WorldWideScience

Sample records for berberine inhibits hiv

  1. Berberine inhibits HIV protease inhibitor-induced inflammatory response by modulating ER stress signaling pathways in murine macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available BACKGROUND: HIV protease inhibitor (PI-induced inflammatory response plays an important role in HIV PI-associated dyslipidemia and cardiovascular complications. This study examined the effect of berberine, a traditional herb medicine, on HIV PI-induced inflammatory response and further investigated the underlying cellular/molecular mechanisms in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured mouse J774A.1 macrophages and primary mouse macrophages were used in this study. The expression of TNF-alpha and IL-6 were detected by real-time RT-PCR and ELISA. Activations of ER stress and ERK signaling pathways were determined by Western blot analysis. Immunofluorescent staining was used to determine the intracellular localization of RNA binding protein HuR. RNA-pull down assay was used to determine the association of HuR with endogenous TNF-alpha and IL-6. Berberine significantly inhibited HIV PI-induced TNF-alpha and IL-6 expression by modulating ER stress signaling pathways and subsequent ERK activation, in turn preventing the accumulation of the RNA binding protein HuR in cytosol and inhibiting the binding of HuR to the 3'-UTRs of TNF-alpha and IL-6 in macrophages. CONCLUSIONS AND SIGNIFICANCE: Inhibition of ER stress represents a key mechanism by which berberine prevents HIV PI-induced inflammatory response. Our findings provide a new insight into the molecular mechanisms of berberine and show the potential application of berberine as a complimentary therapeutic agent for HIV infection.

  2. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available BACKGROUND: HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp. CONCLUSION AND SIGNIFICANCE: HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  3. Berberine

    Science.gov (United States)

    Berberine is a chemical found in several plants including European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree tumeric. People take berberine for heart failure. Some people apply berberine directly ...

  4. Berberine

    Science.gov (United States)

    ... several plants including European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree tumeric. People take berberine for ... follows:Diabetes. Berberine seems to slightly reduce blood sugar levels in people with diabetes. Also, some early ...

  5. Berberine inhibits inflammatory activation of rat brain microglia

    Institute of Scientific and Technical Information of China (English)

    Kyong Nyon Nam; Jae-Hong Kim; Hoon-Ji Jung; Jung-Mi Park; Sang-Kwan Moon; Young-Suk Kim; Sun Yeou Kim; Eunjoo H.Lee

    2010-01-01

    Chronic activation of microglial cells endangers neuronal survival through the release of various proinflammatory and neurotoxic factors.Berberine,the effective ingredient of Coptidis Rhizoma and Cortex Phellodendri,has a wide range of pharmacological functions,including anti-inflammatory,anti-atherosclerotic and anti-cancer effects.The neuroprotective potential of berberine has previously been demonstrated.The present study aimed to examine whether berberine could repress microglial activation and can be considered a potential therapeutic candidate to target neurodegenerative diseases.Primary microglial cells and BV2 microglial cells were cultured and stimulated with bacterial lipopolysaccharide(LPS).Berberine chloride was treated prior to LPS or simultaneously with LPS stimulation.Results revealed that berberine was effective at inhibiting nitric oxide release from primary microglial cells when cells were exposed to the compound prior to LPS or simultaneously with LPS.It also reduced the LPS-stimulated production of tumor necrosis factor-α,interleukin-1β,prostaglandin E2,and intracellular reactive oxygen species and nuclear factor-kappa activation.Additionally,berberine reduced nitric oxide release from microglia stimulated with interferon-γ and amyloid β.These results suggest that berberine provides neuroprotection by reducing the production of various neurotoxic molecules from activated microglia.

  6. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex

    OpenAIRE

    Tzu-Yu Lin; Yu-Wan Lin; Cheng-Wei Lu; Shu-Kuei Huang; Su-Jane Wang

    2013-01-01

    Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K(+) channel blocker 4-aminopyr...

  7. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    OpenAIRE

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    BACKGROUND: Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activati...

  8. Berberine inhibition of electrogenic ion transport in rat colon.

    OpenAIRE

    Taylor, C T; Baird, A.W.

    1995-01-01

    1. The effects of the alkaloid berberine on basal and stimulated ion transport were investigated in voltage-clamped rat colonic epithelia. 2. Berberine (100-500 microM) reduced basal short circuit current (SCC) when applied basolaterally but not when applied apically. 3. SCC responses to mast cell activation by anti-rat IgE were significantly attenuated in the presence of berberine. 4. Berberine, applied to the basolateral bathing solution, also reduced SCC responses to the following agents w...

  9. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Sheng-Nan [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Chang, Yu-Ping; Tsai, Keng-Chang [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Chang, Chia-Yu [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China); Wu, Tian-Shung [Department of Chemistry, National Chung-Kung University, Tainan 701, Taiwan, ROC (China); Ueng, Yune-Fang, E-mail: ueng@nricm.edu.tw [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China)

    2013-11-01

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selective inhibitory effect on CYP1B1.1 with the least K{sub i} value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC{sub 50} values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP

  10. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K(+ channel blocker 4-aminopyridine (4-AP, and this phenomenon was prevented by the chelating extracellular Ca(2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca(2+ concentration. Involvement of the Cav2.1 (P/Q-type channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2 and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK

  11. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  12. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Arsenic trioxide (As2O3) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As2O3-mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As2O3 or berberine, and after co-treatment with As2O3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As2O3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As2O3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As2O3-mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As2O3. The latter effect was even more pronounced in the presence of 10 μM berberine. The As2O3-mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As2O3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also significantly reduced. Upon co

  13. Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells

    International Nuclear Information System (INIS)

    The purpose of this study was to elucidate the mechanism underlying enhanced radiosensitivity to 60Co γ-irradiation in human prostate PC-3 cells pretreated with berberine. The cytotoxic effect of the combination of berberine and irradiation was superior to that of berberine or irradiation alone. Cell death and Apoptosis increased significantly with the combination of berberine and irradiation. Additionally, ROS generation was elevated by berberine with or without irradiation. The antioxidant NAC inhibited berberine and radiation-induced cell death. Bax, caspase-3, p53, p38, and JNK activation increased, but activation of Bcl-2, ERK, and HO-1 decreased with berberine treatment with or without irradiation. Berberine inhibited the anti-apoptotic signal pathway involving the activation of the HO-1/NF-κB-mediated survival pathway, which prevents radiation-induced cell death. Our data demonstrate that berberine inhibited the radioresistant effects and enhanced the radiosensitivity effects in human prostate cancer cells via the MAPK/caspase-3 and ROS pathways

  14. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling

    OpenAIRE

    Zhang, Junfang; Cao, Hailong; Zhang, Bing; CAO, HANWEI; Xu, Xiuqin; Ruan, Hang; Yi, Tingting; Tan, Li; Qu, Rui; Song, Gang; Wang, Bangmao; Hu, Tianhui

    2013-01-01

    As a traditional anti-inflammatory Chinese herbal medicine, Alkaloid berberine has been recently reported to exhibit anti-tumour effects against a wide spectrum of cancer. However, the mechanism was largely unknown. Gene chip array reveals that with berberine treatment, c-Myc, the target gene of Wnt pathway, was down-regulated 5.3-folds, indicating that berberine might inhibit Wnt signalling. TOPflash analysis revealed that Wnt activity was significantly reduced after berberine treatment, and...

  15. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins.

    OpenAIRE

    Sack, R B; Froehlich, J L

    1982-01-01

    Berberine, an alkaloid from the plant Berberis aristata, which has been known since ancient times as an antidiarrheal medication in India and China, inhibited by approximately 70% the secretory responses of the heat-labile enterotoxins of Vibrio cholerae and Escherichia coli in the rabbit ligated intestinal loop model. The drug was effective when given either before or after enterotoxin binding and when given either intraluminally or parenterally; it did not inhibit the stimulation of adenyla...

  16. Berberine inhibits cyclin D1 expression via suppressed binding of AP-1 transcription factors to CCND1 AP-1 motif

    Institute of Scientific and Technical Information of China (English)

    Ye LUO; Yu HAO; Tai-ping SHI; Wei-wei DENG; Na LI

    2008-01-01

    Aim: To verify the suppressive effect of berberine on the proliferation of the human pulmonary giant cell carcinoma cell line PG and to demonstrate the mecha-nisms behind the antitumoral effects of berberine. Methods: The proliferative effects of PG cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetry. The cell cycle was examined by flow cytometry. The expression level of cyclin D1 was detected by RT-PCR. The activities of the activating protein-1 (AP-1) and NF-κB signaling pathways related to cyclin D1 were examined by luciferase assay. The cytoplasmic level of c-Jun was detected by Western blot analysis. An electrophoretic mobility shift assay was used to examiae the binding of transcription factors to the cyclin D1 gene (CCNDl) AP-1 motif. Results: The results showed that the proliferation of PG cells treated with different concentrations (10, 20, and 40 μg/mL) of berberine for 24 and 48 h was suppressed significantly compared to the control group. After treatment with berberine, the proportion of PG cells at the G0/G1 phase increased, while cells at the S and G2/M phases decreased. Berberine could inhibit the expression of cyclin D1 in PG cells. Berberine inhibited the activity of the AP-1 signaling pathway, but had no significant effect on the NF-κB signaling pathway. Berberine suppressed the expression of c-Jun and decreased the binding of tran-scription factors to the CCND1 AP-1 motif. Conclusion: Berberine suppresses the activity of the AP-1 signaling pathway and decreases the binding of transcrip-tion factors to the CCND1 AP-1 motif. This is one of the important mechanisms behind the antitumoral effects of berberine as a regulator of cyclin D1.

  17. Berberine reduces cAMP-induced chloride secretion in T84 human colonic carcinoma cells through inhibition of basolateral KCNQ1 channels

    OpenAIRE

    Alzamora, Rodrigo; O’Mahony, Fiona; Ko, Wing-Hung; Yip, Tiffany Wai-Nga; Carter, Derek; Irnaten, Mustapha; Harvey, Brian Joseph

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl- secretion in distal colon. The aims of this study were to determine the molecular signalling mechanisms of action of berberine on Cl- secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberin...

  18. Berberine reduces cAMP-induced chloride secretion in T84 human colonic carcinoma cells through inhibition of basolateral KCNQ1 channels

    Directory of Open Access Journals (Sweden)

    BrianJosephHarvey

    2011-06-01

    Full Text Available Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl- secretion in distal colon. The aims of this study were to determine the molecular signalling mechanisms of action of berberine on Cl- secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80  8 M. In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl- conductance or basolateral Na+-K+-ATPase activity. Berberine stimulated p38 MAPK, PKC and PKA, but had no effect on p42/p44 MAPK and PKC. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl- secretion was partially blocked by HBDDE (65 %, an inhibitor of PKC and to a smaller extent by inhibition of p38 MAPK with SB202190 (15 %. Berberine treatment induced an increase in association between PKC and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl- secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKC-dependent pathway.

  19. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42\\/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.

  20. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 +\\/- 8 muM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCalpha and PKA, but had no effect on p42\\/p44 MAPK and PKCdelta. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE ( approximately 65%), an inhibitor of PKCalpha and to a smaller extent by inhibition of p38 MAPK with SB202190 ( approximately 15%). Berberine treatment induced an increase in association between PKCalpha and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCalpha-dependent pathway.

  1. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization

    OpenAIRE

    Piao, Meiyu; Cao, Hailong; He, Nana; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing; Wang, Bangmao

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade wa...

  2. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Xuan Xia

    Full Text Available Berberine (BBR is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French. It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK and Glucose-6-phosphatase (G6Pase, were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1, sterol regulatory element-binding protein 1c (SREBP1 and carbohydrate responsive element-binding protein (ChREBP were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  3. Berberine Inhibition of Fibrogenesis in a Rat Model of Liver Fibrosis and in Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-01-01

    Full Text Available Aim. To examine the effect of berberine (BBR on liver fibrosis and its possible mechanisms through direct effects on hepatic stellate cells (HSC. Methods. The antifibrotic effect of BBR was determined in a rat model of bile duct ligation- (BDL- induced liver fibrosis. Multiple cellular and molecular approaches were introduced to examine the effects of BBR on HSC. Results. BBR potently inhibited hepatic fibrosis induced by BDL in rats. It exhibited cytotoxicity to activated HSC at doses nontoxic to hepatocytes. High doses of BBR induced apoptosis of activated HSC, which was mediated by loss of mitochondrial membrane potential and Bcl-2/Bax imbalance. Low doses of BBR suppressed activation of HSC as evidenced by the inhibition of α-smooth muscle actin (α-SMA expression and cell motility. BBR did not affect Smad2/3 phosphorylation but significantly activated 5′ AMP-activated protein kinase (AMPK signalling, which was responsible for the transcriptional inhibition by BBR of profibrogenic factors α-SMA and collagen in HSC. Conclusion. BBR is a promising agent for treating liver fibrosis through multiple mechanisms, at least partially by directly targeting HSC and by inhibiting the AMPK pathway. Its value as an antifibrotic drug in patients with liver disease deserves further investigation.

  4. Berberine inhibits inflammatory mediators and attenuates acute pancreatitis through deactivation of JNK signaling pathways.

    Science.gov (United States)

    Choi, Sun-Bok; Bae, Gi-Sang; Jo, Il-Joo; Wang, Shaofan; Song, Ho-Joon; Park, Sung-Joo

    2016-06-01

    Acute pancreatitis (AP) is a life-threatening disease. Berberine (BBR), a well-known plant alkaloid, is reported to have anti-inflammatory activity in many diseases. However, the effects of BBR on AP have not been clearly elucidated. Therefore, the present study aimed to investigate the effects of BBR on cerulein-induced AP in mice. AP was induced by either cerulein or l-arginine. In the BBR treated group, BBR was administered intraperitoneally 1h before the first cerulein or l-arginine injection. Blood samples were obtained to determine serum amylase and lipase activities and nitric oxide production. The pancreas and lung were rapidly removed for examination of histologic changes, myeloperoxidase (MPO) activity, and real-time reverse transcription-polymerase chain reaction. Furthermore, the regulating mechanisms of BBR were evaluated. Treatment of mice with BBR reduced pancreatic injury and activities of amylase, lipase, and pancreatitis-associated lung injury, as well as inhibited several inflammatory parameters such as the expression of pro-inflammatory cytokines and inducible nitric oxide synthesis (iNOS). Furthermore, BBR administration significantly inhibited c-Jun N-terminal kinase (JNK) activation in the cerulein-induced AP. Deactivation of JNK resulted in amelioration of pancreatitis and the inhibition of inflammatory mediators. These results suggest that BBR exerts anti-inflammatory effects on AP via JNK deactivation on mild and severe acute pancreatitis model, and could be a beneficial target in the management of AP. PMID:27148818

  5. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ming Ming

    Full Text Available Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC cells (PANC-1, MiaPaCa-2 with the isoquinoline alkaloid berberine (0.3-6 µM inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70% the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244 and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.

  6. Berberine and a Berberis lycium extract inactivate Cdc25A and induce {alpha}-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Musa [Department of Plant Sciences, Quaid-i-Azam University Islamabad (Pakistan); Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Giessrigl, Benedikt; Vonach, Caroline; Madlener, Sibylle [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Prinz, Sonja [Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Herbaceck, Irene; Hoelzl, Christine [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Bauer, Sabine; Viola, Katharina [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Mikulits, Wolfgang [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Quereshi, Rizwana Aleem [Department of Plant Sciences, Quaid-i-Azam University Islamabad (Pakistan); Knasmueller, Siegfried; Grusch, Michael [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Kopp, Brigitte [Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Krupitza, Georg, E-mail: georg.krupitza@meduniwien.ac.at [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2010-01-05

    Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells. The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H{sub 2}O) extract. The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 {mu}g BuOH extract (that was gained from 1 mg dried root) contained 2.0 {mu}g berberine and 0.3 {mu}g/ml palmatine. 1.2 {mu}g/ml berberine inhibited cell proliferation significantly, while 0.5 {mu}g/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of {alpha}-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.

  7. Berberine and a Berberis lycium extract inactivate Cdc25A and induce α-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis

    International Nuclear Information System (INIS)

    Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells. The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H2O) extract. The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 μg BuOH extract (that was gained from 1 mg dried root) contained 2.0 μg berberine and 0.3 μg/ml palmatine. 1.2 μg/ml berberine inhibited cell proliferation significantly, while 0.5 μg/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of α-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.

  8. Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells

    OpenAIRE

    Hur, Jung-Mu; Kim, Dongho

    2010-01-01

    The purpose of this study was to elucidate the mechanism underlying enhanced radiosensitivity to 60Co γ-irradiation in human prostate PC-3 cells pretreated with berberine. The cytotoxic effect of the combination of berberine and irradiation was superior to that of berberine or irradiation alone. Cell death and Apoptosis increased significantly with the combination of berberine and irradiation. Additionally, ROS generation was elevated by berberine with or without irradiation. The antioxidant ...

  9. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells.

    Science.gov (United States)

    Tian, Yuantong; Zhao, Lijing; Wang, Ye; Zhang, Haitao; Xu, Duo; Zhao, Xuejian; Li, Yi; Li, Jing

    2016-01-01

    Aldo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were measured in prostate cancer cells. Aldo-keto reductase family 1 member C3 mRNA and protein level were detected by RT-PCR and Western bolt analyses, respectively. Computer analysis with AutoDock Tools explored the molecular interaction of berberine with Aldo-keto reductase family 1 member C3. We found that berberine inhibited 22Rv1 cells proliferation and decreased cellular testosterone formation in a dose-dependent manner. Berberine inhibited Aldo-keto reductase family 1 member C3 enzyme activity, rather than influenced mRNA and protein expressions. Molecular docking study demonstrated that berberine could enter the active center of Aldo-keto reductase family 1 member C3 and form p-p interaction with the amino-acid residue Phe306 and Phe311. In conclusion, the structural interaction of berberine with Aldo-keto reductase family 1 member C3 is attributed to the suppression of Aldo-keto reductase family 1 member C3 enzyme activity and the inhibition of 22Rv1 prostate cancer cell growth by decreasing the intracellular androgen synthesis. Our result provides the experimental basis for the design, research, and development of AKR1C3 inhibitors using berberine as the lead compound. PMID:26698234

  10. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells

    OpenAIRE

    Lu, Jian-Jun; Fu, Lingyi; Tang, Zhipeng; Zhang, Changlin; Qin, Lijun; Wang, Jingshu; Yu, Zhenlong; Shi, Dingbo; Xiao, Xiangsheng; Xie, Fangyun; Huang, Wenlin; Deng, Wuguo

    2015-01-01

    Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated...

  11. Berberine, an Epiphany Against Cancer

    OpenAIRE

    Luis Miguel Guamán Ortiz; Paolo Lombardi; Micol Tillhon; Anna Ivana Scovassi

    2014-01-01

    Alkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses against several diseases. In recent years, berberine has been reported to inhibit cell proliferation and to be cytotoxic towards cancer cells. Based on this e...

  12. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    OpenAIRE

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, t...

  13. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice

    OpenAIRE

    Yan, Fang; Wang, Lihong; Shi, Yan; CAO, HANWEI; Liu, LiPing; Washington, M. Kay; Chaturvedi, Rupesh; Israel, Dawn A.; Cao, Hailong; Wang, Bangmao; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent

    2011-01-01

    Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory resp...

  14. Inhibition of retinoblastoma mRNA degradation through Poly (A involved in the neuroprotective effect of berberine against cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Yu-Shuang Chai

    Full Text Available Berberine is one kind of isoquinoline alkaloid with anti-apoptotic effects on the neurons suffering ischemia. To address the explanation for these activities, the berberine-induced cell cycle arrest during neurons suffering ischemia/reperfusion had been studied in the present study. According to the in vitro neurons with oxygen-glucose deprivation and in vivo ICR mice with cerebral ischemia/reperfusion, it was found that berberine could protect the mRNA of retinoblastoma (Rb from degradation through its function on the poly(A tail. The prolonged half-life of retinoblastoma 1 (gene of Rb, RB1 mRNA level secures the protein level of retinoblastoma, which facilitates cell cycle arrest of neurons in the process of ischemia/reperfusion and subsequently avoids cells entering in the apoptotic process. The poly(A tail of RB1 mRNA, as a newly identified target of berberine, could help people focus on the interaction between berberine and mRNA to further understand the biological activities and functions of berberine.

  15. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    OpenAIRE

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong; Wu, Zhiwei

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can le...

  16. Tannin inhibits HIV-1 entry by targeting gp41

    Institute of Scientific and Technical Information of China (English)

    Lin L(U); Shu-wen LIU; Shi-bo JIANG; Shu-guang WU

    2004-01-01

    AIM: To investigate the mechanism by which tannin inhibits HIV-1 entry into target cells. METHODS: The inhibitory activity of tannin on HIV-1 replication and entry was detected by p24 production and HIV-1-mediated cell fusion, respectively. The inhibitory activity on the gp41 six-helix bundle formation was determined by an improved sandwich ELISA. RESULTS: Tannins from different sources showed potent inhibitory activity on HIV-1 replication,HIV-1-mediated cell fusion, and the gp4 six-helix bundle formation. CONCLUSION: Tannin inhibits HIV-1 entry into target cells by interfering with the gp41 six-helix bundle formation, thus blocking HIV-1 fusion with the target cell.

  17. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    International Nuclear Information System (INIS)

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics

  18. Effects and mechanisms of berberine in diabetes treatment

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2012-08-01

    Full Text Available Berberine from Rhizoma Coptidis is an oral hypoglycemic agent with anti-dyslipidemia and anti-obesity activities. Its metabolic activity of regulating blood glucose and lipids has been widely studied and evidenced in patients and various animal models. Berberine is known as an AMP-activated protein kinase (AMPK activator. Its insulin-independent hypoglycemic effect is related to inhibition of mitochondrial function, stimulation of glycolysis and activation of AMPK pathway. Additionally, berberine may also act as an α-glucosidase inhibitor. In the newly-diagnosed type 2 diabetic patients, berberine is able to lower blood insulin level via enhancing insulin sensitivity. However, in patients with poor β-cell function, berberine may improve insulin secretion via resuscitating exhausted islets. Furthermore, berberine may have extra beneficial effects on diabetic cardiovascular complications due to its cholesterol-lowering, anti-arrhythmias and nitric oxide (NO inducing properties. The antioxidant and aldose reductase inhibitory activities of berberine may be useful in alleviating diabetic nephropathy. Although evidence from animal and human studies consistently supports the therapeutic activities of berberine, large-scale multicenter trials are still necessary to evaluate the efficacy of berberine on diabetes and its related complications.

  19. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Directory of Open Access Journals (Sweden)

    Zhu Feiqi

    2011-12-01

    Full Text Available Abstract Background Berberine (BER, the major alkaloidal component of Rhizoma coptidis, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid40/42, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear. Results Here, we report that BER could not only significantly decrease the production of beta-amyloid40/42 and the expression of beta-secretase (BACE, but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2 pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1 the activation activity of BER on the ERK1/2 pathway and (2 the inhibition activity of BER on the production of beta-amyloid40/42 and the expression of BACE. Conclusion Our data indicate that BER decreases the production of beta-amyloid40/42 by inhibiting the expression of BACE via activation of the ERK1/2 pathway.

  20. Human immunodeficiency virus (HIV) type 2-mediated inhibition of HIV type 1: a new approach to gene therapy of HIV-infection.

    OpenAIRE

    Arya, S K; Gallo, R C

    1996-01-01

    Human immunodeficiency virus (HIV) type 2, the second AIDS-associated human retrovirus, differs from HIV-1 in its natural history, infectivity, and pathogenicity, as well as in details of its genomic structure and molecular behavior. We report here that HIV-2 inhibits the replication of HIV-1 at the molecular level. This inhibition was selective, dose-dependent, and nonreciprocal. The closely related simian immunodeficiency provirus also inhibited HIV-1. The selectivity of inhibition was show...

  1. The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling

    OpenAIRE

    Choi, Bong-Hyuk; Kim, Yu-Hee; Ahn, In-Sook; Ha, Jung-Heun; Byun, Jae-Min; Do, Myoung-Sool

    2009-01-01

    In our previous study, we have shown that berberine has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect is due to the down-regulation of adipogenic enzymes and transcription factors. Here we focused more on anti-inflammatory effect of berberine using real time RT-PCR and found it changes expressions of adipokines. We hypothesized that anti-adipogenicity of berberine mediates anti-inflammtory effect and explored leptin as a candidate medi...

  2. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBPα, peroxisome proliferators-activated receptor γ2 (PPARγ2, and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  3. Berberine in combination with yohimbine attenuates sepsis-induced neutrophil tissue infiltration and multiorgan dysfunction partly via IL-10-mediated inhibition of CCR2 expression in neutrophils.

    Science.gov (United States)

    Wang, Yuan; Wang, Faqiang; Yang, Duomeng; Tang, Xiangxu; Li, Hongmei; Lv, Xiuxiu; Lu, Daxiang; Wang, Huadong

    2016-06-01

    Infiltration of activated neutrophils into the vital organs contributes to the multiple organ dysfunctions in sepsis. In the present study, we investigated the effects of berberine in combination with yohimbine (BY) on neutrophil tissue infiltration and multiple organ damage during sepsis, and further elucidated the involved mechanisms. Sepsis was induced in mice by cecal ligation and puncture (CLP). BY or CCR2 antagonist was administered 2h after CLP, and anti-IL-10 antibody (IL-10 Ab) or control IgG was injected intraperitoneally just before BY treatment. We found that IL-10 production was enhanced by BY therapy in septic mice. BY significantly attenuated neutrophil tissue infiltration and multiple organ injury in CLP-challenged mice, all of which were completely reversed by IL-10 Ab pretreatment. The levels of KC, MCP-1, MIP-1α and MIP-2 in the lung, liver and kidney were markedly increased 6h after CLP. BY reduced the tissue concentrations of these chemokines in septic mice, but IL-10 Ab pretreatment did not completely eliminate these inhibitory effects of BY. Particularly, dramatically increased CCR2 expression in circulating neutrophils of septic mice was reduced by BY and this effect was completely abolished by IL-10 Ab pretreatment. Furthermore, CCR2 antagonist also inhibited lung and renal injury and neutrophil infiltration in septic mice. Taken together, our data strongly suggest that BY therapy attenuates neutrophil tissue infiltration and multiple organ injury in septic mice, at least in part, via IL-10-mediated inhibition of CCR2 expression in circulating neutrophils. PMID:27082997

  4. DBR1 siRNA inhibition of HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Naidu Yathi

    2005-10-01

    Full Text Available Abstract Background HIV-1 and all retroviruses are related to retroelements of simpler organisms such as the yeast Ty elements. Recent work has suggested that the yeast retroelement Ty1 replicates via an unexpected RNA lariat intermediate in cDNA synthesis. The putative genomic RNA lariat intermediate is formed by a 2'-5' phosphodiester bond, like that found in pre-mRNA intron lariats and it facilitates the minus-strand template switch during cDNA synthesis. We hypothesized that HIV-1 might also form a genomic RNA lariat and therefore that siRNA-mediated inhibition of expression of the human RNA lariat de-branching enzyme (DBR1 expression would specifically inhibit HIV-1 replication. Results We designed three short interfering RNA (siRNA molecules targeting DBR1, which were capable of reducing DBR1 mRNA expression by 80% and did not significantly affect cell viability. We assessed HIV-1 replication in the presence of DBR1 siRNA and found that DBR1 knockdown led to decreases in viral cDNA and protein production. These effects could be reversed by cotransfection of a DBR1 cDNA indicating that the inhibition of HIV-1 replication was a specific effect of DBR1 underexpression. Conclusion These data suggest that DBR1 function may be needed to debranch a putative HIV-1 genomic RNA lariat prior to completion of reverse transcription.

  5. Inhibition of Heat Shock Protein 90 Prevents HIV Rebound*

    Science.gov (United States)

    Joshi, Pheroze; Maidji, Ekaterina; Stoddart, Cheryl A.

    2016-01-01

    HIV evades eradication because transcriptionally dormant proviral genomes persist in long-lived reservoirs of resting CD4+ T cells and myeloid cells, which are the source of viral rebound after cessation of antiretroviral therapy. Dormant HIV genomes readily produce infectious virus upon cellular activation because host transcription factors activated specifically by cell stress and heat shock mediate full-length HIV transcription. The molecular chaperone heat shock protein 90 (Hsp90) is overexpressed during heat shock and activates inducible cellular transcription factors. Here we show that heat shock accelerates HIV transcription through induction of Hsp90 activity, which activates essential HIV-specific cellular transcription factors (NF-κB, NFAT, and STAT5), and that inhibition of Hsp90 greatly reduces gene expression mediated by these factors. More importantly, we show that Hsp90 controls virus transcription in vivo by specific Hsp90 inhibitors in clinical development, tanespimycin (17-(allylamino)-17-demethoxygeldanamycin) and AUY922, which durably prevented viral rebound in HIV-infected humanized NOD scid IL-2Rγ−/− bone marrow-liver-thymus mice up to 11 weeks after treatment cessation. Despite the absence of rebound viremia, we were able to recover infectious HIV from PBMC with heat shock. Replication-competent virus was detected in spleen cells from these nonviremic Hsp90 inhibitor-treated mice, indicating the presence of a tissue reservoir of persistent infection. Our novel findings provide in vivo evidence that inhibition of Hsp90 activity prevents HIV gene expression in replication-competent cellular reservoirs that would typically cause rebound in plasma viremia after antiretroviral therapy cessation. Alternating or supplementing Hsp90 inhibitors with current antiretroviral therapy regimens could conceivably suppress rebound viremia from persistent HIV reservoirs. PMID:26957545

  6. Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp.

    Science.gov (United States)

    da Silva, Anderson Ramos; de Andrade Neto, João Batista; da Silva, Cecília Rocha; Campos, Rosana de Sousa; Costa Silva, Rose Anny; Freitas, Daniel Domingues; do Nascimento, Francisca Bruna Stefany Aires; de Andrade, Larissa Nara Dantas; Sampaio, Letícia Serpa; Grangeiro, Thalles Barbosa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Nobre Júnior, Hélio Vitoriano

    2016-06-01

    The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001). PMID:27021328

  7. Effects and mechanisms of berberine in diabetes treatment

    OpenAIRE

    Jun Yin; Jianping Ye; Weiping Jia

    2012-01-01

    Berberine from Rhizoma Coptidis is an oral hypoglycemic agent with anti-dyslipidemia and anti-obesity activities. Its metabolic activity of regulating blood glucose and lipids has been widely studied and evidenced in patients and various animal models. Berberine is known as an AMP-activated protein kinase (AMPK) activator. Its insulin-independent hypoglycemic effect is related to inhibition of mitochondrial function, stimulation of glycolysis and activation of AMPK pathway. Additionally, berb...

  8. Novel Approaches to Inhibiting HIV-1 Replication

    OpenAIRE

    Adamson, Catherine S.; Freed, Eric O.

    2009-01-01

    Considerable success has been achieved in the treatment of HIV-1 infection, and more than two-dozen antiretroviral drugs are available targeting several distinct steps in the viral replication cycle. However, resistance to these compounds emerges readily, even in the context of combination therapy. Drug toxicity, adverse drug-drug interactions, and accompanying poor patient adherence can also lead to treatment failure. These considerations make continued development of novel antiretroviral th...

  9. Conformation-activity studies on the interaction of berberine with acetylcholinesterase:Physical chemistry approach

    Institute of Scientific and Technical Information of China (English)

    Jin Xiang; Changping Yu; Fang Yang; Ling Yang; Hong Ding

    2009-01-01

    Berberine has been reported as an acetylcholinesterase (AChE) inhibitor.With significantly low cytotoxicity,berberine will be developed for the clinical treatment of Alzheimer disease (AD) with higher efficacy and fewer side effects.This work investigated the structure change events of AChE that occur during the interaction with berberine by isothermal titration calorimetry (ITC),fluorescence titration,and circular dichroism (CD).The results show that the binding of berberine to AChE is mainly driven by a favorable entropy increase with a less weak affinity.Berberine causes a loss in enzymatic activity at a concentration much below the concentration which gradually exposed the tryptophan residues to a more hydrophilic environment and unfolded the protein,which indicates that the inhibition of AChE with berberine includes the main contributions of interaction and minor conformation change of the protein induced by the alkaloid.

  10. Novel approaches to inhibiting HIV-1 replication.

    Science.gov (United States)

    Adamson, Catherine S; Freed, Eric O

    2010-01-01

    Considerable success has been achieved in the treatment of HIV-1 infection, and more than two-dozen antiretroviral drugs are available targeting several distinct steps in the viral replication cycle. However, resistance to these compounds emerges readily, even in the context of combination therapy. Drug toxicity, adverse drug-drug interactions, and accompanying poor patient adherence can also lead to treatment failure. These considerations make continued development of novel antiretroviral therapeutics necessary. In this article, we highlight a number of steps in the HIV-1 replication cycle that represent promising targets for drug discovery. These include lipid raft microdomains, the RNase H activity of the viral enzyme reverse transcriptase, uncoating of the viral core, host cell machinery involved in the integration of the viral DNA into host cell chromatin, virus assembly, maturation, and budding, and the functions of several viral accessory proteins. We discuss the relevant molecular and cell biology, and describe progress to date in developing inhibitors against these novel targets. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010. PMID:19782103

  11. Berberine target key enzymes and amino acid inibitiors in AD treatment-----creation from berberine-based structure screening

    Directory of Open Access Journals (Sweden)

    Yau Lam

    2014-07-01

    Full Text Available The main components of berberine from coptis have a variety of pharmacological activity include the treatment of neurodegenerative diseases, Alzheimer’s disease (AD. The principle of berberine is inhibiting the lower activity of enzyme and amino acid to prevent (AD. Enzyme like acetylcholinesterase enzyme (AchE, butyrylcholinesterase enzyme (BchE and monoamine oxidase (MAO; Amino acid like beta-amyloid (Aβ. Unfortunately, the single chemical structures of berberine is no significance to regulation effect. As a part of our consideration, the review paper studies on chemically modified and synthesis from berberine-derivatives. Results show that the structures of (23, (10, (86, (52, and (61 have a potential effect for AchE, BuChE and Aβ-amyloid inhibitors for the first time. Especially in (23 and (52 also has better than two western medicine were compared.

  12. Inhibitory effects of berberine on ion channels of rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Hong-Yi Zhou; Gang Zhao; Li-Ying Fu; Lan Cheng; Jian-Guo Chen; Wei-Xing Yao

    2004-01-01

    AIM: To examine the effects of berberine, an isoquinoline alkaloid with a long history used as a tonic remedy for liver and heart, on ion channels of isolated rat hepatocytes.METHODS: Tight-seal whole-cell patch-clamp techniques were performed to investigate the effects of berberine on the delayed outward potassium currents (IK), inward rectifier potassium currents (IK1) and Ca2+ release-activated Ca2+currents (ICRAC) in enzymatically isolated rat hepatocytes.RESULTS: Berberine 1-300 nmol/L reduced IK in a concentration dependent manner with EC50 of 38.86±5.37 μmol/L and nH of 0.82±0.05 (n = 8). When the bath solution was changed to tetraethylammonium (TEA) 8 mmol/L, IK was inhibited.Berberine 30 μmol/L reduced IK at all examined membrane potentials, especially at potentials positive to +60 mV (n = 8,P<0.05 or P<0.01 vs control). Berberine had mild inhibitory effects on IK1 in rat hepatocytes. Berberine 1-300 μmol/L also inhibited ICRAC in a concentration-dependent fashion.The fitting parameters were EC50 = 47.20±10.86 μmol/L,nH = 0.71±0.09 (n = 8). The peak value of ICRAC in the Ⅰ-Ⅴrelationship was decreased by berberine 30 μmol/L at potential negative to -80 mV (n = 8, P<0.05 vscontrol). But the reverse potential of ICRAC occurred at voltage 0 mV in all cells.CONCLUSION: Berberine has inhibitory effects on potassium and calcium currents in isolated rat hepatocytes, which may be involved in hepatoprotection.

  13. HIV Pol inhibits HIV budding and mediates the severe budding defect of Gag-Pol.

    Directory of Open Access Journals (Sweden)

    Xin Gan

    Full Text Available The prevailing hypothesis of HIV budding posits that the viral Gag protein drives budding, and that the Gag p6 peptide plays an essential role by recruiting host-cell budding factors to sites of HIV assembly. HIV also expresses a second Gag protein, p160 Gag-Pol, which lacks p6 and fails to bud from cells, consistent with the prevailing hypothesis of HIV budding. However, we show here that the severe budding defect of Gag-Pol is not caused by the absence of p6, but rather, by the presence of Pol. Specifically, we show that (i the budding defect of Gag-Pol is unaffected by loss of HIV protease activity and is therefore an intrinsic property of the Gag-Pol polyprotein, (ii the N-terminal 433 amino acids of Gag and Gag-Pol are sufficient to drive virus budding even though they lack p6, (iii the severe budding defect of Gag-Pol is caused by a dominant, cis-acting inhibitor of budding in the HIV Pol domain, and (iv Gag-Pol inhibits Gag and virus budding in trans, even at normal levels of Gag and Gag-Pol expression. These and other data support an alternative hypothesis of HIV budding as a process that is mediated by the normal, non-viral pathway of exosome/microvesicle biogenesis.

  14. APOBEC3G inhibits elongation of HIV-1 reverse transcripts.

    Directory of Open Access Journals (Sweden)

    Kate N Bishop

    2008-12-01

    Full Text Available APOBEC3G (A3G is a host cytidine deaminase that, in the absence of Vif, restricts HIV-1 replication and reduces the amount of viral DNA that accumulates in cells. Initial studies determined that A3G induces extensive mutation of nascent HIV-1 cDNA during reverse transcription. It has been proposed that this triggers the degradation of the viral DNA, but there is now mounting evidence that this mechanism may not be correct. Here, we use a natural endogenous reverse transcriptase assay to show that, in cell-free virus particles, A3G is able to inhibit HIV-1 cDNA accumulation not only in the absence of hypermutation but also without the apparent need for any target cell factors. We find that although reverse transcription initiates in the presence of A3G, elongation of the cDNA product is impeded. These data support the model that A3G reduces HIV-1 cDNA levels by inhibiting synthesis rather than by inducing degradation.

  15. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    Science.gov (United States)

    Ali, Amjad; Banerjea, Akhil C.

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  16. Antilipemic Effect of Berberine Combined with Atorvastatin on Rats with Hypelipemia

    Institute of Scientific and Technical Information of China (English)

    Lu Ye; Jiang Wenlong; Cui Junyou

    2014-01-01

    Objective:To investigate the antilipemic effect of berberine combined with atorvastatin on rats with hypelipemia. Methods:The hypelipemia model was established by intragastric administration of lipid emulsion in rats. According to the level of total cholesterol (TC), the rats were randomly divided into 6 groups: model group, atorvastatin group, high-, middle- and low-dose berberine groups, and berberine+atorvastatin group. The antilipemic effect of each group was observed after 21 days, and the expressions of proprotein convertase subtilisin/kexin type 9 (PCSK9) and low density lipoprotein receptor (LDL-R) were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and West blot methods. Results: TC level was signiifcantly decreased in atorvastatin group, high-dose berberine group and berberine+atorvastatin group, and that of low density lipoprotein (LDL) in atorvastatin group and berberine+atorvastatin group was also reduced notably. However, the decreased effects of TC and LDL in berberine+torvastatin group were superior to atorvastatin group. Both RT-PCR and West blot detection results revealed that PCSK9 expression went down markedly, while LDL-R expression up in the liver of rats in berberine+torvastatin group. Conclusion: Berberine exerts an antilipemic effect by inhibiting PCSK9 and increasing LDL-R, which can be reinforced by combination with atorvastatin.

  17. FOXP3 Inhibits HIV-1 Infection of CD4 T-cells via Inhibition of LTR Transcriptional Activity

    OpenAIRE

    Selliah, Nithianandan; Zhang, Mingce; White, Sara; Zoltick, Philip; Sawaya, Bassel E.; Finkel, Terri H.; Cron, Randy Q

    2008-01-01

    FOXP3 is a necessary transcription factor for the development and function of CD4+ regulatory T-cells (Tregs). The role of Tregs in HIV-1 infection remains unclear. Here, we show expression of FOXP3 in primary human CD4 T-cells significantly inhibits HIV-1 infection. Since FOXP3 inhibits NFAT activity, and NFAT proteins contribute to HIV-1 transcription, we explore a transcriptional repressive function of HIV-1 LTR by FOXP3. Over-expression of FOXP3 in primary CD4 T-cells inhibits wild-type H...

  18. Berberine, a genotoxic alkaloid, induces ATM-Chk1 mediated G2 arrest in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yu; Liu Qiao; Liu Zhaojian; Li Boxuan; Sun Zhaoliang; Zhou Haibin; Zhang Xiyu; Gong Yaoqin [Ministry of Education Key Laboratory of Experimental Teratology and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan (China); Shao Changshun, E-mail: changshun.shao@gmail.com [Ministry of Education Key Laboratory of Experimental Teratology and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan (China)

    2012-06-01

    Berberine has been shown to possess anti-tumor activity against a wide spectrum of cancer cells. It inhibits cancer cell proliferation by inducing cell cycle arrest, at G1 and/or G2/M, and apoptosis. While it has been documented that berberine induces G1 arrest by activating the p53-p21 cascade, it remains unclear what mechanism underlies the berberine-induced G2/M arrest, which is p53-independent. In this study, we tested the anti-proliferative effect of berberine on murine prostate cancer cell line RM-1 and characterized the underlying mechanisms. Berberine dose-dependently induced DNA double-strand breaks and apoptosis. At low concentrations, berberine was observed to induce G1 arrest, concomitant with the activation of p53-p21 cascade. Upon exposure to berberine at a higher concentration (50 {mu}M) for 24 h, cells exhibited G2/M arrest. Pharmacological inhibition of ATM by KU55933, or Chk1 by UCN-01, could efficiently abrogate the G2/M arrest in berberine-treated cells. Downregulation of Chk1 by RNA interference also abolished the G2/M arrest caused by berberine, confirming the role of Chk1 in the pathway leading to G2/M arrest. Abrogation of G2/M arrest by ATM inhibition forced more cells to undergo apoptosis in response to berberine treatment. Chk1 inhibition by UCN-01, on the other hand, rendered cells more sensitive to berberine only when p53 was inhibited. Our results suggest that combined administration of berberine and caffeine, or other ATM inhibitor, may accelerate the killing of cancer cells.

  19. Interaction of berberine with human platelet. alpha. sub 2 adrenoceptors

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Ka Kit; Yu, Jun Liang; Chan, Wai Fong A.; Tse, E. (UCLA School of Medicine, (USA))

    1991-01-01

    Berberine was found to inhibit competitively the specific binding of ({sup 3}H)-yohimbine. The displacement curve was parallel to those of clonidine, epinephrine, norepinephrine, with the rank order of potency (IC{sub 50}) being clonidine {gt} epinephrine {gt} norepinephrine (14.5 {mu}M) = berberine. Increasing concentrations of berberine from 0.1 {mu}M to 10 {mu}M inhibited ({sup 3}H)-yohimbine binding, shifting the saturation binding curve to the right without decreasing the maximum binding capacity. In platelet cyclic AMP accumulation experiments, berberine at concentrations of 0.1 {mu}M to 0.1 mM inhibited the cAMP accumulation induced by 10 {mu}M prostaglandin E{sub 1} in a dose dependent manner, acting as an {alpha}{sub 2} adrenoceptor agonist. In the presence of L-epinephrine, berberine blocked the inhibitory effect of L-epinephrine behaving as an {alpha}{sub 2} adrenoceptor antagonist.

  20. Sulforaphane Inhibits HIV Infection of Macrophages through Nrf2.

    Science.gov (United States)

    Furuya, Andrea Kinga Marias; Sharifi, Hamayun J; Jellinger, Robert M; Cristofano, Paul; Shi, Binshan; de Noronha, Carlos M C

    2016-04-01

    Marburg virus, the Kaposi's sarcoma-associated herpesvirus (KSHV) and Dengue virus all activate, and benefit from, expression of the transcription regulator nuclear erythroid 2-related factor 2 (Nrf2). The impact of Nrf2 activation on human immunodeficiency virus (HIV) infection has not been tested. Sulforaphane (SFN), produced in cruciferous vegetables after mechanical damage, mobilizes Nrf2 to potently reprogram cellular gene expression. Here we show for the first time that SFN blocks HIV infection in primary macrophages but not in primary T cells. Similarly SFN blocks infection in PMA-differentiated promonocytic cell lines, but not in other cell lines tested. siRNA-mediated depletion of Nrf2 boosted HIV infectivity in primary macrophages and reduced the anti-viral effects of SFN treatment. This supports a model in which anti-viral activity is mediated through Nrf2 after it is mobilized by SFN. We further found that, like the type I interferon-induced cellular anti-viral proteins SAMHD1 and MX2, SFN treatment blocks infection after entry, but before formation of 2-LTR circles. Interestingly however, neither SAMHD1 nor MX2 were upregulated. This shows for the first time that Nrf2 action can potently block HIV infection and highlights a novel way to trigger this inhibition. PMID:27093399

  1. Berberine derivatives as antileishmanial drugs.

    OpenAIRE

    Vennerstrom, J L; Lovelace, J K; Waits, V B; Hanson, W L; Klayman, D L

    1990-01-01

    Berberine, a quaternary alkaloid, and several of its derivatives were tested for efficacy against Leishmania donovani and Leishmania braziliensis panamensis in golden hamsters. Tetrahydroberberine was less toxic and more potent than berberine against L. donovani but was not as potent as meglumine antimonate (Glucantime), a standard drug for the treatment of leishmaniasis. Only berberine and 8-cyanodihydroberberine showed significant activity (greater than 50% suppression of lesion size) again...

  2. Mechanisms of Berberine (Natural Yellow 18)–Induced Mitochondrial Dysfunction: Interaction with the Adenine Nucleotide Translocator

    OpenAIRE

    Pereira, Cláudia V.; Machado, Nuno G; Oliveira, Paulo J

    2008-01-01

    Berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo (5,6-a) quinolizinium] is an alkaloid present in plants of the Berberidaceae family and used in traditional Chinese and North American medicine. We have previously demonstrated that berberine causes mitochondrial depolarization and fragmentation, with simultaneous increase in oxidative stress. We also demonstrated that berberine causes an inhibition of mitochondrial respiration and a decrease on calcium loading ...

  3. Mechanism of Inhibition to HIV-1 by Mycoplasma Fermentans

    Institute of Scientific and Technical Information of China (English)

    尚红; 姜拥军; 王琪; 王亚男; 张子宁

    2003-01-01

    To explore the mechanism of the inhibition of HIV-1 by Mycoplasma fermerttans, culture supernatants and thallodic proteins from M.fermerttans PG18 were prepared and the protein components of the supernatants were purified withhigh performance liquid chromatography (HPLC). The inhibitory activities to reverse transcriptase (RT) and the nuclease activities were detected; the influence of M.fermerttans on IL-10 secretion by both normal and H1V-1 infected human PBMC were determined, and the inhibitory effect of rhIL-10 on H1V-1 replication was detected with EI,ISA method. The results showed that the purified proteins with a molecular weight of 67-100 kDa or 10-25 kDa showed a 36% or 34% in hibitory ac-tivity to RT and partial nuclease activity. The thallodic protein could induce both normal and H1V-1 infected PBMC to secret IL-10 remarkably, and to the latter, this effect was more apparent. While rhIL-10 could inhibit replication of H1V-1 in PB-MC in vitro in a dose-dependant manner. It concludes that the inhibitory effect of the M.fermentans PG18 culture supernatants on RT and the promoting effect of PG18 thallodic protein on IL-10 secretion in PBMC explain the mechanisms of inhibition to HIV-1 by M.fermentans PG18.

  4. Down-regulation of HIV-1 Infection by Inhibition of the MAPK Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    Jian Gong; Xi-hui Shen; Chao Chen; Hui Qiu; Rong-ge Yang

    2011-01-01

    The human immunodeficiency virus type 1(HIV-1)can interact with and exploit the host cellular machinery to replicate and propagate itself.Numerous studies have shown that the Mitogen-activated protein kinase(MAPK)signal pathway can positively regulate the replication of HIV-1,but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood.In this study,we used the Extracellular signal-regulated kinase(ERK)pathway inhibitor,PD98059,the Jun N-terminal kinase(JNK)pathway inhibitor,SP600125,and the p38 pathway inhibitor,SB203580,to investigate the roles of these pathways in HIV-1replication.We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity.In addition,SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity.We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059when cells were treated with all three MAPK pathway inhibitors in combination.Finally,we show that HIV-1virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.

