WorldWideScience

Sample records for berkeley drosophila genome

  1. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project.

    OpenAIRE

    Spradling, A C; Stern, D M; Kiss, I; Roote, J; Laverty, T; Rubin, G M

    1995-01-01

    Biologists require genetic as well as molecular tools to decipher genomic information and ultimately to understand gene function. The Berkeley Drosophila Genome Project is addressing these needs with a massive gene disruption project that uses individual, genetically engineered P transposable elements to target open reading frames throughout the Drosophila genome. DNA flanking the insertions is sequenced, thereby placing an extensive series of genetic markers on the physical genomic map and a...

  2. Molecular Cloning, Genomic Organization and Developmental Regulation of a Novel Receptor from Drosophila melanogaster Structurally Related to Gonadotropin-Releasing Hormone Receptors from Vertebrates

    DEFF Research Database (Denmark)

    Hauser, Frank; Søndergaard, Leif; Grimmelikhuijzen, Cornelis J.P.

    1998-01-01

    After screening the data base of the BerkeleyDrosophilaGenome Project with a sequence coding for the transmembrane region of a G protein-coupled receptor, we found thatDrosophilamight contain a gene coding for a receptor that is structurally related to the Gonadotropin-Releasing Hormone (GnRH) re...

  3. Evolution of genes and genomes on the Drosophila phylogeny

    DEFF Research Database (Denmark)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R

    2007-01-01

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the ......Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here...... tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila...

  4. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  5. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Eriksen, Kathrine Krageskov; Hauser, Frank; Schiøtt, Morten

    2000-01-01

    After screening the Berkeley Drosophila Genome Project database with sequences from a recently characterized Leu-rich repeats-containing G protein-coupled receptor (LGR) fromDrosophila (DLGR-1), we identified a second gene for a different LGR (DLGR-2) and cloned its cDNA. DLGR-2 is 1360 amino aci...... knock-out mutants, where the DLGR-2 gene is interrupted by a P element insertion, die around the time of hatching. This finding, together with the expression data, strongly suggests that DLGR-2 is exclusively involved in development....

  6. The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    Science.gov (United States)

    Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E

    2015-04-01

    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.

  7. Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae

    Directory of Open Access Journals (Sweden)

    Vladimir Gokhman

    2011-08-01

    Full Text Available Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896 is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862 and L. victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for L. boulardi (Barbotin, Carton et Keiner-Pillault, 1979 (n = 9, whose genome size is smaller than that of wasps of the L. heterotoma clade. Like L. boulardi, the haploid chromosome number for G. xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insect communities.

  8. A Thousand Fly Genomes: An Expanded Drosophila Genome Nexus.

    Science.gov (United States)

    Lack, Justin B; Lange, Jeremy D; Tang, Alison D; Corbett-Detig, Russell B; Pool, John E

    2016-12-01

    The Drosophila Genome Nexus is a population genomic resource that provides D. melanogaster genomes from multiple sources. To facilitate comparisons across data sets, genomes are aligned using a common reference alignment pipeline which involves two rounds of mapping. Regions of residual heterozygosity, identity-by-descent, and recent population admixture are annotated to enable data filtering based on the user's needs. Here, we present a significant expansion of the Drosophila Genome Nexus, which brings the current data object to a total of 1,121 wild-derived genomes. New additions include 305 previously unpublished genomes from inbred lines representing six population samples in Egypt, Ethiopia, France, and South Africa, along with another 193 genomes added from recently-published data sets. We also provide an aligned D. simulans genome to facilitate divergence comparisons. This improved resource will broaden the range of population genomic questions that can addressed from multi-population allele frequencies and haplotypes in this model species. The larger set of genomes will also enhance the discovery of functionally relevant natural variation that exists within and between populations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  10. Resources for Functional Genomics Studies in Drosophila melanogaster

    Science.gov (United States)

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  11. The BDGP gene disruption project: Single transposon insertions associated with 40 percent of Drosophila genes

    Energy Technology Data Exchange (ETDEWEB)

    Bellen, Hugo J.; Levis, Robert W.; Liao, Guochun; He, Yuchun; Carlson, Joseph W.; Tsang, Garson; Evans-Holm, Martha; Hiesinger, P. Robin; Schulze, Karen L.; Rubin, Gerald M.; Hoskins, Roger A.; Spradling, Allan C.

    2004-01-13

    The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in more than 30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6,300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7,140 lines. It now includes individual lines predicted to disrupt 5,362 of the 13,666 currently annotated Drosophila genes (39 percent). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene mis-expression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.

  12. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  13. Late replication domains are evolutionary conserved in the Drosophila genome.

    Science.gov (United States)

    Andreyenkova, Natalya G; Kolesnikova, Tatyana D; Makunin, Igor V; Pokholkova, Galina V; Boldyreva, Lidiya V; Zykova, Tatyana Yu; Zhimulev, Igor F; Belyaeva, Elena S

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.

  14. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  15. Comparative evaluation of the genomes of three common Drosophila-associated bacteria

    Directory of Open Access Journals (Sweden)

    Kristina Petkau

    2016-09-01

    Full Text Available Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus. For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships.

  16. Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms

    OpenAIRE

    Garcia, Carolina; Delprat, Alejandra; Ruiz, Alfredo; Valente, Vera L. S.

    2015-01-01

    Drosophila willistoni is a geographically widespread Neotropical species. The genome of strain Gd-H4-1 from Guadeloupe Island (Caribbean) was sequenced in 2007 as part of the 12 Drosophila Genomes Project. The assembled scaffolds were joined based on conserved linkage and assigned to polytene chromosomes based on a handful of genetic and physical markers. This paucity of markers was particularly striking in the metacentric chromosome II, comprised two similarly sized arms, IIL and IIR, tradit...

  17. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  18. Population Genomics of Infectious and Integrated Wolbachia pipientis Genomes in Drosophila ananassae

    Science.gov (United States)

    Choi, Jae Young; Bubnell, Jaclyn E.; Aquadro, Charles F.

    2015-01-01

    Coevolution between Drosophila and its endosymbiont Wolbachia pipientis has many intriguing aspects. For example, Drosophila ananassae hosts two forms of W. pipientis genomes: One being the infectious bacterial genome and the other integrated into the host nuclear genome. Here, we characterize the infectious and integrated genomes of W. pipientis infecting D. ananassae (wAna), by genome sequencing 15 strains of D. ananassae that have either the infectious or integrated wAna genomes. Results indicate evolutionarily stable maternal transmission for the infectious wAna genome suggesting a relatively long-term coevolution with its host. In contrast, the integrated wAna genome showed pseudogene-like characteristics accumulating many variants that are predicted to have deleterious effects if present in an infectious bacterial genome. Phylogenomic analysis of sequence variation together with genotyping by polymerase chain reaction of large structural variations indicated several wAna variants among the eight infectious wAna genomes. In contrast, only a single wAna variant was found among the seven integrated wAna genomes examined in lines from Africa, south Asia, and south Pacific islands suggesting that the integration occurred once from a single infectious wAna genome and then spread geographically. Further analysis revealed that for all D. ananassae we examined with the integrated wAna genomes, the majority of the integrated wAna genomic regions is represented in at least two copies suggesting a double integration or single integration followed by an integrated genome duplication. The possible evolutionary mechanism underlying the widespread geographical presence of the duplicate integration of the wAna genome is an intriguing question remaining to be answered. PMID:26254486

  19. A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria.

    Science.gov (United States)

    Winans, Nathan J; Walter, Alec; Chouaia, Bessem; Chaston, John M; Douglas, Angela E; Newell, Peter D

    2017-09-01

    Various bacterial taxa have been identified both in association with animals and in the external environment, but the extent to which related bacteria from the two habitat types are ecologically and evolutionarily distinct is largely unknown. This study investigated the scale and pattern of genetic differentiation between bacteria of the family Acetobacteraceae isolated from the guts of Drosophila fruit flies, plant material and industrial fermentations. Genome-scale analysis of the phylogenetic relationships and predicted functions was conducted on 44 Acetobacteraceae isolates, including newly sequenced genomes from 18 isolates from wild and laboratory Drosophila. Isolates from the external environment and Drosophila could not be assigned to distinct phylogenetic groups, nor are their genomes enriched for any different sets of genes or category of predicted gene functions. In contrast, analysis of bacteria from laboratory Drosophila showed they were genetically distinct in their universal capacity to degrade uric acid (a major nitrogenous waste product of Drosophila) and absence of flagellar motility, while these traits vary among wild Drosophila isolates. Analysis of the competitive fitness of Acetobacter discordant for these traits revealed a significant fitness deficit for bacteria that cannot degrade uric acid in culture with Drosophila. We propose that, for wild populations, frequent cycling of Acetobacter between Drosophila and the external environment prevents genetic differentiation by maintaining selection for traits adaptive in both the gut and external habitats. However, laboratory isolates bear the signs of adaptation to persistent association with the Drosophila host under tightly defined environmental conditions. © 2017 John Wiley & Sons Ltd.

  20. The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans

    DEFF Research Database (Denmark)

    Klasson, Lisa; Westberg, Joakim; Sapountzis, Panagiotis

    2009-01-01

    genome of W. pipientis strain wRi that induces very strong cytoplasmic incompatibility in its natural host Drosophila simulans. A comparison with the previously sequenced genome of W. pipientis strain wMel from Drosophila melanogaster identified 35 breakpoints associated with mobile elements and repeated...... sequences that are stable in Drosophila lines transinfected with wRi. Additionally, 450 genes with orthologs in wRi and wMel were sequenced from the W. pipientis strain wUni, responsible for the induction of parthenogenesis in the parasitoid wasp Muscidifurax uniraptor. The comparison of these A...

  1. Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster.

    Science.gov (United States)

    Kahsai, Lily; Cook, Kevin R

    2018-01-04

    Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes. Copyright © 2018 Kahsai,Cook.

  2. Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Lily Kahsai

    2018-01-01

    Full Text Available Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes.

  3. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  4. Genomic Signatures of Speciation in Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.

    Science.gov (United States)

    Kang, Lin; Settlage, Robert; McMahon, Wyatt; Michalak, Katarzyna; Tae, Hongseok; Garner, Harold R; Stacy, Elizabeth A; Price, Donald K; Michalak, Pawel

    2016-05-30

    The Hawaiian archipelago provides a natural arena for understanding adaptive radiation and speciation. The Hawaiian Drosophila are one of the most diverse endemic groups in Hawaiì with up to 1,000 species. We sequenced and analyzed entire genomes of recently diverged species of Hawaiian picture-winged Drosophila, Drosophila silvestris and Drosophila heteroneura from Hawaiì Island, in comparison with Drosophila planitibia, their sister species from Maui, a neighboring island where a common ancestor of all three had likely occurred. Genome-wide single nucleotide polymorphism patterns suggest the more recent origin of D. silvestris and D. heteroneura, as well as a pervasive influence of positive selection on divergence of the three species, with the signatures of positive selection more prominent in sympatry than allopatry. Positively selected genes were significantly enriched for functional terms related to sensory detection and mating, suggesting that sexual selection played an important role in speciation of these species. In particular, sequence variation in Olfactory receptor and Gustatory receptor genes seems to play a major role in adaptive radiation in Hawaiian pictured-winged Drosophila. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Nearly Neutral Evolution Across the Drosophila melanogaster Genome

    DEFF Research Database (Denmark)

    Esteve, David Castellano; James, Jennifer; Eyre-Walker, Adam

    2017-01-01

    Under the nearly neutral theory of molecular evolution the proportion of effectively neutral mutations is expected to depend upon the effective population size (Ne). Here we investigate whether this is the case across the genome of Drosophila melanogaster using polymorphism data from 128 North...

  6. Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes.

    Science.gov (United States)

    Rius, Nuria; Guillén, Yolanda; Delprat, Alejandra; Kapusta, Aurélie; Feschotte, Cédric; Ruiz, Alfredo

    2016-05-10

    Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy.

  7. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    Full Text Available Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1 are components of developmental signaling pathways, 2 regulate fundamental developmental processes, 3 are critical for the development of tissues of vector importance, 4 function in developmental processes known to have diverged within insects, and 5 encode microRNAs (miRNAs that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  8. Strain-specific and pooled genome sequences for populations of Drosophila melanogaster from three continents.

    Science.gov (United States)

    Bergman, Casey M; Haddrill, Penelope R

    2015-01-01

    To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center.

  9. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Rasheva Vanya

    2010-07-01

    Full Text Available Abstract Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;fLJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;fLJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104

  10. Drosophila duplication hotspots are associated with late-replicating regions of the genome.

    Directory of Open Access Journals (Sweden)

    Margarida Cardoso-Moreira

    2011-11-01

    Full Text Available Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans-Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is

  11. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster

    OpenAIRE

    Vonesch, Sibylle; Mackay, Trudy; Lamparter, David; Hafen, Ernst; Bergmann, Sven

    2015-01-01

    Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequen...

  12. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster.

    Science.gov (United States)

    Machado, Heather E; Bergland, Alan O; O'Brien, Katherine R; Behrman, Emily L; Schmidt, Paul S; Petrov, Dmitri A

    2016-02-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. © 2015 John Wiley & Sons Ltd.

  13. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  14. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    Directory of Open Access Journals (Sweden)

    Pushpavalli Sreerangam NCVL

    2013-01-01

    Full Text Available Abstract Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using

  15. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures

    DEFF Research Database (Denmark)

    Stark, Alexander; Lin, Michael F; Kheradpour, Pouya

    2007-01-01

    Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional e...... individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies....

  16. Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Mark F Richardson

    Full Text Available Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences. Overall, 63% of Drosophila strains were predicted to be infected with Wolbachia by our in silico analysis pipeline, which shows 99% concordance with infection status determined by diagnostic PCR. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent global replacement of ancestral Wolbachia and mtDNA lineages, but our data suggest that the derived wMel lineage arose several thousand years ago, not in the 20th century as previously proposed. Our data also provide evidence that this global replacement event is incomplete and is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats. This study provides a complete genomic analysis of the evolutionary mode and temporal dynamics of the D. melanogaster-Wolbachia symbiosis, as well as important resources for further analyses of the impact of Wolbachia on host biology.

  17. Myc-dependent genome instability and lifespan in Drosophila.

    Directory of Open Access Journals (Sweden)

    Christina Greer

    Full Text Available The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs. In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.

  18. Delineating slowly and rapidly evolving fractions of the Drosophila genome.

    Science.gov (United States)

    Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S

    2008-05-01

    Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.

  19. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  20. The Release 6 reference sequence of the Drosophila melanogaster genome.

    Science.gov (United States)

    Hoskins, Roger A; Carlson, Joseph W; Wan, Kenneth H; Park, Soo; Mendez, Ivonne; Galle, Samuel E; Booth, Benjamin W; Pfeiffer, Barret D; George, Reed A; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V; Andreyeva, Evgeniya N; Boldyreva, Lidiya V; Marra, Marco; Carvalho, A Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F; Rubin, Gerald M; Karpen, Gary H; Celniker, Susan E

    2015-03-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. © 2015 Hoskins et al.; Published by Cold Spring Harbor Laboratory Press.

  1. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome.

    Science.gov (United States)

    Cook, R Kimberley; Christensen, Stacey J; Deal, Jennifer A; Coburn, Rachel A; Deal, Megan E; Gresens, Jill M; Kaufman, Thomas C; Cook, Kevin R

    2012-01-01

    Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome. A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes. Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.

  2. Clustering Table of the genome insert site of Drosophila GAL4 enhancer trap lines (Cluster List) - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ster List) Data detail Data name Clustering Table of the genome insert site of Drosophila GAL4 enhancer trap...se Site Policy | Contact Us Clustering Table of the genome insert site of Drosophila GAL4 enhancer trap lines (Cluster List) - GETDB | LSDB Archive ... ...stering Table of the genome insert site of Drosophila GAL4 enhancer trap lines (Clu...switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us GETDB Clu

  3. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  4. Molecular cloning and genomic organization of an allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    The insect allatostatins are neurohormones, acting on the corpora allata (where they block the release of juvenile hormone) and on the insect gut (where they block smooth muscle contraction). We screened the "Drosophila Genome Project" database with electronic sequences corresponding to various i...

  5. Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest

    OpenAIRE

    Ometto, Lino; Cestaro, Alessandro; Ramasamy, Sukanya; Grassi, Alberto; Revadi, Santosh; Siozios, Stefanos; Moretto, Marco; Fontana, Paolo; Varotto, Claudio; Pisani, Davide; Dekker, Teun; Wrobel, Nicola; Viola, Roberto; Pertot, Ilaria; Cavalieri, Duccio

    2013-01-01

    Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data...

  6. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila

    OpenAIRE

    Hammer, Austin J.; Walters, Amber; Carroll, Courtney; Newell, Peter D.; Chaston, John M.

    2017-01-01

    ABSTRACT The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429?bp, with 3,454 predicted genes.

  7. Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ulrike Ober

    Full Text Available Predicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress resistance and startle response in Drosophila melanogaster, using ∼2.5 million SNPs determined by sequencing the Drosophila Genetic Reference Panel population of inbred lines. We constructed a genomic relationship matrix from the SNP data and used it in a genomic best linear unbiased prediction (GBLUP model. We assessed predictive ability as the correlation between predicted genetic values and observed phenotypes by cross-validation, and found a predictive ability of 0.239±0.008 (0.230±0.012 for starvation resistance (startle response. The predictive ability of BayesB, a Bayesian method with internal SNP selection, was not greater than GBLUP. Selection of the 5% SNPs with either the highest absolute effect or variance explained did not improve predictive ability. Predictive ability decreased only when fewer than 150,000 SNPs were used to construct the genomic relationship matrix. We hypothesize that predictive power in this population stems from the SNP-based modeling of the subtle relationship structure caused by long-range linkage disequilibrium and not from population structure or SNPs in linkage disequilibrium with causal variants. We discuss the implications of these results for genomic prediction in other organisms.

  8. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster

    Science.gov (United States)

    Song, Yun S.

    2012-01-01

    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and

  9. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.

    Science.gov (United States)

    Gonçalves, Juliana W; Valiati, Victor Hugo; Delprat, Alejandra; Valente, Vera L S; Ruiz, Alfredo

    2014-09-13

    Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral

  10. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps.

    Science.gov (United States)

    Schaeffer, Stephen W; Bhutkar, Arjun; McAllister, Bryant F; Matsuda, Muneo; Matzkin, Luciano M; O'Grady, Patrick M; Rohde, Claudia; Valente, Vera L S; Aguadé, Montserrat; Anderson, Wyatt W; Edwards, Kevin; Garcia, Ana C L; Goodman, Josh; Hartigan, James; Kataoka, Eiko; Lapoint, Richard T; Lozovsky, Elena R; Machado, Carlos A; Noor, Mohamed A F; Papaceit, Montserrat; Reed, Laura K; Richards, Stephen; Rieger, Tania T; Russo, Susan M; Sato, Hajime; Segarra, Carmen; Smith, Douglas R; Smith, Temple F; Strelets, Victor; Tobari, Yoshiko N; Tomimura, Yoshihiko; Wasserman, Marvin; Watts, Thomas; Wilson, Robert; Yoshida, Kiyohito; Markow, Therese A; Gelbart, William M; Kaufman, Thomas C

    2008-07-01

    The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.

  11. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Gene structure of Drosophila diaphorase-1: diversity of transcripts in adult males and ... Q9W529) from Berkeley Drosophila Genome Project (BDGP) was found ... Sofia University St Kliment Ohridski, Faculty of Biology, Department of Genetics, ...

  12. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...... receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships. Udgivelsesdato: 2006-Feb...

  13. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest.

    Science.gov (United States)

    Ometto, Lino; Cestaro, Alessandro; Ramasamy, Sukanya; Grassi, Alberto; Revadi, Santosh; Siozios, Stefanos; Moretto, Marco; Fontana, Paolo; Varotto, Claudio; Pisani, Davide; Dekker, Teun; Wrobel, Nicola; Viola, Roberto; Pertot, Ilaria; Cavalieri, Duccio; Blaxter, Mark; Anfora, Gianfranco; Rota-Stabelli, Omar

    2013-01-01

    Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analyzed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared with its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America.

  14. Visualization of genome signatures of eukaryote genomes by batch-learning self-organizing map with a special emphasis on Drosophila genomes.

    Science.gov (United States)

    Abe, Takashi; Hamano, Yuta; Ikemura, Toshimichi

    2014-01-01

    A strategy of evolutionary studies that can compare vast numbers of genome sequences is becoming increasingly important with the remarkable progress of high-throughput DNA sequencing methods. We previously established a sequence alignment-free clustering method "BLSOM" for di-, tri-, and tetranucleotide compositions in genome sequences, which can characterize sequence characteristics (genome signatures) of a wide range of species. In the present study, we generated BLSOMs for tetra- and pentanucleotide compositions in approximately one million sequence fragments derived from 101 eukaryotes, for which almost complete genome sequences were available. BLSOM recognized phylotype-specific characteristics (e.g., key combinations of oligonucleotide frequencies) in the genome sequences, permitting phylotype-specific clustering of the sequences without any information regarding the species. In our detailed examination of 12 Drosophila species, the correlation between their phylogenetic classification and the classification on the BLSOMs was observed to visualize oligonucleotides diagnostic for species-specific clustering.

  15. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    Science.gov (United States)

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  16. The insulator protein SU(HW fine-tunes nuclear lamina interactions of the Drosophila genome.

    Directory of Open Access Journals (Sweden)

    Joke G van Bemmel

    Full Text Available Specific interactions of the genome with the nuclear lamina (NL are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW weakens genome - NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW as a fine-tuner of genome - NL interactions.

  17. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture.

    Science.gov (United States)

    Morán, Tomás; Fontdevila, Antonio

    2014-01-01

    To date, different studies about the genetic basis of hybrid male sterility (HMS), a postzygotic reproductive barrier thoroughly investigated using Drosophila species, have demonstrated that no single major gene can produce hybrid sterility without the cooperation of several genetic factors. Early work using hybrids between Drosophila koepferae (Dk) and Drosophila buzzatii (Db) was consistent with the idea that HMS requires the cooperation of several genetic factors, supporting a polygenic threshold (PT) model. Here we present a genome-wide mapping strategy to test the PT model, analyzing serially backcrossed fertile and sterile males in which the Dk genome was introgressed into the Db background. We identified 32 Dk-specific markers significantly associated with hybrid sterility. Our results demonstrate 1) a strong correlation between the number of segregated sterility markers and males' degree of sterility, 2) the exchangeability among markers, 3) their tendency to cluster into low-recombining chromosomal regions, and 4) the requirement for a minimum number (threshold) of markers to elicit sterility. Although our findings do not contradict a role for occasional major hybrid-sterility genes, they conform more to the view that HMS primarily evolves by the cumulative action of many interacting genes of minor effect in a complex PT architecture.

  18. Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms.

    Science.gov (United States)

    Garcia, Carolina; Delprat, Alejandra; Ruiz, Alfredo; Valente, Vera L S

    2015-10-04

    Drosophila willistoni is a geographically widespread Neotropical species. The genome of strain Gd-H4-1 from Guadeloupe Island (Caribbean) was sequenced in 2007 as part of the 12 Drosophila Genomes Project. The assembled scaffolds were joined based on conserved linkage and assigned to polytene chromosomes based on a handful of genetic and physical markers. This paucity of markers was particularly striking in the metacentric chromosome II, comprised two similarly sized arms, IIL and IIR, traditionally considered homologous to Muller elements C and B, respectively. In this paper we present the cytological mapping of 22 new gene markers to increase the number of markers mapped by in situ hybridization and to test the assignment of scaffolds to the polytene chromosome II arms. For this purpose, we generated, by polymerase chain reaction amplification, one or two gene probes from each scaffold assigned to the chromosome II arms and mapped these probes to the Gd-H4-1 strain's polytene chromosomes by nonfluorescent in situ hybridization. Our findings show that chromosome arms IIL and IIR correspond to Muller elements B and C, respectively, directly contrasting the current homology assignments in D. willistoni and constituting a major reassignment of the scaffolds to chromosome II arms. Copyright © 2015 Garcia et al.

  19. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.

    Science.gov (United States)

    Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C

    2005-01-01

    The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.

  20. Background selection as baseline for nucleotide variation across the Drosophila genome.

    Directory of Open Access Journals (Sweden)

    Josep M Comeron

    2014-06-01

    Full Text Available The constant removal of deleterious mutations by natural selection causes a reduction in neutral diversity and efficacy of selection at genetically linked sites (a process called Background Selection, BGS. Population genetic studies, however, often ignore BGS effects when investigating demographic events or the presence of other types of selection. To obtain a more realistic evolutionary expectation that incorporates the unavoidable consequences of deleterious mutations, we generated high-resolution landscapes of variation across the Drosophila melanogaster genome under a BGS scenario independent of polymorphism data. We find that BGS plays a significant role in shaping levels of variation across the entire genome, including long introns and intergenic regions distant from annotated genes. We also find that a very large percentage of the observed variation in diversity across autosomes can be explained by BGS alone, up to 70% across individual chromosome arms at 100-kb scale, thus indicating that BGS predictions can be used as baseline to infer additional types of selection and demographic events. This approach allows detecting several outlier regions with signal of recent adaptive events and selective sweeps. The use of a BGS baseline, however, is particularly appropriate to investigate the presence of balancing selection and our study exposes numerous genomic regions with the predicted signature of higher polymorphism than expected when a BGS context is taken into account. Importantly, we show that these conclusions are robust to the mutation and selection parameters of the BGS model. Finally, analyses of protein evolution together with previous comparisons of genetic maps between Drosophila species, suggest temporally variable recombination landscapes and, thus, local BGS effects that may differ between extant and past phases. Because genome-wide BGS and temporal changes in linkage effects can skew approaches to estimate demographic and

  1. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis.

    Science.gov (United States)

    Marzo, Mar; Bello, Xabier; Puig, Marta; Maside, Xulio; Ruiz, Alfredo

    2013-02-04

    Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.

  2. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster.

    Science.gov (United States)

    Jha, Aashish R; Miles, Cecelia M; Lippert, Nodia R; Brown, Christopher D; White, Kevin P; Kreitman, Martin

    2015-10-01

    Complete genome resequencing of populations holds great promise in deconstructing complex polygenic traits to elucidate molecular and developmental mechanisms of adaptation. Egg size is a classic adaptive trait in insects, birds, and other taxa, but its highly polygenic architecture has prevented high-resolution genetic analysis. We used replicated experimental evolution in Drosophila melanogaster and whole-genome sequencing to identify consistent signatures of polygenic egg-size adaptation. A generalized linear-mixed model revealed reproducible allele frequency differences between replicated experimental populations selected for large and small egg volumes at approximately 4,000 single nucleotide polymorphisms (SNPs). Several hundred distinct genomic regions contain clusters of these SNPs and have lower heterozygosity than the genomic background, consistent with selection acting on polymorphisms in these regions. These SNPs are also enriched among genes expressed in Drosophila ovaries and many of these genes have well-defined functions in Drosophila oogenesis. Additional genes regulating egg development, growth, and cell size show evidence of directional selection as genes regulating these biological processes are enriched for highly differentiated SNPs. Genetic crosses performed with a subset of candidate genes demonstrated that these genes influence egg size, at least in the large genetic background. These findings confirm the highly polygenic architecture of this adaptive trait, and suggest the involvement of many novel candidate genes in regulating egg size. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sibylle Chantal Vonesch

    2016-01-01

    Full Text Available Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity.

  4. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Directory of Open Access Journals (Sweden)

    King Nichole L

    2009-02-01

    Full Text Available Abstract Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal http://www.drosophila-peptideatlas.org allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1 reduction of the complexity inherently associated with performing targeted proteomic studies, (2 designing and accelerating shotgun proteomics experiments, (3 confirming or questioning gene models, and (4 adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.

  5. Polytene Chromosomes - A Portrait of Functional Organization of the Drosophila Genome.

    Science.gov (United States)

    Zykova, Tatyana Yu; Levitsky, Victor G; Belyaeva, Elena S; Zhimulev, Igor F

    2018-04-01

    This mini-review is devoted to the problem genetic meaning of main polytene chromosome structures - bands and interbands. Generally, densely packed chromatin forms black bands, moderately condensed regions form grey loose bands, whereas decondensed regions of the genome appear as interbands. Recent progress in the annotation of the Drosophila genome and epigenome has made it possible to compare the banding pattern and the structural organization of genes, as well as their activity. This was greatly aided by our ability to establish the borders of bands and interbands on the physical map, which allowed to perform comprehensive side-by-side comparisons of cytology, genetic and epigenetic maps and to uncover the association between the morphological structures and the functional domains of the genome. These studies largely conclude that interbands 5'-ends of housekeeping genes that are active across all cell types. Interbands are enriched with proteins involved in transcription and nucleosome remodeling, as well as with active histone modifications. Notably, most of the replication origins map to interband regions. As for grey loose bands adjacent to interbands, they typically host the bodies of house-keeping genes. Thus, the bipartite structure composed of an interband and an adjacent grey band functions as a standalone genetic unit. Finally, black bands harbor tissue-specific genes with narrow temporal and tissue expression profiles. Thus, the uniform and permanent activity of interbands combined with the inactivity of genes in bands forms the basis of the universal banding pattern observed in various Drosophila tissues.

  6. Genetic analysis of female mating recognition between Drosophila ananassae and Drosophila pallidosa: application of interspecific mosaic genome lines.

    Science.gov (United States)

    Sawamura, Kyoichi; Zhi, Hua; Setoguchi, Koji; Yamada, Hirokazu; Miyo, Takahiro; Matsuda, Muneo; Oguma, Yuzuru

    2008-06-01

    Drosophila ananassae and Drosophila pallidosa are closely related species that can produce viable and fertile hybrids of both sexes, although strong sexual isolation exists between the two species. Females are thought to discriminate conspecific from heterospecific males based on their courtship songs. The genetic basis of female discrimination behavior was analyzed using isogenic females from interspecific mosaic genome lines that carry homozygous recombinant chromosomes. Multiple regression analysis indicated a highly significant effect of the left arm of chromosome 2 (2L) on the willingness of females to mate with D. ananassae males. Not only 2L but also the left arm of chromosome X (XL) and the right arm of chromosome 3 (3R) had significant effects on the females' willingness to mate with D. pallidosa males. All regions with strong effects on mate choice have chromosome arrangements characterized by species-specific inversions. Heterospecific combinations of 2L and 3R have previously been suggested to cause postzygotic reproductive isolation. Thus, genes involved in premating as well as postmating isolation are located in or near chromosomal inversions. This conclusion is consistent with the recently proposed hypothesis that "speciation genes" accumulate at a higher rate in non-recombining genome regions when species divergence occurs in the presence of gene flow.

  7. Berkeley's Philosophy of Mathematics

    CERN Document Server

    Jesseph, Douglas M

    1993-01-01

    In this first modern, critical assessment of the place of mathematics in Berkeley's philosophy and Berkeley's place in the history of mathematics, Douglas M. Jesseph provides a bold reinterpretation of Berkeley's work. Jesseph challenges the prevailing view that Berkeley's mathematical writings are peripheral to his philosophy and argues that mathematics is in fact central to his thought, developing out of his critique of abstraction. Jesseph's argument situates Berkeley's ideas within the larger historical and intellectual context of the Scientific Revolution. Jesseph begins with Berkeley's r

  8. A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila melanogaster Model Population

    Directory of Open Access Journals (Sweden)

    Palle Duun Rohde

    2016-01-01

    Full Text Available The ability of natural populations to withstand environmental stresses relies partly on their adaptive ability. In this study, we used a subset of the Drosophila Genetic Reference Panel, a population of inbred, genome-sequenced lines derived from a natural population of Drosophila melanogaster, to investigate whether this population harbors genetic variation for a set of stress resistance and life history traits. Using a genomic approach, we found substantial genetic variation for metabolic rate, heat stress resistance, expression of a major heat shock protein, and egg-to-adult viability investigated at a benign and a higher stressful temperature. This suggests that these traits will be able to evolve. In addition, we outline an approach to conduct pathway associations based on genomic linear models, which has potential to identify adaptive genes and pathways, and therefore can be a valuable tool in conservation genomics.

  9. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  10. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  11. Genome diversity and divergence in Drosophila mauritiana: multiple signatures of faster X evolution.

    Science.gov (United States)

    Garrigan, Daniel; Kingan, Sarah B; Geneva, Anthony J; Vedanayagam, Jeffrey P; Presgraves, Daven C

    2014-09-04

    Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldane's rule: F(1) hybrid males are sterile and F(1) hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural

  12. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Bohmann Dirk

    2005-06-01

    Full Text Available Abstract Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.

  13. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jeroen Dobbelaere

    2008-09-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM. Here, we have performed a microscopy-based genome-wide RNA interference (RNAi screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1 nine are required for centriole duplication, (2 11 are required for centrosome maturation, (3 nine are required for both functions, and (4 three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.

  14. A BAC-based physical map of the Drosophila buzzatii genome

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Josefa; Nefedov, Michael; Bosdet, Ian; Casals, Ferran; Calvete, Oriol; Delprat, Alejandra; Shin, Heesun; Chiu, Readman; Mathewson, Carrie; Wye, Natasja; Hoskins, Roger A.; Schein, JacquelineE.; de Jong, Pieter; Ruiz, Alfredo

    2005-03-18

    Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps and provide useful resources for sequencing entire genomes. Drosophilabuzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and a {approx}18X expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be {approx}23X. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9,555 clones, and assembled them using Finger Printed Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670singletons. Finally, we anchored 181 large contigs (containing 7,788clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available to the research community.

  15. Genomic Variation in Natural Populations of Drosophila melanogaster

    Science.gov (United States)

    Langley, Charles H.; Stevens, Kristian; Cardeno, Charis; Lee, Yuh Chwen G.; Schrider, Daniel R.; Pool, John E.; Langley, Sasha A.; Suarez, Charlyn; Corbett-Detig, Russell B.; Kolaczkowski, Bryan; Fang, Shu; Nista, Phillip M.; Holloway, Alisha K.; Kern, Andrew D.; Dewey, Colin N.; Song, Yun S.; Hahn, Matthew W.; Begun, David J.

    2012-01-01

    This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of interactions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1) 5′- and 3′-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynonymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration. Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of directional selection are shared between these species. PMID:22673804

  16. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2012-06-22

    ...: The Coast Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...

  17. 78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2013-05-17

    ... Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in approximate position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...

  18. Drosophila Sld5 is essential for normal cell cycle progression and maintenance of genomic integrity

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Catherine A. [Department of Biology, East Carolina University East Carolina University, Greenville, NC 27858 (United States); Christensen, Tim W., E-mail: christensent@ecu.edu [Department of Biology, East Carolina University East Carolina University, Greenville, NC 27858 (United States)

    2010-09-10

    Research highlights: {yields} Drosophila Sld5 interacts with Psf1, PPsf2, and Mcm10. {yields} Haploinsufficiency of Sld5 leads to M-phase delay and genomic instability. {yields} Sld5 is also required for normal S phase progression. -- Abstract: Essential for the normal functioning of a cell is the maintenance of genomic integrity. Failure in this process is often catastrophic for the organism, leading to cell death or mis-proliferation. Central to genomic integrity is the faithful replication of DNA during S phase. The GINS complex has recently come to light as a critical player in DNA replication through stabilization of MCM2-7 and Cdc45 as a member of the CMG complex which is likely responsible for the processivity of helicase activity during S phase. The GINS complex is made up of 4 members in a 1:1:1:1 ratio: Psf1, Psf2, Psf3, And Sld5. Here we present the first analysis of the function of the Sld5 subunit in a multicellular organism. We show that Drosophila Sld5 interacts with Psf1, Psf2, and Mcm10 and that mutations in Sld5 lead to M and S phase delays with chromosomes exhibiting hallmarks of genomic instability.

  19. A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila melanogaster Model Population

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Krag, Kristian; Loeschcke, Volker

    2016-01-01

    , to investigate whether this population harbors genetic variation for a set of stress resistance and life history traits. Using a genomic approach, we found substantial genetic variation for metabolic rate, heat stress resistance, expression of a major heat shock protein, and egg-to-adult viability investigated......The ability of natural populations to withstand environmental stresses relies partly on their adaptive ability. In this study, we used a subset of the Drosophila Genetic Reference Panel, a population of inbred, genome-sequenced lines derived from a natural population of Drosophila melanogaster...... at a benign and a higher stressful temperature. This suggests that these traits will be able to evolve. In addition, we outline an approach to conduct pathway associations based on genomic linear models, which has potential to identify adaptive genes and pathways, and therefore can be a valuable tool...

  20. Nomadic enhancers: tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species.

    Directory of Open Access Journals (Sweden)

    Gizem Kalay

    2010-11-01

    Full Text Available cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of

  1. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P

    2017-08-11

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritized and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.

  2. Genomic Analysis of Genotype-by-Social Environment Interaction for Drosophila melanogaster Aggressive Behavior.

    Science.gov (United States)

    Rohde, Palle Duun; Gaertner, Bryn; Ward, Kirsty; Sørensen, Peter; Mackay, Trudy F C

    2017-08-01

    Human psychiatric disorders such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder often include adverse behaviors including increased aggressiveness. Individuals with psychiatric disorders often exhibit social withdrawal, which can further increase the probability of conducting a violent act. Here, we used the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP) to investigate the genetic basis of variation in male aggressive behavior for flies reared in a socialized and socially isolated environment. We identified genetic variation for aggressive behavior, as well as significant genotype-by-social environmental interaction (GSEI); i.e. , variation among DGRP genotypes in the degree to which social isolation affected aggression. We performed genome-wide association (GWA) analyses to identify genetic variants associated with aggression within each environment. We used genomic prediction to partition genetic variants into gene ontology (GO) terms and constituent genes, and identified GO terms and genes with high prediction accuracies in both social environments and for GSEI. The top predictive GO terms significantly increased the proportion of variance explained, compared to prediction models based on all segregating variants. We performed genomic prediction across environments, and identified genes in common between the social environments that turned out to be enriched for genome-wide associated variants. A large proportion of the associated genes have previously been associated with aggressive behavior in Drosophila and mice. Further, many of these genes have human orthologs that have been associated with neurological disorders, indicating partially shared genetic mechanisms underlying aggression in animal models and human psychiatric disorders. Copyright © 2017 by the Genetics Society of America.

