. Guidelines for Urban Labs

    DEFF Research Database (Denmark)

    Scholl, Christian; Agger Eriksen, Mette; Baerten, Nik

    2017-01-01

    urban lab initiatives from five different European cities: Antwerp (B), Graz and Leoben (A), Maastricht (NL) and Malmö (S). We do not pretend that these guidelines touch upon all possible challenges an urban lab may be confronted with, but we have incorporated all those we encountered in our...

  11. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  12. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Fang, Jin-Qing; Liu, Qiang

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  13. BErkeley Atmospheric CO2 Network (BEACON) - Bringing Measurements of CO2 Emissions to a School Near You

    Science.gov (United States)

    Teige, V. E.; Havel, E.; Patt, C.; Heber, E.; Cohen, R. C.

    2011-12-01

    The University of California at Berkeley in collaboration with the Chabot Space and Science Center describe a set of educational programs, workshops, and exhibits based on a multi-node greenhouse gas and air quality monitoring network being deployed over Oakland, California. Examining raw numerical data using highly engaging and effective geo-data visualization tools like Google Earth can make the science come alive for students, and provide a hook for drawing them into deeper investigations. The Climate Science Investigations teacher workshop at the Chabot Space and Science Center will make use of Google Earth, Excel, and other geo-data visualization tools to step students through the process from data acquisition to discovery. Using multiple data sources, including output from the BErkeley Atmospheric CO2 Network (BEACON) project, participants will be encouraged to explore a variety of different modes of data display toward producing a unique, and ideally insightful, illumination of the data.

  14. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  15. Site Environmental Report for 1998 Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, Michael

    1999-09-24

    The mission of Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is to continue the long tradition of outstanding research that has made it a premier national and international multiprogram laboratory. Laboratory activities are planned and conducted with full regard to protecting the public and the environment and complying with appropriate environmental laws and regulations. Both radiological and nonradiological activities are thoroughly monitored to assess their potential impact on the environment.

  16. Site Environmental Report for 1998 Volume I

    International Nuclear Information System (INIS)

    Ruggieri, Michael

    1999-01-01

    The mission of Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is to continue the long tradition of outstanding research that has made it a premier national and international multiprogram laboratory. Laboratory activities are planned and conducted with full regard to protecting the public and the environment and complying with appropriate environmental laws and regulations. Both radiological and nonradiological activities are thoroughly monitored to assess their potential impact on the environment

  17. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  18. GeneLab: Open Science For Exploration

    Science.gov (United States)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  19. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  20. Ntal/Lab/Lat2

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Jensen, Bettina M; Gilfillan, Alasdair M

    2007-01-01

    T cells. As demonstrated in monocytes and B cells, phosphorylated NTAL/LAB/LAT2 recruits signaling molecules such as Grb2, Gab1 and c-Cbl into receptor-signaling complexes. Although gene knock out and knock down studies have indicated that NTAL/LAB/LAT2 may function as both a positive and negative...

  1. Research project management 101: insiders' tips from Early Career Scientists

    Science.gov (United States)

    Cristini, Luisa; Pabortsava, Katsiaryna; Stichel, Torben

    2016-04-01

    From the very beginning of their career, it is important for Early Career Scientists (ECS) to develop project management skills to be able to organise their research efficiently. ECS are often in charge of specific tasks within their projects or for their teams. However, without specific training or tools, the successful completion of these assignments will depend entirely on the organisational skills of individual researchers. ECS are thus facing "sink-or-swim" situations, which can be either instructive or disastrous for their projects. Here we provide experience-based tips from fellow ECS that can help manage various project activities, including: 1. Communication with supervisors and peers 2. Lab management 3. Field trips (e.g., oceanographic campaigns) 4. Internships and collaborations with other institutions 5. Literature/background research 6. Conference convening These are potential "life buoys" for ECS, which will help them to carry out these tasks efficiently and successfully.

  2. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-07

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  3. OpenLabNotes--An Electronic Laboratory Notebook Extension for OpenLabFramework.

    Science.gov (United States)

    List, Markus; Franz, Michael; Tan, Qihua; Mollenhauer, Jan; Baumbach, Jan

    2015-10-06

    Electronic laboratory notebooks (ELNs) are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open-LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  4. OpenLabNotes - An Electronic Laboratory Notebook Extension for OpenLabFramework.

    Science.gov (United States)

    List, Markus; Franz, Michael; Tan, Qihua; Mollenhauer, Jan; Baumbach, Jan

    2015-09-01

    Electronic laboratory notebooks (ELNs) are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open- LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  5. Lab-On-a-Chip Application Development (LOCAD): Bridging Technology Readiness for Exploration

    Science.gov (United States)

    Spearing, Scott F.; Jenkins, Andy

    2004-01-01

    At Marshall Space Flight Center we have established a capability to investigate the use of microfluidics for space flight. The Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 and 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD'S process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-fluidic devices can be created and tested. Currently, LOCAD is focused on using microfluidics for both Environmental Monitoring & Control, and Medical Systems. Eventually, handheld portable units utilizing LOC technology will perform rapid tests to determine water quality, and microbial contamination levels. Since LOC technology is drastically reduced in physical size, it thereby reduces power, weight, volume, and sample requirements, a big advantage considering the resource constraints associated with spaceflight. Another one of LOCAD's current activities is the development of a microfluidic system to aid in the search for life on Mars.

  6. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  7. International Collaboration Activities in Different Geologic Disposal Environments

    International Nuclear Information System (INIS)

    Birkholzer, Jens

    2015-01-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD's International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  8. International Collaboration Activities in Different Geologic Disposal Environments

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  9. Office of the Chief Financial Officer 2014 Annual Report

    OpenAIRE

    Williams, Kim

    2015-01-01

    From a financial perspective, FY2014 was a year of notable challenges and accomplishments for Lawrence Berkeley National Laboratory. The year began with an unprecedented concurrent federal government shutdown and debt ceiling crisis that threatened to suspend the Lab's operations. Working collaboratively with the Lab's research and operations units and DOE, the Lab was able to continue executing its mission during the shutdown, which was resolved by Congress on October 16, 2013. The year ende...

  10. Tiny cells meet big questions: a closer look at bacterial cell biology

    OpenAIRE

    Goley, Erin D.

    2013-01-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab...

  11. Altitude Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Altitude Lab evaluates the performance of complete oxygen systems operated in individually controlled hypobaric chambers, which duplicate pressures that would be...

  12. GitLab repository management

    CERN Document Server

    Hethey, Jonathan

    2013-01-01

    A simple, easy to understand tutorial guide on how to build teams and efficiently use version control, using GitLab.If you are a system administrator in a company that writes software or are in charge of an infrastructure, this book will show you the most important features of GitLab, including how to speed up the overall process

  13. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    Science.gov (United States)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  14. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  15. Designing Viable Business Models for Living Labs

    Directory of Open Access Journals (Sweden)

    Bernhard R. Katzy

    2012-09-01

    Full Text Available Over 300 regions have integrated the concept of living labs into their economic development strategy since 2006, when the former Finnish Prime Minister Esko Aho launched the living lab innovation policy initiative during his term of European presidency. Despite motivating initial results, however, success cases of turning research into usable new products and services remain few and uncertainty remains on what living labs actually do and contribute. This practitioner-oriented article presents a business excellence model that shows processes of idea creation and team mobilization, new product development, user involvement, and entrepreneurship through which living labs deliver high-potential investment opportunities. Customers of living labs are identified as investors such as venture capitalists or industrial firms because living labs can generate revenue from them to create their own sustainable business model. The article concludes that living labs provide extensive support “lab” infrastructure and that it remains a formidable challenge to finance it, which calls for a more intensive debate.

  16. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    Science.gov (United States)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  17. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  18. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  19. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  20. Radioactive waste management research at CEGB Berkeley nuclear laboratories

    International Nuclear Information System (INIS)

    Bradbury, D.

    1988-01-01

    The CEGB is the major electric utility in the United Kingdom. This paper discusses how, at the research laboratories at Berkeley (BNL), several programs of work are currently taking place in the radioactive waste management area. The theme running through all this work is the safe isolation of radionuclides from the environment. Normally this means disposal of waste in solid form, but it may also be desirable to segregate and release nonradioactive material from the waste to reduce volume or improve the solid waste characteristics (e.g., the release of liquid or gaseous effluents after treatment to convert the radioactivity to solid form). The fuel cycle and radioactive waste section at BNL has a research program into these aspects for wastes arising from the operation or decommissioning of power stations. The work is done both in-house and on contract, with primarily the UKAEA

  1. The Rise of Basic Research at tha Bell Labs: Young Turks and Younger Turks

    Science.gov (United States)

    Anderson, Philip

    2004-03-01

    ABSTRACT Even before World War II, a certain amount of fundamental physics research came out of the Bell Labs. Already in the 20's, before the Labs were five years old, the discoveries of electron diffraction by Davisson and Germer, and of thermal noise by Johnson and Nyquist, had come as byproducts of wide-ranging technological studies. By the late '30's, there was a small group of broadly-trained scientists who formed a nucleus around which the "young turks" in management --J B Fisk, M J Kelly, W Shockley, perhaps others--formed the postwar physical research department, comprising at first perhaps 50 people with a mandate to do exploratory but "relevant" research. This talk will diiscuss how some of the generation of postwar hires, with the cooperation of enlightened managers like W O Baker and A H White, further tested and enlarged their freedom to do basic, curiosity-driven research in an academic atmosphere. I call this group, consisting of individuals like B T Matthias, G H Wannier, R G Shulman, P A Wolff, myself , and a number of others, the "younger Turks".

  2. Hydrogen Technology and Energy Curriculum (HyTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Barbara

    2013-02-28

    The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three days of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.

  3. Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratory’s environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.

  4. The Design:Lab as platform in participatory design research

    DEFF Research Database (Denmark)

    Binder, Thomas; Brandt, Eva

    2008-01-01

    The notion of laboratory or simply 'lab' has become popular in recent years in areas outside science and technology development. Learning Labs, Innovation Labs, Usability Labs, Media and Communication Labs and even Art Labs designate institutions or fora dedicated to change and experimentation...... as others have frequently used other metaphors like workshop, studio or atelier in design research. In this article we will argue that the laboratory metaphor is particularly suitable and useful for the design:lab, and we will give examples of how we have worked with the design:lab as a platform...