  5. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  6. Antibacterial Mechanisms of Berberine and Reasons for Little Resistance of Bacteria

    Institute of Scientific and Technical Information of China (English)

    JIN Jian-ling; HUA Guo-qiang; MENG Zhen; GAO Pei-ji

    2011-01-01

    significantly compared to the control. Conclusion All of above results indicate that bacterial cells could not easily become resistant mutants to berberine. The mechanisms for the bactericidal effect of berberine include: inhibiting DNA duplication, RNA transcription, and protein biosynthesis; influencing or inhibiting enzyme activities; destructing the bacterial cell surface structure and resulting in Ca2+ and K+ released from cells. All of the berberine bactericidal mechanisms are the most essential physiological functions for a live cell, if influenced any one such function, the mutation would be lethal mutation, so that it is difficult to get berberine resistant cells. The results in this paper also prefigure that berberine and its related Chinese medicines would provide a feasible way to control antibiotic resistance problem.

  7. Molecular and Crystal Structures of Three Berberine Derivatives

    OpenAIRE

    Jiří Dostál; Zdirad Žák; Marek NeÄÂas; Milan PotáÄÂek; Stanislav Man

    2001-01-01

    Berberine azide, berberine thiocyanate, and 8-cyano-8H-berberine were prepared from berberine chloride, a quaternary protoberberine alkaloid. The molecular and crystal structures of all compounds are reported and discussed.

  8. Molecular and Crystal Structures of Three Berberine Derivatives

    Directory of Open Access Journals (Sweden)

    Jiří Dostál

    2001-04-01

    Full Text Available Berberine azide, berberine thiocyanate, and 8-cyano-8H-berberine were prepared from berberine chloride, a quaternary protoberberine alkaloid. The molecular and crystal structures of all compounds are reported and discussed.

  9. Inhibition of Reverse Transcriptase Activity Increases Stability of the HIV-1 Core

    OpenAIRE

    Yang, Yang; Fricke, Thomas; Diaz-Griffero, Felipe

    2013-01-01

    Previous studies showed that HIV-1 reverse transcription occurs during or before uncoating, linking mechanistically reverse transcription with uncoating. Here we show that inhibition of reverse transcriptase (RT) during HIV-1 infection by pharmacologic or genetic means increased the stability of the HIV-1 core during infection. Interestingly, HIV-1 particles with increased core stability were resistant to the core-destabilizing effects of rhesus TRIM5α (TRIM5αrh). Collectively, this work impl...

  10. Mechanisms of inhibition of HIV replication by nonnucleoside reverse transcriptase inhibitors

    OpenAIRE

    Sluis-Cremer, Nicolas; Tachedjian, Gilda

    2008-01-01

    The nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are a therapeutic class of compounds that are routinely used, in combination with other antiretroviral drugs, to treat HIV-1 infection. NNRTIs primarily block HIV-1 replication by preventing RT from completing reverse transcription of the viral single-stranded RNA genome into DNA. However, some NNRTIs, such as efavirenz, have been shown to inhibit the late stages of HIV-1 replication by interfering with HIV-1 Gag-Pol polyprotein...

  11. Inhibition of HIV-1 replication by chimeric phosphorothioate oligodeoxynucleotides applied in free solution

    DEFF Research Database (Denmark)

    Lund, O S; Hansen, J E

    1998-01-01

    Oligodeoxynucleotides (ODNs) containing a variable number of 3' and 5' terminal phosphorothioate linkages were applied in free solution to cells infected by HIV-1. ODNs of 28 nt length were applied at up to 5 microM concentration. The ODNs were found to inhibit HIV-1 infection in a dose dependent...... manner, which correlated with the number of modified linkages (4, 8 and 12, respectively). A target sequence in the HIV-1 rev mRNA, previously reported as sensitive to antisense inhibition by full length phosphorothioate ODNs, only revealed non-sequence dependent inhibition of HIV-1, when tested by these...

  12. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways

    Directory of Open Access Journals (Sweden)

    Lin Zhou

    2015-11-01

    Full Text Available Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs derived osteoclast culture system, we showed that berberine sulfate at the dose of 0.25, 0.5 and 1 μM significantly inhibited the formation of osteoclasts. Notably, berberine sulfate at these doses did not affect the BMM viability. In addition, we observed that berberine sulfate inhibited the expression of osteoclast marker genes, including cathepsin K (Ctsk, nuclear factor of activated T cells cytoplasmic 1 (NFATc1, tartrate resistant acid phosphatase (TRAcP, Acp5 and Vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2. Luciferase reporter gene assay and Western blot analysis further revealed that berberine sulfate inhibits receptor for activation of nuclear factor ligand (RANKL-induced NF-κB and NFAT activity. Taken together, our results suggest that berberine sulfate is a natural compound potentially useful for the treatment of osteoporosis.

  13. CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape

    OpenAIRE

    Wang, Gang; Zhao, Na; Berkhout, Ben; Das, Atze T.

    2016-01-01

    Several recent studies demonstrated that the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 can be used for guide RNA (gRNA)-directed, sequence-specific cleavage of HIV proviral DNA in infected cells. We here demonstrate profound inhibition of HIV-1 replication by harnessing T cells with Cas9 and antiviral gRNAs. However, the virus rapidly and consistently escaped from this inhibition. Sequencing of the HIV-1 escape variants revealed nucleotide...

  14. Optimization of Extraction Technology for Berberine in Cortex Pheliodendri and Its Inhibition Effect on Plant Pathogen%黄柏中小檗碱的提取工艺优化及其对植物病原菌的抑制作用

    Institute of Scientific and Technical Information of China (English)

    王兴华; 李媛媛

    2012-01-01

    The extraction process for berberine in Cortex Phellodendri was optimized in ethanol concentration, extracting times, temperature and pH value by orthogonal design and the berberine content was detected by spectrophotometric method. The inhibition effect of extract on four species of plant pathogens were determined by plate diluting method. The optimal technology was extracting for 2 times with 70% ethanol under pH4.0 and 40℃. The antifungal rate against Alterharia alternate was 100% when the concentration of berberine was 15 mg/ml, while that was 100% against Fusarium culmorum when the concentration of berberine was 20 mg/ml. The method was simple and reliable with high output of berberine.%采用正交试验设计,研究了乙醇浓度、提取次数、温度和pH值4个因素对黄柏中小檗碱提取率的影响,通过分光光度比色法,测定小檗碱含量.采用药物平板稀释法测定提取液对不同菌种的抑制作用.结果表明,黄柏中小檗碱的最佳提取条件为:在40℃下,用pH 4.0的70%乙醇溶液提取2次.在最佳提取条件下,药液浓度15mg/ml对黄瓜黑斑病菌的抑菌率达100%,药液浓度20mg/ml对禾谷类作物病原菌的抑菌率达100%.此种提取工艺,黄柏中小檗碱产率高,且操作简单可行.

  15. N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton

    Directory of Open Access Journals (Sweden)

    Anand Appakkudal R

    2013-01-01

    Full Text Available Abstract Background Slit2 is a ~ 200 kDa secreted glycoprotein that has been recently shown to regulate immune functions. However, not much is known about its role in HIV (human immunodeficiency virus-1 pathogenesis. Results In the present study, we have shown that the N-terminal fragment of Slit2 (Slit2N (~120 kDa inhibits replication of both CXCR4 and CCR5-tropic HIV-1 viruses in T-cell lines and peripheral blood T-cells. Furthermore, we demonstrated inhibition of HIV-1 infection in resting CD4+ T-cells. In addition, we showed that Slit2N blocks cell-to-cell transmission of HIV-1. We have shown that Slit2N inhibits HIV-1 infection by blocking viral entry into T-cells. We also ruled out Slit2N-mediated inhibition of various other steps in the life cycle including binding, integration and viral transcription. Elucidation of the molecular mechanism revealed that Slit2N mediates its functional effects by binding to Robo1 receptor. Furthermore, we found that Slit2N inhibited Gp120-induced Robo1-actin association suggesting that Slit2N may inhibit cytoskeletal rearrangements facilitating HIV-1 entry. Studies into the mechanism of inhibition of HIV-1 revealed that Slit2N abrogated HIV-1 envelope-induced actin cytoskeletal dynamics in both T-cell lines and primary T-cells. We further showed that Slit2N specifically attenuated the HIV-1 envelope-induced signaling pathway consisting of Rac1, LIMK and cofilin that regulates actin polymerization. Conclusions Taken together, our results show that Slit2N inhibits HIV-1 replication through novel mechanisms involving modulation of cytoskeletal dynamics. Our study, thus, provides insights into the role of Slit2N in HIV-1 infection and underscores its potential in limiting viral replication in T-cells.

  16. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections

    Science.gov (United States)

    Chu, Ming; Zhang, Ming-Bo; Liu, Yan-Chen; Kang, Jia-Rui; Chu, Zheng-Yun; Yin, Kai-Lin; Ding, Ling-Yu; Ding, Ran; Xiao, Rong-Xin; Yin, Yi-Nan; Liu, Xiao-Yan; Wang, Yue-Dan

    2016-04-01

    Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA biofilm development in a dose dependent manner within the concentration ranging from 1 to 64 μg/mL. Further study indicated that berberine inhibited MRSA amyloid fibrils formation, which consist of phenol-soluble modulins (PSMs). Molecular dynamics simulation revealed that berberine could bind with the phenyl ring of Phe19 in PSMα2 through hydrophobic interaction. Collectively, berberine can inhibit MRSA biofilm formation via affecting PSMs’ aggregation into amyloid fibrils, and thereby enhance bactericidal activity of antibiotics. These findings will provide new insights into the multiple pharmacological properties of berberine in the treatment of microbial-generated amyloid involved diseases.

  17. Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry.

    Science.gov (United States)

    Kong, Wei-Jun; Xing, Xiao-Yan; Xiao, Xiao-He; Zhao, Yan-Ling; Wei, Jian-He; Wang, Jia-Bo; Yang, Rui-Chuang; Yang, Mei-Hua

    2012-10-01

    The strong toxicity of pathogenic bacteria has resulted in high levels of morbidity and mortality in the general population. Developing effective antibacterial agents with high efficacy and long activity is in great demand. In this study, the microcalorimetric technique based on heat output of bacterial metabolism was applied to evaluate the effect of berberine on Escherichia coli, Bacillus subtilis, individually and in a mixture of both using a multi-channel microcalorimeter. The differences in shape of the power-time fingerprints and thermokinetic parameters of microorganism growth were compared. The results revealed that low concentration (20 μg/mL) of berberine began to inhibit the growth of E. coli and mixed microorganisms, while promoting the growth of B. subtilis; high concentration of berberine (over 100 μg/mL) inhibited B. subtilis. The endurance of E. coli to berberine was obviously lower than B. subtilis, and E. coli could decrease the endurance of B. subtilis to berberine. The sequence of half-inhibitory concentration (IC(50)) of berberine was: B. subtilis (952.37 μg/mL) > mixed microorganisms (682.47 μg/mL) > E. coli (581.69 μg/mL). Berberine might be a good selection of antibacterial agent used in the future. The microcalorimetric method should be strongly suggested in screening novel antibacterial agents for fighting against pathogenic bacteria. PMID:22878842

  18. Virtual Screening Models for Prediction of HIV-1 RT Associated RNase H Inhibition

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Kongsted, Jacob

    2013-01-01

    The increasing resistance to current therapeutic agents for HIV drug regiment remains a major problem for effective acquired immune deficiency syndrome (AIDS) therapy. Many potential inhibitors have today been developed which inhibits key cellular pathways in the HIV cycle. Inhibition of HIV-1...... reverse transcriptase associated ribonuclease H (RNase H) function provides a novel target for anti-HIV chemotherapy. Here we report on the applicability of conceptually different in silico approaches as virtual screening (VS) tools in order to efficiently identify RNase H inhibitors from large chemical...

  19. Inhibition of reverse transcriptase activity increases stability of the HIV-1 core.

    Science.gov (United States)

    Yang, Yang; Fricke, Thomas; Diaz-Griffero, Felipe

    2013-01-01

    Previous studies showed that HIV-1 reverse transcription occurs during or before uncoating, linking mechanistically reverse transcription with uncoating. Here we show that inhibition of reverse transcriptase (RT) during HIV-1 infection by pharmacologic or genetic means increased the stability of the HIV-1 core during infection. Interestingly, HIV-1 particles with increased core stability were resistant to the core-destabilizing effects of rhesus TRIM5α (TRIM5α(rh)). Collectively, this work implies that the surface of the HIV-1 core is dynamic and changes upon the ongoing processes within the core. PMID:23077298

  20. Inhibition of clinical human immunodeficiency virus (HIV) type 1 isolates in primary CD4+ T lymphocytes by retroviral vectors expressing anti-HIV genes.

    OpenAIRE

    Vandendriessche, T.; Chuah, M. K.; L. Chiang; Chang, H K; Ensoli, B; Morgan, R A

    1995-01-01

    Gene therapy may be of benefit in human immunodeficiency virus type 1 (HIV-1)-infected individuals by virtue of its ability to inhibit virus replication and prevent viral gene expression. It is not known whether anti-HIV-1 gene therapy strategies based on antisense or transdominant HIV-1 mutant proteins can inhibit the replication and expression of clinical HIV-1 isolates in primary CD4+ T lymphocytes. We therefore transduced CD4+ T lymphocytes from uninfected individuals with retroviral vect...

  1. Natural Plant Alkaloid (Emetine Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity

    Directory of Open Access Journals (Sweden)

    Ana Luiza Chaves Valadão

    2015-06-01

    Full Text Available Ipecac alkaloids are secondary metabolites produced in the medicinal plant Psychotria ipecacuanha. Emetine is the main alkaloid of ipecac and one of the active compounds in syrup of Ipecac with emetic property. Here we evaluated emetine’s potential as an antiviral agent against Human Immunodeficiency Virus. We performed in vitro Reverse Transcriptase (RT Assay and Natural Endogenous Reverse Transcriptase Activity Assay (NERT to evaluate HIV RT inhibition. Emetine molecular docking on HIV-1 RT was also analyzed. Phenotypic assays were performed in non-lymphocytic and in Peripheral Blood Mononuclear Cells (PBMC with HIV-1 wild-type and HIV-harboring RT-resistant mutation to Nucleoside Reverse Transcriptase Inhibitors (M184V. Our results showed that HIV-1 RT was blocked in the presence of emetine in both models: in vitro reactions with isolated HIV-1 RT and intravirion, measured by NERT. Emetine revealed a strong potential of inhibiting HIV-1 replication in both cellular models, reaching 80% of reduction in HIV-1 infection, with low cytotoxic effect. Emetine also blocked HIV-1 infection of RT M184V mutant. These results suggest that emetine is able to penetrate in intact HIV particles, and bind and block reverse transcription reaction, suggesting that it can be used as anti-HIV microbicide. Taken together, our findings provide additional pharmacological information on the potential therapeutic effects of emetine.

  2. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    OpenAIRE

    Wen Tan; Zhangfeng Zhong; Shengpeng Wang; Zhanwei Suo; Xian Yang; Xiaodong Hu; Yitao Wang

    2015-01-01

    Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast can...

  3. Neutral sulfate berberine modulates cytokine secretion and increases survival in endotoxemic mice

    Institute of Scientific and Technical Information of China (English)

    Fei LI; Hua-dong WANG; Da-xiang LU; Yan-ping WANG; Ren-bin QI; Yong-mei FU; Chu-jie LI

    2006-01-01

    Aim: Berberine is thought to be an immunomodulator, so the present study aimed to investigate the effect of berberine on mortality, lung and intestine injury in endotoxemic mice, and the mechanism of its action. Methods: Mice were challenged with lipopolysaccharide (LPS, 28 mg/kg, ip), and neutral sulfate berberine was administrated intragastrically. Mortality was monitored every 12 h, and histology of the lungs and intestine as well as the plasma tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-12 (IL-12), IL-10, and nitric oxide (NO) levels were examined. Results: Pretreatment with 50 mg/kg neutral sulfate berberine once a day for 5 days significantly decreased the mortality rate and attenuated tissue injury of the lungs and small intestine in mice challenged with LPS. LPS stimulated a marked increase in plasma levels of TNF-α, IFN-γ, IL-12, IL-10, and NO. The administration of berberine significantly reduced plasma TNF-α, IFN-γ, and NO levels, but did not suppress plasma IL-12 levels in mice exposed to LPS. Furthermore, pretreatment with neutral sulfate berberine augmented IL-10 secretion stimulated by LPS in mice. Conclusion: Pretreatment with neutral sulfate berberine attenuates tissue injury and improves survival in endotoxemic mice, which may be mediated, at least in part, by the inhibition of pro-inflammatory mediator production and upregulation of IL-10 release. These findings might provide a new strategy for the treatment of endotoxemia.

  4. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Directory of Open Access Journals (Sweden)

    Jiaolin Bao

    Full Text Available Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX. The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  5. Berberine suppresses migration of MCF-7 breast cancer cells through down-regulation of chemokine receptors

    OpenAIRE

    Naghmeh Ahmadiankia; Hamid Kalalian Moghaddam; Mohammad Amir Mishan; Ahmad Reza Bahrami; Hojjat Naderi-Meshkin; Hamid Reza Bidkhori; Maryam Moghaddam; Seyed Jamal Aldin Mirfeyzi

    2016-01-01

    Objective(s): Berberine is one of the main alkaloids and it has been proven to have different pharmacological effects including inhibition of cell cycle and progression of apoptosis in various cancerous cells; however, its effects on cancer metastasis are not well known. Cancer cells obtain the ability to change their chemokine system and convert into metastatic cells. In this study, we examined the effect of berberine on breast cancer cell migration and its probable interaction with the chem...

  6. Inhibitory Effects of Berberine on the Activation and Cell Cycle Progression of Human Peripheral Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Lihui Xu; Yi Liu; Xianhui He

    2005-01-01

    The immunosuppressive property of berberine, an isoquinoline alkaloid, has been well documented, but the mechanism of its action on lymphocytes has not been completely elucidated. The present study is to investigate the effect of berberine on the activation and proliferation of lymphocytes, in particular T lymphocytes. Whole peripheral blood from healthy donors was stimulated with phytohemagglutinin (PHA) alone or phorbol dibutyrate (PDB) plus ionomycin, and the expression of CD69 and CD25 on T lymphocytes was evaluated with flow cytometry.The distribution of cell cycles and cell viability were analyzed by staining with propidium iodide (PI) and 7-aminoactinomycin D (7-AAD), respectively. The results showed that 100 μmol/L and 50 μmol/L of berberine significantly inhibited CD69 expression on T cells stimulated with PDB plus ionomycin or PHA, whereas the effect of 25 μmol/L berberine was not significant. As the incubation time increased, the extent of inhibition decreased.Similarly, the expression of CD25 was also reduced by berberine in a dose-dependent manner over the concentration range of 25-100 μmol/L. Besides, this alkaloid could block lymphocyte cell cycle progression from G0/G1 phase to S and G2/M phase without phase specificity. Moreover, analysis following 7-AAD staining revealed that berberine had no significant cytotoxicity on lymphocytes. Taken together, berberine significantly inhibits the expression of activation antigens on T lymphocytes and also blocks the progression of cell cycles of lymphocytes,suggesting that berberine may exert immunosuppressive effect through inhibiting the activation and proliferation of T cells.

  7. Inhibiting early-stage events in HIV-1 replication by small-molecule targeting of the HIV-1 capsid.

    Science.gov (United States)

    Kortagere, Sandhya; Madani, Navid; Mankowski, Marie K; Schön, Arne; Zentner, Isaac; Swaminathan, Gokul; Princiotto, Amy; Anthony, Kevin; Oza, Apara; Sierra, Luz-Jeannette; Passic, Shendra R; Wang, Xiaozhao; Jones, David M; Stavale, Eric; Krebs, Fred C; Martín-García, Julio; Freire, Ernesto; Ptak, Roger G; Sodroski, Joseph; Cocklin, Simon; Smith, Amos B

    2012-08-01

    The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4'-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity. PMID:22647699

  8. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions

    OpenAIRE

    Desimmie, Belete Ayele; Schrijvers, Rik; Demeulemeester, Jonas; Borrenberghs, Doortje; Weydert, Caroline; Thys, Wannes; Vets, Sofie; Van Remoortel, Barbara; Hofkens, Johan; De Rijck, Jan; Hendrix, Jelle; Bannert, Norbert; Gijsbers, Rik; Christ, Frauke; Debyser, Zeger

    2013-01-01

    Background: LEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN. Results: Here we demonstrate that LEDGINs reduce the replication capacity of HIV particles produced in their presence. We systematically studied the molecular basis of this late...

  9. Targeting CXCR4 in HIV Cell-Entry Inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Schwartz, T W; Rosenkilde, M M

    2010-01-01

    oral bioavailability. The hunt for orally active small-molecule CXCR4 antagonists led to the development of monocyclam-based compounds, and recently to the non-cyclam antagonist AMD070, which is orally active and currently in Phase II clinical trial as anti-HIV treatment. Current review provides an...... overview of the drug discovery within the field of anti-HIV treatment targeting CXCR4 spanning from natural occurring and modified chemokines, to HIV-mimicking peptides and peptoids ending at the non-peptide antagonists.......CXCR4 and CCR5 constitute the two major coreceptors for HIV-1 entry into host cells. In the course of an HIV-infection, a coreceptor switch takes place in approximately half of the patients - from R5 HIV-1 (CCR5 utilizing) strains to X4 HIV-1 (CXCR4 utilizing) strains. Treatment of HIV...

  10. New Approach for Inhibition of HIV Entry: Modifying CD4 Binding Sites by Thiolated Pyrimidine Derivatives.

    Science.gov (United States)

    Kanizsai, Szilvia; Ongrádi, József; Aradi, János; Nagy, Károly

    2016-07-01

    Thiolated pyrimidine derivatives have been synthetized and their antiretroviral effect against human immunodeficiency virus type 1 (HIV-1IIIB) and HIV-1 chimeric pseudovirions have been quantitatively determined in cell-based viral infectivity assays including syncytium inhibition assay as well as a single-cycle viral infection assay on HeLaCD4-LTR/ß-gal cells. Pseudotype virions prepared bearing HIV-1 envelope preference for CCR5 coreceptor, CXCR4 coreceptor or for both, respectively, with a HIV-1 core containing luciferase reporter gene were able to infect susceptible cells but are replication defective so unable to replicate in the cells . Data indicate that thiolated pyrimidine derivatives inhibited effectively virally induced cell fusion in vitro as well as infectivity of primary HIV-1IIIB strain and HIV-1 pseudovirions using chemokine receptors CCR5 or CXCR4 or both for virus entry a dose dependent manner. Inhibition was selective, depended on the pseudovirus coreceptor preference. Our results suggest that some of these sulfur containing pyrimidines interact with redoxactive -SH groups required for successful HIV entry, including a redox active disulfide in the CD4 molecule as well as -SH groups in HIV viral envelope gp120. This mode of action is unique representing a new class of potential HIV entry inhibitors. PMID:26860867

  11. 黄连素通过抑制磷酸化埃兹蛋白表达阻断鼻咽癌细胞侵袭和转移的机制研究%Berberine inhibits the invasion and metastasis of nasopharyngeal carcinoma cells through Ezrin phosphorylation

    Institute of Scientific and Technical Information of China (English)

    黄大毛; 王巍巍; Feng Zhu; 王雷; 陈宇; 谢春蕾; 孟菁菁; 唐发清

    2011-01-01

    Objective To determine the molecular mechanism of berberine (BBR) inhibiting the metastasis and invasion of nasopharyngeal carcinoma 5-8F cells, and identify whether berberine suppresses the tumor-invasive action through inhibiting Ezrin or phosphate-Ezrin. Methods The non-cytotoxic concentration of berberine was detected by MTT assay. Filopodia formation of 5-8F cells was observed by electron microscope. The invasion and motility of 5-8F cells with berberine treatment were measured with Trans-well assay. Western blot was used to investigate the Ezrin and phos-Ezrin expression in 5-8F cells treated by berberine. pcDNA3. l-Ezrin and pcDNA3. l-Ezrin M were transfected into 6-10B cells. The inhibitory effect of berberine on the motility and invasion of 6-10B-pcDNA3.1 -Ezrin and 6-10B-pcDNA3.1-Ezrin M was detected, respectively. Results Berberine non-cytotoxic concentration was 0-40 μmol/L. After being treated by berberine, filopodia of 5-8F cells obviously reduced, and the permeating artificial basement membrane cells largely decreased in both time- and concentration-dependent manner. There was significant difference compared with the control group (P <0.05 ). Berberine suppressed the phos-Ezrin expression of 5-8F cells in both time- and concentration-dependent manner (P < 0.05 ), but the effect of berberine was weaker on 6-10B-pcDNA3.1-Ezrin M than on 6-10B-pcDNA3.1-Ezrin. Conclusion Berberine inhibits nasopharyngeal carcinoma cell invasion through inhibiting phos-Ezrin expression and filopodia formation.%目的:探讨黄连素(berberine,BBR)抑制鼻咽癌细胞侵袭及移动的分子机制,明确BBR是否通过抑制Ezrin蛋白抑制鼻咽癌侵袭转移.方法:采用细胞增殖实验(MTT)测定BBR非毒性浓度(non-cytotoxic concentration,NCC),扫描电子显微镜观察BBR在NCC对鼻咽癌细胞5-8F细胞伪足形成的影响,Trans-well实验检测BBR处理后鼻咽癌细胞运动侵袭能力;Western印迹检测BBR对鼻咽癌细胞Ezrin蛋

  12. Nevirapine Inhibits the Anti-HIV Activity of CD8+ Cells

    OpenAIRE

    Liu, Lianxing; Wang, Lin; Huang, Liusheng; Siu, Vincent; Teque, Fernando; Aweeka, Francesca T.; Levy, Jay A.

    2013-01-01

    Antiretroviral therapy (ART) significantly reduced the CD8+ cell non-cytotoxic anti-HIV response (CNAR) in twelve HIV-1-infected subjects (p < 0.0001). In separate experiments, CD8+ cells from long term survivors (LTS) were co-cultured with HIV-infected CD4+ cells using varying concentrations of anti-HIV drugs. The antiviral function of CD8+ cells from four of fourteen LTS was reduced with exposure to 10µM nevirapine (p < 0.05). The antiviral activity of CD8+ cells from two LTS was inhibited ...

  13. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    Science.gov (United States)

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis. PMID:26979714

  14. Fluorescence of berberine in microheterogeneous systems

    International Nuclear Information System (INIS)

    Spectral properties of the alkaloid berberine were studied in micellar solution and microemulsions based on anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide and nonionic Triton X-100 surfactants. Absorption and fluorescence emission spectra were determined. For screening the influence of type and concentration of micelles on the fluorescence of berberine a 32 full factorial design was used. Higher responses were obtained when berberine was dissolved in sodium dodecyl sulfate micelles 0.01 M. Comparative results of fluorescence quantum yields (Φf) reveal that the highest values (Φf≥0.01) were observed in microemulsions. In the microheterogeneous systems investigated the most probable location of berberine is the micellar interfacial region. -- Highlights: • Spectroscopic propereies of berberine in microheterogeneous media were investigated. • Berberine shows enhanced fluorescence in SDS micelles as compared to water • Berberine is probably located in the interface of the microheterogeneous systems

  15. Fluorescence of berberine in microheterogeneous systems

    Energy Technology Data Exchange (ETDEWEB)

    Colina, Ariel N.; Díaz, Marta S.; Gutiérrez, María Isela, E-mail: isela@unpata.edu.ar

    2013-12-15

    Spectral properties of the alkaloid berberine were studied in micellar solution and microemulsions based on anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide and nonionic Triton X-100 surfactants. Absorption and fluorescence emission spectra were determined. For screening the influence of type and concentration of micelles on the fluorescence of berberine a 3{sup 2} full factorial design was used. Higher responses were obtained when berberine was dissolved in sodium dodecyl sulfate micelles 0.01 M. Comparative results of fluorescence quantum yields (Φ{sub f}) reveal that the highest values (Φ{sub f}≥0.01) were observed in microemulsions. In the microheterogeneous systems investigated the most probable location of berberine is the micellar interfacial region. -- Highlights: • Spectroscopic propereies of berberine in microheterogeneous media were investigated. • Berberine shows enhanced fluorescence in SDS micelles as compared to water • Berberine is probably located in the interface of the microheterogeneous systems.

  16. 黄连素调节鞘氨醇激酶-1-磷酸鞘氨醇信号通路抗糖尿病小鼠肾损伤的研究%Berberine ameliorates diabetic mouse renal injury through inhibition of SphK1-S1P signaling pathway

    Institute of Scientific and Technical Information of China (English)

    彭晶; 兰天; 黄凯鹏; 黄娟; 谢曦; 黄河清

    2011-01-01

    Aim To evaluate the protective effects of berberine on alloxan-induced diabetic renal injury in mice and the inhibitory effects of berberine on the Sphingosine kinase Sphingosine 1-phosphate ( SphK SIP) signaling pathway in mouse kidney. Methods Diabetic mice in berberine treatment group were treated orally with berberine (300 mg ? Kg"1 ? D~* ) or vehicle for 12 weeks. Mice in control or diabetic group were administrated with the equal volume of vehicle. Western blot method was applied to detect the protein expression of SphKl, FN, Col IV and RT-PCR was used to detect the mRNA expression of SphKl, TGF-(31, FN, Col IV. Results Berberine significantly attenuated the abnormal increases in fasting blood glu-cose , kidney/body weight, blood urea nitrogen, serum creatinine and 24 h urine protein. In addition, berberine prevented renal hypertrophy, TGF-pl synthesis, FN and Col IV accumulation in kidney of diabetic mouse. Moreover, berberine down-regulated the elevated stainining, activity and levels of mRNA and protein of SphKl, and SI P production as well. Conclusion The protective effects of berberine on the diabetic renal injury in mice are relevant to the inhibition of activation of SphK-Sl P pathway in diabetic mouse kidney.%目的 研究黄连素对四氧嘧啶诱导的糖尿病小鼠肾损伤的保护作用及其对糖尿病小鼠肾脏鞘氨醇激酶-1-磷酸鞘氨醇(SphK-S1P)信号通路的抑制效应.方法 四氧嘧啶诱导的糖尿病小鼠采用黄连素(300 mg·kg-1·d-1)灌胃给药12周,正常组和糖尿病组小鼠给予同体积的溶媒.采用Real-time PCR技术检测肾组织中SphK1、TGF-β1、FN、Col Ⅳ的基因;Western blot法检测肾脏组织中SphK1、FN、Col Ⅳ的蛋白表达;LC-MS/MS检测肾脏组织中SphK1活性和S1P含量.结果 黄连素明显抑制糖尿病小鼠血糖,肾重/体重比、血尿素氮、血肌酐和24 h尿蛋白异常增高;抑制肾脏肥大、纤维连接蛋白和Ⅳ型胶原积聚.此外,黄

  17. A novel peptide that inhibits HIV-1 entry

    Institute of Scientific and Technical Information of China (English)

    YU Yong; HUANG Xiaoxing; WANG Qiong; YANG Yaling; TIAN Po; ZHANG Wentao

    2004-01-01

    @@ The global epidemic of HIV infection, the cause of AIDS, has created an urgent need for novel classes of antiretroviral agent. Besides reverse transcriptase and protease, the viral entry process provides new anti-HIV-1 targets. A new generation of antiviral drugs intended to block HIV entry into host cells is now under develop- ment[1]. These compounds are generally referred to as fusion or entry inhibitor. Several HIV-1 entry inhibitors that target CD4-gp120 interactions, co-receptor function, and gp41-mediated membrane fusion are in different stages of clinical development[2].

  18. Inhibition of HIV-1 replication in human monocyte-derived macrophages by parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Guadalupe Andreani

    Full Text Available BACKGROUND: Cells of monocyte/macrophage lineage are one of the major targets of HIV-1 infection and serve as reservoirs for viral persistence in vivo. These cells are also the target of the protozoa Trypanosoma cruzi, the causative agent of Chagas disease, being one of the most important endemic protozoonoses in Latin America. It has been demonstrated in vitro that co-infection with other pathogens can modulate HIV replication. However, no studies at cellular level have suggested an interaction between T. cruzi and HIV-1 to date. METHODOLOGY/PRINCIPAL FINDINGS: By using a fully replicative wild-type virus, our study showed that T. cruzi inhibits HIV-1 antigen production by nearly 100% (p99% being stronger than HIV-T. cruzi (approximately 90% for BaL and approximately 85% for VSV-G infection. In MDM with established HIV-1 infection, T. cruzi significantly inhibited luciferate activity (p<0.01. By quantifying R-U5 and U5-gag transcripts by real time PCR, our study showed the expression of both transcripts significantly diminished in the presence of trypomastigotes (p<0.05. Thus, T. cruzi inhibits viral post-integration steps, early post-entry steps and entry into MDM. Trypomastigotes also caused a approximately 60-70% decrease of surface CCR5 expression on MDM. Multiplication of T. cruzi inside the MDM does not seem to be required for inhibiting HIV-1 replication since soluble factors secreted by trypomastigotes have shown similar effects. Moreover, the major parasite antigen cruzipain, which is secreted by the trypomastigote form, was able to inhibit viral production in MDM over 90% (p<0.01. CONCLUSIONS/SIGNIFICANCE: Our study showed that T. cruzi inhibits HIV-1 replication at several replication stages in macrophages, a major cell target for both pathogens.

  19. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Directory of Open Access Journals (Sweden)

    Elmira Barzegar

    2015-04-01

    Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer.

  20. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants

    Directory of Open Access Journals (Sweden)

    Song Xinming

    2009-08-01

    Full Text Available Abstract Background Highly active anti-retroviral therapy (HAART is the current HIV/AIDS treatment modality. Despite the fact that HAART is very effective in suppressing HIV-1 replication and reducing the mortality of HIV/AIDS patients, it has become increasingly clear that HAART does not offer an ultimate cure to HIV/AIDS. The high cost of the HAART regimen has impeded its delivery to over 90% of the HIV/AIDS population in the world. This reality has urgently called for the need to develop inexpensive alternative anti-HIV/AIDS therapy. This need has further manifested by recent clinical trial failures in anti-HIV-1 vaccines and microbicides. In the current study, we characterized a panel of extracts of traditional Chinese medicinal herbal plants for their activities against HIV-1 replication. Methods Crude and fractionated extracts were prepared from various parts of nine traditional Chinese medicinal herbal plants in Hainan Island, China. These extracts were first screened for their anti-HIV activity and cytotoxicity in human CD4+ Jurkat cells. Then, a single-round pseudotyped HIV-luciferase reporter virus system (HIV-Luc was used to identify potential anti-HIV mechanisms of these extracts. Results Two extracts, one from Euphorbiaceae, Trigonostema xyphophylloides (TXE and one from Dipterocarpaceae, Vatica astrotricha (VAD inhibited HIV-1 replication and syncytia formation in CD4+ Jurkat cells, and had little adverse effects on host cell proliferation and survival. TXE and VAD did not show any direct inhibitory effects on the HIV-1 RT enzymatic activity. Treatment of these two extracts during the infection significantly blocked infection of the reporter virus. However, pre-treatment of the reporter virus with the extracts and treatment of the extracts post-infection had little effects on the infectivity or gene expression of the reporter virus. Conclusion These results demonstrate that TXE and VAD inhibit HIV-1 replication likely by blocking

  1. Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition

    Directory of Open Access Journals (Sweden)

    Xiaocong Yu

    2016-01-01

    Full Text Available Innovative strategies are necessary to maximize the clinical application of HIV neutralizing antibodies. To this end, bispecific constructs of human antibody F240, reactive with well-conserved gp41 epitope and antibody 14A8, reactive with the IgA receptor (CD89 on effector cells, were constructed. A F240 × 14A8 bispecific single chain variable region (scFv molecule was constructed by linking two scFvs using a conventional GGGGS linker. Despite immunoreactivity with HIV gp41 and neutrophils, this bispecific scFv failed to inhibit HIV infection. This is in sharp contrast to viral inhibition using a chemical conjugate of the Fab of these two antibodies. Therefore, we constructed two novel Fab-like bispecific antibody molecules centered on fusion of the IgG1 CH1 domain or CH1-hinge domain to the C-terminus of F240scFv and fusion of the kappa chain CL domain to the C-terminus of 14A8scFv. Both Bi-Fab antibodies showed significant ADCVI activity for multiple clade B and clade C isolates by arming the neutrophils to inhibit HIV infection. The approach presented in this study is unique for HIV immunotherapy in that the impetus of neutralization is to arm and mobilize PMN to destroy HIV and HIV infected cells.

  2. Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition.

    Science.gov (United States)

    Yu, Xiaocong; Duval, Mark; Gawron, Melissa; Posner, Marshall R; Cavacini, Lisa A

    2016-01-01

    Innovative strategies are necessary to maximize the clinical application of HIV neutralizing antibodies. To this end, bispecific constructs of human antibody F240, reactive with well-conserved gp41 epitope and antibody 14A8, reactive with the IgA receptor (CD89) on effector cells, were constructed. A F240 × 14A8 bispecific single chain variable region (scFv) molecule was constructed by linking two scFvs using a conventional GGGGS linker. Despite immunoreactivity with HIV gp41 and neutrophils, this bispecific scFv failed to inhibit HIV infection. This is in sharp contrast to viral inhibition using a chemical conjugate of the Fab of these two antibodies. Therefore, we constructed two novel Fab-like bispecific antibody molecules centered on fusion of the IgG1 CH1 domain or CH1-hinge domain to the C-terminus of F240scFv and fusion of the kappa chain CL domain to the C-terminus of 14A8scFv. Both Bi-Fab antibodies showed significant ADCVI activity for multiple clade B and clade C isolates by arming the neutrophils to inhibit HIV infection. The approach presented in this study is unique for HIV immunotherapy in that the impetus of neutralization is to arm and mobilize PMN to destroy HIV and HIV infected cells. PMID:27419146

  3. Dynamic features of apo and bound HIV-Nef protein reveal the anti-HIV dimerization inhibition mechanism.

    Science.gov (United States)

    Moonsamy, Suri; Bhakat, Soumendranath; Soliman, Mahmoud E S

    2015-01-01

    The first account on the dynamic features of Nef or negative factor, a small myristoylated protein located in the cytoplasm believes to increase HIV-1 viral titer level, is reported herein. Due to its major role in HIV-1 pathogenicity, Nef protein is considered an emerging target in anti-HIV drug design and discovery process. In this study, comparative long-range all-atom molecular dynamics simulations were employed for apo and bound protein to unveil molecular mechanism of HIV-Nef dimerization and inhibition. Results clearly revealed that B9, a newly discovered Nef inhibitor, binds at the dimeric interface of Nef protein and caused significant separation between orthogonally opposed residues, namely Asp108, Leu112 and Gln104. Large differences in magnitudes were observed in the radius of gyration (∼1.5 Å), per-residue fluctuation (∼2 Å), C-alpha deviations (∼2 Å) which confirm a comparatively more flexible nature of apo conformation due to rapid dimeric association. Compared to the bound conformer, a more globally correlated motion in case of apo structure of HIV-Nef confirms the process of dimeric association. This clearly highlights the process of inhibition as a result of ligand binding. The difference in principal component analysis (PCA) scatter plot and per-residue mobility plot across first two normal modes further justifies the same findings. The in-depth dynamic analyses of Nef protein presented in this report would serve crucial in understanding its function and inhibition mechanisms. Information on inhibitor binding mode would also assist in designing of potential inhibitors against this important HIV target. PMID:26355431

  4. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    Directory of Open Access Journals (Sweden)

    Cong Liu

    2015-01-01

    Full Text Available This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1 for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses revealed that the treatment of berberine inhibited hepatic fat accumulation. Berberine significantly reduced plasma total cholesterol, triglyceride, free fatty acid, low density lipoprotein cholesterol, malondialdehyde, thiobarbituric acid-reactive substance, and 8-isoprostane level but significantly increased plasma superoxide dismutase activity. Glucose and insulin levels were significantly reduced in metformin and berberine-treated groups. Glucose tolerance tests documented that berberine-treated mice were more glucose tolerant. Berberine treatment increased expression of skeletal muscle glucose transporter 4 mRNA and significantly decreased liver low density lipoprotein receptor mRNA expression. The study suggested that berberine was effective in lowering blood glucose and lipids levels, reducing the body weight, and alleviating the oxidative stress in diabetic hamsters, which might be beneficial in reducing the cardiovascular risk factors in diabetes.

  5. Berberine attenuates experimental autoimmune encephalomyelitis in C57 BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Ma

    Full Text Available BACKGROUND: Berberine, an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-inflammatory and neuroprotective effects. However, there are no reports about the effects and mechanisms of berberine in experimental autoimmune encephalomyelitis (EAE, an established model of multiple sclerosis (MS. METHODOLOGY/PRINCIPAL FINDINGS: Female C57 BL/6 mice immunized with myelin oligodendrocyte glycoprotein 35-55 amino acid peptide were treated with berberine at the day of disease onset and medication was administered daily until mice were sacrificed. Blood-brain barrier (BBB permeability and the alteration of matrix metalloproteinase-2 (MMP-2, 72 kDa and matrix metalloproteinase-9 (MMP-9, 92 kDa in the brain and cerebrospinal fluid (CSF of EAE mice were detected by quantitative measurement for Evan's blue (EB content, Western blot and gelatin zymography respectively. The results showed that berberine attenuated clinical and pathological parameters of EAE, reduced the permeability of BBB, inhibited the activity and expression of MMP-9 but not MMP-2 in the CSF and brain of EAE mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that berberine is effective to attenuate the clinical severity of EAE in C57 BL/6 mice by reducing the permeability of BBB, decreasing the expression and activity of MMP-9, and decreasing the inflammatory infiltration. We think that berberine might be a potential therapeutic agent for MS.

  6. Targets for Inhibition of HIV Replication: Entry, Enzyme Action, Release and Maturation

    OpenAIRE

    Sierra, Saleta; Walter, Hauke

    2012-01-01

    Inhibition of HIV replication initially targeted viral enzymes, which are exclusively expressed by the virus and not present in the human cell. The development of reverse transcriptase (RT) inhibitors started with the discovery of antiretroviral activity of the nucleoside analog zidovudine in March 1987. Currently, six major classes of antiretroviral drugs are used for the treatment of HIV-infected patients: the RT inhibitors, nucleoside inhibitors and nonnucleoside inhibitors, the protease i...

  7. Inhibition of HIV derived lentiviral production by TAR RNA binding domain of TAT protein

    Directory of Open Access Journals (Sweden)

    He Yukai

    2005-11-01

    Full Text Available Abstract Background A critical step in the production of new HIV virions involves the TAT protein binding to the TAR element. The TAT protein contains in close proximity its TAR RNA binding domain and protein transduction domain (PTD. The PTD domain of TAT has been identified as being instrumental in the protein's ability to cross mammalian cell and nuclear membranes. All together, this information led us to form the hypothesis that a protein containing the TAR RNA binding domain could compete with the native full length TAT protein and effectively block the TAR RNA binding site in transduced HIV infected cells. Results We synthesized a short peptide named Tat-P, which contained the TAR RNA binding and PTD domains to examine whether the peptide has the potential of inhibiting TAT dependent HIV replication. We investigated the inhibiting effects of Tat-P in vitro using a HIV derived lentiviral vector model. We found that the TAT PTD domain not only efficiently transduced test cells, but also effectively inhibited the production of lentiviral particles in a TAT dependent manner. These results were also supported by data derived from the TAT activated LTR-luciferase expression model and RNA binding assays. Conclusion Tat-P may become part of a category of anti-HIV drugs that competes with full length TAT proteins to inhibit HIV replication. In addition, this study indicates that the HIV derived lentiviral vector system is a safe and reliable screening method for anti-HIV drugs, especially for those targeting the interaction of TAT and TAR RNAs.

  8. HIVsirDB: a database of HIV inhibiting siRNAs.

    Directory of Open Access Journals (Sweden)

    Atul Tyagi

    Full Text Available BACKGROUND: Human immunodeficiency virus (HIV is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes. DESCRIPTIONS: HIVsirDB is a manually curated database of HIV inhibiting siRNAs that provides comprehensive information about each siRNA or shRNA. Information was collected and compiled from literature and public resources. This database contains around 750 siRNAs that includes 75 partially complementary siRNAs differing by one or more bases with the target sites and over 100 escape mutant sequences. HIVsirDB structure contains sixteen fields including siRNA sequence, HIV strain, targeted genome region, efficacy and conservation of target sequences. In order to facilitate user, many tools have been integrated in this database that includes; i siRNAmap for mapping siRNAs on target sequence, ii HIVsirblast for BLAST search against database, iii siRNAalign for aligning siRNAs. CONCLUSION: HIVsirDB is a freely accessible database of siRNAs which can silence or degrade HIV genes. It covers 26 types of HIV strains and 28 cell types. This database will be very useful for developing models for predicting efficacy of HIV inhibiting siRNAs. In summary this is a useful resource for researchers working in the field of siRNA based HIV therapy. HIVsirDB database is accessible at http://crdd.osdd.net/raghava/hivsir/.

  9. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    OpenAIRE

    Amjad Ali; Banerjea, Akhil C

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected...

  10. DNA Duplexes with Hydrophobic Modifications Inhibit Fusion between HIV-1 and Cell Membranes

    OpenAIRE

    Xu, Liang; Cai, Lifeng; Chen, Xueliang; Jiang, Xifeng; Chong, Huihui; Zheng, Baohua; Wang, Kun; He, Junlin; Chen, Wei; Zhang, Tao; Cheng, Maosheng; He, Yuxian; Liu, Keliang

    2013-01-01

    Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 an...

  11. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments

    International Nuclear Information System (INIS)

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1IIIB infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent

  12. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul;

    2005-01-01

    defence against HIV. A chimeric protein containing the N-terminal and collagen domains of SP-D linked to the neck and carbohydrate-recognition domains of MBL (called SP-D/MBL(neck+CRD)) had greater ability to bind to gp120 and inhibit virus replication than either SP-D or MBL. The enhanced binding of SP...... and airway fluids, as well as in blood and various mucosal locations, and could, like MBL, play a role in restricting HIV transmission or replication in vivo.......The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL...

  13. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Sung, J.H. [Biomedical Research Institute, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, E.J. [Department of Clinical Laboratory Science, Ansan University, Ansan (Korea, Republic of); Chung, N. [Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of)

    2014-12-12

    Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC{sub 50}), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy.

  14. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines

    International Nuclear Information System (INIS)

    Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC50), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy

  15. Berberine as an Environmental-Friendly Inhibitor for Hot-Dip Coated Steels in Diluted Hydrochloric Acid

    Institute of Scientific and Technical Information of China (English)

    Hong Ju; Yulin Ju; Yan Li

    2012-01-01

    The inhibition effect of an excellent environmental-friendly corrosion inhibitor--berberine on hot-dip coated steels in the diluted HCI has been investigated by using quantum chemistry analysis, mass-loss tests, elec- trochemical measurements and scanning electron microscopy (SEM) observation. Calculation results show that berberine has a nearly planar structure with a number of active centers. The value of Mulliken charge, and the distribution of the highest occupied molecular orbital (HOMO) and the lower unoccupied molecular orbital (LUMO) imply that berberine has a good ability of electron exchange with metal surface. The test results indicate that inhibition efficiency (IE%) increases with the inhibitor concentration and the highest IE can reach 99%. Adsorption of berberine on the coating surface follows Langmuir adsorption isotherm with a single molecular layer by chemisorption.

  16. Inhibition of Anti-HIV MicroRNA Expression: A Mechanism for Opioid-Mediated Enhancement of HIV Infection of Monocytes

    OpenAIRE

    Wang, Xu; Ye, Li; Zhou, Yu; Liu, Man-Qing; Zhou, Dun-Jin; Ho, Wen-Zhe

    2011-01-01

    Several micro RNAs (miRNAs) have the ability to inhibit HIV replication in target cells. Thus, we investigated the impact of opioids (morphine and heroin), widely abused drugs among people infected with HIV, on the expression of cellular anti-HIV miRNAs in monocytes. We found that morphine-treated monocytes expressed lower levels of cellular anti-HIV miRNAs than untreated cells. In addition, morphine treatment of monocytes compromised type I interferon (IFN)–induced anti-HIV miRNA expression....