  3. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael

    2003-01-01

    The database of the Drosophila Genome Project contains the sequences of two genes, CG8784 and CG8795, predicted to code for two structurally related G protein-coupled receptors. We have cloned these genes and expressed their coding parts in Chinese hamster ovary cells. We found that both receptors...... can be activated by low concentrations of the Drosophila neuropeptide pyrokinin-2 (CG8784, EC(50) for pyrokinin-2, 1x10(-9)M; CG8795, EC(50) for pyrokinin-2, 5 x 10(-10)M). The precise role of Drosophila pyrokinin-2 (SVPFKPRLamide) in Drosophila is unknown, but in other insects, pyrokinins have...... embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors...

  4. Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Katherine W Jordan

    Full Text Available Reactive oxygen species (ROS are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment. To identify genes affecting sensitivity and resistance to ROS-induced locomotor decline, we assessed locomotion of aged flies of the sequenced, wild-derived lines from the Drosophila melanogaster Genetics Reference Panel on standard medium and following chronic exposure to medium supplemented with 3 mM menadione sodium bisulfite (MSB. We found substantial genetic variation in sensitivity to oxidative stress with respect to locomotor phenotypes. We performed genome-wide association analyses to identify candidate genes associated with variation in sensitivity to ROS-induced decline in locomotor performance, and confirmed the effects for 13 of 16 mutations tested in these candidate genes. Candidate genes associated with variation in sensitivity to MSB-induced oxidative stress form networks of genes involved in neural development, immunity, and signal transduction. Many of these genes have human orthologs, highlighting the utility of genome-wide association in Drosophila for studying complex human disease.

  5. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    Science.gov (United States)

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  6. Using FlyBase, a Database of Drosophila Genes and Genomes.

    Science.gov (United States)

    Marygold, Steven J; Crosby, Madeline A; Goodman, Joshua L

    2016-01-01

    For nearly 25 years, FlyBase (flybase.org) has provided a freely available online database of biological information about Drosophila species, focusing on the model organism D. melanogaster. The need for a centralized, integrated view of Drosophila research has never been greater as advances in genomic, proteomic, and high-throughput technologies add to the quantity and diversity of available data and resources.FlyBase has taken several approaches to respond to these changes in the research landscape. Novel report pages have been generated for new reagent types and physical interaction data; Drosophila models of human disease are now represented and showcased in dedicated Human Disease Model Reports; other integrated reports have been established that bring together related genes, datasets, or reagents; Gene Reports have been revised to improve access to new data types and to highlight functional data; links to external sites have been organized and expanded; and new tools have been developed to display and interrogate all these data, including improved batch processing and bulk file availability. In addition, several new community initiatives have served to enhance interactions between researchers and FlyBase, resulting in direct user contributions and improved feedback.This chapter provides an overview of the data content, organization, and available tools within FlyBase, focusing on recent improvements. We hope it serves as a guide for our diverse user base, enabling efficient and effective exploration of the database and thereby accelerating research discoveries.

  7. Target Selection and Deselection at the Berkeley StructuralGenomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

    2005-03-22

    At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the

  8. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts...... in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  9. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Science.gov (United States)

    2011-06-28

    ...-AA00 Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA AGENCY: Coast... the 4th of July Festival Berkeley Marina Fireworks Display. Unauthorized persons or vessels are... display. Background and Purpose The City of Berkeley Marina will sponsor the 4th of July Festival Berkeley...

  10. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    Science.gov (United States)

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-08-09

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. Copyright © 2016 Battlay et al.

  11. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans

    Directory of Open Access Journals (Sweden)

    Zhou Qi

    2012-03-01

    Full Text Available Abstract Background Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. Methods We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. Results We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. Conclusions Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.

  12. Isolation and characterization of the genomic region from Drosophila kuntzei containing the Adh and Adhr genes

    NARCIS (Netherlands)

    Oppentocht, JE; van Delden, W; van de Zande, L

    The nucleotide sequences of the Adh and Adhr genes of Drosophila kuntzei were derived from combined overlapping sequences of clones isolated from a genomic library and from cloned PCR and inverse-PCR fragments. Only a proximal promoter was detected upstream of the Adh gene, indicating that D.

  13. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui

    2007-01-01

    and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species...

  14. Phylogeny of the Genus Drosophila

    Science.gov (United States)

    O’Grady, Patrick M.; DeSalle, Rob

    2018-01-01

    Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983

  15. The Mosaic Ancestry of the Drosophila Genetic Reference Panel and the D. melanogaster Reference Genome Reveals a Network of Epistatic Fitness Interactions

    Science.gov (United States)

    Pool, John E.

    2015-01-01

    North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (approximately 15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g., circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa–Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that include genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations. PMID:26354524

  16. Genomic resources for multiple species in the Drosophila ananassae species group.

    Science.gov (United States)

    Signor, Sarah; Seher, Thaddeus; Kopp, Artyom

    2013-01-01

    The development of genomic resources in non-model taxa is essential for understanding the genetic basis of biological diversity. Although the genomes of many Drosophila species have been sequenced, most of the phenotypic diversity in this genus remains to be explored. To facilitate the genetic analysis of interspecific and intraspecific variation, we have generated new genomic resources for seven species and subspecies in the D. ananassae species subgroup. We have generated large amounts of transcriptome sequence data for D. ercepeae, D. merina, D. bipectinata, D. malerkotliana malerkotliana, D. m. pallens, D. pseudoananassae pseudoananassae, and D. p. nigrens. de novo assembly resulted in contigs covering more than half of the predicted transcriptome and matching an average of 59% of annotated genes in the complete genome of D. ananassae. Most contigs, corresponding to an average of 49% of D. ananassae genes, contain sequence polymorphisms that can be used as genetic markers. Subsets of these markers were validated by genotyping the progeny of inter- and intraspecific crosses. The ananassae subgroup is an excellent model system for examining the molecular basis of speciation and phenotypic evolution. The new genomic resources will facilitate the genetic analysis of inter- and intraspecific differences in this lineage. Transcriptome sequencing provides a simple and cost-effective way to identify molecular markers at nearly single-gene density, and is equally applicable to any non-model taxa.

  17. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    OpenAIRE

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding seque...

  18. Genome-wide analysis of Polycomb targets in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Yuri B.; Kahn, Tatyana G.; Nix, David A.; Li,Xiao-Yong; Bourgon, Richard; Biggin, Mark; Pirrotta, Vincenzo

    2006-04-01

    Polycomb Group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. We have determined the distribution of the PcG proteins PC, E(Z) and PSC and of histone H3K27 trimethylation in the Drosophila genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb Response Elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors but receptors, signaling proteins, morphogens and regulators representing all major developmental pathways are also included.

  19. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Héloïse Bastide

    2013-06-01

    Full Text Available Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  20. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Science.gov (United States)

    Bastide, Héloïse; Betancourt, Andrea; Nolte, Viola; Tobler, Raymond; Stöbe, Petra; Futschik, Andreas; Schlötterer, Christian

    2013-06-01

    Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS) to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs) segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  1. The Mosaic Ancestry of the Drosophila Genetic Reference Panel and the D. melanogaster Reference Genome Reveals a Network of Epistatic Fitness Interactions.

    Science.gov (United States)

    Pool, John E

    2015-12-01

    North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (approximately 15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g., circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa-Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that include genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Raquel S Linheiro

    Full Text Available Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.

  3. Berkeley Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    To a regular observer at annual international meetings, progress in particle physics from one year to the next sometimes might seem ponderously slow. But shift the timescale and the result is startling. Opening his summary of the 1986 International Conference on High Energy Physics, held in Berkeley, California, from 16-23 July, Steve Weinberg first recalled the 1966 Conference, also held in Berkeley. Then the preoccupations were current algebra, hadron resonances and the interpretation of scattering in terms of Regge poles, and the theory of weak interactions. Physics certainly has moved.

  4. Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    To a regular observer at annual international meetings, progress in particle physics from one year to the next sometimes might seem ponderously slow. But shift the timescale and the result is startling. Opening his summary of the 1986 International Conference on High Energy Physics, held in Berkeley, California, from 16-23 July, Steve Weinberg first recalled the 1966 Conference, also held in Berkeley. Then the preoccupations were current algebra, hadron resonances and the interpretation of scattering in terms of Regge poles, and the theory of weak interactions. Physics certainly has moved

  5. A Survey of 6,300 Genomic Fragments for cis-Regulatory Activity in the Imaginal Discs of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Aurélie Jory

    2012-10-01

    Full Text Available Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells. About 75% of the active fragments drove expression in multiple discs; 20% were expressed in ventral, but not dorsal, discs (legs, genital, and antenna, whereas ∼23% were expressed in dorsal but not ventral discs (wing, haltere, and eye. Several patterns, for example, within the leg chordotonal organ, appeared a surprisingly large number of times. Unbiased searches for DNA sequence motifs suggest candidate transcription factors that may regulate enhancers with shared activities. Together, these expression patterns provide a valuable resource to the community and offer a broad overview of how transcriptional regulatory information is distributed in the Drosophila genome.

  6. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection.

    Directory of Open Access Journals (Sweden)

    Jaspreet S Khurana

    2010-12-01

    Full Text Available Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.

  7. A Comprehensive Toolbox for Genome Editing in Cultured Drosophila melanogaster Cells

    Directory of Open Access Journals (Sweden)

    Stefan Kunzelmann

    2016-06-01

    Full Text Available Custom genome editing has become an essential element of molecular biology. In particular, the generation of fusion constructs with epitope tags or fluorescent proteins at the genomic locus facilitates the analysis of protein expression, localization, and interaction partners at physiologic levels. Following up on our initial publication, we now describe a considerably simplified, more efficient, and readily scalable experimental workflow for PCR-based genome editing in cultured Drosophila melanogaster cells. Our analysis at the act5C locus suggests that PCR-based homology arms of 60 bp are sufficient to reach targeting efficiencies of up to 80% after selection; extension to 80 bp (PCR or 500 bp (targeting vector did not further improve the yield. We have expanded our targeting system to N-terminal epitope tags; this also allows the generation of cell populations with heterologous expression control of the tagged locus via the copper-inducible mtnDE promoter. We present detailed, quantitative data on editing efficiencies for several genomic loci that may serve as positive controls or benchmarks in other laboratories. While our first PCR-based editing approach offered only blasticidin-resistance for selection, we now introduce puromycin-resistance as a second, independent selection marker; it is thus possible to edit two loci (e.g., for coimmunoprecipitation without marker removal. Finally, we describe a modified FLP recombinase expression plasmid that improves the efficiency of marker cassette FLP-out. In summary, our technique and reagents enable a flexible, robust, and cloning-free genome editing approach that can be parallelized for scale-up.

  8. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  9. Functional requirements driving the gene duplication in 12 Drosophila species.

    Science.gov (United States)

    Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui

    2013-08-15

    Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.

  10. Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Teramura Kouhei

    2011-06-01

    Full Text Available Abstract Background Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. Results To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. Conclusion The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries.

  11. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits

    Science.gov (United States)

    Wangler, Michael F.; Hu, Yanhui

    2017-01-01

    ABSTRACT Human genome-wide association studies (GWAS) have successfully identified thousands of susceptibility loci for common diseases with complex genetic etiologies. Although the susceptibility variants identified by GWAS usually have only modest effects on individual disease risk, they contribute to a substantial burden of trait variation in the overall population. GWAS also offer valuable clues to disease mechanisms that have long proven to be elusive. These insights could lead the way to breakthrough treatments; however, several challenges hinder progress, making innovative approaches to accelerate the follow-up of results from GWAS an urgent priority. Here, we discuss the largely untapped potential of the fruit fly, Drosophila melanogaster, for functional investigation of findings from human GWAS. We highlight selected examples where strong genomic conservation with humans along with the rapid and powerful genetic tools available for flies have already facilitated fine mapping of association signals, elucidated gene mechanisms, and revealed novel disease-relevant biology. We emphasize current research opportunities in this rapidly advancing field, and present bioinformatic analyses that systematically explore the applicability of Drosophila for interrogation of susceptibility signals implicated in more than 1000 human traits, based on all GWAS completed to date. Thus, our discussion is targeted at both human geneticists seeking innovative strategies for experimental validation of findings from GWAS, as well as the Drosophila research community, by whom ongoing investigations of the implicated genes will powerfully inform our understanding of human disease. PMID:28151408

  12. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J; Lu, Xiangyi; Ruden, Douglas M

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.

  13. Reversible perturbations of gene regulation after genome editing in Drosophila cells.

    Directory of Open Access Journals (Sweden)

    Stefan Kunzelmann

    Full Text Available The prokaryotic phage defense CRISPR/cas-system has developed into a versatile toolbox for genome engineering and genetic studies in many organisms. While many efforts were spent on analyzing the consequences of off-target effects, only few studies addressed side-effects that occur due to the targeted manipulation of the genome. Here, we show that the CRISPR/cas9-mediated integration of an epitope tag in combination with a selection cassette can trigger an siRNA-mediated, epigenetic genome surveillance pathway in Drosophila melanogaster cells. After homology-directed insertion of the sequence coding for the epitope tag and the selection marker, a moderate level of siRNAs covering the inserted sequence and extending into the targeted locus was detected. This response affected protein levels less than two-fold and it persisted even after single cell cloning. However, removal of the selection cassette abolished the siRNA generation, demonstrating that this response is reversible. Consistently, marker-free genome engineering did not trigger the same surveillance mechanism. These two observations indicate that the selection cassette we employed induces an aberrant transcriptional arrangement and ultimately sets off the siRNA production. There have been prior concerns about undesirable effects induced by selection markers, but fortunately we were able to show that at least one of the epigenetic changes reverts as the marker gene is excised. Although the effects observed were rather weak (less than twofold de-repression upon ago2 or dcr-2 knock-down, we recommend that when selection markers are used during genome editing, a strategy for their subsequent removal should always be included.

  14. Generation of genome-modified Drosophila cell lines using SwAP.

    Science.gov (United States)

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  15. Genome-wide DNA binding pattern of the homeodomain transcription factor Sine oculis (So in the developing eye of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Barbara Jusiak

    2014-12-01

    Full Text Available The eye of the fruit fly Drosophila melanogaster provides a highly tractable genetic model system for the study of animal development, and many genes that regulate Drosophila eye formation have homologs implicated in human development and disease. Among these is the homeobox gene sine oculis (so, which encodes a homeodomain transcription factor (TF that is both necessary for eye development and sufficient to reprogram a subset of cells outside the normal eye field toward an eye fate. We have performed a genome-wide analysis of So binding to DNA prepared from developing Drosophila eye tissue in order to identify candidate direct targets of So-mediated transcriptional regulation, as described in our recent article [20]. The data are available from NCBI Gene Expression Omnibus (GEO with the accession number GSE52943. Here we describe the methods, data analysis, and quality control of our So ChIP-seq dataset.

  16. Cancer in Drosophila

    DEFF Research Database (Denmark)

    Herranz, Héctor; Eichenlaub, Teresa; Cohen, Stephen M

    2016-01-01

    Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study...

  17. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  18. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster

    Science.gov (United States)

    Adrion, Jeffrey R.; Song, Michael J.; Schrider, Daniel R.; Hahn, Matthew W.

    2017-01-01

    Abstract Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species. PMID:28338986

  19. A Genomic Map of the Effects of Linked Selection in Drosophila.

    Directory of Open Access Journals (Sweden)

    Eyal Elyashiv

    2016-08-01

    Full Text Available Natural selection at one site shapes patterns of genetic variation at linked sites. Quantifying the effects of "linked selection" on levels of genetic diversity is key to making reliable inference about demography, building a null model in scans for targets of adaptation, and learning about the dynamics of natural selection. Here, we introduce the first method that jointly infers parameters of distinct modes of linked selection, notably background selection and selective sweeps, from genome-wide diversity data, functional annotations and genetic maps. The central idea is to calculate the probability that a neutral site is polymorphic given local annotations, substitution patterns, and recombination rates. Information is then combined across sites and samples using composite likelihood in order to estimate genome-wide parameters of distinct modes of selection. In addition to parameter estimation, this approach yields a map of the expected neutral diversity levels along the genome. To illustrate the utility of our approach, we apply it to genome-wide resequencing data from 125 lines in Drosophila melanogaster and reliably predict diversity levels at the 1Mb scale. Our results corroborate estimates of a high fraction of beneficial substitutions in proteins and untranslated regions (UTR. They allow us to distinguish between the contribution of sweeps and other modes of selection around amino acid substitutions and to uncover evidence for pervasive sweeps in untranslated regions (UTRs. Our inference further suggests a substantial effect of other modes of linked selection and of adaptation in particular. More generally, we demonstrate that linked selection has had a larger effect in reducing diversity levels and increasing their variance in D. melanogaster than previously appreciated.

  20. A Genomic Map of the Effects of Linked Selection in Drosophila.

    Science.gov (United States)

    Elyashiv, Eyal; Sattath, Shmuel; Hu, Tina T; Strutsovsky, Alon; McVicker, Graham; Andolfatto, Peter; Coop, Graham; Sella, Guy

    2016-08-01

    Natural selection at one site shapes patterns of genetic variation at linked sites. Quantifying the effects of "linked selection" on levels of genetic diversity is key to making reliable inference about demography, building a null model in scans for targets of adaptation, and learning about the dynamics of natural selection. Here, we introduce the first method that jointly infers parameters of distinct modes of linked selection, notably background selection and selective sweeps, from genome-wide diversity data, functional annotations and genetic maps. The central idea is to calculate the probability that a neutral site is polymorphic given local annotations, substitution patterns, and recombination rates. Information is then combined across sites and samples using composite likelihood in order to estimate genome-wide parameters of distinct modes of selection. In addition to parameter estimation, this approach yields a map of the expected neutral diversity levels along the genome. To illustrate the utility of our approach, we apply it to genome-wide resequencing data from 125 lines in Drosophila melanogaster and reliably predict diversity levels at the 1Mb scale. Our results corroborate estimates of a high fraction of beneficial substitutions in proteins and untranslated regions (UTR). They allow us to distinguish between the contribution of sweeps and other modes of selection around amino acid substitutions and to uncover evidence for pervasive sweeps in untranslated regions (UTRs). Our inference further suggests a substantial effect of other modes of linked selection and of adaptation in particular. More generally, we demonstrate that linked selection has had a larger effect in reducing diversity levels and increasing their variance in D. melanogaster than previously appreciated.

  1. The radioactive inventory of a Berkeley heat exchanger

    International Nuclear Information System (INIS)

    Hancock, R.

    1988-10-01

    The Central Electricity Generating Board has announced a date for the final shutdown of the first of the Magnox power stations at Berkeley (March 1989), and is in the process of preparing Pre-Decommissioning Safety Reports (PDSR) for the decommissioning of Berkeley and Bradwell. This report supports these PDSR studies and reports work carried out within the Research Division at Berkeley Nuclear Laboratories on the radioactive inventories of the heat exchangers at Berkeley Power Station. At Berkeley, the heat exchangers will be included in stage two decommissioning to which they will contribute the largest mass of contaminated material. The purpose of this report is to bring together all of the available data on the contamination in the heat exchangers at Berkeley Power Station, and to recommend a database from which the options for disposal of the heat exchangers may be formulated. (author)

  2. A genome-wide gene function prediction resource for Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Han Yan

    2010-08-01

    Full Text Available Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the influence of different biological datasets for each functional category. Our model predicted GO terms and KEGG pathway memberships for Drosophila melanogaster genes with high accuracy, as affirmed by cross-validation, supporting literature evidence, and large-scale RNAi screens. The resulting resource of prioritized associations between Drosophila genes and their potential functions offers a guide for experimental investigations.

  3. Environmental research at Berkeley

    CERN Multimedia

    1973-01-01

    The information concerning the Energy and Environment Programme at the Lawrence Berkeley Laboratory is based on a talk given at CERN by A.M. Sessler, one of the initiators of the Programme. (Dr. Sessler has been appointed Director of the Lawrence Berkeley Laboratory, in succession to Prof. E. M. McMillan, from 1 November.) Many of the topics mentioned merit an extended story in themselves but the purpose of this article is simply to give a sketch of what is happening.

  4. Lawrence Berkeley National Laboratory 2016 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P.; Williams, Kim, P.

    2017-06-27

    FY2016 was a year of significant change and progress at Berkeley Lab. In March, Laboratory Director Michael Witherell assumed his new role when former Lab Director Paul Alivisatos became Vice Chancellor for Research at UC Berkeley. Dr. Witherell has solidified the Lab’s strategy, with a focus on long term science and technology priorities. Large-scale science efforts continued to expand at the Lab, including the Dark Energy Spectroscopic Instrument now heading towards construction, and the LUX-ZEPLIN dark matter detector to be built underground in South Dakota. Another proposed project, the Advanced Light Source-Upgrade, was given preliminary approval and will be the Lab’s largest scientific investment in years. Construction of the Integrative Genomics Building began, and will bring together researchers from the Lab’s Joint Genome Institute, now based in Walnut Creek, and the Systems Biology Knowledgebase (K-Base) under one roof. Investment in the Lab’s infrastructure also continues, informed by the Lab’s Infrastructure Strategic Plan. Another important focus is on developing the next generation of scientists with the talent and diversity needed to sustain Berkeley Lab’s scientific leadership and mission contributions to DOE and the Nation. Berkeley Lab received $897.5M in new FY2016 funding, a 12.5% increase over FY2015, for both programmatic and infrastructure activities. While the Laboratory experienced a substantial increase in funding, it was accompanied by only a modest increase in spending, as areas of growth were partially offset by the completion of several major efforts in FY2015. FY2016 costs were $826.9M, an increase of 1.9% over FY2015. Similar to the prior year, the indirect-funded Operations units worked with generally flat budgets to yield more funding for strategic needs. A key challenge for Berkeley Lab continues to be achieving the best balance to fund essential investments, deliver highly effective operational mission support and

  5. Population Genomics of sub-saharan Drosophila melanogaster: African diversity and non-African admixture.

    Directory of Open Access Journals (Sweden)

    John E Pool

    Full Text Available Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia, while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa F(ST were found to be enriched in genomic regions of locally

  6. Population Genomics of Sub-Saharan Drosophila melanogaster: African Diversity and Non-African Admixture

    Science.gov (United States)

    Pool, John E.; Corbett-Detig, Russell B.; Sugino, Ryuichi P.; Stevens, Kristian A.; Cardeno, Charis M.; Crepeau, Marc W.; Duchen, Pablo; Emerson, J. J.; Saelao, Perot; Begun, David J.; Langley, Charles H.

    2012-01-01

    Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan

  7. Diversity, Equity, & Inclusion at Berkeley Lab

    Science.gov (United States)

    Berkeley Lab A-Z Index Directory Search Diversity, Equity, & Inclusion at Berkeley Lab Home Diversity & Inclusion Council Women Scientists & Engineers Council Employee Resource Groups -and culture of inclusion are key to attracting and engaging the brightest minds and furthering our

  8. Large clusters of co-expressed genes in the Drosophila genome.

    Science.gov (United States)

    Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2002-12-12

    Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.

  9. Identification of functional elements and regulatory circuits by Drosophila modENCODE.

    Science.gov (United States)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L; Landolin, Jane M; Bristow, Christopher A; Ma, Lijia; Lin, Michael F; Washietl, Stefan; Arshinoff, Bradley I; Ay, Ferhat; Meyer, Patrick E; Robine, Nicolas; Washington, Nicole L; Di Stefano, Luisa; Berezikov, Eugene; Brown, Christopher D; Candeias, Rogerio; Carlson, Joseph W; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y; Will, Sebastian; Alekseyenko, Artyom A; Artieri, Carlo; Booth, Benjamin W; Brooks, Angela N; Dai, Qi; Davis, Carrie A; Duff, Michael O; Feng, Xin; Gorchakov, Andrey A; Gu, Tingting; Henikoff, Jorja G; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K; Riddle, Nicole C; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E; Schwartz, Yuri B; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E; Brent, Michael R; Cherbas, Lucy; Elgin, Sarah C R; Gingeras, Thomas R; Grossman, Robert; Hoskins, Roger A; Kaufman, Thomas C; Kent, William; Kuroda, Mitzi I; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J; Celniker, Susan E; Henikoff, Steven; Karpen, Gary H; Lai, Eric C; MacAlpine, David M; Stein, Lincoln D; White, Kevin P; Kellis, Manolis

    2010-12-24

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.

  10. Two distinct genomic regions, harbouring the period and fruitless genes, affect male courtship song in Drosophila montana.

    Science.gov (United States)

    Lagisz, M; Wen, S-Y; Routtu, J; Klappert, K; Mazzi, D; Morales-Hojas, R; Schäfer, M A; Vieira, J; Hoikkala, A; Ritchie, M G; Butlin, R K

    2012-06-01

    Acoustic signals often have a significant role in pair formation and in species recognition. Determining the genetic basis of signal divergence will help to understand signal evolution by sexual selection and its role in the speciation process. An earlier study investigated quantitative trait locus for male courtship song carrier frequency (FRE) in Drosophila montana using microsatellite markers. We refined this study by adding to the linkage map markers for 10 candidate genes known to affect song production in Drosophila melanogaster. We also extended the analyses to additional song characters (pulse train length (PTL), pulse number (PN), interpulse interval, pulse length (PL) and cycle number (CN)). Our results indicate that loci in two different regions of the genome control distinct features of the courtship song. Pulse train traits (PTL and PN) mapped to the X chromosome, showing significant linkage with the period gene. In contrast, characters related to song pulse properties (PL, CN and carrier FRE) mapped to the region of chromosome 2 near the candidate gene fruitless, identifying these genes as suitable loci for further investigations. In previous studies, the pulse train traits have been found to vary substantially between Drosophila species, and so are potential species recognition signals, while the pulse traits may be more important in intra-specific mate choice.

  11. Genome-wide mapping of Painting of fourth on Drosophila melanogaster salivary gland polytene chromosomes.

    Science.gov (United States)

    Johansson, Anna-Mia; Larsson, Jan

    2014-12-01

    The protein Painting of fourth (POF) in Drosophila melanogaster specifically targets and stimulates expression output from the heterochromatic 4th chromosome, thereby representing an autosome specific protein [1,2]. Despite the high specificity for chromosome 4 genes, POF is occasionally observed binding to the cytological region 2L:31 in males and females [3] and two loci on the X-chromosome, PoX1 and PoX2 only in females [4]. Here we provide a detailed description of the experimental design and analysis of the tiling array data presented by Lundberg and colleagues in G3: Genes, Genomes, Genetics 2013 [4], where the female specific POF binding to PoX1 and PoX2 loci on the X chromosome was reported. We show the genome-wide high resolution binding profile of the POF protein where these different POF binding sites are detected. The complete data set is available at http://www.ncbi.nlm.nih.gov/geo/ (accession: GSE45402).

  12. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila

    Directory of Open Access Journals (Sweden)

    Dennis Pauls

    2014-06-01

    Full Text Available More than a decade has passed since the release of the Drosophila melanogaster genome and the first predictions of fruit fly regulatory peptides (neuropeptides and peptide hormones. Since then, mass spectrometry-based methods have fuelled the chemical characterisation of regulatory peptides, from 7 Drosophila peptides in the pre-genomic area to more than 60 today. We review the development of fruit fly peptidomics, and present a comprehensive list of the regulatory peptides that have been chemically characterised until today. We also summarise the knowledge on peptide processing in Drosophila, which has strongly profited from a combination of MS-based techniques and the genetic tools available for the fruit fly. This combination has a very high potential to study the functional biology of peptide signalling on all levels, especially with the ongoing developments in quantitative MS in Drosophila.

  13. FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species.

    Science.gov (United States)

    Santos, Josiane; Serra, Lluis; Solé, Elisabet; Pascual, Marta

    2010-02-01

    Microsatellites are highly polymorphic markers that are distributed through all the genome being more abundant in non-coding regions. Whether they are neutral or under selection, these markers if localized can be used as co-dominant molecular markers to explore the dynamics of the evolutionary processes. Their cytological localization can allow identifying genes under selection, inferring recombination from a genomic point of view, or screening for the genomic reorganizations occurring during the evolution of a lineage, among others. In this paper, we report for the first time the localization of microsatellite loci by fluorescent in situ hybridization on Drosophila polytene chromosomes. In Drosophila subobscura, 72 dinucleotide microsatellite loci were localized by fluorescent in situ hybridization yielding unique hybridization signals. In the sex chromosome, microsatellite distribution was not uniform and its density was higher than in autosomes. We identified homologous segments to the sequence flanking the microsatellite loci by browsing the genome sequence of Drosophila pseudoobscura and Drosophila melanogaster. Their localization supports the conservation of Muller's chromosomal elements among Drosophila species and the existence of multiple intrachromosomal rearrangements within each evolutionary lineage. Finally, the lack of microsatellite repeats in the homologous D. melanogaster sequences suggests convergent evolution for high microsatellite density in the distal part of the X chromosome.

  14. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  15. Reexamining microRNA site accessibility in Drosophila: a population genomics study.

    Directory of Open Access Journals (Sweden)

    Kevin Chen

    Full Text Available Kertesz et al. (Nature Genetics 2008 described PITA, a miRNA target prediction algorithm based on hybridization energy and site accessibility. In this note, we used a population genomics approach to reexamine their data and found that the PITA algorithm had lower specificity than methods based on evolutionary conservation at comparable levels of sensitivity.We also showed that deeply conserved miRNAs tend to have stronger hybridization energies to their targets than do other miRNAs. Although PITA had higher specificity in predicting targets than a naïve seed-match method, this signal was primarily due to the use of a single cutoff score for all miRNAs and to the observed correlation between conservation and hybridization energy. Overall, our results clarify the accuracy of different miRNA target prediction algorithms in Drosophila and the role of site accessibility in miRNA target prediction.

  16. How hot are drosophila hotspots? examining recombination rate variation and associations with nucleotide diversity, divergence, and maternal age in Drosophila pseudoobscura.

    Directory of Open Access Journals (Sweden)

    Brenda Manzano-Winkler

    Full Text Available Fine scale meiotic recombination maps have uncovered a large amount of variation in crossover rate across the genomes of many species, and such variation in mammalian and yeast genomes is concentrated to <5kb regions of highly elevated recombination rates (10-100x the background rate called "hotspots." Drosophila exhibit substantial recombination rate heterogeneity across their genome, but evidence for these highly-localized hotspots is lacking. We assayed recombination across a 40Kb region of Drosophila pseudoobscura chromosome 2, with one 20kb interval assayed every 5Kb and the adjacent 20kb interval bisected into 10kb pieces. We found that recombination events across the 40kb stretch were relatively evenly distributed across each of the 5kb and 10kb intervals, rather than concentrated in a single 5kb region. This, in combination with other recent work, indicates that the recombination landscape of Drosophila may differ from the punctate recombination pattern observed in many mammals and yeast. Additionally, we found no correlation of average pairwise nucleotide diversity and divergence with recombination rate across the 20kb intervals, nor any effect of maternal age in weeks on recombination rate in our sample.

  17. Treatment of Berkeley boilers in Studsvik. Project description and experiences - Berkeley Boilers Project

    International Nuclear Information System (INIS)

    Saul, Dave; Davidson, Gavin; Wirendal, Bo

    2014-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. In November 2012 Studsvik was awarded a further contract for the remaining ten Berkeley Boilers with the requirement to remove all boilers from the Berkeley site by 31 March 2013. Again this was successfully achieved ahead of programme with all boilers in Sweden by 1 April 2013. A total of nine boilers have now been processed and all remaining boilers will be completed by end of September 2014. The projects have had many challenges including a very tight timescale and both have been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the boilers to date. (authors)

  18. Genomic Analysis of Genotype-by-Social Environment Interaction for Drosophila melanogaster Aggressive Behavior

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Gartner, Bryn; Ward, Kirsty

    2017-01-01

    Human psychiatric disorders such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder often include adverse behaviors including increased aggressiveness. Individuals with psychiatric disorders often exhibit social withdrawal, which can further increase the probability...... of conducting a violent act. Here, we used the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP) to investigate the genetic basis of variation inmale aggressive behavior for flies reared in a socialized and socially isolated environment. We identified genetic variation for aggressive...... behavior, as well as significant genotype-by-social environ- mental interaction (GSEI); i.e., variation among DGRP genotypes in the degree to which social isolation affected aggression. We performed genome-wide association (GWA) analyses to identify genetic variants associated with aggression within each...

  19. Accounting for genetic architecture improves sequence based genomic prediction for a Drosophila fitness trait.

    Science.gov (United States)

    Ober, Ulrike; Huang, Wen; Magwire, Michael; Schlather, Martin; Simianer, Henner; Mackay, Trudy F C

    2015-01-01

    The ability to predict quantitative trait phenotypes from molecular polymorphism data will revolutionize evolutionary biology, medicine and human biology, and animal and plant breeding. Efforts to map quantitative trait loci have yielded novel insights into the biology of quantitative traits, but the combination of individually significant quantitative trait loci typically has low predictive ability. Utilizing all segregating variants can give good predictive ability in plant and animal breeding populations, but gives little insight into trait biology. Here, we used the Drosophila Genetic Reference Panel to perform both a genome wide association analysis and genomic prediction for the fitness-related trait chill coma recovery time. We found substantial total genetic variation for chill coma recovery time, with a genetic architecture that differs between males and females, a small number of molecular variants with large main effects, and evidence for epistasis. Although the top additive variants explained 36% (17%) of the genetic variance among lines in females (males), the predictive ability using genomic best linear unbiased prediction and a relationship matrix using all common segregating variants was very low for females and zero for males. We hypothesized that the low predictive ability was due to the mismatch between the infinitesimal genetic architecture assumed by the genomic best linear unbiased prediction model and the true genetic architecture of chill coma recovery time. Indeed, we found that the predictive ability of the genomic best linear unbiased prediction model is markedly improved when we combine quantitative trait locus mapping with genomic prediction by only including the top variants associated with main and epistatic effects in the relationship matrix. This trait-associated prediction approach has the advantage that it yields biologically interpretable prediction models.

  20. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  1. A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster.

    Science.gov (United States)

    Yin, Hang; Sweeney, Sarah; Raha, Debasish; Snyder, Michael; Lin, Haifan

    2011-12-01

    Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP-Seq) and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a) and RNA polymerase II (polII). These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications.

  2. High rate of translocation-based gene birth on the Drosophila Y chromosome.

    Science.gov (United States)

    Tobler, Ray; Nolte, Viola; Schlötterer, Christian

    2017-10-31

    The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species. Copyright © 2017 the Author(s). Published by PNAS.

  3. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade.

    Science.gov (United States)

    Turissini, David A; Matute, Daniel R

    2017-09-01

    The process of speciation involves populations diverging over time until they are genetically and reproductively isolated. Hybridization between nascent species was long thought to directly oppose speciation. However, the amount of interspecific genetic exchange (introgression) mediated by hybridization remains largely unknown, although recent progress in genome sequencing has made measuring introgression more tractable. A natural place to look for individuals with admixed ancestry (indicative of introgression) is in regions where species co-occur. In west Africa, D. santomea and D. yakuba hybridize on the island of São Tomé, while D. yakuba and D. teissieri hybridize on the nearby island of Bioko. In this report, we quantify the genomic extent of introgression between the three species of the Drosophila yakuba clade (D. yakuba, D. santomea), D. teissieri). We sequenced the genomes of 86 individuals from all three species. We also developed and applied a new statistical framework, using a hidden Markov approach, to identify introgression. We found that introgression has occurred between both species pairs but most introgressed segments are small (on the order of a few kilobases). After ruling out the retention of ancestral polymorphism as an explanation for these similar regions, we find that the sizes of introgressed haplotypes indicate that genetic exchange is not recent (>1,000 generations ago). We additionally show that in both cases, introgression was rarer on X chromosomes than on autosomes which is consistent with sex chromosomes playing a large role in reproductive isolation. Even though the two species pairs have stable contemporary hybrid zones, providing the opportunity for ongoing gene flow, our results indicate that genetic exchange between these species is currently rare.

  4. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  5. SCREEN FOR DOMINANT BEHAVIORAL MUTATIONS CAUSED BY GENOMIC INSERTION OF P-ELEMENT TRANSPOSONS IN DROSOPHILA: AN EXAMINATION OF THE INTEGRATION OF VIRAL VECTOR SEQUENCES

    OpenAIRE

    FOX, LYLE E.; GREEN, DAVID; YAN, ZIYING; ENGELHARDT, JOHN F.; WU, CHUN-FANG

    2007-01-01

    Here we report the development of a high-throughput screen to assess dominant mutation rates caused by P-element transposition within the Drosophila genome that is suitable for assessing the undesirable effects of integrating foreign regulatory sequences (viral cargo) into a host genome. Three different behavioral paradigms were used: sensitivity to mechanical stress, response to heat stress, and ability to fly. The results, from our screen of 35,000 flies, indicate that mutations caused by t...

  6. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-01-01

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  7. Genome features of "Dark-fly", a Drosophila line reared long-term in a dark environment.

    Directory of Open Access Journals (Sweden)

    Minako Izutsu

    Full Text Available Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed "Dark-fly", which has been maintained in constant dark conditions for 57 years (1400 generations. We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs and 4,700 insertions or deletions (InDels in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products. Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation.