  5. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    Science.gov (United States)

    Enevoldsen, A. A. G.

    2008-11-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center will host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, and walks of life. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We plan to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of the International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by under-represented minorities in scientific and engineering careers.

  6. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    Science.gov (United States)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  7. A new LabVIEW interface for MDSplus

    International Nuclear Information System (INIS)

    Manduchi, G.; De Marchi, E.; Mandelli, A.

    2013-01-01

    Highlights: ► Integration object oriented data access layer in LabVIEW. ► A new component of the MDSplus data acquisition package. ► A new approach in the graphical presentation of data acquisition systems. -- Abstract: The paper presents a new interface providing full integration of MDSplus in LabVIEW, based on the recent features of MDSplus, in particular, data streaming, multithreading and Object Oriented interface. Data streaming support fits into the data driven concept of LabVIEW and multithreading is a native concept in LabVIEW. The object oriented interface of MDSplus defines a set of classes which map specific functionality, such as Tree and TreeNode to represent pulse files and data items, respectively, and fits naturally into the LabVIEW Object Oriented programming interface (LVOOP) introduced in version 8.2. MDSplus objects have been mapped onto LabVIEW objects, which act as wrappers to the underlying MDSplus object instance. This approach allows exporting the full MDSplus functionality into LabVIEW retaining the language-independent system view provided by the MDSplus object oriented interface

  8. A new LabVIEW interface for MDSplus

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Padova (Italy); De Marchi, E. [Department of Information Engineering, Padova University (Italy); Mandelli, A. [National Instruments (Italy)

    2013-10-15

    Highlights: ► Integration object oriented data access layer in LabVIEW. ► A new component of the MDSplus data acquisition package. ► A new approach in the graphical presentation of data acquisition systems. -- Abstract: The paper presents a new interface providing full integration of MDSplus in LabVIEW, based on the recent features of MDSplus, in particular, data streaming, multithreading and Object Oriented interface. Data streaming support fits into the data driven concept of LabVIEW and multithreading is a native concept in LabVIEW. The object oriented interface of MDSplus defines a set of classes which map specific functionality, such as Tree and TreeNode to represent pulse files and data items, respectively, and fits naturally into the LabVIEW Object Oriented programming interface (LVOOP) introduced in version 8.2. MDSplus objects have been mapped onto LabVIEW objects, which act as wrappers to the underlying MDSplus object instance. This approach allows exporting the full MDSplus functionality into LabVIEW retaining the language-independent system view provided by the MDSplus object oriented interface.

  9. Medical researchers unite for study on cancer intervention

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2016-08-01

    Full Text Available We introduce Drs. Antoine Snijders and Jian-Hua Mao, whose article is published in this issue of AMOR and discuss their views on cancer genetics, targeted therapy, and personalized medicine.Having worked together in numerous joint investigations that have yielded significant results, Dr. Snijders and Dr. Mao would most definitely agree that two heads are better than one. “Researchers these days need to have the ability to collaborate across many different disciplines,” said the duo in an exclusive interview with AMOR. Dr. Snijders and Dr. Mao, both with PhDs in cancer genetics and genomics, are currently based at the Biological Systems and Engineering Division of Lawrence Berkeley National Laboratory, California, which is a member of the national laboratory system supported by the U.S Department of Energy through its Office of Science. The Berkeley Lab is well known for producing excellent scholars, as thirteen Nobel Prize winners are affiliated with the Lab and seventy of its scientists are members of the National Academy of Sciences (NAS, one of the highest honors for a scientist in the United States. Dr. Snijders, a Dutch who has conducted his research at Berkeley Lab for the past eight years, did his Masters in Science (Medical Biology at the Vrije Universiteit Amsterdam, Netherlands – an institute with a strong focus on scientific research and is home to five Spinoza Prize (a.k.a. the “Dutch Nobel” winners. Dr. Snijders’s PhD (cum laude in cancer and molecular biology was awarded by University Utrecht in Netherlands, but his research work was carried out at the University of California San Francisco. Subsequently, he continued his postdoctoral research in molecular cytogenetics at the same institution. A prolific author of 114 publications (with 3,851 citations according to ResearchGate, Dr. Snijders – who also volunteers with California’s Contra Costa County Search and Rescue team for missing persons – has interests in

  10. SCR series switch and impulse crowbar at the Lawrence Berkeley Laboratory for CTR neutral beam source development

    International Nuclear Information System (INIS)

    Franck, J.V.; Arthur, A.A.; Brusse, L.A.; Low, W.

    1977-10-01

    The series switch is designed to operate at 120kV and pass 65A for 0.5 sec every 30 sec on the Lawrence Berkeley Laboratory CTR Neutral Beam Source Test Stand IIIB. The series switch consists of 400 individual SCR circuits connected in series and is turned on by a simple system of cascaded pulse transformers with multiple single turn secondaries each driving the individual SCR gates. It is turned off by an SCR impulse crowbar that momentarily shorts the power supply allowing the series switch to recover. The SCR switch has been tested in the impulse crowbar configuration and will reliably commutate up to 90A at 120kV. The series switch and impulse crowbar are now in service in Test Stand IIIB. A series switch and impulse crowbar similar in concept is routinely powering a 10 x 10 cm source at 150kV, 20A, 0.5 sec with a 1% duty cycle on the Lawrence Berkeley Laboratory CTR NSB Test Stand IIIA

  11. Awakening interest in the natural sciences - BASF's Kids' Labs.

    Science.gov (United States)

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  12. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  13. UniSchooLabs Toolkit: Tools and Methodologies to Support the Adoption of Universities’ Remote and Virtual Labs in Schools

    Directory of Open Access Journals (Sweden)

    Augusto Chioccariello

    2012-11-01

    Full Text Available The UniSchooLabs project aims at creating an infrastructure supporting web access to remote/virtual labs and associated educational resources to engage learners with hands-on and minds-on activities in science, technology and math in schools. The UniSchooLabs tool-kit supports the teacher in selecting a remote or virtual lab and developing a lab activity based on an inquiry model template. While working with the toolkit the teacher has access to three main features: a a catalogue of available online laboratories; b an archive of activities created by other users; c a tool for creating new activities or reusing existing ones.

  14. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-03-12

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 89 CD-ROM diskettes (approximately 45 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access.

  15. Incorporating lab experience into computer security courses

    NARCIS (Netherlands)

    Ben Othmane, L.; Bhuse, V.; Lilien, L.T.

    2013-01-01

    We describe our experience with teaching computer security labs at two different universities. We report on the hardware and software lab setups, summarize lab assignments, present the challenges encountered, and discuss the lessons learned. We agree with and emphasize the viewpoint that security

  16. Scientists do not Need More Communities, They Need Collectives; and Collectives need Community to Build Teamwork

    Science.gov (United States)

    Caron, B. R.

    2017-12-01

    Nearly a decade ago I was on a team that was exploring a new online network platform for ocean scientists—one of those "Facebook for X" forays that never took off. During the research phase I learned that online groups exhibited a wide range of "stickiness," a description for member engagement. In general, engagement could be plotted on the usual power law curve; a handful of really engaged members on one side, and hundreds or thousands of mostly un-engaged members in the "long-tail" end of the curve.One genre of online groups completely broke this curve. These were the most engaged groups online, and by a long ways. Their entire membership regularly contributed content. The problem was that these groups were made of individuals who had been diagnosed with terminal or incurable chronic physical diseases. Their members sought answers beyond the ken of their individual medical advisors, and they collectively shouldered the news when one of their members inevitably passed on.This leads me back to science (including data science) and to the online engagement of scientists in social networks. From a series of cases and anecdotes collected from other community managers who have attempted to "engage" scientists online, it is clear that science effects its "victims" (scientists) much like an incurable (intellectual) disease. Scientists commonly spend sixty or more hours a week chasing unknowns in their labs, gathering field data, or tracking down software bugs. They share a fever for knowledge and their own common foe: the specific unknown that stands between the state-of-the-science in their specialty and a better understanding of the object of their study; the peculiar intellectual challenge (disease) they have chosen as their quest and their foe.Scientists don't need to join online communities to do science. What scientists need are online collectives that can accelerate their own research, and reward their contributions to new knowledge in their chosen specialty

  17. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach

    Science.gov (United States)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.

    2012-12-01

    faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, (EarthSpace - http://www.lpi.usra.edu/earthspace), has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. The presentation will explore the Planetary Science E/PO Forum pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.

  18. A Biography of Distinguished Scientist Gilbert Newton Lewis (by Edward S. Lewis)

    Science.gov (United States)

    Harris, Reviewed By Harold H.