  17. Toxoplasma gondii inhibits R5 HIV-1 replication in human lymphoid tissues ex vivo

    Science.gov (United States)

    Sassi, Atfa; Brichacek, Beda; Hieny, Sara; Yarovinsky, Felix; Golding, Hana; Grivel, Jean-Charles; Sher, Alan; Margolis, Leonid

    2016-01-01

    Critical events of HIV-1 pathogenesis occur in lymphoid tissues where HIV-1 is typically accompanied by infections with other pathogens (HIV co-pathogens). Co-pathogens greatly affect the clinical course of the disease and the transmission of HIV. The apicomplexan parasite Toxoplasma gondii is a common HIV co-pathogen associated with AIDS development. Here, we examined the interaction of T. gondii and HIV in coinfected human lymphoid tissue ex vivo. Both pathogens readily replicate in ex vivo infected blocks of human tonsillar tissue. Surprisingly, we found that live T. gondii preferentially inhibits R5 HIV-1 replication in coinfected tissues. This effect is reproduced by treatment of the tissue blocks with recombinant C-18, a T. gondii -encoded cyclophilin that binds to CCR5. These ex vivo findings raise the possibility that, in addition to being a co-factor in HIV disease, T. gondii may influence the outcome of viral infection by preferentially suppressing R5 variants. PMID:19671446

  18. Antiproliferation of berberine is mediated by epigenetic modification of constitutive androstane receptor (CAR) metabolic pathway in hepatoma cells.

    Science.gov (United States)

    Zhang, Lei; Miao, Xiao-Jie; Wang, Xin; Pan, Hai-Hui; Li, Pu; Ren, Hong; Jia, Yong-Rui; Lu, Chuang; Wang, Hong-Bing; Yuan, Lan; Zhang, Guo-Liang

    2016-01-01

    Constitutive androstane receptor (CAR) regulates hepatic xenobiotic and energy metabolism, as well as promotes cell growth and hepatocarcinogenesis. Berberine is an ancient multipotent alkaloid drug which derived from Coptis chinensis plants. Here we report that berberine is able to be cellular uptake and accessible to chromatin in human hepatoma HepG2 cells. Berberine induces more apoptosis, cell cycle arrest, but less ROS production in CAR overexpressed mCAR-HepG2 cells. Moreover, berberine inhibits expressions of CAR and its target genes CYP2B6 and CYP3A4. Furthermore, berberine enhances DNA methylation level in whole genome but reduces that in promoter regions CpG sites of CYP2B6 and CYP3A4 genes under the presence of CAR condition. These results indicated that the antiproliferation of berberine might be mediated by the unique epigenetic modifying mechanism of CAR metabolic pathway, suggesting that berberine is a promising candidate in anticancer adjuvant chemotherapy, due to its distinct pharmacological properties in clinic. PMID:27311637

  19. Protective Effects of Berberine on Oxygen-Glucose Deprivation/Reperfusion on Oligodendrocyte Cell Line (OLN-93)

    OpenAIRE

    Nadjafi, Shabnam; Ebrahimi, Soltan-Ahmad; Rahbar-Roshandel, Nahid

    2014-01-01

    Background: Oligodendrocytes, the myelinating glial cells of central nervous system, are highly vulnerable to ischemic-induced excitotoxic insult, a phenomenon in which calcium overload triggers cell death. Berberine is an alkaloid extracted from medicinal herbs as Coptidis Rhizoma with several pharmacological effects like inhibition of neuronal apoptosis in cerebral ischemia. Methods: We examined the effects of berberine (0.5-4 μM) and glutamate receptors antagonists (MK-801 [10 μM] and NBQX...

  20. An alternative and effective HIV vaccination approach based on inhibition of antigen presentation attenuators in dendritic cells.

    OpenAIRE

    Xiao-Tong Song; Kevin Evel-Kabler; Lisa Rollins; Melissa Aldrich; Feng Gao; Xue F Huang; Si-Yi Chen

    2006-01-01

    BACKGROUND: Current efforts to develop HIV vaccines that seek to stimulate immune responses have been disappointing, underscoring the inability of natural immune responses to control HIV-1 infection. Here we tested an alternative strategy to induce anti-HIV immune responses by inhibiting a host's natural immune inhibitor. METHODS AND FINDINGS: We used small interfering RNA (siRNA) to inhibit suppressor of cytokine signaling (SOCS) 1, a key negative regulator of the JAK/STAT pathway, and inves...

  1. Inhibiting the HIV Integration Process: Past, Present, and the Future

    OpenAIRE

    Di Santo, Roberto

    2013-01-01

    HIV integrase (IN) catalyzes the insertion into the genome of the infected human cell of viral DNA produced by the retrotranscription process. The discovery of raltegravir validated the existence of the IN, which is a new target in the field of anti-HIV drug research. The mechanism of catalysis of IN is depicted, and the characteristics of the inhibitors of the catalytic site of this viral enzyme are reported. The role played by the resistance is elucidated, as well as the possibility of bypa...

  2. Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L.

    Directory of Open Access Journals (Sweden)

    McCoy Joe-Ann

    2011-04-01

    Full Text Available Abstract Background The mint family (Lamiaceae produces a wide variety of constituents with medicinal properties. Several family members have been reported to have antiviral activity, including lemon balm (Melissa officinalis L., sage (Salvia spp., peppermint (Mentha × piperita L., hyssop (Hyssopus officinalis L., basil (Ocimum spp. and self-heal (Prunella vulgaris L.. To further characterize the anti-lentiviral activities of Prunella vulgaris, water and ethanol extracts were tested for their ability to inhibit HIV-1 infection. Results Aqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent antiviral activity against HIV-1 at sub μg/mL concentrations with little to no cellular cytotoxicity at concentrations more than 100-fold higher. Time-of-addition studies demonstrated that aqueous extracts were effective when added during the first five hours following initiation of infection, suggesting that the botanical constituents were targeting entry events. Further analysis revealed that extracts inhibited both virus/cell interactions and post-binding events. While only 40% inhibition was maximally achieved in our virus/cell interaction studies, extract effectively blocked post-binding events at concentrations similar to those that blocked infection, suggesting that it was targeting of these latter steps that was most important for mediating inhibition of virus infectivity. Conclusions We demonstrate that aqueous P. vulgaris extracts inhibited HIV-1 infectivity. Our studies suggest that inhibition occurs primarily by interference of early, post-virion binding events. The ability of aqueous extracts to inhibit early events within the HIV life cycle suggests that these extracts, or purified constituents responsible for the antiviral activity, are promising microbicides and/or antivirals against HIV-1.

  3. Retroviral restriction factors TRIM5α: therapeutic strategy to inhibit HIV-1 replication.

    Science.gov (United States)

    Zhang, Jing; Ge, Weiying; Zhan, Peng; De Clercq, Erik; Liu, Xinyong

    2011-01-01

    Tripartite motif protein 5-alpha (TRIM5α) is a cytoplasmic protein that efficiently recognizes the incoming capsid (CA) protein of retroviruses and potently inhibits virus infection in a species-specific manner. Through directly recognizing and interacting with HIV CA, TRIM5α is capable of disrupting the ordered process of viral uncoating, eventually interfering with HIV-1 reverse transcription and virus replication. TRIM5α protein contains four domains: RING domain, B-box 2 domain, coiled-coil domain, and B30.2 domain (SPRY) domain. All of the domains are necessary for efficient retrovirus restriction and the B30.2 domain has been shown to be the determinant of the specificity of restriction. Species-specific innate resistance against viral infections offers novel avenues for antiviral therapeutics. Various mutants of TRIM5α have been described which differently affect the HIV-1 reverse transcription process. This makes the establishment of new and improved models for HIV replication and AIDS pathogenesis by monitoring endogenous TRIM5α an attractive approach. TRIM5α-mediated restriction is modulated by the host protein Cyclophilin A (Cyp A) which could effectively interact with the CA of HIV-1. Here we will review the structure and roles of TRIM5α protein, the interaction between Cyp A and TRIM5α, as well as gene therapy strategies associated with TRIM5α to inhibit HIV-1 infection. PMID:21568899

  4. Drug 9AA reactivates p21/Waf1 and Inhibits HIV-1 progeny formation

    Directory of Open Access Journals (Sweden)

    Dubrovsky Larisa

    2008-03-01

    Full Text Available Abstract It has been demonstrated that the p53 pathway plays an important role in HIV-1 infection. Previous work from our lab has established a model demonstrating how p53 could become inactivated in HIV-1 infected cells through binding to Tat. Subsequently, p53 was inactivated and lost its ability to transactivate its downstream target gene p21/waf1. P21/waf1 is a well-known cdk inhibitor (CKI that can lead to cell cycle arrest upon DNA damage. Most recently, the p21/waf1 function was further investigated as a molecular barrier for HIV-1 infection of stem cells. Therefore, we reason that the restoration of the p53 and p21/waf1 pathways could be a possible theraputical arsenal for combating HIV-1 infection. In this current study, we show that a small chemical molecule, 9-aminoacridine (9AA at low concentrations, could efficiently reactivate p53 pathway and thereby restoring the p21/waf1 function. Further, we show that the 9AA could significantly inhibit virus replication in activated PBMCs, likely through a mechanism of inhibiting the viral replication machinery. A mechanism study reveals that the phosphorylated p53ser15 may be dissociated from binding to HIV-1 Tat protein, thereby activating the p21/waf1 gene. Finally, we also show that the 9AA-activated p21/waf1 is recruited to HIV-1 preintegration complex, through a mechanism yet to be elucidated.

  5. Berberine as a natural source inhibitor for mild steel in 1 M H 2SO 4

    Science.gov (United States)

    Li, Yan; Zhao, Peng; Liang, Qiang; Hou, Baorong

    2005-12-01

    Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H 2SO 4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H 2SO 4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10 -4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H 2SO 4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.

  6. BERBERINE EFFECTS BIOFILM FORMATION AND EXPRESSION OF LuxS AND VIRULENCE FACTORS IN Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Chang Wang

    2015-12-01

    Full Text Available Streptococcus suis (S. suis is an important pathogen of pigs, responsible for diverse diseases in swine and human. It is found to form biofilm in virtro and in vivo. luxS/AI-2 not only influences the formation of biofilm, but also bacterial virulence factors. Berberine is an isoquinoline-type alkaloid isolated from Copyidis rhizome and other herbs against bacteria. In this study, we observed that sub-minimal inhibitory concentrations (sub-MIC of berberine (62.5μg•mL-1 were sufficient to exhibit an antibacterial effect and to inhibit biofilm formation significantly, as shown by the scanning electron microscopy. Real-time PCR showed that berberine decreased the amount of luxS-mRNA lower than that of negative control. Quantification of expression levels of known virulence genes by real-time PCR revealed that berberine on the transcription levels of the ef, sly and gapdh genes of biofilm formation were downregulated, while the gdh, cps and mrp genes were upregulated. To summarize the collective data demonstrated that berberine may regulate transcription levels of luxS/AI-2 and many virulence genes, and inhibit S. suis biofilm formation.

  7. Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-hua; HUANG Wen-ge; CHEN Feng-ying; LIU Pei-qing; HEI Zi-qing; NIE Hong; TANG Fu-tian; HUANG He-qing; LI Xue-juan; DENG Yan-hui; CHEN Shao-rui; GUO Fen-fen

    2008-01-01

    Background Berberine is one of the main constituents of Coptidis rhizoma (CR) and Cortex phellodendri, In this study, we investigated the beneficial effects of berberine on renal function and its possible mechanisms in rats with diabetic nephropathy(DN). Methods Male Wistar rats were divided into three groups: normal, diabetic model, and berberine treatment groups. Rats in the diabetic model and berberine treatment groups were induced to diabetes by intraperitonal injection with streptozotocin(STZ). Glomerular area, glomerular volume, fasting blood glucose(FBG), blood urea nitrogen(BUN), serum creatinine (Cr)and urine protein for 24 hours(UP24h) were measured using commercially available kits. Meanwhile, the activity of superoxide dismutase (SOD), content of malondialdehyde (MDA) in serum, activity of aldose reductase (AR)and the expression of AR mRNA and protein in kidney were detected by different methods. Results The result showed that oral administration of berberine (200mg·kg-1·d-1) significantly ameliorated the ratio of kidney weight to body weight. Glomerular area, glomerular volume, FBG, BUN, Cr and UP24h were significantly decreased in the berberine treatment group compared with the diabetic model group(P<0.05). Berberine treatment significantly increased serum SOD activity and decreased the content of MDA compared with diabetic model group(P<0.05). AR activity as well as the expression of AR mRNA and protein in the kidney was markedly decreased in the berberine treatment group compared with diabetic model group (P<0.05). Conclusion These results suggested that berberine could ameliorate renal dysfunction in DN rats through controlling blood glucose, reduction of oxidative stress and inhibition of the activation of the polyol pathway.

  8. CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape

    Science.gov (United States)

    Wang, Gang; Zhao, Na; Berkhout, Ben; Das, Atze T

    2016-01-01

    Several recent studies demonstrated that the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 can be used for guide RNA (gRNA)-directed, sequence-specific cleavage of HIV proviral DNA in infected cells. We here demonstrate profound inhibition of HIV-1 replication by harnessing T cells with Cas9 and antiviral gRNAs. However, the virus rapidly and consistently escaped from this inhibition. Sequencing of the HIV-1 escape variants revealed nucleotide insertions, deletions, and substitutions around the Cas9/gRNA cleavage site that are typical for DNA repair by the nonhomologous end-joining pathway. We thus demonstrate the potency of CRISPR-Cas9 as an antiviral approach, but any therapeutic strategy should consider the viral escape implications. PMID:26796669

  9. Inhibition of HIV-1 Integrase gene expression by 10-23 DNAzyme

    Indian Academy of Sciences (India)

    Nirpendra Singh; Atul Ranjan; Souvik Sur; Ramesh Chandra; Vibha Tandon

    2012-07-01

    HIV Integrase (IN) is an enzyme that is responsible for the integration of the proviral genome into the human genome, and this integration step is the first step of the virus hijacking the human cell machinery for its propagation and replication. 10-23 DNAzyme has the potential to suppress gene expressions through sequence-specific mRNA cleavage. We have designed three novel DNAzymes, DIN54, DIN116, and DIN152, against HIV-1 Integrase gene using Mfold software and evaluated them for target site cleavage activity on the in vitro transcribed mRNA. All DNAzymes were tested for its inhibition of expression of HIV Integrase protein in the transiently transfected cell lines. DIN116 and DIN152 inhibited IN-EGFP expression by 80% and 70% respectively.

  10. Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in Vitro.

    Science.gov (United States)

    Jing, N; Marchand, C; Liu, J; Mitra, R; Hogan, M E; Pommier, Y

    2000-07-14

    The G-tetrad-forming oligonucleotides and have been identified as potent inhibitors of human immunodeficiency virus type 1 integrase (HIV-1 IN) activity (Rando, R. F., Ojwang, J., Elbaggari, A., Reyes, G. R., Tinder, R., McGrath, M. S., and Hogan, M. E. (1995) J. Biol. Chem. 270, 1754-1760; Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13762-13771; Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). To understand the inhibition of HIV-1 IN activity by the G-quartet inhibitors, we have designed the oligonucleotides and, composed of three and four G-quartets with stem lengths of 19 and 24 A, respectively. The fact that increasing the G-quartet stem length from 15 to 24 A kept inhibition of HIV-1 IN activity unchanged suggests that the binding interaction occurs between a GTGT loop domain of the G-quartet inhibitors and a catalytic site of HIV-1 IN, referred to as a face-to-face interaction. Docking the NMR structure of (Jing and Hogan (1998)) into the x-ray structure of the core domain of HIV-1 IN, HIV-1 IN-(51-209) (Maignan, S., Guilloteau, J.-P. , Qing, Z.-L., Clement-Mella, C., and Mikol, V. (1998) J. Mol. Biol. 282, 359-368), was performed using the GRAMM program. The statistical distributions of hydrogen bonding between HIV-1 IN and were obtained from the analyses of 1000 random docking structures. The docking results show a high probability of interaction between the GTGT loop residues of the G-quartet inhibitors and the catalytic site of HIV-1 IN, in agreement with the experimental observation. PMID:10801812

  11. Potent inhibition of drug-resistant HIV protease variants by monoclonal antibodies

    Czech Academy of Sciences Publication Activity Database

    Bartoňová, Vanda; Král, Vlastimil; Sieglová, Irena; Brynda, Jiří; Fábry, Milan; Hořejší, Magdalena; Kožíšek, Milan; Grantz Šašková, Klára; Konvalinka, Jan; Sedláček, Juraj; Řezáčová, Pavlína

    2008-01-01

    Roč. 78, č. 3 (2008), s. 275-277. ISSN 0166-3542 R&D Projects: GA MZd NR8571 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : HIV protease * drug resistance * Inhibiting antibody Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.613, year: 2008

  12. Berberine and coptisine free bases

    Science.gov (United States)

    Dostál, Jiří; Man, Stanislav; Sečkářová, Pavlína; Hulová, Dagmar; Nečas, Marek; Potáček, Milan; Toušek, Jaromír.; Dommisse, Roger; Van Dongen, Walter; Marek, Radek

    2004-01-01

    The free bases of protoberberine alkaloids berberine and coptisine and related compounds have been examined. The 1H and 13C NMR data of 8-hydroxy-7,8-dihydroberberine (2a), 8-hydroxy-7,8-dihydrocoptisine (2b), bis(7,8-dihydroberberin-8-yl) ether (3a), 8-oxoberberine (5a), and 8-oxocoptisine (5b) as well as X-ray data of compounds 2a, 5a, and 5b are reported and discussed.

  13. Inhibiting the HIV integration process: past, present, and the future.

    Science.gov (United States)

    Di Santo, Roberto

    2014-02-13

    HIV integrase (IN) catalyzes the insertion into the genome of the infected human cell of viral DNA produced by the retrotranscription process. The discovery of raltegravir validated the existence of the IN, which is a new target in the field of anti-HIV drug research. The mechanism of catalysis of IN is depicted, and the characteristics of the inhibitors of the catalytic site of this viral enzyme are reported. The role played by the resistance is elucidated, as well as the possibility of bypassing this problem. New approaches to block the integration process are depicted as future perspectives, such as development of allosteric IN inhibitors, dual inhibitors targeting both IN and other enzymes, inhibitors of enzymes that activate IN, activators of IN activity, as well as a gene therapy approach. PMID:24025027

  14. Potential antimutagenic activity of berberine, a constituent of Mahonia aquifolium

    Directory of Open Access Journals (Sweden)

    Tóth Jaroslav

    2002-02-01

    Full Text Available Abstract Background As part of a study aimed at developing new pharmaceutical products from natural resources, the purpose of this research was twofold: (1 to fractionate crude extracts from the bark of Mahonia aquifolium and (2 to evaluate the strength of the antimutagenic activity of the separate components against one of the common direct-acting chemical mutagens. Methods The antimutagenic potency was evaluated against acridine orange (AO by using Euglena gracilis as an eukaryotic test model, based on the ability of the test compound/fraction to prevent the mutagen-induced damage of chloroplast DNA. Results It was found that the antimutagenicity of the crude Mahonia extract resides in both bis-benzylisoquinoline (BBI and protoberberine alkaloid fractions but only the protoberberine derivatives, jatrorrhizine and berberine, showed significant concentration-dependent inhibitory effect against the AO-induced chloroplast mutagenesis of E. gracilis. Especially berberine elicited, at a very low dose, remarkable suppression of the AO-induced mutagenicity, its antimutagenic potency being almost three orders of magnitude higher when compared to its close analogue, jatrorrhizine. Possible mechanisms of the antimutagenic action are discussed in terms of recent literature data. While the potent antimutagenic activity of the protoberberines most likely results from the inhibition of DNA topoisomerase I, the actual mechanism(s for the BBI alkaloids is hard to be identified. Conclusions Taken together, the results indicate that berberine possesses promising antimutagenic/anticarcinogenic potential that is worth to be investigated further.

  15. Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages.

    Science.gov (United States)

    Bae, Young-An; Cheon, Hyae Gyeong

    2016-07-01

    Berberine is an isoquinoline alkaloid found in Rhizoma coptidis, and elicits anti-inflammatory effects through diverse mechanisms. Based on previous reports that activating transcription factor-3 (ATF-3) acts as a negative regulator of LPS signaling, the authors investigated the possible involvement of ATF-3 in the anti-inflammatory effects of berberine. It was found berberine concentration-dependently induced the expressions of ATF-3 at the mRNA and protein levels and concomitantly suppressed the LPS-induced productions of proinflammatory cytokines (TNF-α, IL-6, and IL-1β). In addition, ATF-3 knockdown abolished the inhibitory effects of berberine on LPS-induced proinflammatory cytokine production, and prevented the berberine-induced suppression of MAPK phosphorylation, but had little effect on AMPK phosphorylation. On the other hand, the effects of berberine, that is, ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation, were prevented by AMPK knockdown, suggesting ATF-3 induction occurs downstream of AMPK activation. The in vivo administration of berberine to mice with LPS-induced endotoxemia increased ATF-3 expression and AMPK phosphorylation in spleen and lung tissues, and concomitantly reduced the plasma and tissue levels of proinflammatory cytokines. These results suggest berberine has an anti-inflammatory effect on macrophages and that this effect is attributable, at least in part, to pathways involving AMPK activation and ATF-3 induction. PMID:27382358

  16. Medicinal Application of Carboranes Inhibition of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Řezáčová, Pavlína; Cígler, Petr; Matějíček, P.; Lepšík, Martin; Pokorná, Jana; Grüner, Bohumír; Konvalinka, Jan

    Boca Raton: CRC Press, 2012, s. 41-70. ISBN 978-1-4398-2662-1 R&D Projects: GA AV ČR IAAX00320901; GA MŠk LC512; GA MŠk LC523 Grant ostatní: 6th Framework(XE) QLRT2001-02360 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40320502 Keywords : metallacarboranes * resistance * inhibitor * HIV * AIDS Subject RIV: CE - Biochemistry

  17. Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Kouki; Hattori, Shinichiro; Kariya, Ryusho [Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Komizu, Yuji [Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082 (Japan); Kudo, Eriko; Goto, Hiroki; Taura, Manabu [Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Ueoka, Ryuichi [Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082 (Japan); Kimura, Shinya [Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Okada, Seiji, E-mail: okadas@kumamoto-u.ac.jp [Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan)

    2015-02-13

    Membrane fusion between host cells and HIV-1 is the initial step in HIV-1 infection, and plasma membrane fluidity strongly influences infectivity. In the present study, we demonstrated that GUT-70, a natural product derived from Calophyllum brasiliense, stabilized plasma membrane fluidity, inhibited HIV-1 entry, and down-regulated the expression of CD4, CCR5, and CXCR4. Since GUT-70 also had an inhibitory effect on viral replication through the inhibition of NF-κB, it is expected to be used as a dual functional and viral mutation resistant reagent. Thus, these unique properties of GUT-70 enable the development of novel therapeutic agents against HIV-1 infection.

  18. Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity

    International Nuclear Information System (INIS)

    Membrane fusion between host cells and HIV-1 is the initial step in HIV-1 infection, and plasma membrane fluidity strongly influences infectivity. In the present study, we demonstrated that GUT-70, a natural product derived from Calophyllum brasiliense, stabilized plasma membrane fluidity, inhibited HIV-1 entry, and down-regulated the expression of CD4, CCR5, and CXCR4. Since GUT-70 also had an inhibitory effect on viral replication through the inhibition of NF-κB, it is expected to be used as a dual functional and viral mutation resistant reagent. Thus, these unique properties of GUT-70 enable the development of novel therapeutic agents against HIV-1 infection

  19. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Weidong Xie

    Full Text Available Gut microbes play important roles in regulating fat storage and metabolism. Rhizoma coptidis (RC and its main active compound, berberine, have either antimicrobial or anti-obesity activities. In the present study, we hypothesize that RC exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes and berberine may be a key compound of RC. Gut microbes and glucose and lipid metabolism in high-fat diet-fed C57BL/6J (HFD mice in vivo are investigated after RC and berberine treatments. The results show that RC (200 mg/kg and berberine (200 mg/kg significantly lower both body and visceral adipose weights, and reduce blood glucose and lipid levels, and decrease degradation of dietary polysaccharides in HFD mice. Both RC and berberine significantly reduce the proportions of fecal Firmicutes and Bacteroidetes to total bacteria in HFD mice. In the trial ex vivo, both RC and berberine significantly inhibit the growth of gut bacteria under aerobic and anaerobic conditions. In in vitro trials, both RC and berberine significantly inhibit the growth of Lactobacillus (a classical type of Firmicutes under anaerobic conditions. Furthermore, both RC and berberine significantly increase fasting-induced adipose factor (Fiaf, a key protein negatively regulated by intestinal microbes expressions in either intestinal or visceral adipose tissues. Both RC and berberine significantly increase mRNA expressions of AMPK, PGC1α, UCP2, CPT1α, and Hadhb related to mitochondrial energy metabolism, which may be driven by increased Fiaf expression. These results firstly suggest that antimicrobial activities of RC and berberine may result in decreasing degradation of dietary polysaccharides, lowering potential calorie intake, and then systemically activating Fiaf protein and related gene expressions of mitochondrial energy metabolism in visceral adipose tissues. Taken together, these action mechanisms may contribute to significant anti

  20. Molecular features related to HIV integrase inhibition obtained from structure- and ligand-based approaches.

    Directory of Open Access Journals (Sweden)

    Luciana L de Carvalho

    Full Text Available Among several biological targets to treat AIDS, HIV integrase is a promising enzyme that can be employed to develop new anti-HIV agents. The aim of this work is to propose a mechanistic interpretation of HIV-1 integrase inhibition and to rationalize the molecular features related to the binding affinity of studied ligands. A set of 79 HIV-1 integrase inhibitors and its relationship with biological activity are investigated employing 2D and 3D QSAR models, docking analysis and DFT studies. Analyses of docking poses and frontier molecular orbitals revealed important features on the main ligand-receptor interactions. 2D and 3D models presenting good internal consistency, predictive power and stability were obtained in all cases. Significant correlation coefficients (r(2 = 0.908 and q(2= 0.643 for 2D model; r(2= 0.904 and q(2= 0.719 for 3D model were obtained, indicating the potential of these models for untested compounds. The generated holograms and contribution maps revealed important molecular requirements to HIV-1 IN inhibition and several evidences for molecular modifications. The final models along with information resulting from molecular orbitals, 2D contribution and 3D contour maps should be useful in the design of new inhibitors with increased potency and selectivity within the chemical diversity of the data.

  1. Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry.

    Science.gov (United States)

    Cimbro, Raffaello; Peterson, Francis C; Liu, Qingbo; Guzzo, Christina; Zhang, Peng; Miao, Huiyi; Van Ryk, Donald; Ambroggio, Xavier; Hurt, Darrell E; De Gioia, Luca; Volkman, Brian F; Dolan, Michael A; Lusso, Paolo

    2016-08-01

    Tyrosine sulfation is a post-translational modification that facilitates protein-protein interaction. Two sulfated tyrosines (Tys173 and Tys177) were recently identified within the second variable (V2) loop of the major HIV-1 envelope glycoprotein, gp120, and shown to contribute to stabilizing the intramolecular interaction between V2 and the third variable (V3) loop. Here, we report that tyrosine-sulfated peptides derived from V2 act as structural and functional mimics of the CCR5 N-terminus and potently block HIV-1 infection. Nuclear magnetic and surface plasmon resonance analyses indicate that a tyrosine-sulfated V2 peptide (pV2α-Tys) adopts a CCR5-like helical conformation and directly interacts with gp120 in a CD4-dependent fashion, competing with a CCR5 N-terminal peptide. Sulfated V2 mimics, but not their non-sulfated counterparts, inhibit HIV-1 entry and fusion by preventing coreceptor utilization, with the highly conserved C-terminal sulfotyrosine, Tys177, playing a dominant role. Unlike CCR5 N-terminal peptides, V2 mimics inhibit a broad range of HIV-1 strains irrespective of their coreceptor tropism, highlighting the overall structural conservation of the coreceptor-binding site in gp120. These results document the use of receptor mimicry by a retrovirus to occlude a key neutralization target site and provide leads for the design of therapeutic strategies against HIV-1. PMID:27389109

  2. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions

    Institute of Scientific and Technical Information of China (English)

    LIU Bing; WANG Qin; YUAN Dong-dong; HONG Xiao-ting; TAO Liang

    2011-01-01

    Background Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC).Methods The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine.Results In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions.Conclusions These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  3. Pharmacologic preconditioning with berberine attenuating ischemia-induced apoptosis and promoting autophagy in neuron.

    Science.gov (United States)

    Zhang, Qichun; Bian, Huimin; Guo, Liwei; Zhu, Huaxu

    2016-01-01

    Pharmacologic preconditioning is an intriguing and emerging approach adopted to prevent injury of ischemia/reperfusion. Neuroprotection is the cardinal effect of these pleiotropic actions of berberine. Here we investigated that whether berberine could acts as a preconditioning stimuli contributing to attenuate hypoxia-induced neurons death as well. Male Sprague-Dawley rats of middle cerebral artery occlusion (MCAO) and rat primary cortical neurons undergoing oxygen and glucose deprivation (OGD) were preconditioned with berberine (40 mg/kg, for 24 h in vivo, and 10(-6) mol/L, for 2 h in vitro, respectively). The neurological deficits and cerebral water contents of MCAO rats were evaluated. The autophagy and apoptosis were further determined in primary neurons in vitro. Berberine preconditioning (BP) was then shown to ameliorate the neurological deficits, decrease cerebral water content and promote neurogenesis of MCAO rats. Decreased LDH release from OGD-treated neurons was observed via BP, which was blocked by LY294002 (20 µmol/L), GSK690693 (10 µmol/L), or YC-1 (25 µmol/L). Furthermore, BP stimulated autophagy and inhibited apoptosis via modulated the autophagy-associated proteins LC 3, Beclin-1 and p62, and apoptosis-modulating proteins caspase 3, caspase 8, caspase 9, PARP and BCL-2/Bax. In conclusion, berberine acts as a stimulus of preconditioning that exhibits neuroprotection via promoting autophagy and decreasing anoxia-induced apoptosis. PMID:27158406

  4. Small-Molecule CD4-Mimics: Structure-Based Optimization of HIV-1 Entry Inhibition.

    Science.gov (United States)

    Melillo, Bruno; Liang, Shuaiyi; Park, Jongwoo; Schön, Arne; Courter, Joel R; LaLonde, Judith M; Wendler, Daniel J; Princiotto, Amy M; Seaman, Michael S; Freire, Ernesto; Sodroski, Joseph; Madani, Navid; Hendrickson, Wayne A; Smith, Amos B

    2016-03-10

    The optimization, based on computational, thermodynamic, and crystallographic data, of a series of small-molecule ligands of the Phe43 cavity of the envelope glycoprotein gp120 of human immunodeficiency virus (HIV) has been achieved. Importantly, biological evaluation revealed that the small-molecule CD4 mimics (4-7) inhibit HIV-1 entry into target cells with both significantly higher potency and neutralization breadth than previous congeners, while maintaining high selectivity for the target virus. Their binding mode was characterized via thermodynamic and crystallographic studies. PMID:26985324

  5. Inhibition of highly productive HIV-1 infection in T cells, primary human macrophages, microglia, and astrocytes by Sargassum fusiforme

    Directory of Open Access Journals (Sweden)

    Veille Jean-Claude

    2006-05-01

    Full Text Available Abstract Background The high rate of HIV-1 mutation and increasing resistance to currently available antiretroviral (ART therapies highlight the need for new antiviral agents. Products derived from natural sources have been shown to inhibit HIV-1 replication during various stages of the virus life cycle, and therefore represent a potential source of novel therapeutic agents. To expand our arsenal of therapeutics against HIV-1 infection, we investigated aqueous extract from Sargassum fusiforme (S. fusiforme for ability to inhibit HIV-1 infection in the periphery, in T cells and human macrophages, and for ability to inhibit in the central nervous system (CNS, in microglia and astrocytes. Results S. fusiforme extract blocked HIV-1 infection and replication by over 90% in T cells, human macrophages and microglia, and it also inhibited pseudotyped HIV-1 (VSV/NL4-3 infection in human astrocytes by over 70%. Inhibition was mediated against both CXCR4 (X4 and CCR5 (R5-tropic HIV-1, was dose dependant and long lasting, did not inhibit cell growth or viability, was not toxic to cells, and was comparable to inhibition by the nucleoside analogue 2', 3'-didoxycytidine (ddC. S. fusiforme treatment blocked direct cell-to-cell infection spread. To investigate at which point of the virus life cycle this inhibition occurs, we infected T cells and CD4-negative primary human astrocytes with HIV-1 pseudotyped with envelope glycoprotein of vesicular stomatitis virus (VSV, which bypasses the HIV receptor requirements. Infection by pseudotyped HIV-1 (VSV/NL4-3 was also inhibited in a dose dependant manner, although up to 57% less, as compared to inhibition of native NL4-3, indicating post-entry interferences. Conclusion This is the first report demonstrating S. fusiforme to be a potent inhibitor of highly productive HIV-1 infection and replication in T cells, in primary human macrophages, microglia, and astrocytes. Results with VSV/NL4-3 infection, suggest inhibition

  6. Inhibitions and implications associated with celebrity participation in social marketing programs focusing on HIV prevention: an exploratory research

    OpenAIRE

    Beatriz Casais; Proença, João F.

    2010-01-01

    This paper discusses celebrity participation in social marketing programs focusing on public health, especially on HIV programs. The research identifies the inhibitions of celebrity people and implications that this involvement may have upon their lives. The paper analysis data from in-depth interviews made to twenty-seven Portuguese celebrities from arts, show business and sports. The results show absence of prejudice against HIV. Famous people feel motivated to join public health and HIV ca...

  7. Biochemical pathways in the antiatherosclerotic effect of berberine

    Institute of Scientific and Technical Information of China (English)

    GUO Yi; WANG Qi-zhang; LI Fang-ming; JIANG Xin; ZUO Yan-fang; WANG Ling

    2008-01-01

    Background This study investigated the inhibitory effect of berberine(BBR)on lipopolysaccharide(LPS)induced cyclooxygenase-2(COX-2)expression via the mitogen activated protein kinase(MAPK)signalling cascade pathways in human peripheral blood monocytes(PBMC).Methods PBMC from whole blood were isolated and cultured for uD 10 24 hours after division into 5 groups treated with LPS,LPS+BBR 25 μmol/L,LPS+BBR 50 μmol/L or LPS+BBR 100 μmol/L and untreated.Monocytes were extracted for RT-PCR and Western blot analyses to examine COX-2 mRNA and protein activated expression of p38 mitogen activated protein kinase(p38MAPK),Jun N-terminal kinase(JNK)and extracellular regulated kinases 1/2(ERK1/2)signalling pathways.Results COX-2 mRNA and protein expression decreased to a minimum at 12 hours after BBR treatment fP<0.05).With the increasing concentration of BBR treatment,the COX-2 expression decreased progressively(P<0.01).With BBR treatment for 6,12 or 24 hours at three doses,ERK1/2 protein expression was significantly inhibited.For the JNK pathway,only with the treatment of BBR at the concentration of 100 μmol/L was JNK protein expression inhibited compared with the LPS stimulation group(P<0.01).Irrespective of the BBR concentration,no difference was shown between the BBR group and the LPS group for p38MAPK protein expression.Human monocytes COX-2 mRNA,by RT-PCR,and protein expression,by Western blot analysis,were inhibited when incubated with PD98059,SP6001 25 and SB203580 (P<0.05).Conclusions Berberine inhibits COX-2 expression via the ERK1/2 signalling pathway and,possibly,at a high dosage via the JNK pathway.P38MAPK may have no relationship with the effect of BBR in PBMC.Berberine inhibited COX-2 mRNA and protein expression in a dose dependent manner and suppressed COX-2 expression to a minimal level after 12 hours of berberine treatment.

  8. Berberine Decreased Inducible Nitric Oxide Synthase mRNA Stability through Negative Regulation of Human Antigen R in Lipopolysaccharide-Induced Macrophages.

    Science.gov (United States)

    Shin, Ji-Sun; Choi, Hye-Eun; Seo, SeungHwan; Choi, Jung-Hye; Baek, Nam-In; Lee, Kyung-Tae

    2016-07-01

    Berberine, a major isoquinoline alkaloid found in medicinal herbs, has been reported to possess anti-inflammatory effects; however, the underlying mechanisms responsible for its actions are poorly understood. In the present study, we investigated the inhibitory effects of berberine and the molecular mechanisms involved in lipopolysaccharide (LPS)-treated RAW 264.7 and THP-1 macrophages and its effects in LPS-induced septic shock in mice. In both macrophage cell types, berberine inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) protein expression, but it had no effect on iNOS mRNA transcription. Suppression of LPS-induced iNOS protein expression by berberine occurred via a human antigen R (HuR)-mediated reduction of iNOS mRNA stability. Molecular data revealed that the suppression on the LPS-induced HuR binding to iNOS mRNA by berberine was accompanied by a reduction in nucleocytoplasmic HuR shuttling. Pretreatment with berberine reduced LPS-induced iNOS protein expression and the cytoplasmic translocation of HuR in liver tissues and increased the survival rate of mice with LPS-induced endotoxemia. These results show that the suppression of iNOS protein expression by berberine under LPS-induced inflammatory conditions is associated with a reduction in iNOS mRNA stability resulting from inhibition of the cytoplasmic translocation of HuR. PMID:27189969

  9. Inhibition of HIV-1 by curcumin A, a novel curcumin analog

    Directory of Open Access Journals (Sweden)

    Kumari N

    2015-09-01

    Full Text Available Namita Kumari,1,2,* Amol A Kulkarni,3,* Xionghao Lin,2 Charlee McLean,1 Tatiana Ammosova,2 Andrey Ivanov,2 Maria Hipolito,1 Sergei Nekhai,2 Evaristus Nwulia11Translational Neuroscience Laboratory, 2Department of Medicine, Center for Sickle Cell Disease, College of Medicine, 3College of Pharmacy, Howard University, Washington, DC, USA*These authors contributed equally to this study Abstract: Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM T cells (IC50=0.7 µM. But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 µM compared to curcumin (IC50=12 µM. Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that

  10. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Wen Tan

    2015-01-01

    Full Text Available Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  11. Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling

    Science.gov (United States)

    Guo, Junping; Wang, Lijun; Wang, Linyao; Qian, Senmi; Fang, Jie

    2016-01-01

    Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS-) induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the molecular mechanisms mediating the effect. The effects of berberine on LPS-induced cell apoptosis and viability were measured with 5-ethynyl-2′-deoxyuridine staining, flow cytometry, and Cell Counting Kit-8 assays. The expression and/or activation of proapoptotic and antiapoptotic proteins or signaling pathways, including caspase-3, poly(ADP-ribose) polymerase, myeloid cell leukemia-1 (MCL-1), p38 mitogen-activated protein kinase, C-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase, were determined with western blotting. The malondialdehyde levels, superoxide dismutase (SOD) activity, and production of proinflammatory cytokines were measured with enzyme-linked immunosorbent assays. The results demonstrated that berberine pretreatment protected HUVECs from LPS-induced apoptosis, attenuated LPS-induced injury, inhibited LPS-induced JNK phosphorylation, increased MCL-1 expression and SOD activity, and decreased proinflammatory cytokine production. The effects of berberine on LPS-treated HUVECs were prevented by SP600125, a JNK-specific inhibitor. Thus, berberine might be a potential candidate in the treatment of endothelial cell injury-related vascular diseases. PMID:27478481

  12. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity.

    Directory of Open Access Journals (Sweden)

    Ning Sun

    Full Text Available Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ.

  13. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    David J Stanley

    2012-12-01

    Full Text Available Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV. HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G. Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.

  14. Efficient Gene Transfer Mediated by HIV-1-based Defective Lentivector and Inhibition of HIV-1 Replication

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lentiviral vectors have drawn considerable attention recently and show great promise to become important delivery vehicles for future gene transfer manipulation. In the present study we have optimized a protocol for preparation of human immunodeficiency virus type-1 (HIV-1)-based defective lentiviral vectors (DLV) and characterized these vectors in terms of their transduction of different cells. Transient co-transfection of 293T packaging cells with DNA plasmids encoding lentiviral vector constituents resulted in production of high-titer DLV (0.5-1.2 × 107IU/mL), which can be further concentrated over 100-fold through a single step ultracentrifugation. These vectors were capable of transducing a variety of cells from both primate and non-primate sources and high transduction efficiency was achieved using concentrated vectors. Assessment of potential generation of RCV revealed no detection of infection by infectious particles in DLV-transduced CEM, SupT-1 and MT-2 cells. Long-term culture of transduced cells showed a stable expression of transgenes without apparent alteration in cellular morphology and growth kinetics. Vector mobilization to untransduced cells mediated by wild-type HIV-1 infection was confirmed in this test. Challenge of transduced human T-lymphocytes with wild-type HIV-1 showed these cells are totally resistant to the viral infection. Considering the effective gene transfer and stable gene expression, safety and anti-HIV activity, these DLV vectors warrant further exploration for their potential use as a gene transfer vehicle in the development of gene therapy protocols.

  15. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Directory of Open Access Journals (Sweden)

    Gregory Upert

    2012-01-01

    Full Text Available Human immunodeficiency virus-1 (HIV-1 replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR, to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP cation-based vectors that efficiently deliver nucleotide analogs (PNAs into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins.

  16. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available BACKGROUND: HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes. CONCLUSION AND SIGNIFICANCE: Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  17. Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition

    OpenAIRE

    Sheik-Khalil, Enas; Bray, Mark-Anthony; Özkaya Sahin, Gülsen; Scarlatti, Gabriella; Jansson, Marianne; Carpenter, Anne E.; Fenyö, Eva Maria

    2014-01-01

    Background Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. Methods Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay. Neutralization of virus particles is measured as a reduction in the number of fluorescent plaques, and inhibition ...

  18. An Alternative and Effective HIV Vaccination Approach Based on Inhibition of Antigen Presentation Attenuators in Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Current efforts to develop HIV vaccines that seek to stimulate immune responses have been disappointing, underscoring the inability of natural immune responses to control HIV-1 infection. Here we tested an alternative strategy to induce anti-HIV immune responses by inhibiting a host's natural immune inhibitor. METHODS AND FINDINGS: We used small interfering RNA (siRNA to inhibit suppressor of cytokine signaling (SOCS 1, a key negative regulator of the JAK/STAT pathway, and investigated the effect of this silencing on the ability of dendritic cells (DCs to induce anti-HIV-1 immunity. We found that SOCS1-silenced DCs broadly induced enhanced HIV-1 envelope (Env-specific CD8(+ cytotoxic T lymphocytes and CD4(+ T helper cells, as well as antibody responses, in mice. Importantly, SOCS1-silenced DCs were more resistant to HIV Env-mediated suppression and were capable of inducing memory HIV Env-specific antibody and T cell responses. SOCS1-restricted signaling, as well as production of proinflammatory cytokines such as interleukin-12 by DCs, play a critical role in regulating the anti-HIV immune response. Furthermore, the potency of HIV DNA vaccination is significantly enhanced by coimmunization with SOCS1 siRNA expressor DNA. CONCLUSIONS: This study demonstrates that SOCS1 functions as an antigen presentation attenuator to control both HIV-1-specific humoral and cellular responses. This study represents the first, to our knowledge, attempt to elicit HIV-specific T cell and antibody responses by inhibiting a host's antigen presentation attenuator, which may open a new and alternative avenue to develop effective therapeutic and prophylactic HIV vaccines.

  19. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    International Nuclear Information System (INIS)

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50s ranging from 0.1 to 7.4 μg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: →Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. →MVCs inhibited infection by T cell line-adapted viruses. →MVCs inhibited infection by primary isolates of HIV-1. →MVCs inhibited Env-mediated membrane fusion.

  20. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  1. Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates.

    Science.gov (United States)

    Sosic, Alice; Sinigaglia, Laura; Cappellini, Marta; Carli, Ilaria; Parolin, Cristina; Zagotto, Giuseppe; Sabatino, Giuseppina; Rovero, Paolo; Fabris, Dan; Gatto, Barbara

    2016-01-20

    The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidyl-anthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved N-terminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA. PMID:26666402

  2. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth.

    Directory of Open Access Journals (Sweden)

    Ting-Fang Lo

    Full Text Available Methionine adenosyltransferase (MAT is the cellular enzyme that catalyzes the synthesis of S-adenosylmethionine (SAM, the principal biological methyl donor and a key regulator of hepatocyte proliferation, death and differentiation. Two genes, MAT1A and MAT2A, encode 2 distinct catalytic MAT isoforms. A third gene, MAT2B, encodes a MAT2A regulatory subunit. In hepatocellular carcinoma (HCC, MAT1A downregulation and MAT2A upregulation occur, known as the MAT1A:MAT2A switch. The switch is accompanied with an increasing expression of MAT2B, which results in decreased SAM levels and facilitates cancer cell growth. Berberine, an isoquinoline alkaloid isolated from many medicinal herbs such as Coptis chinensis, has a wide range of pharmacological effects including anti-cancer effects. Because drug-induced microRNAs have recently emerged as key regulators in guiding their pharmacological effects, we examined whether microRNA expression is differentially altered by berberine treatment in HCC. In this study, we used microRNA microarrays to find that the expression level of miR-21-3p (previously named miR-21* increased after berberine treatment in the HepG2 human hepatoma cell line. To predict the putative targets of miR-21-3p, we integrated the gene expression profiles of HepG2 cells after berberine treatment by comparing with a gene list generated from sequence-based microRNA target prediction software. We then confirmed these predictions through transfection of microRNA mimics and a 3' UTR reporter assay. Our findings provide the first evidence that miR-21-3p directly reduces the expression of MAT2A and MAT2B by targeting their 3' UTRs. In addition, an overexpression of miR-21-3p increased intracellular SAM contents, which have been proven to be a growth disadvantage for hepatoma cells. The overexpression of miR-21-3p suppresses growth and induces apoptosis in HepG2 cells. Overall, our results demonstrate that miR-21-3p functions as a tumor suppressor

  3. Protoscolecidal Effect of Berberis vulgaris Root Extract and Its Main Compound, Berberine in Cystic Echinococcosis.

    Directory of Open Access Journals (Sweden)

    Hossein Mahmoudvand

    2014-12-01

    Full Text Available Cystic echinococcosis (CE, a zoonotic parasitic infection caused by the metacestode (larvae stage of dog tapeworm Echinococcus granulosus and recognized as a major economic and public health concern in the world. This study aimed to investigate the in vitro scolicidal effect of methanolic extract of Berberis vulgaris L. roots and its main compound, berberine against protoscoleces of hydatid cysts.For this purpose, protoscoleces were aseptically aspirated from sheep livers having hydatid cysts. Various concentrations of the methanolic extract (0.25-2 mg/ml and berberine (0.062- 0.5 mg/ml were used for 5 to 30 min. Viability of protoscoleces was confirmed by eosin exclusive test.In the present study, all of the various concentrations of the B. vulgaris methanolic extract (0.25, 0.5, 1 and 2 mg/ml and berberine (0.062, 0.125, 0.25 and 0.5 mg/ml revealed significant (P<0.05 scolicidal effects against protoscoleces of E. granulosus in a dose-dependent manner. Both berberine and methanolic extract exhibited 100% inhibition against protoscoleces of E. granulosus at the concentration of 2.0 and 0.5 mg/ml after 10 min incubation, respectively.According to the results, both B. vulgaris methanolic extract and berberine alone demonstrated high scolicidal activities against protoscoleces of hydatid cysts in low concentration and short exposure time on in vitro model. However, in vivo efficacy of B. vulgaris and berberine also requires to be evaluated using an animal model with hydatid infection.

  4. Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice.