  8. Genome differentiation of Drosophila melanogaster from a microclimate contrast in Evolution Canyon, Israel

    Science.gov (United States)

    Hübner, Sariel; Rashkovetsky, Eugenia; Kim, Young Bun; Oh, Jung Hun; Michalak, Katarzyna; Weiner, Dmitry; Korol, Abraham B.; Nevo, Eviatar; Michalak, Pawel

    2013-01-01

    The opposite slopes of “Evolution Canyon” in Israel have served as a natural model system of adaptation to a microclimate contrast. Long-term studies of Drosophila melanogaster populations inhabiting the canyon have exhibited significant interslope divergence in thermal and drought stress resistance, candidate genes, mobile elements, habitat choice, mating discrimination, and wing-shape variation, all despite close physical proximity of the contrasting habitats, as well as substantial interslope migration. To examine patterns of genetic differentiation at the genome-wide level, we used high coverage sequencing of the flies’ genomes. A total of 572 genes were significantly different in allele frequency between the slopes, 106 out of which were associated with 74 significantly overrepresented gene ontology (GO) terms, particularly so with response to stimulus and developmental and reproductive processes, thus corroborating previous observations of interslope divergence in stress response, life history, and mating functions. There were at least 37 chromosomal “islands” of interslope divergence and low sequence polymorphism, plausible signatures of selective sweeps, more abundant in flies derived from one (north-facing) of the slopes. Positive correlation between local recombination rate and the level of nucleotide polymorphism was also found. PMID:24324170

  9. STAR FORMATION NEAR BERKELEY 59: EMBEDDED PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosvick, J. M. [Department of Physical Sciences, Thompson Rivers University, 900 McGill Road, Kamloops, BC V2C 0C8 (Canada); Majaess, D. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada)

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (∼2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, {sup 12}CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v {sub LSR} = –15 to –17 km s{sup –1}, which agrees with the velocity adopted for Berkeley 59 (–15.7 km s{sup –1}), while spectral energy distribution models yield an average interstellar extinction A{sub V} and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  10. What Made Berkeley Great? The Sources of Berkeley's Sustained Academic Excellence. Research & Occasional Paper Series CSHE.3.11

    Science.gov (United States)

    Breslauer, George W.

    2011-01-01

    University of California (UC) Berkeley's chief academic officer explores the historical sources of Berkeley' academic excellence. He identifies five key factors: (1) wealth from many sources; (2) supportive and skilled governors; (3) leadership from key UC presidents; (4) the pioneering ethos within the State of California; and (5) a process of…

  11. Accounting for genetic architecture improves sequence based genomic prediction for a Drosophila fitness trait.

    Directory of Open Access Journals (Sweden)

    Ulrike Ober

    Full Text Available The ability to predict quantitative trait phenotypes from molecular polymorphism data will revolutionize evolutionary biology, medicine and human biology, and animal and plant breeding. Efforts to map quantitative trait loci have yielded novel insights into the biology of quantitative traits, but the combination of individually significant quantitative trait loci typically has low predictive ability. Utilizing all segregating variants can give good predictive ability in plant and animal breeding populations, but gives little insight into trait biology. Here, we used the Drosophila Genetic Reference Panel to perform both a genome wide association analysis and genomic prediction for the fitness-related trait chill coma recovery time. We found substantial total genetic variation for chill coma recovery time, with a genetic architecture that differs between males and females, a small number of molecular variants with large main effects, and evidence for epistasis. Although the top additive variants explained 36% (17% of the genetic variance among lines in females (males, the predictive ability using genomic best linear unbiased prediction and a relationship matrix using all common segregating variants was very low for females and zero for males. We hypothesized that the low predictive ability was due to the mismatch between the infinitesimal genetic architecture assumed by the genomic best linear unbiased prediction model and the true genetic architecture of chill coma recovery time. Indeed, we found that the predictive ability of the genomic best linear unbiased prediction model is markedly improved when we combine quantitative trait locus mapping with genomic prediction by only including the top variants associated with main and epistatic effects in the relationship matrix. This trait-associated prediction approach has the advantage that it yields biologically interpretable prediction models.

  12. Biases in Drosophila melanogaster protein trap screens

    Directory of Open Access Journals (Sweden)

    Müller Ilka

    2009-05-01

    Full Text Available Abstract Background The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. Results We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p -4. Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Conclusion Our analyses suggest that the

  13. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...... and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition...... and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms...

  14. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  15. Splinkerette PCR for mapping transposable elements in Drosophila.

    Directory of Open Access Journals (Sweden)

    Christopher J Potter

    2010-04-01

    Full Text Available Transposable elements (such as the P-element and piggyBac have been used to introduce thousands of transgenic constructs into the Drosophila genome. These transgenic constructs serve many roles, from assaying gene/cell function, to controlling chromosome arm rearrangement. Knowing the precise genomic insertion site for the transposable element is often desired. This enables identification of genomic enhancer regions trapped by an enhancer trap, identification of the gene mutated by a transposon insertion, or simplifying recombination experiments. The most commonly used transgene mapping method is inverse PCR (iPCR. Although usually effective, limitations with iPCR hinder its ability to isolate flanking genomic DNA in complex genomic loci, such as those that contain natural transposons. Here we report the adaptation of the splinkerette PCR (spPCR method for the isolation of flanking genomic DNA of any P-element or piggyBac. We report a simple and detailed protocol for spPCR. We use spPCR to 1 map a GAL4 enhancer trap located inside a natural transposon, pinpointing a master regulatory region for olfactory neuron expression in the brain; and 2 map all commonly used centromeric FRT insertion sites. The ease, efficiency, and efficacy of spPCR could make it a favored choice for the mapping of transposable element in Drosophila.

  16. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  17. [Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome].

    Science.gov (United States)

    Makhnovskii, P A; Kuzmin, I V; Nefedova, L N; Kima, A I

    2016-01-01

    Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.

  18. Splinkerette PCR for mapping transposable elements in Drosophila.

    OpenAIRE

    Christopher J Potter; Liqun Luo

    2010-01-01

    Transposable elements (such as the P-element and piggyBac) have been used to introduce thousands of transgenic constructs into the Drosophila genome. These transgenic constructs serve many roles, from assaying gene/cell function, to controlling chromosome arm rearrangement. Knowing the precise genomic insertion site for the transposable element is often desired. This enables identification of genomic enhancer regions trapped by an enhancer trap, identification of the gene mutated by a transpo...

  19. Genetics on the Fly: A Primer on the Drosophila Model System

    Science.gov (United States)

    Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.

    2015-01-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900

  20. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  1. REDfly: a Regulatory Element Database for Drosophila.

    Science.gov (United States)

    Gallo, Steven M; Li, Long; Hu, Zihua; Halfon, Marc S

    2006-02-01

    Bioinformatics studies of transcriptional regulation in the metazoa are significantly hindered by the absence of readily available data on large numbers of transcriptional cis-regulatory modules (CRMs). Even the richly annotated Drosophila melanogaster genome lacks extensive CRM information. We therefore present here a database of Drosophila CRMs curated from the literature complete with both DNA sequence and a searchable description of the gene expression pattern regulated by each CRM. This resource should greatly facilitate the development of computational approaches to CRM discovery as well as bioinformatics analyses of regulatory sequence properties and evolution.

  2. Identification of functional elements and regulatory circuits by Drosophila modENCODE

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L.; Landolin, Jane M.; Bristow, Christopher A.; Ma, Lijia; Lin, Michael F.; Washietl, Stefan; Arshinoff, Bradley I.; Ay, Ferhat; Meyer, Patrick E.; Robine, Nicolas; Washington, Nicole L.; Stefano, Luisa Di; Berezikov, Eugene; Brown, Christopher D.; Candeias, Rogerio; Carlson, Joseph W.; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y.; Will, Sebastian; Alekseyenko, Artyom A.; Artieri, Carlo; Booth, Benjamin W.; Brooks, Angela N.; Dai, Qi; Davis, Carrie A.; Duff, Michael O.; Feng, Xin; Gorchakov, Andrey A.; Gu, Tingting; Henikoff, Jorja G.; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K.; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K.; Riddle, Nicole C.; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E.; Schwartz, Yuri B.; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H.; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E.; Brent, Michael R.; Cherbas, Lucy; Elgin, Sarah C. R.; Gingeras, Thomas R.; Grossman, Robert; Hoskins, Roger A.; Kaufman, Thomas C.; Kent, William; Kuroda, Mitzi I.; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W.; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R.; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J.; Celniker, Susan E.; Henikoff, Steven; Karpen, Gary H.; Lai, Eric C.; MacAlpine, David M.; Stein, Lincoln D.; White, Kevin P.; Kellis, Manolis

    2010-12-22

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The functions

  3. The Mapping of Predicted Triplex DNA:RNA in the Drosophila Genome Reveals a Prominent Location in Development- and Morphogenesis-Related Genes

    Directory of Open Access Journals (Sweden)

    Claude Pasquier

    2017-07-01

    Full Text Available Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand. A nucleic acid triplex occurs according to Hoogsteen rules that predict the stability and affinity of the third strand bound to the Watson–Crick duplex. The “triplex-forming oligonucleotide” (TFO can be a short sequence of RNA that binds to the major groove of the targeted duplex only when this duplex presents a sequence of purine or pyrimidine bases in one of the DNA strands. Many nuclear proteins are known to bind triplex DNA or DNA:RNA, but their biological functions are unexplored. We identified sequences that are capable of engaging as the “triplex-forming oligonucleotide” in both the pre-lncRNA and pre-mRNA collections of Drosophila melanogaster. These motifs were matched against the Drosophila genome in order to identify putative sequences of triplex formation in intergenic regions, promoters, and introns/exons. Most of the identified TFOs appear to be located in the intronic region of the analyzed genes. Computational prediction of the most targeted genes by TFOs originating from pre-lncRNAs and pre-mRNAs revealed that they are restrictively associated with development- and morphogenesis-related gene networks. The refined analysis by Gene Ontology enrichment demonstrates that some individual TFOs present genome-wide scale matches that are located in numerous genes and regulatory sequences. The triplex DNA:RNA computational mapping at the genome-wide scale suggests broad interference in the regulatory process of the gene networks orchestrated by TFO RNAs acting in association simultaneously at multiple sites.

  4. NF-1 Dependent Gene Regulation in Drosophila Melanogaster

    National Research Council Canada - National Science Library

    Zhong, Yi

    2004-01-01

    .... We have used an Affymetrix whole genome chip, containing all 13,500 genes of the fruit fly Drosophila, to identify 93 genes with altered expression patterns in flies that have no NF1 protein compared...

  5. Whole-genome sequencing of two North American Drosophila melanogaster populations reveals genetic differentiation and positive selection.

    Science.gov (United States)

    Campo, D; Lehmann, K; Fjeldsted, C; Souaiaia, T; Kao, J; Nuzhdin, S V

    2013-10-01

    The prevailing demographic model for Drosophila melanogaster suggests that the colonization of North America occurred very recently from a subset of European flies that rapidly expanded across the continent. This model implies a sudden population growth and range expansion consistent with very low or no population subdivision. As flies adapt to new environments, local adaptation events may be expected. To describe demographic and selective events during North American colonization, we have generated a data set of 35 individual whole-genome sequences from inbred lines of D. melanogaster from a west coast US population (Winters, California, USA) and compared them with a public genome data set from Raleigh (Raleigh, North Carolina, USA). We analysed nuclear and mitochondrial genomes and described levels of variation and divergence within and between these two North American D. melanogaster populations. Both populations exhibit negative values of Tajima's D across the genome, a common signature of demographic expansion. We also detected a low but significant level of genome-wide differentiation between the two populations, as well as multiple allele surfing events, which can be the result of gene drift in local subpopulations on the edge of an expansion wave. In contrast to this genome-wide pattern, we uncovered a 50-kilobase segment in chromosome arm 3L that showed all the hallmarks of a soft selective sweep in both populations. A comparison of allele frequencies within this divergent region among six populations from three continents allowed us to cluster these populations in two differentiated groups, providing evidence for the action of natural selection on a global scale. © 2013 John Wiley & Sons Ltd.

  6. Incompatibility and competitive exclusion of genomic segments between sibling Drosophila species.

    Science.gov (United States)

    Fang, Shu; Yukilevich, Roman; Chen, Ying; Turissini, David A; Zeng, Kai; Boussy, Ian A; Wu, Chung-I

    2012-06-01

    The extent and nature of genetic incompatibilities between incipient races and sibling species is of fundamental importance to our view of speciation. However, with the exception of hybrid inviability and sterility factors, little is known about the extent of other, more subtle genetic incompatibilities between incipient species. Here we experimentally demonstrate the prevalence of such genetic incompatibilities between two young allopatric sibling species, Drosophila simulans and D. sechellia. Our experiments took advantage of 12 introgression lines that carried random introgressed D. sechellia segments in different parts of the D. simulans genome. First, we found that these introgression lines did not show any measurable sterility or inviability effects. To study if these sechellia introgressions in a simulans background contained other fitness consequences, we competed and genetically tracked the marked alleles within each introgression against the wild-type alleles for 20 generations. Strikingly, all marked D. sechellia introgression alleles rapidly decreased in frequency in only 6 to 7 generations. We then developed computer simulations to model our competition results. These simulations indicated that selection against D. sechellia introgression alleles was high (average s = 0.43) and that the marker alleles and the incompatible alleles did not separate in 78% of the introgressions. The latter result likely implies that most introgressions contain multiple genetic incompatibilities. Thus, this study reveals that, even at early stages of speciation, many parts of the genome diverge to a point where introducing foreign elements has detrimental fitness consequences, but which cannot be seen using standard sterility and inviability assays.

  7. Effects of high-LET particles /A-40/ on the brain of Drosophila melanogaster

    Science.gov (United States)

    Miquel, J.; Herman, M. M.; Benton, E. V.; Welch, G.

    1976-01-01

    To investigate the effects of galactic heavy particles on nervous tissue, Drosophila melanogaster flies were exposed to A-40 from the Super-HILAC accelerator at the Lawrence Berkeley Laboratory. The energy of the particles reaching the Drosophila neurons was 4.8 MeV/nucleon, and the fluence ranged from 60,000 to 80 million particles/sq cm. Thirty-five days after irradiation at the higher fluences, extensive tissue fragmentation and cysts were found. At fluences as low as one hit/two cell bodies (about 5 million) and one hit/90 cell bodies (about 90,000 particles/sq cm or 21 rad average dose) swelling of neuronal cytoplasm and focally fragmented membranes were noted; at fluences ranging from one hit/six to one hit/135 cell bodies, there was frequently a marked increase in glial lamellae around nerve-cell processes, which often had degenerative features. These findings support the view that single hits by heavy particles may injure nervous tissue.

  8. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia.

    Science.gov (United States)

    Schrider, Daniel R; Ayroles, Julien; Matute, Daniel R; Kern, Andrew D

    2018-04-01

    Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila sechellia genomes, and combine them with data from D. simulans to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of D. simulans to D. sechellia.

  9. Linkage Disequilibrium and Inversion-Typing of the Drosophila melanogaster Genome Reference Panel.

    Science.gov (United States)

    Houle, David; Márquez, Eladio J

    2015-06-10

    We calculated the linkage disequilibrium between all pairs of variants in the Drosophila Genome Reference Panel with minor allele count ≥5. We used r(2) ≥ 0.5 as the cutoff for a highly correlated SNP. We make available the list of all highly correlated SNPs for use in association studies. Seventy-six percent of variant SNPs are highly correlated with at least one other SNP, and the mean number of highly correlated SNPs per variant over the whole genome is 83.9. Disequilibrium between distant SNPs is also common when minor allele frequency (MAF) is low: 37% of SNPs with MAF inversions are highly correlated with somewhat larger numbers of SNPs, and these correlated SNPs are on average farther away, the probability that a SNP in such regions is highly correlated with at least one other SNP is very similar to SNPs outside inversions. Previous karyotyping of the DGRP lines has been inconsistent, and we used LD and genotype to investigate these discrepancies. When previous studies agreed on inversion karyotype, our analysis was almost perfectly concordant with those assignments. In discordant cases, and for inversion heterozygotes, our results suggest errors in two previous analyses or discordance between genotype and karyotype. Heterozygosities of chromosome arms are, in many cases, surprisingly highly correlated, suggesting strong epsistatic selection during the inbreeding and maintenance of the DGRP lines. Copyright © 2015 Houle and Márquez.

  10. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides......, and seven insect biogenic amines on the expressed receptor and found that it was activated by low concentrations of the Drosophila neuropeptide, pyrokinin-1 (TGPSASSGLWFGPRLamide; EC50, 5 x 10(-8) M). The receptor was also activated by other Drosophila neuropeptides, terminating with the sequence PRLamide...... (Hug-gamma, ecdysis-triggering-hormone-1, pyrokinin-2), but in these cases about six to eight times higher concentrations were needed. The receptor was not activated by Drosophila neuropeptides, containing a C-terminal PRIamide sequence (such as ecdysis-triggering-hormone-2), or PRVamide (such as capa...

  11. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    Science.gov (United States)

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  12. City of Berkeley, California Municipal Tree Resource Analysis

    Science.gov (United States)

    S.E. Maco; E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao

    2005-01-01

    Vibrant, renowned for its livability and cultural wealth, the city of Berkeley maintains trees as an integral component of the urban infrastructure. Research indicates that healthy trees can mitigate impacts associated with the built environment by reducing stormwater runoff, energy consumption, and air pollutants. Put simply, trees improve urban life, making Berkeley...

  13. Selective Sweep Analysis in the Genomes of the 91-R and 91-C Drosophila melanogaster Strains Reveals Few of the ‘Usual Suspects’ in Dichlorodiphenyltrichloroethane (DDT) Resistance

    Science.gov (United States)

    Steele, Laura D.; Coates, Brad; Valero, M. Carmen; Sun, Weilin; Seong, Keon Mook; Muir, William M.; Clark, John M.; Pittendrigh, Barry R.

    2015-01-01

    Adaptation of insect phenotypes for survival after exposure to xenobiotics can result from selection at multiple loci with additive genetic effects. To the authors’ knowledge, no selective sweep analysis has been performed to identify such loci in highly dichlorodiphenyltrichloroethane (DDT) resistant insects. Here we compared a highly DDT resistant phenotype in the Drosophila melanogaster (Drosophila) 91-R strain to the DDT susceptible 91-C strain, both of common origin. Whole genome re-sequencing data from pools of individuals was generated separately for 91-R and 91-C, and mapped to the reference Drosophila genome assembly (v. 5.72). Thirteen major and three minor effect chromosome intervals with reduced nucleotide diversity (π) were identified only in the 91-R population. Estimates of Tajima's D (D) showed corresponding evidence of directional selection in these same genome regions of 91-R, however, no similar reductions in π or D estimates were detected in 91-C. An overabundance of non-synonymous proteins coding to synonymous changes were identified in putative open reading frames associated with 91-R. Except for NinaC and Cyp4g1, none of the identified genes were the ‘usual suspects’ previously observed to be associated with DDT resistance. Additionally, up-regulated ATP-binding cassette transporters have been previously associated with DDT resistance; however, here we identified a structurally altered MDR49 candidate resistance gene. The remaining fourteen genes have not previously been shown to be associated with DDT resistance. These results suggest hitherto unknown mechanisms of DDT resistance, most of which have been overlooked in previous transcriptional studies, with some genes having orthologs in mammals. PMID:25826265

  14. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  15. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  16. Drosophila melanogaster--the model organism of choice for the complex biology of multi-cellular organisms

    Science.gov (United States)

    Beckingham, Kathleen M.; Armstrong, J. Douglas; Texada, Michael J.; Munjaal, Ravi; Baker, Dean A.

    2005-01-01

    Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.

  17. Genomic variation and its impact on gene expression in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Andreas Massouras

    Full Text Available Understanding the relationship between genetic and phenotypic variation is one of the great outstanding challenges in biology. To meet this challenge, comprehensive genomic variation maps of human as well as of model organism populations are required. Here, we present a nucleotide resolution catalog of single-nucleotide, multi-nucleotide, and structural variants in 39 Drosophila melanogaster Genetic Reference Panel inbred lines. Using an integrative, local assembly-based approach for variant discovery, we identify more than 3.6 million distinct variants, among which were more than 800,000 unique insertions, deletions (indels, and complex variants (1 to 6,000 bp. While the SNP density is higher near other variants, we find that variants themselves are not mutagenic, nor are regions with high variant density particularly mutation-prone. Rather, our data suggest that the elevated SNP density around variants is mainly due to population-level processes. We also provide insights into the regulatory architecture of gene expression variation in adult flies by mapping cis-expression quantitative trait loci (cis-eQTLs for more than 2,000 genes. Indels comprise around 10% of all cis-eQTLs and show larger effects than SNP cis-eQTLs. In addition, we identified two-fold more gene associations in males as compared to females and found that most cis-eQTLs are sex-specific, revealing a partial decoupling of the genomic architecture between the sexes as well as the importance of genetic factors in mediating sex-biased gene expression. Finally, we performed RNA-seq-based allelic expression imbalance analyses in the offspring of crosses between sequenced lines, which revealed that the majority of strong cis-eQTLs can be validated in heterozygous individuals.

  18. Evaluating the Impact of Open Access at Berkeley: Results from the 2015 Survey of Berkeley Research Impact Initiative (BRII) Funding Recipients

    Science.gov (United States)

    Teplitzky, Samantha; Phillips, Margaret

    2016-01-01

    The Berkeley Research Impact Initiative (BRII) was one of the first campus-based open access (OA) funds to be established in North America and one of the most active, distributing more than $244,000 to support University of California (UC) Berkeley authors. In April 2015, we conducted a qualitative study of 138 individuals who had received BRII…

  19. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  20. C. Judson King of UC Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director of the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.

  1. Population Genomics of Inversion Polymorphisms in Drosophila melanogaster

    Science.gov (United States)

    Corbett-Detig, Russell B.; Hartl, Daniel L.

    2012-01-01

    Chromosomal inversions have been an enduring interest of population geneticists since their discovery in Drosophila melanogaster. Numerous lines of evidence suggest powerful selective pressures govern the distributions of polymorphic inversions, and these observations have spurred the development of many explanatory models. However, due to a paucity of nucleotide data, little progress has been made towards investigating selective hypotheses or towards inferring the genealogical histories of inversions, which can inform models of inversion evolution and suggest selective mechanisms. Here, we utilize population genomic data to address persisting gaps in our knowledge of D. melanogaster's inversions. We develop a method, termed Reference-Assisted Reassembly, to assemble unbiased, highly accurate sequences near inversion breakpoints, which we use to estimate the age and the geographic origins of polymorphic inversions. We find that inversions are young, and most are African in origin, which is consistent with the demography of the species. The data suggest that inversions interact with polymorphism not only in breakpoint regions but also chromosome-wide. Inversions remain differentiated at low levels from standard haplotypes even in regions that are distant from breakpoints. Although genetic exchange appears fairly extensive, we identify numerous regions that are qualitatively consistent with selective hypotheses. Finally, we show that In(1)Be, which we estimate to be ∼60 years old (95% CI 5.9 to 372.8 years), has likely achieved high frequency via sex-ratio segregation distortion in males. With deeper sampling, it will be possible to build on our inferences of inversion histories to rigorously test selective models—particularly those that postulate that inversions achieve a selective advantage through the maintenance of co-adapted allele complexes. PMID:23284285

  2. Effects of high-LET particles (40A) on the brain of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Miquel, J.; Herman, M.M.; Benton, E.V.; Welch, G.

    1976-01-01

    To investigate the effects of galactic heavy particles on nervous tissue, Drosophila melanogaster flies were exposed to 40 A from the Super-HILAC accelerator at the Lawrence Berkeley Laboratory. The energy of the particles reaching the Drosophila neurons was 4.8 MeV/nucleon, and the fluence ranged from 6 x 10 4 to 8 x 10 7 particles/cm 2 . Thirty-five days after irradiation at the higher fluences, extensive tissue fragmentation and cysts were found. At fluences as low as one hit/two cell bodies (about 5 x 10 6 ) and one hit/90 cell bodies (about 9 x 10 4 particles/cm 2 or 21 rad average dose) swelling of neuronal cytoplasm and focally fragmented membranes were noted; at fluences ranging from one hit/six to one hit/135 cell bodies, there was frequently a marked increase in glial lamellae around nerve-cell processes, which often had degenerative features. These findings support the view that single hits by heavy particles may injure nervous tissue. (author)

  3. Genomic gigantism: DNA loss is slow in mountain grasshoppers.

    Science.gov (United States)

    Bensasson, D; Petrov, D A; Zhang, D X; Hartl, D L; Hewitt, G M

    2001-02-01

    Several studies have shown DNA loss to be inversely correlated with genome size in animals. These studies include a comparison between Drosophila and the cricket, Laupala, but there has been no assessment of DNA loss in insects with very large genomes. Podisma pedestris, the brown mountain grasshopper, has a genome over 100 times as large as that of Drosophila and 10 times as large as that of Laupala. We used 58 paralogous nuclear pseudogenes of mitochondrial origin to study the characteristics of insertion, deletion, and point substitution in P. pedestris and Italopodisma. In animals, these pseudogenes are "dead on arrival"; they are abundant in many different eukaryotes, and their mitochondrial origin simplifies the identification of point substitutions accumulated in nuclear pseudogene lineages. There appears to be a mononucleotide repeat within the 643-bp pseudogene sequence studied that acts as a strong hot spot for insertions or deletions (indels). Because the data for other insect species did not contain such an unusual region, hot spots were excluded from species comparisons. The rate of DNA loss relative to point substitution appears to be considerably and significantly lower in the grasshoppers studied than in Drosophila or Laupala. This suggests that the inverse correlation between genome size and the rate of DNA loss can be extended to comparisons between insects with large or gigantic genomes (i.e., Laupala and Podisma). The low rate of DNA loss implies that in grasshoppers, the accumulation of point mutations is a more potent force for obscuring ancient pseudogenes than their loss through indel accumulation, whereas the reverse is true for Drosophila. The main factor contributing to the difference in the rates of DNA loss estimated for grasshoppers, crickets, and Drosophila appears to be deletion size. Large deletions are relatively rare in Podisma and Italopodisma.

  4. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  5. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster.

    Science.gov (United States)

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-12-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes ("H-probes") for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin.

  6. Differences in Crossover Frequency and Distribution among Three Sibling Species of Drosophila

    OpenAIRE

    True, J. R.; Mercer, J. M.; Laurie, C. C.

    1996-01-01

    Comparisons of the genetic and cytogenetic maps of three sibling species of Drosophila reveal marked differences in the frequency and cumulative distribution of crossovers during meiosis. The maps for two of these species, Drosophila melanogaster and D. simulans, have previously been described, while this report presents new map data for D. mauritiana, obtained using a set of P element markers. A genetic map covering nearly the entire genome was constructed by estimating the recombination fra...

  7. A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor

    International Nuclear Information System (INIS)

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K.

    1989-01-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human β-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human β-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development

  8. Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective.

    Science.gov (United States)

    Luo, Shiqi; Lu, Jian

    2017-06-01

    Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in Drosophila melanogaster, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established "transposition-selection" population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in Drosophila. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the I-R and P-M systems in Drosophila, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  9. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    Science.gov (United States)

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-10-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.

  10. THE YOUNG OPEN CLUSTER BERKELEY 55

    Energy Technology Data Exchange (ETDEWEB)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2012-02-15

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster with a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.

  11. BERKELEY/STANFORD: B factory plans

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    For the past several years, accelerator physicists at Lawrence Berkeley Laboratory (LBL) and the Stanford Linear Accelerator Center (SLAC) have been involved in the design of an Asymmetric B Factory to be sited in the tunnel of the PEP electron-positron collider at SLAC

  12. Dense gene physical maps of the non-model species Drosophila subobscura.

    Science.gov (United States)

    Orengo, Dorcas J; Puerma, Eva; Papaceit, Montserrat; Segarra, Carmen; Aguadé, Montserrat

    2017-06-01

    The comparative analysis of genetic and physical maps as well as of whole genome sequences had revealed that in the Drosophila genus, most structural rearrangements occurred within chromosomal elements as a result of paracentric inversions. Genome sequence comparison would seem the best method to estimate rates of chromosomal evolution, but the high-quality reference genomes required for this endeavor are still scanty. Here, we have obtained dense physical maps for Muller elements A, C, and E of Drosophila subobscura, a species with an extensively studied rich and adaptive chromosomal polymorphism. These maps are based on 462 markers: 115, 236, and 111 markers for elements A, C, and E, respectively. The availability of these dense maps will facilitate genome assembly and will thus greatly contribute to obtaining a good reference genome, which is a required step for D. subobscura to attain the model species status. The comparative analysis of these physical maps and those obtained from the D. pseudoobscura and D. melanogaster genomes allowed us to infer the number of fixed inversions and chromosomal evolutionary rates for each pairwise comparison. For all three elements, rates inferred from the more closely related species were higher than those inferred from the more distantly related species, which together with results of relative-rate tests point to an acceleration in the D. subobscura lineage at least for elements A and E.

  13. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael

    2006-01-01

    in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21...

  14. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide bel...

  15. Genetic control of environmental variation of two quantitative traits of Drosophila melanogaster revealed by whole-genome sequencing

    DEFF Research Database (Denmark)

    Sørensen, Peter; de los Campos, Gustavo; Morgante, Fabio

    2015-01-01

    and others more volatile performance. Understanding the mechanisms responsible for environmental variability not only informs medical questions but is relevant in evolution and in agricultural science. In this work fully sequenced inbred lines of Drosophila melanogaster were analyzed to study the nature...... of genetic control of environmental variance for two quantitative traits: starvation resistance (SR) and startle response (SL). The evidence for genetic control of environmental variance is compelling for both traits. Sequence information is incorporated in random regression models to study the underlying...... genetic signals, which are shown to be different in the two traits. Genomic variance in sexual dimorphism was found for SR but not for SL. Indeed, the proportion of variance captured by sequence information and the contribution to this variance from four chromosome segments differ between sexes in SR...

  16. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    Science.gov (United States)

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes (“H-probes”) for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin. PMID:22745230

  17. ''2 + 1'' Mechanism as the basis for synergistic action of neutron-photon irradiation of the genome of Drosophila melanogaster spermatozoa

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.; Aleksandrova, M.V.; Lapidus, I.L.

    1996-01-01

    Cytogenetic analysis of polythene chromosomes of Drosophila melanogaster locus-specific mutants induced by consecutive neutron-photon irradiation has shown that their genome contains multiple intra- and inter-chromosome exchange, including triradials, evidencing the synergistic action of such combined exposure. The appearance of the triradials may be only possible on the base of an interaction between a double and a single DNA strand breaks. The important significance of such interaction as the general mechanism for production of chromosome aberrations in irradiated cells of higher eucaryotes had been postulated by N.V. Luchnik as early as 10 years ago, but only nowadays it has been confirmed experimentally

  18. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.; Salzberg, Steven L.; Rubin, Gerald M.; Eisen, Michael B.; Celniker, SusanE.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.

  19. Drosophila: Retrotransposons Making up Telomeres.

    Science.gov (United States)

    Casacuberta, Elena

    2017-07-19

    Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.

  20. Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway

    Science.gov (United States)

    2012-01-01

    Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens. PMID:23006893

  1. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR including components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.

  2. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    Science.gov (United States)

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  3. Editor's Highlight: Genetic Targets of Acute Toluene Inhalation in Drosophila melanogaster

    Science.gov (United States)

    Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypi...

  4. George Berkeley e a tradição platônica

    Directory of Open Access Journals (Sweden)

    Costica Bradatan

    2009-12-01

    Full Text Available Existe já uma grande quantidade de literatura dedicada à presença na filosofia inicial de Berkeley de alguns assuntos tipicamente platônicos (arquétipos, o problema da mente de Deus, a relação entre ideias e coisas, etc.. Baseados em alguns desses escritos, nas próprias palavras de Berkeley, assim como no exame de alguns elementos da tradição platônica num amplo sentido, sugiro que, longe de serem apenas tópicos isolados, livremente espalhados nos primeiros escritos de Berkeley, eles formam uma perfeita rede de aspectos, atitudes e modos de pensar platônicos, e que, por mais alusivos ou ambíguos que esses elementos platônicos possam parecer, eles constituem um todo coerente e complexo, desempenhando um papel importante na formação da própria essência do pensamento de Berkeley. Em outras palavras, sugiro que, dadas algumas das ideias apresentadas em suas primeiras obras, foi de certo modo inevitável para George Berkeley, em virtude da lógica interna do desenvolvimento de seu pensamento, chegar a uma obra tão abertamente platônica e especulativa como Siris (1744.

  5. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation

    DEFF Research Database (Denmark)

    Cicconardi, Francesco; Marcatili, Paolo; Arthofer, Wolfgang

    2017-01-01

    The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one....... grimshawi, a strong putative signal of positive diversifying selection was found related to cell, morphological, neuronal, and sensorial development and function. A recurrent signal of positive diversifying selection was found on genes related to aging and lifespan, suggesting that selection had shaped...

  6. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    OpenAIRE

    Yixin H Ye; Stephen F Chenoweth; Elizabeth A McGraw

    2009-01-01

    Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide...

  7. Modelling the correlation between the activities of adjacent genes in drosophila

    NARCIS (Netherlands)

    Thygesen, Helene H.; Zwinderman, Aeilko H.

    2005-01-01

    Background: Correlation between the expression levels of genes which are located close to each other on the genome has been found in various organisms, including yeast, drosophila and humans. Since such a correlation could be explained by several biochemical, evolutionary, genetic and technological

  8. Reading the maps: Organization and function of chromatin types in Drosophila

    NARCIS (Netherlands)

    Braunschweig, U.

    2010-01-01

    The work presented in this thesis shows that the Drosophila genome is organized in chromatin domains with many implications for gene regulation, nuclear organization, and evolution. Furthermore it provides examples of how maps of chromatin protein binding, combined with computational approaches, can

  9. Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Venken, Koen J.T.; Carlson, Joseph W.; Schulze, Karen L.; Pan, Hongling; He, Yuchun; Spokony, Rebecca; Wan, Kenneth H.; Koriabine, Maxim; de Jong, Pieter J.; White, Kevin P.; Bellen, Hugo J.; Hoskins, Roger A.

    2009-04-21

    We constructed Drosophila melanogaster BAC libraries with 21-kb and 83-kb inserts in the P(acman) system. Clones representing 12-fold coverage and encompassing more than 95percent of annotated genes were mapped onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example to incorporate protein tags and assess expression patterns.

  10. Assessing the origin of species in the genomic era

    OpenAIRE

    Moyle, Leonie C

    2005-01-01

    Advances in genomics have rapidly accelerated research into the genetics of species differences, reproductive isolating barriers, and hybrid incompatibility. Recent genomic analyses in Drosophila species suggest that modified olfactory cues are involved in discrimination that is reinforced by natural selection.

  11. Political-social reactor problems at Berkeley

    International Nuclear Information System (INIS)

    Little, G.A.

    1980-01-01

    For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitioned the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)

  12. From Nature to the Lab: Establishing Drosophila Resources for Evolutionary Genetics

    Directory of Open Access Journals (Sweden)

    Vítor G. Faria

    2017-06-01

    Full Text Available In recent years important tools have been developed in Drosophila to capture with the greatest possible accuracy the variation found in nature. Efforts, such as the Drosophila melanogaster Genetic Reference Panel (DGRP or the Drosophila Synthetic Population Resource (DSPR allied to the advances in whole-genome sequencing and analysis have propelled to unprecedented level our capacity to dissect the genotype-phenotype map. However, several practical problems arise upstream of these analyses starting with the collection and identification of wild specimens. These problems are dealt with in different ways by each researcher generating solutions not necessarily compatible across laboratories. Here, we provide a systematic coverage of every phase of this process based on our experience, and suggest procedures to maximize and share the generated resources potentiating future applications. We propose a detailed pipeline to guide researchers from collection in the wild to the development of a large array of molecular and genetic resources. We designed a multiplex-PCR that distinguishes sister species D. melanogaster and D. simulans and is diagnostic of the presence/absence of Wolbachia infection. These procedures may extend to other cryptic species pairs and endosymbionts. We developed a standardized protocol to create, replicate and maintain isofemale lines and outbred populations. Finally, we explore the potential of outbred populations across several applications from experimental evolution, to introgression of transgenic constructs or mutant alleles, and genomic analyses. We hope to contribute to the success in developing Drosophila resources for evolutionary genetics studies and facilitate exchanges across laboratories based on a common set of procedures.

  13. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    Science.gov (United States)

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Fast and efficient Drosophila melanogaster gene knock-ins using MiMIC transposons.

    Science.gov (United States)

    Vilain, Sven; Vanhauwaert, Roeland; Maes, Ine; Schoovaerts, Nils; Zhou, Lujia; Soukup, Sandra; da Cunha, Raquel; Lauwers, Elsa; Fiers, Mark; Verstreken, Patrik

    2014-10-08

    Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophila knock-in alleles by capitalizing on the availability of numerous genomic MiMIC transposon insertions carrying recombinogenic attP sites. Our methodology entails the efficient PhiC31-mediated integration of a recombination cassette flanked by unique I-SceI and/or I-CreI restriction enzyme sites into an attP-site. These restriction enzyme sites allow for double-strand break-mediated removal of unwanted flanking transposon sequences, while leaving the desired genomic modifications or recombination cassettes. As a proof-of-principle, we mutated LRRK, tau, and sky by using different MiMIC elements. We replaced 6 kb of genomic DNA encompassing the tau locus and 35 kb encompassing the sky locus with a recombination cassette that permits easy integration of DNA at these loci and we also generated a functional LRRK(HA) knock in allele. Given that ~92% of the Drosophila genes are located within the vicinity (MiMIC element, our methodology enables the efficient manipulation of nearly every locus in the fruit fly genome without the need for inefficient donor-dependent homologous recombination events. Copyright © 2014 Vilain et al.