    1999-11-01

    until 1904, when he accepted a position that would not be considered a shrewd career move: Superintendent of Weights and Measures in Manila, Philippines! He was there only one year, but it was apparently a productive time, both in a minimally equipped laboratory and with the possible nascence of some of his ideas about bonding. In 1905, Lewis accepted a staff position at MIT, under A. A. Noyes, where he remained until 1912. At MIT, he continued his experimental work on thermodynamic systems and the development of modern thermodynamics, following the lead of J. W. Gibbs, whose work was being largely ignored by other chemists. As Noyes moved increasingly into administrative responsibilities, Lewis took over more and more of the supervision of scientific work in the laboratory. It was the capable job that he did for Noyes that led to his being offered a Professorship and Chair of the College of Chemistry at the University of California, Berkeley. The same spirit of adventure that took Lewis to Manila may be what led to his moving to scientifically backward California. In 1912, there was no serious science going on the Left Coast, and Berkeley was isolated from the nearest civilization (Chicago) by days of travel. Lewis initiated the expansion of great science westward, not only to Berkeley, but also to Caltech (in those days Throop Institute), UCLA, and Stanford. By dint of his contributions to thermodynamics and bonding theory (suggesting that electrons bond in pairs, long before there was quantum mechanical justification for such a strange idea), and his organizational and leadership talents, he turned the Berkeley Chemistry Department from a nonentity into one of the finest anywhere. Later in his career, he contributed to the understanding of the role of isotopes in chemistry and physics. This biography includes a useful listing of Lewis's 168 scientific publications. In an age when many renowned scientists have multiples of this number, it is perhaps good to be

  19. Results of the SNS front end commissioning at Berkeley Lab

    International Nuclear Information System (INIS)

    Ratti, A.; Ayers, J.J.; Doolittle, L.; Greer, J.B.; Keller, R.; Lewis, S.; Lionberger, C.; Monroy, M.; Pruyn, J.; Staples, J.W.; Syversrude, D.; Thomae, R.; Virostek, S.; Aleksandrov, A.; Shea, T.; SNS Accelerator Physics Group; SNS Beam Diagnostics Collaboration

    2002-01-01

    The Front-End Systems (FES) for the Spallation Neutron Source (SNS) project comprise an rf-driven H - ion source, an electrostatic 2-lens LEBT, a 2.5 MeV RFQ, followed by a 14-quadrupole, 4-rebuncher MEBT including traveling-wave fast choppers. The nominal 2.5 MeV H - beam has a current of 38 mA at a repetition rate of 60 Hz and 1 ms pulse length, for a macro duty-factor of 6%, and is chopped at a rate of approximately 1 MHz with a mini duty-factor of 68%. The normalized rms beam emittance at the MEBT exit, matching the first tank of a 402.5 MHz Alvarez linac, is measured to be approximately 0.3 π mm mrad. Diagnostic elements include wire scanners, BPMs, fast current monitors, a slit-harp emittance device and RFQ field monitoring probes. The results of the beam commissioning and the operation of the RFQ and diagnostic instrumentation are reported. The entire FES was shut down at LBNL at the end of May 2002 and will be recommissioned at ORNL prior to installation of the drift-tube linac

  20. Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)

    Science.gov (United States)

    Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.

    2013-12-01

    used in conjunction with E/PO activities, NASA Wavelength (http://nasawavelength.org). Further supporting higher-education efforts, the Forums coordinate a network of science faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, EarthSpace (http://www.lpi.usra.edu/earthspace), has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. This presentation will explore the Science E/PO Forums' pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.

  1. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  2. Scientist impact factor (SIF): a new metric for improving scientists' evaluation?

    Science.gov (United States)

    Lippi, Giuseppe; Mattiuzzi, Camilla

    2017-08-01

    The publication of scientific research is the mainstay for knowledge dissemination, but is also an essential criterion of scientists' evaluation for recruiting funds and career progression. Although the most widespread approach for evaluating scientists is currently based on the H-index, the total impact factor (IF) and the overall number of citations, these metrics are plagued by some well-known drawbacks. Therefore, with the aim to improve the process of scientists' evaluation, we developed a new and potentially useful indicator of recent scientific output. The new metric scientist impact factor (SIF) was calculated as all citations of articles published in the two years following the publication year of the articles, divided by the overall number of articles published in that year. The metrics was then tested by analyzing data of the 40 top scientists of the local University. No correlation was found between SIF and H-index (r=0.15; P=0.367) or 2 years H-index (r=-0.01; P=0.933), whereas the H-index and 2 years H-index values were found to be highly correlated (r=0.57; Particles published in one year and the total number of citations to these articles in the two following years (r=0.62; Pscientists, wherein the SIF reflects the scientific output over the past two years thus increasing their chances to apply to and obtain competitive funding.

  3. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  4. The LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1987-03-01

    A description is presented of the conceptual design of the 1 to 2 GeV Synchrotron Radiation Source proposed for construction at Lawrence Berkeley Laboratory. This facility is designed to produce ultraviolet and soft x-ray radiation. The accelerator complex consists of an injection system (linac plus booster synchrotron) and a low-emittance storage ring optimized for insertion devices. Eleven straight sections are available for undulators and wigglers, and up to 48 photon beam lines may ultimately emanate from bending magnets. Design features of the radiation source are the high brightness of the photon beams, the very short pulses (tens of picoseconds), and the tunability of the radiation

  5. Site Environmental Report for 2009, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Regina

    2010-08-17

    Each year, the University of California (UC), as the managing and operating contractor of the Ernest Orlando Lawrence Berkeley National Laboratory, prepares an integrated report regarding its environmental programs to satisfy the requirements of United States Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2009 summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2009. Throughout this report, 'Berkeley Lab' or 'LBNL' refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in the hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that contain an overview of LBNL, a discussion of its environmental management system (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities. The Site Environmental Report is distributed by releasing it on the World Wide Web (Web) from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. Links to documents available on the Web are given with the citations in the References section. CD and printed copies of this Site Environmental Report are available upon request. The report follows Berkeley Lab's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible

  6. mQoL smart lab

    DEFF Research Database (Denmark)

    De Masi, Alexandre; Ciman, Matteo; Gustarini, Mattia

    2016-01-01

    serve quality research in all of them. In this paper, we present own "mQoL Smart Lab" for interdisciplinary research efforts on individuals' "Quality of Life" improvement. We present an evolution of our current in-house living lab platform enabling continuous, pervasive data collection from individuals...

  7. Decommissioning of fuel PIE caves at Berkeley Nuclear Laboratories

    International Nuclear Information System (INIS)

    Brant, A.W.

    1990-01-01

    This paper describes the first major contract awarded to private industry to carry out decommissioning of a facility with significant radiation levels. The work required operatives to work in pressurised suits, entry times were significantly affected by sources of radiation in the Caves, being as low as thirty minutes per day initially. The Caves at Berkeley Nuclear Laboratories carry out post irradiation examination of fuel elements support units and reactor core components from CEGB power stations. The decommissioning work is part of an overall refurbishment of the facility to allow the receipt of AGR Fuel Stringer Component direct from power stations. The paper describes the decommissioning and decontamination of the facility from the remote removal and clean up work carried out by the client to the hands-on work. It includes reference to entry times, work patterns, interfaces with the client and the operations of the laboratory. Details of a specially adapted size reduction method are given. (Author)

  8. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, F.

    1990-01-01

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  9. Ontology: A Support Structure for a V-Labs Network: Euronet-Lab

    Directory of Open Access Journals (Sweden)

    Raul Cordeiro Correia

    2012-11-01

    Full Text Available Our propose is to build a network of virtual laboratories, based in a Virtual Closet that will contain all the elements and parts that are needed to build the various experiences available in a v-labs network (that we call Euronet-Lab. To build this complex network we need to find a system that supports effectively this structure. This probably will be a enormous database of v-labs and independent elements, where will be possible sometimes to “recycle” some of the elements. This means “re-use” the same element several times in many experiences. To do this is necessary to have a structure that allows us to have several instances of the same element. It’s important that in our structure and virtual environment we can create several “images” of the same reality and this images can be used simultaneously in different circuits/experiments. This means that we can create several instances of the same element, to be used in different experiences and exercises.

  10. Future{at}Labs.Prosperity Game{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Beck, D.F.; Boyack, K.W.; Berman, M. [Sandia National Labs., Albuquerque, NM (United States). Innovative Alliances Dept.

    1996-10-01

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, the national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.

  11. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  12. Programming Arduino with LabVIEW

    CERN Document Server

    Schwartz, Marco

    2015-01-01

    If you already have some experience with LabVIEW and want to apply your skills to control physical objects and make measurements using the Arduino sensor, this book is for you. Prior knowledge of Arduino and LabVIEW is essential to fully understand the projects detailed in this book.

  13. Online labs and the MARVEL experience

    Directory of Open Access Journals (Sweden)

    Dieter Mueller

    2005-06-01

    Full Text Available MARVEL is a Leonardo da Vinci project that provides a framework to analyse the pedagogic effectiveness of online labs in various heterogeneous areas that include solar energy, robotics, electronics and electro-pneumatics. It is also used as a test bench to compare the implementation of purely remote labs, where all devices are real, versus mixed-reality environments, where real devices work together with simulation models. This paper describes the basic concepts underlying the implementation of such online labs and presents two case studies (which are openly available to the public. A final section discusses the main pedagogical implications of online labs and presents the research directions that are being considered as a follow-up from this project.

  14. OpenLabNotes – An Electronic Laboratory Notebook Extension for OpenLabFramework

    Directory of Open Access Journals (Sweden)

    List Markus

    2015-09-01

    Full Text Available Electronic laboratory notebooks (ELNs are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open- LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  15. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  16. The final technical report of the CRADA, 'Medical Accelerator Technology'

    International Nuclear Information System (INIS)

    Chu, W.T.; Rawls, J.M.

    2000-01-01

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation

  17. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server ``cedrcd.lbl.gov``. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill@lbl.gov) if you wish to make use of the data.