    Science.gov (United States)

    Zhang, Zhijie; Li, Xiuhua; Li, Fayin; An, Lijun

    2016-09-01

    Postoperative cognitive dysfunction (POCD) is a significant cause of morbidity after surgery, especially for the elderly. Accumulating evidence has demonstrated that neuroinflammation plays a key role in the pathogenesis of POCD. Thus, we hypothesized that berberine, an isoquinoline alkaloid with anti-inflammatory effects, could improve surgery-induced cognitive impairment. Twenty-month-old male C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. For the interventional studies, mice received berberine (10mg/kg) or vehicle intraperitoneally. For the in vitro study, we examined the effects of berberine on lipopolysaccharide (LPS)-induced inflammatory mediators by cultured BV2 cells. Behavioral tests, expressions of IBA1, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were performed at the indicated time points. In the present study, we showed that surgery impaired the contextual fear memory, as evidenced by the significantly decreased freezing time to the context. This behavioral change coincided with marked increases in IBA1, TNF-α, IL-1β, and IL-6 in the prefrontal cortex and hippocampus only at 24h but not 7 d after surgery. In BV2 cells, LPS induced significantly increased TNF-α and IL-1β expressions. Notably, berberine treatment rescued surgery-induced cognitive impairment and inhibited the release of IBA1, IL-1β, and IL-6 in the hippocampus. In line with the in vivo study, berberine treatment suppressed LPS-stimulated production of TNF-α and IL-1β in BV2 cells. In conclusion, our study suggests that berberine could alleviate POCD by suppressing neuroinflammation in aged mice. PMID:27376853

  5. Inhibition of human immunodeficiency virus type 1 (HIV-1) nuclear import via Vpr-Importin α interactions as a novel HIV-1 therapy

    International Nuclear Information System (INIS)

    The development of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus (HIV) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. One such target is the interaction between Vpr, one of the accessory gene products of HIV-1 and Importin α, which is crucial, not only for the nuclear import of Vpr, but also for HIV-1 replication in macrophages. We have identified a potential parent compound, hematoxylin, which suppresses Vpr-Importin α interaction, thereby inhibiting HIV-1 replication in a Vpr-dependent manner. Analysis by real-time PCR demonstrated that hematoxylin specifically inhibited nuclear import step of pre-integration complex. Thus, hematoxylin is a new anti-HIV-1 inhibitor that targets the nuclear import of HIV-1 via the Vpr-Importin α interaction, suggesting that a specific inhibitor of the interaction between viral protein and the cellular factor may provide a new strategy for HIV-1 therapy.

  6. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Janela [Department of Laboratory Medicine, University of Washington, Seattle, WA (United States); Margineantu, Daciana H. [Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Sweet, Ian R. [Department of Medicine (Division of Metabolism, Endocrinology, and Nutrition), University of Washington, Seattle, WA (United States); Polyak, Stephen J., E-mail: polyak@uw.edu [Department of Laboratory Medicine, University of Washington, Seattle, WA (United States); Department of Global Health, University of Washington, Seattle, WA (United States)

    2014-01-20

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry. - Highlights: • Silibinin (SbN) and Legalon-SIL (SIL) are cytoprotective mixtures of natural products. • SbN and SIL reduce T cell oxidative phosphorylation and glycolysis in vitro. • SIL but not SbN blocks entry of multiple HIV isolates into T cells in vitro. • SIL's suppression of HIV appears independent of its effects on T cell metabolism. • Metabolic effects of SIL and SbN may be relevant in inflammatory diseases.

  7. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism

    International Nuclear Information System (INIS)

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry. - Highlights: • Silibinin (SbN) and Legalon-SIL (SIL) are cytoprotective mixtures of natural products. • SbN and SIL reduce T cell oxidative phosphorylation and glycolysis in vitro. • SIL but not SbN blocks entry of multiple HIV isolates into T cells in vitro. • SIL's suppression of HIV appears independent of its effects on T cell metabolism. • Metabolic effects of SIL and SbN may be relevant in inflammatory diseases

  8. Virtual screening models for prediction of HIV-1 RT associated RNase H inhibition.

    Directory of Open Access Journals (Sweden)

    Vasanthanathan Poongavanam

    Full Text Available The increasing resistance to current therapeutic agents for HIV drug regiment remains a major problem for effective acquired immune deficiency syndrome (AIDS therapy. Many potential inhibitors have today been developed which inhibits key cellular pathways in the HIV cycle. Inhibition of HIV-1 reverse transcriptase associated ribonuclease H (RNase H function provides a novel target for anti-HIV chemotherapy. Here we report on the applicability of conceptually different in silico approaches as virtual screening (VS tools in order to efficiently identify RNase H inhibitors from large chemical databases. The methods used here include machine-learning algorithms (e.g. support vector machine, random forest and kappa nearest neighbor, shape similarity (rapid overlay of chemical structures, pharmacophore, molecular interaction fields-based fingerprints for ligands and protein (FLAP and flexible ligand docking methods. The results show that receptor-based flexible docking experiments provides good enrichment (80-90% compared to ligand-based approaches such as FLAP (74%, shape similarity (75% and random forest (72%. Thus, this study suggests that flexible docking experiments is the model of choice in terms of best retrieval of active from inactive compounds and efficiency and efficacy schemes. Moreover, shape similarity, machine learning and FLAP models could also be used for further validation or filtration in virtual screening processes. The best models could potentially be use for identifying structurally diverse and selective RNase H inhibitors from large chemical databases. In addition, pharmacophore models suggest that the inter-distance between hydrogen bond acceptors play a key role in inhibition of the RNase H domain through metal chelation.

  9. Clinical trial of berberine in acute watery diarrhoea.

    OpenAIRE

    Khin-Maung-U; Myo-Khin; Nyunt-Nyunt-Wai; Aye-Kyaw; Tin-U

    1985-01-01

    Four hundred adults presenting with acute watery diarrhoea were entered into a randomised, placebo controlled, double blind clinical trial of berberine, tetracycline, and tetracycline and berberine to study the antisecretory and vibriostatic effects of berberine. Of 185 patients with cholera, those given tetracycline or tetracycline and berberine had considerably reduced volume and frequency of diarrhoeal stools, duration of diarrhoea, and volumes of required intravenous and oral rehydration ...

  10. Berberine Improves Glucose Metabolism through Induction of Glycolysis

    OpenAIRE

    Yin, Jun; Gao, Zhanguo; Liu, Dong; Liu, Zhijun; Ye, Jianping

    2007-01-01

    Berberine, a botanical alkaloid used to control blood glucose in type 2 diabetes in China, has been reported to activate AMPK recently. However, it is not clear how AMPK is activated by berberine. In this study, activity and action mechanism of berberine were investigated in vivo and in vitro. In dietary obese rats, berberine increased insulin sensitivity after five week administration. Fasting insulin and HOMA-IR were decreased by 46% and 48% in the rats, respectively. In cell lines includin...

  11. HIV-1 Nef Inhibits Ruffles, Induces Filopodia, and Modulates Migration of Infected Lymphocytes▿

    Science.gov (United States)

    Nobile, Cinzia; Rudnicka, Dominika; Hasan, Milena; Aulner, Nathalie; Porrot, Françoise; Machu, Christophe; Renaud, Olivier; Prévost, Marie-Christine; Hivroz, Claire; Schwartz, Olivier; Sol-Foulon, Nathalie

    2010-01-01

    The HIV-1 Nef protein is a pathogenic factor modulating the behavior of infected cells. Nef induces actin cytoskeleton changes and impairs cell migration toward chemokines. We further characterized the morphology, cytoskeleton dynamics, and motility of HIV-1-infected lymphocytes. By using scanning electron microscopy, confocal immunofluorescence microscopy, and ImageStream technology, which combines flow cytometry and automated imaging, we report that HIV-1 induces a characteristic remodeling of the actin cytoskeleton. In infected lymphocytes, ruffle formation is inhibited, whereas long, thin filopodium-like protrusions are induced. Cells infected with HIV with nef deleted display a normal phenotype, and Nef expression alone, in the absence of other viral proteins, induces morphological changes. We also used an innovative imaging system to immobilize and visualize living individual cells in suspension. When combined with confocal “axial tomography,” this technique greatly enhances three-dimensional optical resolution. With this technique, we confirmed the induction of long filopodium-like structures in unfixed Nef-expressing lymphocytes. The cytoskeleton reorganization induced by Nef is associated with an important impairment of cell movements. The adhesion and spreading of infected cells to fibronectin, their spontaneous motility, and their migration toward chemokines (CXCL12, CCL3, and CCL19) were all significantly decreased. Therefore, Nef induces complex effects on the lymphocyte actin cytoskeleton and cellular morphology, which likely impacts the capacity of infected cells to circulate and to encounter and communicate with bystander cells. PMID:20015995

  12. Stem cell gene therapy for HIV: strategies to inhibit viral entry and replication.

    Science.gov (United States)

    DiGiusto, David L

    2015-03-01

    Since the demonstration of a cure of an HIV+ patient with an allogeneic stem cell transplant using naturally HIV-resistant cells, significant interest in creating similar autologous products has fueled the development of a variety of "cell engineering" approaches to stem cell therapy for HIV. Among the more well-studied strategies is the inhibition of viral entry through disruption of expression of viral co-receptors or through competitive inhibitors of viral fusion with the cell membrane. Preclinical evaluation of these approaches often starts in vitro but ultimately is tested in animal models prior to clinical implementation. In this review, we trace the development of several key approaches (meganucleases, short hairpin RNA (shRNA), and fusion inhibitors) to modification of hematopoietic stem cells designed to impart resistance to HIV to their T-cell and monocytic progeny. The basic evolution of technologies through in vitro and in vivo testing is discussed as well as the pros and cons of each approach and how the addition of postentry inhibitors may enhance the overall antiviral efficacy of these approaches. PMID:25578054

  13. Berberine as a natural source inhibitor for mild steel in 1 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Li Yan [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Zhao Peng [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China) and Graduated School, Chinese Academy of Sciences, Beijing 100039 (China)]. E-mail: alfred9807@hotmail.com; Liang Qiang [Chemistry Department, Normal College of Qingdao University, Qingdao 266071 (China); Hou Baorong [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)

    2005-12-15

    Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H{sub 2}SO{sub 4} was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H{sub 2}SO{sub 4}. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 x 10{sup -4} M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H{sub 2}SO{sub 4} containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.

  14. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Mathiesen, Lars Reinhardt;

    1991-01-01

    Monoclonal antibodies (MAbs) against the alpha- and beta-chain of lymphocyte-associated antigen-1 (LFA-1) were examined for inhibition of HIV-1 infection in vitro. Infection of the T cell line MT4 and the monocytic cell line U937 by isolates HTLVIIIB and SSI-002, respectively was inhibited in a...

  15. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Mathiesen, Lars Reinhardt;

    1991-01-01

    Monoclonal antibodies (MAbs) against the alpha- and beta-chain of lymphocyte-associated antigen-1 (LFA-1) were examined for inhibition of HIV-1 infection in vitro. Infection of the T cell line MT4 and the monocytic cell line U937 by isolates HTLVIIIB and SSI-002, respectively was inhibited...

  16. A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement

    Directory of Open Access Journals (Sweden)

    Tomlinson Stephen

    2010-06-01

    Full Text Available Abstract Background The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV, however, possesses several mechanisms to evade complement-mediated lysis (CoML and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. Presentation of the hypothesis Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively linked to a complement-activating human IgG1 Fc domain ((anti-gp120 × anti-C3d-Fc, can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. Testing the hypothesis Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 × anti-C3d-Fc proteins. As a control group, viruses

  17. Methamphetamine Inhibits HIV-1 Replication in CD4+ T Cells by Modulating Anti–HIV-1 miRNA Expression

    OpenAIRE

    Mantri, Chinmay K.; Mantri, Jyoti V.; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamph...

  18. Phenyl-1-Pyridin-2yl-Ethanone-Based Iron Chelators Increase IκB-α Expression, Modulate CDK2 and CDK9 Activities, and Inhibit HIV-1 Transcription

    Science.gov (United States)

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash

    2014-01-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  19. LEDGIN-mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV.

    Science.gov (United States)

    Vranckx, Lenard S; Demeulemeester, Jonas; Saleh, Suha; Boll, Annegret; Vansant, Gerlinde; Schrijvers, Rik; Weydert, Caroline; Battivelli, Emilie; Verdin, Eric; Cereseto, Anna; Christ, Frauke; Gijsbers, Rik; Debyser, Zeger

    2016-06-01

    Persistence of latent, replication-competent Human Immunodeficiency Virus type 1 (HIV-1) provirus is the main impediment towards a cure for HIV/AIDS (Acquired Immune Deficiency Syndrome). Therefore, different therapeutic strategies to eliminate the viral reservoirs are currently being explored. We here propose a novel strategy to reduce the replicating HIV reservoir during primary HIV infection by means of drug-induced retargeting of HIV integration. A novel class of integration inhibitors, referred to as LEDGINs, inhibit the interaction between HIV integrase and the LEDGF/p75 host cofactor, the main determinant of lentiviral integration site selection. We show for the first time that LEDGF/p75 depletion hampers HIV-1 reactivation in cell culture. Next we demonstrate that LEDGINs relocate and retarget HIV integration resulting in a HIV reservoir that is refractory to reactivation by different latency-reversing agents. Taken together, these results support the potential of integrase inhibitors that modulate integration site targeting to reduce the likeliness of viral rebound. PMID:27428435

  20. In Vitro Inhibitory Effect of Berberis vulgaris (Berberidaceae and Its Main Component, Berberine against Different Leishmania Species.

    Directory of Open Access Journals (Sweden)

    Hossein Mahmoudvand

    2014-03-01

    Full Text Available Leishmaniasis has been identified as a major public health problem in tropical and sub-tropical countries. The present study was aimed to investigate antileishmanial effects of various extracts of Berberis vulgaris also its active compoenent, berberine against Leishmania tropica and L. infantum species on in vitro experiments.In this study in vitro antileishmanial activity of various extracts of B. vulgaris also its active compoenent, berberine against promastigote and amastigote stages of L. tropica and L. infantum was evaluated, using MTT assay and in a macrophage model, respectively. Furthermore, infectivity rate and cytotoxicity effects of B. vulgaris and berberine in murine macrophage cells were investigated.The findings of optical density (OD and IC50 indicated that B. vulgaris particulary berberine significantly (P<0.05 inhibited the growth rate of promastigote stage of L.tropica and L.infantum in comparison to meglumine antimoniate (MA. In addition, B. vulgaris and berberine significantly (P<0.05 decreased the mean number of amastigotes in each macrophage as compared with positive control. In the evaluation of cytotoxicity effects, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages. Results also showed that when parasites were pre-incubated with B. vulgaris their ability to infect murine macrophages was significantly decreased.B.vulgaris particularly berberine exhibited potent in vitro leishmanicidal effects against L. tropica and L.infantum. Further works are required to evaluate the antileishmanial effects of B.vulgaris on Leishmania species using clinical settings.

  1. Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors.

    Science.gov (United States)

    Duan, Haichuan; Hu, Tao; Foti, Robert S; Pan, Yongmei; Swaan, Peter W; Wang, Joanne

    2015-11-01

    Plasma membrane monoamine transporter (PMAT) is a major uptake-2 monoamine transporter that shares extensive substrate and inhibitor overlap with organic cation transporters 1-3 (OCT1-3). Currently, there are no PMAT-specific inhibitors available that can be used in in vitro and in vivo studies to differentiate between PMAT and OCT activities. In this study, we showed that IDT307 (4-(4-(dimethylamino)phenyl)-1-methylpyridinium iodide), a fluorescent analog of 1-methyl-4-phenylpyridinium (MPP+), is a transportable substrate for PMAT and that IDT307-based fluorescence assay can be used to rapidly identify and characterize PMAT inhibitors. Using the fluorescent substrate-based assays, we analyzed the interactions of eight human immunodeficiency virus (HIV) protease inhibitors (PIs) with human PMAT and OCT1-3 in human embryonic kidney 293 (HEK293) cells stably transfected with individual transporters. Our data revealed that PMAT and OCTs exhibit distinct sensitivity and inhibition patterns toward HIV PIs. PMAT is most sensitive to PI inhibition whereas OCT2 and OCT3 are resistant. OCT1 showed an intermediate sensitivity and a distinct inhibition profile from PMAT. Importantly, lopinavir is a potent PMAT inhibitor and exhibited >120 fold selectivity toward PMAT (IC₅₀ = 1.4 ± 0.2 µM) over OCT1 (IC₅₀ = 174 ± 40 µM). Lopinavir has no inhibitory effect on OCT2 or OCT3 at maximal tested concentrations. Lopinavir also exhibited no or much weaker interactions with uptake-1 monoamine transporters. Together, our results reveal that PMAT and OCTs have distinct specificity exemplified by their differential interaction with HIV PIs. Further, we demonstrate that lopinavir can be used as a selective PMAT inhibitor to differentiate PMAT-mediated monoamine and organic cation transport from those mediated by OCT1-3. PMID:26285765

  2. Characterization of Berberine on Human Cancer Cells in Culture

    OpenAIRE

    SZETO, Savio

    2002-01-01

    Berberine originates from a Chinese herbal medicine and possesses a wide variety of anti-cancer activities. In this study, the killing effect of berberine on nasopharyngeal carcinoma cells (NPC/HK1) was investigated. The trypan blue exclusion assay was used to assess the cytotoxic effect of berberine in this cell line. Berberine, at 5-200 µM, induced cell death in a dose-dependent manner. Treatment of cells with 200 µM berberine for 5 h yielded a lethal dose of 50% (LD50). The Comet Assay was...

  3. Inhibition of replication of fresh HIV type 1 patient isolates by a polypurine tract-specific self-complementary oligodeoxynucleotide

    OpenAIRE

    Jendis, J; Strack, B; Volkmann, S; Böni, J; Mölling, K.

    1996-01-01

    A previously described self-complementary oligodeoxynucleotide termed triplex-forming oligodeoxynucleotide (TFO A), 54 bases in length, designed against the polypurine tract of HIV-1 RNA, inhibited viral replication at a 1 to 3 microM concentration in acutely infected cells, whereas antisense and scrambled sequence oligodeoxynucleotides were ineffective. Three HIV-1 viral isolates from patients of clinical categories A1, B, and C3 were transmitted to peripheral blood mononuclear cells and tes...

  4. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    Science.gov (United States)

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  5. Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase

    Directory of Open Access Journals (Sweden)

    Stefan G. Sarafianos

    2010-02-01

    Full Text Available HIV-1 Reverse Transcriptase (HIV-1 RT has been the target of numerous approved anti-AIDS drugs that are key components of Highly Active Anti-Retroviral Therapies (HAART. It remains the target of extensive structural studies that continue unabated for almost twenty years. The crystal structures of wild-type or drug-resistant mutant HIV RTs in the unliganded form or in complex with substrates and/or drugs have offered valuable glimpses into the enzyme’s folding and its interactions with DNA and dNTP substrates, as well as with nucleos(tide reverse transcriptase inhibitor (NRTI and non-nucleoside reverse transcriptase inhibitor (NNRTIs drugs. These studies have been used to interpret a large body of biochemical results and have paved the way for innovative biochemical experiments designed to elucidate the mechanisms of catalysis and drug inhibition of polymerase and RNase H functions of RT. In turn, the combined use of structural biology and biochemical approaches has led to the discovery of novel mechanisms of drug resistance and has contributed to the design of new drugs with improved potency and ability to suppress multi-drug resistant strains.

  6. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhaojian; Liu Qiao; Xu Bing; Wu Jingjing [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Guo Chun; Zhu Faliang [Institute of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Yang Qiaozi [Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States); Gao Guimin [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Gong Yaoqin [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China)], E-mail: yxg8@sdu.edu.cn; Shao Changshun [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)], E-mail: shao@biology.rutgers.edu

    2009-03-09

    Alkaloid berberine is widely used for the treatment of diarrhea and other diseases. Many laboratory studies showed that it exhibits anti-proliferative activity against a wide spectrum of cancer cells in culture. In this report we studied the mechanisms underlying the inhibitory effects of berberine on human osteosarcoma cells and on normal osteoblasts. The inhibition was largely attributed to cell cycle arrest at G1 and G2/M, and to a less extent, to apoptosis. The G1 arrest was dependent on p53, as G1 arrest was abolished in p53-deficient osteosarcoma cells. The induction of G1 arrest and apoptosis was accompanied by a p53-dependent up-regulation of p21 and pro-apoptotic genes. However, the G2/M arrest could be induced by berberine regardless of the status of p53. Interestingly, DNA double-strand breaks, as measured by the phosphorylation of H2AX, were remarkably accumulated in berberine-treated cells in a dose-dependent manner. Thus, one major mechanism by which berberine exerts its growth-inhibitory effect is to inflict genomic lesions on cells, which in turn trigger the activation of p53 and the p53-dependent cellular responses including cell cycle arrest and apoptosis.

  7. Inhibition of certain strains of HIV-1 by cell surface polyanions in the form of cholesterol-labeled oligonucleotides

    International Nuclear Information System (INIS)

    Cholesterol-labeled oligonucleotides were found several years ago to inhibit HIV-1 in tissue culture at nanomolar concentrations. We present evidence that this is mainly due to an electrostatic interaction between polyanionic oligonucleotide concentrated at the cell surface and a positively charged region in the V3 loop of the HIV-1 envelope protein. When added to tissue culture, cholesterol-labeled oligonucleotides became concentrated at the plasma membrane and potently inhibited virus entry and cell fusion mediated by the envelope protein of some X4 strains of HIV-1, but had little effect on fusion mediated by R5 strains of HIV-1, amphotropic MLV envelope protein, or VSV-G protein. Noncholesterol-labeled oligonucleotides did not bind to the cell surface or inhibit fusion. The pattern of susceptibility to cholesterol-labeled oligonucleotides among HIV-1 strains was the same as reported for nonmembrane-associating polyanions such as dextran sulfate, but the cholesterol-labeled oligonucleotides were effective at lower concentrations. Substitution of a basic 33 amino acid V3 loop sequence from the envelope protein of a resistant strain into a susceptible strain made the envelope protein resistant to inhibition. Inhibition by cholesterol-labeled oligonucleotides was abrogated by the polycation DEAE-dextran. Cholesterol-labeled oligonucleotides bound to nonraft regions of the plasma membrane and did not inhibit HIV virus binding to cells. Many infectious agents first associate with target cells via relatively nonspecific charge interactions; our data suggest that molecules that combine a membrane-targeting motif with multiple negative charges might be useful to modify these interactions

  8. [The effect of berberine administration of evaluation of the functional state of rat liver after ligation of common bile duct].

    Science.gov (United States)

    Zverinskiĭ, I V; Mel'nichenko, N G; Poplavskiĭ, V A; Sut'ko, I P; Telegin, P G; Shliakhtun, A G

    2013-01-01

    On the eighth day after ligation of the common bile duct in rats a significant increase in the serum content of total lipids, cholesterol bilirubin and ALT, alkaline phosphatase, and gamma-glutamyltransferase was observed. In the microsomal fraction there was a marked decrease in the content and activity of microsomal monooxygenases. Introperitoneal injection of berberine (10 mg/kg) for 6 days caused a partial normalization of permeability of hepatocytes plasma membranes and activity microsomal flavin-containing monooxygenases. It is suggested that berberine is a substrate and inducer of flavin-containing monooxygenases. Membrane-stabilizing effect of berberine is probably realized at the level of inhibition of prooxidant status of liver cells. PMID:23650726

  9. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny.

    Science.gov (United States)

    Sabino Cunha, Marcela; Lima Sampaio, Thatiane; Peterlin, B Matija; Jesus da Costa, Luciana

    2016-01-01

    Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity. PMID:27399760

  10. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny

    Directory of Open Access Journals (Sweden)

    Marcela Sabino Cunha

    2016-07-01

    Full Text Available Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz, increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity.

  11. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    Institute of Scientific and Technical Information of China (English)

    Jing-Pin Lin; Jai-Sing Yang; Jau-Hong Lee; Wen-Tsong Hsieh; Jing-Gung Chung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action.METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting.RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis.CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.

  12. HIV-mediated immunodepression: in vitro inhibition of T-lymphocyte proliferative response by ultraviolet-inactivated virus

    International Nuclear Information System (INIS)

    In order to assess whether the human retrovirus HIV, like other animal retroviruses, is endowed with intrinsic immunosuppressive activity, we studied the effects of noninfectious, uv-irradiated virus on in vitro lymphocyte function. uvHIV preparations inhibited T-cell proliferation to mitogens and alloantigens, as well as mitogen-driven IL-2 production. The inhibitory effect, which was not exerted by uv-irradiated HTLV-I, was apparently not due to a decrease in cell viability and was likely associated with thermoresistant viral component(s). The suppression proved to be selective for T-cell responses, while sparing other lymphocyte functions, such as the B-cell proliferative response to a selective B-cell mitogen. The inhibitory effect of uvHIV was not counteracted by a substantial reduction in the number of monocytes or by indomethacin. Moreover, IL-1 production by monocytes was not affected upon virus incubation. On the other hand, the proliferative response of both CD4+ and CD8+ T-cell clones was inhibited by uvHIV, suggesting that T cells represent the actual target for the inhibitory effect. Although a sizeable decrease in IL-2 production was observed following uvHIV incubation, exogenous IL-2 was not capable of reversing the virus-induced suppression of the proliferation. The possibility that the immunosuppressive activity of noninfectious HIV contributes to the T-cell defect in infected patients by mechanisms other than the cytopathic effect on CD4+ T lymphocytes is discussed

  13. JE-2147: A dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1

    OpenAIRE

    Yoshimura, Kazuhisa; Kato, Ryohei; Yusa, Keisuke; Kavlick, Mark F.; Maroun, Victor; Nguyen, Aline; Mimoto, Tsutomu; Ueno, Takamasa; Shintani, Makoto; Falloon, Judith; Masur, Henry; Hayashi, Hideya; Erickson, John; Mitsuya, Hiroaki

    1999-01-01

    We designed, synthesized, and identified JE-2147, an allophenylnorstatine-containing dipeptide HIV protease inhibitor (PI), which is potent against a wide spectrum of HIV-1, HIV-2, simian immunodeficiency virus, and various clinical HIV-1 strains in vitro. Drug-resistant clinical HIV-1 strains, isolated from seven patients who had failed 9–11 different anti-HIV therapeutics after 32–83 months, had a variety of drug-resistance-related amino acid substitutions and were highly and invariably res...

  14. Effects of berberine on the growth and immune performance in response to ammonia stress and high-fat dietary in blunt snout bream Megalobrama amblycephala.

    Science.gov (United States)

    Chen, Qing-Qing; Liu, Wen-Bin; Zhou, Man; Dai, Yong-Jun; Xu, Chao; Tian, Hong-Yan; Xu, Wei-Na

    2016-08-01

    This study aimed to figure out the effects of berberine on growth performance, immunity, oxidative stress and hepatocyte apoptosis of blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. 320 fish (80.00 ± 0.90 g) were divided randomly into four trial groups (each with four replicates) and fed with 4 diets (normal diet, normal diet with 50 mg/kg berberine, high-fat diet, high-fat diet with 50 mg/kg berberine), respectively. At the end of the feeding trial, ammonia stress test was carried out for 5 days. The result showed the growth performance, immune parameters including plasm acid phosphatase (ACP) activities, lysozyme (LYZ) activities and alternative complement C3 and C4 contents were suppressed in fish fed with high-fat diets but improved in berberine diets compared with control (normal diet). Hepatopancreas oxidative status, the malondialdehyde (MDA), protein carbonyl (PC) and lipid peroxide (LPO) were increased significantly (P < 0.05) when fish were fed with high-fat diets. Berberine could slow the progression of the oxidative stress induced by high-fat through increasing superoxide dismutase (SOD) activities and total sulfydryl (T-SH) levels of fish. And the hepatocyte apoptosis in the high-fat group could also be alleviated by berberine. After the ammonia stress test, the accumulative mortality was extremely (P < 0.05) low in fish fed high-fat diet with berberine compared to other groups. It was concluded berberine as a functional feed additive significantly inhibited the progression of oxidative stress, reduced the apoptosis and enhanced the immunity of fish fed with high-fat diet. PMID:27235371

  15. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1)

    KAUST Repository

    O’Rourke, Aubrie

    2016-02-04

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.

  16. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1

    Directory of Open Access Journals (Sweden)

    Aubrie O’Rourke

    2016-02-01

    Full Text Available The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1 infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH, hymenialdisine (HD, and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.

  17. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1).

    Science.gov (United States)

    O'Rourke, Aubrie; Kremb, Stephan; Bader, Theresa Maria; Helfer, Markus; Schmitt-Kopplin, Philippe; Gerwick, William H; Brack-Werner, Ruth; Voolstra, Christian R

    2016-02-01

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%-40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery. PMID:26861355

  18. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses.

    Science.gov (United States)

    Li, Yan-Hong; Xiao, Hai-Tao; Hu, Dong-Dong; Fatima, Sarwat; Lin, Cheng-Yuan; Mu, Huai-Xue; Lee, Nikki P; Bian, Zhao-Xiang

    2016-08-01

    Ulcerative colitis (UC) is an increasingly common condition particularly in developed countries. The lack of satisfactory treatment has fueled the search for alternative therapeutic strategies. In recent studies, berberine, a plant alkaloid with a long history of medicinal use in Chinese medicine, has shown beneficial effects against animal models of acute UC. However, UC usually presents as a chronic condition with frequent relapse in patients. How berberine will act on chronic UC remains unclear. In the present study, we adopted dextran sulfate sodium (DSS)-induced chronic relapsing colitis model to assess the ameliorating activity of berberine. Colitis was induced by two cycles of 2.0% DSS for five days followed by 14days of drinking water plus a third cycle consisting of DSS only for five days. The colitis mice were orally administered 20mg/kg berberine from day 13 onward for 30days and monitored daily. The body weight, stool consistency, and stool bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and samples were collected and subjected to histological, RT-qPCR, Western blot, and LC-MS analyses. Lymphocytes were isolated from spleens and mesenteric lymph nodes (MLN) and cultured for flow cytometry analysis of IL-17 secretion from CD4(+) cells and the Th17 cell differentiation. Results showed that berberine significantly ameliorated the DAI, colon shortening, colon tissue injury, and reduction of colonic expression of tight junction (TJ) protein ZO-1 and occludin of colitis mice. Notably, berberine treatment pronouncedly reduced DSS-upregulated Th17-related cytokine (IL-17 and ROR-γt) mRNAs in the colon. Furthermore, the mRNA expression of IL-6 and IL-23, and the phosphorylation of STAT3 in colon tissues from DSS-treated mice were pronouncedly inhibited by berberine. Moreover, the up-regulation of IL-17 secretion from CD4(+) cells of spleens and MLNs caused by DSS were significantly

  19. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  20. Inhibition of visna virus replication and cytopathic effect in sheep choroid plexus cell cultures by selected anti-HIV agents.

    Science.gov (United States)

    Thormar, H; Balzarini, J; Debyser, Z; Witvrouw, M; Desmyter, J; De Clercq, E

    1995-05-01

    Several anti-HIV agents were tested against visna virus replication and cytopathic effect (CPE) in sheep choroid plexus cell cultures. Sulphated polysaccharides (i.e., dextran sulphate, pentosan polysulphate and heparin) and plant lectins, which inhibit viral adsorption and fusion, were found to be 10- to 40-fold less active against visna virus than against HIV. Bicyclam derivatives were at least 250-fold less active against visna virus and the highly HIV-1 specific TIBO derivatives were without a significant inhibitory effect on visna virus at subtoxic concentrations. In contrast, several 2',3'-dideoxynucleosides and acyclic nucleoside phosphonate analogues, which inhibit reverse transcription, were found to be very effective inhibitors of visna virus replication and viral CPE in cell culture. PMID:7486958

  1. Lead Screening for HIV-1 Integrase (IN Inhibited by Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available Human immunodeficiency virus causes the acquired immunodeficiency syndrome (AIDS and becomes a serious world-wide problem because of this disease's rapid propagation and incurability. Integrase strand transfer inhibitors (INSTIs supports HIV have rapid drug resistance for antitreatment. Screening the traditional Chinese medicine (TCM database by simulating molecular docking and molecular dynamics may select molecular compounds to inhibit INSTIs against HIV drug resistance. (S-cathinone and (1S,2S-norpseudoephedrine are selected based on structure and ligand-based drugs are designed and then get higher bioactivity predicted score from SVM than Raltegravir and other TCM compounds. The molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions and hydrogen bond variations define the main regions of important amino acids in integrase. In addition to the detection of TCM compound efficacy, we suggest (1S,2S-norpseudoephedrine is better than the others based on the analysis of interaction and the effect on the structural variation.

  2. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation.

    Science.gov (United States)

    Mercenne, Gaëlle; Bernacchi, Serena; Richer, Delphine; Bec, Guillaume; Henriet, Simon; Paillart, Jean-Christophe; Marquet, Roland

    2010-01-01

    The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA and its role in translational repression. Filter binding assays and fluorescence titration curves revealed that Vif tightly binds to hA3G mRNA. Vif overall binding affinity was higher for the 3'UTR than for the 5'UTR, even though this region contained at least one high affinity Vif binding site (apparent K(d) = 27 +/- 6 nM). Several Vif binding sites were identified in 5' and 3'UTRs using RNase footprinting. In vitro translation evidenced that Vif inhibited hA3G translation by two mechanisms: a main time-independent process requiring the 5'UTR and an additional time-dependent, UTR-independent process. Results using a Vif protein mutated in the multimerization domain suggested that the molecular mechanism of translational control is more complicated than a simple physical blockage of scanning ribosomes. PMID:19910370

  3. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    OpenAIRE

    Juan Zhang; Hongju Tang; Ruyuan Deng; Ning Wang; Yuqing Zhang; Yao Wang; Yun Liu; Fengying Li; Xiao Wang; Libin Zhou

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome pro...

  4. NMR studies on antitumor drug candidates, berberine and berberrubine

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Young Wook; Jung, Jin Won; Kang, Mi Ran; Chung, In Kwon; Lee, Weon Tae [Yonsei Univ., Seoul (Korea, Republic of)

    2002-03-01

    Berberine and berberrubine, which display antitumor activity, have also demonstrated distinct enzyme-poisoning activities by stabilizing topoisomerase II-DNA cleavable complexes. The protoberberine berberrubine differs in chemical structure with berberine at only one position, however, it shows a prominent activity different from berberine. Solution structures of berberine and berberrubine determined by NMR spectroscopy are similar, however, the minor structural rearrangement has been observed near 19 methoxy or hydroxyl group. We suggest that the DNA cleavage activities of topoisomerase II poisons could be correlated with both chemical environments and minor structural change together with hydrophobicity of interacting side chains of drugs with DNA molecules.

  5. Two Retroviruses Packaged in One Cell Line can Combined Inhibit the Replication of HIV-1 in TZM-bl Cells

    Institute of Scientific and Technical Information of China (English)

    Zhipin Liang; Zhiyuan Guo; Xin Wang; Xiaohong Kong; Chang Liu

    2012-01-01

    The cellular protein tetherin tethers the HIV-1 viral particles on the cellular membrane to inhibit the replication of HIV-1.However,the HIV-1 accessory protein Vpu counteracts the antiviral function of tetherin.In this study,two retroviral vector plasmids were constructed.One inhibited the vpu gene expression; the other one over-expressed the tetherin.Both retroviral vector plasmids could be packaged in the packaging cell line PT67 to obtain the corresponding retroviruses.The retroviral vector plasmids'functions of tetherin over-expression or vpu-RNAi were detected at the cell level.Retroviral vector plasmids were transfected to PT67 cells at different ratios from 0T3V to 3T0V,and then mixed retroviruses were harvested.The antiviral functions of mixed retroviruses were detected in HIV-1 infected TZM-bl cells.The results showed that packaged mixed retroviruses could repress the replication of HIV-1 in TZM-bl cells.

  6. Abasic phosphorothioate oligomers inhibit HIV-1 reverse transcription and block virus transmission across polarized ectocervical organ cultures.

    Science.gov (United States)

    Fraietta, Joseph A; Mueller, Yvonne M; Lozenski, Karissa L; Ratner, Deena; Boesteanu, Alina C; Hancock, Aidan S; Lackman-Smith, Carol; Zentner, Isaac J; Chaiken, Irwin M; Chung, Suhman; LeGrice, Stuart F J; Snyder, Beth A; Mankowski, Marie K; Jones, Natalie M; Hope, Jennifer L; Gupta, Phalguni; Anderson, Sharon H; Wigdahl, Brian; Katsikis, Peter D

    2014-12-01

    In the absence of universally available antiretroviral (ARV) drugs or a vaccine against HIV-1, microbicides may offer the most immediate hope for controlling the AIDS pandemic. The most advanced and clinically effective microbicides are based on ARV agents that interfere with the earliest stages of HIV-1 replication. Our objective was to identify and characterize novel ARV-like inhibitors, as well as demonstrate their efficacy at blocking HIV-1 transmission. Abasic phosphorothioate 2' deoxyribose backbone (PDB) oligomers were evaluated in a variety of mechanistic assays and for their ability to inhibit HIV-1 infection and virus transmission through primary human cervical mucosa. Cellular and biochemical assays were used to elucidate the antiviral mechanisms of action of PDB oligomers against both lab-adapted and primary CCR5- and CXCR4-utilizing HIV-1 strains, including a multidrug-resistant isolate. A polarized cervical organ culture was used to test the ability of PDB compounds to block HIV-1 transmission to primary immune cell populations across ectocervical tissue. The antiviral activity and mechanisms of action of PDB-based compounds were dependent on oligomer size, with smaller molecules preventing reverse transcription and larger oligomers blocking viral entry. Importantly, irrespective of molecular size, PDBs potently inhibited virus infection and transmission within genital tissue samples. Furthermore, the PDB inhibitors exhibited excellent toxicity and stability profiles and were found to be safe for vaginal application in vivo. These results, coupled with the previously reported intrinsic anti-inflammatory properties of PDBs, support further investigations in the development of PDB-based topical microbicides for preventing the global spread of HIV-1. PMID:25224013

  7. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    Science.gov (United States)

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells. PMID:26774040

  8. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell.

    Science.gov (United States)

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N

    2016-04-01

    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent. PMID:27032748

  9. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell

    Science.gov (United States)

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N.

    2016-01-01

    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent. PMID:27032748

  10. NF-IL6 (C/EBPβ) induces HIV-1 replication by inhibiting cytidine deaminase APOBEC3G

    OpenAIRE

    Shigemi M Kinoshita; Taguchi, Shizuka

    2008-01-01

    T cell activation is crucial for the productive HIV-1 infection of primary T cells; however, little is known about the host molecules involved in this process. We show that the host transcription factor NF-IL6 (also called C/EBPβ) renders primary CD4+ T cells highly permissive for HIV-1 replication. NF-IL6 facilitates reverse transcription of the virus by binding to and inhibiting the antiviral cytidine deaminase APOBEC3G. A mutation in NF-IL6 at Ser-288 weakened its binding to APOBEC3G and s...

  11. Inhibiting Early-Stage Events in HIV-1 Replication by Small-Molecule Targeting of the HIV-1 Capsid

    OpenAIRE

    Kortagere, Sandhya; Madani, Navid; Mankowski, Marie K.; Schön, Arne; Zentner, Isaac; Swaminathan, Gokul; Princiotto, Amy; Anthony, Kevin; Oza, Apara; Sierra, Luz-Jeannette; Passic, Shendra R.; Wang, Xiaozhao; Jones, David M; Stavale, Eric; Fred C. Krebs

    2012-01-01

    The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4′-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HI...

  12. Inhibition of human immunodeficiency virus type-1 (HIV-1 glycoprotein-mediated cell-cell fusion by immunor (IM28

    Directory of Open Access Journals (Sweden)

    Akoume Marie-Yvonne

    2005-02-01

    Full Text Available Abstract Background Immunor (IM28, an analog of dehydroepiandrosterone (DHEA, inhibits human immunodeficiency virus type-1 (HIV-1 by inhibiting reverse transcriptase. We assessed the ability of IM28 to inhibit the cell-cell fusion mediated by HIV envelope glycoprotein in an in vitro system. For this purpose, we co-cultured TF228.1.16, a T-cell line expressing stably HIV-1 glycoprotein envelopes, with an equal number of 293/CD4+, another T cell line expressing CD4, and with the SupT1 cell line with or without IM28. Results In the absence of IM28, TF228.1.16 fused with 293/CD4+, inducing numerous large syncytia. Syncytia appeared more rapidly when TF228.1.16 was co-cultured with SupT1 cells than when it was co-cultured with the 293/CD4+ cell line. IM28 (1.6 – 45 μg/ml completely inhibits cell-cell fusion. IM28 also prevented the development of new syncytia in infected cells and protected naive SupT1 cells from HIV-1 infection. Evaluation of 50% inhibitory dose (IC50 of IM28 revealed a decrease in HIV-1 replication with an IC50 of 22 mM and 50% cytotoxicity dose (CC50 as determined on MT2 cells was 75 mM giving a selectivity index of 3.4 Conclusions These findings suggest that IM28 exerts an inhibitory action on the env proteins that mediate cell-cell fusion between infected and healthy cells. They also suggest that IM28 interferes with biochemical processes to stop the progression of existing syncytia. This property may lead to the development of a new class of therapeutic drug.

  13. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  14. A novel diketo phosphonic acid that exhibits specific, strand-transfer inhibition of HIV integrase and anti-HIV activity

    OpenAIRE

    Chi, Guochen; Nair, Vasu; Semenova, Elena; Pommier, Yves

    2006-01-01

    We have synthesized novel phosphonic acid analogues of β-diketo acids. Interestingly, the phosphonic acid isostere, 2, of our anti-HIV compound, 1, was an inhibitor of only the strand transfer step, in stark contrast to 1. Compound 2 had lower anti-HIV activity than 1, but was more active and less toxic than the phosphonic acid analogue of L-708906. These isosteric compounds represent the first examples of β-diketo phosphonic acids of structural, synthetic and antiviral interest.

  15. Roles of nitric oxide in protective effect of berberine in ethanol-induced gastric ulcer mice

    Institute of Scientific and Technical Information of China (English)

    Long-rui PAN; Qiang TANG; Qin FU; Ben-rong HU; Ji-zhou XIANG; Jia-qing QIAN

    2005-01-01

    Aim: To investigate the protective effects of berberine on ethanol-induced gastric ulcer in mice. Methods: Gastric ulcers were induced by oral ingestion of ethanol. Nitric oxide (NO) content was measured, and mRNA expression of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)were analyzed by reverse transcription-polymerase chain reaction (RT-PCR).Results: The ulcer index (UI) at 1 h, 2 h, 3 h and 6 h after oral administration of ethanol was 23.8± 1.4, 23.3±2.2, 22.3± 1.2 and 20.8± 1.1, respectively. The UI in the berberine-treated groups (5 mg/kg and 50 mg/kg) was less than the control group.The content of NO in the control group was 73.3±7.3 μL/L, 94.0±9.2 μL/L, 109.6±6.4 μL/L and 138.2±10.2 μL/L in gastric juice and 5.8± 1.1 μmol/g protein, 8.3±1.1 μmol/g protein, 9.8± 1.1 μmol/g protein and 11.9± 1.2 μmol/g protein in gastric tissue at 1 h, 2 h, 3 h and 6 h, respectively, after the oral administration of ethanol.The content of NO in the berberine-treated groups (5 mg/kg and 50 mg/kg) was higher than the control group at 1 h after the oral administration of ethanol(P<0.05), and was lower at 6 h (P<0.05). Analysis by RT-PCR showed that expression of eNOS was inhibited but iNOS expression was enhanced by ethanol.However, the expression of eNOS could be enhanced and iNOS expression could be inhibited by berberine (P<0.01). Conclusion: Berberine could significantly protect gastric mucosa from damage by ethanol. This effect may be related to the increased expression of eNOS mRNA and inhibited expression of iNOS mRNA.

  16. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody*

    Directory of Open Access Journals (Sweden)

    Merkel George

    2006-06-01

    Full Text Available Abstract Background To further our understanding of the structure and function of HIV-1 integrase (IN we developed and characterized a library of monoclonal antibodies (mAbs directed against this protein. One of these antibodies, mAb33, which is specific for the C-terminal domain, was found to inhibit HIV-1 IN processing activity in vitro; a corresponding Fv fragment was able to inhibit HIV-1 integration in vivo. Our subsequent studies, using heteronuclear nuclear magnetic resonance spectroscopy, identified six solvent accessible residues on the surface of the C-terminal domain that were immobilized upon binding of the antibody, which were proposed to comprise the epitope. Here we test this hypothesis by measuring the affinity of mAb33 to HIV-1 proteins that contain Ala substitutions in each of these positions. To gain additional insight into the mode of inhibition we also measured the DNA binding capacity and enzymatic activities of the Ala substituted proteins. Results We found that Ala substitution of any one of five of the putative epitope residues, F223, R224, Y226, I267, and I268, caused a decrease in the affinity of the mAb33 for HIV-1 IN, confirming the prediction from NMR data. Although IN derivatives with Ala substitutions in or near the mAb33 epitope exhibited decreased enzymatic activity, none of the epitope substitutions compromised DNA binding to full length HIV-1 IN, as measured by surface plasmon resonance spectroscopy. Two of these derivatives, IN (I276A and IN (I267A/I268A, exhibited both increased DNA binding affinity and uncharacteristic dissociation kinetics; these proteins also exhibited non-specific nuclease activity. Results from these investigations are discussed in the context of current models for how the C-terminal domain interacts with substrate DNA. Conclusion It is unlikely that inhibition of HIV-1 IN activity by mAb33 is caused by direct interaction with residues that are essential for substrate binding. Rather

  17. Inhibition of hepatitis B virus and human immunodeficiency virus (HIV-1) replication by Warscewiczia coccinea (Vahl) Kl. (Rubiaceae) ethanol extract.

    Science.gov (United States)

    Quintero, A; Fabbro, R; Maillo, M; Barrios, M; Milano, M B; Fernández, A; Williams, B; Michelangeli, F; Rangel, H R; Pujol, F H

    2011-09-01

    The primary objective of this study was to search for natural products capable of inhibiting hepatitis B virus (HBV) replication. The research design, methods and procedures included testing hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest on the cell line HepG2 2.2.15, which constitutively produces HBV. The main outcomes and results were as follows: the species Euterpe precatoria, Jacaranda copaia, Jacaranda obtusifolia, Senna silvestris, Warscewiczia coccinea and Vochysia glaberrima exerted some degree of inhibition on HBV replication. The leaves of W. coccinea showed a significant antiviral activity: 80% inhibition with 100 µg mL⁻¹ of extract. This extract also exerted inhibition on covalently closed circular deoxyribonucleic acid (cccDNA) production and on HIV-1 replication in MT4 cells (more than 90% inhibition with 50 µg mL⁻¹ of extract). Initial fractionation using organic solvents of increasing polarity and water showed that the ethanol fraction was responsible for most of the antiviral inhibitory activities of both the viruses. It was concluded that Warscewiczia coccinea extract showed inhibition of HBV and HIV-1 replication. Bioassay-guided purification of this fraction may allow the isolation of an antiviral compound with inhibitory activity against both viruses. PMID:21827337

  18. Inhibition of HIV type 1 infectivity by coexpression of a wild-type and a defective glycoprotein 120

    DEFF Research Database (Denmark)

    Lund, O S; Losman, B; Schønning, Kristian; Bolmstedt, A; Olofsson, S; Hansen, J E

    1998-01-01

    An amino acid substitution (D --> K) in the C3 region of HIV-1 gp120 has previously been shown to inhibit binding of virions to CD4+ cells. We have introduced the same mutation into the HIV-1 isolate LAV-I(BRU), in which the mutation is denoted D373K. Here we show that the D373K envelope protein is...... processed and incorporated into virus particles, but that D373K virions have no detectable infectivity (below 0.1% relative to wild type). When D373K and the wild-type envelope gene were cotransfected in 293 cells at a 4:1 ratio, the resultant infectivity of the HIV-1 supernatant was reduced more than 100......-fold. When the same ratio of plasmids was tested in COS-1 cells the inhibition of HIV-1 was an order of magnitude less than observed in 293 cells. COS-1 and 293 cells differed in that only 293 cells displayed saturation of virus production with respect to the envelope protein. Our data fit a simple...