  15. Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Science.gov (United States)

    Leung, Wilson; Shaffer, Christopher D.; Reed, Laura K.; Smith, Sheryl T.; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E. J.; Machone, Joshua F.; Patterson, Seantay D.; Price, Amber L.; Turner, Bryce A.; Robic, Srebrenka; Luippold, Erin K.; McCartha, Shannon R.; Walji, Tezin A.; Walker, Chelsea A.; Saville, Kenneth; Abrams, Marita K.; Armstrong, Andrew R.; Armstrong, William; Bailey, Robert J.; Barberi, Chelsea R.; Beck, Lauren R.; Blaker, Amanda L.; Blunden, Christopher E.; Brand, Jordan P.; Brock, Ethan J.; Brooks, Dana W.; Brown, Marie; Butzler, Sarah C.; Clark, Eric M.; Clark, Nicole B.; Collins, Ashley A.; Cotteleer, Rebecca J.; Cullimore, Peterson R.; Dawson, Seth G.; Docking, Carter T.; Dorsett, Sasha L.; Dougherty, Grace A.; Downey, Kaitlyn A.; Drake, Andrew P.; Earl, Erica K.; Floyd, Trevor G.; Forsyth, Joshua D.; Foust, Jonathan D.; Franchi, Spencer L.; Geary, James F.; Hanson, Cynthia K.; Harding, Taylor S.; Harris, Cameron B.; Heckman, Jonathan M.; Holderness, Heather L.; Howey, Nicole A.; Jacobs, Dontae A.; Jewell, Elizabeth S.; Kaisler, Maria; Karaska, Elizabeth A.; Kehoe, James L.; Koaches, Hannah C.; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J.; Kus, Jordan E.; Lammers, Jennifer A.; Leads, Rachel R.; Leatherman, Emily C.; Lippert, Rachel N.; Messenger, Gregory S.; Morrow, Adam T.; Newcomb, Victoria; Plasman, Haley J.; Potocny, Stephanie J.; Powers, Michelle K.; Reem, Rachel M.; Rennhack, Jonathan P.; Reynolds, Katherine R.; Reynolds, Lyndsey A.; Rhee, Dong K.; Rivard, Allyson B.; Ronk, Adam J.; Rooney, Meghan B.; Rubin, Lainey S.; Salbert, Luke R.; Saluja, Rasleen K.; Schauder, Taylor; Schneiter, Allison R.; Schulz, Robert W.; Smith, Karl E.; Spencer, Sarah; Swanson, Bryant R.; Tache, Melissa A.; Tewilliager, Ashley A.; Tilot, Amanda K.; VanEck, Eve; Villerot, Matthew M.; Vylonis, Megan B.; Watson, David T.; Wurzler, Juliana A.; Wysocki, Lauren M.; Yalamanchili, Monica; Zaborowicz, Matthew A.; Emerson, Julia A.; Ortiz, Carlos; Deuschle, Frederic J.; DiLorenzo, Lauren A.; Goeller, Katie L.; Macchi, Christopher R.; Muller, Sarah E.; Pasierb, Brittany D.; Sable, Joseph E.; Tucci, Jessica M.; Tynon, Marykathryn; Dunbar, David A.; Beken, Levent H.; Conturso, Alaina C.; Danner, Benjamin L.; DeMichele, Gabriella A.; Gonzales, Justin A.; Hammond, Maureen S.; Kelley, Colleen V.; Kelly, Elisabeth A.; Kulich, Danielle; Mageeney, Catherine M.; McCabe, Nikie L.; Newman, Alyssa M.; Spaeder, Lindsay A.; Tumminello, Richard A.; Revie, Dennis; Benson, Jonathon M.; Cristostomo, Michael C.; DaSilva, Paolo A.; Harker, Katherine S.; Jarrell, Jenifer N.; Jimenez, Luis A.; Katz, Brandon M.; Kennedy, William R.; Kolibas, Kimberly S.; LeBlanc, Mark T.; Nguyen, Trung T.; Nicolas, Daniel S.; Patao, Melissa D.; Patao, Shane M.; Rupley, Bryan J.; Sessions, Bridget J.; Weaver, Jennifer A.; Goodman, Anya L.; Alvendia, Erica L.; Baldassari, Shana M.; Brown, Ashley S.; Chase, Ian O.; Chen, Maida; Chiang, Scott; Cromwell, Avery B.; Custer, Ashley F.; DiTommaso, Tia M.; El-Adaimi, Jad; Goscinski, Nora C.; Grove, Ryan A.; Gutierrez, Nestor; Harnoto, Raechel S.; Hedeen, Heather; Hong, Emily L.; Hopkins, Barbara L.; Huerta, Vilma F.; Khoshabian, Colin; LaForge, Kristin M.; Lee, Cassidy T.; Lewis, Benjamin M.; Lydon, Anniken M.; Maniaci, Brian J.; Mitchell, Ryan D.; Morlock, Elaine V.; Morris, William M.; Naik, Priyanka; Olson, Nicole C.; Osterloh, Jeannette M.; Perez, Marcos A.; Presley, Jonathan D.; Randazzo, Matt J.; Regan, Melanie K.; Rossi, Franca G.; Smith, Melanie A.; Soliterman, Eugenia A.; Sparks, Ciani J.; Tran, Danny L.; Wan, Tiffany; Welker, Anne A.; Wong, Jeremy N.; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J.; Hoogewerf, Arlene J.; Ackerman, Cheri M.; Armistead, Isaac O.; Baatenburg, Lara; Borr, Matthew J.; Brouwer, Lindsay K.; Burkhart, Brandon J.; Bushhouse, Kelsey T.; Cesko, Lejla; Choi, Tiffany Y. Y.; Cohen, Heather; Damsteegt, Amanda M.; Darusz, Jess M.; Dauphin, Cory M.; Davis, Yelena P.; Diekema, Emily J.; Drewry, Melissa; Eisen, Michelle E. M.; Faber, Hayley M.; Faber, Katherine J.; Feenstra, Elizabeth; Felzer-Kim, Isabella T.; Hammond, Brandy L.; Hendriksma, Jesse; Herrold, Milton R.; Hilbrands, Julia A.; Howell, Emily J.; Jelgerhuis, Sarah A.; Jelsema, Timothy R.; Johnson, Benjamin K.; Jones, Kelly K.; Kim, Anna; Kooienga, Ross D.; Menyes, Erika E.; Nollet, Eric A.; Plescher, Brittany E.; Rios, Lindsay; Rose, Jenny L.; Schepers, Allison J.; Scott, Geoff; Smith, Joshua R.; Sterling, Allison M.; Tenney, Jenna C.; Uitvlugt, Chris; VanDyken, Rachel E.; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P.; Agbley, Kwabea; Boham, Sampson K.; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A.; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E.; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S.; Banker, Roxanne; Bartling, Justina R.; Bhatiya, Chinmoy I.; Boudoures, Anna L.; Christiansen, Lena; Fosselman, Daniel S.; French, Kristin M.; Gill, Ishwar S.; Havill, Jessen T.; Johnson, Jaelyn L.; Keny, Lauren J.; Kerber, John M.; Klett, Bethany M.; Kufel, Christina N.; May, Francis J.; Mecoli, Jonathan P.; Merry, Callie R.; Meyer, Lauren R.; Miller, Emily G.; Mullen, Gregory J.; Palozola, Katherine C.; Pfeil, Jacob J.; Thomas, Jessica G.; Verbofsky, Evan M.; Spana, Eric P.; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I.N.; Fitzgibbons, John D.; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J.; Knouse, Kristin A.; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S.; Norton, Diana; Pham, Philip; Polk, Jessica W.; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D.; Scala, Victoria; Schwartz, Nicholas U.; Shuen, Jessica A.; Xu, Amy; Xu, Thomas Q.; Zhang, Yi; Rosenwald, Anne G.; Burg, Martin G.; Adams, Stephanie J.; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E.; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J.; Robertson, Gregory M.; Smith, Samuel I.; DiAngelo, Justin R.; Sassu, Eric D.; Bhalla, Satish C.; Sharif, Karim A.; Choeying, Tenzin; Macias, Jason S.; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E.; Alvarez, Consuelo J.; Davis, Kristen C.; Dunham, Carrie A.; Grantham, Alaina J.; Hare, Amber N.; Schottler, Jennifer; Scott, Zackary W.; Kuleck, Gary A.; Yu, Nicole S.; Kaehler, Marian M.; Jipp, Jacob; Overvoorde, Paul J.; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A.; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T.; Poet, Jeffrey L.; Allen, Alica B.; Anderson, John E.; Barnett, Jason M.; Baumgardner, Jordan S.; Brown, Adam D.; Carney, Jordan E.; Chavez, Ramiro A.; Christgen, Shelbi L.; Christie, Jordan S.; Clary, Andrea N.; Conn, Michel A.; Cooper, Kristen M.; Crowley, Matt J.; Crowley, Samuel T.; Doty, Jennifer S.; Dow, Brian A.; Edwards, Curtis R.; Elder, Darcie D.; Fanning, John P.; Janssen, Bridget M.; Lambright, Anthony K.; Lane, Curtiss E.; Limle, Austin B.; Mazur, Tammy; McCracken, Marly R.; McDonough, Alexa M.; Melton, Amy D.; Minnick, Phillip J.; Musick, Adam E.; Newhart, William H.; Noynaert, Joseph W.; Ogden, Bradley J.; Sandusky, Michael W.; Schmuecker, Samantha M.; Shipman, Anna L.; Smith, Anna L.; Thomsen, Kristen M.; Unzicker, Matthew R.; Vernon, William B.; Winn, Wesley W.; Woyski, Dustin S.; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J.; Aronhalt, Todd; Bellush, James M.; Burke, Christa; DeFazio, Steve; Does, Benjamin R.; Johnson, Todd D.; Keysock, Nicholas; Knudsen, Nelson H.; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S.; Stagaard, Erica; Starcher, Justin R.; Waggoner, Andrew W.; Yemelyanova, Anastasia K.; Hark, Amy T.; Bertolet, Anne; Kuschner, Cyrus E.; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E.; Smith, Mary A.; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S. Catherine Silver; Henry, Tyneshia C. P.; Johnson, Ashlee G.; White, Jackie X.; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L. M.; Chau, Kim M.; Ward, Alyssa; Regisford, E. Gloria C.; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M.; Bahr, Thomas J.; Caesar, Nicole M.; Campana, Christopher; Cassidy, Daniel W.; Cognetti, Peter A.; English, Johnathan D.; Fadus, Matthew C.; Fick, Cameron N.; Freda, Philip J.; Hennessy, Bryan M.; Hockenberger, Kelsey; Jones, Jennifer K.; King, Jessica E.; Knob, Christopher R.; Kraftmann, Karen J.; Li, Linghui; Lupey, Lena N.; Minniti, Carl J.; Minton, Thomas F.; Moran, Joseph V.; Mudumbi, Krishna; Nordman, Elizabeth C.; Puetz, William J.; Robinson, Lauren M.; Rose, Thomas J.; Sweeney, Edward P.; Timko, Ashley S.; Paetkau, Don W.; Eisler, Heather L.; Aldrup, Megan E.; Bodenberg, Jessica M.; Cole, Mara G.; Deranek, Kelly M.; DeShetler, Megan; Dowd, Rose M.; Eckardt, Alexandra K.; Ehret, Sharon C.; Fese, Jessica; Garrett, Amanda D.; Kammrath, Anna; Kappes, Michelle L.; Light, Morgan R.; Meier, Anne C.; O’Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R.; Reilly, Mary T.; Robinett, Deirdre; Rossi, Nadine L.; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M.; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R.; Herrick, Douglas A.; Khoury, Christopher B.; Lea, Charlotte; Louie, Christopher A.; Lowell, Shannon M.; Reynolds, Thomas J.; Schibler, Jeanine; Scoma, Alexandra H.; Smith-Gee, Maxwell T.; Tuberty, Sarah; Smith, Christopher D.; Lopilato, Jane E.; Hauke, Jeanette; Roecklein-Canfield, Jennifer A.; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A.; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R.; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R.; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R.; Flohr, Sarah; Flores, Amanda H.; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B.; Smith, Jonathan E.; Unruh, Anna K.; Velasquez, Vicente; Wolski, Matthew W.; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E.; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J.; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T.; Moore, Zachary D.; Savell, Christopher D.; Watson, Reece; Mel, Stephanie F.; Anilkumar, Arjun A.; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M.; Dai, Tiffany; Garbagnati, Giancarlo F.; Horton, Lanor S.; Kim, Dongyeon; Lau, Joyce H.; Liu, James Z.; Mach, Sandy D.; Phan, Thu A.; Ren, Yi; Stapleton, Kenneth E.; Strelitz, Jean M.; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C.; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J.; Fafara-Thompson, Antoinette E.; Gross, Meleah J.; Gygi, Amber M.; Jackson, Lesley E.; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L.; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L.; Neely, Jessica; Ogawa, Emmy E.; Rich, Ashley; Rogers, Anna; Spencer, J. Devin; Stemler, Kristina M.; Throm, Allison A.; Van Camp, Matt; Weihbrecht, Katie; Wiles, T. Aaron; Williams, Mallory A.; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M.; Bashiri, Azita; Bower, Mindy E.; Florian, Kayla A.; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S.; Karim, Helmet; Mullen, Victor W.; Pelchen, Carly E.; Yenerall, Paul M.; Zhang, Jiayu; Rubin, Michael R.; Arias-Mejias, Suzette M.; Bermudez-Capo, Armando G.; Bernal-Vega, Gabriela V.; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G.; Martinez-Rodriguez, Javier O.; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O.; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J.; Santiago-Sanabria, Arnaldo J.; Senquiz-Gonzalez, Andrea M.; delValle, Frank R. Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I.; Zambrana-Burgos, Joan D.; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D.; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P.; Collado-Méndez, Xavier A.; Colón-Cruz, Luis R.; Correa-Muller, Ana I.; Crooke-Rosado, Jonathan L.; Cruz-García, José M.; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M.; Feliciano-Cancela, Alex J.; Gónzalez-Pérez, Valerie M.; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N.; Laboy-Corales, Ángel L.; Llaurador-Caraballo, Gabriela A.; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A.; Martínez-Traverso, Idaliz M.; Medina-Ortega, Kiara N.; Méndez-Castellanos, Sonya G.; Menéndez-Serrano, Krizia C.; Morales-Caraballo, Carol I.; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M.; Ramírez-Aponte, Edwin G.; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S.; Rivera-Pagán, Ingrid T.; Rivera-Vicéns, Ramón E.; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O.; Rodríguez-García, Priscila M.; Rodríguez-Laboy, Abneris E.; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L.; Rubio-Marrero, Eva N.; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L.; Santos-Ramos, Carlos E.; Serrano-González, Joseline; Tamayo-Figueroa, Alina M.; Tascón-Peñaranda, Edna P.; Torres-Castillo, José L.; Valentín-Feliciano, Nelson A.; Valentín-Feliciano, Yashira M.; Vargas-Barreto, Nadyan M.; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R.; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R.; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L.; Molleston, Jerome M.; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J.; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P.; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y.; Zheng, Yin; Preuss, Mary L.; Garcia, Angelica; Juergens, Matt; Morris, Robert W.; Nagengast, Alexis A.; Azarewicz, Julie; Carr, Thomas J.; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L.; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L.; Adams, Ashley L.; Barnard, Brianna K.; Cheramie, Martin N.; Eime, Anne M.; Golden, Kathryn L.; Hawkins, Allyson P.; Hill, Jessica E.; Kampmeier, Jessica A.; Kern, Cody D.; Magnuson, Emily E.; Miller, Ashley R.; Morrow, Cody M.; Peairs, Julia C.; Pickett, Gentry L.; Popelka, Sarah A.; Scott, Alexis J.; Teepe, Emily J.; TerMeer, Katie A.; Watchinski, Carmen A.; Watson, Lucas A.; Weber, Rachel E.; Woodard, Kate A.; Barnard, Daron C.; Appiah, Isaac; Giddens, Michelle M.; McNeil, Gerard P.; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C.; Buhler, Jeremy; Mardis, Elaine R.

    2015-01-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. PMID:25740935

  16. Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

    Science.gov (United States)

    Leung, Wilson; Shaffer, Christopher D; Reed, Laura K; Smith, Sheryl T; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E J; Machone, Joshua F; Patterson, Seantay D; Price, Amber L; Turner, Bryce A; Robic, Srebrenka; Luippold, Erin K; McCartha, Shannon R; Walji, Tezin A; Walker, Chelsea A; Saville, Kenneth; Abrams, Marita K; Armstrong, Andrew R; Armstrong, William; Bailey, Robert J; Barberi, Chelsea R; Beck, Lauren R; Blaker, Amanda L; Blunden, Christopher E; Brand, Jordan P; Brock, Ethan J; Brooks, Dana W; Brown, Marie; Butzler, Sarah C; Clark, Eric M; Clark, Nicole B; Collins, Ashley A; Cotteleer, Rebecca J; Cullimore, Peterson R; Dawson, Seth G; Docking, Carter T; Dorsett, Sasha L; Dougherty, Grace A; Downey, Kaitlyn A; Drake, Andrew P; Earl, Erica K; Floyd, Trevor G; Forsyth, Joshua D; Foust, Jonathan D; Franchi, Spencer L; Geary, James F; Hanson, Cynthia K; Harding, Taylor S; Harris, Cameron B; Heckman, Jonathan M; Holderness, Heather L; Howey, Nicole A; Jacobs, Dontae A; Jewell, Elizabeth S; Kaisler, Maria; Karaska, Elizabeth A; Kehoe, James L; Koaches, Hannah C; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J; Kus, Jordan E; Lammers, Jennifer A; Leads, Rachel R; Leatherman, Emily C; Lippert, Rachel N; Messenger, Gregory S; Morrow, Adam T; Newcomb, Victoria; Plasman, Haley J; Potocny, Stephanie J; Powers, Michelle K; Reem, Rachel M; Rennhack, Jonathan P; Reynolds, Katherine R; Reynolds, Lyndsey A; Rhee, Dong K; Rivard, Allyson B; Ronk, Adam J; Rooney, Meghan B; Rubin, Lainey S; Salbert, Luke R; Saluja, Rasleen K; Schauder, Taylor; Schneiter, Allison R; Schulz, Robert W; Smith, Karl E; Spencer, Sarah; Swanson, Bryant R; Tache, Melissa A; Tewilliager, Ashley A; Tilot, Amanda K; VanEck, Eve; Villerot, Matthew M; Vylonis, Megan B; Watson, David T; Wurzler, Juliana A; Wysocki, Lauren M; Yalamanchili, Monica; Zaborowicz, Matthew A; Emerson, Julia A; Ortiz, Carlos; Deuschle, Frederic J; DiLorenzo, Lauren A; Goeller, Katie L; Macchi, Christopher R; Muller, Sarah E; Pasierb, Brittany D; Sable, Joseph E; Tucci, Jessica M; Tynon, Marykathryn; Dunbar, David A; Beken, Levent H; Conturso, Alaina C; Danner, Benjamin L; DeMichele, Gabriella A; Gonzales, Justin A; Hammond, Maureen S; Kelley, Colleen V; Kelly, Elisabeth A; Kulich, Danielle; Mageeney, Catherine M; McCabe, Nikie L; Newman, Alyssa M; Spaeder, Lindsay A; Tumminello, Richard A; Revie, Dennis; Benson, Jonathon M; Cristostomo, Michael C; DaSilva, Paolo A; Harker, Katherine S; Jarrell, Jenifer N; Jimenez, Luis A; Katz, Brandon M; Kennedy, William R; Kolibas, Kimberly S; LeBlanc, Mark T; Nguyen, Trung T; Nicolas, Daniel S; Patao, Melissa D; Patao, Shane M; Rupley, Bryan J; Sessions, Bridget J; Weaver, Jennifer A; Goodman, Anya L; Alvendia, Erica L; Baldassari, Shana M; Brown, Ashley S; Chase, Ian O; Chen, Maida; Chiang, Scott; Cromwell, Avery B; Custer, Ashley F; DiTommaso, Tia M; El-Adaimi, Jad; Goscinski, Nora C; Grove, Ryan A; Gutierrez, Nestor; Harnoto, Raechel S; Hedeen, Heather; Hong, Emily L; Hopkins, Barbara L; Huerta, Vilma F; Khoshabian, Colin; LaForge, Kristin M; Lee, Cassidy T; Lewis, Benjamin M; Lydon, Anniken M; Maniaci, Brian J; Mitchell, Ryan D; Morlock, Elaine V; Morris, William M; Naik, Priyanka; Olson, Nicole C; Osterloh, Jeannette M; Perez, Marcos A; Presley, Jonathan D; Randazzo, Matt J; Regan, Melanie K; Rossi, Franca G; Smith, Melanie A; Soliterman, Eugenia A; Sparks, Ciani J; Tran, Danny L; Wan, Tiffany; Welker, Anne A; Wong, Jeremy N; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J; Hoogewerf, Arlene J; Ackerman, Cheri M; Armistead, Isaac O; Baatenburg, Lara; Borr, Matthew J; Brouwer, Lindsay K; Burkhart, Brandon J; Bushhouse, Kelsey T; Cesko, Lejla; Choi, Tiffany Y Y; Cohen, Heather; Damsteegt, Amanda M; Darusz, Jess M; Dauphin, Cory M; Davis, Yelena P; Diekema, Emily J; Drewry, Melissa; Eisen, Michelle E M; Faber, Hayley M; Faber, Katherine J; Feenstra, Elizabeth; Felzer-Kim, Isabella T; Hammond, Brandy L; Hendriksma, Jesse; Herrold, Milton R; Hilbrands, Julia A; Howell, Emily J; Jelgerhuis, Sarah A; Jelsema, Timothy R; Johnson, Benjamin K; Jones, Kelly K; Kim, Anna; Kooienga, Ross D; Menyes, Erika E; Nollet, Eric A; Plescher, Brittany E; Rios, Lindsay; Rose, Jenny L; Schepers, Allison J; Scott, Geoff; Smith, Joshua R; Sterling, Allison M; Tenney, Jenna C; Uitvlugt, Chris; VanDyken, Rachel E; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P; Agbley, Kwabea; Boham, Sampson K; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S; Banker, Roxanne; Bartling, Justina R; Bhatiya, Chinmoy I; Boudoures, Anna L; Christiansen, Lena; Fosselman, Daniel S; French, Kristin M; Gill, Ishwar S; Havill, Jessen T; Johnson, Jaelyn L; Keny, Lauren J; Kerber, John M; Klett, Bethany M; Kufel, Christina N; May, Francis J; Mecoli, Jonathan P; Merry, Callie R; Meyer, Lauren R; Miller, Emily G; Mullen, Gregory J; Palozola, Katherine C; Pfeil, Jacob J; Thomas, Jessica G; Verbofsky, Evan M; Spana, Eric P; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I N; Fitzgibbons, John D; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J; Knouse, Kristin A; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S; Norton, Diana; Pham, Philip; Polk, Jessica W; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D; Scala, Victoria; Schwartz, Nicholas U; Shuen, Jessica A; Xu, Amy; Xu, Thomas Q; Zhang, Yi; Rosenwald, Anne G; Burg, Martin G; Adams, Stephanie J; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J; Robertson, Gregory M; Smith, Samuel I; DiAngelo, Justin R; Sassu, Eric D; Bhalla, Satish C; Sharif, Karim A; Choeying, Tenzin; Macias, Jason S; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E; Alvarez, Consuelo J; Davis, Kristen C; Dunham, Carrie A; Grantham, Alaina J; Hare, Amber N; Schottler, Jennifer; Scott, Zackary W; Kuleck, Gary A; Yu, Nicole S; Kaehler, Marian M; Jipp, Jacob; Overvoorde, Paul J; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques Dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T; Poet, Jeffrey L; Allen, Alica B; Anderson, John E; Barnett, Jason M; Baumgardner, Jordan S; Brown, Adam D; Carney, Jordan E; Chavez, Ramiro A; Christgen, Shelbi L; Christie, Jordan S; Clary, Andrea N; Conn, Michel A; Cooper, Kristen M; Crowley, Matt J; Crowley, Samuel T; Doty, Jennifer S; Dow, Brian A; Edwards, Curtis R; Elder, Darcie D; Fanning, John P; Janssen, Bridget M; Lambright, Anthony K; Lane, Curtiss E; Limle, Austin B; Mazur, Tammy; McCracken, Marly R; McDonough, Alexa M; Melton, Amy D; Minnick, Phillip J; Musick, Adam E; Newhart, William H; Noynaert, Joseph W; Ogden, Bradley J; Sandusky, Michael W; Schmuecker, Samantha M; Shipman, Anna L; Smith, Anna L; Thomsen, Kristen M; Unzicker, Matthew R; Vernon, William B; Winn, Wesley W; Woyski, Dustin S; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J; Aronhalt, Todd; Bellush, James M; Burke, Christa; DeFazio, Steve; Does, Benjamin R; Johnson, Todd D; Keysock, Nicholas; Knudsen, Nelson H; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S; Stagaard, Erica; Starcher, Justin R; Waggoner, Andrew W; Yemelyanova, Anastasia K; Hark, Amy T; Bertolet, Anne; Kuschner, Cyrus E; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E; Smith, Mary A; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S Catherine Silver; Henry, Tyneshia C P; Johnson, Ashlee G; White, Jackie X; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L M; Chau, Kim M; Ward, Alyssa; Regisford, E Gloria C; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M; Bahr, Thomas J; Caesar, Nicole M; Campana, Christopher; Cassidy, Daniel W; Cognetti, Peter A; English, Johnathan D; Fadus, Matthew C; Fick, Cameron N; Freda, Philip J; Hennessy, Bryan M; Hockenberger, Kelsey; Jones, Jennifer K; King, Jessica E; Knob, Christopher R; Kraftmann, Karen J; Li, Linghui; Lupey, Lena N; Minniti, Carl J; Minton, Thomas F; Moran, Joseph V; Mudumbi, Krishna; Nordman, Elizabeth C; Puetz, William J; Robinson, Lauren M; Rose, Thomas J; Sweeney, Edward P; Timko, Ashley S; Paetkau, Don W; Eisler, Heather L; Aldrup, Megan E; Bodenberg, Jessica M; Cole, Mara G; Deranek, Kelly M; DeShetler, Megan; Dowd, Rose M; Eckardt, Alexandra K; Ehret, Sharon C; Fese, Jessica; Garrett, Amanda D; Kammrath, Anna; Kappes, Michelle L; Light, Morgan R; Meier, Anne C; O'Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R; Reilly, Mary T; Robinett, Deirdre; Rossi, Nadine L; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R; Herrick, Douglas A; Khoury, Christopher B; Lea, Charlotte; Louie, Christopher A; Lowell, Shannon M; Reynolds, Thomas J; Schibler, Jeanine; Scoma, Alexandra H; Smith-Gee, Maxwell T; Tuberty, Sarah; Smith, Christopher D; Lopilato, Jane E; Hauke, Jeanette; Roecklein-Canfield, Jennifer A; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R; Flohr, Sarah; Flores, Amanda H; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B; Smith, Jonathan E; Unruh, Anna K; Velasquez, Vicente; Wolski, Matthew W; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T; Moore, Zachary D; Savell, Christopher D; Watson, Reece; Mel, Stephanie F; Anilkumar, Arjun A; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M; Dai, Tiffany; Garbagnati, Giancarlo F; Horton, Lanor S; Kim, Dongyeon; Lau, Joyce H; Liu, James Z; Mach, Sandy D; Phan, Thu A; Ren, Yi; Stapleton, Kenneth E; Strelitz, Jean M; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J; Fafara-Thompson, Antoinette E; Gross, Meleah J; Gygi, Amber M; Jackson, Lesley E; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L; Neely, Jessica; Ogawa, Emmy E; Rich, Ashley; Rogers, Anna; Spencer, J Devin; Stemler, Kristina M; Throm, Allison A; Van Camp, Matt; Weihbrecht, Katie; Wiles, T Aaron; Williams, Mallory A; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M; Bashiri, Azita; Bower, Mindy E; Florian, Kayla A; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S; Karim, Helmet; Mullen, Victor W; Pelchen, Carly E; Yenerall, Paul M; Zhang, Jiayu; Rubin, Michael R; Arias-Mejias, Suzette M; Bermudez-Capo, Armando G; Bernal-Vega, Gabriela V; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G; Martinez-Rodriguez, Javier O; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J; Santiago-Sanabria, Arnaldo J; Senquiz-Gonzalez, Andrea M; delValle, Frank R Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I; Zambrana-Burgos, Joan D; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P; Collado-Méndez, Xavier A; Colón-Cruz, Luis R; Correa-Muller, Ana I; Crooke-Rosado, Jonathan L; Cruz-García, José M; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M; Feliciano-Cancela, Alex J; Gónzalez-Pérez, Valerie M; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N; Laboy-Corales, Ángel L; Llaurador-Caraballo, Gabriela A; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A; Martínez-Traverso, Idaliz M; Medina-Ortega, Kiara N; Méndez-Castellanos, Sonya G; Menéndez-Serrano, Krizia C; Morales-Caraballo, Carol I; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M; Ramírez-Aponte, Edwin G; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S; Rivera-Pagán, Ingrid T; Rivera-Vicéns, Ramón E; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O; Rodríguez-García, Priscila M; Rodríguez-Laboy, Abneris E; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L; Rubio-Marrero, Eva N; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L; Santos-Ramos, Carlos E; Serrano-González, Joseline; Tamayo-Figueroa, Alina M; Tascón-Peñaranda, Edna P; Torres-Castillo, José L; Valentín-Feliciano, Nelson A; Valentín-Feliciano, Yashira M; Vargas-Barreto, Nadyan M; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L; Molleston, Jerome M; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y; Zheng, Yin; Preuss, Mary L; Garcia, Angelica; Juergens, Matt; Morris, Robert W; Nagengast, Alexis A; Azarewicz, Julie; Carr, Thomas J; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L; Adams, Ashley L; Barnard, Brianna K; Cheramie, Martin N; Eime, Anne M; Golden, Kathryn L; Hawkins, Allyson P; Hill, Jessica E; Kampmeier, Jessica A; Kern, Cody D; Magnuson, Emily E; Miller, Ashley R; Morrow, Cody M; Peairs, Julia C; Pickett, Gentry L; Popelka, Sarah A; Scott, Alexis J; Teepe, Emily J; TerMeer, Katie A; Watchinski, Carmen A; Watson, Lucas A; Weber, Rachel E; Woodard, Kate A; Barnard, Daron C; Appiah, Isaac; Giddens, Michelle M; McNeil, Gerard P; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2015-03-04

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. Copyright © 2015 Leung et al.

  17. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function

    International Nuclear Information System (INIS)

    Adolfsson, Karl; Hammarin, Greger; Prinz, Christelle N; Schneider, Martina; Häcker, Udo

    2013-01-01

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III–V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate. (paper)

  18. Molecular Cloning and Genomic Organization of a Novel Receptor from Drosophila melanogaster Structurally Related to Mammalian Galanin Receptors

    DEFF Research Database (Denmark)

    Lenz, Camilla; Søndergaard, L.; Grimmelikhuijzen, Cornelis J.P.

    2000-01-01

    neurobiologi, molekylærbiologi, zoologi, neurohormonereceptor, allatostatin, galanin, insekt, Drosophila......neurobiologi, molekylærbiologi, zoologi, neurohormonereceptor, allatostatin, galanin, insekt, Drosophila...

  19. Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory; Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Emil [Dalarna Univ., Borlaenge (Sweden). Graphic Art Technology

    2002-12-01

    This report describes the work that is being conducted on power management controls at Berkeley National Laboratory. We can see a significant increasing amount of electronic equipment in our work places and in our every day life. Today's modern society depends on a constant energy flow. The future's increasing need of energy will burden our economy as well as our environment. The project group at Berkeley National Laboratory is working with leading manufacturers of office equipment. The goal is to agree on how interfaces for power management should be presented on office equipment. User friendliness and a more consistent power management interface is the project focus. The project group's role is to analyze data that is relevant to power management, as well as to coordinate communication and discussions among the involved parties.

  20. Genome-Wide Association Study on Male Genital Shape and Size in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Baku Takahara

    Full Text Available Male genital morphology of animals with internal fertilization and promiscuous mating systems have been one of the most diverse and rapidly evolving morphological traits. The male genital morphology in general is known to have low phenotypic and genetic variations, but the genetic basis of the male genital variation remains unclear. Drosophila melanogaster and its closely related species are morphologically very similar, but the shapes of the posterior lobe, a cuticular projection on the male genital arch are distinct from each other, representing a model system for studying the genetic basis of male genital morphology. In this study, we used highly inbred whole genome sequenced strains of D. melanogaster to perform genome wide association analysis on posterior lobe morphology. We quantified the outline shape of posterior lobes with Fourier coefficients obtained from elliptic Fourier analysis and performed principal component analysis, and posterior lobe size. The first and second principal components (PC1 and PC2 explained approximately 88% of the total variation of the posterior lobe shape. We then examined the association between the principal component scores and posterior lobe size and 1902142 single nucleotide polymorphisms (SNPs. As a result, we obtained 15, 14 and 15 SNPs for PC1, PC2 and posterior lobe size with P-values smaller than 10(-5. Based on the location of the SNPs, 13, 13 and six protein coding genes were identified as potential candidates for PC1, PC2 and posterior lobe size, respectively. In addition to the previous findings showing that the intraspecific posterior shape variation are regulated by multiple QTL with strong effects, the present study suggests that the intraspecific variation may be under polygenic regulation with a number of loci with small effects. Further studies are required for investigating whether these candidate genes are responsible for the intraspecific posterior lobe shape variation.

  1. Guidelines for the segregation characterization management of dry waste at Berkeley Lab

    International Nuclear Information System (INIS)

    1997-05-01

    Managing and disposing of dry low level radioactive waste at Berkeley Lab. is problematic. The Waste Management Group must assure off site treatment, storage, and disposal facilities that dry waste from Berkeley Lab. is free of liquids and regulated metals (such as lead and mercury). RTR (Real Time Radioagraphy) used for waste to be rejected. This pamphlet helps to clarify dry waste management requirements that will ensure that Berkeley Lab. dry waste will be accepted for off site shipment. These issues are critical if we are to have an off site disposal option for your dry radioactive waste

  2. BERKELEY: Light Source anniversary

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The staff of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory has been too busy to celebrate the first anniversary of the facility's transition from a US Department of Energy construction project to operating third-generation synchrotron radiation source. Based on a 1.5-GeV, low-emittance electron storage ring that accommodates up to ten insertion-device radiation sources optimized primarily for the soft X-ray and vacuum ultra-violet regions of the spectrum, the ALS has completed

  3. BERKELEY: Light Source anniversary

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-10-15

    The staff of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory has been too busy to celebrate the first anniversary of the facility's transition from a US Department of Energy construction project to operating third-generation synchrotron radiation source. Based on a 1.5-GeV, low-emittance electron storage ring that accommodates up to ten insertion-device radiation sources optimized primarily for the soft X-ray and vacuum ultra-violet regions of the spectrum, the ALS has completed.

  4. Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila.

    Science.gov (United States)

    Castillo, Dean M; Barbash, Daniel A

    2017-11-01

    The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster , will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved. Copyright © 2017 by the Genetics Society of America.

  5. A Test for Gene Flow among Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.

    Science.gov (United States)

    Kang, Lin; Garner, Harold R; Price, Donald K; Michalak, Pawel

    2017-06-01

    The Hawaiian Drosophila are one of the most species-rich endemic groups in Hawaii and a spectacular example of adaptive radiation. Drosophila silvestris and D. heteroneura are two closely related picture-winged Drosophila species that occur sympatrically on Hawaii Island and are known to hybridize in nature, yet exhibit highly divergent behavioral and morphological traits driven largely through sexual selection. Their closest-related allopatric species, D. planitibia from Maui, exhibits hybrid male sterility and reduced behavioral reproductive isolation when crossed experimentally with D. silvestris or D. heteroneura. A modified four-taxon test for gene flow was applied to recently obtained genomes of the three Hawaiian Drosophila species. The analysis indicates recent gene flow in sympatry, but also, although less extensive, between allopatric species. This study underscores the prevalence of gene flow, even in taxonomic groups considered classic examples of allopatric speciation on islands. The potential confounding effects of gene flow in phylogenetic and population genetics inference are discussed, as well as the implications for conservation.

  6. Dosage compensation and demasculinization of X chromosomes in Drosophila.

    Science.gov (United States)

    Bachtrog, Doris; Toda, Nicholas R T; Lockton, Steven

    2010-08-24

    The X chromosome of Drosophila shows a deficiency of genes with male-biased expression, whereas mammalian X chromosomes are enriched for spermatogenesis genes expressed premeiosis and multicopy testis genes. Meiotic X-inactivation and sexual antagonism can only partly account for these patterns. Here, we show that dosage compensation (DC) in Drosophila may contribute substantially to the depletion of male genes on the X. To equalize expression between X-linked and autosomal genes in the two sexes, male Drosophila hypertranscribe their single X, whereas female mammals silence one of their two X chromosomes. We combine fine-scale mapping data of dosage compensated regions with genome-wide expression profiles and show that most male-biased genes on the D. melanogaster X are located outside dosage compensated regions. Additionally, X-linked genes that have newly acquired male-biased expression in D. melanogaster are less likely to be dosage compensated, and parental X-linked genes that gave rise to an autosomal male-biased retrocopy are more likely located within compensated regions. This suggests that DC contributes to the observed demasculinization of X chromosomes in Drosophila, both by limiting the emergence of male-biased expression patterns of existing X genes, and by contributing to gene trafficking of male genes off the X. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. High-resolution genome-wide dissection of the two rules of speciation in Drosophila.