  18. The Telecom Lab is moving

    CERN Multimedia

    IT Department

    2009-01-01

    As of 2nd March 2009, the Telecom Lab will move to Building 58 R-017. The Telecom Lab is the central point for all support questions regarding CERN mobile phone services (provision of SIM cards, requests for modifications of subscriptions, diagnostics for mobile phone problems, etc.). The opening hours as well as the contact details for the Telecom Lab remain unchanged: New location: Building 58 R-017 Opening hours: Every week day, from 11 a.m. to 12 a.m. Phone number: 72480 Email address: labo.telecom@cern.ch This change has no impact on support requests for mobile services. Users can still submit their requests concerning mobile phone subscriptions using the usual EDH form (https://edh.cern.ch/Document/GSM). The automatic message sent to inform users of their SIM card availability will be updated to indicate the new Telecom Lab location. You can find all information related to CERN mobile phone services at the following link: http://cern.ch/gsm CS Section - IT/CS group

  19. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Lawrence Berkeley National Laboratory 1995 site environmental report: Volume 2, Data appendix

    International Nuclear Information System (INIS)

    1996-07-01

    Ernest Orlando Lawrence Berkeley National Laboratory presents Volume II, Data Appendix as a reference document to supplement the 1995 Site Environmental Report. Volume II contains the raw environmental monitoring and sampling data used to generate many of the summary results included in the main report. Supplemental data is provided for sitewide activities involving the media of stack and ambient air quality, rainwater, surface water, stormwater, wastewater, and soil and sediment. Volume II also contains supplemental data on the special preoperational monitoring study for the new Hazardous Waste Handling Facility. The Table of Contents provides a cross-reference to the data tables of the main report and this appendix. Data are given in System International (SI) units

  1. Towards a Manifesto for Living Lab Co-creation

    Science.gov (United States)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  2. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  3. AN INTRODUCTION TO EXPLORING LAW, DISABILITY, AND THE CHALLENGE OF EQUALITY IN CANADA AND THE UNITED STATES: PAPERS FROM THE BERKELEY SYMPOSIUM

    Directory of Open Access Journals (Sweden)

    Laverne Jacobs

    2015-10-01

    Full Text Available It brings me great pleasure to write this Introduction to Exploring Law, Disability, and the Challenge of Equality in Canada and the United States. This special collection of articles in the Windsor Yearbook of Access to Justice [WYAJ] stems from a symposium of the same name held at the Berkeley Law School at the University of California on 5 December 2014. Writing this introduction allows me to bring together my identities as a law and disability scholar, the principal organizer and convener of the Berkeley Symposium, and editor-in-chief of the WYAJ. In these roles, I have had the opportunity to engage with this set of articles and their authors in a distinct way – from the early versions of these articles through to the final peer-reviewed publications. The Berkeley Symposium is the first conference, of which we are aware, to bring together scholars and experts from both Canada and the United States to present research and exchange ideas on equality issues affecting persons with disabilities in both countries.1 Each academic was invited to write about an equality issue of their choice that is of contemporary concern to persons with disabilities, and to focus on Canada, the United States,or both, at their  option. The result is a set of articles that is simultaneously introspective and comparative.

  4. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  5. Time Scavengers: a Website for the Public to Learn about Climate Change and Evolution Through the Experiences of Scientists

    Science.gov (United States)

    Fraass, A. J.; Lam, A. R.; Bauer, J.; Bryant, R.; Golder, K.; Hartshorn, K. R.; Hils, J. M.; Limbeck, M.; Sheffield, S. L.

    2017-12-01

    Climate change and evolution are subjects that are consistently in the public sphere, though as public acceptance and desire to act on these subjects has increased, misinformation has as well. Thus, it is critical that scientists engage the public in discussions on these subjects. Several sites and blogs have attempted to explain these concepts; however, they often focus on one aspect of climate change or evolution, and blogs tend to follow the experiences of one scientist in a specific field. Due to these limitations, we have created a new website, TimeScavengers.blog. The site, maintained by postdocs, graduate students, and avocational scientists, is unique in that it includes static pages that thoroughly explain climate and evolution related topics and includes 5 blog pages that highlight the experiences of the site collaborators. Blog pages include: `Meet the Scientist', dedicated to introducing the public to scientists in many disciplines; `Science Bytes', focusing on research conducted by the site collaborators; `Education & Outreach', highlighting interactions between site collaborators and the public; and `Climate & Paleo News', explaining the relevance of important papers in climate research, paleoceanography, and paleontology and how they increase our understanding of climate change and evolution. The site also includes a `Teaching Resources' page with links to sites with activities related to the content on the website appropriate for K-12 classrooms. The overarching goal of the site is to bridge the gap between scientists and the public through engaging, informational pages and personal experiences in the field, lab, classroom, and community. Current data indicate that 78% of the public find the site through social media platforms and people ages 25-34 are dominantly interacting with the site. 21.7% of users' first interaction (first click once on the homepage) viewed the `Meet the Scientist' blog, 10.2% viewed the climate pages, and 8.4% visited the

  6. LabVIEW A Developer's Guide to Real World Integration

    CERN Document Server

    Fairweather, Ian

    2011-01-01

    LabVIEW(t) has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEW(t): A Developer's Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies c

  7. Using videoconferencing in a school-scientist partnership: students’ perceptions and scientists’ challenges

    Directory of Open Access Journals (Sweden)

    Garry Falloon

    2012-08-01

    Full Text Available This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students’ perceptions of the effectiveness of the videoconferences as an interactive medium for developing content knowledge, identified factors influencing their level of interaction during the conferences, and exposed issues when using videoconferences for highly specialised activities. The research followed an interpretive methodology using a case study approach, and employed mixed method qualitative/quantitative data gathering procedures. Results suggest that while videoconferencing was effective it was also expensive and time-consuming, and that scientists’ efforts to engage students more interactively through movement towards more constructive practice, were largely ineffective. This article provides direction for teachers considering exploring the potential of interactive videoconferencing with students.

  8. Report from the banding lab

    Science.gov (United States)

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  9. Magnetic Media Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This lab specializes in tape certification and performance characterization of high density digital tape and isprepared to support the certification of standard size...

  10. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  11. Computer-based Astronomy Labs for Non-science Majors

    Science.gov (United States)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  12. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  13. The Udall Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Udall lab is interested in genome evolution and cotton genomics.The cotton genus ( Gossypium) is an extraordinarily diverse group with approximately 50 species...

  14. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  15. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  16. Virtual labs in Leonardo da Vinci

    Directory of Open Access Journals (Sweden)

    Stanislaw Nagy

    2006-10-01

    Full Text Available This paper discusses the problem of virtual lab capabilities in the e-learning. Using combination of web conferencing and "virtual labs" capabilities, a new quality distance learning teaching is now in preparation and will be included in the course teaching to produce interactive, online simulations for the natural gas engineering studies. The activities are designed to enhance the existing curriculum and to include online assessments. A special care is devoted to the security problem between a server and a client computer. Several examples of the virtual labs related to the PVT thermodynamics, fluid flow, the natural gas well-testing, and thev gas network flow are prepared and tested. A major challenge for the 'CELGAS' system is in managing the delicate balance between the student collaboration and the isolation. Students may be encouraged to collaborate and work with each other, simulating their exploration of the lab material.

  17. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  18. Evaluation of oral microbiology lab curriculum reform.

    Science.gov (United States)

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  19. Innovation - A view from the Lab

    Science.gov (United States)

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  20. Environment monitoring using LabVIEW

    International Nuclear Information System (INIS)

    Hawtree, J.

    1995-01-01

    A system has been developed for electronically recording and monitoring temperature, humidity, and other environmental variables at the Silicon Detector Facility located in Lab D. The data is collected by LabVIEW software, which runs in the background on an Apple Macintosh. The software is completely portable between Macintosh, MS Windows, and Sun platforms. The hardware includes a Macintosh with 8 MB of RAM; an external ADC-1 analog-to-digital converter that uses a serial port; LabVIEW software; temperature sensors; humidity sensors; and other voltage/current sensing devices. ADC values are converted to ASCII strings and entered into files which are read over Ethernet. Advantages include automatic logging, automatic recovery after power interruptions, and the availability of stand-alone applications for other locations with inexpensive software and hardware

  1. Electronic lab notebooks: can they replace paper?

    Science.gov (United States)

    Kanza, Samantha; Willoughby, Cerys; Gibbins, Nicholas; Whitby, Richard; Frey, Jeremy Graham; Erjavec, Jana; Zupančič, Klemen; Hren, Matjaž; Kovač, Katarina

    2017-05-24

    Despite the increasingly digital nature of society there are some areas of research that remain firmly rooted in the past; in this case the laboratory notebook, the last remaining paper component of an experiment. Countless electronic laboratory notebooks (ELNs) have been created in an attempt to digitise record keeping processes in the lab, but none of them have become a 'key player' in the ELN market, due to the many adoption barriers that have been identified in previous research and further explored in the user studies presented here. The main issues identified are the cost of the current available ELNs, their ease of use (or lack of it) and their accessibility issues across different devices and operating systems. Evidence suggests that whilst scientists willingly make use of generic notebooking software, spreadsheets and other general office and scientific tools to aid their work, current ELNs are lacking in the required functionality to meet the needs of the researchers. In this paper we present our extensive research and user study results to propose an ELN built upon a pre-existing cloud notebook platform that makes use of accessible popular scientific software and semantic web technologies to help overcome the identified barriers to adoption.

  2. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  3. CERTS customer adoption model

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, F. Javier; Siddiqui, Afzal S.; Marnay, Chris; Hamachi,Kristina S.

    2000-03-01

    This effort represents a contribution to the wider distributed energy resources (DER) research of the Consortium for Electric Reliability Technology Solutions (CERTS, http://certs.lbl.gov) that is intended to attack and, hopefully, resolve the technical barriers to DER adoption, particularly those that are unlikely to be of high priority to individual equipment vendors. The longer term goal of the Berkeley Lab effort is to guide the wider technical research towards the key technical problems by forecasting some likely patterns of DER adoption. In sharp contrast to traditional electricity utility planning, this work takes a customer-centric approach and focuses on DER adoption decision making at, what we currently think of as, the customer level. This study reports on Berkeley Lab's second year effort (completed in Federal fiscal year 2000, FY00) of a project aimed to anticipate patterns of customer adoption of distributed energy resources (DER). Marnay, et al., 2000 describes the earlier FY99 Berkeley Lab work. The results presented herein are not intended to represent definitive economic analyses of possible DER projects by any means. The paucity of data available and the importance of excluded factors, such as environmental implications, are simply too important to make such an analysis possible at this time. Rather, the work presented represents a demonstration of the current model and an indicator of the potential to conduct more relevant studies in the future.

  4. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir

    2011-10-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. Experiential Learning of Digital Communication Using LabVIEW

    Science.gov (United States)

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  6. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  7. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  8. Site Environmental Report for 2002, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.