  19. RING domain mutations uncouple TRIM5α restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating.

    Science.gov (United States)

    Roa, Amanda; Hayashi, Fumiaki; Yang, Yang; Lienlaf, Maritza; Zhou, Jing; Shi, Jiong; Watanabe, Satoru; Kigawa, Takanori; Yokoyama, Shigeyuki; Aiken, Christopher; Diaz-Griffero, Felipe

    2012-02-01

    Rhesus TRIM5α (TRIM5α(rh)) is a cytosolic protein that potently restricts HIV-1 at an early postentry stage, prior to reverse transcription. The ability of TRIM5α(rh) to block HIV-1 infection has been correlated with a decrease of pelletable HIV-1 capsid during infection. To genetically dissect the ability of TRIM5α to block reverse transcription, we studied a set of TRIM5α(rh) RING domain mutants that potently restrict HIV-1 but allow the occurrence of reverse transcription. These TRIM5α(rh) RING variants blocked HIV-1 infection after reverse transcription but prior to integration, as suggested by the routing of nuclear viral DNA to circularization in the form of 2-long terminal repeat (2-LTR) circles. The folding of RING domain variants was similar to that of the wild type, as evaluated by nuclear magnetic resonance. RING domain changes that allowed the occurrence of reverse transcription were impaired in their ability to decrease the amount of pelletable capsid compared with wild-type TRIM5α. Similar effects of this particular group of mutations were observed with human TRIM5α inhibition of N-tropic murine leukemia virus (N-MLV). Interestingly, TRIM5α(rh) RING domain variants also prevented the degradation of TRIM5α(rh) that occurs following cell entry of HIV-1. These data correlated the block of reverse transcription with the ability of TRIM5α to accelerate uncoating. Collectively, these results suggest that TRIM5α(rh) blocks HIV-1 reverse transcription by inducing premature viral uncoating in target cells. PMID:22114335

  20. 小檗碱抗炎活性研究%Research on anti-inflammatory activity of berberine

    Institute of Scientific and Technical Information of China (English)

    李宇馨; 李瑞海

    2013-01-01

    目的 观察小檗碱的抗炎作用.方法 采用甲醛致小鼠足肿胀法观察小檗碱对炎症局部组织中前列腺素(PGE2)的影响.结果 小檗碱能显著降低炎性组织中PGE2的含量.结论 小檗碱具有明显抗炎作用,其机制与抑制组织中PGE2生成有关.%Objective To observe the anti-inflammatory effects of berberine. Methods The effect of berberine on inflammation in local tissue prostaglandin( PGE2 )was observed by using the paw swelling in mice induced by formaldehyde method. Results Berberine could significantly reduce the content of PGE2 in inflammatory tissue. Conclusion Berberine has obvious anti-inflammatory effect, and the mechanism is related to the inhibition of PGE2 formation in the organization.

  1. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition

    International Nuclear Information System (INIS)

    We have identified oleuropein (Ole) and hydroxytyrosol (HT) as a unique class of HIV-1 inhibitors from olive leaf extracts effective against viral fusion and integration. We used molecular docking simulation to study the interactions of Ole and HT with viral targets. We find that Ole and HT bind to the conserved hydrophobic pocket on the surface of the HIV-gp41 fusion domain by hydrogen bonds with Q577 and hydrophobic interactions with I573, G572, and L568 on the gp41 N-terminal heptad repeat peptide N36, interfering with formation of the gp41 fusion-active core. To test and confirm modeling predications, we examined the effect of Ole and HT on HIV-1 fusion complex formation using native polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Ole and HT exhibit dose-dependent inhibition on HIV-1 fusion core formation with EC50s of 66-58 nM, with no detectable toxicity. Our findings on effects of HIV-1 integrase are reported in the subsequent article

  2. An allosteric modulator of HIV-1 protease shows equipotent inhibition of wild-type and drug-resistant proteases.

    Science.gov (United States)

    Ung, Peter M-U; Dunbar, James B; Gestwicki, Jason E; Carlson, Heather A

    2014-08-14

    NMR and MD simulations have demonstrated that the flaps of HIV-1 protease (HIV-1p) adopt a range of conformations that are coupled with its enzymatic activity. Previously, a model was created for an allosteric site located between the flap and the core of HIV-1p, called the Eye site (Biopolymers 2008, 89, 643-652). Here, results from our first study were combined with a ligand-based, lead-hopping method to identify a novel compound (NIT). NIT inhibits HIV-1p, independent of the presence of an active-site inhibitor such as pepstatin A. Assays showed that NIT acts on an allosteric site other than the dimerization interface. MD simulations of the ligand-protein complex show that NIT stably binds in the Eye site and restricts the flaps. That bound state of NIT is consistent with a crystal structure of similar fragments bound in the Eye site (Chem. Biol. Drug Des. 2010, 75, 257-268). Most importantly, NIT is equally potent against wild-type and a multidrug-resistant mutant of HIV-1p, which highlights the promise of allosteric inhibitors circumventing existing clinical resistance. PMID:25062388

  3. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  4. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  5. HIV reverse transcriptase inhibiting antibodies detected by a new technique: relation to p24 and gp41 antibodies, HIV antigenemia and clinical variables.

    Science.gov (United States)

    Neumüller, M; Karlsson, A; Lennerstrand, J; Källander, C F; Holmberg, V; Långström-Persson, U; Thorstensson, R; Sandström, E; Gronowitz, J S

    1991-05-01

    A new assay for HIV reverse transcriptase activity inhibiting antibodies (RTI-ab) was used for the analysis of a large collection of sera sampled before and after confirmation of HIV infection. In this assay HIV-RT was preincubated with diluted serum, after which residual RT activity was determined by a technique using a template coupled to macrobeads and 125I-lodo-deoxyuridine-triphosphate as the tracer-substrate. Of the 936 sera analysed, 818 were found positive for RTI-ab, and 824 were positive in Western blot (Wb). The prevalence of RTI-ab compared to Wb was therefore 99.3%. The corresponding figure for 930 sera analysed for envelope-ab, i.e., gp41-ab, was 823 positive, and of these 930 sera 815 were Wb positive, giving a comparative prevalence of 101%. In contrast, only 678 samples of 993 analyzed for core ab, i.e., p24, were positive, giving a prevalence of 77.0% as 880 of these samples were Wb positive. Thus, RTI-ab was as prevalent as gp41-ab, and although the analyses of RTI-ab amounts in different stages showed decreasing levels in stage IV compared to stages II or III, all of the sera except 1 were found positive in stages III and IV. Further, it was found that both the few RTI-ab negative samples in stage II and the few RTI-ab positive samples among Wb negative sera were sampled in connection with seroconversion. The specificity of the RTI-ab assay was 100% in a test of 200 serum samples from HIV negative blood donors. It was concluded that RTI-ab analyses can be made highly sensitive and specific and useful for studies of HIV infection. PMID:1715898

  6. Effects of neutral sulfate berberine on LPS-induced cardiomyocyte TNF-αsecretion, abnormal calcium cycling, and cardiac dysfunction in rats

    Institute of Scientific and Technical Information of China (English)

    Jing YANG; Hua-dong WANG; Da-xiang LU; Yan-ping WANG; Ren-bin QI; Jing LI; Fei LI; Chu-jie LI

    2006-01-01

    Aim: To evaluate the effect of neutral sulfate berberine on cardiac function, tumornecrosis factor α (TNF-α) release, and intracellular calcium concentration ([Ca2+]i)in cardiomyocytes exposed to lipopolysaccharide (LPS). Methods: Primary cultured rat cardiomyocytes were prepared from ventricles of 3-4-day old SpragueDawley rats. TNF-α concentrations in cell-conditioned media were measured by using a Quantikine enzyme-linked immunosorbent assay kit, and cardiomyocyte [Ca2+]i was measured by using Fura-2/AM. The isolated rat hearts were perfused in the Langendorff mode. Results: LPS at doses of 1, 5, 10, and 20 μg/mL markedly stimulated TNF-α secretion from cardiomyocytes, and neutral sulfate berberine inhibited LPS-induced TNF-α production. Intracellular calcium concentration was significantly decreased after LPS stimulation for 1 h, and increased 2 h after LPS treatment. Pretreatment with neutral sulfate berberine reversed the LPS-induced [Ca2+]i alterations, although neutral sulfate berberine did not inhibit a rapid increase in cardiomyocyte [Ca2+]i induced by LPS. Perfusion of isolated hearts with LPS (100 μg/mL) for 20 min resulted in significantly impaired cardiac performance at 120 min after LPS challenge: the maximal rate of left ventricular pressure rise and fall (±dp/dtmax) decreased compared with the control. In contrast, ±dp/dtmax at 120min in hearts perfused with neutral sulfate berberine (1 μmol/L) for 10 min followed by 20 min LPS (100 μg/mL) was greater than the corresponding value in the LPS group. Conclusion: Neutral sulfate berberine inhibits LPS-stimulated myocardial TNF-α production, impairs calcium cycling, and improves LPS-induced contractile dysfunction in intact heart.

  7. Dynamic micelles of mannoside glycolipids are more efficient than polymers for inhibiting HIV-1 trans-infection.

    Science.gov (United States)

    Schaeffer, Evelyne; Dehuyser, Laure; Sigwalt, David; Flacher, Vincent; Bernacchi, Serena; Chaloin, Olivier; Remy, Jean-Serge; Mueller, Christopher G; Baati, Rachid; Wagner, Alain

    2013-11-20

    Mannoside glycolipid conjugates are able to inhibit human immunodeficiency virus type 1 (HIV-1) trans-infection mediated by human dendritic cells (DCs). The conjugates are formed by three building blocks: a linear or branched mannose head, a hydrophilic linker, and a 24-carbon lipid chain. We have shown that, even as single molecules, these compounds efficiently target mannose-binding lectins, such as DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) important for HIV-1 transmission. With the goal to optimize their inhibitory activity by supramolecular structure formation, we have compared saturated and unsaturated conjugates, as single molecules, self-assemblies of dynamic micelles, and photopolymerized cross-linked polymers. Surface plasmon resonance showed that, unexpectedly, polymers of trivalent conjugates did not display a higher binding affinity for DC-SIGN than single molecules. Interactions on a chip or in solution were independent of calcium; however, binding to DCs was inhibited by a calcium chelator. Moreover, HIV-1 trans-infection was mostly inhibited by dynamic micelles and not by rigid polymers. The inhibition data revealed a clear correlation between the structure and molecular assembly of a conjugate and its biological antiviral activity. We present an interaction model between DC-SIGN and conjugates-either single molecules, micelles, or polymers-that highlights that the most effective interactions by dynamic micelles involve both mannose heads and lipid chains. Our data reveal that trivalent glycolipid conjugates display the highest microbicide potential for HIV prophylaxis, as dynamic micelles conjugates and not as rigid polymers. PMID:24134734

  8. Factors Supporting and Inhibiting Adherence to HIV Medication Regimen in Women: A Qualitative Analysis of Patient Interviews

    OpenAIRE

    Fagbami, Oluwakemi; Oluwasanjo, Adetokunbo; Fitzpatrick, Carrie; Fairchild, Rebecca; Shin, Ann; Donato, Anthony

    2015-01-01

    Adherence to antiretroviral therapy reduces morbidity and mortality; however rates of non-adherence are variable among women for unclear reasons. This study was a single-center qualitative analysis of interviews with 18 female HIV-positive non-adherent patients (defined by virologic failure) to explore psychosocial factors impacting adherence. Factors identified were categorized as promoting, inhibiting or having no effect on adherence. Three themes, characterized as social factors, illness f...

  9. A broad spectrum anti-HIV inhibitor significantly disturbs V1/V2 domain rearrangements of HIV-1 gp120 and inhibits virus entry.

    Science.gov (United States)

    Berinyuy, Emiliene; Soliman, Mahmoud E S

    2016-01-01

    Inhibition of human immunodeficiency virus (HIV) entry into target human cells is considered as a critical strategy for preventing HIV infection. Conformational shifts of the HIV-1 envelope glycoprotein (gp120) facilitates the attachment of the virus to target cells, therefore gp120 remains an attractive target for antiretroviral therapy development. Compound 18A has been recently identified as a broad-spectrum anti-HIV inhibitor. It was proposed that 18A disrupts rearrangements of V1/V2 region in gp120; however, the precise mechanism by which 18A interferes with the inherent motion of V1/V2 domain remains obscure. In this report, we elaborate on the binding mode of compound 18A to the closed conformation of a soluble cleaved gp120 and further examine the dynamic motion of V1/V2 region in both gp120 and the gp120-18A complex via all-atom molecular dynamics simulations. In this work, comparative molecular dynamic analyses revealed that 18A makes contact with Leu179, Ile194, Ile424, Met426 W427, E370 and Met475 in the main hydrophobic cavity of the unliganded gp120 and disrupts the restructuring of V1/V2 domain observed in apo gp120. The unwinding of α1 and slight inversion of β2 in gp120 leads to the shift of VI/V2 domain away from the V3 N-terminal regions and toward the outer domain. Stronger contacts between Trp425 and Trp112 rings may contribute to the reduced flexibility of α1 observed upon 18A binding thereby inhibiting the shifts of the V1/V2 region. Binding of 18A to gp120: (1) decreases the overall flexibility of the protein and (2) inhibits the formation a gp120 conformation that closely ressembles a CD4-bound-like conformation. Information gained from this report not only elaborates on important dynamic features of gp120, but will also assist with the future designs of potent gp120 inhibitors as anti-HIV. PMID:26446906

  10. HbAHP-25, an In-Silico Designed Peptide, Inhibits HIV-1 Entry by Blocking gp120 Binding to CD4 Receptor.

    Directory of Open Access Journals (Sweden)

    Tahir Bashir

    Full Text Available Human Immunodeficiency Virus (HIV-1 poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL and CXCR4-tropic HIV-1 strains (IIIB and NL4-3. Surface plasmon resonance (SPR and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV. Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.

  11. GB Virus Type C E2 Protein Inhibits Human Immunodeficiency Virus Type 1 Assembly Through Interference With HIV-1 Gag Plasma Membrane Targeting

    OpenAIRE

    Timmons, Christine L.; Shao, Qiujia; Wang, Chenliang; Liu, Ling; Liu, Huanliang; Dong, Xinhong; Liu, Bindong

    2013-01-01

    GB virus type C (GBV-C) is a single-stranded positive-sense RNA virus classified in the Flaviviridae family. Persistent coinfection with GBV-C is associated with lower human immunodeficiency virus type 1 (HIV-1) load, higher CD4+ T-cell count, and prolonged survival in HIV-1 coinfected patients. The GBV-C envelope glycoprotein E2 has been reported to interfere with HIV-1 entry. In this study, we showed that the expression of GBV-C E2 inhibited HIV-1 Gag assembly and release. Expression of gly...

  12. Berberine enhances the anti‑tumor activity of tamoxifen in drug‑sensitive MCF‑7 and drug‑resistant MCF‑7/TAM cells.

    Science.gov (United States)

    Wen, Chunjie; Wu, Lanxiang; Fu, Lijuan; Zhang, Xue; Zhou, Honghao

    2016-09-01

    Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research. PMID:27432642

  13. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    Science.gov (United States)

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models. PMID:26247019

  14. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Directory of Open Access Journals (Sweden)

    Acharya Balakrishna

    2015-01-01

    Full Text Available Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562. All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1, Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL. The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells, and blank (only medium. The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  15. Iron Chelators of the Di-2-pyridylketone Thiosemicarbazone and 2-Benzoylpyridine Thiosemicarbazone Series Inhibit HIV-1 Transcription: Identification of Novel Cellular Targets—Iron, Cyclin-Dependent Kinase (CDK) 2, and CDK9S⃞

    OpenAIRE

    Debebe, Zufan; Ammosova, Tatyana; Breuer, Denitra; Lovejoy, David B.; Kalinowski, Danuta S.; Karla, Pradeep K.; Kumar, Krishna; Jerebtsova, Marina; Ray, Patricio; KASHANCHI, FATAH; Gordeuk, Victor R; Richardson, Des R.; Nekhai, Sergei

    2011-01-01

    HIV-1 transcription is activated by HIV-1 Tat protein, which recruits cyclin-dependent kinase 9 (CDK9)/cyclin T1 and other host transcriptional coactivators to the HIV-1 promoter. Tat itself is phosphorylated by CDK2, and inhibition of CDK2 by small interfering RNA, the iron chelator 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), and the iron chelator deferasirox (ICL670) inhibits HIV-1 tran...

  16. ENHANCED ACTIVITY OF STROBILURIN AND FLUDIOXONIL BY TARGETING FUNGAL ANTIOXIDATIVE STRESS RESPONSE WITH BERBERINE AND PHENOLIC SYNERGISTS

    Science.gov (United States)

    Antifungal activity of strobilurins was tested using berberine hemisulfate and different phenolic compounds. With berberine, the most effective phenolic was veratraldehyde. The sod2delta mutant of Saccharomyces cerevisiae was highly sensitive to berberine and veratraldehyde. Functional complementati...

  17. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM:To investigate the effects and molecular mechanisms of berberine on improving insulin resistance induced by free fatty acids (FFAs) in 3T3-LI adipocytes.METHODS:The model of insulin resistance in 3T3-L1 adipocytes was established by adding palmic acid (0.5 mmol/L) to the culture medium.Berberine treatment was performed at the same time.Glucose uptake rate was determined by the 2-deoxy-[3H]-Dglucose method.The levels of IkB kinase beta (IKKβ)Ser181 phosphorylation,insulin receptor substrate1(IRS-1) Ser307 phosphorylation,expression of IKKβ,IRS-1,nuclear transcription factor kappaB p65 (NF-κB p65),phosphatidylinositol-3-kinase p85(PI-3K p85) and glucose transporter 4 (GLUT4) proteins were detected by Western blotting.The distribution of NF-κB p65 proteins inside the adipocytes was observed through confocal laser scanning microscopy(CLSM).RESULTS:After the intervention of palmic acid for 24 h,the insulin-stimulated glucose transport in 3T3-L1 adipocytes was inhibited by 67%.Meanwhile,the expression of IRS-1 and PI-3K p85 protein was reduced,while the levels of IKKβ Ser181 and IRS-1 Ser307 phosphorylation,and nuclear translocation of NF-κB p65 protein were increased.However,the above indexes,which indicated the existence of insulin resistance,were reversed by berberine although the expression of GLUT4,IKKβ and total NF-κB p65 protein were not changed during this study.CONCLUSION:Insulin resistance induced by FFAs in 3T3-L1 adipocytes can be improved by berberine.Berberine reversed free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ.

  18. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition

    OpenAIRE

    Sarafianos, Stefan G.; Marchand, Bruno; Das, Kalyan; Himmel, Daniel; Parniak, Michael A.; Hughes, Stephen H.; Arnold, Eddy

    2008-01-01

    The rapid replication of HIV-1 and the errors made during viral replication, cause the virus to evolve rapidly in patients, making the problems of vaccine development and drug therapy particularly challenging. In the absence of an effective vaccine, drugs are the only useful treatment. Anti-HIV drugs work; so far drug therapy has saved more than three million years of life. Unfortunately, HIV-1 develops resistance to all of the available drugs. Although a number of useful anti-HIV drugs have ...

  19. Berberine protects vascular endothelial cells in hypertensive rats

    OpenAIRE

    Wang, Yang; Ding, Yun

    2015-01-01

    Objective: This study is to investigate the effect and mechanism of berberine on vascular endothelial cell injury. Methods: The isolated aortic endothelial cells were divided into negative control group, spontaneous hypertension group, and berberine group (1.25, 2.5, and 5 μmol/L berberine). CCK-8 assay was performed to detect cell proliferation. Annexin V-FITC flow cytometry and Hochest33342/PI staining were used to measure cell apoptosis. Expression of TLR4, Myd88, and NF-κB was detected wi...

  20. Novel insights into the effect of CCR5 inhibition on HIV treatment, pathogenesis and cure

    NARCIS (Netherlands)

    Symons, J.

    2014-01-01

    The introduction of combination antiretroviral therapy (cART) in 1996 has significantly reduced HIV related morbidity and mortality in the Western world. Recent advances in antiretroviral treatment have resulted in a life expectancy of effectively treated HIV infected patients, comparable to those h

  1. Uterine epithelial cell regulation of DC-SIGN expression inhibits transmitted/founder HIV-1 trans infection by immature dendritic cells.

    Directory of Open Access Journals (Sweden)

    Daniel O Ochiel

    Full Text Available BACKGROUND: Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus. However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC to infection with HIV-1. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection. CONCLUSIONS/SIGNIFICANCE: Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1.

  2. Discovery of dual inhibitors targeting both HIV-1 capsid and human cyclophilin A to inhibit the assembly and uncoating of the viral capsid.

    Science.gov (United States)

    Li, Jiebo; Tan, Zhiwu; Tang, Shixing; Hewlett, Indira; Pang, Ruifang; He, Meizi; He, Shanshan; Tian, Baohe; Chen, Kan; Yang, Ming

    2009-04-15

    HIV-1 assembly and disassembly (uncoating) processes are critical for the HIV-1 replication. HIV-1 capsid (CA) and human cyclophilin A (CypA) play essential roles in these processes. We designed and synthesized a series of thiourea compounds as HIV-1 assembly and disassembly dual inhibitors targeting both HIV-1 CA protein and human CypA. The SIV-induced syncytium antiviral evaluation indicated that all of the inhibitors displayed antiviral activities in SIV-infected CEM cells at the concentration of 0.6-15.8 microM for 50% of maximum effective rate. Their abilities to bind CA and CypA were determined by ultraviolet spectroscopic analysis, fluorescence binding affinity and PPIase inhibition assay. Assembly studies in vitro demonstrated that the compounds could potently disrupt CA assembly with a dose-dependent manner. All of these molecules could bind CypA with binding affinities (Kd values) of 51.0-512.8 microM. Fifteen of the CypA binding compounds showed potent PPIase inhibitory activities (IC(50) valuesHIV-1 Protease or to HIV-1 Integrase in the enzyme assays. These results suggested that 15 compounds could block HIV-1 replication by inhibiting the PPIase activity of CypA to interfere with capsid disassembly and disrupting CA assembly. PMID:19328002

  3. Inhibition of HIV-1 infection in ex vivo cervical tissue model of human vagina by palmitic acid; implications for a microbicide development.

    Directory of Open Access Journals (Sweden)

    Xudong Lin

    Full Text Available BACKGROUND: Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L species of probiotic vaginal flora. PRINCIPAL FINDINGS: Our results show that treatment with 100-200 µM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki to be ∼2.53 µM. SIGNIFICANCE: These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.

  4. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  5. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

    OpenAIRE

    Stanley, David J.; Koen Bartholomeeusen; Crosby, David C; Dong Young Kim; Eunju Kwon; Linda Yen; Nathalie Caretta Cartozo; Ming Li; Stefanie Jäger; Jeremy Mason-Herr; Fumiaki Hayashi; Shigeyuki Yokoyama; Krogan, Nevan J; Harris, Reuben S.; Boris Matija Peterlin

    2012-01-01

    Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV). HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G). Pharmacologica...

  6. Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase

    OpenAIRE

    Sarafianos, Stefan G.; Eleftherios Michailidis; Kirby, Karen A.; Bruno Marchand; Kamalendra Singh

    2010-01-01

    HIV-1 Reverse Transcriptase (HIV-1 RT) has been the target of numerous approved anti-AIDS drugs that are key components of Highly Active Anti-Retroviral Therapies (HAART). It remains the target of extensive structural studies that continue unabated for almost twenty years. The crystal structures of wild-type or drug-resistant mutant HIV RTs in the unliganded form or in complex with substrates and/or drugs have offered valuable glimpses into the enzyme’s folding and its interactions with DNA a...

  7. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    Science.gov (United States)

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-Lin; Du, Guan-Hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2) ) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw ) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives. PMID:26648584

  8. Berberine: metabolic and cardiovascular effects in preclinical and clinical trials

    OpenAIRE

    Arrigo FG Cicero; Sibel Ertek

    2009-01-01

    Arrigo FG Cicero1, Sibel Ertek21Internal Medicine, Aging and Kidney Diseases Department, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; 2Ufuk University, Medical Faculty, Dr Ridvan Ege Hospital, Department of Endocrinology and Metabolic Diseases, Ankara, TurkeyAbstract: Berberine is a plant alkaloid with numerous biological activities. A large body of preclinical in vitro and in vivo studies support different pharmacological actions of berberine that could be ...

  9. Berberine hydrochloride: anticancer activity and nanoparticulate delivery system

    OpenAIRE

    Tan W; Li YB; Chen MW; Wang YT

    2011-01-01

    Wen Tan, Yingbo Li, Meiwan Chen, Yitao WangState Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, ChinaBackground: Berberine hydrochloride is a conventional component in Chinese medicine, and is characterized by a diversity of pharmacological effects. However, due to its hydrophobic properties, along with poor stability and bioavailability, the application of berberine hydrochloride was ham...

  10. Aqueous extracts of the marine brown alga Lobophora variegata inhibit HIV-1 infection at the level of virus entry into cells.

    Directory of Open Access Journals (Sweden)

    Stephan Kremb

    Full Text Available In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs. Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  11. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    KAUST Repository

    Kremb, Stephan

    2014-08-21

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  12. Inhibition of HIV replication in vitro by clinical immunosuppressants and chemotherapeutic agents

    OpenAIRE

    Hawley, Todd; Spear, Mark; Guo, Jia; Wu, Yuntao

    2013-01-01

    Background Recent studies have suggested that a functional cure for HIV-1 infection, purportedly resultant from allogeneic bone marrow transplantation, may be possible. Additionally, the first such patient was treated with whole-body irradiation, immunosuppressants, and the chemotherapeutic, cytarabine. However, the precise role of the coinciding medical interventions in diminishing detectable HIV reservoirs remains unstudied. Findings In this article, we demonstrate that the immunosuppressan...

  13. Berberine: metabolic and cardiovascular effects in preclinical and clinical trials

    Directory of Open Access Journals (Sweden)

    Arrigo FG Cicero

    2009-09-01

    Full Text Available Arrigo FG Cicero1, Sibel Ertek21Internal Medicine, Aging and Kidney Diseases Department, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; 2Ufuk University, Medical Faculty, Dr Ridvan Ege Hospital, Department of Endocrinology and Metabolic Diseases, Ankara, TurkeyAbstract: Berberine is a plant alkaloid with numerous biological activities. A large body of preclinical in vitro and in vivo studies support different pharmacological actions of berberine that could be potentially useful in the management of metabolic diseases associated with high cardiovascular disease risk, such as mixed hyperlipidemia, insulin resistance, metabolic syndrome, and type 2 diabetes. Moreover, it seems that berberine also exerts anti-inflammatory and antiproliferative effects that could play a role in the development of atherosclerosis and its clinical consequences. Recently, the metabolic effects of berberine have been demonstrated in humans, opening new perspectives for the use of this molecule in patient therapy. Larger and longer clinical studies need to be carried out to implement the definition of the therapeutic role of berberine in humans.Keywords: berberine, cardiovascular disease, diabetes, cholesterol

  14. Synthesis of berberine loaded polymeric nanoparticles by central composite design

    Science.gov (United States)

    Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh

    2016-04-01

    Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.

  15. The local environment orchestrates mucosal decidual macrophage differentiation and substantially inhibits HIV-1 replication.

    Science.gov (United States)

    El Costa, H; Quillay, H; Marlin, R; Cannou, C; Duriez, M; Benjelloun, F; de Truchis, C; Rahmati, M; Ighil, J; Barré-Sinoussi, F; Nugeyre, M T; Menu, E

    2016-05-01

    Macrophages from the decidua basalis (dM), the main uterine mucosa during pregnancy, are weakly permissive to HIV-1 infection. Here, we investigated the mechanisms underlying this natural control. We show, by using freshly purified decidual macrophages and ex vivo human decidual explants, that the local decidual environment influences dM differentiation and naturally protects these cells from HIV-1 infection. Interferon (IFN)-γ, present in the decidual tissue, contributes to maintenance of the dM phenotype and restricts HIV-1 infection by mechanisms involving the cyclin-dependent kinase inhibitor p21Cip1/Waf1. We also found that activation of Toll-like receptors 7 and 8 expressed by dM reinforces the low permissivity of dM to HIV-1 by restricting viral replication and inducing secretion of cytokines in the decidual environment, including IFN-γ, that shape dM plasticity. A major challenge for HIV-1 eradication is to control infection of tissue-resident macrophages in the female reproductive tract. Our findings provide clues to the development of novel strategies to prevent HIV-1 macrophage infection. PMID:26349662

  16. Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation

    OpenAIRE

    Miao Xu; Yuanyuan Xiao; Jun Yin; Wolin Hou; Xueying Yu; Li Shen; Fang Liu; Li Wei; Weiping Jia

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation wer...

  17. Cardioprotective effect of berberine against myocardial ischemia/reperfusion injury via attenuating mitochondrial dysfunction and apoptosis

    OpenAIRE

    Wang, Yongjun; Liu, Jianzhen; Ma, Airui; Chen, Yanqiang

    2015-01-01

    Berberine, an isoquinoline alkaloid originally isolated from the Chinese herb Coptischinensis, has been shown to display a wide range of pharmacological effects. The present study aims to investigate the effect of berberine on myocardial ischemia/reperfusion. Sixty male Sprague-Dawley rats were randomized equally into three groups: sham group, IR group, IR + berberine group. Rats were treated with berberine for 4 weeks and then I/R was performed. Myocardial infarction area was measured. Serum...

  18. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells

    OpenAIRE

    Xiaofeng Liu; Jie Zhou; Morad Dirhem Naji Abid; Huanhuan Yan; Hao Huang; Limin Wan; Zuohua Feng; Juan Chen

    2014-01-01

    Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on th...

  19. Berberine via suppression of transient receptor potential vanilloid 4 channel improves vascular stiffness in mice

    OpenAIRE

    Wang, Jie; Guo, Tao; Peng, Qi-sheng; Yue, Shou-Wei; Wang, Shuang-Xi

    2015-01-01

    Berberine, as an alkaloid found in many Chinese herbs, improves vascular functions in patients with cardiovascular diseases. We determined the effects of berberine in hypertension and vascular ageing, and elucidated the underlying mechanisms. In isolated aortas, berberine dose-dependently elicited aortic relaxation. In cultured cells, berberine induced the relaxation of vascular smooth muscle cells (VSMCs). Overexpression of transient receptor potential vanilloid 4 (TRPV4) channel by genetic ...

  20. Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice

    OpenAIRE

    Heredia, Alonso; Le, Nhut; Gartenhaus, Ronald B.; Sausville, Edward; Medina-Moreno, Sandra; Zapata, Juan C; Davis, Charles; Gallo, Robert C.; Redfield, Robert R.

    2015-01-01

    Most HIV antiretrovirals target viral proteins. Unfortunately, HIV mutates under drug pressure, which can lead to drug resistance. Targeting cellular proteins that HIV necessitates in its lifecycle may help overcome HIV drug resistance because cellular proteins have lower mutations rates than do HIV proteins. Mammalian target of rapamycin (mTOR) is a cellular kinase that forms two complexes (mTORC-1 and -2), regulating protein translation and transduction signaling. We demonstrate that dual t...

  1. Set9, NF-kB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-yan HU; Kun-peng LI; Xiu-ju WANG; Yuan LIU; Zhi-gang LU; Rui-hong DONG; Hong-bo GUO; Mei-xia ZHANG

    2013-01-01

    Aim:To investigate the mechanisms by which berberine suppressed the proliferation of human multiple myeloma cells.Methods:Human U266 multiple myeloma cell line was tested.Cell proliferation,apoptosis,ultramicrostructure and secretion function were examined using Cell Counting Kit-8 (CCK8),flow cytometry (FCM),electron and fluorescence microscopy,as well as ELISA assay.The microRNAs (miRs) and transcription factors in U266 cells were detected using arrays and verified by qRT-PCR.EMSA and luciferase assays were used to verify the p65-dependent transactivation of miR-21 gene.Results:Treatment of U266 cells with berberine (40-160 μmol/L) suppressed cell proliferation and IL-6 secretion in dose-and time-dependent manners.Meanwhile,berberine dose-dependently induced ROS generation,G2/M phase arrest and apoptosis in U266 cells,and decreased the levels of miR-21 and Bcl-2.Overexpression of miR-21 counteracted berberine-induced suppression of cell proliferation and IL-6 secretion.In U266 cells treated with berberine (80 μmol/L),the activity of NF-kB was decreased by approximately 50%,followed by significant reduction of miR-21 level.berberine (80-160 μmol/L) increased the level of Set9 (lysine methyltransferase) by more than 2-fold,caused methylation of the RelA subunit,which inhibited NF-kB nuclear translocation and miR-21transcription.In U266 cells treated with berberine (80 μmol/L),knockdown of Set9 with siRNAs significantly increased NF-kB protein level accompanying with a partial recovery of proliferation.Conclusion:In U266 cells,berberine suppresses NF-kB nuclear translocation via Set9-mediated lysine methylation,leads to decrease in the levels miR21 and Bcl-2,which induces ROS generation and apoptosis.

  2. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function

    Directory of Open Access Journals (Sweden)

    St-Laurent Georges

    2006-11-01

    Full Text Available Abstract Background The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. Results Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. Conclusion The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv.

  3. The HIV Protease Inhibitor Nelfinavir Downregulates Akt Phosphorylation by Inhibiting Proteasomal Activity and Inducing the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Anjali K. Gupta

    2007-04-01

    Full Text Available HIV protease inhibitors (HPIs, which have been used to treat HIV patients since the mid 1990s, have been shown to downregulate the phosphatidylinositol 3kinase (PI3K-Akt pathway. Because this pathway is frequently activated in human malignancies and associated with resistance to ionizing radiation, we investigated and confirmed that HPIs could radiosensitize cells. However, the mechanism underlying this downregulation was unclear, prompting the investigations in this report. In this paper we show that nelfinavir inhibits proteasome activity. Inhibition of the proteasome leads to endoplasmic reticulum-based stress with accumulation of misfolded proteins, which triggers the unfolded protein response (UPR. As part of the UPR, the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α is phosphorylated, resulting in a decrease in global protein synthesis and induction of the feedback regulator growth arrest and DNA damageinducible protein (GADD34, which acts as a phosphatase in complex with protein phosphatase 1. This complex dephosphorylates eIF2α; however, our data also suggest that this phosphatase activity can dephosphorylate Akt. Furthermore, our data indicate that nelfinavir decreases Akt phosphorylation by triggering this response. These findings may have important implications in understanding how nelfinavir may increase radiation sensitivity and also result in downregulation of the PI3K/Akt pathway.

  4. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation

    OpenAIRE

    Mercenne, Gaëlle; Bernacchi, Serena; Richer, Delphine; Bec, Guillaume; Henriet, Simon; Paillart, Jean-Christophe; Marquet, Roland

    2009-01-01

    The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA ...

  5. Berberine Moderates Glucose and Lipid Metabolism through Multipathway Mechanism

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2011-01-01

    Full Text Available Berberine is known to improve glucose and lipid metabolism disorders, but the mechanism is still under investigation. In this paper, we explored the effects of berberine on the weight, glucose levels, lipid metabolism, and serum insulin of KKAy mice and investigated its possible glucose and lipid-regulating mechanism. We randomly divided KKAy mice into two groups: berberine group (treated with 250 mg/kg/d berberine and control group. Fasting blood glucose (FBG, weight, total cholesterol (TC, triglyceride (TG, high-density lipoprotein-cholesterol (HDL-c, low-density lipoprotein-cholesterol (LDL-c, and fasting serum insulin were measured in both groups. The oral glucose tolerance test (OGTT was performed. RT2 PCR array gene expression analysis was performed using skeletal muscle of KKAy mice. Our data demonstrated that berberine significantly decreased FBG, area under the curve (AUC, fasting serum insulin (FINS, homeostasis model assessment insulin resistance (HOMA-IR index, TC, and TG, compared with those of control group. RT2 profiler PCR array analysis showed that berberine upregulated the expression of glucose transporter 4 (GLUT4, mitogen-activated protein kinase 14 (MAPK14, MAPK8(c-jun N-terminal kinase, JNK, peroxisome proliferator-activated receptor α (PPARα, uncoupling protein 2 (UCP2, and hepatic nuclear factor 4α(HNF4α, whereas it downregulated the expression of PPARγ, CCAAT/enhancer-binding protein (CEBP, PPARγ coactivator 1α(PGC 1α, and resistin. These results suggest that berberine moderates glucose and lipid metabolism through a multipathway mechanism that includes AMP-activated protein kinase-(AMPK- p38 MAPK-GLUT4, JNK pathway, and PPARα pathway.

  6. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies

    Science.gov (United States)

    Sánchez-Luque, Francisco J.; Stich, Michael; Manrubia, Susanna; Briones, Carlos; Berzal-Herranz, Alfredo

    2014-09-01

    The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5'-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5'-CCCCGGCAAGGAGGGG-3'. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication.

  7. Dual inhibitors for aspartic proteases HIV-1 PR and renin: advancements in AIDS-hypertension-diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations.

    Science.gov (United States)

    Tzoupis, Haralambos; Leonis, Georgios; Megariotis, Grigorios; Supuran, Claudiu T; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2012-06-28

    Human immunodeficiency virus type 1 protease (HIV-1 PR) and renin are primary targets toward AIDS and hypertension therapies, respectively. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free-energy calculations and inhibition assays for canagliflozin, an antidiabetic agent verified its effective binding to both proteins (ΔG(pred) = -9.1 kcal mol(-1) for canagliflozin-renin; K(i,exp)= 628 nM for canagliflozin-HIV-1 PR). Moreover, drugs aliskiren (a renin inhibitor) and darunavir (an HIV-1 PR inhibitor) showed high affinity for HIV-1 PR (K(i,exp)= 76.5 nM) and renin (K(i,pred)= 261 nM), respectively. Importantly, a high correlation was observed between experimental and predicted binding energies (r(2) = 0.92). This study suggests that canagliflozin, aliskiren, and darunavir may induce profound effects toward dual HIV-1 PR and renin inhibition. Since patients on highly active antiretroviral therapy (HAART) have a high risk of developing hypertension and diabetes, aliskiren-based or canagliflozin-based drug design against HIV-1 PR may eliminate these side-effects and also facilitate AIDS therapy. PMID:22621689

  8. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine

    Science.gov (United States)

    Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration. PMID:27092498

  9. HIV protease inhibition seen by X-ray diffraction and molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Zimmermann, K.; Skálová, Tereza; Dohnálek, Jan; Dušková, Jarmila; Petroková, Hana; Vondráčková, Eva

    Florence : International Union of Crystallography, 2005. C242. [Congress of the International Union of Crystallography /20./. 23.8.2005-31.8.2005, Florence] R&D Projects: GA AV ČR(CZ) KJB4050312; GA MŠk(CZ) 1K05008 Keywords : HIV retroviral proteases * drug design * structure Subject RIV: EB - Genetics ; Molecular Biology

  10. Berberine behind the thriller of marked symptomatic bradycardia.

    Science.gov (United States)

    Cannillo, Margherita; Frea, Simone; Fornengo, Cristina; Toso, Elisabetta; Mercurio, Giancarlo; Battista, Stefania; Gaita, Fiorenzo

    2013-07-26

    Patients with chronic aortic dissections are at high risk of catheter-induced complications. We report a Berberine is used in traditional Chinese medicine for the treatment of congestive heart failure, hypertension, diabetes, and dyslipidaemia and has a good safety profile. We report a case of a 53-year-old sportsman referred to our hospital for the onset of fatigue and dyspnoea upon exertion after he started berberine to treat hypercholesterolaemia. An electrocardiogram showed sinus bradycardia (45 bpm), first-degree atrioventricular block, and competitive junctional rhythm. An ergometric stress test showed slightly reduced chronotropic competence and the presence of runs of competitive junctional rhythm, atrial tachycardia, and sinus pauses in the recovery. After 10 d of wash-out from berberine, the patient experienced a complete resolution of symptoms, and an ergometric stress test showed good chronotropic competence. An electrocardiogram Holter showed a latent hypervagotonic state. This is the first case report that shows that berberine could present certain side effects in hypervagotonic people, even in the absence of a situation that could cause drug accumulation. Therefore, berberine's use should be carefully weighed in hypervagotonic people due to the drug's bradycardic and antiarrhythmic properties, which could became proarrhythmic, exposing patients to potential health risks. PMID:23888197

  11. Berberine attenuates doxorubicin-induced cardiotoxicity in mice.

    Science.gov (United States)

    Zhao, X; Zhang, J; Tong, N; Liao, X; Wang, E; Li, Z; Luo, Y; Zuo, H

    2011-01-01

    This study investigated the effects of berberine, a natural alkaloid, on doxorubicin-induced cardiotoxicity in mice. Mice were injected intraperitoneally with saline 10 ml/kg (n = 10), doxorubicin 2.5 mg/kg (n = 10), 60 mg/kg berberine 1 h before doxorubicin 2.5 mg/kg (n = 10), or 60 mg/kg berberine alone (n = 10) every other day for 14 days. Body weight, general condition and mortality were recorded over the 14-day study period. Electro cardiography was performed before the start of treatment and after 14 days and plasma lactate dehydrogenase (LDH) activity was measured after 14 days. At the end of the study period the heart was excised and examined histologically. An increase in mortality, an initial decrease in body weight, increased LDH activity, prolongation of QRS duration and increased myocardial injury were seen in the doxorubicin-treated group compared with the saline control group. These changes were significantly attenuated by pretreatment with berberine. The study suggests that berberine may have a potential protective role against doxorubicin-induced cardiotoxicity in mice. PMID:22117972

  12. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro.

    Science.gov (United States)

    Chen, Lihua; Bu, Qianqian; Xu, Huan; Liu, Yuan; She, Pengfei; Tan, Ruichen; Wu, Yong

    2016-01-01

    Enterococcus faecalis (E. faecalis) is one of the major causes of biofilm infections. Berberine hydrochloride (BBH) has diverse pharmacological effects; however, the effects and mechanisms of BBH on E. faecalis biofilm formation and dispersion have not been reported. In this study, 99 clinical isolates from the urine samples of patients with urinary tract infections (UTIs) were collected and identified. Ten strains of E. faecalis with biofilm formation ability were studied. BBH inhibited E. faecalis biofilm formation and promoted the biofilm dispersion of E. faecalis. In addition, sortase A and esp expression levels were elevated during early E. faecalis biofilm development, whereas BBH significantly reduced their expression levels. The results of this study indicated that BBH effectively prevents biofilm formation and promotes biofilm dispersion in E. faecalis, most likely by inhibiting the expressions of sortase A and esp. PMID:27242142

  13. Pharmacokinetic Comparison of Berberine in Rat Plasma after Oral Administration of Berberine Hydrochloride in Normal and Post Inflammation Irritable Bowel Syndrome Rats

    OpenAIRE

    Zipeng Gong; Ying Chen; Ruijie Zhang; Yinghan Wang; Yan Guo; Qing Yang; Haixian Zhang; Yu Dong; Xiaogang Weng; Shuangrong Gao; Xiaoxin Zhu

    2014-01-01

    In the present study, post inflammation irritable bowel syndrome (PI-IBS) rats were firstly established by intracolonic instillation of acetic acid with restraint stress. Then the pharmacokinetics of berberine in the rat plasma were compared after oral administration of berberine hydrochloride (25 mg/kg) to normal rats and PI-IBS rats. Quantification of berberine in the rat plasma was achieved by using a sensitive and rapid UPLC-MS/MS method. Plasma samples were collected at 15 different poi...

  14. Research Review on the Mechanism of Berberine in Reducing Blood Sugar of Type 2 Diabetes%黄连素降低2型糖尿病血糖机制研究进展

    Institute of Scientific and Technical Information of China (English)

    唐偲; 张嬿; 涂翔; 谢春光

    2012-01-01

    目的:探讨黄连素降低血糖的机制,为黄连素的研究提供参考.方法:搜集、整理、总结、归纳近年来关于黄连素降低2型糖尿病患者血糖机制的相关文献.结果:黄连素主要通过改善胰岛素抵抗、抑制糖异生、促进糖酵解、非胰岛素依赖途径的激活等途径降血糖.结论:黄连素降血糖作用具有多途径、多靶点的特性.%Objective:To review the mechanism of berberine in reducing blood sugar,and provide a reference for the study of berberine. Methods: Relevant literatures on the mechanism of berberine in reducing blood sugar of type 2 diabetes in recent years were collected, analyzed, summarized and concluded. Results:Berberine reduced the blood sugar mainly by improving insulin resistance,inhibiting glu-coneogenesis,increasing energy consumption and activating AMPK. Conclusion: Berberine has the characteristics of multi-channel and multi-target in the aspect of reducing blood sugar.

  15. Computational development of rubromycin-based lead compounds for HIV-1 reverse transcriptase inhibition.

    Science.gov (United States)

    Bernardo, Carlos E P; Silva, Pedro J

    2014-01-01

    The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was analyzed using molecular docking and molecular dynamics simulations. MM-PBSA analysis and examination of the trajectories allowed the identification of several promising compounds with predicted high affinity towards reverse transcriptase mutants which have proven resistant to current drugs. Important insights on the complex interplay of factors determining the ability of ligands to selectively target each mutant have been obtained. PMID:25071993

  16. Computational development of rubromycin-based lead compounds for HIV-1 reverse transcriptase inhibition

    OpenAIRE

    Bernardo, Carlos E. P.; Silva, Pedro J.

    2014-01-01

    The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was analyzed using molecular docking and molecular dynamics simulations. MM-PBSA analysis and examination of the trajectories allowed the identification of several promising compounds with predicted high affinity towards reverse transcriptase mutants which have proven resistant to current drugs. Important insights on the complex interplay of factors determining the ability of ligands to selectively target each mutan...

  17. Computational development of rubromycin-based lead compounds for HIV-1 reverse transcriptase inhibition

    Directory of Open Access Journals (Sweden)

    Carlos E.P. Bernardo

    2014-07-01

    Full Text Available The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was analyzed using molecular docking and molecular dynamics simulations. MM-PBSA analysis and examination of the trajectories allowed the identification of several promising compounds with predicted high affinity towards reverse transcriptase mutants which have proven resistant to current drugs. Important insights on the complex interplay of factors determining the ability of ligands to selectively target each mutant have been obtained.

  18. Molecular signatures of T-cell inhibition in HIV-1 infection

    OpenAIRE

    Larsson, Marie; Shankar, Esaki M.; Che, Karlhans F; Saeidi, Alireza; Ellegård, Rada; Barathan, Muttiah; Velu, Vijayakumar; Kamarulzaman, Adeeba

    2013-01-01

    Cellular immune responses play a crucial role in the control of viral replication in HIV-infected individuals. However, the virus succeeds in exploiting the immune system to its advantage and therefore, the host ultimately fails to control the virus leading to development of terminal AIDS. The virus adopts numerous evasion mechanisms to hijack the host immune system. We and others recently described the expression of inhibitory molecules on T cells as a contributing factor for suboptimal T-ce...

  19. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    Science.gov (United States)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  20. Sensitization of Candida albicans to terbinafine by berberine and berberrubine

    Science.gov (United States)

    LAM, PIKLING; KOK, STANTON HON LUNG; LEE, KENNETH KA HO; LAM, KIM HUNG; HAU, DESMOND KWOK PO; WONG, WAI YEUNG; BIAN, ZHAOXIANG; GAMBARI, ROBERTO; CHUI, CHUNG HIN

    2016-01-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen, particularly observed in immunocompromised patients. C. albicans accounts for 50–70% of cases of invasive candidiasis in the majority of clinical settings. Terbinafine, an allylamine antifungal drug, has been used to treat fungal infections previously. It has fungistatic activity against C. albicans. Traditional Chinese medicines can be used as complementary medicines to conventional drugs to treat a variety of ailments and diseases. Berberine is a quaternary alkaloid isolated from the traditional Chinese herb, Coptidis Rhizoma, while berberrubine is isolated from the medicinal plant Berberis vulgaris, but is also readily derived from berberine by pyrolysis. The present study demonstrates the possible complementary use of berberine and berberrubine with terbinafine against C. albicans. The experimental findings assume that the potential application of these alkaloids together with reduced dosage of the standard drug would enhance the resulting antifungal potency. PMID:27073630

  1. CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2016-04-01

    Full Text Available Cas9 cleaves specific DNA sequences with the assistance of a programmable single guide RNA (sgRNA. Repairing this broken DNA by the cell’s error-prone non-homologous end joining (NHEJ machinery leads to insertions and deletions (indels that often impair DNA function. Using HIV-1, we have now demonstrated that many of these indels are indeed lethal for the virus, but that others lead to the emergence of replication competent viruses that are resistant to Cas9/sgRNA. This unexpected contribution of Cas9 to the development of viral resistance is facilitated by some indels that are not deleterious for viral replication, but that are refractory to recognition by the same sgRNA as a result of changing the target DNA sequences. This observation illustrates two opposite outcomes of Cas9/sgRNA action, i.e., inactivation of HIV-1 and acceleration of viral escape, thereby potentially limiting the use of Cas9/sgRNA in HIV-1 therapy.