    Directory of Open Access Journals (Sweden)

    John P Masly

    2007-09-01

    Full Text Available Postzygotic reproductive isolation is characterized by two striking empirical patterns. The first is Haldane's rule--the preferential inviability or sterility of species hybrids of the heterogametic (XY sex. The second is the so-called large X effect--substitution of one species's X chromosome for another's has a disproportionately large effect on hybrid fitness compared to similar substitution of an autosome. Although the first rule has been well-established, the second rule remains controversial. Here, we dissect the genetic causes of these two rules using a genome-wide introgression analysis of Drosophila mauritiana chromosome segments in an otherwise D. sechellia genetic background. We find that recessive hybrid incompatibilities outnumber dominant ones and that hybrid male steriles outnumber all other types of incompatibility, consistent with the dominance and faster-male theories of Haldane's rule, respectively. We also find that, although X-linked and autosomal introgressions are of similar size, most X-linked introgressions cause hybrid male sterility (60% whereas few autosomal introgressions do (18%. Our results thus confirm the large X effect and identify its proximate cause: incompatibilities causing hybrid male sterility have a higher density on the X chromosome than on the autosomes. We evaluate several hypotheses for the evolutionary cause of this excess of X-linked hybrid male sterility.

  8. High-resolution genome-wide dissection of the two rules of speciation in Drosophila.

    Science.gov (United States)

    Masly, John P; Presgraves, Daven C

    2007-09-01

    Postzygotic reproductive isolation is characterized by two striking empirical patterns. The first is Haldane's rule--the preferential inviability or sterility of species hybrids of the heterogametic (XY) sex. The second is the so-called large X effect--substitution of one species's X chromosome for another's has a disproportionately large effect on hybrid fitness compared to similar substitution of an autosome. Although the first rule has been well-established, the second rule remains controversial. Here, we dissect the genetic causes of these two rules using a genome-wide introgression analysis of Drosophila mauritiana chromosome segments in an otherwise D. sechellia genetic background. We find that recessive hybrid incompatibilities outnumber dominant ones and that hybrid male steriles outnumber all other types of incompatibility, consistent with the dominance and faster-male theories of Haldane's rule, respectively. We also find that, although X-linked and autosomal introgressions are of similar size, most X-linked introgressions cause hybrid male sterility (60%) whereas few autosomal introgressions do (18%). Our results thus confirm the large X effect and identify its proximate cause: incompatibilities causing hybrid male sterility have a higher density on the X chromosome than on the autosomes. We evaluate several hypotheses for the evolutionary cause of this excess of X-linked hybrid male sterility.

  9. A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reid Aikin

    Full Text Available Hedgehog (Hh proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

  10. Conserved genomic organisation of Group B Sox genes in insects.

    Directory of Open Access Journals (Sweden)

    Woerfel Gertrud

    2005-05-01

    Full Text Available Abstract Background Sox domain containing genes are important metazoan transcriptional regulators implicated in a wide rage of developmental processes. The vertebrate B subgroup contains the Sox1, Sox2 and Sox3 genes that have early functions in neural development. Previous studies show that Drosophila Group B genes have been functionally conserved since they play essential roles in early neural specification and mutations in the Drosophila Dichaete and SoxN genes can be rescued with mammalian Sox genes. Despite their importance, the extent and organisation of the Group B family in Drosophila has not been fully characterised, an important step in using Drosophila to examine conserved aspects of Group B Sox gene function. Results We have used the directed cDNA sequencing along with the output from the publicly-available genome sequencing projects to examine the structure of Group B Sox domain genes in Drosophila melanogaster, Drosophila pseudoobscura, Anopheles gambiae and Apis mellifora. All of the insect genomes contain four genes encoding Group B proteins, two of which are intronless, as is the case with vertebrate group B genes. As has been previously reported and unusually for Group B genes, two of the insect group B genes, Sox21a and Sox21b, contain introns within their DNA-binding domains. We find that the highly unusual multi-exon structure of the Sox21b gene is common to the insects. In addition, we find that three of the group B Sox genes are organised in a linked cluster in the insect genomes. By in situ hybridisation we show that the pattern of expression of each of the four group B genes during embryogenesis is conserved between D. melanogaster and D. pseudoobscura. Conclusion The DNA-binding domain sequences and genomic organisation of the group B genes have been conserved over 300 My of evolution since the last common ancestor of the Hymenoptera and the Diptera. Our analysis suggests insects have two Group B1 genes, SoxN and

  11. Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Hauser, Frank; Kobberup, Sune

    2003-01-01

    The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also...... part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila...... and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head...

  12. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Janani Iyer

    2016-05-01

    Full Text Available About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net, to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions.

  13. UC Berkeley's Celebration of the International Year of Astronomy 2009

    Science.gov (United States)

    Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.

    2010-08-01

    We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.

  14. Hox gene regulation in the central nervous system of Drosophila

    Directory of Open Access Journals (Sweden)

    Maheshwar eGummalla

    2014-04-01

    Full Text Available Hox genes specify the structures that form along the anteroposterior (AP axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called posterior dominance, states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS. While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92kb long non-coding RNA (lncRNA encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA. Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The 1st mechanism is mediated by a microRNA (mir-iab-8 encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila hox complexes

  15. Molecular evolution and functional characterization of Drosophila insulin-like peptides.

    Directory of Open Access Journals (Sweden)

    Sebastian Grönke

    2010-02-01

    Full Text Available Multicellular animals match costly activities, such as growth and reproduction, to the environment through nutrient-sensing pathways. The insulin/IGF signaling (IIS pathway plays key roles in growth, metabolism, stress resistance, reproduction, and longevity in diverse organisms including mammals. Invertebrate genomes often contain multiple genes encoding insulin-like ligands, including seven Drosophila insulin-like peptides (DILPs. We investigated the evolution, diversification, redundancy, and functions of the DILPs, combining evolutionary analysis, based on the completed genome sequences of 12 Drosophila species, and functional analysis, based on newly-generated knock-out mutations for all 7 dilp genes in D. melanogaster. Diversification of the 7 DILPs preceded diversification of Drosophila species, with stable gene diversification and family membership, suggesting stabilising selection for gene function. Gene knock-outs demonstrated both synergy and compensation of expression between different DILPs, notably with DILP3 required for normal expression of DILPs 2 and 5 in brain neurosecretory cells and expression of DILP6 in the fat body compensating for loss of brain DILPs. Loss of DILP2 increased lifespan and loss of DILP6 reduced growth, while loss of DILP7 did not affect fertility, contrary to its proposed role as a Drosophila relaxin. Importantly, loss of DILPs produced in the brain greatly extended lifespan but only in the presence of the endosymbiontic bacterium Wolbachia, demonstrating a specific interaction between IIS and Wolbachia in lifespan regulation. Furthermore, loss of brain DILPs blocked the responses of lifespan and fecundity to dietary restriction (DR and the DR response of these mutants suggests that IIS extends lifespan through mechanisms that both overlap with those of DR and through additional mechanisms that are independent of those at work in DR. Evolutionary conservation has thus been accompanied by synergy

  16. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome

    NARCIS (Netherlands)

    Herranz, R.; Benguría, A.; Laván, D.A.; López-Vidriero, I.; Gasset, G.; Javier Medina, F.; van Loon, J.J.W.A.; Marco, R.

    2010-01-01

    Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the

  17. The Hsp60C gene in the 25F cytogenetic region in Drosophila ...

    Indian Academy of Sciences (India)

    Unknown

    Earlier studies have shown that of the four genes (Hsp60A, Hsp60B, Hsp60C, Hsp60D genes) predicted to encode the conserved Hsp60 family chaperones in Drosophila melanogaster, the ..... C. Genomic organization and the predicted.

  18. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  19. Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster links BEAF to transcription.

    Science.gov (United States)

    Jiang, Nan; Emberly, Eldon; Cuvier, Olivier; Hart, Craig M

    2009-07-01

    Insulator elements play a role in gene regulation that is potentially linked to nuclear organization. Boundary element-associated factors (BEAFs) 32A and 32B associate with hundreds of sites on Drosophila polytene chromosomes. We hybridized DNA isolated by chromatin immunoprecipitation to genome tiling microarrays to construct a genome-wide map of BEAF binding locations. A distinct difference in the association of 32A and 32B with chromatin was noted. We identified 1,820 BEAF peaks and found that more than 85% were less than 300 bp from transcription start sites. Half are between head-to-head gene pairs. BEAF-associated genes are transcriptionally active as judged by the presence of RNA polymerase II, dimethylated histone H3 K4, and the alternative histone H3.3. Forty percent of these genes are also associated with the polymerase negative elongation factor NELF. Like NELF-associated genes, most BEAF-associated genes are highly expressed. Using quantitative reverse transcription-PCR, we found that the expression levels of most BEAF-associated genes decrease in embryos and cultured cells lacking BEAF. These results provide an unexpected link between BEAF and transcription, suggesting that BEAF plays a role in maintaining most associated promoter regions in an environment that facilitates high transcription levels.

  20. Environmental and simulation facility conditions can modulate a behavioral-driven altered gravity response of Drosophila imagoes transcriptome

    Data.gov (United States)

    National Aeronautics and Space Administration — Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene...

  1. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    International Nuclear Information System (INIS)

    Budinger, Thomas

    2006-01-01

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  3. Drosophila DNA-Binding Proteins in Polycomb Repression

    Directory of Open Access Journals (Sweden)

    Maksim Erokhin

    2018-01-01

    Full Text Available The formation of individual gene expression patterns in different cell types is required during differentiation and development of multicellular organisms. Polycomb group (PcG proteins are key epigenetic regulators responsible for gene repression, and dysregulation of their activities leads to developmental abnormalities and diseases. PcG proteins were first identified in Drosophila, which still remains the most convenient system for studying PcG-dependent repression. In the Drosophila genome, these proteins bind to DNA regions called Polycomb response elements (PREs. A major role in the recruitment of PcG proteins to PREs is played by DNA-binding factors, several of which have been characterized in detail. However, current knowledge is insufficient for comprehensively describing the mechanism of this process. In this review, we summarize and discuss the available data on the role of DNA-binding proteins in PcG recruitment to chromatin.

  4. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo; Yu, Charles; Booth, Benjamin W.; Zhang, Dayu; Wan, Kenneth H.; Yang, Li; Boley, Nathan; Andrews, Justen; Kaufman, Thomas C.; Graveley, Brenton R.; Bickel, Peter J.; Carninci, Piero; Carlson, Joseph W.; Celniker, Susan E.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.

  5. Electron Microscope Center Opens at Berkeley.

    Science.gov (United States)

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  6. Genomic Evidence for Adaptive Inversion Clines in Drosophila melanogaster.

    Science.gov (United States)

    Kapun, Martin; Fabian, Daniel K; Goudet, Jérôme; Flatt, Thomas

    2016-05-01

    Clines in chromosomal inversion polymorphisms-presumably driven by climatic gradients-are common but there is surprisingly little evidence for selection acting on them. Here we address this long-standing issue in Drosophila melanogaster by using diagnostic single nucleotide polymorphism (SNP) markers to estimate inversion frequencies from 28 whole-genome Pool-seq samples collected from 10 populations along the North American east coast. Inversions In(3L)P, In(3R)Mo, and In(3R)Payne showed clear latitudinal clines, and for In(2L)t, In(2R)NS, and In(3R)Payne the steepness of the clinal slopes changed between summer and fall. Consistent with an effect of seasonality on inversion frequencies, we detected small but stable seasonal fluctuations of In(2R)NS and In(3R)Payne in a temperate Pennsylvanian population over 4 years. In support of spatially varying selection, we observed that the cline in In(3R)Payne has remained stable for >40 years and that the frequencies of In(2L)t and In(3R)Payne are strongly correlated with climatic factors that vary latitudinally, independent of population structure. To test whether these patterns are adaptive, we compared the amount of genetic differentiation of inversions versus neutral SNPs and found that the clines in In(2L)t and In(3R)Payne are maintained nonneutrally and independent of admixture. We also identified numerous clinal inversion-associated SNPs, many of which exhibit parallel differentiation along the Australian cline and reside in genes known to affect fitness-related traits. Together, our results provide strong evidence that inversion clines are maintained by spatially-and perhaps also temporally-varying selection. We interpret our data in light of current hypotheses about how inversions are established and maintained. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  8. Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity.

    Directory of Open Access Journals (Sweden)

    Lisa L Ellis

    2014-07-01

    Full Text Available We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions.

  9. Intrapopulation Genome Size Variation in D. melanogaster Reflects Life History Variation and Plasticity

    Science.gov (United States)

    Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.

    2014-01-01

    We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905

  10. Simultaneous gene finding in multiple genomes.

    Science.gov (United States)

    König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario

    2016-11-15

    As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Superbends expand the scope of Berkeley's ALS

    CERN Document Server

    Robin, D S; Tamura, L S

    2002-01-01

    The first-ever retrofit of superconducting bend magnets into the storage ring of an operating synchrotron radiation source extends the spectrum of Lawrence Berkeley National Laboratory's Advanced Light Source into the hard-X-ray region without compromising soft X-ray availability, or performance. (4 refs).

  12. Conserved family of glycerol kinase loci in Drosophila melanogaster

    Science.gov (United States)

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  13. Genome-wide analysis of SU(VAR)3-9 distribution in chromosomes of Drosophila melanogaster.

    Science.gov (United States)

    Maksimov, Daniil A; Laktionov, Petr P; Posukh, Olga V; Belyakin, Stepan N; Koryakov, Dmitry E

    2018-03-01

    Histone modifications represent one of the key factors contributing to proper genome regulation. One of histone modifications involved in gene silencing is methylation of H3K9 residue. Present in the chromosomes across different eukaryotes, this epigenetic mark is controlled by SU(VAR)3-9 and its orthologs. Despite SU(VAR)3-9 was discovered over two decades ago, little is known about the details of its chromosomal distribution pattern. To fill in this gap, we used DamID-seq approach and obtained high-resolution genome-wide profiles for SU(VAR)3-9 in two somatic (salivary glands and brain ganglia) and two germline (ovarian nurse cells and testes) tissues of Drosophila melanogaster. Analysis of tissue and developmental expression of SU(VAR)3-9-bound genes indicates that in the somatic tissues tested, as well as in the ovarian nurse cells, SU(VAR)3-9 tends to associate with transcriptionally silent genes. In contrast, in the testes, SU(VAR)3-9 shows preferential association with testis-specific genes, and its binding appears dynamic during spermatogenesis. In somatic cells, the mere presence/absence of SU(VAR)3-9 binding correlates with lower/higher expression. No such correlation is found in the male germline. Interestingly, transcription units in piRNA clusters (particularly flanks thereof) are frequently targeted by SU(VAR)3-9, and Su(var)3-9 mutation affects the expression of select piRNA species. Our analyses suggest a context-dependent role of SU(VAR)3-9. In euchromatin, SU(VAR)3-9 may serve to fine-tune the expression of individual genes, whereas in heterochromatin, chromosome 4, and piRNA clusters, it may act more broadly over large chromatin domains.

  14. Large-scale trends in the evolution of gene structures within 11 animal genomes.

    Directory of Open Access Journals (Sweden)

    Mark Yandell

    2006-03-01

    Full Text Available We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales--from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for "Comparative Genomics Library". Our results demonstrate that change in intron-exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.

  15. Molecular cloning, genomic organization, and expression of a B-type (cricket-type) allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Williamson, M; Lenz, C; Winther, A M

    2001-01-01

    and nonamidated C terminus. We have previously reported the structure of an A-type allatostatin preprohormone from the fruitfly Drosophila melanogaster. Here we describe the molecular cloning of a B-type prepro-allatostatin from Drosophila (DAP-B). DAP-B is 211 amino acid residues long and contains one copy each...

  16. The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus.

    Science.gov (United States)

    Marzo, Mar; Puig, Marta; Ruiz, Alfredo

    2008-02-26

    Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs.

  17. Disintegration of the Aged Open Cluster Berkeley 17

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Souradeep; Vaidya, Kaushar [Department of Physics, Birla Institute of Technology and Science, Pilani 333031, Rajasthan (India); Mishra, Ishan [Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Chen, W. P., E-mail: f2012553@pilani.bits-pilani.ac.in [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China)

    2017-10-01

    We present the analysis of the morphological shape of Berkeley 17, the oldest known open cluster (∼10 Gyr), using the probabilistic star counting of Pan-STARRS point sources, and confirm its core-tail shape, plus an antitail, previously detected with the 2MASS data. The stellar population, as diagnosed by the color–magnitude diagram and theoretical isochrones, shows many massive members in the clusters core, whereas there is a paucity of such members in both of the tails. This manifests mass segregation in this aged star cluster with the low-mass members being stripped away from the system. It has been claimed that Berkeley 17 is associated with an excessive number of blue straggler candidates. A comparison of nearby reference fields indicates that about half of these may be field contamination.

  18. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  20. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  1. Generation of New Hairless Alleles by Genomic Engineering at the Hairless Locus in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Heiko Praxenthaler

    Full Text Available Hairless (H is the major antagonist within the Notch signalling pathway of Drosophila melanogaster. By binding to Suppressor of Hairless [Su(H] and two co-repressors, H induces silencing of Notch target genes in the absence of Notch signals. We have applied genomic engineering to create several new H alleles. To this end the endogenous H locus was replaced with an attP site by homologous recombination, serving as a landing platform for subsequent site directed integration of different H constructs. This way we generated a complete H knock out allele HattP, reintroduced a wild type H genomic and a cDNA-construct (Hgwt, Hcwt as well as two constructs encoding H proteins defective of Su(H binding (HLD, HiD. Phenotypes regarding viability, bristle and wing development were recorded, and the expression of Notch target genes wingless and cut was analysed in mutant wing discs or in mutant cell clones. Moreover, genetic interactions with Notch (N5419 and Delta (DlB2 mutants were addressed. Overall, phenotypes were largely as expected: both HLD and HiD were similar to the HattP null allele, indicating that most of H activity requires the binding of Su(H. Both rescue constructs Hgwt and Hcwt were homozygous viable without phenotype. Unexpectedly, the hemizygous condition uncovered that they were not identical to the wild type allele: notably Hcwt showed a markedly reduced activity, suggesting the presence of as yet unidentified regulatory or stabilizing elements in untranslated regions of the H gene. Interestingly, Hgwt homozygous cells expressed higher levels of H protein, perhaps unravelling gene-by-environment interactions.

  2. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    Science.gov (United States)

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  3. Mutants dissecting development and behaviour in drosophila

    International Nuclear Information System (INIS)

    Joshi, Adita; Chandrashekaran, Shanti; Sharma, R.P.

    2005-01-01

    We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the IARI, spearheaded by the visionary insight of M. S. Swaminathan. The work started with the study of indirect effect of radiation and the synergistic interaction of physical and chemical mutagens on chromosomal and genetic changes. This paved the way for the study of single gene mutants in dissecting developmental and behavioural processes. New genes discovered by us have been shown to encode conserved cell signalling molecules controlling developmental and behavioural pathways. With the complete sequencing of the Drosophila genome, in the year 2000, mounting evidence for the homology between Drosophila and human genes controlling genetic disorders became available. This has led to the fly becoming an indispensable tool for studying human diseases as well as a model to test for drugs and pharmaceuticals against human diseases and complex behavioural processes. For example wingless in Drosophila belongs to the conserved Wnt gene family and aberrant WNT signalling is linked to a range of human diseases, most notably cancer. Inhibition as well as activation of WNT signalling form the basis of an effective therapy for some cancers as well as several other clinical conditions. Recent experiments have shown that WNTs might also normally participate in self-renewal, proliferation or differentiation of stem cells and altering WNT signalling might be beneficial to the use of stem cells for therapeutic means. Likewise, the stambhA mutant of Drosophila which was discovered for its temperature-dependent paralytic behaviour is the fly homologue of Phospholipase Cβ. Phospholipase C mediated G protein signalling plays a central role in vital processes controlling epilepsy, vision, taste, and olfaction in animals. Proteins of the G-signalling pathway are of intense research interest since many human diseases involve defects in G-protein signalling pathways. In fact, approximately 50

  4. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    Science.gov (United States)

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  5. Genetic Targets of Acute Toluene Inhalation in Drosophila melanogaster: DGRP activity, overlapping human orthologs, pathway analyses, GWAS results

    Data.gov (United States)

    U.S. Environmental Protection Agency — We used the Drosophila Genetics Reference Panel (DGRP), a collection of ~200 homozygous lines of fruit flies whose genomes have been sequenced. We quantified...

  6. Identification and characterization of the fibrinogen-like domain of fibrinogen-related proteins in the mosquito, Anopheles gambiae, and the fruitfly, Drosophila melanogaster, genomes

    Directory of Open Access Journals (Sweden)

    Zhao Qin

    2005-09-01

    Full Text Available Abstract Background The fibrinogen-like (FBG domain, which consists of approximately 200 amino acid residues, has high sequence similarity to the C-terminal halves of fibrinogen β and γ chains. Fibrinogen-related proteins (FREPs, which contain FBG domains in their C-terminal region, are found universally in vertebrates and invertebrates. In invertebrates, FREPs are involved in immune responses and other aspects of physiology. To understand the complexity of this family in insects, we analyzed FREPs in the mosquito genome and made comparisons to FREPs in the fruitfly genome. Results By using the genome data of the mosquito, Anopheles gambiae, 53 FREPs were identified, whereas only 20 members were found in the Drosophila melanogaster genome. Using sequence profile analysis, we found that FBG domains have high sequence similarity and are highly conserved throughout the FBG domain region. By secondary structure analysis and comparison, the FBG domains of FREPs are predicted to function in recognition of carbohydrates and their derivatives on the surface of microorganisms in innate immunity. Conclusion Detailed sequence and structural analysis discloses that the FREP family contains FBG domains that have high sequence similarity in the A. gambiae genome. Expansion of the FREP family in mosquitoes during evolutionary history is mainly accounted for by a major expansion of the FBG domain architecture. The characterization of the FBG domains in the FREP family is likely to aid in the experimental analysis of the ability of mosquitoes to recognize parasites in innate immunity and physiologies associated with blood feeding.

  7. Identification of unannotated exons of low abundance transcripts in Drosophila melanogaster and cloning of a new serine protease gene upregulated upon injury

    Directory of Open Access Journals (Sweden)

    Monesi Nadia

    2007-07-01

    Full Text Available Abstract Background The sequencing of the D.melanogaster genome revealed an unexpected small number of genes (~ 14,000 indicating that mechanisms acting on generation of transcript diversity must have played a major role in the evolution of complex metazoans. Among the most extensively used mechanisms that accounts for this diversity is alternative splicing. It is estimated that over 40% of Drosophila protein-coding genes contain one or more alternative exons. A recent transcription map of the Drosophila embryogenesis indicates that 30% of the transcribed regions are unannotated, and that 1/3 of this is estimated as missed or alternative exons of previously characterized protein-coding genes. Therefore, the identification of the variety of expressed transcripts depends on experimental data for its final validation and is continuously being performed using different approaches. We applied the Open Reading Frame Expressed Sequence Tags (ORESTES methodology, which is capable of generating cDNA data from the central portion of rare transcripts, in order to investigate the presence of hitherto unnanotated regions of Drosophila transcriptome. Results Bioinformatic analysis of 1,303 Drosophila ORESTES clusters identified 68 sequences derived from unannotated regions in the current Drosophila genome version (4.3. Of these, a set of 38 was analysed by polyA+ northern blot hybridization, validating 17 (50% new exons of low abundance transcripts. For one of these ESTs, we obtained the cDNA encompassing the complete coding sequence of a new serine protease, named SP212. The SP212 gene is part of a serine protease gene cluster located in the chromosome region 88A12-B1. This cluster includes the predicted genes CG9631, CG9649 and CG31326, which were previously identified as up-regulated after immune challenges in genomic-scale microarray analysis. In agreement with the proposal that this locus is co-regulated in response to microorganisms infection, we show

  8. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer

    Science.gov (United States)

    Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros

    2014-01-01

    Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer. PMID:24409421

  9. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    Science.gov (United States)

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  10. Sizing up arthropod genomes: an evaluation of the impact of environmental variation on genome size estimates by flow cytometry and the use of qPCR as a method of estimation.

    Science.gov (United States)

    Gregory, T Ryan; Nathwani, Paula; Bonnett, Tiffany R; Huber, Dezene P W

    2013-09-01

    A study was undertaken to evaluate both a pre-existing method and a newly proposed approach for the estimation of nuclear genome sizes in arthropods. First, concerns regarding the reliability of the well-established method of flow cytometry relating to impacts of rearing conditions on genome size estimates were examined. Contrary to previous reports, a more carefully controlled test found negligible environmental effects on genome size estimates in the fly Drosophila melanogaster. Second, a more recently touted method based on quantitative real-time PCR (qPCR) was examined in terms of ease of use, efficiency, and (most importantly) accuracy using four test species: the flies Drosophila melanogaster and Musca domestica and the beetles Tribolium castaneum and Dendroctonus ponderosa. The results of this analysis demonstrated that qPCR has the tendency to produce substantially different genome size estimates from other established techniques while also being far less efficient than existing methods.

  11. A Short History and Description of Drosophila melanogaster Classical Genetics: Chromosome Aberrations, Forward Genetic Screens, and the Nature of Mutations.

    Science.gov (United States)

    Kaufman, Thomas C

    2017-06-01

    The purpose of this chapter in FlyBook is to acquaint the reader with the Drosophila genome and the ways in which it can be altered by mutation. Much of what follows will be familiar to the experienced Fly Pusher but hopefully will be useful to those just entering the field and are thus unfamiliar with the genome, the history of how it has been and can be altered, and the consequences of those alterations. I will begin with the structure, content, and organization of the genome, followed by the kinds of structural alterations (karyotypic aberrations), how they affect the behavior of chromosomes in meiotic cell division, and how that behavior can be used. Finally, screens for mutations as they have been performed will be discussed. There are several excellent sources of detailed information on Drosophila husbandry and screening that are recommended for those interested in further expanding their familiarity with Drosophila as a research tool and model organism. These are a book by Ralph Greenspan and a review article by John Roote and Andreas Prokop, which should be required reading for any new student entering a fly lab for the first time. Copyright © 2017 by the Genetics Society of America.

  12. New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55

    Science.gov (United States)

    Lohr, M. E.; Negueruela, I.; Tabernero, H. M.; Clark, J. S.; Lewis, F.; Roche, P.

    2018-05-01

    As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3^{+1.0}_{-0.8} kpc and an age of 44^{+9}_{-8} Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63^{+12}_{-11} Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales.

  13. CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O

    2002-01-01

    An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta...... and coimmunoprecipitation analysis of protein extract from Drosophila testes, we demonstrated an association between CK2(beta)tes and CK2alpha. Northern-analysis has shown that another regulatory (beta') subunit found recently in D. melanogaster genome is also testis-specific. Thus, we describe the first example of two...

  14. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  15. [Architecture of the X chromosome, expression of LIM kinase 1, and recombination in the agnostic mutants of Drosophila: a model of human Williams syndrome].

    Science.gov (United States)

    Savvateeva-Popova, E V; Peresleni, A I; Sharagina, L M; Medvedeva, A V; Korochkina, S E; Grigor'eva, I V; Diuzhikova, N A; Popov, A V; Baricheva, E M; Karagodin, D; Heisenberg, M

    2004-06-01

    As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.

  16. Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate.

    Science.gov (United States)

    Cutter, Asher D

    2008-04-01

    Accurate inference of the dates of common ancestry among species forms a central problem in understanding the evolutionary history of organisms. Molecular estimates of divergence time rely on the molecular evolutionary prediction that neutral mutations and substitutions occur at the same constant rate in genomes of related species. This underlies the notion of a molecular clock. Most implementations of this idea depend on paleontological calibration to infer dates of common ancestry, but taxa with poor fossil records must rely on external, potentially inappropriate, calibration with distantly related species. The classic biological models Caenorhabditis and Drosophila are examples of such problem taxa. Here, I illustrate internal calibration in these groups with direct estimates of the mutation rate from contemporary populations that are corrected for interfering effects of selection on the assumption of neutrality of substitutions. Divergence times are inferred among 6 species each of Caenorhabditis and Drosophila, based on thousands of orthologous groups of genes. I propose that the 2 closest known species of Caenorhabditis shared a common ancestor <24 MYA (Caenorhabditis briggsae and Caenorhabditis sp. 5) and that Caenorhabditis elegans diverged from its closest known relatives <30 MYA, assuming that these species pass through at least 6 generations per year; these estimates are much more recent than reported previously with molecular clock calibrations from non-nematode phyla. Dates inferred for the common ancestor of Drosophila melanogaster and Drosophila simulans are roughly concordant with previous studies. These revised dates have important implications for rates of genome evolution and the origin of self-fertilization in Caenorhabditis.

  17. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    International Nuclear Information System (INIS)

    Packard, Richard

    2006-01-01

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He

  18. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    International Nuclear Information System (INIS)

    Lawrence Berkeley National Laboratory

    2007-01-01

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material

  19. Large-scale assessment of olfactory preferences and learning in Drosophila melanogaster: behavioral and genetic components

    Directory of Open Access Journals (Sweden)

    Elisabetta Versace

    2015-09-01

    Full Text Available In the Evolve and Resequence method (E&R, experimental evolution and genomics are combined to investigate evolutionary dynamics and the genotype-phenotype link. As other genomic approaches, this methods requires many replicates with large population sizes, which imposes severe restrictions on the analysis of behavioral phenotypes. Aiming to use E&R for investigating the evolution of behavior in Drosophila, we have developed a simple and effective method to assess spontaneous olfactory preferences and learning in large samples of fruit flies using a T-maze. We tested this procedure on (a a large wild-caught population and (b 11 isofemale lines of Drosophila melanogaster. Compared to previous methods, this procedure reduces the environmental noise and allows for the analysis of large population samples. Consistent with previous results, we show that flies have a preference for orange vs. apple odor. With our procedure wild-derived flies exhibit olfactory learning in the absence of previous laboratory selection. Furthermore, we find genetic differences in the olfactory learning with relatively high heritability. We propose this large-scale method as an effective tool for E&R and genome-wide association studies on olfactory preferences and learning.

  20. Structural Genomics of Minimal Organisms: Pipeline and Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong-Hae; Kim, Rosalind; Adams, Paul; Chandonia, John-Marc

    2007-09-14

    The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93percent of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.

  1. Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome

    Science.gov (United States)

    Vorobyeva, Nadezhda E.; Mazina, Marina U.; Golovnin, Anton K.; Kopytova, Daria V.; Gurskiy, Dmitriy Y.; Nabirochkina, Elena N.; Georgieva, Sofia G.; Georgiev, Pavel G.; Krasnov, Aleksey N.

    2013-01-01

    Despite increasing data on the properties of replication origins, molecular mechanisms underlying origin recognition complex (ORC) positioning in the genome are still poorly understood. The Su(Hw) protein accounts for the activity of best-studied Drosophila insulators. Here, we show that Su(Hw) recruits the histone acetyltransferase complex SAGA and chromatin remodeler Brahma to Su(Hw)-dependent insulators, which gives rise to regions with low nucleosome density and creates conditions for ORC binding. Depletion in Su(Hw) leads to a dramatic drop in the levels of SAGA, Brahma and ORC subunits and a significant increase in nucleosome density on Su(Hw)-dependent insulators, whereas artificial Su(Hw) recruitment itself is sufficient for subsequent SAGA, Brahma and ORC binding. In contrast to the majority of replication origins that associate with promoters of active genes, Su(Hw)-binding sites constitute a small proportion (6%) of ORC-binding sites that are localized preferentially in transcriptionally inactive chromatin regions termed BLACK and BLUE chromatin. We suggest that the key determinants of ORC positioning in the genome are DNA-binding proteins that constitute different DNA regulatory elements, including insulators, promoters and enhancers. Su(Hw) is the first example of such a protein. PMID:23609538

  2. Berkeley automated supernova search

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  3. Berkeley automated supernova search

    International Nuclear Information System (INIS)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  4. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  5. Cloning and identification of the gene coding for the 140-kd subunit of Drosophila RNA polymerase II

    OpenAIRE

    Faust, Daniela M.; Renkawitz-Pohl, Renate; Falkenburg, Dieter; Gasch, Alexander; Bialojan, Siegfried; Young, Richard A.; Bautz, Ekkehard K. F.

    1986-01-01

    Genomic clones of Drosophila melanogaster were isolated from a λ library by cross-hybridization with the yeast gene coding for the 150-kd subunit of RNA polymerase II. Clones containing a region of ∼2.0 kb with strong homology to the yeast gene were shown to code for a 3.9-kb poly(A)+-RNA. Part of the coding region was cloned into an expression vector. A fusion protein was obtained which reacted with an antibody directed against RNA polymerase II of Drosophila. Peptide mapping of the fusion p...

  6. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.

    Science.gov (United States)

    Ren, Xingjie; Sun, Jin; Housden, Benjamin E; Hu, Yanhui; Roesel, Charles; Lin, Shuailiang; Liu, Lu-Ping; Yang, Zhihao; Mao, Decai; Sun, Lingzhu; Wu, Qujie; Ji, Jun-Yuan; Xi, Jianzhong; Mohr, Stephanie E; Xu, Jiang; Perrimon, Norbert; Ni, Jian-Quan

    2013-11-19

    The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.

  7. Drosophila cell cycle under arrest: uncapped telomeres plead guilty.

    Science.gov (United States)

    Cenci, Giovanni

    2009-04-01

    Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.

  8. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila.

    Science.gov (United States)

    Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun

    2014-03-21

    Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor. Copyright © 2014 Xue et al.

  9. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    Science.gov (United States)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  10. Berkeley Lab Pilot on External Regulation of DOE National Laboratories by the U.S. NRC

    International Nuclear Information System (INIS)

    Zeman, Gary H.

    1999-01-01

    The US Department of Energy and the US Nuclear Regulatory Commission entered into an agreement in November 1997 to pursue external regulation of radiation safety at DOE national laboratories through a Pilot Program of simulated regulation at 6-10 sites over a 2 year period. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab), the oldest of the DOE national laboratories, volunteered and was selected as the first Pilot site. Based on the similarities and linkages between Berkeley Lab and nearby university research laboratories, Berkeley Lab seemed a good candidate for external regulation and a good first step in familiarizing NRC with the technical and institutional issues involved in regulating laboratories in the DOE complex. NRC and DOE team members visited Berkeley Lab on four occasions between October 1997 and January 1998 to carry out the Pilot. The first step was to develop a detailed Work Plan, then to carry out both a technical review of the radiation safety program and an examination of policy and regulatory issues. The Pilot included a public meeting held in Oakland, CA in December 1997. The Pilot concluded with NRC's assessment that Berkeley Lab has a radiation protection program adequate to protect workers, the public and the environment, and that it is ready to be licensed by the NRC with minor programmatic exceptions. A draft final report of the Pilot was prepared and circulated for comment as a NUREG document (dated May 7, 1998). The report's recommendations include extending NRC regulatory authority to cover all ionizing radiation sources (including accelerators, x-ray units, NARM) at Berkeley Lab. Questions remaining to be resolved include: who should be the licensee (DOE, the Lab, or both)?; dealing with legacy issues and NRC D and D requirements; minimizing dual oversight; quantifying value added in terms of cost savings, enhanced safety, and improved public perception; extrapolating results to other national laboratories; and

  11. Drosophila as a Screening Platform for Novel Lung Cancer Therapeutics

    Science.gov (United States)

    2016-09-01

    Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila. Dev. Cell 9, 831–842. Cancer Genome Atlas Research...Ras isoprenylation and pAkt inhibition by zole- dronic acid and fluvastatin enhances paclitaxel activity in T24 bladder cancer cells. Cancers (Basel...PKB signaling via P2X7 receptor in pancreatic cancer cells. Biochem. Pharmacol. 78, 1115–1126. Mo, H., and Elson, C.E. (2004). Studies of the

  12. A regulatory network of Drosophila germline stem cell self-renewal

    OpenAIRE

    Yan, Dong; Neumüller, Ralph A.; Buckner, Michael; Ayers, Kathleen; Li, Hua; Hu, Yanhui; Yang-Zhou, Donghui; Pan, Lei; Wang, Xiaoxi; Kelley, Colleen; Vinayagam, Arunachalam; Binari, Richard; Randklev, Sakara; Perkins, Lizabeth A.; Xie, Ting

    2014-01-01

    Stem cells possess the capacity to generate two cells of distinct fate upon division; one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ~25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation or ...

  13. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W.; Hoskins, Roger A.; Bellen, Hugo J.; Kaufman, Thomas C.

    2010-07-22

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  14. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bruno Zeitouni

    2007-10-01

    Full Text Available Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation.

  15. Observations of Local ISM Emission with the Berkeley EUV/FUV Shuttle Telescope

    Science.gov (United States)

    Martin, C.; Bowyer, S.

    1984-01-01

    The Berkeley extreme ultraviolet/far ultraviolet shuttle telescope (BEST) will be launched on the Space Shuttle as part of the NASA UVX project. The Berkeley spectrometer will make observations of the cosmic diffuse background in the 600 to 1900 A band, with a spectral resolution of 10 A. The sensitivity and spectral resolution of the instrument make it ideal for the study of components of the interstellar medium in the 10 to the 4th power to 10 to the 6th power K range.

  16. Positive Selection Drives the Evolution of rhino, a Member of the Heterochromatin Protein 1 Family in Drosophila.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1, which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of "junk DNA" in eukaryotic genomes.

  17. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila.

    Directory of Open Access Journals (Sweden)

    Danielle Vermaak

    2005-07-01

    Full Text Available Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1, which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of "junk DNA" in eukaryotic genomes.