  9. Baseball Physics: A New Mechanics Lab

    Science.gov (United States)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  10. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  11. Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  12. BERKELEY: Collaboration on PEP-II

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Since the announcement by President Clinton in October 1993 that the US Department of Energy would going ahead the PEPII Asymmetric B Factory project (a joint proposal of the Stanford Linear Accelerator Center - SLAC, the Lawrence Berkeley National Laboratory - LBNL, and the Lawrence Livermore National Laboratory - LLNL), LBNL has continued its strong support of the project (for a review, see October, page 9). LBNL accelerator physicists have been active in the design of PEP-II since 1988 - shortly after the original concept was suggested by LBNL Deputy Director Pier Oddone. Indeed, the original feasibility study for such a machine was a joint LBNLSLAC- Caltech effort led by Swapan Chattopadhyay, now head of LBNL's Center for Beam Physics (CBP) in the Accelerator & Fusion Research Division (AFRD). The effort grew to include about seven full-time LBNL accelerator physicists (along with about 15 SLAC and LLNL physicists) during the formal design phase, which began in late 1989. This effort encompassed three editions of the Conceptual Design Report, along with innumerable reviews, as is typical of today's accelerator projects. Taking advantage of an experienced engineering staff, fresh from the successful completion of the Advanced Light Source (ALS), LBNL has been assigned lead responsibility for the challenging Low Energy Ring (LER) of the PEP-II project, an entirely new storage ring to be added to the PEP tunnel. The LBNL design team is headed by CBP accelerator physicist Michael Zisman and senior engineers Ron Yourd (who served as the Project Manager for the ALS) and Hank Hsieh (a recent addition to the LBNL staff who was Project Engineer for the NSLS storage rings at BNL and most recently served as Project Engineer for the DAFNE project at Frascati). LBNL is also represented in the overall management of the PEP-II project by Tom Elioff, who serves as Deputy to the Project Director Jonathan Dorfan at SLAC. (Elioff served in the same role for the original

  13. Living Lab voor Informatiemanagement in Agri-Food

    NARCIS (Netherlands)

    Wolfert, J.

    2010-01-01

    Het Living Lab is een specifieke open innovatie aanpak waarbij in feite het laboratorium naar de praktijk wordt gebracht. het Agri-Food Living lab is een informatiemanagementsysteem specifiek voor de agri-food sector.

  14. Hydrogel Beads: The New Slime Lab?

    Science.gov (United States)

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  15. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  16. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    Science.gov (United States)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  17. Design Patterns: establishing a discipline of parallel software engineering

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Many core processors present us with a software challenge. We must turn our serial code into parallel code. To accomplish this wholesale transformation of our software ecosystem, we must define established practice is in parallel programming and then develop tools to support that practice. This leads to design patterns supported by frameworks optimized at runtime with advanced autotuning compilers. In this talk I provide an update of my ongoing research with the ParLab at UC Berkeley to realize this vision. In particular, I will describe our draft parallel pattern language, our early experiments with software frameworks, and the associated runtime optimization tools.About the speakerTim Mattson is a parallel programmer (Ph.D. Chemistry, UCSC, 1985). He does linear algebra, finds oil, shakes molecules, solves differential equations, and models electrons in simple atomic systems. He has spent his career working with computer scientists to make sure the needs of parallel applications programmers are met.Tim has ...

  18. Improve Data Mining and Knowledge Discovery through the use of MatLab

    Science.gov (United States)

    Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and

  19. CERN Technical Training 2006: LabVIEW Course Sessions (September-December 2006)

    CERN Multimedia

    2006-01-01

    The following LabVIEW course sessions are currently scheduled in the framework of the CERN Technical Training Programme 2006, and in collaboration with National Instruments (CH): LabVIEW Basics 1 (course in English): 11-13.9.2006 (3 days, only 3 places available) LabVIEW Basics 2 (course in English): 14-15.9.2006 (2 days) LabVIEW: Working efficiently with LabVIEW 8 (course in English): 18.9.2006 (1 day) **NEW COURSE** LabVIEW Application Development (course in English): 13-15.11.2006 (3 days. Pre-requisite: LabVIEW Basics I ans II, or equivalent experience) LabVIEW Advanced Programming (course in English): 16-17.11.2006 (2 days. Pre-requisite: LabVIEW Application Development, or equivalent experience) LabVIEW Base 1 (course in French): 4-6.12.2006 (3 days, only 1 place available) LabVIEW Base 2 (course in French): 7-8.12.2006 (2 days) If you are interested in attending any of the above course sessions, please discuss with your supervisor and/or your DTO, and apply electronically via EDH from the cour...

  20. Virtual Lab for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    PICOVICI, D.

    2008-06-01

    Full Text Available This article details an experimental system developed to enhance the education and research in the area of wireless networks technologies. The system referred, as Virtual Lab (VL is primarily targeting first time users or users with limited experience in programming and using wireless sensor networks. The VL enables a set of predefined sensor networks to be remotely accessible and controlled for constructive and time-efficient experimentation. In order to facilitate the user's wireless sensor applications, the VL is using three main components: a a Virtual Lab Motes (VLM, representing the wireless sensor, b a Virtual Lab Client (VLC, representing the user's tool to interact with the VLM and c a Virtual Lab Server (VLS representing the software link between the VLM and VLC. The concept has been proven using the moteiv produced Tmote Sky modules. Initial experimental use clearly demonstrates that the VL approach reduces dramatically the learning curve involved in programming and using the associated wireless sensor nodes. In addition the VL allows the user's focus to be directed towards the experiment and not towards the software programming challenges.

  1. Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement

    Science.gov (United States)

    Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  2. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  3. Energy secretary's priorities include San Francisco area research projects

    CERN Multimedia

    Widener, A

    2003-01-01

    "Bay Area research labs got a big boost Monday when the Secretary of Energy unveiled his priorities for major research projects his agency hopes to fund over the next two decades. Among the agency's 28 top priorities are a major computer expansion and an experiment examining the expanding universe that could be housed at Lawrence Berkeley Lab and a powerful X-ray laser planned for the Stanford Linear Accelerator Center" (1 page).

  4. Magnetic Viscous Drag for Friction Labs

    Science.gov (United States)

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  5. Automatic creation of LabVIEW network shared variables

    International Nuclear Information System (INIS)

    Kluge, T.; Schroeder, H.

    2012-01-01

    We are in the process of preparing the LabVIEW controlled system components of our Solid State Direct Drive experiments for the integration into a Supervisory Control And Data Acquisition (SCADA) or distributed control system. The predetermined route to this is the generation of LabVIEW network shared variables that can easily be exported by LabVIEW to the SCADA system using OLE for Process Control (OPC) or other means. Many repetitive tasks are associated with the creation of the shared variables and the required code. We are introducing an efficient and inexpensive procedure that automatically creates shared variable libraries and sets default values for the shared variables. Furthermore, LabVIEW controls are created that are used for managing the connection to the shared variable inside the LabVIEW code operating on the shared variables. The procedure takes as input an XML spread-sheet defining the required input. The procedure utilizes XSLT and LabVIEW scripting. In a later state of the project the code generation can be expanded to also create code and configuration files that will become necessary in order to access the shared variables from the SCADA system of choice. (authors)

  6. Microstructural characterization of LaB6-ZrB2 eutectic composites

    International Nuclear Information System (INIS)

    Wang Shengchang; Wei, W.J.; Zhang Litong

    2003-01-01

    Detail microstructure of LaB 6 -ZrB 2 composites has been characterized by TEM and HRTEM. The directionally solidified ZrB 2 fibers in LaB 6 matrix near LaB 6 -ZrB 2 eutectics present at least three growing relationship systems. In addition to previous report of [001]LaB 6 / [0001]ZrB 2 relationship, [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . were identified. Different with [001]LaB 6 / [0001]ZrB 2 system, the interfaces of [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . show non-coherent and clean interfaces. There is neither glassy phase nor reaction products found at the interfaces (orig.)

  7. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  8. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Microsoft Licenses Berkeley Lab's Home Energy Saver Code for Its Energy

    Science.gov (United States)

    , energy efficiency Connect twitter instagram LinkedIn facebook youtube This form needs Javascript to + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S. Department of Energy National twitter instagram LinkedIn facebook youtube

  10. A High Resolution Solar Spectrograph for the Berkeley Undergraduate Astronomy Lab

    Science.gov (United States)

    Strickler, R.; Bresloff, C.; Graham, J.

    2005-05-01

    The discovery of extra-solar planets has stimulated interest amongst undergraduates. The Doppler method for detecting exoplanets requires extraction of signals at the 1/1000 of a pixel level. To illustrate this technique, we used a newly built spectrometer to extract sub-pixel Doppler shifts in the solar photosphere. We have used this spectrograph to measure the velocity gradient across the sun and hence infer the solar radius. The limb-to-limb Doppler shift is only 1.8 km/s. A spectral resolution > 100,000 would be required to manifest this motion. Achieving such high spectral resolution is unnecessary since even a small telescope can record high SNR (> 100) spectra. Within a few seconds it is possible to discern solar rotational Doppler shifts at resolutions as low as 10,000. We must also understand coordinate transformation to convert the Doppler signal along the observed diameter to the equatorial rotation speed assuming solid body rotation. The spectrograph system includes an 8-inch Schmidt-Cassegrain stationary telescope; a 100-micron diameter multi-mode fiber; aspheric f-number reformatting optics; a collimating lens; a 110 mm, 80 grooves/mm, θ blaze = 64.5 degree replica echelle grating; and an Apogee 1024 x 1024 thermo-electrically cooled CCD. The spectrometer optics are mounted on a 5-ft x 3-ft optical bench. Operating the spectrometer remotely using VNC and a wireless laptop, we pointed the telescope so that the fiber scanned across a diameter of the solar disk while the CCD took repeated exposures. Although we were "guinea pigs," using the spectrograph for the first time in a class, it worked remarkably well. Combining measurement of the solar radius with observation of the rotation period from sunspots, the earth-sun distance can be deduced. In the future, students may measure the eccentricity of earth's orbit by measuring the sun's radial velocity over the course of a year. This work was supported by the NSF through award DUE-0311536.