  2. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine

    Science.gov (United States)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K.; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-07-01

    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high

  3. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine.

    Science.gov (United States)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-12-01

    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high

  4. Inhibition of HIV-1 integrase nuclear import and replication by a peptide bearing integrase putative nuclear localization signal

    Directory of Open Access Journals (Sweden)

    Waigmann Elisabeth

    2009-12-01

    Full Text Available Abstract Background The integrase (IN of human immunodeficiency virus type 1 (HIV-1 has been implicated in different steps during viral replication, including nuclear import of the viral pre-integration complex. The exact mechanisms underlying the nuclear import of IN and especially the question of whether it bears a functional nuclear localization signal (NLS remain controversial. Results Here, we studied the nuclear import pathway of IN by using multiple in vivo and in vitro systems. Nuclear import was not observed in an importin α temperature-sensitive yeast mutant, indicating an importin α-mediated process. Direct interaction between the full-length IN and importin α was demonstrated in vivo using bimolecular fluorescence complementation assay (BiFC. Nuclear import studies in yeast cells, with permeabilized mammalian cells, or microinjected cultured mammalian cells strongly suggest that the IN bears a NLS domain located between residues 161 and 173. A peptide bearing this sequence -NLS-IN peptide- inhibited nuclear accumulation of IN in transfected cell-cycle arrested cells. Integration of viral cDNA as well as HIV-1 replication in viral cell-cycle arrested infected cells were blocked by the NLS-IN peptide. Conclusion Our present findings support the view that nuclear import of IN occurs via the importin α pathway and is promoted by a specific NLS domain. This import could be blocked by NLS-IN peptide, resulting in inhibition of viral infection, confirming the view that nuclear import of the viral pre-integration complex is mediated by viral IN.

  5. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C;

    1990-01-01

    - and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  6. Brugia malayi Antigen (BmA Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells.

    Directory of Open Access Journals (Sweden)

    Emily E I M Mouser

    Full Text Available One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA and excretory-secretory product 62 (ES-62 from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.

  7. Effect of berberine on proliferation of Siha cells in vitro%黄连素对体外培养siha细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    范开慧; 王敬琦; 王丽

    2011-01-01

    目的:观察黄连素( berberine,ber)对人子宫颈癌siha细胞生长的抑制作用及其对凋亡基因caspase-9、caspase-3的影响,以及caspase-3的活化形式cleaved caspase -3含量的变化.初步探讨ber抑制siha细胞增殖的机制.方法:体外培养人宫颈癌siha细胞,将其分为对照组(二甲亚砜)及ber 20、40和80μmol·L-1,实验组,分别用二甲亚砜、her处理细胞24、48、72和96 h后,经MTT法检测ber对siha细胞增殖的影响;RT - PCR、Westem blotting、免疫细胞化学染色法观察凋亡相关基因caspase-9、caspase-3的转录、蛋白表达情况.结果:实验组MTT值高于对照组,即实验组细胞增殖受到明显抑制;与对照组相比,实验组凋亡相关基因caspase-9、caspase-3的转录水平均上调(P<0.01)、两基因蛋白表达水平明显上调(P<0.01),活化形caspase-3含量增加.结论:ber可抑制体外培养siha细胞增殖,诱导siha细胞发生凋亡.其机制可能与激活caspase家族级联反应有关.%Objective: To observe the inhibiting effect of berberine on proliferation of human cervical cancer Siha cells and the effect on apoptosis related genes (caspase -9 and caspase -3) , and the change of cleaved caspase -3 content, explore the mechanism of inhibiting effect of berberine on proliferation of Siha cells. Methods: Human cervical cancer Siha cells were cultured in vitro, then they were divided into control group (dimethylsulfoxide) and experimental group (20 μmol · L-1 berberine group, 40 μmol · L-1 berberine group and 80 μmol · L-1 berberine group), Siha cells in the two groups were treated with dimethylsulfoxide and berberine for 24, 48, 72 and 96 hours, respectively, then MTT method was used to detect the effect of berberine on proliferation of Siha cells; RT - PCR, Western blotting and immunocytochemical staining were used to observe the transcriptions and expressions of caspase - 9 protein and caspase - 3 protein. Results: MTT value in experimental group

  8. Insights into the molecular mechanism of inhibition and drug resistance for HIV-1 RT with carbovir triphosphate.

    Science.gov (United States)

    Ray, Adrian S; Yang, Zhenjun; Shi, Junxing; Hobbs, Ann; Schinazi, Raymond F; Chu, Chung K; Anderson, Karen S

    2002-04-23

    understanding of the molecular mechanism of inhibition and drug resistance led to the discovery of a novel prodrug of D4G. This compound shows promise as a potent antiviral especially with the drug resistant M184V HIV-1 RT that is so often encountered in a clinical setting. PMID:11955063

  9. Radiolysis of berberine or palmatine in aqueous solution

    Science.gov (United States)

    Marszalek, Milena; Wolszczak, Marian

    2011-01-01

    The reactions of hydrated electron (eaq-), hydrogen atom (H rad ) (reducing species) and Cl2•-, Br2•-, N,O•H radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of eaq- and rad OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with eaq- and radicals generated during radiolysis are unstable and undergo further reactions.

  10. Binding Parameters of Alkaloids Berberine and Sanguinarine with DNA

    CERN Document Server

    Gumenyuk, V G; Kutovyy, S Yu; Yashchuk, V M; Zaika, L A

    2012-01-01

    We study the interaction of berberine and sanguinarine (plant alkaloids) with DNA in aqueous solutions, by using optical spectroscopy methods (absorption and fluorescence). The dependencies of alkaloid spectral characteristics on the concentration ratio N/c between the DNA base pairs and alkaloid molecules in the solutions are considered, and the manifestations of the alkaloid-DNA binding are revealed. The character of binding is found to depend on N/c. The parameters of the binding of berberine and sanguinarine with DNA are determined, by using the modified Scatchard and McGhee-von Hippel equations

  11. Berberine acutely activates the glucose transport activity of GLUT1

    OpenAIRE

    Cok, Alexandra; Plaisier, Christina; Salie, Matthew J.; Oram, Daniel S.; Chenge, Jude; Louters, Larry L.

    2011-01-01

    Berberine, which has a long history of use in Chinese medicine, has recently been shown to have efficacy in the treatment of diabetes. While the hypoglycemic effect of berberine has been clearly documented in animal and cell line models, such as 3T3-L1 adipocytes and L6 myotube cells, the mechanism of action appears complex with data implicating activation of the insulin signaling pathway as well as activation of the exercise or AMP kinase-mediated pathway. There have been no reports of the a...

  12. HPLC Estimation of berberine in Tinospora cordifolia and Tinospora sinensis

    OpenAIRE

    Srinivasan, G. V.; Unnikrishnan, K. P.; Rema Shree, A B; Balachandran, Indira

    2008-01-01

    A high-performance liquid chromatographic method for the estimation of berberine in the stem of Tinospora cordifolia (Willd.) Miers. ex Hook.f. and Thoms. and Tinospora sinensis (Lour.) Merrill is described. The dried stems of T. cordifolia and T. sinensis were defatted with petroleum ether (60-80°). The marc was dried and further extracted with methanol. The concentration of berberine in methanol extract was determined using a C-18 reverse phase column with a mobile phase of acetonitrile:wat...

  13. An Ancient Chinese Herb Berberine; New Research in Diabetes Mellitus

    OpenAIRE

    Sha, Wenjun; Zhang, Weifei; Huang, Wenjin; Zhou, Mingyue; Niu, Jingjing; Jiang, Haili; Junyan, Li; Li, Fu-Feng; Zhu, Ting; Xia, Xin; Shen, Yuandong; Zhou, Ligang

    2013-01-01

    In recent decades, the incidence and prevalence of type 2 diabetes (T2DM) have increased such that it is becoming a major worldwide public health problem. Berberine is a natural product from a Chinese herb, which has been used as anti-diabetic and anti-inflammation medication for centuries. More recently, berberine has also proven its long-term effect on improving patient and animal models with T2DM via several intracellular signal pathways. Here, we summarize its acute and chronic anti-diabe...

  14. Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc-tagged gp120

    Directory of Open Access Journals (Sweden)

    Wilson Ian A

    2006-07-01

    Full Text Available Abstract During natural HIV infection, an array of host receptors are thought to influence virus attachment and the kinetics of infection. In this study, to probe the interactions of HIV envelope (Env with various receptors, we assessed the inhibitory properties of various anti-Env monoclonal antibodies (mAbs in binding assays. To assist in detecting Env in attachment assays, we generated Fc fusions of full-length wild-type gp120 and several variable loop-deleted gp120s. Through investigation of the inhibition of Env binding to cell lines expressing CD4, CCR5, DC-SIGN, syndecans or combinations thereof, we found that the broadly neutralizing mAb, 2G12, directed to a unique carbohydrate epitope of gp120, inhibited Env-CCR5 binding, partially inhibited Env-DC-SIGN binding, but had no effect on Env-syndecan association. Furthermore, 2G12 inhibited Env attachment to primary monocyte-derived dendritic cells, that expressed CD4 and CCR5 primary HIV receptors, as well as DC-SIGN, and suggested that the dual activities of 2G12 could be valuable in vivo for inhibiting initial virus dissemination and propagation.

  15. From ligand to complexes: inhibition of HIV-1 Integrase by beta-diketo acid metal complexes

    OpenAIRE

    Sechi, Mario; BACCHI, Alessia; Carcelli, Mauro; Fisicaro, Emilia; Rogolino, Dominga; Gates, Paul; Derudas, Marco; Al-Mawsawi, Laith Q.; Neamati, Nouri

    2006-01-01

    Recently, a class of compounds bearing a β-diketo acid moiety have emerged as the most promising lead in anti-HIV-1 IN drug discovery. It is believed that the β-diketo acid pharmacophoric motif could be involved in a functional sequestration of one or both divalent metal ions, which are critical cofactors at the enzyme catalytic site. This would subsequently block the transition state of the IN-DNA complex. In this scenario, it is of paramount importance to acquire information ...

  16. Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir.

    Science.gov (United States)

    Kuhnert, Maren; Steuber, Holger; Diederich, Wibke E

    2014-07-24

    HTLV-1 protease (HTLV-1 PR) is an aspartic protease which represents a promising drug target for the discovery of novel anti-HTLV-1 drugs. The X-ray structure of HTLV-1 PR in complex with the well-known and approved HIV-1 PR inhibitor Indinavir was determined at 2.40 Å resolution. In this contribution, we describe the first crystal structure in complex with a nonpeptidic inhibitor that accounts for rationalizing the rather moderate affinity of Indinavir against HTLV-1 PR and provides the basis for further structure-guided optimization strategies. PMID:25006983

  17. Interferon-induced HERC5 is evolving under positive selection and inhibits HIV-1 particle production by a novel mechanism targeting Rev/RRE-dependent RNA nuclear export

    OpenAIRE

    Woods, Matthew William; Tong, Jessica Gayle; Tom, Sean Kevin; Szabo, Peter Anthony; Cavanagh, Peter Craig; Dikeakos, Jimmy Dimitrios; Haeryfar, SM Mansour; Barr, Stephen Dominic

    2014-01-01

    Background Type I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways. It has long been recognized that type I IFNs can potently block HIV-1 replication in vitro; as such, HIV-1 has been used as a system to identify and characterize IFN-induced antiviral proteins responsible for this block. IFN-induced HERC5 contains an amino-terminal Regulator of Chromosome Condensation 1 (RCC1)-like domain and a carboxyl-terminal Homologous to the E6-AP Carbo...

  18. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance.

    Directory of Open Access Journals (Sweden)

    Nadia Bakkour

    2007-10-01

    Full Text Available The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16 that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell-tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.

  19. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event.

    OpenAIRE

    De Clercq, E; Yamamoto, N; Pauwels, R; Baba, M.; Schols, D; Nakashima, H.; Balzarini, J.; Debyser, Z.; Murrer, B A; Schwartz, D.

    1992-01-01

    A series of bicyclams have been shown to be potent and selective inhibitors of human immunodeficiency virus (HIV). The compounds are inhibitory to the replication of various HIV-1 and HIV-2 strains in various human T-cell systems, including peripheral blood lymphocytes, at 0.14-1.4 microM, without being toxic to the host cells at 2.2 mM. The bicyclam JM2763 is active against 3'-azido-3'-deoxythymidine (zidovudine; AZT)-resistant HIV-1 strains and acts additively with AZT. Mechanism of action ...

  20. Iron Chelators of the Di-2-pyridylketone Thiosemicarbazone and 2-Benzoylpyridine Thiosemicarbazone Series Inhibit HIV-1 Transcription: Identification of Novel Cellular Targets—Iron, Cyclin-Dependent Kinase (CDK) 2, and CDK9S⃞

    Science.gov (United States)

    Debebe, Zufan; Ammosova, Tatyana; Breuer, Denitra; Lovejoy, David B.; Kalinowski, Danuta S.; Karla, Pradeep K.; Kumar, Krishna; Jerebtsova, Marina; Ray, Patricio; Kashanchi, Fatah; Gordeuk, Victor R.; Richardson, Des R.

    2011-01-01

    HIV-1 transcription is activated by HIV-1 Tat protein, which recruits cyclin-dependent kinase 9 (CDK9)/cyclin T1 and other host transcriptional coactivators to the HIV-1 promoter. Tat itself is phosphorylated by CDK2, and inhibition of CDK2 by small interfering RNA, the iron chelator 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), and the iron chelator deferasirox (ICL670) inhibits HIV-1 transcription. Here we have analyzed a group of novel di-2-pyridylketone thiosemicarbazone- and 2-benzoylpyridine thiosemicarbazone-based iron chelators that exhibit marked anticancer activity in vitro and in vivo (Proc Natl Acad Sci USA 103:7670–7675, 2006; J Med Chem 50:3716–3729, 2007). Several of these iron chelators, in particular 2-benzoylpyridine 4-allyl-3-thiosemicarbazone (Bp4aT) and 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), inhibited HIV-1 transcription and replication at much lower concentrations than did 311 and ICL670. Neither Bp4aT nor Bp4eT were toxic after a 24-h incubation. However, longer incubations for 48 h or 72 h resulted in cytotoxicity. Analysis of the molecular mechanism of HIV-1 inhibition showed that the novel iron chelators inhibited basal HIV-1 transcription, but not the nuclear factor-κB-dependent transcription or transcription from an HIV-1 promoter with inactivated SP1 sites. The chelators inhibited the activities of CDK2 and CDK9/cyclin T1, suggesting that inhibition of CDK9 may contribute to the inhibition of HIV-1 transcription. Our study suggests the potential usefulness of Bp4aT or Bp4eT in antiretroviral regimens, particularly where resistance to standard treatment occurs. PMID:20956357

  1. Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus

    Directory of Open Access Journals (Sweden)

    De Iaco Alberto

    2011-12-01

    Full Text Available Abstract Background HIV-1 infects non-dividing cells. This implies that the virus traverses the nuclear pore before it integrates into chromosomal DNA. Recent studies demonstrated that TNPO3 is required for full infectivity of HIV-1. The fact that TNPO3 is a karyopherin suggests that it acts by directly promoting nuclear entry of HIV-1. Some studies support this hypothesis, while others have failed to do so. Additionally, some studies suggest that TNPO3 acts via HIV-1 Integrase (IN, and others indicate that it acts via capsid (CA. Results To shed light on the mechanism by which TNPO3 contributes to HIV-1 infection we engineered a panel of twenty-seven single-cycle HIV-1 vectors each bearing a different CA mutation and characterized them for the ability to transduce cells in which TNPO3 had been knocked down (KD. Fourteen CA mutants were relatively TNPO3-independent, as compared to wild-type (WT HIV-1. Two mutants were more TNPO3-dependent than the WT, and eleven mutants were actually inhibited by TNPO3. The efficiency of the synthesis of viral cDNA, 2-LTR circles, and proviral DNA was then assessed for WT HIV-1 and three select CA mutants. Controls included rescue of TNPO3 KD with non-targetable coding sequence, RT- and IN- mutant viruses, and pharmacologic inhibitors of RT and IN. TNPO3 KD blocked transduction and establishment of proviral DNA by wild-type HIV-1 with no significant effect on the level of 2-LTR circles. PCR results were confirmed by achieving TNPO3 KD using two different methodologies (lentiviral vector and siRNA oligonucleotide transfection; by challenging three different cell types; by using two different challenge viruses, each necessitating different sets of PCR primers; and by pseudotyping virus with VSV G or using HIV-1 Env. Conclusion TNPO3 promotes HIV-1 infectivity at a step in the virus life cycle that is detectable after the preintegration complex arrives in the nucleus and CA is the viral determinant for TNPO3

  2. Estimation of berberine in ayurvedic formulations containing Berberis aristata.

    Science.gov (United States)

    Rout, Kedar Kumar; Pradhan, Subhalaxmi; Mishra, Sagar Kumar

    2008-01-01

    A sensitive, simple, rapid, and efficient high-performance thin-layer chromatographic (HPTLC) method has been developed and validated for the analysis of berberine in marketed Ayurvedic formulations containing Berberis aristata DC for regulatory purposes. Chromatography of methanolic extracts of these formulations was performed on silica gel 60 F254 aluminum-backed TLC plates of 0.2 mm layer thickness. The plate was developed up to 66 mm with the ternary-mobile phase butanol-acetic acid-water (8 + 1 + 1, v/v/v) at 33 +/- 5 degrees C with 5 min of tank saturation. The marker, berberine, was quantified at its maximum absorbance of 350 nm. The limit of detection and limit of quantitation values were found to be 5 and 10 ng/spot. The linear regression analysis data for the calibration plot showed a good linear relationship with correlation coefficient = 0.9994 in the concentration range of 10 to 50 ng/spot for berberine with respect to peak area. The instrumental precision was found to be 0.49% coefficient of variation (CV), and repeatability of the method was 0.73% CV. Recovery values from 98.27 to 99.11% indicate excellent accuracy of the method. The developed HPTLC method is very accurate, precise, and cost-effective, and it has been successfully applied to the assay of marketed formulations containing B. aristata for determination of berberine. PMID:18980133

  3. Effect of berberine on pentylenetetrazol-induced seizures in rats

    Directory of Open Access Journals (Sweden)

    Hamid Reza Sadeghnia

    2011-09-01

    Results: Intraperitoneal administration of lower doses of berberine (100 and 200 mg/kg had no significant effects on minimal clonic seizures (MCS and generalized tonic-clonic seizures (GTCS latencies, while injection of 400 mg/kg caused significant increase in both MCS and GTCS latencies (p

  4. Berberine Improves Kidney Injury Following Renal Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Firouzeh Gholampour

    2015-01-01

    Full Text Available This study investigated the effect of berberine on the renal dysfunction and histological damage induced by renal ischaemia/reperfusion at an early stage. There were four groups (n = 7. In Ber+I/R group, rats received berberine (Ber; 15 mg kg-1 day-1 orally for 7 days before induction of ischemia. The I/R group received distilled water orally for 7 days. In sham and Ber+sham groups, that renal arteries were not occluded, distilled water and berberin (15 mg kg-1 day-1, respectively were administered orally for 7 days before surgery. Renal ischemia was induced by occlusion of both renal arteries for 45 min followed by 24 h of reperfusion. Blood samples were collected for biochemical analysis and finally the left kidney was preserved for future histological examination. The renal ischaemic challenge resulted in major histological damages of the kidney which were associated with increased levels of creatinine and Blood Urea Nitrogen (BUN at the end of reperfusion period. In Ber+I/R group, the histological damage to the kidney was improved along with increased in plasma creatinine and BUN being smaller than those of the non-treated rats. Berberine exhibited an ameliorative effect against renal ischemia/reperfusion-induced lesions.

  5. Structural basis of HIV inhibition by translocation-defective RT inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA).

    Science.gov (United States)

    Salie, Zhe Li; Kirby, Karen A; Michailidis, Eleftherios; Marchand, Bruno; Singh, Kamalendra; Rohan, Lisa C; Kodama, Eiichi N; Mitsuya, Hiroaki; Parniak, Michael A; Sarafianos, Stefan G

    2016-08-16

    4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is the most potent nucleoside analog inhibitor of HIV reverse transcriptase (RT). It retains a 3'-OH yet acts as a chain-terminating agent by diminishing translocation from the pretranslocation nucleotide-binding site (N site) to the posttranslocation primer-binding site (P site). Also, facile misincorporation of EFdA-monophosphate (MP) results in difficult-to-extend mismatched primers. To understand the high potency and unusual inhibition mechanism of EFdA, we solved RT crystal structures (resolutions from 2.4 to 2.9 Å) that include inhibition intermediates (i) before inhibitor incorporation (catalytic complex, RT/DNA/EFdA-triphosphate), (ii) after incorporation of EFdA-MP followed by dT-MP (RT/DNAEFdA-MP(P)• dT-MP(N) ), or (iii) after incorporation of two EFdA-MPs (RT/DNAEFdA-MP(P)• EFdA-MP(N) ); (iv) the latter was also solved with EFdA-MP mismatched at the N site (RT/DNAEFdA-MP(P)• EFdA-MP(*N) ). We report that the inhibition mechanism and potency of EFdA stem from interactions of its 4'-ethynyl at a previously unexploited conserved hydrophobic pocket in the polymerase active site. The high resolution of the catalytic complex structure revealed a network of ordered water molecules at the polymerase active site that stabilize enzyme interactions with nucleotide and DNA substrates. Finally, decreased translocation results from favorable interactions of primer-terminating EFdA-MP at the pretranslocation site and unfavorable posttranslocation interactions that lead to observed localized primer distortions. PMID:27489345

  6. Antibody-Mediated Fcγ Receptor-Based Mechanisms of HIV Inhibition: Recent Findings and New Vaccination Strategies

    OpenAIRE

    Christiane Moog; Vincent Holl; Maryse Peressin

    2009-01-01

    The HIV/AIDS pandemic is one of the most devastating pandemics worldwide. Today, the major route of infection by HIV is sexual transmission. One of the most promising strategies for vaccination against HIV sexual infection is the development of a mucosal vaccine, which should be able to induce strong local and systemic protective immunity. It is believed that both humoral and cellular immune responses are needed for inducing a sterilizing protection against HIV. Recently, passive administrati...

  7. PLGA-PEG Nanoparticles Coated with Anti-CD45RO and Loaded with HDAC Plus Protease Inhibitors Activate Latent HIV and Inhibit Viral Spread

    Science.gov (United States)

    Tang, Xiaolong; Liang, Yong; Liu, Xinkuang; Zhou, Shuping; Liu, Liang; Zhang, Fujina; Xie, Chunmei; Cai, Shuyu; Wei, Jia; Zhu, Yongqiang; Hou, Wei

    2015-10-01

    Activating HIV-1 proviruses in latent reservoirs combined with inhibiting viral spread might be an effective anti-HIV therapeutic strategy. Active specific delivery of therapeutic drugs into cells harboring latent HIV, without the use of viral vectors, is a critical challenge to this objective. In this study, nanoparticles of poly(lactic-co-glycolic acid)-polyethylene glycol diblock copolymers conjugated with anti-CD45RO antibody and loaded with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and/or protease inhibitor nelfinavir (Nel) were tested for activity against latent virus in vitro. Nanoparticles loaded with SAHA, Nel, and SAHA + Nel were characterized in terms of size, surface morphology, zeta potential, entrapment efficiency, drug release, and toxicity to ACH-2 cells. We show that SAHA- and SAHA + Nel-loaded nanoparticles can target latently infected CD4+ T-cells and stimulate virus production. Moreover, nanoparticles loaded with SAHA + NEL were capable of both activating latent virus and inhibiting viral spread. Taken together, these data demonstrate the potential of this novel reagent for targeting and eliminating latent HIV reservoirs.

  8. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections

    OpenAIRE

    Ming Chu; Ming-bo Zhang; Yan-chen Liu; Jia-rui Kang; Zheng-yun Chu; Kai-lin Yin; Ling-yu Ding; Ran Ding; Rong-xin Xiao; Yi-nan Yin; Xiao-yan Liu; Yue-dan Wang

    2016-01-01

    Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA b...

  9. Molecular Basis of Inhibitory Activities of Berberine against Pathogenic Enzymes in Alzheimer's Disease

    OpenAIRE

    Hong-Fang Ji; Liang Shen

    2012-01-01

    The natural isoquinoline alkaloid berberine possesses potential to treat Alzheimer's disease (AD) by targeting multiple pathogenic factors. In the present study, docking simulations were performed to gain deeper insights into the molecular basis of berberine's inhibitory effects against the important pathogenic enzymes of AD, that is, acetylcholinesterase, butyrylcholinesterase, and two isoforms of monoamine oxidase. It was found that the theoretical binding affinities of berberine to the fou...

  10. Enhancement of Sodium Caprate on Intestine Absorption and Antidiabetic Action of Berberine

    OpenAIRE

    Lv, Xiao-Yan; Li, Jing; Zhang, Ming; Wang, Chun-Mei; Fan, Zheng; Wang, Chun-Yan; Li CHEN

    2010-01-01

    Berberine, a plant alkaloid used in traditional Chinese medicine, has a wide spectrum of pharmacological actions, but the poor bioavailability limits its clinical use. The present aim was to observe the effects of sodium caprate on the intestinal absorption and antidiabetic action of berberine. The in situ, in vitro, and in vivo models were used to observe the effect of sodium caprate on the intestinal absorption of berberine. Intestinal mucosa morphology was measured to evaluate the toxic ef...

  11. Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine

    OpenAIRE

    Xiao-Wu Chen; Yuan Ming Di; Jian Zhang; Zhi-Wei Zhou; Chun Guang Li; Shu-Feng Zhou

    2012-01-01

    Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding,...

  12. Antilipemic Effect of Berberine Combined with Atorvastatin on Rats with Hypelipemia

    OpenAIRE

    Ye Lu; Wenlong Jiang; Junyou Cui

    2014-01-01

    Objective: To investigate the antilipemic effect of berberine combined with atorvastatin on rats with hypelipemia. Methods: The hypelipemia model was established by intragastric administration of lipid emulsion in rats. According to the level of total cholesterol (TC), the rats were randomly divided into 6 groups: model group, atorvastatin group, high-, middle- and low-dose berberine groups, and berberine + atorvastatin group. The antilipemic effect of each group was observed after 21 days, a...

  13. Berberine in Combination with Insulin Has Additive Effects on Titanium Implants Osseointegration in Diabetes Mellitus Rats

    OpenAIRE

    Li Lu; Huang Zhijian; Li Lei; Chen Wenchuan; Zhu Zhimin

    2015-01-01

    This study evaluated the effects of berberine in combination with insulin on early osseointegration of implants in diabetic rats. Fifty male Sprague-Dawley rats were randomly divided into 5 groups: healthy rats were used as control (HC), and streptozotocin-induced diabetic rats were treated with insulin, berberine, berberine + insulin (IB), or no treatment. Each rat received one machined-surface cp-Ti implant into the right tibia and was given insulin injection and/or gavage feeding with berb...

  14. Study on interaction between plasmid DNA and berberine derivatives with aliphatic chain by fluorescence analysis

    OpenAIRE

    Yong, Yang; Kai, He; Bao-Shun, Zhang; Xue-Gang, LI

    2014-01-01

    In this study, the fluorescence analysis was used to reveal the interaction between berberine derivatives and plasmid DNA. The results showed that berberine (C0) and its 8-alkyl derivatives can enhance the fluorescent intensity of plasmid DNA. Compared with 8-dodecyl- (C12) and 8-hexadecyl- (C16) berberine, 8-alkylberberine with shorter alkyl group, such as 8-ethyl (C2), 8-butyl (C4), 8-hexyl (C6), and 8-octyl (C8) berberine derivatives showed higher fluorescence increasing effect. Among all ...

  15. Effects of Berberine and Hwangryunhaedok-Tang on Oral Bioavailability and Pharmacokinetics of Ciprofloxacin in Rats

    OpenAIRE

    Youn-Hwan Hwang; Won-Kyung Cho; Doorye Jang; Jeong-Ho Ha; Kiyoun Jung; Hyo-In Yun; Jin Yeul Ma

    2012-01-01

    Hwangryunhaedok-Tang (HR) and berberine-containing single herbs are used to treat bacterial infection and inflammatory diseases in eastern Asia. The combination of berberine-containing herbal medicines and ciprofloxacin can be an excellent antibacterial chemotherapy against multidrug resistance bacteria. To evaluate the pretreatment effect of berberine and HR, vehicle, berberine (25 and 50 mg/kg/day), and HR (1.4 g/kg/day) were daily administered to rats for five consecutive days. On day 6, c...

  16. Protective Effects of Berberine on Oxygen-Glucose Deprivation/Reperfusion on Oligodendrocyte Cell Line (OLN-93

    Directory of Open Access Journals (Sweden)

    Shabnam Nadjafi

    2014-01-01

    Conclusions: We concluded that berberine protected OLN-93 oligodendrocyte against ischemic induced excitotoxic injury. Attenuation of intracellular Ca 2+ overload by berberine may be the key mechanism that saved OLN-93 from excitotoxicity damage.

  17. Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth

    OpenAIRE

    Lingyi Fu; Wangbing Chen; Wei Guo; Jingshu Wang; Yun Tian; Dingbo Shi; Xiaohong Zhang; Huijuan Qiu; Xiangsheng Xiao; Tiebang Kang; Wenlin Huang; Shusen Wang; Wuguo Deng

    2013-01-01

    Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC) cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and...

  18. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C M; Nielsen, C;

    1989-01-01

    The binding of 13 different lectins to gp120 partially purified from two HIV-1 isolates and one HIV-2 isolate was studied by in situ staining on electrophoretically separated and electroblotted HIV antigens. The lectins concanavalin A, wheat germ agglutinin, Lens culinaris agglutinin, Vicia faba...... agglutinin, Pisum sativum agglutinin and phytohaem(erythro)agglutinin bound to gp120 of all three isolates. The carbohydrate of gp120 recognized by lectins was thus arranged in at least four types of glycans: a high mannose type glycan, a bisected hybrid or complex type glycan, a biantennary fucosylated...

  19. Metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of oral-administrated berberine

    OpenAIRE

    Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Phillip B Hylemon; Zhou, Huiping; Aa, Jiye; Wang, Guangji

    2014-01-01

    Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-...

  20. Antiproliferation of berberine is mediated by epigenetic modification of constitutive androstane receptor (CAR) metabolic pathway in hepatoma cells

    OpenAIRE

    Lei Zhang; Xiao-Jie Miao; Xin Wang; Hai-Hui Pan; Pu Li; Hong Ren; Yong-Rui Jia; Chuang Lu; Hong-Bing Wang; Lan Yuan; Guo-Liang Zhang

    2016-01-01

    Constitutive androstane receptor (CAR) regulates hepatic xenobiotic and energy metabolism, as well as promotes cell growth and hepatocarcinogenesis. Berberine is an ancient multipotent alkaloid drug which derived from Coptis chinensis plants. Here we report that berberine is able to be cellular uptake and accessible to chromatin in human hepatoma HepG2 cells. Berberine induces more apoptosis, cell cycle arrest, but less ROS production in CAR overexpressed mCAR-HepG2 cells. Moreover, berberine...

  1. Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor

    OpenAIRE

    Lihong Wang; Liping Liu; Yan Shi; Hanwei Cao; Rupesh Chaturvedi; M Wade Calcutt; Tianhui Hu; Xiubao Ren; Wilson, Keith T.; Brent Polk, D.; Fang Yan

    2012-01-01

    Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IM...

  2. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells

    OpenAIRE

    Piyanuch, Rojsanga; Sukhthankar, Mugdha; Baek, Seung Joon

    2007-01-01

    Berberine is known to possess a wide variety of pharmacological activities, including pro-apoptotic activity. However, its molecular targets are not elucidated at present. NAG-1 and ATF3 are induced by several dietary compounds associated with pro-apoptotic activity. Berberine induces cell growth arrest, apoptosis, NAG-1, and ATF3 in human colorectal cancer cells. ATF3 induction by berberine is mediated in a p53-dependent manner, whereas NAG-1 induction by berberine is mediated by multiple si...

  3. HIV-1 Nef Binds the DOCK2-ELMO1 Complex to Activate Rac and Inhibit Lymphocyte Chemotaxis

    Directory of Open Access Journals (Sweden)

    Janardhan Ajit

    2004-01-01

    Full Text Available The infectious cycle of primate lentiviruses is intimately linked to interactions between cells of the immune system. Nef, a potent virulence factor, alters cellular environments to increase lentiviral replication in the host, yet the mechanisms underlying these effects have remained elusive. Since Nef likely functions as an adaptor protein, we exploited a proteomic approach to directly identify molecules that Nef targets to subvert the signaling machinery in T cells. We purified to near homogeneity a major Nef-associated protein complex from T cells and identified by mass spectroscopy its subunits as DOCK2-ELMO1, a key activator of Rac in antigen- and chemokine-initiated signaling pathways, and Rac. We show that Nef activates Rac in T cell lines and in primary T cells following infection with HIV-1 in the absence of antigenic stimuli. Nef activates Rac by binding the DOCK2-ELMO1 complex, and this interaction is linked to the abilities of Nef to inhibit chemotaxis and promote T cell activation. Our data indicate that Nef targets a critical switch that regulates Rac GTPases downstream of chemokine- and antigen-initiated signaling pathways. This interaction enables Nef to influence multiple aspects of T cell function and thus provides an important mechanism by which Nef impacts pathogenesis by primate lentiviruses.

  4. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death.

    Science.gov (United States)

    Wang, Kai; Zhang, Chao; Bao, Jiaolin; Jia, Xuejing; Liang, Yeer; Wang, Xiaotong; Chen, Meiwan; Su, Huanxing; Li, Peng; Wan, Jian-Bo; He, Chengwei

    2016-01-01

    Curcumin (CUR) and berberine (BBR) are renowned natural compounds that exhibit potent anticancer activities through distinct molecular mechanisms. However, the anticancer capacity of either CUR or BBR is limited. This prompted us to investigate the chemopreventive potential of co-treatment of CUR and BBR against breast cancers. The results showed that CUR and BBR in combination synergistically inhibited the growth of both MCF-7 and MDA-MB-231 breast cancer cells than the compounds used alone. Further study confirmed that synergistic anti-breast cancer activities of co-treatment of these two compounds was through inducing more apoptosis and autophagic cell death (ACD). The co-treatment-induced apoptosis was caspase-dependent and through activating ERK pathways. Our data also demonstrated that co-treatment of CUR and BBR strongly up-regulated phosphorylation of JNK and Beclin1, and decreased phosphorylated Bcl-2. Inhibition of JNK by SP600125 markedly decreased LC3-II and Beclin1, restored phosphorylated Bcl-2, and reduced the cytotoxicity induced by the two compounds in combination. These results strongly suggested that JNK/Bcl-2/Beclin1 pathway played a key role in the induction of ACD in breast cancer cells by co-treatment of CUR and BBR. This study provides an insight into the potential application of curcumin and berberine in combination for the chemoprevention and treatment of breast cancers. PMID:27263652

  5. In vitro and ex vivo inhibition of human telomerase by anti-HIV nucleoside reverse transcriptase inhibitors (NRTIs but not by non-NRTIs.

    Directory of Open Access Journals (Sweden)

    Kyle R Hukezalie

    Full Text Available Telomerase is a specialized reverse transcriptase responsible for the de novo synthesis of telomeric DNA repeats. In addition to its established reverse transcriptase and terminal transferase activities, recent reports have revealed unexpected cellular activities of telomerase, including RNA-dependent RNA polymerization. This telomerase characteristic, distinct from other reverse transcriptases, indicates that clinically relevant reverse transcriptase inhibitors might have unexpected telomerase inhibition profiles. This is particularly important for the newer generation of RT inhibitors designed for anti-HIV therapy, which have reported higher safety margins than older agents. Using an in vitro primer extension assay, we tested the effects of clinically relevant HIV reverse transcriptase inhibitors on cellular telomerase activity. We observed that all commonly used nucleoside reverse transcriptase inhibitors (NRTIs, including zidovudine, stavudine, tenofovir, didanosine and abacavir, inhibit telomerase effectively in vitro. Truncated telomere synthesis was consistent with the expected mode of inhibition by all tested NRTIs. Through dose-response experiments, we established relative inhibitory potencies of NRTIs on in vitro telomerase activity as compared to the inhibitory potencies of the corresponding dideoxynucleotide triphosphates. In contrast to NRTIs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs nevirapine and efavirenz did not inhibit the primer extension activity of telomerase, even at millimolar concentrations. Long-term, continuous treatment of human HT29 cells with select NRTIs resulted in an accelerated loss of telomere repeats. All tested NRTIs exhibited the same rank order of inhibitory potencies on telomerase and HIV RT, which, according to published data, were orders-of-magnitude more sensitive than other DNA polymerases, including the susceptible mitochondria-specific DNA polymerase gamma. We concluded that

  6. Inhibition of p66ShcA Longevity Gene Rescues Podocytes from HIV-1-induced Oxidative Stress and Apoptosis*

    OpenAIRE

    Husain, Mohammad; Meggs, Leonard G.; Vashistha, Himanshu; Simoes, Sonia; Griffiths, Kevin O.; Kumar, Dileep; Mikulak, Joanna; Mathieson, Peter W.; Saleem, Moin A.; Del Valle, Luis; Pina-Oviedo, Sergio; Wang, Jin Ying; Seshan, Surya V.; Malhotra, Ashwani; Reiss, Krzysztof

    2009-01-01

    Glomerular visceral epithelial cells (podocytes) play a critical role in the pathogenesis of human immunodeficiency virus (HIV)-associated nephropathy. A key question concerns the mechanism(s) by which the HIV-1 genome alters the phenotype of the highly specialized, terminally differentiated podocytes. Here, using an in vitro system of conditionally immortalized differentiated human podocytes (CIDHPs), we document a pivotal role for the p66ShcA protein in HIV-1-induced reactive oxygen species...

  7. RING Domain Mutations Uncouple TRIM5α Restriction of HIV-1 from Inhibition of Reverse Transcription and Acceleration of Uncoating

    OpenAIRE

    Roa, Amanda; Hayashi, Fumiaki; Yang, Yang; Lienlaf, Maritza; Zhou, Jing; Shi, Jiong; Watanabe, Satoru; Kigawa, Takanori; Yokoyama, Shigeyuki; Aiken, Christopher; Diaz-Griffero, Felipe

    2012-01-01

    Rhesus TRIM5α (TRIM5αrh) is a cytosolic protein that potently restricts HIV-1 at an early postentry stage, prior to reverse transcription. The ability of TRIM5αrh to block HIV-1 infection has been correlated with a decrease of pelletable HIV-1 capsid during infection. To genetically dissect the ability of TRIM5α to block reverse transcription, we studied a set of TRIM5αrh RING domain mutants that potently restrict HIV-1 but allow the occurrence of reverse transcription. These TRIM5αrh RING va...

  8. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    Directory of Open Access Journals (Sweden)

    Yan M

    2015-10-01

    Full Text Available Meng Yan,1 Kaiping Zhang,1 Yanhui Shi,1 Lifang Feng,1 Lin Lv,1 Baoxin Li1,2 1Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China Abstract: Berberine (BBR, an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293 cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652 and phenylalanine (Phe656 in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. Keywords: berberine, hERG, cavoline-1, cardiotoxicity, LQTS, pharmacological rescue

  9. Spectrofluorometric determination of DNA and RNA with berberine

    Science.gov (United States)

    Gong, Guo-Quan; Zong, Zhi-Xin; Song, Yu-Min

    1999-08-01

    On binding to nucleic acids, the dye berberine increases its fluorescence quantum efficiency by a factor of 25-30. Based on this, an easy, rapid and accurate method for the determination of nucleic acids was developed. Berberine is very like ethidium bromide (EB), but it is non-poisonous. Determination can be made at any pH between 4 and 10, where the native structure of DNA and RNA is not disrupted. The maximum emission is near 520 nm for excitation at 355 or 450 nm. This method has good sensitivity (0.01 μg ml -1 of ctDNA), high selectivity and a wide linear range (0.05-14.0 μg ml -1 of ctDNA).

  10. Radiolysis of berberine or palmatine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Marszalek, Milena [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland); Wolszczak, Marian, E-mail: marianwo@mitr.p.lodz.p [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland)

    2011-01-15

    The reactions of hydrated electron (e{sub aq}{sup -}), hydrogen atom (H{sup {center_dot}}) (reducing species) and Cl{sub 2}{sup {center_dot}}{sup -},Br{sub 2}{sup {center_dot}}{sup -},{sup {center_dot}}N{sub 3},{sup {center_dot}}OH radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of e{sub aq}{sup -} and {sup {center_dot}}OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with e{sub aq}{sup -} and radicals generated during radiolysis are unstable and undergo further reactions.

  11. HPLC estimation of berberine in Tinospora cordifolia and Tinospora sinensis

    Directory of Open Access Journals (Sweden)

    Srinivasan G

    2008-01-01

    Full Text Available A high-performance liquid chromatographic method for the estimation of berberine in the stem of Tinospora cordifolia (Willd. Miers. ex Hook.f. and Thoms. and Tinospora sinensis (Lour. Merrill is described. The dried stems of T. cordifolia and T. sinensis were defatted with petroleum ether (60-80°. The marc was dried and further extracted with methanol. The concentration of berberine in methanol extract was determined using a C-18 reverse phase column with a mobile phase of acetonitrile:water (10:90 v/v at a flow rate of 0.6 ml/min and with UV detection at 266 nm. TLC and HPLC comparison of both the species revealed significant variation in the chemical constitution of the two species. This observation becomes important in the context of the use of T. sinensis in place of the genuine drug T. cordifolia .

  12. HPLC Estimation of berberine in Tinospora cordifolia and Tinospora sinensis.

    Science.gov (United States)

    Srinivasan, G V; Unnikrishnan, K P; Rema Shree, A B; Balachandran, Indira

    2008-01-01

    A high-performance liquid chromatographic method for the estimation of berberine in the stem of Tinospora cordifolia (Willd.) Miers. ex Hook.f. and Thoms. and Tinospora sinensis (Lour.) Merrill is described. The dried stems of T. cordifolia and T. sinensis were defatted with petroleum ether (60-80 degrees ). The marc was dried and further extracted with methanol. The concentration of berberine in methanol extract was determined using a C-18 reverse phase column with a mobile phase of acetonitrile:water (10:90 v/v) at a flow rate of 0.6 ml/min and with UV detection at 266 nm. TLC and HPLC comparison of both the species revealed significant variation in the chemical constitution of the two species. This observation becomes important in the context of the use of T. sinensis in place of the genuine drug T. cordifolia. PMID:20390090

  13. Relief of preintegration inhibition and characterization of additional blocks for HIV replication in primary mouse T cells.

    Directory of Open Access Journals (Sweden)

    Jing-xin Zhang

    Full Text Available Development of a small animal model to study HIV replication and pathogenesis has been hampered by the failure of the virus to replicate in non-primate cells. Most studies aimed at achieving replication in murine cells have been limited to fibroblast cell lines, but generating an appropriate model requires overcoming blocks to viral replication in primary T cells. We have studied HIV-1 replication in CD4(+ T cells from human CD4/CCR5/Cyclin T1 transgenic mice. Expression of hCD4 and hCCR5 in mouse CD4(+ T cells enabled efficient entry of R5 strain HIV-1. In mouse T cells, HIV-1 underwent reverse transcription and nuclear import as efficiently as in human T cells. In contrast, chromosomal integration of HIV-1 proviral DNA was inefficient in activated mouse T cells. This process was greatly enhanced by providing a secondary T cell receptor (TCR signal after HIV-1 infection, especially between 12 to 24 h post infection. This effect was specific for primary mouse T cells. The pathways involved in HIV replication appear to be PKCtheta-, CARMA1-, and WASp-independent. Treatment with Cyclosporin A (CsA further relieved the pre-integration block. However, transcription of HIV-1 RNA was still reduced in mouse CD4(+ T cells despite expression of the hCyclin T1 transgene. Additional post-transcriptional defects were observed at the levels of Gag expression, Gag processing, Gag release and virus infectivity. Together, these post-integration defects resulted in a dramatically reduced yield of infectious virus (300-500 fold after a single cycle of HIV-1 replication. This study implies the existence of host factors, in addition to those already identified, that are critical for HIV-1 replication in mouse cells. This study also highlights the differences between primary T cells and cell lines regarding pre-integration steps in the HIV-1 replication cycle.

  14. Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Doaa A. Ghareeb

    2015-01-01

    Full Text Available Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity and the protective effect of berberine against both NASH and its associated neurotoxicity. NASH induced rats showed significant impairments in lipid metabolism with increased serum triglycerides, cholesterol, and low-density lipoprotein (LDL. The NASH induced group also demonstrated a significant oxidative stress which is characterized by increased TBARs level and decreased antioxidant capacity such as GSH and SOD levels. Moreover, the NASH induction was associated with inflammation which was demonstrated by increased TNFα and nitric oxide levels. Hyperglycemia and hyperinsulinemia were observed in the NASH induced group. Also, our results showed a significant increase in the expression of the acetylcholine esterase (AChE and amyloid beta precursor protein (AβPP. These changes were significantly correlated with decreased insulin degrading enzyme (IDE and beta-amyloid40 (Aβ40 and increased beta-amyloid42 (Aβ42 in the hippocampal region. Daily administration of berberine (50 mg/kg for three weeks ameliorated oxidative stress, inflammation, hyperlipidemia, hyperglycemia, hyperinsulinemia, and the observed neurotoxicity.

  15. Berberine is a potent agonist of peroxisome proliferator activated receptor alpha.

    Science.gov (United States)

    Yu, Huarong; Li, Changqing; Yang, Junqing; Zhang, Tao; Zhou, Qixin

    2016-01-01

    Although berberine has hypolipidemic effects with a high affinity to nuclear proteins, the underlying molecular mechanism for this effect remains unclear. Here, we determine whether berberine is an agonist of peroxisome proliferator-activated receptor alpha (PPARalpha), with a lipid-lowering effect. The cell-based reporter gene analysis showed that berberine selectively activates PPARalpha (EC50 =0.58 mM, Emax =102.4). The radioligand binding assay shows that berberine binds directly to the ligand-binding domain of PPARalpha (Ki=0.73 mM) with similar affinity to fenofibrate. The mRNA and protein levels of CPT-Ialpha gene from HepG2 cells and hyperlipidemic rat liver are remarkably up-regulated by berberine, and this effect can be blocked by MK886, a non-competitive antagonist of PPARalpha. A comparison assay in which berberine and fenofibrate were used to treat hyperlipidaemic rats for three months shows that these drugs produce similar lipid-lowering effects, except that berberine increases high-density lipoprotein cholesterol more effectively than fenofibrate. These findings provide the first evidence that berberine is a potent agonist of PPARalpha and seems to be superior to fenofibrate for treating hyperlipidemia. PMID:27100490

  16. The influence of clay surface modification with berberine on the sorption of anthocyanins

    Science.gov (United States)

    Chulkov, A. N.; Deineka, V. I.; Tikhova, A. A.; Vesentzev, A. I.; Deineka, L. A.

    2012-03-01

    The influence of preliminary sorption of berberine on the sorption of anthocyanins by bentonite clay was studied. The cation exchange sorption mechanism was found to be replaced by hydrophobic sorption of these compounds after clay modification with berberine. The enthalpy of sorption along the initial isotherm part changed from endothermic to exothermic.