  18. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  19. Internucleotide correlations and nucleotide periodicity in Drosophila mtDNA: New evidence for panselective evolution

    Directory of Open Access Journals (Sweden)

    Carlos Y Valenzuela

    2010-01-01

    Full Text Available Analysis for the homogeneity of the distribution of the second base of dinucleotides in relation to the first, whose bases are separated by 0, 1, 2,... 21 nucleotide sites, was performed with the VIH-1 genome (cDNA, the Drosophila mtDNA, the Drosophila Torso gene and the human p-globin gene. These four DNA segments showed highly significant heterogeneities of base distributions that cannot be accounted for by neutral or nearly neutral evolution or by the "neighbor influence" of nucleotides on mutation rates. High correlations are found in the bases of dinucleotides separated by 0, 1 and more number of sites. A periodicity of three consecutive significance values (measured by the x²9 was found only in Drosophila mtDNA. This periodicity may be due to an unknown structure or organization of mtDNA. This non-random distribution of the two bases of dinucleotides widespread throughout these DNA segments is rather compatible with panselective evolution and generalized internucleotide co-adaptation.

  20. Behavioral Teratogenesis in Drosophila melanogaster.

    Science.gov (United States)

    Mishra, Monalisa; Barik, Bedanta Kumar

    2018-01-01

    Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

  1. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  2. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  3. A pulsed magnetic stress applied to Drosophila melanogaster flies

    International Nuclear Information System (INIS)

    Delle Side, D; Giuffreda, E; Nassisi, V; Velardi, L; Bozzetti, M P; Friscini, A; Specchia, V

    2014-01-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  4. A pulsed magnetic stress applied to Drosophila melanogaster flies

    Science.gov (United States)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  5. Long-life cathode for the Berkeley-type ion source

    International Nuclear Information System (INIS)

    Fink, J.H.; Biagi, L.A.

    1977-01-01

    Preliminary experiments indicate that a hollow cathode, made from impregnated tungsten emitters, can be adapted for the Lawrence Berkeley Laboratory (LBL)/Lawrence Livermore Laboratory (LLL) ion source. Such cathodes could be the basis of a long life, continuously operated positive-ion source

  6. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  7. The decommissioning of Berkeley II

    International Nuclear Information System (INIS)

    Hannan, A.

    2002-01-01

    This paper describes the decommissioning progress at the Magnox site at Berkeley in Gloucestershire.Throughout the work at Berkeley the emphasis has been on conducting decommissioning safely. This has been reflected in the progress of decommissioning starting with removal of the fuel from site and thus much greater than 99% of the radioactive inventory. The major radioactive hazard is the Intermediate Level Waste in the form of fuel element debris (graphite struts and extraneous magnox components removed to increase the packing density of fuel elements in flasks going to Sellafield), miscellaneous activated components, sludges and resins. Approximately 1500 m 3 of such material exists and is stored in underground waste vaults on site. Work is underway to recover and encapsulate the waste in cement so rendering it 'passively safe'. All work on site is covered by a nuclear safety case which has a key objective of minimising the radiological exposures that could accrue to workers. Reflecting this an early decision has been taken to leave work on the Reactor Pressure Vessels themselves for several decades. Also important in protection of the workforce has been control of asbestos.Much material has been removed with redundant plant and equipment, but a programme of remediation in line with government legislation has been required to ensure personnel safety throughout the decommissioning period and into Care and Maintenance.In addition to health and safety matters the site approach to environmental issues has been consistent. Formally such standards as ISO 14001 have been adhered to and the appropriate certification maintained. At a working level the principles of reduce, reuse and recycle have been inculcated

  8. Modeling congenital disease and inborn errors of development in Drosophila melanogaster

    Science.gov (United States)

    Moulton, Matthew J.; Letsou, Anthea

    2016-01-01

    ABSTRACT Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes. PMID:26935104

  9. UC-Berkeley-area citizens decry waste transfer from lab.

    CERN Multimedia

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  10. Border Structure of Intercalary Heterochromatin Bands of Drosophila melanogaster Polytene Chromosomes.

    Science.gov (United States)

    Khoroshko, V A; Zykova, T Yu; Popova, O O; Zhimulev, I F

    2018-03-01

    The precise genomic localization of the borders of 62 intercalary heterochromatin bands in Drosophila polytene chromosomes was determined. A new type of bands containing chromatin of different states was identified. This type is a combination of the gray band and the intercalary heterochromatin band, creating a genetic structure that with a light microscope is identified as a continuous band. The border structure of such bands includes the coding regions of genes with ubiquitous activity.

  11. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster.

    Science.gov (United States)

    Schrider, Daniel R; Hahn, Matthew W; Begun, David J

    2016-05-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The Indirect Perception of Distance: Interpretive Complexities in Berkeley's Theory of Vision

    Directory of Open Access Journals (Sweden)

    Michael James Braund

    2007-12-01

    Full Text Available The problem of whether perception is direct or if it depends on additional, cognitive contributions made by the perceiving subject, is posed with particular force in an Essay towards a New Theory of Vision (NTV. It is evident from the recurrent treatment it receives therein that Berkeley considers it to be one of the central issues concerning perception. Fittingly, the NTV devotes the most attention to it. In this essay, I deal exclusively with Berkeley's treatment of the problem of indirect distance perception, as it is presented in the context of that work.

  13. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy's inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  14. New nuclear physics at Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    One of the highlights of the summer was the International Conference on Nuclear Physics, held at Berkeley in August. These big meetings provide a periodic focus for the nuclear physics community. Overall, the Conference paid a lot of attention to topics and phenomna which only a few years ago would have been considered exotic. With many novel ideas being put forward and with new projects afoot, a lot of fresh ground could have been covered by the time of the next meeting, scheduled to be held in Florence in a few years

  15. Characterizing the developmental transcriptome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) through comparative genomic analysis with Drosophila melanogaster utilizing modENCODE datasets.

    Science.gov (United States)

    Geib, Scott M; Calla, Bernarda; Hall, Brian; Hou, Shaobin; Manoukis, Nicholas C

    2014-10-28

    The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family of flies, and can be considered an out-group to well-studied members of the family Drosophilidae. Despite their importance as pests and their relatedness to Drosophila, little information is present on B. dorsalis transcripts and proteins. The objective of this paper is to comprehensively characterize the transcripts present throughout the life history of B. dorsalis and functionally annotate and analyse these transcripts relative to the presence, expression, and function of orthologous sequences present in Drosophila melanogaster. We present a detailed transcriptome assembly of B. dorsalis from egg through adult stages containing 20,666 transcripts across 10,799 unigene components. Utilizing data available through Flybase and the modENCODE project, we compared expression patterns of these transcripts to putative orthologs in D. melanogaster in terms of timing, abundance, and function. In addition, temporal expression patterns in B. dorsalis were characterized between stages, to establish the constitutive or stage-specific expression patterns of particular transcripts. A fully annotated transcriptome assembly is made available through NCBI, in addition to corresponding expression data. Through characterizing the transcriptome of B. dorsalis through its life history and comparing the transcriptome of B. dorsalis to the model organism D. melanogaster, a database has been developed that can be used as the foundation to functional genomic research in Bactrocera flies and help identify orthologous genes between B. dorsalis and D. melanogaster. This data provides the foundation for future functional genomic research that will focus on improving our understanding of the physiology and

  16. [Ulysses retrotransposon aspartate proteinase (Drosophila virilis)].

    Science.gov (United States)

    Volkov, D A; Savvateeva, L V; Dergousova, N I; Rumsh, L D

    2002-01-01

    Retrotransposones are mobile genetic elements occurring in genomes of bacteria, plants or animals. Retrotransposones were found to contain nucleotide sequences encoding proteins which are homological to retroviral aspartic proteinases. Our research has been focused on Ulysses which is mobile genetic element found in Drosophila virilis. We suggested a primary structure of Ulysses proteinase using comparative analysis of amino acid sequences of retroviral proteinases and proteinases from retrotransposones. The appropriate cDNA fragment has been cloned and expressed in E. coli. The purification of recombinant protein (12 kD) has been carried out by affinity chromatography using pepstatine-agarose. The obtained protein has proteolytic activity at optimum pH 5.5 like the majority of aspartic proteinases.

  17. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster.

    Science.gov (United States)

    Venken, Koen J T; Popodi, Ellen; Holtzman, Stacy L; Schulze, Karen L; Park, Soo; Carlson, Joseph W; Hoskins, Roger A; Bellen, Hugo J; Kaufman, Thomas C

    2010-12-01

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using ΦC31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  18. Research resources for Drosophila: the expanding universe.

    Science.gov (United States)

    Matthews, Kathleen A; Kaufman, Thomas C; Gelbart, William M

    2005-03-01

    Drosophila melanogaster has been the subject of research into central questions about biological mechanisms for almost a century. The experimental tools and resources that are available or under development for D. melanogaster and its related species, particularly those for genomic analysis, are truly outstanding. Here we review three types of resource that have been developed for D. melanogaster research: databases and other sources of information, biological materials and experimental services. These resources are there to be exploited and we hope that this guide will encourage new uses for D. melanogaster information, materials and services, both by those new to flies and by experienced D. melanogaster researchers.

  19. Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila.

    Directory of Open Access Journals (Sweden)

    J Roman Arguello

    2006-05-01

    Full Text Available The formation of chimeric gene structures provides important routes by which novel proteins and functions are introduced into genomes. Signatures of these events have been identified in organisms from wide phylogenic distributions. However, the ability to characterize the early phases of these evolutionary processes has been difficult due to the ancient age of the genes or to the limitations of strictly computational approaches. While examples involving retrotransposition exist, our understanding of chimeric genes originating via illegitimate recombination is limited to speculations based on ancient genes or transfection experiments. Here we report a case of a young chimeric gene that has originated by illegitimate recombination in Drosophila. This gene was created within the last 2-3 million years, prior to the speciation of Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana. The duplication, which involved the Bällchen gene on Chromosome 3R, was partial, removing substantial 3' coding sequence. Subsequent to the duplication onto the X chromosome, intergenic sequence was recruited into the protein-coding region creating a chimeric peptide with approximately 33 new amino acid residues. In addition, a novel intron-containing 5' UTR and novel 3' UTR evolved. We further found that this new X-linked gene has evolved testes-specific expression. Following speciation of the D. simulans complex, this novel gene evolved lineage-specifically with evidence for positive selection acting along the D. simulans branch.

  20. The DrosDel Deletion Collection: A Drosophila Genomewide Chromosomal Deficiency Resource

    OpenAIRE

    Ryder, Edward; Ashburner, Michael; Bautista-Llacer, Rosa; Drummond, Jenny; Webster, Jane; Johnson, Glynnis; Morley, Terri; Chan, Yuk Sang; Blows, Fiona; Coulson, Darin; Reuter, Gunter; Baisch, Heiko; Apelt, Christian; Kauk, Andreas; Rudolph, Thomas

    2007-01-01

    We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering ∼77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly...

  1. Modeling Human Cancers in Drosophila.

    Science.gov (United States)

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  2. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  3. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  4. DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression

    Science.gov (United States)

    Hua, Brian L.; Orr-Weaver, Terry L.

    2017-01-01

    Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation. PMID:28874453

  5. Identification and characterization of insect-specific proteins by genome data analysis

    DEFF Research Database (Denmark)

    Zhang, Guojie; Wang, Hongsheng; Shi, Junjie

    2007-01-01

    melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts) Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila...

  6. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  7. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    McKone, T.E.; Brand, K.P.; Shan, C.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  8. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    Science.gov (United States)

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae.

    Science.gov (United States)

    Klasson, Lisa; Kumar, Nikhil; Bromley, Robin; Sieber, Karsten; Flowers, Melissa; Ott, Sandra H; Tallon, Luke J; Andersson, Siv G E; Dunning Hotopp, Julie C

    2014-12-12

    Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome. Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F). This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.

  10. Abundance and distribution of transposable elements in two Drosophila QTL mapping resources.

    Science.gov (United States)

    Cridland, Julie M; Macdonald, Stuart J; Long, Anthony D; Thornton, Kevin R

    2013-10-01

    Here we present computational machinery to efficiently and accurately identify transposable element (TE) insertions in 146 next-generation sequenced inbred strains of Drosophila melanogaster. The panel of lines we use in our study is composed of strains from a pair of genetic mapping resources: the Drosophila Genetic Reference Panel (DGRP) and the Drosophila Synthetic Population Resource (DSPR). We identified 23,087 TE insertions in these lines, of which 83.3% are found in only one line. There are marked differences in the distribution of elements over the genome, with TEs found at higher densities on the X chromosome, and in regions of low recombination. We also identified many more TEs per base pair of intronic sequence and fewer TEs per base pair of exonic sequence than expected if TEs are located at random locations in the euchromatic genome. There was substantial variation in TE load across genes. For example, the paralogs derailed and derailed-2 show a significant difference in the number of TE insertions, potentially reflecting differences in the selection acting on these loci. When considering TE families, we find a very weak effect of gene family size on TE insertions per gene, indicating that as gene family size increases the number of TE insertions in a given gene within that family also increases. TEs are known to be associated with certain phenotypes, and our data will allow investigators using the DGRP and DSPR to assess the functional role of TE insertions in complex trait variation more generally. Notably, because most TEs are very rare and often private to a single line, causative TEs resulting in phenotypic differences among individuals may typically fail to replicate across mapping panels since individual elements are unlikely to segregate in both panels. Our data suggest that "burden tests" that test for the effect of TEs as a class may be more fruitful.

  11. DEDB: a database of Drosophila melanogaster exons in splicing graph form

    Directory of Open Access Journals (Sweden)

    Tan Tin

    2004-12-01

    Full Text Available Abstract Background A wealth of quality genomic and mRNA/EST sequences in recent years has provided the data required for large-scale genome-wide analysis of alternative splicing. We have capitalized on this by constructing a database that contains alternative splicing information organized as splicing graphs, where all transcripts arising from a single gene are collected, organized and classified. The splicing graph then serves as the basis for the classification of the various types of alternative splicing events. Description DEDB http://proline.bic.nus.edu.sg/dedb/index.html is a database of Drosophila melanogaster exons obtained from FlyBase arranged in a splicing graph form that permits the creation of simple rules allowing for the classification of alternative splicing events. Pfam domains were also mapped onto the protein sequences allowing users to access the impact of alternative splicing events on domain organization. Conclusions DEDB's catalogue of splicing graphs facilitates genome-wide classification of alternative splicing events for genome analysis. The splicing graph viewer brings together genome, transcript, protein and domain information to facilitate biologists in understanding the implications of alternative splicing.

  12. Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster

    Science.gov (United States)

    Lin, Chun-Chieh; Potter, Christopher J.

    2016-01-01

    Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster. The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the homology assisted CRISPR knock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available. PMID:27334272

  13. Dissecting genetic architecture of startle response in Drosophila melanogaster using multi-omics information.

    Science.gov (United States)

    Xue, Angli; Wang, Hongcheng; Zhu, Jun

    2017-09-28

    Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.

  14. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila.

    Directory of Open Access Journals (Sweden)

    Margaret C W Ho

    2009-11-01

    Full Text Available It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs. How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.

  15. Drosophila comet assay: insights, uses, and future perspectives

    Science.gov (United States)

    Gaivão, Isabel; Sierra, L. María

    2014-01-01

    The comet assay, a very useful tool in genotoxicity and DNA repair testing, is being applied to Drosophila melanogaster since around 15 years ago, by several research groups. This organism is a valuable model for all kind of processes related to human health, including DNA damage response. The assay has been performed mainly in vivo using different larvae cell types (from brain, midgut, hemolymph, and imaginal disk), but also in vitro with the S2 cell line. Since its first application, it has been used to analyze the genotoxicity and action mechanisms of different chemicals, demonstrating good sensitivity and proving its usefulness. Moreover, it is the only assay that can be used to analyze DNA repair in somatic cells in vivo, comparing the effects of chemicals in different repair strains, and to quantitate repair activities in vitro. Additionally, the comet assay in Drosophila, in vivo and in vitro, has been applied to study the influence of protein overexpression on genome integrity and degradation. Although the assay is well established, it could benefit from some research to determine optimal experimental design to standardize it, and then to allow comparisons among laboratories independently of the chosen cell type. PMID:25221574

  16. A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the Drosophila melanogaster autosomal genome.

    Science.gov (United States)

    Cuykendall, Tawny N; Satyaki, P; Ji, Shuqing; Clay, Derek M; Edelman, Nathaniel B; Kimchy, Alexandra; Li, Ling-Hei; Nuzzo, Erin A; Parekh, Neil; Park, Suna; Barbash, Daniel A

    2014-10-27

    Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality. Copyright © 2014 Cuykendall et al.

  17. Host-microbe interactions in the gut of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Takayuki eKuraishi

    2013-12-01

    Full Text Available Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent.

  18. Effect of lead pollution on fitness and its dependence on heterozygosity in Drosophila subobscura.

    Science.gov (United States)

    Tanaskovic, Marija; Novicic, Zorana Kurbalija; Kenig, Bojan; Stamenkovic-Radak, Marina; Andjelkovic, Marko

    2015-12-01

    Lead is one of the most present contaminants in the environment, and different species respond differently to this type of polution. If combined with genomic stress, lead may act synergistically, causing significant decrease of fitness components. We used two genetically diverse Drosophila subobscura populations (regarding both putatively adaptive inversion and microsatellite loci polymorphisms) originating from two ecologically distinct habitats. To establish different levels of genome heterozygosity, series of intraline, intrapopulation and interpopulation crosses were made. The progeny were reared on a standard medium and a medium with 200 μg/mL of lead acetate. Development time was significantly extended to all groups reared on lead. The progeny of intraline crosses showed significantly extended development time compared to all other groups. The obtained results suggest that genome heterozygosity reduces the effect of lead pollution.

  19. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  20. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  1. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  2. A Radiation Homeland Security Workshop Presented to the City of Berkeley Fire Department

    Science.gov (United States)

    Matis, Howard

    2005-04-01

    A radiation incident in a community, ranging from a transportation accident to a dirty bomb, is expected to be rare, but still can occur. First responders to such an incident must be prepared. City of Berkeley officials met with members of the Lawrence Berkeley National Laboratory staff and agreed that the laboratory participants would create material and teach it to all of their fire fighting staff. To design such a course, nuclear physicists, biologists and health physicists merged some of their existing teaching material together with previous homeland security efforts to produce a course that lasted one full day. The material was designed to help alleviate the myths and fear of radiation experienced by many first responders. It included basic nuclear physics information, biological effects, and methods that health physicists use to detect and handle radiation. The curriculum included several hands on activities which involved working directly with the meters the Berkeley Fire Department possessed. In addition, I will discuss some observations from teaching this course material plus some unusual problems that we encountered, such as suddenly the whole class responding to a fire.

  3. CalpB modulates border cell migration in Drosophila egg chambers

    Directory of Open Access Journals (Sweden)

    Kókai Endre

    2012-07-01

    Full Text Available Abstract Background Calpains are calcium regulated intracellular cysteine proteases implicated in a variety of physiological functions and pathological conditions. The Drosophila melanogaster genome contains only two genes, CalpA and CalpB coding for canonical, active calpain enzymes. The movement of the border cells in Drosophila egg chambers is a well characterized model of the eukaryotic cell migration. Using this genetically pliable model we can investigate the physiological role of calpains in cell motility. Results We demonstrate at the whole organism level that CalpB is implicated in cell migration, while the structurally related CalpA paralog can not fulfill the same function. The downregulation of the CalpB gene by mutations or RNA interference results in a delayed migration of the border cells in Drosophila egg chambers. This phenotype is significantly enhanced when the focal adhesion complex genes encoding for α-PS2 integrin ( if, β-PS integrin ( mys and talin ( rhea are silenced. The reduction of CalpB activity diminishes the release of integrins from the rear end of the border cells. The delayed migration and the reduced integrin release phenotypes can be suppressed by expressing wild-type talin-head in the border cells but not talin-headR367A, a mutant form which is not able to bind β-PS integrin. CalpB can cleave talin in vitro, and the two proteins coimmunoprecipitate from Drosophila extracts. Conclusions The physiological function of CalpB in border cell motility has been demonstrated in vivo. The genetic interaction between the CalpB and the if, mys, as well as rhea genes, the involvement of active talin head-domains in the process, and the fact that CalpB and talin interact with each other collectively suggest that the limited proteolytic cleavage of talin is one of the possible mechanisms through which CalpB regulates cell migration.

  4. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  5. A Community of Scientists and Educators: The Compass Project at UC Berkeley

    Science.gov (United States)

    Roth, Nathaniel; Schwab, Josiah

    2016-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.

  6. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  7. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  8. Cooperativity, Specificity, and Evolutionary Stability of Polycomb Targeting in Drosophila

    Directory of Open Access Journals (Sweden)

    Bernd Schuettengruber

    2014-10-01

    Full Text Available Summary: Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG response elements (PREs recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila. : Schuettengruber et al. present an extensive comparative epigenomics data set, providing new insights into cis-driven versus buffered evolution of Polycomb recruitment and Polycomb domain specificity. Using chromatin immunoprecipitation sequencing and transgenic assays, they demonstrate an extremely high conservation of Polycomb repressive domains in five Drosophila species. Using Hi-C and knockout experiments, they challenge the standard hierarchical Polycomb recruitment model and demonstrate that cooperative rather than hierarchical interactions among DNA motifs, transcription factors, and Polycomb group complexes define Polycomb domains.

  9. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres

    Directory of Open Access Journals (Sweden)

    Grazia Daniela Raffa

    2013-05-01

    Full Text Available Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi and Ver. These proteins are not conserves outside Drosophilidae and localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

  10. The carnegie protein trap library: a versatile tool for Drosophila developmental studies.

    Science.gov (United States)

    Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D; Nystul, Todd G; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E; Murphy, Terence D; Levis, Robert W; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A; Spradling, Allan C

    2007-03-01

    Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600-900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions.

  11. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    Science.gov (United States)

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  12. Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability.

    Science.gov (United States)

    Brochtrup, Anna; Hummel, Thomas

    2011-02-01

    The development of the Drosophila olfactory system is a striking example of how genetic programs specify a large number of different neuron types and assemble them into functional circuits. To ensure precise odorant perception, each sensory neuron has to not only select a single olfactory receptor (OR) type out of a large genomic repertoire but also segregate its synaptic connections in the brain according to the OR class identity. Specification and patterning of second-order interneurons in the olfactory brain center occur largely independent of sensory input, followed by a precise point-to-point matching of sensory and relay neurons. Here we describe recent progress in the understanding of how cell-intrinsic differentiation programs and context-dependent cellular interactions generate a stereotyped sensory map in the Drosophila brain. Recent findings revealed an astonishing morphological diversity among members of the same interneuron class, suggesting an unexpected variability in local microcircuits involved in insect sensory processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Gain-of-function screen for genes that affect Drosophila muscle pattern formation.

    Directory of Open Access Journals (Sweden)

    Nicole Staudt

    2005-10-01

    Full Text Available This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation.

  14. Hermann Muller and Mutations in Drosophila

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Hermann Muller and Mutations in Drosophila Resources with University of Texas. In Austin his experiments on fruit flies (Drosophila) first showed that exposure to September to spend a year at the only Drosophila laboratory in Europe which was doing parallel work

  15. Genetic and bioinformatic analysis of 41C and the 2R heterochromatin of Drosophila melanogaster: a window on the heterochromatin-euchromatin junction.

    OpenAIRE

    Myster, Steven H; Wang, Fei; Cavallo, Robert; Christian, Whitney; Bhotika, Seema; Anderson, Charles T; Peifer, Mark

    2004-01-01

    Genomic sequences provide powerful new tools in genetic analysis, making it possible to combine classical genetics with genomics to characterize the genes in a particular chromosome region. These approaches have been applied successfully to the euchromatin, but analysis of the heterochromatin has lagged somewhat behind. We describe a combined genetic and bioinformatics approach to the base of the right arm of the Drosophila melanogaster second chromosome, at the boundary between pericentric h...

  16. Guide to user facilities at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility

  17. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity.

    Science.gov (United States)

    King, Elizabeth G; Sanderson, Brian J; McNeil, Casey L; Long, Anthony D; Macdonald, Stuart J

    2014-05-01

    Modern genetic mapping is plagued by the "missing heritability" problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS) implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.

  18. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains.

    Science.gov (United States)

    Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Yang, Jingping; Wahi, Jessica E; Corces, Victor G

    2012-11-01

    Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions.

  19. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  20. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  1. Genome-wide study of correlations between genomic features and their relationship with the regulation of gene expression.

    Science.gov (United States)

    Kravatsky, Yuri V; Chechetkin, Vladimir R; Tchurikov, Nikolai A; Kravatskaya, Galina I

    2015-02-01

    The broad class of tasks in genetics and epigenetics can be reduced to the study of various features that are distributed over the genome (genome tracks). The rapid and efficient processing of the huge amount of data stored in the genome-scale databases cannot be achieved without the software packages based on the analytical criteria. However, strong inhomogeneity of genome tracks hampers the development of relevant statistics. We developed the criteria for the assessment of genome track inhomogeneity and correlations between two genome tracks. We also developed a software package, Genome Track Analyzer, based on this theory. The theory and software were tested on simulated data and were applied to the study of correlations between CpG islands and transcription start sites in the Homo sapiens genome, between profiles of protein-binding sites in chromosomes of Drosophila melanogaster, and between DNA double-strand breaks and histone marks in the H. sapiens genome. Significant correlations between transcription start sites on the forward and the reverse strands were observed in genomes of D. melanogaster, Caenorhabditis elegans, Mus musculus, H. sapiens, and Danio rerio. The observed correlations may be related to the regulation of gene expression in eukaryotes. Genome Track Analyzer is freely available at http://ancorr.eimb.ru/. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Hansen, G N

    2001-01-01

    The allatostatins are generally inhibitory insect neuropeptides. The Drosophila orphan receptor DAR-2 is a G-protein-coupled receptor, having 47% amino acid residue identity with another Drosophila receptor, DAR-1 (which is also called dros. GPCR, or DGR) that was previously shown...... to be the receptor for an intrinsic Drosophila A-type (cockroach-type) allatostatin. Here, we have permanently expressed DAR-2 in CHO cells and found that it is the cognate receptor for four Drosophila A-type allatostatins, the drostatins-A1 to -A4. Of all the drostatins, drostatin-A4 (Thr...... weakly in the brain. The Drosophila larval gut also contains about 20-30 endocrine cells, expressing the gene for the drostatins-A1 to -A4. We suggest, therefore, that DAR-2 mediates an allatostatin (drostatin)-induced inhibition of gut motility. This is the first report on the permanent and functional...

  3. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Thorson, Patrick

    1998-01-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  4. Mutation induction in repair-deficient strains of Drosophila

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.

    1980-01-01

    Experimental evidence indicates a polygenic control of mutagenesis in Drosophila melanogaster. In oocytes chromosome aberrations detected as half-translocations or dominant lethals depend on a repair system which in a number of genetically nonrelated strains shows different repair capacities. Sister chromatid exchanges are easily studied as ring chromosome losses. They develop through a genotype controlled mechanism from, premutational lesions. Stocks with particular pairs of third chromosomes were discovered in which increased sensitivity of larvae to the toxic effects of a monofunctional alkylating agent correlates with high frequencies of x-ray induced SCE's. Sex-linked mutagen-sensitive mutants could be shown to control mutation fixation: pronounced maternal effects were found when sperm carrying particular types of premutational lesions were introduced into different types of mutant oocytes. The mutant mus(1)101D1 was found to be unable to process lesions induced by the crosslinking agent nitrogen mustard into point mutations. Alkylation damage leads to increased point mutation frequencies in the excision repair deficient mutant mei-9L1, but to reduced frequencies in the post-replication repair deficient mutant mei-41D5. It became clear that the study of maternal effects on mutagenized sperm represents an efficient tool to analyze the gentic control of mutagenesis in the eukaryotic genome of Drosophila melanogaster

  5. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Science.gov (United States)

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  6. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Cen Wan

    2017-10-01

    Full Text Available Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  7. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Færgeman, Nils J.

    2012-01-01

    and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster,Caenorhabditis elegans...... critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...

  8. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  9. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  10. Rampant adaptive evolution in regions of proteins with unknown function in Drosophila simulans.

    Directory of Open Access Journals (Sweden)

    Alisha K Holloway

    2007-10-01

    Full Text Available Adaptive protein evolution is pervasive in Drosophila. Genomic studies, thus far, have analyzed each protein as a single entity. However, the targets of adaptive events may be localized to particular parts of proteins, such as protein domains or regions involved in protein folding. We compared the population genetic mechanisms driving sequence polymorphism and divergence in defined protein domains and non-domain regions. Interestingly, we find that non-domain regions of proteins are more frequent targets of directional selection. Protein domains are also evolving under directional selection, but appear to be under stronger purifying selection than non-domain regions. Non-domain regions of proteins clearly play a major role in adaptive protein evolution on a genomic scale and merit future investigations of their functional properties.

  11. Multiple Whole Genome Alignments Without a Reference Organism

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  12. Annual site environmental report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.; Pauer, R.O.

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs

  13. Nuclear materials teaching and research at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Olander, D.R.; Roberts, J.T.A.

    1985-01-01

    In academic nuclear engineering departments, research and teaching in the specialized subdiscipline of nuclear materials is usually a one-person or at best a two-person operation. These subcritical sizes invariably result in inadequate overall representation of the many topics in nuclear materials in the research program of the department, although broader coverage of the field is possible in course offerings. Even in course-work, the full range of materials problems important in nuclear technology cannot be dealt with in detail because the small number of faculty involved restricts staffing to as little as a single summary course and generally no more than three courses in this specialty. The contents of the two nuclear materials courses taught at the University of California at Berkeley are listed. Materials research in most US nuclear engineering departments focuses on irradiation effects on metals, but at UC Berkeley, the principal interest is in the high-temperature materials chemistry of UO 2 fuel and Zircaloy cladding

  14. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Science.gov (United States)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  15. Laboratories for the 21st Century: Case Studies, Molecular Foundry, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers.

  16. Mislocalization of the Drosophila centromere-specific histone CIDpromotes formation of functional ectopic kinetochores

    Energy Technology Data Exchange (ETDEWEB)

    Heun, Patrick; Erhardt, Sylvia; Blower, Michael D.; Weiss,Samara; Skora, Andrew D.; Karpen, Gary H.

    2006-01-30

    The centromere-specific histone variant CENP-A (CID in Drosophila) is a structural and functional foundation for kinetochore formation and chromosome segregation. Here, we show that overexpressed CID is mislocalized into normally non-centromeric regions in Drosophila tissue culture cells and animals. Analysis of mitoses in living and fixed cells reveals that mitotic delays, anaphase bridges, chromosome fragmentation, and cell and organismal lethality are all direct consequences of CID mislocalization. In addition, proteins that are normally restricted to endogenous kinetochores assemble at a subset of ectopic CID incorporation regions. The presence of microtubule motors and binding proteins, spindle attachments, and aberrant chromosome morphologies demonstrate that these ectopic kinetochores are functional. We conclude that CID mislocalization promotes formation of ectopic centromeres and multicentric chromosomes, which causes chromosome missegregation, aneuploidy, and growth defects. Thus, CENP-A mislocalization is one possible mechanism for genome instability during cancer progression, as well as centromere plasticity during evolution.

  17. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes

    Science.gov (United States)

    Venken, Koen J. T.; Schulze, Karen L.; Haelterman, Nele A.; Pan, Hongling; He, Yuchun; Evans-Holm, Martha; Carlson, Joseph W.; Levis, Robert W.; Spradling, Allan C.; Hoskins, Roger A.; Bellen, Hugo J.

    2011-01-01

    We demonstrate the versatility of a collection of insertions of the transposon Minos mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp system. Insertions within coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the Drosophila melanogaster toolkit. PMID:21985007

  18. Gene expression variations during Drosophila metamorphosis in real and simulated gravity

    Science.gov (United States)

    Marco, R.; Leandro-García, L. J.; Benguría, A.; Herranz, R.; Zeballos, A.; Gassert, G.; van Loon, J. J.; Medina, F. J.

    Establishing the extent and significance of the effects of the exposure to microgravity of complex living organisms is a critical piece of information if the long-term exploration of near-by planets involving human beings is going to take place in the Future As a first step in this direction we have started to look into the patterns of gene expression during Drosophila development in real and simulated microgravity using microarray analysis of mRNA isolated from samples exposed to different environmental conditions In these experiments we used Affymetrix chips version 1 0 containing probes for more than 14 000 genes almost the complete Drosophila genome 55 of which are tagged with some molecular or functional designation while 45 are still waiting to be identified in functional terms The real microgravity exposure was imposed on the samples during the crew exchanging Soyuz 8 Mission to the ISS in October 2003 when after 11 days in Microgravity the Spanish-born astronaut Pedro Duque returned in the Soyuz 7 capsule carrying the experiments prepared by our Team Due to the constraints in the current ISS experiments in these Missions we limited the stages explored in our experiment to the developmental processes occurring during Drosophila metamorphosis As the experimental conditions at the launch site Baikonour were fairly limited we prepared the experiment in Madrid Toulouse and transp o rted the samples at 15 C in a temperature controlled container to slow down the developmental process a

  19. Popular Berkeley Lab X-ray Data Booklet reissued

    International Nuclear Information System (INIS)

    Robinson, Art

    2001-01-01

    X-ray scientists and synchrotron-radiation users who have been patiently waiting for an updated version of the popular X-Ray Data Booklet last published in 1986 by the Center for X-Ray Optics at the Lawrence Berkeley National Laboratory can breathe a sigh of relief. The venerable ''little orange book'' has now been reissued under the auspices of CXRO and the Advanced Light Source (ALS) with an April printing of 10,000 paper copies and the posting of a Web edition at http://xdb.lbl.gov

  20. Metabolomic Studies in Drosophila.

    Science.gov (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  1. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E; Tavera D, L; Cruces M, M P; Arceo M, C; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  2. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  3. A universal genomic coordinate translator for comparative genomics.

    Science.gov (United States)

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across

  4. Evaluation of Off-season Potential Breeding Sources for Spotted Wing Drosophila (Drosophila suzukii Matsumura) in Michigan.

    Science.gov (United States)

    Bal, Harit K; Adams, Christopher; Grieshop, Matthew

    2017-12-05

    It has been suggested that fruit wastes including dropped and unharvested fruits, and fruit byproducts (i.e., pomace) found in fruit plantings and cideries or wine-making facilities could serve as potential off-season breeding sites for spotted wing Drosophila (Drosophila suzukii Matsumura (Diptera: Drosophilidae)). This idea, however, has yet to be widely tested. The goal of our study was to determine the potential of dropped fruit and fruit wastes as Fall spotted wing Drosophila breeding resources in Michigan, USA. Fruit waste samples were collected from 15 farms across the lower peninsula of Michigan and were evaluated for spotted wing Drosophila and other drosophilid emergence and used in host suitability bioassays. All of the dropped apples, pears, grapes, and raspberries and 40% of apple and 100% of grape fruit pomace evaluated were found to contain spotted wing Drosophila with the highest numbers collected from dropped grapes and pears. Greater spotted wing Drosophila recovery was found in fruit wastes at sites attached with cideries and wine-making facilities and with multiple cultivated fruit crops than sites with no cideries and only one crop. Females oviposited in raspberry, pear, apple, grape, apple pomace and grape pomace samples with the highest rates of reproduction in raspberries. Our results demonstrate that fruit wastes including dropped berry, pomme and stone fruits, as well as fruit compost may be important late season reproductive resources for spotted wing Drosophila. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Pervasive adaptive protein evolution apparent in diversity patterns around amino acid substitutions in Drosophila simulans.

    Directory of Open Access Journals (Sweden)

    Shmuel Sattath

    2011-02-01

    Full Text Available In Drosophila, multiple lines of evidence converge in suggesting that beneficial substitutions to the genome may be common. All suffer from confounding factors, however, such that the interpretation of the evidence-in particular, conclusions about the rate and strength of beneficial substitutions-remains tentative. Here, we use genome-wide polymorphism data in D. simulans and sequenced genomes of its close relatives to construct a readily interpretable characterization of the effects of positive selection: the shape of average neutral diversity around amino acid substitutions. As expected under recurrent selective sweeps, we find a trough in diversity levels around amino acid but not around synonymous substitutions, a distinctive pattern that is not expected under alternative models. This characterization is richer than previous approaches, which relied on limited summaries of the data (e.g., the slope of a scatter plot, and relates to underlying selection parameters in a straightforward way, allowing us to make more reliable inferences about the prevalence and strength of adaptation. Specifically, we develop a coalescent-based model for the shape of the entire curve and use it to infer adaptive parameters by maximum likelihood. Our inference suggests that ∼13% of amino acid substitutions cause selective sweeps. Interestingly, it reveals two classes of beneficial fixations: a minority (approximately 3% that appears to have had large selective effects and accounts for most of the reduction in diversity, and the remaining 10%, which seem to have had very weak selective effects. These estimates therefore help to reconcile the apparent conflict among previously published estimates of the strength of selection. More generally, our findings provide unequivocal evidence for strongly beneficial substitutions in Drosophila and illustrate how the rapidly accumulating genome-wide data can be leveraged to address enduring questions about the genetic basis

  6. Pervasive adaptive protein evolution apparent in diversity patterns around amino acid substitutions in Drosophila simulans.

    Science.gov (United States)

    Sattath, Shmuel; Elyashiv, Eyal; Kolodny, Oren; Rinott, Yosef; Sella, Guy

    2011-02-10

    In Drosophila, multiple lines of evidence converge in suggesting that beneficial substitutions to the genome may be common. All suffer from confounding factors, however, such that the interpretation of the evidence-in particular, conclusions about the rate and strength of beneficial substitutions-remains tentative. Here, we use genome-wide polymorphism data in D. simulans and sequenced genomes of its close relatives to construct a readily interpretable characterization of the effects of positive selection: the shape of average neutral diversity around amino acid substitutions. As expected under recurrent selective sweeps, we find a trough in diversity levels around amino acid but not around synonymous substitutions, a distinctive pattern that is not expected under alternative models. This characterization is richer than previous approaches, which relied on limited summaries of the data (e.g., the slope of a scatter plot), and relates to underlying selection parameters in a straightforward way, allowing us to make more reliable inferences about the prevalence and strength of adaptation. Specifically, we develop a coalescent-based model for the shape of the entire curve and use it to infer adaptive parameters by maximum likelihood. Our inference suggests that ∼13% of amino acid substitutions cause selective sweeps. Interestingly, it reveals two classes of beneficial fixations: a minority (approximately 3%) that appears to have had large selective effects and accounts for most of the reduction in diversity, and the remaining 10%, which seem to have had very weak selective effects. These estimates therefore help to reconcile the apparent conflict among previously published estimates of the strength of selection. More generally, our findings provide unequivocal evidence for strongly beneficial substitutions in Drosophila and illustrate how the rapidly accumulating genome-wide data can be leveraged to address enduring questions about the genetic basis of adaptation.