  11. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    International Nuclear Information System (INIS)

    Osmanovic, H.; Hadzimehmedovic, M.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-01-01

    In Hadzimehmedovicet al.[Phys. Rev. C 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  12. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  13. The Dynamics and Facilitation of a Living Lab Construct

    DEFF Research Database (Denmark)

    Brønnum, Louise; Nielsen, Louise Møller

    2013-01-01

    During the last decade Living Labs have established itself as an attractive innovation approach. Living Labs are an interesting construction because it offers a collaboration platform for dynamic interaction with users in all the project phases. Living Labs frame knowledge about actors in their o...

  14. Biosensors in Health Care: The Milestones Achieved in Their Development towards Lab-on-Chip-Analysis

    Directory of Open Access Journals (Sweden)

    Suprava Patel

    2016-01-01

    Full Text Available Immense potentiality of biosensors in medical diagnostics has driven scientists in evolution of biosensor technologies and innovating newer tools in time. The cornerstone of the popularity of biosensors in sensing wide range of biomolecules in medical diagnostics is due to their simplicity in operation, higher sensitivity, ability to perform multiplex analysis, and capability to be integrated with different function by the same chip. There remains a huge challenge to meet the demands of performance and yield to its simplicity and affordability. Ultimate goal stands for providing point-of-care testing facility to the remote areas worldwide, particularly the developing countries. It entails continuous development in technology towards multiplexing ability, fabrication, and miniaturization of biosensor devices so that they can provide lab-on-chip-analysis systems to the community.

  15. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  16. Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration

    Science.gov (United States)

    Noguera, Magdy; Budden, Michael Craig; Silva, Alberto

    2011-01-01

    This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…

  17. Innovative Educational Practice: Using Virtual Labs in the Secondary Classroom

    Directory of Open Access Journals (Sweden)

    Marcel Satsky Kerr, PhD

    2004-07-01

    Full Text Available Two studies investigated the effectiveness of teaching science labs online to secondary students. Study 1 compared achievement among students instructed using hands-on Chemistry labs versus those instructed using virtual Chemistry labs (eLabs. Study 2 compared the same groups of students again while both teachers instructed using hands-on Chemistry labs to determine whether teacher or student characteristics may have affected Study 1’s findings. Participants were high school Chemistry students from a Central Texas Independent School District. Results indicated that: students learn science effectively online, schools may experience cost savings from delivering labs online, and students gain valuable technology skills needed later in college and in the workplace.

  18. Designing virtual science labs for the Islamic Academy of Delaware

    Science.gov (United States)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  19. Big Data Science Cafés: High School Students Experiencing Real Research with Scientists

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2017-12-01

    The Education and Public Outreach group at the National Optical Astronomy Observatory has designed an outside-of-school education program to excite the interest of talented youth in future projects like the Large Synoptic Survey Telescope (LSST) and the NOAO (archival) Data Lab - their data approaches and key science projects. Originally funded by the LSST Corporation, the program cultivates talented youth to enter STEM disciplines and serves as a model to disseminate to the 40+ institutions involved in LSST. One Saturday a month during the academic year, high school students have the opportunity to interact with expert astronomers who work with large astronomical data sets in their scientific work. Students learn about killer asteroids, the birth and death of stars, colliding galaxies, the structure of the universe, gravitational waves, dark energy, dark matter, and more. The format for the Saturday science cafés has been a short presentation, discussion (plus food), computer lab activity and more discussion. They last about 2.5 hours and have been planned by a group of interested local high school students, an undergraduate student coordinator, the presenting astronomers, the program director and an evaluator. High school youth leaders help ensure an enjoyable and successful program for fellow students. They help their fellow students with the activities and help evaluate how well the science café went. Their remarks shape the next science café and improve the program. The experience offers youth leaders ownership of the program, opportunities to take on responsibilities and learn leadership and communication skills, as well as foster their continued interests in STEM. The prototype Big Data Science Academy was implemented successfully in the Spring 2017 and engaged almost 40 teens from greater Tucson in the fundamentals of astronomy concepts and research. As with any first implementation there were bumps. However, staff, scientists, and student leaders all

  20. Using lab notebooks to examine students' engagement in modeling in an upper-division electronics lab course

    Science.gov (United States)

    Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.

    2017-12-01

    We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on a lab course that has been transformed to engage students in this modeling process during lab activities. The design of the lab activities was guided by a framework that captures the different components of model-based reasoning, called the Modeling Framework for Experimental Physics. We demonstrate how this framework can be used to assess students' written work and to identify how students' model-based reasoning differed from activity to activity. Broadly speaking, we were able to identify the different steps of students' model-based reasoning and assess the completeness of their reasoning. Varying degrees of scaffolding present across the activities had an impact on how thoroughly students would engage in the full modeling process, with more scaffolded activities resulting in more thorough engagement with the process. Finally, we identified that the step in the process with which students had the most difficulty was the comparison between their interpreted data and their model prediction. Students did not use sufficiently sophisticated criteria in evaluating such comparisons, which had the effect of halting the modeling process. This may indicate that in order to engage students further in using model-based reasoning during lab activities, the instructor needs to provide further scaffolding for how students make these types of experimental comparisons. This is an important design consideration for other such courses attempting to incorporate modeling as a learning goal.

  1. Cassandra - WP400 - final report of living lab 2

    NARCIS (Netherlands)

    Engler, M.; Klievink, A.J.

    2014-01-01

    This CASSANDRA LL2 final deliverable contains all information regarding the CASSANDRA Living Lab Europe – USA via Bremerhaven including information from two intermediate reports (CASSANDRA D4.21 and D4.22) about the very same Living Lab handed in during runtime of the Living Lab. CASSANDRA Living

  2. The physician-scientists: rare species in Africa.

    Science.gov (United States)

    Adefuye, Anthonio Oladele; Adeola, Henry Ademola; Bezuidenhout, Johan

    2018-01-01

    There is paucity of physician-scientists in Africa, resulting in overt dependence of clinical practice on research findings from advanced "first world" countries. Physician-scientists include individuals with a medical degree alone or combined with other advanced degrees (e.g. MD/MBChB and PhD) with a career path in biomedical/ translational and patient-oriented/evaluative science research. The paucity of clinically trained research scientists in Africa could result in dire consequences as exemplified in the recent Ebola virus epidemic in West Africa, where shortage of skilled clinical scientists, played a major role in disease progression and mortality. Here we contextualise the role of physician-scientist in health care management, highlight factors limiting the training of physician-scientist in Africa and proffer implementable recommendations to address these factors.

  3. Comunicación USB entre aplicaciones desarrolladas en LabVIEW y microcontroladores de Silicon Labs

    Directory of Open Access Journals (Sweden)

    Julio César Herrera Benítez

    2013-06-01

    Full Text Available El presente artículo trata sobre la utilización de LabVIEW para establecer comunicación USB con microcontroladores de la familia 8051 de Silicon Laboratories, utilizando un driver desarrollado por dicha compañía. En el documento se incluye una descripción de este driver, así como de las funciones principales que permiten el manejo del mismo, las cuales se encuentran en una biblioteca de enlace dinámico. El artículo contiene además una metodología básica para el uso de estas funciones y una explicación detallada a través de un ejemplo, donde se ilustra como cargar y configurar las mismas con el ambiente de desarrollo LabVIEW. Finalmente se muestran dos ejemplos de la utilización del driver a partir de una biblioteca de funciones USB creada en LabVIEW para la comunicación con un microcontrolador.

  4. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  5. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  6. Science from the inside

    Science.gov (United States)

    Toumey, Chris

    2009-09-01

    Most scientists think of science as completely objective, but lab studies by social scientists - including several carried out in nanotechnology labs - suggest that it is more subjective than many scientists realize. Chris Toumey looks at the results of these studies.

  7. Analysis, Design, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.; Peiffer, Antoine; Tom, Nathan; Matlak, Tomasz

    2010-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and future directions for improvements. Copyright © 2010 by ASME.

  8. Design, Analysis, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.; Peiffer, Antoine; Tom, Nathan; Matlak, Tomasz

    2012-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and the future directions for improvements. © 2012 American Society of Mechanical Engineers.

  9. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  10. Digital Design with KP-Lab

    Directory of Open Access Journals (Sweden)

    D. Ponta

    2007-08-01

    Full Text Available KP-Lab is an EU Integrated Project envisioning a learning system that facilitates innovative practices of sharing, creating and working with knowledge in education and workplaces. The project exploits a novel pedagogical view, the knowledge-creation metaphor of learning. According to such “trialogical” approach, cognition arises through collaborative work in systematically developing shared “knowledge artefacts”, such as concepts, plans, material products, or social practices. The paper presents the plan of a pilot course to test the KP-Lab methodologies and tools in the field of Digital Design.

  11. Chinese Scientists | Women in Science | Initiatives | Indian Academy ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Chinese Scientists. Chinese Scientists. One third Chinese scientists are women [What about India?] ... scientists, at a young age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  12. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  13. Modifying Cookbook Labs.

    Science.gov (United States)

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  14. LabVIEW Library to EPICS Channel Access

    CERN Document Server

    Liyu, Andrei; Thompson, Dave H

    2005-01-01

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based and will run Windows for its OS and LabVIEW as its programming language. Data acquisition hardware will be based on PCI cards. There will be about 300 rack-mounted computers. The Channel Access (CA) protocol of the Experimental Physics and Industrial Control System (EPICS) is the SNS control system communication standard. This paper describes the approaches, implementation, and features of LabVIEW library to CA for Windows, Linux, and Mac OS X. We also discuss how the library implements the asynchronous CA monitor routine using LabVIEW's occurrence mechanism instead of a callback function (which is not available in LabVIEW). The library is used to acquire accelerator data and applications have been ...