  17. Hepatoprotective effects of berberine on carbon tetrachloride-induced acute hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Feng Yibin

    2010-09-01

    Full Text Available Abstract Background Berberine is an active compound in Coptidis Rhizoma (Huanglian with multiple pharmacological activities including antimicrobial, antiviral, anti-inflammatory, cholesterol-lowering and anticancer effects. The present study aims to determine the hepatoprotective effects of berberine on serum and tissue superoxide dismutase (SOD levels, the histology in tetrachloride (CCl4-induced liver injury. Methods Sprague-Dawley rats aged seven weeks were injected intraperitoneally with 50% CCl4 in olive oil. Berberine was orally administered before or after CCl4 treatment in various groups. Twenty-four hours after CCl4 injection, serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities, serum and liver superoxide dismutase (SOD activities were measured. Histological changes of liver were examined with microscopy. Results Serum ALT and AST activities significantly decreased in a dose-dependent manner in both pre-treatment and post-treatment groups with berberine. Berberine increased the SOD activity in liver. Histological examination showed lowered liver damage in berberine-treated groups. Conclusion The present study demonstrates that berberine possesses hepatoprotective effects against CCl4-induced hepatotoxicity and that the effects are both preventive and curative. Berberine should have potential for developing a new drug to treat liver toxicity.

  18. Palmitic acid analogs exhibit nanomolar binding affinity for the HIV-1 CD4 receptor and nanomolar inhibition of gp120-to-CD4 fusion.

    Directory of Open Access Journals (Sweden)

    Elena E Paskaleva

    Full Text Available BACKGROUND: We recently reported that palmitic acid (PA is a novel and efficient CD4 fusion inhibitor to HIV-1 entry and infection. In the present report, based on in silico modeling of the novel CD4 pocket that binds PA, we describe discovery of highly potent PA analogs with increased CD4 receptor binding affinities (K(d and gp120-to-CD4 inhibition constants (K(i. The PA analogs were selected to satisfy Lipinski's rule of drug-likeness, increased solubility, and to avoid potential cytotoxicity. PRINCIPAL FINDINGS: PA analog 2-bromopalmitate (2-BP was most efficacious with K(d approximately 74 nM and K(i approximately 122 nM, ascorbyl palmitate (6-AP exhibited slightly higher K(d approximately 140 nM and K(i approximately 354 nM, and sucrose palmitate (SP was least efficacious binding to CD4 with K(d approximately 364 nM and inhibiting gp120-to-CD4 binding with K(i approximately 1486 nM. Importantly, PA and its analogs specifically bound to the CD4 receptor with the one to one stoichiometry. SIGNIFICANCE: Considering observed differences between K(i and K(d values indicates clear and rational direction for improving inhibition efficacy to HIV-1 entry and infection. Taken together this report introduces a novel class of natural small molecules fusion inhibitors with nanomolar efficacy of CD4 receptor binding and inhibition of HIV-1 entry.

  19. Inhibition of catechol-O-methyl transferase (COMT) by tolcapone restores reductions in microtubule-associated protein 2 (MAP2) and synaptophysin (SYP) following exposure of neuronal cells to neurotropic HIV.

    Science.gov (United States)

    Lee, Ting Ting; Chana, Gursharan; Gorry, Paul R; Ellett, Anne; Bousman, Chad A; Churchill, Melissa J; Gray, Lachlan R; Everall, Ian P

    2015-10-01

    This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on a previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40 % lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y-differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of tolcapone for 6 days. RNA was extracted, and qPCR was performed using Qiagen RT2 custom array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the messenger RNA (mRNA) expression of COMT while reducing the expression of microtubule-associated protein 2 (MAP2) (p = 0.0015) and synaptophysin (SYP) (p = 0.012) compared to control. A concomitant exposure of tolcapone ameliorated the perturbed expression of MAP2 (p = 0.009) and COMT (p = 0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV and that concomitant exposure of tolcapone increased SYP (p = 0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND. PMID:26037113

  20. Effects of berberine in the gastrointestinal tract - a review of actions and therapeutic implications.

    Science.gov (United States)

    Chen, Chunqiu; Yu, Zhen; Li, Yongyu; Fichna, Jakub; Storr, Martin

    2014-01-01

    Berberine is an isoquinoline alkaloid present in several plant species, including Coptis sp. and Berberis sp. In traditional medicine, extracts of berberine are used in the treatment of diarrhea of different origins. Recent studies have shown that berberine and its derivatives have significant biological effects on gastrointestinal (GI) and other functions and may become therapeutics for the treatment of diarrhea, gastroenteritis, diabetes, hyperlipidemia, cardiovascular diseases and inflammatory conditions. This paper summarizes the current knowledge on the actions of berberine in the GI tract. Binding and target sites, activated intracellular pathways, as well as the absorption and metabolism of berberine are discussed. Effects that may be useful in future clinical treatment, like antidiarrheal, anti-inflammatory and antitumor effects are critically reviewed and potential clinical applications are presented in detail. PMID:25183302

  1. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    Science.gov (United States)

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism. PMID:26882131

  2. Determination of berberine and the study of fluorescence quenching mechanism between berberine and enzyme-catalyzed product

    Science.gov (United States)

    Wang, Huaiyou; Zhang, Miao; Lv, Qingluan; Yue, Ningning; Gong, Bin

    2009-08-01

    A new method for determining berberine has been established based on the principle of fluorescence quenching. The calibration curve was found to be linear between F0/ F and the concentration of berberine with the range of 3.00-20.0 μg mL -1. The detection limit was 0.51 μg mL -1 and the relative standard derivative was 0.18%. Effects of pH, foreign ions and the optimization of variables on the determination of berberine have been examined. The mechanism of the fluorescence quenching has been discussed. The binding constant and the number of binding sites were 1.70 × 10 6 L mol -1 and 1.14, respectively. The data, Δ H = 42.71 kJ mol -1, Δ S = 264.3 J K -1 mol -1 and the mean value Δ G = -39.65 kJ mol -1 were estimated which showed that the reaction was spontaneous and endothermic. The main binding force was hydrophobic force because both Δ H and Δ S were positive.

  3. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Chien-Cheng Chen

    Full Text Available Traumatic brain injury (TBI triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1 or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.

  4. Inhibitions and implications associated with celebrity participation in health-related social marketing: an exploratory research focused on HIV prevention in Portugal.

    Science.gov (United States)

    Casais, Beatriz; Proença, João F

    2012-01-01

    This article discusses motivations and inhibitions among celebrities to participate in health-related social marketing. The research identifies the implications that this involvement may have upon their lives. Results from in-depth interviews with 27 Portuguese celebrities show that they expect a fee for endorsements of commercial and government social marketing, despite the positive image they may gain from endorsing public health. The results demonstrate an absence of celebrity prejudice against HIV because of its serious nature and the social stigma attached to AIDS. This research suggests there is a positive bias and presents helpful information for negotiations between institutions and celebrities. PMID:22905943

  5. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1)

    OpenAIRE

    Aubrie O’Rourke; Stephan Kremb; Theresa Maria Bader; Markus Helfer; Philippe Schmitt-Kopplin; Gerwick, William H; Ruth Brack-Werner; Voolstra, Christian R

    2016-01-01

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhib...

  6. Small-Molecule Inhibition of HIV pre-mRNA Splicing as a Novel Antiretroviral Therapy to Overcome Drug Resistance

    OpenAIRE

    Nadia Bakkour; Yea-Lih Lin; Sophie Maire; Lilia Ayadi; Florence Mahuteau-Betzer; Chi Hung Nguyen; Clément Mettling; Pierre Portales; David Grierson; Benoit Chabot; Philippe Jeanteur; Christiane Branlant; Pierre Corbeau; Jamal Tazi

    2007-01-01

    Author Summary Over the two decades highly active antiretroviral therapy (HAART) for the treatment of HIV infection has led to a significant decline in morbidity and mortality rates among HIV-infected individuals. HAART uses a combination of molecules that target the virus itself. However, naturally occurring and extensive genetic variation found in the virus allow the emergence of drug-resistant viruses, which rapidly render individuals untreatable. An alternative approach for effective anti...

  7. Effects of berberine on acquisition and reinstatement of morphine-induced conditioned place preference in mice

    Directory of Open Access Journals (Sweden)

    Faezeh Vahdati Hassani

    2016-03-01

    Full Text Available Objective: It has been shown that berberine, a major component of Berberis vulgaris extract, modulates the activity of several neurotransmitter systems including dopamine (Da and N-methyl-D-aspartate (NMDA contributing to rewarding and reinforcing effects of morphine. Drug craving and relapsing even after a long time of abstinence therapy are the most important problems of addiction. In the present study, we investigated the alleviating effects of berberine on the acquisition and reinstatement of morphine-induced conditioned place preference (CPP in mice. Materials and Methods: In male NMRI mice, the acquisition of CPP was established by 40 mg/kg of morphine sulphate injection and extinguished after the extinction training and reinstated by a 10 mg/kg injection of morphine.  The effects of different doses of berberine (5, 10, and 20 mg/kg on the acquisition and reinstatement induced by morphine were evaluated in a conditioned place preference test. Results: The results showed that intraperitoneal administration of berberine (5, 10, and 20 mg/kg did not induce conditioned appetitive or aversive effects. Injection of berberine (10 and 20 mg/kg 2 h before the morphine administration reduced acquisition of morphine-induced CPP. In addition, same doses of berberine significantly prevented the reinstatement of morphine-induced CPP. Conclusion: These results suggest that berberine can reduce the acquisition and reinstatement of morphine-induced conditioned place preference and may be useful in treatment of morphine addiction.

  8. Berberine: New Insights from Pharmacological Aspects to Clinical Evidences in the Management of Metabolic Disorders.

    Science.gov (United States)

    Caliceti, Cristiana; Franco, Placido; Spinozzi, Silvia; Roda, Aldo; Cicero, Arrigo F G

    2016-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids found in such plants as gender Berberis. Berberine is recognised to improve glucose and lipid metabolism disorders and preliminary clinical evidences suggest the ability of berberine to reduce endothelial inflammation improving vascular health, even in patients already affected by cardiovascular diseases, suggesting a possible interesting role of berberine and its metabolites in clinical practice. However, its physicochemical properties, pharmacokinetic, and metabolism are not fully elucidated and contradictory data have been reported. This review provides a summary regarding the pharmacological and biological features of berberine, with a focus on berberine as well as their pharmacologically active metabolites and the different mechanisms underlying their activities in order to clarify the correct use of berberine supplementation, alone or in association with other nutraceuticals, for the management of metabolic disorders associated to increased cardiovascular disease risk. A particular attention has also been given to the available clinical trials assessing its short- and middle- term use tolerability, safety and efficacy in various conditions, such as dyslipidaemia, impaired fasting glucose, metabolic syndrome and type 2 diabetes. PMID:27063256

  9. Antifungal susceptibility analysis of berberine, baicalin, eugenol and curcumin on Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Wu Jianhua; Wen Hai

    2009-01-01

    Objective: To analyze the antifungal effects of Chinese herb monomers, i.e. berberine, baicalin, eugenol and curcumin, on Candida albicans. Methods: After Candida albicans strain Y01-09 was incubated for 48 h in YEPD broth which contained different concentrations of Chinese herb components, the cell cycle, fluorescent intensity and the size of cell volume were detected by flow cytometry. Results: The 4 Chinese herb monomers could affect the cell cycle of Candida albicans in different ranges. The ratio of cells in S-G2-M period decreased as the agents concentration increased, indicating that the cell division was inhibited. The fluorescent intensity of Candida albicans cells became weaker after being incubated, which reflected the loss of DNA fragments. The higher the concentration was, the weaker the fluorescent intensity became. The cell size, cell diopter and particle size changed much as the agents concentration increased. Conclusion: Chinese herb monomers play the antifungal role in inhibiting cell division. FCM could be used to determine the susceptibility of antifungal agents.

  10. Determination of berberine in Phellodendron amurense from different sites of Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    Lin Ma; Jun-qing Li; Yuan-dong Hu

    2015-01-01

    Phellodendron amurense has been used for many years as a medical plant in traditional Chinese medicine and has shown great prospect in recent clinical trials for future applications. Berberine is an essential active compound contained in P. amurense. Our objective in this study was to quantify the content of berberine in P. amurense from sites at different elevations on Changbai Mountain. We collected samples of P. amurense from five different elevations on Changbai Mountain. Berberine in samples was extracted by ultrahigh pressure extraction (UPE). And the quantity was measured by high perfor-mance liquid chromatography (HPLC). First, the optimal HPLC conditions for berberine were identified with satis-factory precision (relative standard deviation, RSD<5.6%), good accuracy (relative error, RE<3.6%) and good linear relation (R2=0.9998) in the range of 6.576–328.8 mg•L-1. Second, the combination of UPE and HPLC methods in quantitative analysis of berberine showed high repeatability (RSD=3.28%), reproducibility (RSD=4.72%), stability (RSD<1.27%) and good recovery (99.54%) for real plant materials. Samples from Heilongjiang Province at the lowest elevation contained the highest amount of berberine. Similarly, the lowest amount of berberine was recorded in samples from Changbai Forest Bureau of Jilin Province col-lected at the highest elevation in this paper. The proposed UPE–HPLC method is simple, reliable and low-cost for quantitative analysis of berberine. Content of berberine in P. amurense varied significantly by site on Changbai Mountain.

  11. Protective mechanisms of berberine against experimental autoimmune myocarditis in a rat model.

    Science.gov (United States)

    Liu, Xuefei; Zhang, Xinghua; Ye, Lin; Yuan, Haitao

    2016-04-01

    Berberine, an alkaloid derivative extracted from numerous plants of the general Berberis and Coptis, has been reported to have immunomodulatory effects against immune-mediated disorders in emerging studies. In this study, the effects of berberine and its underlying molecular mechanisms were investigated from the myosin-induced myocardial injury in rats. Lewis rats were immunized with porcine cardiac myosin to induce experimental autoimmune myocarditis (EAM), treated with berberine and specific JAK inhibitor AG490 as a positive control. Our data showed that both berberine and AG490 significantly reduced the impaired cardiac function and the pathophysiological severity, impeded high levels of anti-cardiac myosin antibody of EAM rats. Th17 and Th1 cells as well as their cytokines IL-17 and IFN-γ were up-regulated in EAM. However, the excessive increase of Th17/Th1 responses was restored by berberine and AG490. We also examined the expression level of phosphorylated proteins of JAK-STAT pathway which has a key role in the Th17 and Th1 lineage commitment. The phosphorylated (p)-STAT1,STAT3 and STAT4 increased significantly in EAM, while berberine notably attenuated their excessive expression. This effect of berberine was equivalent to that of AG490 blockade. Our current study demonstrated that berberine could ameliorate EAM and the underling mechanisms may be due to the fact that berberine differentially modulates the activities of p-STAT1, p-STAT3 and p-STAT4 to suppress Th17 and Th1 cell differentiation. PMID:27044832

  12. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C;

    1990-01-01

    - and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  13. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection

    Directory of Open Access Journals (Sweden)

    Mohammed Fayaz A

    2012-09-01

    anti-HIV activity was primarily mediated by the Ag-NPs, which are associated with the PUC. In addition, the data showed that both macrophage (M-tropic and T lymphocyte (T-tropic strains of HIV-1 were highly sensitive to the Ag-NPs-coated PUC. Furthermore, we also showed that the Ag-NPs-coated PUC was able to inhibit the growth of bacteria and fungi. These results demonstrated that the Ag-NPs-coated PUC is able to directly inactivate the microbe’s infectious ability and provides another defense line against these sexually transmitted microbial infections.Keywords: silver nanoparticles, condom, HIV-1, HSV-1/2, antimicrobial

  14. Berberine Attenuated Aging-Accelerating Effect of High Temperature in Drosophila Model

    OpenAIRE

    Navrotskaya, Valeriya; Oxenkrug, Gregory; Vorobyova, Lyudmila; Summergrad, Paul

    2014-01-01

    We have observed that berberine prolonged life span and improved viability of pupae and climbing activity of imagoes of wild-type Drosophila melanogaster maintained at 23°C. As a continuation of our studies of berberine effect on life span, we were interested to evaluate the effect of berberine of life span in flies maintained at a higher temperature (28°C) known to accelerate aging in wild type flies. Considering that genetically or pharmacologically induced deficiency of TRP conversion into...

  15. SEASONAL AND AGE VARIATIONS OF BERBERINE CONTENT IN INTRODUCED BERBERIS SIBIRICA PALL.

    OpenAIRE

    Иван Васильевич Нечепуренко; Нина Ивановна Комарова; Олег Николаевич Потёмкин; Нариман Фаридович Салахутдинов

    2014-01-01

    The content of isoquinoline alkaloid berberine was studied by means of HPLC in the roots and the above-ground part of introduced Berberis sibirica Pall. of various ages collected during different periods of three vegetative seasons. The roots contain 3–5 times more berberine than the stems. The content of berberine in 7-year-old roots varies slightly during the season; its mean value was 1.10% and maximum content was found in July (1,16±0.03%). The roots of the age of 3 years contain fewer be...

  16. Berberine: A Potential Multipotent Natural Product to Combat Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Hong-Fang Ji

    2011-08-01

    Full Text Available With the accelerated aging of human society Alzheimer’s disease (AD has become one of the most threatening diseases in the elderly. However, there is no efficient therapeutic agent to combat AD. Berberine is a natural isoquinoline alkaloid that possesses a wide range of pharmacological effects. In the present paper, we review the multiple activities of berberine, including antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitory, monoamine oxidase inhibitory, amyloid-b peptide level-reducing and cholesterol-lowering activities, which suggest that berberine may act as a promising multipotent agent to combat AD.

  17. Update on Berberine in Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2013-01-01

    Full Text Available Berberine (BBR, an active ingredient from nature plants, has demonstrated multiple biological activities and pharmacological effects in a series of metabolic diseases including nonalcoholic fatty liver disease (NAFLD. The recent literature points out that BBR may be a potential drug for NAFLD in both experimental models and clinical trials. This review highlights important discoveries of BBR in this increasing disease and addresses the relevant targets of BBR on NAFLD which links to insulin pathway, adenosine monophosphate-activated protein kinase (AMPK signaling, gut environment, hepatic lipid transportation, among others. Developing nuanced understanding of the mechanisms will help to optimize more targeted and effective clinical application of BBR for NAFLD.

  18. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    OpenAIRE

    Acharya Balakrishna; M. Hemanth kumar

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2....

  19. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C;

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  20. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere.

    Science.gov (United States)

    Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M

    1996-09-01

    The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues. PMID:8894111

  1. Efficient Inhibition of HIV Replication in the Gastrointestinal and Female Reproductive Tracts of Humanized BLT Mice by EFdA.

    Directory of Open Access Journals (Sweden)

    Uma Shanmugasundaram

    Full Text Available The nucleoside reverse transcriptase inhibitor (NRTI 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA in preclinical development exhibits improved safety and antiviral activity profiles with minimal drug resistance compared to approved NRTIs. However, the systemic antiviral efficacy of EFdA has not been fully evaluated. In this study, we utilized bone marrow/liver/thymus (BLT humanized mice to investigate the systemic effect of EFdA treatment on HIV replication and CD4+ T cell depletion in the peripheral blood (PB and tissues. In particular, we performed a comprehensive analysis of the female reproductive tract (FRT and gastrointestinal (GI tract, major sites of transmission, viral replication, and CD4+ T cell depletion and where some current antiretroviral drugs have a sub-optimal effect.EFdA treatment resulted in reduction of HIV-RNA in PB to undetectable levels in the majority of treated mice by 3 weeks post-treatment. HIV-RNA levels in cervicovaginal lavage of EFdA-treated BLT mice also declined to undetectable levels demonstrating strong penetration of EFdA into the FRT. Our results also demonstrate a strong systemic suppression of HIV replication in all tissues analyzed. In particular, we observed more than a 2-log difference in HIV-RNA levels in the GI tract and FRT of EFdA-treated BLT mice compared to untreated HIV-infected control mice. In addition, HIV-RNA was also significantly lower in the lymph nodes, liver, lung, spleen of EFdA-treated BLT mice compared to untreated HIV-infected control mice. Furthermore, EFdA treatment prevented the depletion of CD4+ T cells in the PB, mucosal tissues and lymphoid tissues.Our findings indicate that EFdA is highly effective in controlling viral replication and preserving CD4+ T cells in particular with high efficiency in the GI and FRT tract. Thus, EFdA represents a strong potential candidate for further development as a part of antiretroviral therapy regimens.

  2. Inhibition of Major Drug Metabolizing CYPs by Common Herbal Medicines used by HIV/AIDS Patients in Africa– Implications for Herb-Drug Interactions

    Science.gov (United States)

    Awortwe, Charles; Bouic, Patrick J.; Masimirembwa, Collen M.; Rosenkranz, Bernd

    2015-01-01

    The purpose of this study was to evaluate the potential risk of common herbal medicines used by HIV-infected patients in Africa for herb-drug interactions (HDI). High throughput screening assays consisting of recombinant Cytochrome P450 enzymes (CYPs) and fluorescent probes, and parallel artificial membrane permeability assays (PAMPA) were used. The potential of herbal medicines to cause HDI was ranked according to FDA guidelines for reversible inhibition and categorization of time dependent inhibition was based on the normalized ratio. CYPs 1A2 and 3A4 were most inhibited by the herbal extracts. H. hemerocallidea (IC50 = 0.63 μg/mL and 58 μg/mL) and E. purpurea (IC50 = 20 μg/mL and 12 μg/mL) were the potent inhibitors of CYPs 1A2 and 3A4 respectively. L. frutescens and H. hemerocallidea showed clear time dependent inhibition on CYP3A4. Furthermore, the inhibitory effect of both H. hemerocallidea and L. frutescens before and after PAMPA were identical. The results indicate potential HDI of H. hemerocallidea, L. frutescens and E. purpurea with substrates of the affected enzymes if maximum in vivo concentration is achieved. PMID:24475926

  3. Potential benefits of berberine in the management of perimenopausal syndrome.

    Science.gov (United States)

    Caliceti, Cristiana; Rizzo, Paola; Cicero, Arrigo Francesco Giuseppe

    2015-01-01

    Cardiovascular diseases are one of the leading causes of morbidity and mortality in women after menopause and 56% of all causes of death in Western European countries. Nowadays, with increasing life span, women spend approximately one-third of their life-time in postmenopausal state; therefore, the development of new strategies to improve the prevention and treatment of menopause-associated pathologies is important topic in clinical practice. The studies to assess the safety of hormone replacement therapy in women with estrogen deficiency have not been conclusive due to the relative contraindications; therefore, hormone replacement therapy is prescribed only in selected cases and for a limited time. For this reason, today women are encouraged to use naturally available compounds to prevent or to attenuate menopausal symptoms and correlated pathologies, with fewer side effects. Among these compounds, berberine, an isoquinoline alkaloid derived from plants of the generis Berberis, has been recognized as being capable of decreasing oxidative stress, LDL, triglycerides, and insulin resistance and of improving the mood. This review describes the cellular and clinical effects associated with the use of berberine, which suggest that this molecule could be an effective natural supplement to ensure a smooth peri- and postmenopausal transition. PMID:25785174

  4. Potential Benefits of Berberine in the Management of Perimenopausal Syndrome

    Directory of Open Access Journals (Sweden)

    Cristiana Caliceti

    2015-01-01

    Full Text Available Cardiovascular diseases are one of the leading causes of morbidity and mortality in women after menopause and 56% of all causes of death in Western European countries. Nowadays, with increasing life span, women spend approximately one-third of their life-time in postmenopausal state; therefore, the development of new strategies to improve the prevention and treatment of menopause-associated pathologies is important topic in clinical practice. The studies to assess the safety of hormone replacement therapy in women with estrogen deficiency have not been conclusive due to the relative contraindications; therefore, hormone replacement therapy is prescribed only in selected cases and for a limited time. For this reason, today women are encouraged to use naturally available compounds to prevent or to attenuate menopausal symptoms and correlated pathologies, with fewer side effects. Among these compounds, berberine, an isoquinoline alkaloid derived from plants of the generis Berberis, has been recognized as being capable of decreasing oxidative stress, LDL, triglycerides, and insulin resistance and of improving the mood. This review describes the cellular and clinical effects associated with the use of berberine, which suggest that this molecule could be an effective natural supplement to ensure a smooth peri- and postmenopausal transition.

  5. Antioxidative effects of berberine pre-treatment on hydrogen peroxide-induced PC12 cell toxicity

    Institute of Scientific and Technical Information of China (English)

    Daohua Xu; Chenhui Zhou

    2010-01-01

    Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease.Oxidative damage could be prevented by augmenting the endogenous defense capacity against oxidative stress by antioxidant intake.As an effective alkaloid component of Chinese herbal medicine Rhizoma coptidis extract,berberine exhibits antioxidative properties and ameliorates memory impairment in a rat model of Alzheimer's disease.The present study investigated the protective effects of berberine on H2O2-induced PC12 cell toxicity.Results demonstrated that berbedne protects PC12 cells from H2O2-induced apoptosis and increases PC12 cell viability.Lactate dehydrogenase release,reactive oxygen content,and malonyl dialdehyde levels were significantly decreased(P < 0.01).The protective effects of berberine on H2O2-induced PC12 cell toxicity were achieved via the antioxidative effects of berberine.

  6. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner.

    Directory of Open Access Journals (Sweden)

    Rajeev Mehla

    Full Text Available HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC involving stress induced AMP Kinase (AMPK inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.

  7. Electropharmacological effects of berberine on canine cardiac Purkinje fibres and ventricular muscle and atrial muscle of the rabbit.

    OpenAIRE

    Riccioppo Neto, F.

    1993-01-01

    1. Conventional microelectrode techniques were used for intracellular recordings of the transmembrane electrical potentials, the effects of berberine were studied on canine cardiac Purkinje and ventricular muscle fibres and on rabbit atrial fibres. 2. Berberine (3-30 microM) increased in a concentration-dependent manner, the action potential duration (APD) in canine Purkinje and ventricular muscle without affecting other parameters of the action potential. 3. The berberine-induced enlargement...

  8. Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line

    OpenAIRE

    Serafim, Teresa; Oliveira, Paulo; Sardao, Vilma; Perkins, Ed; Parke, Donna; Holy, Jon

    2008-01-01

    Abstract Purpose Natural products represent a rich reservoir of potential small molecule inhibitors exhibiting antiproliferative and tumoricidal properties. An example is the isoquinoline alkaloid berberine, which is found in plants such as goldenseal (Hydrastis canadensis). Studies have shown that berberine is able to trigger apoptosis in different malignant cell lines, and can also lead to cell cycle arrest at sub-apoptotic doses. A particularly interesting feature of berberine is the fact...

  9. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine

    OpenAIRE

    Zhen Sheng; Yi Sun; Ruixin Zhu; Na Jiao; Kailin Tang; Zhiwei Cao; Chao Ma

    2015-01-01

    Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, R...

  10. Berberine Promotes Axonal Regeneration in Injured Nerves of the Peripheral Nervous System

    OpenAIRE

    Han, Ah Mi; Heo, Hwon; Kwon, Yunhee Kim

    2012-01-01

    Berberine, an isoquinoline alkaloid component of Coptidis Rhizoma (goldenthread) extract, has been reported to have therapeutic potential for central nervous system disorders such as Alzheimer's disease, cerebral ischemia, and schizophrenia. We have previously shown that berberine promotes the survival and differentiation of hippocampal precursor cells. In a memory-impaired rat model induced by ibotenic acid injection, the survival of pyramidal and granular cells was greatly increased in the ...

  11. Hepatoprotective effects of berberine on carbon tetrachloride-induced acute hepatotoxicity in rats

    OpenAIRE

    Feng Yibin; Siu Ka-Yu; Ye Xingshen; Wang Ning; Yuen Man-Fung; Leung Chung-Hang; Tong Yao; Kobayashi Seiichi

    2010-01-01

    Abstract Background Berberine is an active compound in Coptidis Rhizoma (Huanglian) with multiple pharmacological activities including antimicrobial, antiviral, anti-inflammatory, cholesterol-lowering and anticancer effects. The present study aims to determine the hepatoprotective effects of berberine on serum and tissue superoxide dismutase (SOD) levels, the histology in tetrachloride (CCl4)-induced liver injury. Methods Sprague-Dawley rats aged seven weeks were injected intraperitoneally wi...

  12. Vibrational spectra of berberine and their interpretation by means of DFT quantum-mechanical calculations

    CERN Document Server

    Bashmakova, N; Zhurakivsky, R; Hovorun, D; Yashchuk, V

    2011-01-01

    Experimental vibrational spectra (Raman and infrared absorption) of berberine are obtained at room temperature. The vibrational spectra of berberine are calculated by the DFT method at the B3LYP/6-311++G(d,p) level. Based on the correlation between experimental and calculated data, the vibrational spectrum is interpreted in the frequency range of 800-1700 cm-1 in detail. The experimental and calculated spectra of intramolecular vibrations are found to correlate closely

  13. Berberine in the Treatment of Type 2 Diabetes Mellitus: A Systemic Review and Meta-Analysis

    OpenAIRE

    Hui Dong; Nan Wang; Li Zhao; Fuer Lu

    2012-01-01

    Objectives. To assess the efficacy and safety of berberine in the treatment of type 2 diabetes mellitus (T2DM). Methods. Randomized trials of berberine compared with lifestyle modification, placebo, and/or oral hypoglycaemics intervention on treating T2DM were included. Study population characteristics and outcome results were extracted independently by two reviewers. Meta-analyses were performed for data available. Results. Fourteen randomized trials, involving 1068 participants, were includ...

  14. Berberine Prolongs Life Span and Stimulates Locomotor Activity of Drosophila melanogaster

    OpenAIRE

    Navrotskaya, V. V.; Oxenkrug, G.; Vorobyova, L. I.; Summergrad, P.

    2012-01-01

    Drosophila melanogaster mutants with deficient kynurenine (KYN) formation from tryptophan (TRP) have longer life span than wild type flies. Administration of alpha-methyl-TRP and 5-methyl-TRY, the inhibitors of TRP-KYN metabolism, prolonged life span in wild-type flies. Both inhibitors are not available for human use. Berberine, an isoquinoline alkaloid isolated from Berberis aristata, is known as the herb widely used in traditional Chinese and Indian medicine. Berberin is a strong inhibitor ...

  15. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways

    OpenAIRE

    Lin Zhou; Fangming Song; Qian Liu; Mingli Yang; Jinmin Zhao; Renxiang Tan; Jun Xu; Ge Zhang; Quinn, Julian M. W.; Jennifer Tickner; Jiake Xu

    2015-01-01

    Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine) on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs) der...

  16. Berberine Ameliorates Nonbacterial Prostatitis via Multi-Target Metabolic Network Regulation

    OpenAIRE

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Zhang, Yue; An, Na; Wang, Xijun

    2015-01-01

    Metabolomics has been increasingly applied to discovering biomarkers and identifying perturbed pathways. Berberine has been shown to exhibit anti-inflammatory, antioxidant, and anticancer properties, but its mechanisms for treating nonbacterial prostatitis (NBP) remain unclear completely. We developed the untargeted metabolomics approach based on UPLC-Q-TOF-HDMS to profile the metabolite changes in urine samples in order to discover novel potential biomarkers to clarify mechanisms of berberin...

  17. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    OpenAIRE

    Chien-Cheng Chen; Tai-Ho Hung; Chao Yu Lee; Liang-Fei Wang; Chun-Hu Wu; Chia-Hua Ke; Szu-Fu Chen

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1)) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain ba...

  18. HPLC estimation of berberine in Tinospora cordifolia and Tinospora sinensis

    OpenAIRE

    Srinivasan G; Unnikrishnan K; Rema Shree A; Balachandran Indira

    2008-01-01

    A high-performance liquid chromatographic method for the estimation of berberine in the stem of Tinospora cordifolia (Willd.) Miers. ex Hook.f. and Thoms. and Tinospora sinensis (Lour.) Merrill is described. The dried stems of T. cordifolia and T. sinensis were defatted with petroleum ether (60-80°). The marc was dried and further extracted with methanol. The concentration of berberine in methanol extract was determined using a C-18 reverse phase column with a mobile phase of a...

  19. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    International Nuclear Information System (INIS)

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress

  20. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China); Feng, Xudong, E-mail: xudong.feng@childrens.harvard.edu [Department of Medicine, Children' s Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (United States); Xia, Qing, E-mail: xqing@hsc.pku.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  1. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice

    Science.gov (United States)

    Zhang, Xiuli; He, Hui; Liang, Dan; Jiang, Yan; Liang, Wei; Chi, Zhi-Hong; Ma, Jianfei

    2016-01-01

    Diabetic nephropathy (DN) is a serious diabetic complication with renal hypertrophy and expansion of extracellular matrices in renal fibrosis. Epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells may be involved in the main mechanism. Berberine (BBR) has been shown to have antifibrotic effects in liver, kidney and lung. However, the mechanism of cytoprotective effects of BBR in DN is still unclear. In this study, we investigated the curative effects of BBR on tubulointerstitial fibrosis in streptozotocin (STZ)-induced diabetic mice and the high glucose (HG)-induced EMT in NRK 52E cells. We found that BBR treatment attenuated renal fibrosis by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys. Further revealed that BBR abrogated HG-induced EMT and oxidative stress in relation not only with the activation of Nrf2 and two Nrf2-targeted antioxidative genes (NQO-1 and HO-1), but also with the suppressing the activation of TGF-β/Smad signaling pathway. Importantly, knockdown Nrf2 with siRNA not only abolished the BBR-induced expression of HO-1 and NQO-1 but also removed the inhibitory effect of BBR on HG-induced activation of TGF-β/Smad signaling as well as the anti-fibrosis effects. The data from present study suggest that BBR can ameliorate tubulointerstitial fibrosis in DN by activating Nrf2 pathway and inhibiting TGF-β/Smad/EMT signaling activity. PMID:27529235

  2. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses.

    Science.gov (United States)

    Varghese, Finny S; Kaukinen, Pasi; Gläsker, Sabine; Bespalov, Maxim; Hanski, Leena; Wennerberg, Krister; Kümmerer, Beate M; Ahola, Tero

    2016-02-01

    Chikungunya virus (CHIKV) is an arthritogenic arbovirus of the Alphavirus genus, which has infected millions of people after its re-emergence in the last decade. In this study, a BHK cell line containing a stable CHIKV replicon with a luciferase reporter was used in a high-throughput platform to screen approximately 3000 compounds. Following initial validation, 25 compounds were chosen as primary hits for secondary validation with wild type and reporter CHIKV infection, which identified three promising compounds. Abamectin (EC50 = 1.5 μM) and ivermectin (EC50 = 0.6 μM) are fermentation products generated by a soil dwelling actinomycete, Streptomyces avermitilis, whereas berberine (EC50 = 1.8 μM) is a plant-derived isoquinoline alkaloid. They inhibited CHIKV replication in a dose-dependent manner and had broad antiviral activity against other alphaviruses--Semliki Forest virus and Sindbis virus. Abamectin and ivermectin were also active against yellow fever virus, a flavivirus. These compounds caused reduced synthesis of CHIKV genomic and antigenomic viral RNA as well as downregulation of viral protein expression. Time of addition experiments also suggested that they act on the replication phase of the viral infectious cycle. PMID:26752081

  3. A simple fluorescence quenching method for berberine determination using water-soluble CdTe quantum dots as probes

    Science.gov (United States)

    Cao, Ming; Liu, Meigui; Cao, Chun; Xia, Yunsheng; Bao, Linjun; Jin, Yingqiong; Yang, Song; Zhu, Changqing

    2010-03-01

    A novel method for the determination of berberine has been developed based on quenching of the fluorescence of thioglycolic acid-capped CdTe quantum dots (TGA-CdTe QDs) by berberine in aqueous solutions. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of berberine between 2.5 × 10 -8 and 8.0 × 10 -6 mol L -1 with a detection limit of 6.0 × 10 -9 mol L -1. The method has been applied to the determination of berberine in real samples, and satisfactory results were obtained. The mechanism of the proposed reaction was also discussed.

  4. The effect of Berberine on the secondary structure of human serum albumin

    Science.gov (United States)

    Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo

    2005-05-01

    The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).

  5. The Effect of Berberine Hydrochloride on Motor Function Impairment in Streptozotocin- Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mahnaz Mesripour Alavijeh

    2014-01-01

    Full Text Available Introduction: Ddiabetes induce motor function impairment. Berberine is an isoquinoline alkaloid that has multiple pharmacological effects including anti-diabetic and antioxidant activity . Methods: 40 male wistar rats were randomly selected and allocated to 5 equal groups: Control, Control berberine-treated (100 mg/kg, diabetic, and berberine- treated diabetic (50, 100 mg/kg. Diabetes was induced by STZ administration at the dose of 55 mg/ kg through i.p. route. Berberine hydrochloride was administered p.o. at doses of 50 and 100 mg/kg/day 1 week after STZ injection for a period of 6 weeks. Blood samples were taken from the tail vein in 1, 3, 5, and 7 weeks after STZ injection to measure blood glucose levels. Behavioral tests including y maze task, inclend plane and barfix were performed at the end of 6th and 7th weeks. Results: diabetic Berberine-treated groups (50, 100 mg/kg/day has significant improvement rather than diabetic group in inclend plane test and y maze task. Conclusion: Berberine hydrochloride administration for 6 weeks improves motor function impairment in streptozotocin- induced diabetic rats.

  6. Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro

    Directory of Open Access Journals (Sweden)

    Robert D. Wojtyczka

    2014-05-01

    Full Text Available Synergistic interactions between commonly used antibiotics and natural bioactive compounds may exhibit therapeutic benefits in a clinical setting. Berberine, an isoquinoline-type alkaloid isolated from many kinds of medicinal plants, has proven efficacy against a broad spectrum of microorganisms. The aim of the presented work was to assess the antibacterial activity of berberine chloride in light of the effect exerted by common antibiotics on fourteen reference strains of Staphylococccus spp., and to evaluate the magnitude of interactions of berberine with these antistaphylococcal antibiotics. In our study minimum inhibitory concentrations (MIC of berberine chloride against CoNS ranged from 16 to 512 µg/mL. The most noticeable effects were observed for S. haemolyticus ATCC 29970, S. epidermidis ATCC 12228, S. capitis subsp. capitis ATCC 35661, S. galinarium ATCC 700401, S. hominis subsp. hominis ATCC 27844, S. intermedius ATCC 29663 and S. lugdunensis ATCC 49576. The most significant synergistic effect was noticed for berberine in combination with linezolid, cefoxitin and erythromycin. The synergy between berberine and antibiotics demonstrates the potential application of compound combinations as an efficient, novel therapeutic tool for antibiotic-resistant bacterial infections.

  7. Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR.

    Directory of Open Access Journals (Sweden)

    Celina M Abreu

    Full Text Available HIV infection is not cleared by antiretroviral drugs due to the presence of latently infected cells that are not eliminated with current therapies and persist in the blood and organs of infected patients. New compounds to activate these latent reservoirs have been evaluated so that, along with HAART, they can be used to activate latent virus and eliminate the latently infected cells resulting in eradication of viral infection. Here we describe three novel diterpenes isolated from the sap of Euphorbia tirucalli, a tropical shrub. These molecules, identified as ingenols, were modified at carbon 3 and termed ingenol synthetic derivatives (ISD. They activated the HIV-LTR in reporter cell lines and human PBMCs with latent virus in concentrations as low as 10 nM. ISDs were also able to inhibit the replication of HIV-1 subtype B and C in MT-4 cells and human PBMCs at concentrations of EC50 0.02 and 0.09 µM respectively, which are comparable to the EC50 of some antiretroviral currently used in AIDS treatment. Control of viral replication may be caused by downregulation of surface CD4, CCR5 and CXCR4 observed after ISD treatment in vitro. These compounds appear to be less cytotoxic than other diterpenes such as PMA and prostratin, with effective dose versus toxic dose TI>400. Although the mechanisms of action of the three ISDs are primarily attributed to the PKC pathway, downregulation of surface receptors and stimulation of the viral LTR might be differentially modulated by different PKC isoforms.

  8. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev (Merck)

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  9. APOBEC3G-UBA2 fusion as a potential strategy for stable expression of APOBEC3G and inhibition of HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Li Lin

    2008-08-01

    Full Text Available Abstract Background Although APOBEC3G protein is a potent and innate anti-HIV-1 cellular factor, HIV-1 Vif counteracts the effect of APOBEC3G by promoting its degradation through proteasome-mediated proteolysis. Thus, any means that could prevent APOBEC3G degradation could potentially enhance its anti-viral effect. The UBA2 domain has been identified as an intrinsic stabilization signal that protects protein from proteasomal degradation. In this pilot study, we tested whether APOBEC3G, when it is fused with UBA2, can resist Vif-mediated proteasomal degradation and further inhibit HIV-1 infection. Results APOBEC3G-UBA2 fusion protein is indeed more resistant to Vif-mediated degradation than APOBEC3G. The ability of UBA2 domain to stabilize APOBEC3G was diminished when polyubiquitin was over-expressed and the APOBEC3G-UBA2 fusion protein was found to bind less polyubiquitin than APOBEC3G, suggesting that UBA2 stabilizes APOBEC3G by preventing ubiquitin chain elongation and proteasome-mediated proteolysis. Consistently, treatment of cells with a proteasome inhibitor MG132 alleviated protein degradation of APOBEC3G and APOBEC3G-UBA2 fusion proteins. Analysis of the effect of APOBEC3G-UBA2 fusion protein on viral infectivity indicated that infection of virus packaged from HEK293 cells expressing APOBEC3G-UBA2 fusion protein is significantly lower than those packaged from HEK293 cells over-producing APOBEC3G or APOBEC3G-UBA2 mutant fusion proteins. Conclusion Fusion of UBA2 to APOBEC3G can make it more difficult to be degraded by proteasome. Thus, UBA2 could potentially be used to antagonize Vif-mediated APOBEC3G degradation by preventing polyubiquitination. The stabilized APOBEC3G-UBA2 fusion protein gives stronger inhibitory effect on viral infectivity than APOBEC3G without UBA2.

  10. Inhibitory Effects of Isoquinoline Alkaloid Berberine on Ischemia-Induced Apoptosis via Activation of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Pathway

    OpenAIRE

    Kim, Mia; Shin, Mal Soon; Lee, Jae Min; Cho, Han Sam; Kim, Chang Ju; Kim, Young Joon; Choi, Hey Ran; Jeon, Jung Won

    2014-01-01

    Purpose Berberine is a type of isoquinoline alkaloid that has been used to treat various diseases. A neuroprotective effect of berberine against cerebral ischemia has been reported; however, the effects of berberine on apoptosis in relation to reactive astrogliosis and microglia activation under ischemic conditions have not yet been fully evaluated. In the present study, we investigated the effects of berberine on global ischemia-induced apoptosis, and focused on the phosphoinositide 3-kinase...

  11. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    OpenAIRE

    Elmira Barzegar; Shamileh Fouladdel; Tahereh Komeili Movahhed; Shekoufeh Atashpour; Mohammad Hossein Ghahremani; Seyed Nasser Ostad; Ebrahim Azizi

    2015-01-01

    Objective(s): Berberine, a naturally occurring isoquinoline alkaloid, has shown antitumor properties in some in vitro systems. But the effect of berberine on breast cancer has not yet been completely studied. In this study, we evaluated anticancer properties of berberine in comparison to doxorubicin. Materials and Methods: The antiproliferative effects of berberine and doxorubicin alone and in combination were evaluated in T47D and MCF7 cell lines using MTT cytotoxicity assay. In addition, fl...

  12. In Vivo and in Vitro Study on Drug-Drug Interaction of Lovastatin and Berberine from Pharmacokinetic and HepG2 Cell Metabolism Studies

    OpenAIRE

    Hanming Cui; Jialong Wang; Qiuyan Zhang; Mengmeng Dang; Hui Liu; Yu Dong; Lu Zhang; Fang Yang; Jianhua Wu; Xiaolin Tong

    2016-01-01

    Background: We assumed that the pharmacokinetics of lovastatin could be changed by the induction effect of berberine. Methods: An UPLC-MS/MS method was developed and validated for the pharmacokinetics tudy of lovastatin to investigate the in vivo drug-drug interactions between lovastatin and berberine. SD male rats were random divided into lovastatin group and berberine induced prior to lovastatin group for the in vivo pharmacokinetic studies. Meanwhile HepG2 cells were induced by berberine f...

  13. Comparison of Berberine Content in Phellodendron amurense Rupr. Inner Bark in Relation to its Variety, Stem Position, Season and Tree Age

    OpenAIRE

    Oga, Shoji; KIRA, Kesayoshi; Koga, Shinya

    1992-01-01

    A quantitative analysis for berberine was established by a high-performance liquid chromatographic (HPLC) method. The variation of berberine contents with stem position, season, and tree age were investigated in two varieties of Phellodendron amurense Rupr. There were significant differences in berberine content among two varieties. P. amurense Rupr. var. sachalinense Fr. Schm. (hirohano kihada, coded as HK) sampled in Miyazaki prefecture contained a higher level of berberine in its inner bar...

  14. Ezrin Is a Component of the HIV-1 Virological Presynapse and Contributes to the Inhibition of Cell-Cell Fusion

    OpenAIRE

    Roy, Nathan H.; Lambelé, Marie; Chan, Jany; Symeonides, Menelaos; Thali, Markus

    2014-01-01

    During cell-to-cell transmission of HIV-1, viral and cellular proteins transiently accumulate at the contact zone between infected (producer) and uninfected (target) cells, forming the virological synapse. Rearrangements of the cytoskeleton in producer and target cells are required for proper targeting of viral and cellular components during synapse formation, yet little is known about how these processes are regulated, particularly within the producer cell. Since ezrin-radixin-moesin (ERM) p...

  15. Superiority of the S,S conformation in diverse pharmacological processes: Intestinal transport and entry inhibition activity of novel anti-HIV drug lead.

    Science.gov (United States)

    Fanous, Joseph; Swed, Avi; Joubran, Salim; Hurevich, Mattan; Britan-Rosich, Elena; Kotler, Moshe; Gilon, Chaim; Hoffman, Amnon

    2015-11-30

    Chirality is an important aspect in many pharmacological processes including drug transport and metabolism. The current investigation examined the stereospecific transport and entry inhibitory activity of four diastereomers derived from a small (macrocyclic) molecule that has two chiral centers. These molecules were designed to mimic the interaction between CD4 and gp120 site of HIV-1 and thereby to function as entry inhibitor(s). Intestinal permeability was assessed by ex-vivo model using excised rat intestine mounted in side-by-side diffusion chambers. The entry inhibitory activity was monitored using indicator HeLa-CD4-LTR-beta-gal cells (MAGI assay). The (S/S) diastereomer, named CG-1, exhibited superiority in both unrelated tested biological processes: (I) high transport through the intestine and (II) entry inhibition activity (in the low μM range). The permeability screening revealed a unique transporter-mediated absorption pathway of CG-1, suggesting a significant role of the molecule's conformation on the mechanism of intestinal absorption. Here we highlight that only the S,S enantiomer (CG-1) has both (I) promising anti HIV-1 entry inhibitory properties and (II) high transporter mediated intestinal permeability. Hence we suggest preference in pharmacological processes to the S,S conformation. This report augments the knowledge regarding stereoselectivity in receptor mediated and protein-protein interaction processes. PMID:26392249

  16. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E; Fenouillet, E

    1991-01-01

    calcium-dependent, which is characteristic of the binding of a C-type lectin to its ligand, and the binding was inhibited in a dose-dependent manner with N-acetyl-D-glucosamine. Deglycosylation of rgp160 abrogated the conglutinin binding. In addition, conglutinin exerted a dose-dependent inhibition of the...