  7. Dopamine and Mushroom Bodies in Drosophila: Experience-Dependent and -Independent Aspects of Sexual Behavior

    Science.gov (United States)

    Neckameyer, Wendi S.

    1998-01-01

    Depletion of dopamine in Drosophila melanogaster adult males, accomplished through systemic introduction of the tyrosine hydroxylase inhibitor 3-iodo-tyrosine, severely impaired the ability of these flies to modify their courtship responses to immature males. Mature males, when first exposed to immature males, will perform courtship rituals; the intensity and duration of this behavior rapidly diminshes with time. Dopamine is also required for normal female sexual receptivity; dopamine-depleted females show increased latency to copulation. One kilobase of 5′ upstream information from the Drosophila tyrosine hydroxylase (DTH) gene, when fused to the Escherichia coli β-galactosidase reporter and transduced into the genome of Drosophila melanogaster, is capable of directing expression of the reporter gene in the mushroom bodies, which are believed to mediate learning acquisition and memory retention in flies. Ablation of mushroom bodies by treatment of newly hatched larva with hydroxyurea resulted in the inability of treated mature adult males to cease courtship when placed with untreated immature males. However, functional mushroom bodies were not required for the dopaminergic modulation of an innate behavior, female sexual receptivity. These data suggest that dopamine acts as a signaling molecule within the mushroom bodies to mediate a simple form of learning. PMID:10454380

  8. The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome.

    Science.gov (United States)

    Nikitina, E A; Medvedeva, A V; Zakharov, G A; Savvateeva-Popova, E V

    2014-04-01

    The molecular basis of the pathological processes that lead to genome disorders is similar both in invertebrates and mammals. Since cognitive impairments in Williams syndrome are caused by LIMK1 hemizygosity, could the spontaneous and mutant variants of the Drosophila limk1 gene serve as a model for studying two diagnostic features from three distinct cognitive defects of the syndrome? These two symptoms are the disturbance of visuospatial orientation and an unusualy strong fixation on the faces of other people during pairwise interaction with a stranger. An experimental approach to the first cognitive manifestation might be an analysis of the locomotor behavior of Drosophila larvae involving visuospatial orientation during the exploration of the surrounding environment. An approach to tackle the second manifestation might be an analysis of the most natural ways of contact between a male and a female during courtship (the first stage of this ritual is the orientation of a male towards a female and following the female with constant fixation on the female's image). The present study of locomotor activity and cognitive repertoire in spontaneous and mutant variants of the Drosophila agnostic locus allows one to bridge alterations in the structure of the limk1 gene and behavior.

  9. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.

    1988-01-01

    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  10. Genomic evidence for role of inversion 3RP of Drosophila melanogaster in facilitating climate change adaptation.

    Science.gov (United States)

    Rane, Rahul V; Rako, Lea; Kapun, Martin; Lee, Siu F; Hoffmann, Ary A

    2015-05-01

    Chromosomal inversion polymorphisms are common in animals and plants, and recent models suggest that alternative arrangements spread by capturing different combinations of alleles acting additively or epistatically to favour local adaptation. It is also thought that inversions typically maintain favoured combinations for a long time by suppressing recombination between alternative chromosomal arrangements. Here, we consider patterns of linkage disequilibrium and genetic divergence in an old inversion polymorphism in Drosophila melanogaster (In(3R)Payne) known to be associated with climate change adaptation and a recent invasion event into Australia. We extracted, karyotyped and sequenced whole chromosomes from two Australian populations, so that changes in the arrangement of the alleles between geographically separated tropical and temperate areas could be compared. Chromosome-wide linkage disequilibrium (LD) analysis revealed strong LD within the region spanned by In(3R)Payne. This genomic region also showed strong differentiation between the tropical and the temperate populations, but no differentiation between different karyotypes from the same population, after controlling for chromosomal arrangement. Patterns of differentiation across the chromosome arm and in gene ontologies were enhanced by the presence of the inversion. These data support the notion that inversions are strongly selected by bringing together combinations of genes, but it is still not clear if such combinations act additively or epistatically. Our data suggest that climatic adaptation through inversions can be dynamic, reflecting changes in the relative abundance of different forms of an inversion and ongoing evolution of allelic content within an inversion. © 2015 John Wiley & Sons Ltd.

  11. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    International Nuclear Information System (INIS)

    Cheng, Robert K.

    1999-01-01

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  12. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Directory of Open Access Journals (Sweden)

    Christelle Marchal

    Full Text Available The genome of the human immunodeficiency virus type 1 (HIV-1 encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu, in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1. Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  13. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster

    Science.gov (United States)

    Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.

    2003-01-01

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037

  14. Overall Genomic Effects of the exposure to real and simulated gravity during Drosophila melanogaster metamorphosis

    Science.gov (United States)

    Marco, Roberto; Herranz, Raul; Lavan, David; Villa, Aida; Medina, Francisco Javier; van Loon, Jack W. A.

    The availability of genomic information and of high through-put analysis techniques makes possible to investigate and understand the genetic basis of ecologically important traits, traits that could increase the fitness of the different organisms towards the different characteristics of the environment in which they are normally living and therefore are adapted. As recently discussed (1), it is not an easy task to identify among the global transcription response, the probably smaller group of genes with discernible relevance to the particular perturbation analyzed. The issue whether the challenge experienced by the biological systems is "familiar" or "evolutionary novel" is relevant to our experiments. Combining/modifying the type of environmental challenges and looking for the correlation among the genes responses is one way to substantiate the relevance of the results. Nevertheless, the more relevant genes involved in a particular response may not show the more important changes in expression levels as has been shown for hubs with high connectivity in interaction networks. To integrate the findings from gene expression changes with the experiments performed with more direct experimental approaches is a challenge for the immediate future. When we started our analysis, we were expecting to detect a relatively small group of gravity responding genes. On the other hand, we think now that the overall genome is responding to the evolutionary novel environment. The experiments on which we base our analysis are: a) experiments in the International Space Station, b) experiments performed on ground microgravity simulating equipment, mainly on the Random Position Machine and experiments under hypergravity, namely at 10g, well above the acceleration felt by the organisms during the launch of the space shifts that are used in the orbital experiments. The actual developmental process studied is the Drosophila metamorphosis. The pupae at the end of the developmental period

  15. Hearing regulates Drosophila aggression.

    Science.gov (United States)

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C; Heinrich, Ralf; Callaerts, Patrick

    2017-02-21

    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.

  16. A microsatellite linkage map for Drosophila montana shows large variation in recombination rates, and a courtship song trait maps to an area of low recombination.

    Science.gov (United States)

    Schäfer, M A; Mazzi, D; Klappert, K; Kauranen, H; Vieira, J; Hoikkala, A; Ritchie, M G; Schlötterer, C

    2010-03-01

    Current advances in genetic analysis are opening up our knowledge of the genetics of species differences, but challenges remain, particularly for out-bred natural populations. We constructed a microsatellite-based linkage map for two out-bred lines of Drosophila montana derived from divergent populations by taking advantage of the Drosophila virilis genome and available cytological maps of both species. Although the placement of markers was quite consistent with cytological predictions, the map indicated large heterogeneity in recombination rates along chromosomes. We also performed a quantitative trait locus (QTL) analysis on a courtship song character (carrier frequency), which differs between populations and is subject to strong sexual selection. Linkage mapping yielded two significant QTLs, which explained 3% and 14% of the variation in carrier frequency, respectively. Interestingly, as in other recent studies of traits which can influence speciation, the strongest QTL mapped to a genomic region partly covered by an inversion polymorphism.

  17. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Elizabeth G King

    2014-05-01

    Full Text Available Modern genetic mapping is plagued by the "missing heritability" problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.

  18. Obp56h Modulates Mating Behavior in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    John R. Shorter

    2016-10-01

    Full Text Available Social interactions in insects are driven by conspecific chemical signals that are detected via olfactory and gustatory neurons. Odorant binding proteins (Obps transport volatile odorants to chemosensory receptors, but their effects on behaviors remain poorly characterized. Here, we report that RNAi knockdown of Obp56h gene expression in Drosophila melanogaster enhances mating behavior by reducing courtship latency. The change in mating behavior that results from inhibition of Obp56h expression is accompanied by significant alterations in cuticular hydrocarbon (CHC composition, including reduction in 5-tricosene (5-T, an inhibitory sex pheromone produced by males that increases copulation latency during courtship. Whole genome RNA sequencing confirms that expression of Obp56h is virtually abolished in Drosophila heads. Inhibition of Obp56h expression also affects expression of other chemoreception genes, including upregulation of lush in both sexes and Obp83ef in females, and reduction in expression of Obp19b and Or19b in males. In addition, several genes associated with lipid metabolism, which underlies the production of cuticular hydrocarbons, show altered transcript abundances. Our data show that modulation of mating behavior through reduction of Obp56h is accompanied by altered cuticular hydrocarbon profiles and implicate 5-T as a possible ligand for Obp56h.

  19. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  20. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  1. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  2. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    In this study, we investigated the effects of non-nutritive sugars and sugar alcohols on the survivorship of spotted wing drosophila, Drosophila suzukii, and found erythritol and erythrose as potentially toxic to the fly. In a dose-dependent study, erythritol and erythrose significantly reduced fly ...

  3. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Eric F Joyce

    Full Text Available Homolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline. Here, we show that, contrary to long-standing assumptions, Drosophila meiotic pairing in the gonad is not an extension of pairing established during embryogenesis. Instead, we find that homologous chromosomes are unpaired in primordial germ cells from the moment the germline can be distinguished from the soma in the embryo and remain unpaired even in the germline stem cells of the adult gonad. We further establish that pairing originates immediately after the stem cell stage. This pairing occurs well before the initiation of meiosis and, strikingly, continues through the several mitotic divisions preceding meiosis. These discoveries indicate that the spatial organization of the Drosophila genome differs between the germline and the soma from the earliest moments of development and thus argue that homolog pairing in the germline is an active process as versus a passive continuation of pairing established during embryogenesis.

  4. Automated whole-genome multiple alignment of rat, mouse, and human

    Energy Technology Data Exchange (ETDEWEB)

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  5. MicroRNA function in Drosophila melanogaster.

    Science.gov (United States)

    Carthew, Richard W; Agbu, Pamela; Giri, Ritika

    2017-05-01

    Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Genetics of reproductive isolation in the Drosophila simulans clade: complex epistasis underlying hybrid male sterility.

    Science.gov (United States)

    Cabot, E L; Davis, A W; Johnson, N A; Wu, C I

    1994-05-01

    We have analyzed the sterility associated with introgressions of the distal one-fourth of the X chromosome from either Drosophila mauritiana or Drosophila sechellia into the genome of Drosophila simulans using a series of visible and DNA markers. Because in Drosophila hybrids, male sterility is usually complete and is often tightly linked with each of several markers used in crosses, a simple genetic basis has generally been assumed. In our low resolution mapping experiment, we were not able to reject the null hypothesis that a single gene, introgressed from either D. mauritiana or D. sechellia, is the cause of male sterility. High resolution mapping, however, reveals a much more complex picture. At least three distinct factors from D. mauritiana, or two from D. sechellia, were identified that need to be jointly present to confer full sterility. Each individual factor by itself is relatively ineffective in causing sterility, or even a partial spermatogenic defect. Moreover, there appear to be more sterility factors on comparable introgressions from D. mauritiana than from D. sechellia. On the basis of these observations, we propose a model which suggests that multilocus weak allele interactions are a very common cause of reproductive incompatibility between closely related species. We also present theoretical argument and empirical evidence against extrapolating the results of within-species analysis to interpret the genetic basis of species differences. The implications of this model on the theories of evolution of species differences and the attempt to understand the mechanisms of hybrid sterility/inviability at the molecular level are discussed.

  7. Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes.

    Science.gov (United States)

    Feschotte, Cédric; Keswani, Umeshkumar; Ranganathan, Nirmal; Guibotsy, Marcel L; Levine, David

    2009-07-23

    Eukaryotic genomes contain large amount of repetitive DNA, most of which is derived from transposable elements (TEs). Progress has been made to develop computational tools for ab initio identification of repeat families, but there is an urgent need to develop tools to automate the annotation of TEs in genome sequences. Here we introduce REPCLASS, a tool that automates the classification of TE sequences. Using control repeat libraries, we show that the program can classify accurately virtually any known TE types. Combining REPCLASS to ab initio repeat finding in the genomes of Caenorhabditis elegans and Drosophila melanogaster allowed us to recover the contrasting TE landscape characteristic of these species. Unexpectedly, REPCLASS also uncovered several novel TE families in both genomes, augmenting the TE repertoire of these model species. When applied to the genomes of distant Caenorhabditis and Drosophila species, the approach revealed a remarkable conservation of TE composition profile within each genus, despite substantial interspecific covariations in genome size and in the number of TEs and TE families. Lastly, we applied REPCLASS to analyze 10 fungal genomes from a wide taxonomic range, most of which have not been analyzed for TE content previously. The results showed that TE diversity varies widely across the fungi "kingdom" and appears to positively correlate with genome size, in particular for DNA transposons. Together, these data validate REPCLASS as a powerful tool to explore the repetitive DNA landscapes of eukaryotes and to shed light onto the evolutionary forces shaping TE diversity and genome architecture.

  8. The genetic makeup of the Drosophila piRNA pathway.

    Science.gov (United States)

    Handler, Dominik; Meixner, Katharina; Pizka, Manfred; Lauss, Kathrin; Schmied, Christopher; Gruber, Franz Sebastian; Brennecke, Julius

    2013-06-06

    The piRNA (PIWI-interacting RNA) pathway is a small RNA silencing system that acts in animal gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ~50 genes that strongly impact the ovarian somatic piRNA pathway. Many identified genes fall into functional categories that indicate essential roles for mitochondrial metabolism, RNA export, the nuclear pore, transcription elongation, and chromatin regulation in the pathway. Follow-up studies on two factors demonstrate that components acting at distinct hierarchical levels of the pathway were identified. Finally, we define CG2183/Gasz as an essential primary piRNA biogenesis factor in somatic and germline cells. Based on the similarities between insect and vertebrate piRNA pathways, our results have far-reaching implications for the understanding of this conserved genome defense system. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Validation of rearrangement break points identified by paired-end sequencing in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Cridland, Julie M; Thornton, Kevin R

    2010-01-13

    Several recent studies have focused on the evolution of recently duplicated genes in Drosophila. Currently, however, little is known about the evolutionary forces acting upon duplications that are segregating in natural populations. We used a high-throughput, paired-end sequencing platform (Illumina) to identify structural variants in a population sample of African D. melanogaster. Polymerase chain reaction and sequencing confirmation of duplications detected by multiple, independent paired-ends showed that paired-end sequencing reliably uncovered the break points of structural rearrangements and allowed us to identify a number of tandem duplications segregating within a natural population. Our confirmation experiments show that rates of confirmation are very high, even at modest coverage. Our results also compare well with previous studies using microarrays (Emerson J, Cardoso-Moreira M, Borevitz JO, Long M. 2008. Natural selection shapes genome wide patterns of copy-number polymorphism in Drosophila melanogaster. Science. 320:1629-1631. and Dopman EB, Hartl DL. 2007. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 104:19920-19925.), which both gives us confidence in the results of this study as well as confirms previous microarray results.We were also able to identify whole-gene duplications, such as a novel duplication of Or22a, an olfactory receptor, and identify copy-number differences in genes previously known to be under positive selection, like Cyp6g1, which confers resistance to dichlorodiphenyltrichloroethane. Several "hot spots" of duplications were detected in this study, which indicate that particular regions of the genome may be more prone to generating duplications. Finally, population frequency analysis of confirmed events also showed an excess of rare variants in our population, which indicates that duplications segregating in the population may be deleterious and ultimately destined to be lost from the

  10. Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea.

    Science.gov (United States)

    Llopart, Ana; Lachaise, Daniel; Coyne, Jerry A

    2005-09-01

    Drosophila yakuba is widely distributed in sub-Saharan Africa, while D. santomea is endemic to the volcanic island of São Tomé in the Atlantic Ocean, 280 km west of Gabon. On São Tomé, D. yakuba is found mainly in open lowland forests, and D. santomea is restricted to the wet misty forests at higher elevations. At intermediate elevations, the species form a hybrid zone where hybrids occur at a frequency of approximately 1%. To determine the extent of gene flow between these species we studied polymorphism and divergence patterns in 29 regions distributed throughout the genome, including mtDNA and three genes on the Y chromosome. This multilocus approach, together with the comparison to the two allopatric species D. mauritiana and D. sechellia, allowed us to distinguish between forces that should affect all genes and forces that should act on some genes (e.g., introgression). Our results show that D. yakuba mtDNA has replaced that of D. santomea and that there is also significant introgression for two nuclear genes, yellow and salr. The majority of genes, however, has remained distinct. These two species therefore do not form a "hybrid swarm" in which much of the genome shows substantial introgression while disruptive selection maintains distinctness for only a few traits (e.g., pigmentation and male genitalia).

  11. First record of spotted wing drosophila Drosophila suzukii (Diptera: Drosophilidae in Montenegro

    Directory of Open Access Journals (Sweden)

    Snježana Hrnčić

    2015-01-01

    Full Text Available The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae is an invasive pest originating from Southeast Asia. It was detected for the first time in Europe in 2008 (Spain and Italy and subsequently in other European countries. It is a highly polyphagous pest that infests healthy, ripening fruit and presents a serious threat to fruit production, particularly of soft skinned fruit. In the first half of October 2013, a new fruit fly species was unexpectedly detected in Tephri traps baited with the three-component female-biased attractant BioLure that is regularly used for monitoring the Mediterranean fruit fly Ceratitis capitata Wiedem. (Diptera: Tephritidae in Montenegro. Brief visual inspection identified the new species as the spotted wing drosophila D. suzukii. The pest was first recorded in several localities on the Montenegrin seacoast around Boka Kotor Bay. After the finding, all Drosophila specimens were collected from traps for further laboratory observation. A quick follow-up monitoring of other Tephri traps was carried out within the next few days on the rest of the seacoast (localities from Tivat to Ulcinj. Additionally, Tephri traps were set up around Lake Skadar and in the city of Podgorica, as well as on fresh fruit markets in Podgorica. The results of this preliminary study showed that D. suzukii was present in all surveyed locations and adults were captured until late December. Both sexes were found in traps with BioLure. Our data show that D. suzukii is present in southern parts of Montenegro and there is a serious threat of its further spreading, particularly towards northern parts of the country where the main raspberry and blueberry production is placed. The results also show that Tephri traps baited with BioLure can be used for detection and monitoring of spotted wing drosophila.

  12. Combined evidence annotation of transposable elements in genome sequences.

    Directory of Open Access Journals (Sweden)

    Hadi Quesneville

    2005-07-01

    Full Text Available Transposable elements (TEs are mobile, repetitive sequences that make up significant fractions of metazoan genomes. Despite their near ubiquity and importance in genome and chromosome biology, most efforts to annotate TEs in genome sequences rely on the results of a single computational program, RepeatMasker. In contrast, recent advances in gene annotation indicate that high-quality gene models can be produced from combining multiple independent sources of computational evidence. To elevate the quality of TE annotations to a level comparable to that of gene models, we have developed a combined evidence-model TE annotation pipeline, analogous to systems used for gene annotation, by integrating results from multiple homology-based and de novo TE identification methods. As proof of principle, we have annotated "TE models" in Drosophila melanogaster Release 4 genomic sequences using the combined computational evidence derived from RepeatMasker, BLASTER, TBLASTX, all-by-all BLASTN, RECON, TE-HMM and the previous Release 3.1 annotation. Our system is designed for use with the Apollo genome annotation tool, allowing automatic results to be curated manually to produce reliable annotations. The euchromatic TE fraction of D. melanogaster is now estimated at 5.3% (cf. 3.86% in Release 3.1, and we found a substantially higher number of TEs (n = 6,013 than previously identified (n = 1,572. Most of the new TEs derive from small fragments of a few hundred nucleotides long and highly abundant families not previously annotated (e.g., INE-1. We also estimated that 518 TE copies (8.6% are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough annotation of even the most complex TE models, including highly deleted and/or nested elements such as those often found in heterochromatic sequences. Our pipeline can be easily adapted to other genome sequences, such as those of the D. melanogaster heterochromatin or other

  13. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  14. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  15. Lawrence Berkeley Laboratory upgrading approaches to existing facilities

    International Nuclear Information System (INIS)

    Engle, H.M. Jr.

    1985-01-01

    The Lawrence Berkeley Laboratory Plant Engineering Department instituted a seismic risk investigation and seismic upgrade program in 1970. This paper covers the upgrade of two buildings with dissimilar framing systems; Building No. 10, a World War II vintage heavy timber frame building, and Building No. 80, a steel frame structure constructed in 1954. The seismic upgrade task for both structures required that the buildings be kept in service during rehabilitation with a minimum of disruption to occupants. Rehabilitations were phased over two and three year periods with construction management and supervision performed by LBL Plant Engineering staff

  16. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    Science.gov (United States)

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  17. Phylogenetic distribution of large-scale genome patchiness

    Directory of Open Access Journals (Sweden)

    Hackenberg Michael

    2008-04-01

    Full Text Available Abstract Background The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level. Results The local variations in the scaling exponent of the Detrended Fluctuation Analysis are used here to analyze large-scale genome structure and directly uncover the characteristic scales present in genome sequences. Furthermore, through shuffling experiments of selected genome regions, computationally-identified, isochore-like regions were identified as the biological source for the uncovered large-scale genome structure. The phylogenetic distribution of short- and large-scale patchiness was determined in the best-sequenced genome assemblies from eleven eukaryotic genomes: mammals (Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, and Canis familiaris, birds (Gallus gallus, fishes (Danio rerio, invertebrates (Drosophila melanogaster and Caenorhabditis elegans, plants (Arabidopsis thaliana and yeasts (Saccharomyces cerevisiae. We found large-scale patchiness of genome structure, associated with in silico determined, isochore-like regions, throughout this wide phylogenetic range. Conclusion Large-scale genome structure is detected by directly analyzing DNA sequences in a wide range of eukaryotic chromosome sequences, from human to yeast. In all these genomes, large-scale patchiness can be associated with the isochore-like regions, as directly detected in silico at the sequence level.

  18. Access to public drinking water fountains in Berkeley, California: a geospatial analysis.

    Science.gov (United States)

    Avery, Dylan C; Smith, Charlotte D

    2018-01-24

    In January 2015, Berkeley, California became the first city in the Unites States to impose a tax on sugar-sweetened beverages. The tax is intended to discourage purchase of sugary beverages and promote consumption of healthier alternatives such as tap water. The goal of the study was to assess the condition of public drinking water fountains and determine if there is a difference in access to clean, functioning fountains based on race or socio-economic status. A mobile-GIS App was created to locate and collect data on existing drinking water fountains in Berkeley, CA. Demographic variables related to race and socio-economic status (SES) were acquired from the US Census - American Community Survey database. Disparities in access to, or condition of drinking water fountains relative to demographics was explored using spatial analyses. Spatial statistical-analysis was performed to estimate demographic characteristics of communities near the water fountains and logistic regression was used to examine the relationship between household median income or race and condition of fountain. Although most fountains were classified as functioning, some were dirty, clogged, or both dirty and clogged. No spatial relationships between demographic characteristics and fountain conditions were observed. All geo-located data and a series of maps were provided to the City of Berkeley and the public. The geo-database created as an outcome of this study is useful for prioritizing maintenance of existing fountains and planning the locations of future fountains. The methodologies used for this study could be applied to a wide variety of asset inventory and assessment projects such as clinics or pharmaceutical dispensaries, both in developed and developing countries.

  19. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres.

    Science.gov (United States)

    Chavez, Joselyn; Murillo-Maldonado, Juan Manuel; Bahena, Vanessa; Cruz, Ana Karina; Castañeda-Sortibrán, América; Rodriguez-Arnaiz, Rosario; Zurita, Mario; Valadez-Graham, Viviana

    2017-12-01

    Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.

  20. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    Energy Technology Data Exchange (ETDEWEB)

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi; Brown, James B.; Chu, Hou Cheng; Zeng, Lucy; Grondona, Brandi P.; Hechmer, Aaron; Simirenko, Lisa; Keranen, Soile V.E.; Knowles, David W.; Stapleton, Mark; Bickel, Peter; Biggin, Mark D.; Eisen, Michael B.

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.

  1. An analysis of normalization methods for Drosophila RNAi genomic screens and development of a robust validation scheme

    Science.gov (United States)

    Wiles, Amy M.; Ravi, Dashnamoorthy; Bhavani, Selvaraj; Bishop, Alexander J.R.

    2010-01-01

    Genome-wide RNAi screening is a powerful, yet relatively immature technology that allows investigation into the role of individual genes in a process of choice. Most RNAi screens identify a large number of genes with a continuous gradient in the assessed phenotype. Screeners must then decide whether to examine just those genes with the most robust phenotype or to examine the full gradient of genes that cause an effect and how to identify the candidate genes to be validated. We have used RNAi in Drosophila cells to examine viability in a 384-well plate format and compare two screens, untreated control and treatment. We compare multiple normalization methods, which take advantage of different features within the data, including quantile normalization, background subtraction, scaling, cellHTS2 1, and interquartile range measurement. Considering the false-positive potential that arises from RNAi technology, a robust validation method was designed for the purpose of gene selection for future investigations. In a retrospective analysis, we describe the use of validation data to evaluate each normalization method. While no normalization method worked ideally, we found that a combination of two methods, background subtraction followed by quantile normalization and cellHTS2, at different thresholds, captures the most dependable and diverse candidate genes. Thresholds are suggested depending on whether a few candidate genes are desired or a more extensive systems level analysis is sought. In summary, our normalization approaches and experimental design to perform validation experiments are likely to apply to those high-throughput screening systems attempting to identify genes for systems level analysis. PMID:18753689

  2. Drosophila interspecific hybrids phenocopy piRNA-pathway mutants.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    Full Text Available The Piwi-interacting RNA (piRNA pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of pi

  3. Affecting Rhomboid-3 function causes a dilated heart in adult Drosophila.

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2010-05-01

    Full Text Available Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF-like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz-EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest

  4. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael

    2008-01-01

    in Tribolium was the occurrence of a vasopressin GPCR and a vasopressin peptide. So far, the vasopressin/GPCR couple has not been detected in any other insect with a sequenced genome (D. melanogaster and six other Drosophila species, Anopheles gambiae, Aedes aegypti, Bombyx mori, and A. mellifera). Tribolium...

  5. Higher Retail Prices of Sugar-Sweetened Beverages 3 Months After Implementation of an Excise Tax in Berkeley, California.

    Science.gov (United States)

    Falbe, Jennifer; Rojas, Nadia; Grummon, Anna H; Madsen, Kristine A

    2015-11-01

    We assessed the short-term ability to increase retail prices of the first US 1-cent-per-ounce excise tax on the distribution of sugar-sweetened beverages (SSBs), which was implemented in March 2015 by Berkeley, California. In 2014 and 2015, we examined pre- to posttax price changes of SSBs and non-SSBs in a variety of retailers in Berkeley and in the comparison cities Oakland and San Francisco, California. We examined price changes by beverage, brand, size, and retailer type. For smaller beverages (≤ 33.8 oz), price increases (cents/oz) in Berkeley relative to those in comparison cities were 0.69 (95% confidence interval [CI] = 0.36, 1.03) for soda, 0.47 (95% CI = 0.08, 0.87) for fruit-flavored beverages, and 0.47 (95% CI = 0.25, 0.69) for SSBs overall. For 2-liter bottles and multipacks of soda, relative price increases were 0.46 (95% CI = 0.03, 0.89) and 0.49 (95% CI = 0.21, 0.77). We observed no relative price increases for nontaxed beverages overall. Approximately 3 months after the tax was implemented, SSB retail prices increased more in Berkeley than in nearby cities, marking a step in the causal pathway between the tax and reduced SSB consumption.

  6. Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline.

    OpenAIRE

    Chalvet, F; Teysset, L; Terzian, C; Prud'homme, N; Santamaria, P; Bucheton, A; Pélisson, A

    1999-01-01

    Gypsy is an infectious endogenous retrovirus of Drosophila melanogaster. The gypsy proviruses replicate very efficiently in the genome of the progeny of females homozygous for permissive alleles of the flamenco gene. This replicative transposition is correlated with derepression of gypsy expression, specifically in the somatic cells of the ovaries of the permissive mothers. The determinism of this amplification was studied further by making chimeric mothers containing different permissive/res...

  7. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    Science.gov (United States)

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Gene expression variations during Drosophila metamorphosis in space: The GENE experiment in the Spanish cervantes missions to the ISS

    Science.gov (United States)

    Herranz, Raul; Benguria, Alberto; Medina, Javier; Gasset, Gilbert; van Loon, Jack J.; Zaballos, Angel; Marco, Roberto

    2005-08-01

    The ISS expedition 8, a Soyuz Mission, flew to the International Space Station (ISS) to replace the two- member ISS crew during October 2003. During this crew exchanging flight, the Spanish Cervantes Scientific Mission took place. In it some biological experiments were performed among them three proposed by our Team. The third member of the expedition, the Spanish born ESA astronaut Pedro Duque, returned within the Soyuz 7 capsule carrying the experiment containing transport box after almost 11 days in microgravity. In one of the three experiments, the GENE experiment, we intended to determine how microgravity affects the gene expression pattern of Drosophila with one of the current more powerful technologies , a complete Drosophila melanogaster genome microarray (AffymetrixTM, version 1.0). Due to the constrains in the current ISS experiments, we decided to limit our experiment to the organism rebuilding processes that occurs during Drosophila metamorphosis. In addition to the ISS samples, several control experiments have been performed including a 1g Ground control parallel to the ISS flight samples, a Random Position Machine microgravity simulated control and a parallel Hypergravity (10g) experiment. Extracted RNA from the samples was used to test the differences in gene expression during Drosophila development. A preliminary analysis of the results indicates that around five hundred genes change their expression profiles, many of them belonging to particular ontology classification groups.

  9. Tools for neuroanatomy and neurogenetics in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Barret D.; Jenett, Arnim; Hammonds, Ann S.; Ngo, Teri-T B.; Misra, Sima; Murphy, Christine; Scully, Audra; Carlson, Joseph W.; Wan, Kenneth H.; Laverty, Todd R.; Mungall, Chris; Svirskas, Rob; Kadonaga, James T.; Doe, Chris Q.; Eisen, Michael B.; Celniker, Susan E.; Rubin, Gerald M.

    2008-08-11

    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.

  10. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  11. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    Science.gov (United States)

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  12. New record for the invasive Spotted Wing Drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Anillaco, Argentina

    Science.gov (United States)

    The invasive Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is reported for the first time in La Rioja, Argentina. This represents a major range expansion for this species. The natural enemies of SWD, Leptopilina clavipes and Ganaspis hookeri were also collected with the SWD at the s...

  13. The influence of sterol metabolism upon radiation-induced aneuploidy of Drosophila melanogaster in the yeast-drosophila system

    International Nuclear Information System (INIS)

    Savitsij, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.I.

    1985-01-01

    The influence of sterol metabolism upon induced Drosophila melanogaster mutagenesis in an ecology-genetic yeast-drosophila system has been studied. The sterol deficit in fly organism has been created for account of using as food substrate for fremales of biomass of saccharomyces cerevisiae living cells of 9-2-PZ12 train with nyssup(r1) locus mutation which blocks the ergosterol synthesis. It has been found that the Drosophila females content on mutant yeast increases the frequency of losses and non discrepancy of X-chromosomes induced by X-radiation (1000 R). Addition into yeast biomass of 0.1 % cholesterol solution in 10 %-ethanol reduces the oocytes resistance to X-radiation up to control level. Possible hormonal and membrane mechanisms of increasing radiation-induced aneuploidy of Drosophila and the role of sterol metabolism in organism resistance to damaging factors are discussed

  14. Addition of molecular methods to mutation studies with Drosophila melanogaster

    International Nuclear Information System (INIS)

    Lee, W.R.

    1989-01-01

    For 80 years, Drosophila melanogaster has been used as a major tool in analyzing Mendelian genetics. By using chromosome inversions that suppress crossing over, geneticists have developed a large number of stocks for mutation analysis. These stocks permit numerous tests for specific locus mutations, lethals at multiple loci on any chromosome, chromosome exchanges, insertions, and deletions. The entire genome can be manipulated for a degree of genetic control not found in other germ-line systems. Recombinant DNA techniques now permit analysis of mutations to the nucleotide level. By combining classical genetic analysis with recombinant DNA techniques, it is possible to analyze mutations that range from chromosome aberrations and multilocus deficiencies to single nucleotide transitions

  15. Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation.

    Directory of Open Access Journals (Sweden)

    Erica Larschan

    Full Text Available Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

  16. Distribution of DNA replication proteins in Drosophila cells

    Science.gov (United States)

    Easwaran, Hariharan P; Leonhardt, Heinrich; Cardoso, M Cristina

    2007-01-01

    Background DNA replication in higher eukaryotic cells is organized in discrete subnuclear sites called replication foci (RF). During the S phase, most replication proteins assemble at the RF by interacting with PCNA via a PCNA binding domain (PBD). This has been shown to occur for many mammalian replication proteins, but it is not known whether this mechanism is conserved in evolution. Results Fluorescent fusions of mammalian replication proteins, Dnmt1, HsDNA Lig I and HsPCNA were analyzed for their ability to target to RF in Drosophila cells. Except for HsPCNA, none of the other proteins and their deletions showed any accumulation at RF in Drosophila cells. We hypothesized that in Drosophila cells there might be some other peptide sequence responsible for targeting proteins to RF. To test this, we identified the DmDNA Lig I and compared the protein sequence with HsDNA Lig I. The two orthologs shared the PBD suggesting a functionally conserved role for this domain in the Drosophila counterpart. A series of deletions of DmDNA Lig I were analyzed for their ability to accumulate at RF in Drosophila and mammalian cells. Surprisingly, no accumulation at RF was observed in Drosophila cells, while in mammalian cells DmDNA Lig I accumulated at RF via its PBD. Further, GFP fusions with the PBD domains from Dnmt1, HsDNA Lig I and DmDNA Lig I, were able to target to RF only in mammalian cells but not in Drosophila cells. Conclusion We show that S phase in Drosophila cells is characterized by formation of RF marked by PCNA like in mammalian cells. However, other than PCNA none of the replication proteins and their deletions tested here showed accumulation at RF in Drosophila cells while the same proteins and deletions are capable of accumulating at RF in mammalian cells. We hypothesize that unlike mammalian cells, in Drosophila cells, replication proteins do not form long-lasting interactions with the replication machinery, and rather perform their functions via very

  17. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. circadian rhythm; neuronal network; ion channel; behaviour; neurotransmitter; electrophysiology; Drosophila. Abstract. As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools ...

  18. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    Science.gov (United States)

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  19. Functional analysis of PGRP-LA in Drosophila immunity.

    Directory of Open Access Journals (Sweden)

    Mathilde Gendrin

    Full Text Available PeptidoGlycan Recognition Proteins (PGRPs are key regulators of the insect innate antibacterial response. Even if they have been intensively studied, some of them have yet unknown functions. Here, we present a functional analysis of PGRP-LA, an as yet uncharacterized Drosophila PGRP. The PGRP-LA gene is located in cluster with PGRP-LC and PGRP-LF, which encode a receptor and a negative regulator of the Imd pathway, respectively. Structure predictions indicate that PGRP-LA would not bind to peptidoglycan, pointing to a regulatory role of this PGRP. PGRP-LA expression was enriched in barrier epithelia, but low in the fat body. Use of a newly generated PGRP-LA deficient mutant indicates that PGRP-LA is not required for the production of antimicrobial peptides by the fat body in response to a systemic infection. Focusing on the respiratory tract, where PGRP-LA is strongly expressed, we conducted a genome-wide microarray analysis of the tracheal immune response of wild-type, Relish, and PGRP-LA mutant larvae. Comparing our data to previous microarray studies, we report that a majority of genes regulated in the trachea upon infection differ from those induced in the gut or the fat body. Importantly, antimicrobial peptide gene expression was reduced in the tracheae of larvae and in the adult gut of PGRP-LA-deficient Drosophila upon oral bacterial infection. Together, our results suggest that PGRP-LA positively regulates the Imd pathway in barrier epithelia.

  20. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    Energy Technology Data Exchange (ETDEWEB)

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  1. "A Woman's World": The University of California, Berkeley, during the Second World War

    Science.gov (United States)

    Dorn, Charles

    2008-01-01

    During World War II, female students at the University of California, Berkeley--then the most populous undergraduate campus in American higher education--made significant advances in collegiate life. In growing numbers, women enrolled in male-dominated academic programs, including mathematics, chemistry, and engineering, as they prepared for…

  2. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.

    1983-01-01

    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.) [pt

  3. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  4. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes

    DEFF Research Database (Denmark)

    Siepel, Adam; Bejerano, Gill; Pedersen, Jakob Skou

    2005-01-01

    We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three...... species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo......-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%-8% of the human genome (depending on the details of the calibration procedure) and substantially...