  15. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  16. Energy Upgrades at City-Owned Facilities: Understanding Accounting for Energy Efficiency Financing Options. City of Dubuque Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Markets and Policy Group; Schiller, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Markets and Policy Group; Kramer, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Futures Group; Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Markets and Policy Group

    2017-06-30

    The city of Dubuque, Iowa, aimed for a twofer — lower energy costs for public facilities and reduced air emissions. To achieve that goal, the city partnered with the Iowa Economic Development Authority to establish a revolving loan fund to finance energy efficiency and other energy projects at city facilities. But the city needed to understand approaches for financing energy projects to achieve both of their goals in a manner that would not be considered debt — in this case, obligations booked as a liability on the city’s balance sheet. With funding from the U.S. Department of Energy’s Climate Action Champions Initiative, Lawrence Berkeley National Laboratory (Berkeley Lab) provided technical assistance to the city to identify strategies to achieve these goals. Revolving loans use a source of money to fund initial cost-saving projects, such as energy efficiency investments, then use the repayments and interest from these loans to support subsequent projects. Berkeley Lab and the city examined two approaches to explore whether revolving loans could potentially be treated as non-debt: 1) financing arrangements containing a non-appropriation clause and 2) shared savings agreements. This fact sheet discusses both, including considerations that may factor into their treatment as debt from an accounting perspective.

  17. Gamma Ray Imaging for Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

    2004-11-12

    This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

  18. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  19. German lab wins linear collider contest

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    Particle physicists have chosen to base the proposed International Linear Collider on superconducting technology developed by an international collaboration centred on the DESY lab in Germany. The superconducting approach was chosen by an internatinal panel ahead of a rival technology developed at Stanford in the US and the KEK lab in Japan. The eagerly-awaited decision was announced at the International Conference on High Energy Physics in Beijing today (½ page)

  20. Fifteen years experience: Egyptian metabolic lab

    Directory of Open Access Journals (Sweden)

    Ekram M. Fateen

    2014-10-01

    Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder screening by using simple diagnostic techniques like thin layer chromatography and colored tests in urine which by time updated and upgraded the methods to diagnose a wide range of disorders. This study shows the most common diagnosed inherited inborn errors of metabolism among the Egyptian population.

  1. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  2. The Incredible Shrinking Cup Lab: Connecting with Ocean and Great Lakes Scientists to Investigate the Effect of Depth and Water Pressure on Polystyrene

    Science.gov (United States)

    Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.

    2013-01-01

    Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…

  3. CERN Technical Training 2006: LabVIEW Course Sessions (September-December 2006)

    CERN Multimedia

    2006-01-01

    The following LabVIEW course sessions are currently scheduled in the framework of the CERN Technical Training Programme 2006, and in collaboration with National Instruments (CH): LabVIEW Basics 1 (course in English): 11-13.9.2006 (3 days, only 3 places available) (course in English): 14-15.9.2006 (2 days) LabVIEW: Working efficiently with LabVIEW 8 (course in English): 18.9.2006 (1 day) **NEW COURSE** LabVIEW Application Development (course in English): 13-15.11.2006 (3 days. Pre-requisite: LabVIEW Basics I ans II, or equivalent experience) LabVIEW Advanced Programming (course in English): 16-17.11.2006 (2 days. Pre-requisite: LabVIEW Application Development, or equivalent experience) LabVIEW Base 1 (course in French): 4-6.12.2006 (3 days, only 1 place available) LabVIEW Base 2 (course in French): 7-8.12.2006 (2 days) If you are interested in attending any of the above course sessions, please discuss with your supervisor and/or your DTO,...

  4. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    Science.gov (United States)

    Osmanović, H.; Ceci, S.; Švarc, A.; Hadžimehmedović, M.; Stahov, J.

    2011-09-01

    In Hadžimehmedović [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.84.035204 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  5. Reference-based pricing: an evidence-based solution for lab services shopping.

    Science.gov (United States)

    Melton, L Doug; Bradley, Kent; Fu, Patricia Lin; Armata, Raegan; Parr, James B

    2014-01-01

    To determine the effect of reference-based pricing (RBP) on the percentage of lab services utilized by members that were at or below the reference price. Retrospective, quasi-experimental, matched, case-control pilot evaluation of an RBP benefit for lab services. The study group included employees of a multinational grocery chain covered by a national health insurance carrier and subject to RBP for lab services; it had access to an online lab shopping tool and was informed about the RBP benefit through employer communications. The reference group was covered by the same insurance carrier but not subject to RBP. The primary end point was lab compliance, defined as the percentage of lab claims with total charges at or below the reference price. Difference-in-difference regression estimation evaluated changes in lab compliance between the 2 groups. Higher compliance per lab claim was evident for the study group compared with the reference group (69% vs 57%; Ponline shopping tool was used by 7% of the matched-adjusted study group prior to obtaining lab services. Lab compliance was 76% for study group members using the online tool compared with 68% among nonusers who were subject to RBP (P<.01). RBP can promote cost-conscious selection of lab services. Access to facilities that offer services below the reference price and education about RBP improve compliance. Evaluation of the effect of RBP on higher-cost medical services, including radiology, outpatient specialty, and elective inpatient procedures, is needed.

  6. A Well-Maintained Lab Is a Safer Lab. Safety Spotlight

    Science.gov (United States)

    Walls, William H.; Strimel, Greg J.

    2018-01-01

    Administration and funding can cause Engineering/Technology Education (ETE) programs to thrive or die. To administrators, the production/prototyping equipment and laboratory setting are often viewed as the features that set ETE apart from other school subjects. A lab is a unique gift as well as a responsibility. If an administrator can see that…

  7. eComLab: remote laboratory platform

    Science.gov (United States)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  8. Berkeley SuperNova Ia Program (BSNIP): Initial Spectral Analysis

    Science.gov (United States)

    Silverman, Jeffrey; Kong, J.; Ganeshalingam, M.; Li, W.; Filippenko, A. V.

    2011-01-01

    The Berkeley SuperNova Ia Program (BSNIP) has been observing nearby (z analysis of this dataset consists of accurately and robustly measuring the strength and position of various spectral features near maximum brightness. We determine the endpoints, pseudo-continuum, expansion velocity, equivalent width, and depth of each major feature observed in our wavelength range. For objects with multiple spectra near maximum brightness we investigate how these values change with time. From these measurements we also calculate velocity gradients and various flux ratios within a given spectrum which will allow us to explore correlations between spectral and photometric observables. Some possible correlations have been studied previously, but our dataset is unique in how self-consistent the data reduction and spectral feature measurements have been, and it is a factor of a few larger than most earlier studies. We will briefly summarize the contents of the full dataset as an introduction to our initial analysis. Some of our measurements of SN Ia spectral features, along with a few initial results from those measurements, will be presented. Finally, we will comment on our current progress and planned future work. We gratefully acknowledge the financial support of NSF grant AST-0908886, the TABASGO Foundation, and the Marc J. Staley Graduate Fellowship in Astronomy.

  9. Technology Roadmap: Lab-on-a-Chip

    OpenAIRE

    Pattharaporn Suntharasaj; Tugrul U Daim

    2010-01-01

    With the integration of microfluidic and MEMS technologies, biochips such as the lab-on-a-chip (LOC) devices are at the brink of revolutionizing the medical disease diagnostics industries. Remarkable advancements in the biochips industry are making products resembling Star Trek.s "tricorder" and handheld medical scanners a reality. Soon, doctors can screen for cancer at the molecular level without costly and cumbersome equipments, and discuss treatment plans based on immediate lab results. Th...

  10. Employee Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Madelyn

    2008-09-05

    Welcome to Berkeley Lab. You are joining or are already a part of a laboratory with a sterling tradition of scientific achievement, including eleven Nobel Laureates and thirteen National Medal of Science winners. No matter what job you do, you make Berkeley Lab the outstanding organization that it is. Without your hard work and dedication, we could not achieve all that we have. We value you and thank you for choosing to be part of our community. This Employee Handbook is designed to help you navigate the Lab. With over 3,000 employees, an additional 3,000 guests visiting from countries around the world, a 200-acre campus and many policies and procedures, learning all the ins and outs may seem overwhelming, especially if you're a new employee. However, even if you have been here for a while, this Handbook should be a useful reference tool. It is meant to serve as a guide, highlighting and summarizing what you need to know and informing you where you can go for more detailed information. The general information provided in this Handbook serves only as a brief description of many of the Lab's policies. Policies, procedures and information are found in the Lab's Regulations and Procedures Manual (RPM), Summary Plan Descriptions, University of California policies, and provisions of Contract 31 between the Regents of the University and the U.S. Department of Energy. In addition, specific terms and conditions for represented employees are found in applicable collective bargaining agreements. Nothing in this Handbook is intended to supplant, change or conflict with the previously mentioned documents. In addition, the information in this Handbook does not constitute a contract or a promise of continued employment and may be changed at any time by the Lab. We believe employees are happier and more productive if they know what they can expect from their organization and what their organization expects from them. The Handbook will familiarize you with the

  11. Frederic Joliot-Curie, a tormented scientist

    International Nuclear Information System (INIS)

    Pinault, M.

    2000-01-01

    This article is a short biography of the French scientist Frederic Joliot-Curie. His fight for a peaceful use of atomic energy, his responsibilities as nuclear physicist and as the first director of the French atomic commission (CEA) have led him to face contradictions very difficult to manage. All along his career as a scientist and as a high ranked civil servant, F.Joliot-Curie tried to find an ethical way for scientists in modern societies. (A.C.)

  12. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    OpenAIRE

    Jaime Irurzun; Olga Dziabenko; Pablo Orduña; Diego Lopez-de-Ipiña; Ignacio Angulo; Javier García-Zubia; Unai Hernandez-Jayo

    2010-01-01

    Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  13. Reducing unnecessary lab testing in the ICU with artificial intelligence.

    Science.gov (United States)

    Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N

    2013-05-01

    To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future

  14. Reducing unnecessary lab testing in the ICU with artificial intelligence

    Science.gov (United States)

    Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.

    2017-01-01

    Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the

  15. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  16. Overview of RepLab 2012: Evaluating Online Reputation Management Systems

    NARCIS (Netherlands)

    Amigó, E.; Corujo, A.; Gonzalo, J.; Meij, E.; de Rijke, M.

    2012-01-01

    This paper summarizes the goals, organization and results of the first RepLab competitive evaluation campaign for Online Reputation Management Systems (RepLab 2012). RepLab focused on the reputation of companies, and asked participant systems to annotate different types of information on tweets

  17. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    Directory of Open Access Journals (Sweden)

    Jaime Irurzun

    2010-09-01

    Full Text Available Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  18. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    Science.gov (United States)

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.