  5. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development

    OpenAIRE

    Kowalewski-Nimmerfall, Elisabeth; Sch?hs, Philipp; Maresch, Daniel; Rendic, Dubravko; Kr?mer, Helmut; Mach, Lukas

    2014-01-01

    Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be subst...

  6. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis.

    Science.gov (United States)

    Kuleesha, Yadav; Puah, Wee Choo; Lin, Feng; Wasser, Martin

    2014-01-01

    visualize and quantify morphological changes of muscles in time-lapse images of Drosophila metamorphosis. Our in vivo imaging experiments revealed that evolutionarily conserved genes involved in Tor signalling and autophagy, perform similar functions in regulating muscle mass in mammals and Drosophila. Extending our approach to a genome-wide scale has the potential to identify new genes involved in muscle size regulation.

  7. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis

    Science.gov (United States)

    2014-01-01

    . Conclusions We designed a new tool to visualize and quantify morphological changes of muscles in time-lapse images of Drosophila metamorphosis. Our in vivo imaging experiments revealed that evolutionarily conserved genes involved in Tor signalling and autophagy, perform similar functions in regulating muscle mass in mammals and Drosophila. Extending our approach to a genome-wide scale has the potential to identify new genes involved in muscle size regulation. PMID:25521203

  8. Characterization of Autophagic Responses in Drosophila melanogaster.

    Science.gov (United States)

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  9. Balancing selection on immunity genes: review of the current literature and new analysis in Drosophila melanogaster.

    Science.gov (United States)

    Croze, Myriam; Živković, Daniel; Stephan, Wolfgang; Hutter, Stephan

    2016-08-01

    Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection. In this paper, we review the literature on balancing selection on immunity genes in several organisms, including Drosophila. Furthermore, we performed a genome scan for balancing selection in an African population of Drosophila melanogaster using coalescent simulations of a demographic model with and without selection. We find very few genes under balancing selection and only one novel candidate gene related to immunity. Finally, we discuss the possible causes of the low number of genes under balancing selection. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. The Effects of Royal Jelly on Fitness Traits and Gene Expression in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    John R Shorter

    Full Text Available Royal Jelly (RJ is a product made by honey bee workers and is required for queen differentiation and accompanying changes in queen body size, development time, lifespan and reproductive output relative to workers. Previous studies have reported similar changes in Drosophila melanogaster in response to RJ. Here, we quantified viability, development time, body size, productivity, lifespan and genome wide transcript abundance of D. melanogaster reared on standard culture medium supplemented with increasing concentrations of RJ. We found that lower concentrations of RJ do induce significant differences in body size in both sexes; higher concentrations reduce size, increase mortality, shorten lifespan and reduce productivity. Increased concentrations of RJ also consistently lengthened development time in both sexes. RJ is associated with changes in expression of 1,581 probe sets assessed using Affymetrix Drosophila 2.0 microarrays, which were enriched for genes associated with metabolism and amino acid degradation. The transcriptional changes are consistent with alterations in cellular processes to cope with excess nutrients provided by RJ, including biosynthesis and detoxification, which might contribute to accelerated senescence and reduced lifespan.

  11. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster.

    Science.gov (United States)

    Venken, Koen J T; Bellen, Hugo J

    2014-06-15

    The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hybrid sterility and evolution in Hawaiian Drosophila: differential gene and allele-specific expression analysis of backcross males.

    Science.gov (United States)

    Brill, E; Kang, L; Michalak, K; Michalak, P; Price, D K

    2016-08-01

    The Hawaiian Drosophila are an iconic example of sequential colonization, adaptive radiation and speciation on islands. Genetic and phenotypic analysis of closely related species pairs that exhibit incomplete reproductive isolation can provide insights into the mechanisms of speciation. Drosophila silvestris from Hawai'i Island and Drosophila planitibia from Maui are two closely related allopatric Hawaiian picture-winged Drosophila that produce sterile F1 males but fertile F1 females, a pattern consistent with Haldane's rule. Backcrossing F1 hybrid females between these two species to parental species gives rise to recombinant males with three distinct sperm phenotypes despite a similar genomic background: motile sperm, no sperm (sterile), and immotile sperm. We found that these three reproductive morphologies of backcross hybrid males produce divergent gene expression profiles in testes, as measured with RNA sequencing. There were a total of 71 genes significantly differentially expressed between backcross males with no sperm compared with those backcross males with motile sperm and immotile sperm, but no significant differential gene expression between backcross males with motile sperm and backcross males with immotile sperm. All of these genes were underexpressed in males with no sperm, including a number of genes with previously known activities in adult testis. An allele-specific expression analysis showed overwhelmingly more cis-divergent than trans-divergent genes, with no significant difference in the ratio of cis- and trans-divergent genes among the sperm phenotypes. Overall, the results indicate that the regulation of gene expression involved in sperm production likely diverged relatively rapidly between these two closely related species.

  13. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  14. Searching for multiple stellar populations in the massive, old open cluster Berkeley 39

    Science.gov (United States)

    Bragaglia, A.; Gratton, R. G.; Carretta, E.; D'Orazi, V.; Sneden, C.; Lucatello, S.

    2012-12-01

    The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemical composition of several clusters with masses of a few 104 M⊙ to establish the lower mass limit for the multiple stellar population phenomenon. Using VLT/FLAMES spectra we determine abundances of Fe, O, Na, and several other elements (α, Fe-peak, and neutron-capture elements) in the old open cluster Berkeley 39. This is a massive open cluster: M ~ 104 M⊙, approximately at the border between small globular clusters and large open clusters. Our sample size of about 30 stars is one of the largest studied for abundances in any open cluster to date, and will be useful to determine improved cluster parameters, such as age, distance, and reddening when coupled with precise, well-calibrated photometry. We find that Berkeley 39 is slightly metal-poor, ⟨[Fe/H]⟩ = -0.20, in agreement with previous studies of this cluster. More importantly, we do not detect any star-to-star variation in the abundances of Fe, O, and Na within quite stringent upper limits. The rms scatter is 0.04, 0.10, and 0.05 dex for Fe, O, and Na, respectively. This small spread can be entirely explained by the noise in the spectra and by uncertainties in the atmospheric parameters. We conclude that Berkeley 39 is a single-population cluster. Based on observations collected at ESO telescopes under programme 386.B-0009.Tables 2 and 3 are available in electronic form at http://www.aanda.org

  15. GenomeRNAi: a database for cell-based RNAi phenotypes.

    Science.gov (United States)

    Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael

    2007-01-01

    RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.

  16. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed.

  17. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    International Nuclear Information System (INIS)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed

  18. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study.

    Directory of Open Access Journals (Sweden)

    Lynn D Silver

    2017-04-01

    Full Text Available Taxes on sugar-sweetened beverages (SSBs meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake.Methods included comparison of pre-taxation (before 1 January 2015 and first-year post-taxation (1 March 2015-29 February 2016 measures of (1 beverage prices at 26 Berkeley stores; (2 point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3 a representative telephone survey (17.4% cooperation rate of 957 adult Berkeley residents. Key hypotheses were that (1 the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2 sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3 consumer spending per transaction (checkout episode would not increase in Berkeley stores; and (4 self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce, beverage sales (ounces, consumers' spending measured as store revenue (inflation-adjusted dollars per transaction in two large chains, and usual beverage intake (grams/day and kilocalories/day. Tax pass-through (changes in the price after imposition of the tax for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001 and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004, partial in pharmacies (+0.45¢/oz, p = 0.03, and negative in independent corner stores and

  19. Fun and games in Berkeley: the early years (1956-2013).

    Science.gov (United States)

    Tinoco, Ignacio

    2014-01-01

    Life at Berkeley for the past 57 years involved research on the thermodynamics, kinetics, and spectroscopic properties of RNA to better understand its structures, interactions, and functions. We (myself and all the graduate students and postdocs who shared in the fun) began with dinucleoside phosphates and slowly worked our way up to megadalton-sized RNA molecular motors. We used UV absorption, circular dichroism, circular intensity differential scattering, fluorescence, NMR, and single-molecule methods. We learned a lot and had fun doing it.

  20. Particle production in high energy nucleus--nucleus experiments at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1976-09-01

    A review of high energy nucleus-nucleus experiments performed at the Berkeley Bevalac is presented. Earlier results on projectile and target fragmentation and pion production are briefly summarized. More recent results on Coulomb effects in projectile fragmentation, heavy ion total cross-sections, γ-ray production, and charged particle multiplicities are presented. Also, recent experiments which may shed light on phenomena arising from the central collision of two energetic nuclei, including recent evidence for and against the observation of nuclear shock waves, are reviewed

  1. Positive selection for unpreferred codon usage in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Galagan James E

    2007-07-01

    Full Text Available Abstract Background Natural selection has traditionally been understood as a force responsible for pushing genes to states of higher translational efficiency, whereas lower translational efficiency has been explained by neutral mutation and genetic drift. We looked for evidence of directional selection resulting in increased unpreferred codon usage (and presumably reduced translational efficiency in three divergent clusters of eukaryotic genomes using a simple optimal-codon-based metric (Kp/Ku. Results Here we show that for some genes natural selection is indeed responsible for causing accelerated unpreferred codon substitution, and document the scope of this selection. In Cryptococcus and to a lesser extent Drosophila, we find many genes showing a statistically significant signal of selection for unpreferred codon usage in one or more lineages. We did not find evidence for this type of selection in Saccharomyces. The signal of positive selection observed from unpreferred synonymous codon substitutions is coincident in Cryptococcus and Drosophila with the distribution of upstream open reading frames (uORFs, another genic feature known to reduce translational efficiency. Functional enrichment analysis of genes exhibiting low Kp/Ku ratios reveals that genes in regulatory roles are particularly subject to this type of selection. Conclusion Through genome-wide scans, we find recent selection for unpreferred codon usage at approximately 1% of genetic loci in a Cryptococcus and several genes in Drosophila. Unpreferred codons can impede translation efficiency, and we find that genes with translation-impeding uORFs are enriched for this selection signal. We find that regulatory genes are particularly likely to be subject to selection for unpreferred codon usage. Given that expression noise can propagate through regulatory cascades, and that low translational efficiency can reduce expression noise, this finding supports the hypothesis that translational

  2. Interorgan Communication Pathways in Physiology: Focus on Drosophila

    OpenAIRE

    Droujinine, Ilia A.; Perrimon, Norbert

    2016-01-01

    Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we di...

  3. Berkeley 51 Kümesinin Temel ve Astrofiziksel Parametrelerinin Belirlenmesi

    Directory of Open Access Journals (Sweden)

    İnci Akkaya Oralhan

    2016-10-01

    Full Text Available Galaksimizin birinci çeyreğinde bulunan ve daha önce çok az çalışılmış açık yıldız kümelerinden biri olan Berkeley 51 kümesinin temel astrofiziksel ve yapısal parametreleri CCD UBV(RIC ve 2MASS JHKS verileri kullanılarak elde edilmiştir. Kümeye ait CCD UBV(RIC verileri Meksika’da bulunan San Pedro Martir Ulusal Gözlemevi’nden 84cm’lik teleskop ile alınmıştır. Küme üyeliklerinin belirlenmesinde ise PPMXL kataloğundaki öz hareket verileri kullanılmıştır. Buna küre bu küme için elde edilen limit yarıçap Rlim=2.5 yay dakikası, kızarma E(B-V=0.85±0.05 kadir, E(J-H=0.28±0.02 kadir, uzaklık modülü DM=(m-M0=10.66±0.04 pc, uzaklığı d=1355±27 pc ve logaritmik yaş log(A=9.54±0.03 Myıl olarak bulunmuştur. Küme için ilk kez bulunan metal ve ağır element bolluğu ise sırasıyla [Fe/H]=-0.38 ve Z=0.006 olarak elde edilmiştir.Anahtar kelimeler: Açık yıldız kümeleri-Berkeley 51

  4. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    International Nuclear Information System (INIS)

    Savitskii, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.G.

    1986-01-01

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed

  5. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs

  6. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs.

  7. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter

    Quantitative genetic models recognize the potential for genotype by environment interaction, whereby different genotypes have different plastic responses to changes in macro-environmental conditions. Recently, it has been recognized that micro-environmental plasticity (‘residual’ variance) may also...... be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0.51 to 0.......77), of the same order as the heritability at the level of the trait mean for startle response and even larger for chill coma recovery. Genome wide association analyses identified molecular variants (from 15 to 31 depending on the sex and the trait) associated with micro-environmental plasticity. These findings...

  8. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  9. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    International Nuclear Information System (INIS)

    Collier, Michael

    2002-01-01

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle

  10. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  11. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  12. No interaction between X-ray induced lesions in maternal and paternal chromosomes in inseminated eggs of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.; Jeanneret, P.

    1978-01-01

    X-ray induced premutational lesions persist in mature gametes of drosophila until fertilization. Repairable lesions in sperm and oocyte chromosomes are repaired exclusively by maternal repair systems in the inseminated egg. Interactions between irradiated genomes in inseminated eggs might result in additional lethality if breaks induced in separate nuclei, which would normally be repaired, could interact to form dicentric chromosomes. Adult drosophila flies were X-irradiated (up to 5 kR), individual females crossed to three or four males, and the dose-response curves for dominant lethals (embryonic lethality) compared. The results indicate thet the potentially lethal damage present in irradiated sperm chromosomes was expressed independently of whether or not the oocyte was also irradiated. There were no (or only very few) interactions between maternal and paternal chromosome complements, and the maternal repair systems acting on radiation-induced chromosome breaks in sperm were resistant to X-rays. (U.K.)

  13. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    OpenAIRE

    Wilson, Rachel I.

    2013-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antenna...

  14. Isolation of protease-free alcohol dehydrogenase (ADH) from Drosophila simulans and several homozygous and heterozygous Drosophila melanogaster variants

    NARCIS (Netherlands)

    Smilda, T; Lamme, DA; Collu, G; Jekel, PA; Reinders, P; Beintema, JJ

    The enzyme alcohol dehydrogenase (ADH) from several naturally occurring ADH variants of Drosophila melanogaster and Drosophila simulans Lc,as isolated. Affinity chromatography with the ligand Cibacron Blue and elution with NAD(+) showed similar behavior for D. melanogaster ADH-FF, ADH-71k, and D.

  15. An expressed sequence tag (EST) library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies

    OpenAIRE

    Frentiu, Francesca D; Adamski, Marcin; McGraw, Elizabeth A; Blows, Mark W; Chenoweth, Stephen F

    2009-01-01

    Abstract Background The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for thi...

  16. Environmental Justice Screening Method (EJSM) Score, San Joaquin Valley CA, 2013, Occidental College and UC Berkeley

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Cumulative Impacts (CI) screening method is jointly being developed by Manuel Pastor, Jim Sadd (Occidental College), and Rachel Morello-Frosch (UC Berkeley) ....

  17. Evolutionary experimentation through hybridization under laboratory condition in Drosophila: Evidence for Recombinational Speciation

    Directory of Open Access Journals (Sweden)

    Ramachandra Nallur B

    2003-10-01

    Full Text Available Abstract Background Drosophila nasuta nasuta (2n = 8 and Drosophila nasuta albomicans (2n = 6 are a pair of sibling allopatric chromosomal cross-fertile races of the nasuta subgroup of immigrans species group of Drosophila. Interracial hybridization between these two races has given rise to new karyotypic strains called Cytorace 1 and Cytorace 2 (first phase. Further hybridization between Thailand strain of D. n. albomicans and D. n. nasuta of Coorg strain has resulted in the evolution of two more Cytoraces, namely Cytorace 3 and Cytorace 4 (second phase. The third phase Cytoraces (Cytorace 5 to Cytorace 16 have evolved through interracial hybridization among first, second phase Cytoraces along with parental races. Each of these Cytoraces is composed of recombined genomes of the parental races. Here, we have made an attempt to systematically assess the impact of hybridization on karyotypes, morphometric and life history traits in all 16 Cytoraces. Results The results reveal that in most cases, the newly evolved Cytoraces, with different chromosome constitutions, exhibit decreased body size, better fitness and live longer than their parents. Particularly, Cytorace 5, 6 and 8 have evolved with very much higher range values of quantitative traits than the parents and other Cytoraces, which suggests the role of transgressive segregation in the evolution of these Cytoraces. Conclusion Thus, the rapid divergence recorded in the chromosomes, karyotypes, body size and fitness traits of Cytoraces exhibit the early event of recombinational raciation / speciation in the evolution of the Cytoraces under laboratory conditions.

  18. Map of open and closed chromatin domains in Drosophila genome.

    Science.gov (United States)

    Milon, Beatrice; Sun, Yezhou; Chang, Weizhong; Creasy, Todd; Mahurkar, Anup; Shetty, Amol; Nurminsky, Dmitry; Nurminskaya, Maria

    2014-11-18

    Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification. We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin "states", individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse "exceptions" from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin. These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.

  19. High incidence of interchromosomal transpositions in the evolutionary history of a subset of or genes in Drosophila.

    Science.gov (United States)

    Conceição, Inês C; Aguadé, Montserrat

    2008-04-01

    In insects, the odorant receptor (Or) multigene family is an intermediate-sized family with genes present in all chromosomes, indicating that duplication followed by interchromosomal transposition played an important role in the early stages of the family evolution. Here, we have explored the occurrence of interchromosomal transpositions in more recent stages through the comparative analysis of a subset of Or genes in Drosophila, where the gene content of chromosomal arms is highly conserved. The studied subset consisted of 11 Or genes located on the left arm of chromosome 3 (Muller's D element) in D. melanogaster. Our study focused on the number and chromosomal arm location of these members of the family across the 12 Drosophila species with complete genome sequences. In contrast to previous results from in situ hybridization comparative mapping that were mainly based on single-copy genes, our study, based on members of a multigene family of moderate size, revealed repeated interchromosomal transposition events and a complex history of some of the studied genes.

  20. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    Energy Technology Data Exchange (ETDEWEB)

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  1. Mutational Analysis of Drosophila Basigin Function in the Visual System

    Science.gov (United States)

    Munro, Michelle; Akkam, Yazan; Curtin, Kathryn D.

    2009-01-01

    Drosophila basigin is a cell-surface glycoprotein of the Ig superfamily and a member of a protein family that includes mammalian EMMPRIN/CD147/basigin, neuroplastin, and embigin. Our previous work on Drosophila basigin has shown that it is required for normal photoreceptor cell structure and normal neuron-glia interaction in the fly visual system. Specifically, the photoreceptor neurons of mosaic animals that are mutant in the eye for basigin show altered cell structure with nuclei, mitochondria and rER misplaced and variable axon diameter compared to wild-type. In addition, glia cells in the optic lamina that contact photoreceptor axons are misplaced and show altered structure. All these defects are rescued by expression of either transgenic fly basigin or transgenic mouse basigin in the photoreceptors demonstrating that mouse basigin can functionally replace fly basigin. To determine what regions of the basigin protein are required for each of these functions, we have created mutant basigin transgenes coding for proteins that are altered in conserved residues, introduced these into the fly genome, and tested them for their ability to rescue both photoreceptor cell structure defects and neuron-glia interaction defects of basigin. The results suggest that the highly conserved transmembrane domain and the extracellular domains are crucial for basigin function in the visual system while the short intracellular tail may not play a role in these functions. PMID:19782733

  2. 40 CFR 798.5955 - Heritable translocation test in drosophila melanogaster.

    Science.gov (United States)

    2010-07-01

    ... drosophila melanogaster. 798.5955 Section 798.5955 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5955 Heritable translocation test in drosophila melanogaster. (a) Purpose. The heritable translocation test in Drosophila measures the induction of chromosomal translocations in germ cells of insects...

  3. Medium-term changes in Drosophila subobscura chromosomal ...

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... Krimbas C. B. 1993 Drosophila subobscura: biology, genetics and inversion polymorphism. Verlag Dr, Kovac, Hamburg. Menozzi P. and Krimbas C. B. 1992 The inversion polymorphism of Drosophila subobscura revisited: synthetic maps of gene arrangements frequencies and their interpretation. J. Evol.

  4. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study.

    Science.gov (United States)

    Silver, Lynn D; Ng, Shu Wen; Ryan-Ibarra, Suzanne; Taillie, Lindsey Smith; Induni, Marta; Miles, Donna R; Poti, Jennifer M; Popkin, Barry M

    2017-04-01

    Taxes on sugar-sweetened beverages (SSBs) meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake. Methods included comparison of pre-taxation (before 1 January 2015) and first-year post-taxation (1 March 2015-29 February 2016) measures of (1) beverage prices at 26 Berkeley stores; (2) point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3) a representative telephone survey (17.4% cooperation rate) of 957 adult Berkeley residents. Key hypotheses were that (1) the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2) sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3) consumer spending per transaction (checkout episode) would not increase in Berkeley stores; and (4) self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce), beverage sales (ounces), consumers' spending measured as store revenue (inflation-adjusted dollars per transaction) in two large chains, and usual beverage intake (grams/day and kilocalories/day). Tax pass-through (changes in the price after imposition of the tax) for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001) and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004), partial in pharmacies (+0.45¢/oz, p = 0.03), and negative in independent corner stores and

  5. Drosophila Neprilysins Are Involved in Middle-Term and Long-Term Memory.

    Science.gov (United States)

    Turrel, Oriane; Lampin-Saint-Amaux, Aurélie; Préat, Thomas; Goguel, Valérie

    2016-09-14

    Neprilysins are type II metalloproteinases known to degrade and inactivate a number of small peptides. Neprilysins in particular are the major amyloid-β peptide-degrading enzymes. In mouse models of Alzheimer's disease, neprilysin overexpression improves learning and memory deficits, whereas neprilysin deficiency aggravates the behavioral phenotypes. However, whether these enzymes are involved in memory in nonpathological conditions is an open question. Drosophila melanogaster is a well suited model system with which to address this issue. Several memory phases have been characterized in this organism and the neuronal circuits involved are well described. The fly genome contains five neprilysin-encoding genes, four of which are expressed in the adult. Using conditional RNA interference, we show here that all four neprilysins are involved in middle-term and long-term memory. Strikingly, all four are required in a single pair of neurons, the dorsal paired medial (DPM) neurons that broadly innervate the mushroom bodies (MBs), the center of olfactory memory. Neprilysins are also required in the MB, reflecting the functional relationship between the DPM neurons and the MB, a circuit believed to stabilize memories. Together, our data establish a role for neprilysins in two specific memory phases and further show that DPM neurons play a critical role in the proper targeting of neuropeptides involved in these processes. Neprilysins are endopeptidases known to degrade a number of small peptides. Neprilysin research has essentially focused on their role in Alzheimer's disease and heart failure. Here, we use Drosophila melanogaster to study whether neprilysins are involved in memory. Drosophila can form several types of olfactory memory and the neuronal structures involved are well described. Four neprilysin genes are expressed in adult Drosophila Using conditional RNA interference, we show that all four are specifically involved in middle-term memory (MTM) and long

  6. Gut-associated microbes of Drosophila melanogaster

    Science.gov (United States)

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  7. TADs are 3D structural units of higher-order chromosome organization in Drosophila

    Science.gov (United States)

    Szabo, Quentin; Jost, Daniel; Chang, Jia-Ming; Cattoni, Diego I.; Papadopoulos, Giorgio L.; Bonev, Boyan; Sexton, Tom; Gurgo, Julian; Jacquier, Caroline; Nollmann, Marcelo; Bantignies, Frédéric; Cavalli, Giacomo

    2018-01-01

    Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes. PMID:29503869

  8. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    International Nuclear Information System (INIS)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954

  9. Preparations for decommissioning the TRIGA Mark III Berkeley Research Reactor

    International Nuclear Information System (INIS)

    Denton, Michael M.; Lim, Tek. H.

    1988-01-01

    On December 20, 1986 the chancellor of UC Berkeley announced his decision to decommission the 20 year old Berkeley Research Reactor citing as principal reasons a decline in use and a need to erect a new computer science building over the reactor's site. In order to meet the University's construction timetable for the new building, the reactor staff together with other units of the campus administration have initiated a program to remove the reactor structure and clear the room for unlicensed use as expediently as possible. Due to the sequence of events which must occur in a limited amount of time, the University adopted a policy to contract out as much of the work as possible, including generation of the defueling and decommissioning plans.The first physical step in the decommissioning project is the removal of the irradiated fuel. This task is largely contracted out to a commercial firm with experience in the transport of radioactive materials and reactor fuel. As suggested by the NRC, the reactor will be defueled under the current operating license. This requires that all fuel must be off-site before the DP can be approved. Therefore any delay in defueling in-turn delays the decommissioning. The NRC has given no commitment or date for completion of their review. Informal discussion with NRC project managers and the experience from other facilities indicate that the review process will take between six and nine months

  10. Crystal structure of Diedel, a marker of the immune response of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Franck Coste

    Full Text Available The Drosophila melanogaster gene CG11501 is up regulated after a septic injury and was proposed to act as a negative regulator of the JAK/STAT signaling pathway. Diedel, the CG11501 gene product, is a small protein of 115 residues with 10 cysteines.We have produced Diedel in Drosophila S2 cells as an extra cellular protein thanks to its own signal peptide and solved its crystal structure at 1.15 Å resolution by SIRAS using an iodo derivative. Diedel is composed of two sub domains SD1 and SD2. SD1 is made of an antiparallel β-sheet covered by an α-helix and displays a ferredoxin-like fold. SD2 reveals a new protein fold made of loops connected by four disulfide bridges. Further structural analysis identified conserved hydrophobic residues on the surface of Diedel that may constitute a potential binding site. The existence of two conformations, cis and trans, for the proline 52 may be of interest as prolyl peptidyl isomerisation has been shown to play a role in several physiological mechanisms. The genome of D. melanogaster contains two other genes coding for proteins homologous to Diedel, namely CG43228 and CG34329. Strikingly, apart from Drosophila and the pea aphid Acyrthosiphon pisum, Diedel-related sequences were exclusively identified in a few insect DNA viruses of the Baculoviridae and Ascoviridae families.Diedel, a marker of the Drosophila antimicrobial/antiviral response, is a member of a small family of proteins present in drosophilids, aphids and DNA viruses infecting lepidopterans. Diedel is an extracellular protein composed of two sub-domains. Two special structural features (hydrophobic surface patch and cis/trans conformation for proline 52 may indicate a putative interaction site, and support an extra cellular signaling function for Diedel, which is in accordance with its proposed role as negative regulator of the JAK/STAT signaling pathway.

  11. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  12. Apoptotic activity and gene responses in Drosophila melanogaster S2 cells, induced by azadirachtin A.

    Science.gov (United States)

    Xu, Lin; Li, Sheng; Ran, Xueqin; Liu, Chang; Lin, Rutao; Wang, Jiafu

    2016-09-01

    Azadirachtin has been used as an antifeedant and growth disruption agent for many insect species. Previous investigations have reported the apoptotic effects of azadirachtin on some insect cells, but the molecular mechanisms are still not clear. This study investigated the underlying molecular mechanisms for the apoptotic effects induced by azadirachtin on Drosophila melanogaster S2 cells in vitro. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay demonstrated that azadirachtin exhibited significant cytotoxicity to S2 cells in a time- and dose-dependent manner. The changes in cellular morphology and the DNA fragmentation demonstrated that azadirachtin induced remarkable apoptosis of S2 cells. Expression levels of 276 genes were found to be significantly changed in S2 cells after exposure to azadirachtin, as detected by Drosophila genome array. Among these genes, calmodulin (CaM) was the most highly upregulated gene. Azadirachtin was further demonstrated to trigger intracellular Ca(2+) release in S2 cells. The genes related to the apoptosis pathway, determined from chip data, were validated by the real-time quantitative polymerase chain reaction method. The results showed that azadirachtin-mediated intracellular Ca(2+) release was the primary event that triggered apoptosis in Drosophila S2 cells through both pathways of the Ca(2+) -CaM and EcR/Usp signalling cascade. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Young Cluster Berkeley 59: Properties, Evolution, and Star Formation

    Science.gov (United States)

    Panwar, Neelam; Pandey, A. K.; Samal, Manash R.; Battinelli, Paolo; Ogura, K.; Ojha, D. K.; Chen, W. P.; Singh, H. P.

    2018-01-01

    Berkeley 59 is a nearby (∼1 kpc) young cluster associated with the Sh2-171 H II region. We present deep optical observations of the central ∼2.5 × 2.5 pc2 area of the cluster, obtained with the 3.58 m Telescopio Nazionale Galileo. The V/(V–I) color–magnitude diagram manifests a clear pre-main-sequence (PMS) population down to ∼0.2 M ⊙. Using the near-infrared and optical colors of the low-mass PMS members, we derive a global extinction of A V = 4 mag and a mean age of ∼1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2–28 M ⊙ and 0.2–1.5 M ⊙ are ‑1.33 and ‑1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds. Within the observed area, we derive a total mass of ∼103 M ⊙ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more closely the Trapezium cluster.

  14. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award; scientist's work on supernovae reveals accelerating Universe

    CERN Multimedia

    2002-01-01

    Saul Perlmutter, from Lawrence Berkeley National Laboratory Physics Division and leader of the Supernova Cosmology Project based there, has won the DOE's 2002 E.O. Lawrence Award in the physics category (2 pages).

  15. Dilepton (e+e-) production recent pp and pd studies with DLS at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1991-09-01

    The use of dileptons as probes of hot, dense hadronic matter is described. Preliminary results on dileptons produced in p-p and p-d interactions at the Bevalac are presented along with potential ramifications for existing model calculations of dileptons at these energies. Future directions of the dilepton program at Berkeley are outlined. 14 refs., 3 figs

  16. Genomewide clonal analysis of lethal mutations in the Drosophila melanogaster eye: comparison of the X chromosome and autosomes.

    Science.gov (United States)

    Call, Gerald B; Olson, John M; Chen, Jiong; Villarasa, Nikki; Ngo, Kathy T; Yabroff, Allison M; Cokus, Shawn; Pellegrini, Matteo; Bibikova, Elena; Bui, Chris; Cespedes, Albert; Chan, Cheryl; Chan, Stacy; Cheema, Amrita K; Chhabra, Akanksha; Chitsazzadeh, Vida; Do, Minh-Tu; Fang, Q Angela; Folick, Andrew; Goodstein, Gelsey L; Huang, Cheng R; Hung, Tony; Kim, Eunha; Kim, William; Kim, Yulee; Kohan, Emil; Kuoy, Edward; Kwak, Robert; Lee, Eric; Lee, JiEun; Lin, Henry; Liu, H-C Angela; Moroz, Tatiana; Prasad, Tharani; Prashad, Sacha L; Patananan, Alexander N; Rangel, Alma; Rosselli, Desiree; Sidhu, Sohrab; Sitz, Daniel; Taber, Chelsea E; Tan, Jingwen; Topp, Kasey; Tran, PhuongThao; Tran, Quynh-Minh; Unkovic, Mary; Wells, Maggie; Wickland, Jessica; Yackle, Kevin; Yavari, Amir; Zaretsky, Jesse M; Allen, Christopher M; Alli, Latifat; An, Ju; Anwar, Abbas; Arevalo, Sonia; Ayoub, Danny; Badal, Shawn S; Baghdanian, Armonde; Baghdanian, Arthur H; Baumann, Sara A; Becerra, Vivian N; Chan, Hei J; Chang, Aileen E; Cheng, Xibin A; Chin, Mabel; Chong, Fleurette; Crisostomo, Carlyn; Datta, Sanjit; Delosreyes, Angela; Diep, Francie; Ekanayake, Preethika; Engeln, Mark; Evers, Elizabeth; Farshidi, Farzin; Fischer, Katrina; Formanes, Arlene J; Gong, Jun; Gupta, Riju; Haas, Blake E; Hahm, Vicky; Hsieh, Michael; Hui, James Z; Iao, Mei L; Jin, Sophia D; Kim, Angela Y; Kim, Lydia S-H; King, Megan; Knudsen-Robbins, Chloe; Kohanchi, David; Kovshilovskaya, Bogdana; Ku, Amy; Kung, Raymond W; Landig, Mark E L; Latterman, Stephanie S; Lauw, Stephanie S; Lee, Daniel S; Lee, Joann S; Lei, Kai C; Leung, Lesley L; Lerner, Renata; Lin, Jian-ya; Lin, Kathleen; Lim, Bryon C; Lui, Crystal P Y; Liu, Tiffany Q; Luong, Vincent; Makshanoff, Jacob; Mei, An-Chi; Meza, Miguel; Mikhaeil, Yara A; Moarefi, Majid; Nguyen, Long H; Pai, Shekhar S; Pandya, Manish; Patel, Aadit R; Picard, Paul D; Safaee, Michael M; Salame, Carol; Sanchez, Christian; Sanchez, Nina; Seifert, Christina C; Shah, Abhishek; Shilgevorkyan, Oganes H; Singh, Inderroop; Soma, Vanessa; Song, Junia J; Srivastava, Neetika; StaAna, Jennifer L; Sun, Christie; Tan, Diane; Teruya, Alison S; Tikia, Robyn; Tran, Trinh; Travis, Emily G; Trinh, Jennifer D; Vo, Diane; Walsh, Thomas; Wong, Regan S; Wu, Katherine; Wu, Ya-Whey; Yang, Nkau X V; Yeranosian, Michael; Yu, James S; Zhou, Jennifer J; Zhu, Ran X; Abrams, Anna; Abramson, Amanda; Amado, Latiffe; Anderson, Jenny; Bashour, Keenan; Beyer, Elsa; Bookatz, Allen; Brewer, Sarah; Buu, Natalie; Calvillo, Stephanie; Cao, Joseph; Chan, Amy; Chan, Jenny; Chang, Aileen; Chang, Daniel; Chang, Yuli; Chen, YiBing; Choi, Joo; Chou, Jeyling; Dang, Peter; Datta, Sumit; Davarifar, Ardy; Deravanesian, Artemis; Desai, Poonam; Fabrikant, Jordan; Farnad, Shahbaz; Fu, Katherine; Garcia, Eddie; Garrone, Nick; Gasparyan, Srpouhi; Gayda, Phyllis; Go, Sherrylene; Goffstein, Chad; Gonzalez, Courtney; Guirguis, Mariam; Hassid, Ryan; Hermogeno, Brenda; Hong, Julie; Hong, Aria; Hovestreydt, Lindsay; Hu, Charles; Huff, Devon; Jamshidian, Farid; Jen, James; Kahen, Katrin; Kao, Linda; Kelley, Melissa; Kho, Thomas; Kim, Yein; Kim, Sarah; Kirkpatrick, Brian; Langenbacher, Adam; Laxamana, Santino; Lee, Janet; Lee, Chris; Lee, So-Youn; Lee, ToHang S; Lee, Toni; Lewis, Gemma; Lezcano, Sheila; Lin, Peter; Luu, Thanh; Luu, Julie; Marrs, Will; Marsh, Erin; Marshall, Jamie; Min, Sarah; Minasian, Tanya; Minye, Helena; Misra, Amit; Morimoto, Miles; Moshfegh, Yasaman; Murray, Jessica; Nguyen, Kha; Nguyen, Cynthia; Nodado, Ernesto; O'Donahue, Amanda; Onugha, Ndidi; Orjiakor, Nneka; Padhiar, Bhavin; Paul, Eric; Pavel-Dinu, Mara; Pavlenko, Alex; Paz, Edwin; Phaklides, Sarah; Pham, Lephong; Poulose, Preethi; Powell, Russell; Pusic, Aya; Ramola, Divi; Regalia, Kirsten; Ribbens, Meghann; Rifai, Bassel; Saakyan, Manyak; Saarikoski, Pamela; Segura, Miriam; Shadpour, Farnaz; Shemmassian, Aram; Singh, Ramnik; Singh, Vivek; Skinner, Emily; Solomin, Daniel; Soneji, Kosha; Spivey, Kristin; Stageberg, Erika; Stavchanskiy, Marina; Tekchandani, Leena; Thai, Leo; Thiyanaratnam, Jayantha; Tong, Maurine; Toor, Aneet; Tovar, Steve; Trangsrud, Kelly; Tsang, Wah-Yung; Uemura, Marc; Vollmer, Emily; Weiss, Emily; Wood, Damien; Wu, Joy; Wu, Sophia; Wu, Winston; Xu, Qing; Yamauchi, Yuki; Yarosh, Will; Yee, Laura; Yen, George; Banerjee, Utpal

    2007-10-01

    Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes.

  17. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-01

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  18. Drosophila melanogaster as a model organism to study nanotoxicity.

    Science.gov (United States)

    Ong, Cynthia; Yung, Lin-Yue Lanry; Cai, Yu; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2015-05-01

    Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.

  19. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT in living organisms.

    Directory of Open Access Journals (Sweden)

    Boyin Liu

    Full Text Available Different toxicity tests for carbon nanotubes (CNT have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.

  20. Wolbachia Protein TomO Targets nanos mRNA and Restores Germ Stem Cells in Drosophila Sex-lethal Mutants.

    Science.gov (United States)

    Ote, Manabu; Ueyama, Morio; Yamamoto, Daisuke

    2016-09-12

    Wolbachia, endosymbiotic bacteria prevalent in invertebrates, manipulate their hosts in a variety of ways: they induce cytoplasmic incompatibility, male lethality, male-to-female transformation, and parthenogenesis. However, little is known about the molecular basis for host manipulation by these bacteria. In Drosophila melanogaster, Wolbachia infection makes otherwise sterile Sex-lethal (Sxl) mutant females capable of producing mature eggs. Through a functional genomic screen for Wolbachia genes with growth-inhibitory effects when expressed in cultured Drosophila cells, we identified the gene WD1278 encoding a novel protein we call toxic manipulator of oogenesis (TomO), which phenocopies some of the Wolbachia effects in Sxl mutant D. melanogaster females. We demonstrate that TomO enhances the maintenance of germ stem cells (GSCs) by elevating Nanos (Nos) expression via its interaction with nos mRNA, ultimately leading to the restoration of germ cell production in Sxl mutant females that are otherwise without GSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.