  19. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  20. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-10

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  1. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    Science.gov (United States)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  2. Hydroscoop - Bulletin of the small-scale hydraulic laboratory MHyLab; Hydroscoop - Bulletin d'information MHyLab laboratoire de petite hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Denis, V.

    2009-07-01

    This is issue Nr. 5 of the news bulletin of MHyLab, the small-scale hydraulic laboratory in Montcherand, Switzerland. The history of MHyLab development is recalled. The objective of the laboratory is given: the laboratory development of efficient and reliable turbines for the entire small-scale hydraulic range (power: 10 to 2000 kW, flow rate: 0.01 to 10 m{sup 3}/s, hydraulic head: 1 m up to more than 700 m). The first period (1997-2001) was devoted to Pelton turbines for high heads (60 to 70 m) and the second (2001-2009) to Kaplan turbines for low and very low heads (1 to 30 m). In the third period (beginning 2008) diagonal turbines for medium heads (25 to 100 m) are being developed. MHyLab designed, modelled and tested all these different types. The small-scale hydraulic market developed unexpectedly quickly. The potential of small-scale hydraulics in the Canton of Vaud, western Switzerland is presented. Three implemented projects are reported on as examples for MHyLab activities on the market place. The MHyLab staff is presented.

  3. A Case Study of a High School Fab Lab

    Science.gov (United States)

    Lacy, Jennifer E.

    This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.

  4. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  5. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    International Nuclear Information System (INIS)

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES ampersand H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES ampersand H awareness at all staff levels and in identifying ES ampersand H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES ampersand H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES ampersand H program. 4 figs., 24 tabs

  6. Application of LabVIEW on Ionization Chamber to Measurement Radiation

    International Nuclear Information System (INIS)

    Kerdchockchai, P.; Soodprasert, T.; Hoonnivathana, E.; Naemchnthara, P.; Limsuwan, P.; Naemchanthara, K.

    2014-01-01

    The purpose of this research was to apply LabVIEW program to control an ionization chamber. LabVIEW was used to compose a block diagram and front panel. The block diagram was programmed to be controlled by the front panel. Radiation dose of Cs -137 at 1.00, 1.50, 2.00, 2.50, 3.00 and 4.00 meter were compared from LabViEW and manual system. The results show that the different percentages of Pb filter of thickness 0, 20 and 39 mm are 0.68, 0.68 and 0.48, respectively. This experiment results indicated that the LabVIEW can be used in assisting radiation measurement. Furthermore, by controlling the ionization chamber by LabVIEW, the radiation dose received by operator is reduced.

  7. A Low-Cost Remote Lab for Internet Services Distance Education

    Directory of Open Access Journals (Sweden)

    James Sissom

    2006-08-01

    Full Text Available Academic departments seeking to reach students via distance education course offerings find that some on-line curricula require a traditional hands-on lab model for student evaluation and assessment. The authors solve the problem of providing distance education curriculum and supporting instruction lab components by using a low-cost remote lab. The remote lab is used to evaluate student performance in managing web services and website development, solving security problems, patch management, scripting and web server management. In addition, the authors discuss assessment and evaluation techniques that will be used to determine instructional quality and student performance. Discussed are the remote lab architecture, use of disk images and utilization of Windows 2003 Internet Information Service, and Linux Red Hat 9.0 platforms.

  8. Scientists' coping strategies in an evolving research system: the case of life scientists in the UK

    NARCIS (Netherlands)

    Morris, Norma; Rip, Arie

    2006-01-01

    Scientists in academia have struggled to adjust to a policy climate of uncertain funding and loss of freedom from direction and control. How UK life scientists have negotiated this challenge, and with what consequences for their research and the research system, is the empirical entrance point of

  9. The History of Science and Technology at Bell Labs

    Science.gov (United States)

    Bishop, David

    2008-03-01

    Over the last 80 years, Bell Labs has been one of the most scientifically and technologically productive research labs in the world. Inventions such as the transistor, laser, cell phone, solar cell, negative feedback amplifier, communications satellite and many others were made there. Scientific breakthroughs such as discovery of the Big Bang, the wave nature of the electron, electron localization and the fractional quantum hall effect were also made there making Bell Labs almost unique in terms of large impacts in both science and technology. In my talk, I will discuss the history of the lab, talk about the present and give some suggestions for how I see it evolving into the future.

  10. Time Trials--An AP Physics Challenge Lab

    Science.gov (United States)

    Jones, David

    2009-01-01

    I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…

  11. Reciprocal Engagement Between a Scientist and Visual Displays

    Science.gov (United States)

    Nolasco, Michelle Maria

    In this study the focus of investigation was the reciprocal engagement between a professional scientist and the visual displays with which he interacted. Visual displays are considered inextricable from everyday scientific endeavors and their interpretation requires a "back-and-forthness" between the viewers and the objects being viewed. The query that drove this study was: How does a scientist engage with visual displays during the explanation of his understanding of extremely small biological objects? The conceptual framework was based in embodiment where the scientist's talk, gesture, and body position were observed and microanalyzed. The data consisted of open-ended interviews that positioned the scientist to interact with visual displays when he explained the structure and function of different sub-cellular features. Upon microanalyzing the scientist's talk, gesture, and body position during his interactions with two different visual displays, four themes were uncovered: Naming, Layering, Categorizing, and Scaling . Naming occurred when the scientist added markings to a pre-existing, hand-drawn visual display. The markings had meaning as stand-alone label and iconic symbols. Also, the markings transformed the pre-existing visual display, which resulted in its function as a new visual object. Layering occurred when the scientist gestured over images so that his gestures aligned with one or more of the image's features, but did not touch the actual visual display. Categorizing occurred when the scientist used contrasting categories, e.g. straight vs. not straight, to explain his understanding about different characteristics that the small biological objects held. Scaling occurred when the scientist used gesture to resize an image's features so that they fit his bodily scale. Three main points were drawn from this study. First, the scientist employed a variety of embodied strategies—coordinated talk, gesture, and body position—when he explained the structure

  12. History of the Universe Poster

    Science.gov (United States)

    History of the Universe Poster You are free to use these images if you give credit to: Particle Data Group at Lawrence Berkeley National Lab. New Version (2014) History of the Universe Poster Download: JPEG version PDF version Old Version (2013) History of the Universe Poster Download: JPEG version

  13. European labs brace for German cuts: international collaboration

    CERN Multimedia

    Clery, D

    1996-01-01

    Germany, the largest contributor to international European research labs, announced plans to reduce its contributions an average of 8% in the nation's latest budget. CERN and other labs are worried that the cuts will endanger ongoing projects and that other countries may follow Germany's lead.

  14. Can Graduate Teaching Assistants Teach Inquiry-Based Geology Labs Effectively?

    Science.gov (United States)

    Ryker, Katherine; McConnell, David

    2014-01-01

    This study examines the implementation of teaching strategies by graduate teaching assistants (GTAs) in inquiry-based introductory geology labs at a large research university. We assess the degree of inquiry present in each Physical Geology lab and compare and contrast the instructional practices of new and experienced GTAs teaching these labs. We…

  15. Constructing the Components of a Lab Report Using Peer Review

    Science.gov (United States)

    Berry, David E.; Fawkes, Kelli L.

    2010-01-01

    A protocol that emphasizes lab report writing using a piecemeal approach coupled with peer review is described. As the lab course progresses, the focus of the report writing changes sequentially through the abstract and introduction, the discussion, and the procedure. Two styles of lab programs are presented. One style rotates the students through…

  16. Increasing Students’ Interest by Encouraging them to Create Original Lab Projects

    Directory of Open Access Journals (Sweden)

    Petre Lucian Ogrutan

    2017-11-01

    Full Text Available Sometimes traditional lab projects based on standard kits and modules fail to stimulate students’ interest and creativity. This paper presents a novel laboratory concept which allows students to develop their own lab projects using open-source resources. The lab experiment includes competition aspects allowing every student to come up with ideas of which the best are selected. The lab projects include both hard and software components using Arduino-compatible systems and interfaces. Before starting the practical activities as well as after the completion of the lab session, the students were asked to fill in an anonymous questionnaire.

  17. Open web system of Virtual labs for nuclear and applied physics

    International Nuclear Information System (INIS)

    Saldikov, I S; Afanasyev, V V; Petrov, V I; Ternovykh, M Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented. (paper)

  18. A Hardware Lab Anywhere At Any Time

    Directory of Open Access Journals (Sweden)

    Tobias Schubert

    2004-12-01

    Full Text Available Scientific technical courses are an important component in any student's education. These courses are usually characterised by the fact that the students execute experiments in special laboratories. This leads to extremely high costs and a reduction in the maximum number of possible participants. From this traditional point of view, it doesn't seem possible to realise the concepts of a Virtual University in the context of sophisticated technical courses since the students must be "on the spot". In this paper we introduce the so-called Mobile Hardware Lab which makes student participation possible at any time and from any place. This lab nevertheless transfers a feeling of being present in a laboratory. This is accomplished with a special Learning Management System in combination with hardware components which correspond to a fully equipped laboratory workstation that are lent out to the students for the duration of the lab. The experiments are performed and solved at home, then handed in electronically. Judging and marking are also both performed electronically. Since 2003 the Mobile Hardware Lab is now offered in a completely web based form.

  19. Media and the making of scientists

    Science.gov (United States)

    O'Keeffe, Moira

    This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the

  20. A LabVIEWTM-based detector testing system

    International Nuclear Information System (INIS)

    Yang Haori; Li Yuanjing; Wang Yi; Li Yulan; Li Jin

    2003-01-01

    The construction of a LabVIEW-based detector testing system is described in this paper. In this system, the signal of detector is magnified and digitized, so amplitude or time spectrum can be obtained. The Analog-to-Digital Converter is a peak-sensitive ADC based on VME bus. The virtual instrument constructed by LabVIEW can be used to acquire data, draw spectrum and save testing results