  17. The examination of berberine excited state by laser flash photolysis

    Science.gov (United States)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  18. AB229. Effect of berberine on human sperm parameters in vitro

    Science.gov (United States)

    Chen, Liping; Wang, Tao; Liu, Jihong

    2016-01-01

    Objective Berberine is a natural compound isolated from plants with multiple pharmacological activities, like antioxidant and anti-inflammatory activities. The present study was to assess the effect of berberine with different concentration and at different time on sperm motility, viability and sperm membrane integrity of humans. Methods Semen samples were obtained from 30 patients (22–30 years of age) enrolled in this study, 15 of which were normospermic and 15 were asthenozoospermic. Semen were aseptically obtained by masturbation and prepared by swim-up method. After that they were incubated in Ham’s F-10 medium for 30 min at 37 °C to mimic the temperature inside the female reproductive tract. Semen samples were divided into aliquots. The negative control condition was supplemented with no drugs while 0.4 mmol/L L-carnitine was used as positive control condition. The treatment condition was supplemented with berberine at a concentration of 10-4, 10-5, 10-6, 10-7 mol/L. Measurements of sperm viability and motility were carried out at 10, 30, 60 and 120 min after incubation in all semen samples by computer-assisted sperm analysis (CASA). Results It showed that in both normal and asthenozoospermic samples, total and progressive sperm motility were maintained by in vitro treatment with berberine, whereas a significant decrease of these parameters occurred in parallel samples incubated in medium alone. Berberine also prevented the decrease of sperm kinetics but such an effect was highly significant only in asthenozoospermic samples. Moreover, berberine had similar effort as L-carnitine even at low concentration. Conclusions In vitro, berberine with suitable concentration exerted a direct protective effect on human sperm viability, motility rate and could modify plasma membrane functional integrity, especially in the asthenozoospermic patients. This could be a novel therapeutic drug for improving the function of sperm in vitro and treatment for male infertility.

  19. Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice

    International Nuclear Information System (INIS)

    Purpose: Radiation-induced intestinal injury is a significant clinical problem in patients undergoing abdominal radiotherapy (RT). Berberine has been used as an antimicrobial, anti-inflammatory, and antimotility agent. The present study investigated the protective effect of berberine against radiation-induced intestinal injury. Methods and Materials: The mice were administrated berberine or distilled water. A total of 144 mice underwent 0, 3, 6, 12, or 16 Gy single session whole-abdominal RT and 16 mice underwent 3 Gy/fraction/d for four fractions of fractionated abdominal RT. Tumor necrosis factor-α, interleukin-10, diamine oxidase, intestinal fatty acid-binding protein, malonaldehyde, and apoptosis were assayed in the mice after RT. The body weight and food intake of the mice receiving fractionated RT were recorded. Another 72 mice who had undergone 12, 16, or 20 Gy abdominal RT were monitored for mortality every 12 h. Results: The body weight and food intake of the mice administered with distilled water decreased significantly compared with before RT. After the same dose of abdominal RT, tumor necrosis factor-α, diamine oxidase, intestinal fatty acid-binding protein in plasma and malonalhehyde and apoptosis of the intestine were significantly greater in the control group than in the mice administered berberine (p < .05-.01). In contrast, interleukin-10 in the mice with berberine treatment was significantly greater than in the control group (p < .01). A similar result was found in the fractionated RT experiment and at different points after 16 Gy abdominal RT (p < .05-.01). Berberine treatment significantly delayed the point of death after 20 Gy, but not 16 Gy, abdominal RT (p < .01). Conclusion: Treatment with berberine can delay mortality and attenuated intestinal injury in mice undergoing whole abdominal RT. These findings could provide a useful therapeutic strategy for radiation-induced intestinal injury.

  20. Inhibitory Effects of Coptidis rhizoma and Berberine on Cocaine-Induced Sensitization

    Directory of Open Access Journals (Sweden)

    Bombi Lee

    2009-01-01

    Full Text Available Substantial evidence suggests that the behavioral and reinforcing effects of cocaine can be mediated by the central dopaminergic systems. Repeated injections of cocaine produce an increase in locomotor activity and the expression of tyrosine hydroxylase (TH in the main dopaminergic areas. Protoberberine alkaloids affect neuronal functions. Coptidis rhizoma (CR and its main compound, berberine (BER reduced the dopamine content in the central nervous system. In order to investigate the effects of CR or BER on the repeated cocaine-induced neuronal and behavioral alterations, we examined the influence of CR or BER on the repeated cocaine-induced locomotor activity and the expression of TH in the brain by using immunohistochemistry. Male SD rats were given repeated injections of saline or cocaine hydrochloride (15 mg/kg, i.p. for 10 consecutive days followed by one challenge injection on the 4th day after the last daily injection. Cocaine challenge (15 mg/kg, i.p produced a larger increase in locomotor activity and expression of TH in the central dopaminergic areas. Pretreatment with CR (50, 100, 200 and 400 mg/kg, p.o. and BER (200 mg/kg, p.o. 30 min before the daily injections of cocaine significantly inhibited the cocaine-induced locomotor activity as well as TH expression in the central dopaminergic areas. Our data demonstrate that the inhibitory effects of CR and BER on the repeated cocaine-induced locomotor activity were closely associated with the reduction of dopamine biosynthesis and post-synaptic neuronal activity. These results suggest that CR and BER may be effective for inhibiting the behavioral effects of cocaine by possibly modulating the central dopaminergic system.

  1. Inhibitory Effects of Coptidis rhizoma and Berberine on Cocaine-induced Sensitization.

    Science.gov (United States)

    Lee, Bombi; Yang, Chae Ha; Hahm, Dae-Hyun; Choe, Eun Sang; Lee, Hye-Jung; Pyun, Kwang-Ho; Shim, Insop

    2009-03-01

    Substantial evidence suggests that the behavioral and reinforcing effects of cocaine can be mediated by the central dopaminergic systems. Repeated injections of cocaine produce an increase in locomotor activity and the expression of tyrosine hydroxylase (TH) in the main dopaminergic areas. Protoberberine alkaloids affect neuronal functions. Coptidis rhizoma (CR) and its main compound, berberine (BER) reduced the dopamine content in the central nervous system. In order to investigate the effects of CR or BER on the repeated cocaine-induced neuronal and behavioral alterations, we examined the influence of CR or BER on the repeated cocaine-induced locomotor activity and the expression of TH in the brain by using immunohistochemistry. Male SD rats were given repeated injections of saline or cocaine hydrochloride (15 mg/kg, i.p. for 10 consecutive days) followed by one challenge injection on the 4th day after the last daily injection. Cocaine challenge (15 mg/kg, i.p) produced a larger increase in locomotor activity and expression of TH in the central dopaminergic areas. Pretreatment with CR (50, 100, 200 and 400 mg/kg, p.o.) and BER (200 mg/kg, p.o.) 30 min before the daily injections of cocaine significantly inhibited the cocaine-induced locomotor activity as well as TH expression in the central dopaminergic areas. Our data demonstrate that the inhibitory effects of CR and BER on the repeated cocaine-induced locomotor activity were closely associated with the reduction of dopamine biosynthesis and post-synaptic neuronal activity. These results suggest that CR and BER may be effective for inhibiting the behavioral effects of cocaine by possibly modulating the central dopaminergic system. PMID:18955248

  2. Inhibition of HIV type 1 infectivity by coexpression of a wild-type and a defective glycoprotein 120

    DEFF Research Database (Denmark)

    Lund, O S; Losman, B; Schønning, Kristian; Bolmstedt, A; Olofsson, S; Hansen, J E

    1998-01-01

    processed and incorporated into virus particles, but that D373K virions have no detectable infectivity (below 0.1% relative to wild type). When D373K and the wild-type envelope gene were cotransfected in 293 cells at a 4:1 ratio, the resultant infectivity of the HIV-1 supernatant was reduced more than 100...... model: when virion formation is saturated with envelope protein, expression and incorporation of a defective envelope protein imply a corresponding dilution of wild-type protein on the surface of virions. The cooperative function of wild-type envelope proteins is subsequently compromised, and a trans...

  3. Effect of Berberine hydrochloride from coptis Chinensis franch on the proliferation of three kinds of carcinoma cell lines%黄连提取物盐酸小檗碱对三种肿瘤细胞株增殖的影响

    Institute of Scientific and Technical Information of China (English)

    廖霞; 李彩虹; 丁航

    2011-01-01

    Objective: To study the effect of Berberine hydrochloride on the proliferation of kinds of carcinoma cell lines. Methods : Carcinoma cell lines including Hep-G2 cell, Hela cell and MCF-7 cell were treated with different concentrations of Berberine hydrochloride respectively. The cells proliferation were evaluated by MTT assay.Results: The three kinds of carcinoma cell lines were inhibited by Berberine hydrochloride in a dose- dependent manner from 5 μg · ml-1 to 50 μg · ml-1. Conclusion: Berberine hydrochloride can inhibit the proliferation of some carcinoma cells. It is suggested that Berberine hydrochloride may be a potential antineoplastic agenls.%目的:研究盐酸小檗碱对肝癌Hep G2细胞、宫颈癌Hela细胞、乳腺癌MCF-7细胞增殖的影响. 方法:采用MTT法检测不同浓度的盐酸小檗碱对肝癌Hep G2细胞、宫颈癌Hela细胞、乳腺癌MCF-7细胞增殖的影响.结果:盐酸小檗碱在5~50μg·ml范围内对肝癌Hep G2细胞、宫颈癌Hela细胞、乳腺癌MCF-7细胞的增殖呈浓度依赖性抑制.结论:盐酸小檗碱能够抑制肿瘤细胞的增殖,是一种潜在的抗肿瘤药物.

  4. Potential antibacterial activity of berberine against multi drug resistant enterovirulent Escherichia coli isolated from yaks (Poephagus grunniens) with haemorrhagic diarrhoea

    Institute of Scientific and Technical Information of China (English)

    Samiran Bandyopadhyay; Debasish Bhattacharyya; Mihir Sarkar; Kishore K Baruah; Pabitra H Patra; Achintya Mahanti; Dipak K Mondal; Premanshu Dandapat; Subhasis Bandyopadhyay; Indranil Samanta; Chandan Lodh; Asit K Bera

    2013-01-01

    Objective: To evaluate the antimicrobial efficacy of berberine, a plant alkaloid. Methods: Five multi-drug resistant (MDR) STEC/EPEC and five MDR ETEC isolates from yaks with haemorrhagic diarrhoea were selected for the study. Antibacterial activity of berberine was evaluated by broth dilution and disc diffusion methods. The binding kinetics of berberine to DNA and protein was also enumerated. Results: For both categories of enterovirulent Escherichia coli (E. coli) isolates, berberine displayed the antibacterial effect in a dose dependent manner. The MIC50 of berberine chloride for STEC/EPEC isolates varied from 2.07 μM to 3.6 μM with a mean of (2.95 ± 0.33) μM where as for ETEC strains it varied from 1.75 to 1.96 μM with a mean of (1.87 ± 0.03) μM. Berberine bind more tightly with double helix DNA with Bmax and Kd of (24.68±2.62) and (357.8± 57.8), respectively. Berberine reacted with protein in comparatively loose manner with Bmax and Kd of (18.9±3.83) and (286.2±113.6), respectively. Conclusions: The results indicate clearly that berberine may serve as a good antibacterial against multi drug resistant E. coli.

  5. The Therapeutic Effect of Berberine in the Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis

    Science.gov (United States)

    Wei, Xiaoyun; Wang, Chunyan; Hao, Shijun; Song, Haiyan

    2016-01-01

    Aim. To assess the efficacy of berberine in the treatment of nonalcoholic fatty liver disease through meta-analysis. Method. We searched Embase, Pubmed, Cochrane Library, and so forth, until March 2016 for randomized controlled trials using berberine to treat NAFLD. Result. Six randomized controlled trials involving 501 patients were included in this study. The results showed that the efficacy of reducing TC, LDL, ALT, 2hPG, and HbA1c in NAFLD patients of the berberine group were significantly higher than that of control group. The subgroup analyses on TG, AST, and FBG indicated that treatment combined with berberine decreased TG level in NAFLD patients significantly. Compared with other drugs, berberine alone decreased TG level in NAFLD patients significantly. We also conducted a descriptive analysis on insulin resistance and radiography results that berberine can improve NAFLD patients' insulin resistance and fatty liver. Conclusion. According to analysis result, berberine has positive efficacy on blood lipids, blood glucose, liver function, insulin resistance, and fatty liver condition of NAFLD patients. However, due to the limitation of number and quality of trials included, more clinical randomized controlled trials with high quality are needed for further verification of the efficacy of berberine on NAFLD patients. PMID:27446224

  6. The Therapeutic Effect of Berberine in the Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wei

    2016-01-01

    Full Text Available Aim. To assess the efficacy of berberine in the treatment of nonalcoholic fatty liver disease through meta-analysis. Method. We searched Embase, Pubmed, Cochrane Library, and so forth, until March 2016 for randomized controlled trials using berberine to treat NAFLD. Result. Six randomized controlled trials involving 501 patients were included in this study. The results showed that the efficacy of reducing TC, LDL, ALT, 2hPG, and HbA1c in NAFLD patients of the berberine group were significantly higher than that of control group. The subgroup analyses on TG, AST, and FBG indicated that treatment combined with berberine decreased TG level in NAFLD patients significantly. Compared with other drugs, berberine alone decreased TG level in NAFLD patients significantly. We also conducted a descriptive analysis on insulin resistance and radiography results that berberine can improve NAFLD patients’ insulin resistance and fatty liver. Conclusion. According to analysis result, berberine has positive efficacy on blood lipids, blood glucose, liver function, insulin resistance, and fatty liver condition of NAFLD patients. However, due to the limitation of number and quality of trials included, more clinical randomized controlled trials with high quality are needed for further verification of the efficacy of berberine on NAFLD patients.

  7. Berberine as a photosensitizing agent for antitumoral photodynamic therapy: Insights into its association to low density lipoproteins.

    Science.gov (United States)

    Luiza Andreazza, Nathalia; Vevert-Bizet, Christine; Bourg-Heckly, Geneviève; Sureau, Franck; José Salvador, Marcos; Bonneau, Stephanie

    2016-08-20

    Recent years have seen a growing interest in Berberine, a phytochemical with multispectrum therapeutic activities, as anti-tumoral agent for photodynamic therapy (PDT). In this context, low density lipoproteins (LDL) play a key role in the delivery of the photosensitizer in tumor cells. We correlate the physicochemical parameters of the berberine association to LDL with the influence of LDL-delivery on its accumulation in a glioma cell line and on its photo-induced activity in view of antitumor PDT. Our results evidence an important binding of 400 berberine molecules per LDL. Changes in berberine and apoprotein fluorescence suggest different fixation types, involving various LDL compartments including the vicinity of the apoprotein. The berberine association to LDL does not affect their recognition by the specific B/E receptors, of which over-expression increases the cellular uptake of LDL-preloaded berberine. Fluorescence microscopy evidences the mitochondrial labeling of the glioma model cells, with no significant modification upon LDL-delivery. Moreover, the cellular delivery of berberine by LDL increases its photocytotoxic effects on such cells. So, this research illustrates the potential of berberine as a photosensitizing agent for PDT, in particular due to their behavior towards LDL as plasma vehicles, and gives insights into its mechanisms of cell uptake. PMID:27282536

  8. Pharmacokinetic Comparison of Berberine in Rat Plasma after Oral Administration of Berberine Hydrochloride in Normal and Post Inflammation Irritable Bowel Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Zipeng Gong

    2014-01-01

    Full Text Available In the present study, post inflammation irritable bowel syndrome (PI-IBS rats were firstly established by intracolonic instillation of acetic acid with restraint stress. Then the pharmacokinetics of berberine in the rat plasma were compared after oral administration of berberine hydrochloride (25 mg/kg to normal rats and PI-IBS rats. Quantification of berberine in the rat plasma was achieved by using a sensitive and rapid UPLC-MS/MS method. Plasma samples were collected at 15 different points in time and the pharmacokinetic parameters were analyzed by WinNonlin software. Compared with the normal group, area under the plasma concentration vs. time curve from zero to last sampling time (AUC0–t and total body clearance (CL/F in the model group significantly increased or decreased, (2039.49 ± 492.24 vs. 2763.43 ± 203.14; 4999.34 ± 1198.79 vs. 3270.57 ± 58.32 respectively. The results indicated that the pharmacokinetic process of berberine could be altered in PI-IBS pathological conditions.

  9. A comparison of the ability of rilpivirine (TMC278 and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants

    Directory of Open Access Journals (Sweden)

    Johnson Barry C

    2012-12-01

    Full Text Available Abstract Background The recently approved anti-AIDS drug rilpivirine (TMC278, Edurant is a nonnucleoside inhibitor (NNRTI that binds to reverse transcriptase (RT and allosterically blocks the chemical step of DNA synthesis. In contrast to earlier NNRTIs, rilpivirine retains potency against well-characterized, clinically relevant RT mutants. Many structural analogues of rilpivirine are described in the patent literature, but detailed analyses of their antiviral activities have not been published. This work addresses the ability of several of these analogues to inhibit the replication of wild-type (WT and drug-resistant HIV-1. Results We used a combination of structure activity relationships and X-ray crystallography to examine NNRTIs that are structurally related to rilpivirine to determine their ability to inhibit WT RT and several clinically relevant RT mutants. Several analogues showed broad activity with only modest losses of potency when challenged with drug-resistant viruses. Structural analyses (crystallography or modeling of several analogues whose potencies were reduced by RT mutations provide insight into why these compounds were less effective. Conclusions Subtle variations between compounds can lead to profound differences in their activities and resistance profiles. Compounds with larger substitutions replacing the pyrimidine and benzonitrile groups of rilpivirine, which reorient pocket residues, tend to lose more activity against the mutants we tested. These results provide a deeper understanding of how rilpivirine and related compounds interact with the NNRTI binding pocket and should facilitate development of novel inhibitors.

  10. Factors secreted by human T lymphotropic virus type I (HTLV-I)-infected cells can enhance or inhibit replication of HIV-1 in HTLV-I-uninfected cells: implications for in vivo coinfection with HTLV-I and HIV-1.

    Science.gov (United States)

    Moriuchi, H; Moriuchi, M; Fauci, A S

    1998-05-18

    It remains controversial whether human T lymphotropic virus type I (HTLV-I) coinfection leads to more rapid progression of human immunodeficiency virus (HIV) disease in dually infected individuals. To investigate whether HTLV-I infection of certain cells can modulate HIV-1 infection of surrounding cells, primary CD4(+) T cells were treated with cell-free supernatants from HTLV-I-infected MT-2 cell cultures. The primary CD4+ T cells became resistant to macrophage (M)-tropic HIV-1 but highly susceptible to T cell (T)-tropic HIV-1. The CC chemokines RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta in the MT-2 cell supernatants were identified as the major suppressive factors for M-tropic HIV-1 as well as the enhancers of T-tropic HIV-1 infection, whereas soluble Tax protein increased susceptibility to both M- and T-tropic HIV-1. The effect of Tax or CC chemokines on T-tropic HIV-1 was mediated, at least in part, by increasing HIV Env-mediated fusogenicity. Our data suggest that the net effect of HTLV-I coinfection in HIV-infected individuals favors the transition from M- to T-tropic HIV phenotype, which is generally indicative of progressive HIV disease. PMID:9584147

  11. Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells.

    Science.gov (United States)

    Pongkittiphan, Veerachai; Chavasiri, Warinthorn; Supabphol, Roongtawan

    2015-01-01

    Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity (IC50 values=10.7±1.76, 55.2±2.24, and 87.4±6.65 μM, respectively) whereas the IC50 value of berberine was higher than 500 μM. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant (IC50=72.7±7.22 μM) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of IC50 value at 7-day treatment stated that B1Berberine derivatives, B2 and B4, showed approximately the same level of CAT expression and significant up-regulation of SOD expression in a dose-dependent manner compared to berberine treatment for 7-day exposure using reverse transcription- polymerase chain reaction (RT-PCR) assays. Our findings show a better direct-antioxidant activity of the derivatives containing phenolic groups than berberine in a cell-free system. For cell-based system, berberine was able to exert better cytotoxic activity than its derivatives. Berberine derivatives containing a single and four phenolic groups showed improved up-regulation of SOD gene expression. Cytotoxic action might not be the main effect of berberine derivatives. Other pharmacological targets of these derivatives should be further investigated to confirm the medical benefit of phenolic groups introduced into the berberine molecule. PMID:26225680

  12. Effect of berberine on Cdk9 and cyclin T1 expressions in myocardium of diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyin; Zhou Shiwen; Tang Jianlin; Xu Ying; Ying Yi

    2008-01-01

    Objective: To investigate the effect of berberine, one of the main alkaloids of Rhizoma coptidis, on myocardial orphology and the expressions of cyclin-dependent kinase 9 (Cdk9) and cyclin T1 protein in the myocardium of type diabetic rats. Methods: Type 2 diabetes mellitus rats were induced by an injection of 35 mg/kg streptozotocin (STZ) nd a high-carbohydrate/high-fat diet for 16 weeks. Diabetic rats were given low-, middle-, high-dose berberine (75,150, 300 mg/kg), fenofibrate (100 mg/kg) and rosiglitazone (4 mg/kg) for another 16 weeks, respectively. The myocardium structure was observed with hematoxylin & eosin (H&E) staining and Cdk9 and cyclin T1 protein expressions were detected by immunohistochemistry. Results: Middle-dose, high-dose berberine improved myocardial hypertrophy and interstitial fibrosis of diabetic rats. Cdk9 and cyclin T1 protein were significantly lower in diabetic myocardium than in control one (P<0.01), and middle-dose, high-dose berberine and fenofibrate obviously increased oth Cdk9 and cyclin T1 expression to near control level (P<0.01). Conclusion: Berberine modulates Cdk9 and cyclin I protein expression in diabetic myocardium which may contribute to ameliorate myocardium damage.

  13. Tyrosinase inhibition kinetic studies of standardized extract of Berberis aristata.

    Science.gov (United States)

    Biswas, Rajarshi; Mukherjee, Pulok K; Chaudhary, Sushil K

    2016-06-01

    The stem bark and wood of Berberis aristata DC (Daruharidra) are one of the principal ingredients of traditional skin lighting and exfoliating scrub preparation in India. The standardised extract of B. aristata was screened to evaluate their in vitro antityrosinase activity and inhibition kinetics. Phytochemical and pharmacological studies were carried out with different solvent fractions of the methanol extract of B. aristata (MEBA). RP-HPLC analysis was used to determine the berberine content in extract and fractions of B. aristata. MEBA showed maximum berberine content. Extract and fractions of B. aristata contain the maximum amount of alkaloids than other constituents. In tyrosinase inhibition assay, MEBA was found to possess highest dose-dependent monophenolase and moderate diphenolase activity. The enzyme kinetic study revealed that MEBA possessed mixed type inhibition of monophenolase activity of tyrosinase. These bioactivities indicate that the MEBA has antihyperpigmentation potential in human skin. PMID:26212353

  14. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe..

    Directory of Open Access Journals (Sweden)

    Anirban Basu

    Full Text Available BACKGROUND: Three new analogs of berberine with aryl/ arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNA(phe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. METHODOLOGY/ PRINCIPAL FINDINGS: Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNA(phe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNA(phe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNA(phe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. CONCLUSIONS/ SIGNIFICANCE: The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNA(phe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNA(phe.

  15. P2X7 Receptor Inhibition Improves CD34 T-Cell Differentiation in HIV-Infected Immunological Nonresponders on c-ART

    Science.gov (United States)

    Menkova-Garnier, Inna; Hocini, Hakim; Foucat, Emile; Tisserand, Pascaline; Bourdery, Laure; Delaugerre, Constance; Benne, Clarisse; Lévy, Yves; Lelièvre, Jean-Daniel

    2016-01-01

    Peripheral CD4+ T-cell levels are not fully restored in a significant proportion of HIV+ individuals displaying long-term viral suppression on c-ART. These immunological nonresponders (INRs) have a higher risk of developing AIDS and non-AIDS events and a lower life expectancy than the general population, but the underlying mechanisms are not fully understood. We used an in vitro system to analyze the T- and B-cell potential of CD34+ hematopoietic progenitor cells. Comparisons of INRs with matched HIV+ patients with high CD4+ T-cell counts (immune responders (IRs)) revealed an impairment of the generation of T-cell progenitors, but not of B-cell progenitors, in INRs. This impairment resulted in the presence of smaller numbers of recent thymic emigrants (RTE) in the blood and lower peripheral CD4+ T-cell counts. We investigated the molecular pathways involved in lymphopoiesis, focusing particularly on T-cell fate specification (Notch pathway), survival (IL7R-IL7 axis) and death (Fas, P2X7, CD39/CD73). P2X7 expression was abnormally strong and there was no CD73 mRNA in the CD34+ cells of INRs, highlighting a role for the ATP pathway. This was confirmed by the demonstration that in vitro inhibition of the P2X7-mediated pathway restored the T-cell potential of CD34+ cells from INRs. Moreover, transcriptomic analysis revealed major differences in cell survival and death pathways between CD34+ cells from INRs and those from IRs. These findings pave the way for the use of complementary immunotherapies, such as P2X7 antagonists, to restore T-cell lymphopoiesis in INRs. PMID:27082982

  16. HIV Transmission

    Science.gov (United States)

    ... Abroad Treatment Basic Statistics Get Tested Find an HIV testing site near you. Enter ZIP code or city Follow HIV/AIDS CDC HIV CDC HIV/AIDS See RSS | ... on HIV Syndicated Content Website Feedback HIV/AIDS HIV Transmission Language: English Español (Spanish) Recommend on Facebook ...

  17. Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Zachar, Vladimir; Nielsen, P.E.;

    1997-01-01

    We have tested the inhibitory potential of peptide nucleic acid (PNA) on in vitro reverse transcription of the HIV-1 gag gene. PNA was designed to target different regions of the HIV-1 gag gene and the effect on reverse transcription by HIV-1, MMLV and AMV reverse transcriptases (RTs) was...

  18. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation.

    Science.gov (United States)

    Wen, Si-Qi; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhang, Ling; Zhou, Cheng-He

    2016-06-15

    A series of novel berberine-based imidazole derivatives as new type of antimicrobial agents were developed and characterized. Most of them gave good antibacterial activity toward the Gram-positive and negative bacteria. Noticeably, imidazolyl berberine 3a exhibited low MIC value of 1μg/mL against Eberthella typhosa, which was even superior to reference drugs berberine, chloromycin and norfloxacin. The cell toxicity and ROS generation assay indicated that compound 3a showed low cell toxicity. The interactive investigation by UV-vis spectroscopic method revealed that compound 3a could effectively intercalate into calf thymus DNA to form 3a-DNA complex which might further block DNA replication to exert the powerful antimicrobial activities. The binding behavior of compound 3a to DNA topoisomerase IB revealed that hydrogen bonds and electrostatic interactions played important roles in the association of compound 3a with DNA topoisomerase IB. PMID:27156777

  19. Systems pharmacology to investigate the interaction of berberine and other drugs in treating polycystic ovary syndrome.

    Science.gov (United States)

    Wang, Yu; Fu, Xin; Xu, Jing; Wang, Qiuhong; Kuang, Haixue

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a common multifactorial endocrine disorder among women of childbearing age. PCOS has various and heterogeneous clinical features apart from its indefinite pathogenesis and mechanism. Clinical drugs for PCOS are multifarious because it only treats separate symptoms. Berberine is an isoquinoline plant alkaloid with numerous biological activities, and it was testified to improve some diseases related to PCOS in animal models and in humans. Systems pharmacology was utilized to predict the potential targets of berberine related to PCOS and the potential drug-drug interaction base on the disease network. In conclusion, berberine is a promising polypharmacological drug for treating PCOS, and for enhancing the efficacy of clinical drugs. PMID:27306862

  20. Persistent HIV-1 replication during antiretroviral therapy

    OpenAIRE

    Martinez-Picado, Javier; Deeks, Steven G

    2016-01-01

    Purpose of review The present review will highlight some of the recent findings regarding the capacity of HIV-1 to replicate during antiretroviral therapy (ART). Recent findings Although ART is highly effective at inhibiting HIV replication, it is not curative. Several mechanisms contribute to HIV persistence during ART, including HIV latency, immune dysfunction, and perhaps persistent low-level spread of the virus to uninfected cells (replication). The success in curing HIV will depend on ef...

  1. Digital gene expression analysis of Microsporum canis exposed to berberine chloride.

    Directory of Open Access Journals (Sweden)

    Chen-Wen Xiao

    Full Text Available Berberine, a natural isoquinoline alkaloid of many medicinal herbs, has an active function against a variety of microbial infections including Microsporum canis (M. canis. However, the underlying mechanisms are poorly understood. To study the effect of berberine chloride on M. canis infection, a Digital Gene Expression (DGE tag profiling was constructed and a transcriptome analysis of the M. canis cellular responses upon berberine treatment was performed. Illumina/Hisseq sequencing technique was used to generate the data of gene expression profile, and the following enrichment analysis of Gene Ontology (GO and Pathway function were conducted based on the data of transcriptome. The results of DGE showed that there were 8476945, 14256722, 7708575, 5669955, 6565513 and 9303468 tags respectively, which was obtained from M. canis incubated with berberine or control DMSO. 8,783 genes were totally mapped, and 1,890 genes have shown significant changes between the two groups. 1,030 genes were up-regulated and 860 genes were down-regulated (P<0.05 in berberine treated group compared to the control group. Besides, twenty-three GO terms were identified by Gene Ontology functional enrichment analysis, such as calcium-transporting ATPase activity, 2-oxoglutarate metabolic process, valine catabolic process, peroxisome and unfolded protein binding. Pathway significant enrichment analysis indicated 6 signaling pathways that are significant, including steroid biosynthesis, steroid hormone biosynthesis, Parkinson's disease, 2,4-Dichlorobenzoate degradation, and tropane, piperidine and Isoquinoline alkaloid biosynthesis. Among these, eleven selected genes were further verified by qRT-PCR. Our findings provide a comprehensive view on the gene expression profile of M. canis upon berberine treatment, and shed light on its complicated effects on M. canis.

  2. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    Science.gov (United States)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  3. Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid

    Science.gov (United States)

    Megyesi, Mónika; Biczók, László

    2007-10-01

    Effect of association with chloride or perchlorate anions on the fluorescence properties of berberine, a cationic isoquinoline alkaloid, has been studied. Interaction with Cl - caused more efficient fluorescence quenching; it significantly accelerated the radiationless deactivation and slowed down the radiative transition. Combined analysis of spectrophotometric, steady-state and time-resolved fluorescence results provided 1.5 × 10 5 M -1 for the equilibrium constant of ion pairing with Cl - in CH 2Cl 2. Both ion pairing and enrichment of the microenvironment of berberine in ions led to excited state quenching in solvents of medium polarity, but only the latter effect was observed in the presence of perchlorates in butyronitrile.

  4. Berberine promotes the development of atherosclerosis and foam cell formation by inducing scavenger receptor A expression in macrophage

    Institute of Scientific and Technical Information of China (English)

    Ke Li; Wenqi Yao; Xiudan Zheng; Kan Liao

    2009-01-01

    Berberine is identified to lower the serum cholesterol level in human and hamster through the induction of low density lipoproteins (LDL) receptor in hepatic cells. To evaluate its potential in preventing atherosclerosis, the effect of berberine on atherosclerosis development in apolipoprotein E-deficient (apoE-/-) mice was investigated, in apoE-/-mice, berberine induced in vivo foam cell formation and promoted atherosclerosis development. The foam cell for-mation induced by berberine was also observed in mouse RAW264.7 cells, as well as in mouse and human primary macrophages. By inducing scavenger receptor A (SR-A) expression in macrophages, berberine increased the uptake of modified LDL (DiO-Ac-LDL). Berberine-induced SR-A expression was also observed in macrophage foam cells in vivo and in the cells at atherosclerotic lesion. Analysis in RAW264.7 cells indicated that berberine induced SR-A ex-pression by suppressing PTEN expression, which led to sustained Akt activation. Our results suggest that to evaluate the potential of a cholesterol-reducing compound in alleviating atherosclerosis, its effect on the cells involved in ath-erosclerosis development, such as macrophages, should also be considered. Promotion of foam cell formation could counter-balance the beneficial effect of lowering serum cholesterol.

  5. Interaction mechanism between berberine and the enzyme lysozyme

    Science.gov (United States)

    Cheng, Ling-Li; Wang, Mei; Wu, Ming-Hong; Yao, Si-De; Jiao, Zheng; Wang, Shi-Long

    2012-11-01

    In the present paper, the interaction between model protein lysozyme (Lys) and antitumorigenic berberine (BBR) was investigated by spectroscopic methods, for finding an efficient and safe photosensitizer with highly active transient products using in photodynamic therapy study. The fluorescence data shows that the binding of BBR could change the environment of the tryptophan (Trp) residues of Lys, and form a new complex. Static quenching is the main fluorescence quenching mechanism between Lys and BBR, and there is one binding site in Lys for BBR and the type of binding force between them was determined to be hydrophobic interaction. Furthermore, the possible interaction mechanism between BBR and Lys under the photoexcitation was studied by laser flash photolysis method, the results demonstrated that BBR neutral radicals (BBR(-H)•) react with Trp (K = 3.4 × 109 M-1 s-1) via electron transfer to give the radical cation (Trp/NH•+) and neutral radical of Trp (TrpN•). Additionally BBR selectively oxidize the Trp residues of Lys was also observed by comparing the transient absorption spectra of their reaction products. Through thermodynamic calculation, the reaction mechanisms between 3BBR∗ and Trp or Lys were determined to be electron transfer process.

  6. Radiolysis and photolysis studies on active transient species of berberine.

    Science.gov (United States)

    Cheng, Ling-Li; Wang, Yu-Jia; Huang, Da-Hong; Yao, Si-De; Ding, Guo-Ji; Wang, Shi-Long; Jiao, Zheng

    2014-04-24

    In this paper, the photochemical and photobiological characters of the active radicals of berberine (BBR) was investigated for finding an efficient and safe photosensitizer with highly active transient products using in Photodynamic therapy (PDT) study. The active species of BBR was generated and identified by using pulse radiolysis method. In neutral aqueous solution, BBR react with hydrated electron and hydroxyl radical, forming the radical anion and neutral radical of BBR, and the related reaction rates were determined as 3.5×10(10) and 6.7×10(9) M(-1) s(-1), respectively. Further, the capability of BBR to photosensitize DNA cleavage was testified by laser flash photolysis (LFP) method, the results demonstrated that BBR neutral radical could react with guanine mononucleotide (K=1.9×10(9) M(-1) s(-1)) via electron transfer to give the guanine neutral radical. Additionally BBR selective cleavage single and double strand DNA at guanine moiety was observed. Finally, combining with the thermodynamic calculation, the possible photodamage mechanism of dGMP and DNA induced by BBR was clarified. PMID:24582336

  7. A novel toll-like receptor-9 agonist, MGN1703, enhances HIV-1 transcription and NK cell-mediated inhibition of HIV-1 infected autologous CD4+ T cells

    DEFF Research Database (Denmark)

    Offersen, Rasmus; Nissen, Sara Konstantin; Rasmussen, Thomas Aagaard; Østergaard, Lars Jørgen; Denton, Paul W; Søgaard, Ole Schmeltz; Tolstrup, Martin

    2016-01-01

    currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected on suppressive antiretroviral therapy. The significant improved safety and tolerability profile of MGN1703 versus TLR9 agonists of......Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a 'shock and kill' approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9...... induced strong antiviral innate immune responses, enhanced HIV-1 transcription and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4+ T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. IMPORTANCE: We demonstrate, that MGN1703 (a TLR9 agonist...

  8. In vitro and in vivo antitumor efficacy of berberine-nanostructured lipid carriers against H22 tumor

    Science.gov (United States)

    Wang, Zhi-ping; Wu, Jun-biao; Chen, Tong-sheng; Zhou, Qun; Wang, Yi-fei

    2015-03-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded nanostructured lipid carriers (Ber-NLC) was prepared by hot melting and then high pressure homogenization technique. Both in vitro and in vivo anti-hepatocarcinoma effects of Ber-NLC relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NLC were 189.3 nm and -19.3 mV, respectively. MTT assay showed that Ber-NLC effectively inhibited the proliferation of H22 cells, and the corresponding IC50 values were 6.3 μg/ml (22.1 μg/ml of bulk Ber). In vivo studies also showed higher antitumor efficacy, and inhibition rates was 68.3 % (41.4 % of bulk Ber) at 100 mg/kg intragastric administration in the H22 solid tumor bearing mice. These results suggest that the delivery of Ber-NLC is a promising approach for treating tumors.

  9. Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1

    Directory of Open Access Journals (Sweden)

    Liming Yu

    2016-01-01

    Full Text Available Berberine (BBR exerts potential protective effect against myocardial ischemia/reperfusion (MI/R injury. Activation of silent information regulator 1 (SIRT1 signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phox expression, malondialdehyde (MDA level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.

  10. The Therapeutic Effect of Berberine in the Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis

    OpenAIRE

    Wei, Xiaoyun; Wang, Chunyan; Hao, Shijun; Song, Haiyan; Yang, Lili

    2016-01-01

    Aim. To assess the efficacy of berberine in the treatment of nonalcoholic fatty liver disease through meta-analysis. Method. We searched Embase, Pubmed, Cochrane Library, and so forth, until March 2016 for randomized controlled trials using berberine to treat NAFLD. Result. Six randomized controlled trials involving 501 patients were included in this study. The results showed that the efficacy of reducing TC, LDL, ALT, 2hPG, and HbA1c in NAFLD patients of the berberine group were significantl...

  11. Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells

    Science.gov (United States)

    Scordino, Agata; Campisi, Agata; Grasso, Rosaria; Bonfanti, Roberta; Gulino, Marisa; Iauk, Liliana; Parenti, Rosalba; Musumeci, Francesco

    2014-11-01

    Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.

  12. Berberine in type 2 diabetes therapy: a new perspective for an old antidiarrheal drug?

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2012-08-01

    Full Text Available Type 2 diabetes mellitus (T2DM and dysglycemia (impaired glucose tolerance and/or impaired fasting glucose are increasingly contributing to the global burden of disease. Despite the continued introduction of hypoglycemic drugs, intervention in diabetes and its related complications remains a major global medical problem. Traditional Chinese medicine offers a number of potential candidates for developing hypoglycemic drugs. Berberine (BER, an isoquinoline alkaloid extract, has been commonly used as an oral drug to treat gastroenteritis and diarrhea for more than 1400 years. Although the antidiabetic effect of berberine has been noted in diabetic patients and demonstrated diabetic animal models in the last decade, its use is not yet accepted in the general medical community, for two reasons: its mechanism of action remains to be determined, and its bioavailability is low. Therefore, characterization of its mechanism of action and enhancement of its bioavailability are most important and the subject of current investigations. Recent studies have also revealed beneficial effects of berberine on diabetic complications. In this review the antidiabetic mechanism of action of berberine, its effect on diabetic complications, and efforts to improve its bioavailability are summarized. These studies may lead to its wider use for the treatment of type 2 diabetes mellitus and its complications.

  13. Structural modification of berberine alkaloids in relation to cytotoxic activity in vitro.

    Science.gov (United States)

    Orfila, L; Rodríguez, M; Colman, T; Hasegawa, M; Merentes, E; Arvelo, F

    2000-08-01

    The cytotoxicity of two protoberberine alkaloids: berberine and lincangenine, their 8-hydroxy-7,8-dihydro-derivatives and tetrahydroprotoberberine:thaicanine, was evaluated. The cellular responses through the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] (MTT) method were measured in Hela (uterus carcinoma), SVKO3 (ovary carcinoma), Hep-2 (larynx carcinoma), primary culture from mouse embryon, and human fibroblast cells at the concentration: 10-1000 ppm (microg/ml) for 24 h. Berberine showed the highest cytotoxicity among the compounds tested, giving LC50 values for all cell lines at the concentration of 10 ppm. The results indicated that the cytotoxicity was notably decreased by structural changes, i.e. by modulation of the planarity caused by the introduction of hydroxyl group at C-8 and concomitant saturation of double bond between N-C8 in protoberberine molecules. In the case of berberine, the cytotoxic effect changed from 98.8 (berberine) to 39% for 8-hydroxydihydroberberine at the concentration of 100 ppm in Hela cells line. The same effect was observed with lincangenine and 8-OH-lincangenine (cytotoxicities 70 and 25%, respectively, at 1000 ppm in SVKO3 cells). On the other hand, these compounds showed a low selectivity for the different human cancer cell lines tested. PMID:10940582

  14. Antiretroviral treatment of HIV-1 prevents transmission of HIV-1: where do we go from here?

    OpenAIRE

    Cohen, Myron S.; Smith, M. Kumi; Muessig, Kathryn E.; Hallett, Timothy B.; Powers, Kimberly A.; Kashuba, Angela D.

    2013-01-01

    Antiretroviral drugs that inhibit viral replication were expected to reduce transmission of HIV by lowering the concentration of HIV in the genital tract. In 11 of 13 observational studies, antiretroviral therapy (ART) provided to an HIV-infected index case led to greatly reduced transmission of HIV to a sexual partner. In the HPTN 052 randomised controlled trial, ART used in combination with condoms and counselling reduced HIV transmission by 96·4%. Evidence is growing that wider, earlier in...

  15. Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathway

    OpenAIRE

    Ai, Fen; Chen, Manhua; Yu, Bo; Yang, Yang; Xu, Guizhong; Gui, Feng; Liu, Zhenxing; Bai, Xiangyan; Chen, Zhen

    2015-01-01

    Objective: The traditional Chinese medicinal berberine has long been used to treat cardiovascular diseases; however, the mechanism underlying its effects remains unclear. Here, this study would to investigate the effects of berberine on proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts. Methods: We assessed proliferation, collagen synthesis and cytokine secretion in cardiac fibroblasts subjected to angiotensin II (Ang II) subsequent to the consumption of berberin...

  16. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    OpenAIRE

    Cong Liu; Zhuo Wang; Yulong Song; Dan Wu; Xuan Zheng; Ping Li; Jin Jin; Nannan Xu; Ling Li

    2015-01-01

    This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1) for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses reve...

  17. Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor

    OpenAIRE

    Chu, Ming; Ding, Ran; Chu, Zheng-yun; Zhang, Ming-bo; Liu, Xiao-Yan; Xie, Shao-Hua; Zhai, Yan-jun; Wang, Yue-dan

    2014-01-01

    Background Berberine is an isoquinoline alkaloid mainly extracted from Rhizoma Coptidis and has been shown to possess a potent inhibitory activity against bacterial. However, the role of berberine in anti-bacterial action has not been extensively studied. Methods The animal model was established to investigate the effects of berberine on bacterial and LPS infection. Docking analysis, Molecular dynamics simulations and Real-time RT-PCR analysis was adopted to investigate the molecular mechanis...

  18. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca2+ handling in smooth muscle cells

    OpenAIRE

    Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao

    2016-01-01

    Background Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine tre...

  19. Exploratory Pharmacokinetics of Geniposide in Rat Model of Cerebral Ischemia Orally Administered with or without Baicalin and/or Berberine

    OpenAIRE

    Linmei Pan; Wenzhe Wang; Feiyan Shi; Jing Zhou; Meng Zhang; Huaxu Zhu; Mingfei Zeng

    2013-01-01

    Huang-Lian-Jie-Du-Tang (HLJDT), a classical Chinese prescription, has been clinically employed to treat cerebral ischemia for thousands of years. Geniposide is the major active ingredient in HLJDT. The aim is to investigate the comparative evaluations on pharmacokinetics of geniposide in MCAO rats in pure geniposide, geniposide : berberine, and geniposide : berberine : baicalin. Obviously, the proportions of geniposide : berberine, geniposide : baicalin, and geniposide : berberine : baicalin ...

  20. Berberine Blocks the Relapse of Clostridium difficile Infection in C57BL/6 Mice after Standard Vancomycin Treatment

    OpenAIRE

    Lv, Zhi; Peng, Guoli; Liu, Weihua; Xu, Hufeng; Su, Jianrong

    2015-01-01

    Vancomycin is a preferred antibiotic for treating Clostridium difficile infection (CDI) and has been associated with a rate of recurrence of CDI of as high as 20% in treated patients. Recent studies have suggested that berberine, an alternative medical therapy for gastroenteritis and diarrhea, exhibits several beneficial effects, including induction of anti-inflammatory responses and restoration of the intestinal barrier function. This study investigated the therapeutic effects of berberine o...

  1. Atrogin-1 Affects Muscle Protein Synthesis and Degradation When Energy Metabolism Is Impaired by the Antidiabetes Drug Berberine

    OpenAIRE

    Wang, Huiling; Liu, Dajun; Cao, Peirang; Lecker, Stewart; Hu, Zhaoyong

    2010-01-01

    OBJECTIVE Defects in insulin/IGF-1 signaling stimulate muscle protein loss by suppressing protein synthesis and increasing protein degradation. Since an herbal compound, berberine, lowers blood levels of glucose and lipids, we proposed that it would improve insulin/IGF-1 signaling, blocking muscle protein losses. RESEARCH DESIGN AND METHODS We evaluated whether berberine ameliorates muscle atrophy in db/db mice, a model of type 2 diabetes, by measuring protein synthesis and degradation in mus...

  2. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor

    OpenAIRE

    Stermitz, Frank R; Lorenz, Peter; Tawara, Jeanne N.; Zenewicz, Lauren A.; Lewis, Kim

    2000-01-01

    Multidrug resistance pumps (MDRs) protect microbial cells from both synthetic and natural antimicrobials. Amphipathic cations are preferred substrates of MDRs. Berberine alkaloids, which are cationic antimicrobials produced by a variety of plants, are readily extruded by MDRs. Several Berberis medicinal plants producing berberine were found also to synthesize an inhibitor of the NorA MDR pump of a human pathogen Staphylococcus aureus. The inhibitor was identified as 5′-methoxyhydnocarpin (5′-...

  3. HIV-1 Antiretroviral Drug Therapy

    OpenAIRE

    Arts, Eric J.; Hazuda, Daria J.

    2012-01-01

    The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetectable levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever-increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with ...

  4. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  5. Azasugar-Containing Phosphorothioate Oligonucleotide (AZPSON) DBM-2198 Inhibits Human Immunodeficiency Virus Type 1 (HIV-1) Replication by Blocking HIV-1 gp120 without Affecting the V3 Region

    OpenAIRE

    Lee, Jinjoo; Byeon, Se Eun; Jung, Ju Yeol; Kang, Myeong-Ho; Park, Yu-Jin; Jung, Kyeong-Eun; Bae, Yong-Soo

    2015-01-01

    DBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198. The LTR-mediated reporter assay indicated that the anti-HIV-1 activity of DBM-2198 is attributed to an extracellular mode of action rather than intrace...

  6. Alcohol Expectancies and Inhibition Conflict as Moderators of the Alcohol-Unprotected Sex Relationship: Event-Level Findings from a Daily Diary Study Among Individuals Living with HIV in Cape Town, South Africa.

    Science.gov (United States)

    Kiene, Susan M; Simbayi, Leickness C; Abrams, Amber; Cloete, Allanise

    2016-01-01

    Literature from sub-Saharan Africa and elsewhere supports a global association between alcohol and HIV risk. However, more rigorous studies using multiple event-level methods find mixed support for this association, suggesting the importance of examining potential moderators of this relationship. The present study explores the assumptions of alcohol expectancy theory and alcohol myopia theory as possible moderators that help elucidate the circumstances under which alcohol may affect individuals' ability to use a condom. Participants were 82 individuals (58 women, 24 men) living with HIV who completed daily phone interviews for 42 days which assessed daily sexual behavior and alcohol consumption. Logistic generalized estimating equation models were used to examine the potential moderating effects of inhibition conflict and sex-related alcohol outcome expectancies. The data provided some support for both theories and in some cases the moderation effects were stronger when both partners consumed alcohol. PMID:26280530

  7. Effect of baicalin and berberine on transport of nimodipine on primary-cultured, rat brain microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Dong-mei ZHANG; Hai-yan LIU; Lin XIE; Xiao-dong LIU

    2007-01-01

    Aim: To investigate whether baicalin and berberine affects the transport of nimodipine (NMD) across the blood-brain barrier (BBB). Methods: Primary-cultured, rat brain microvascular endothelial cells (rBMEC) were used as an in vitro model of the BBB. When cells became confluent, the steady-state uptake of NMD by rBMEC with or without baicalin and berberine was measured. The ef-fects of baicalin and berberine on the efflux of NMD from rBMEC were also studied.Results: Baicalin (2-5 μg/mL) increased the uptake of NMD, and baicalin (10-20 μg/mL) decreased the uptake. The steady-state uptake of NMD was higher than that of control group in the presence of 0.01-1 μg/mL berberine, but was lower in the presence of 2-10 μg/mL berberine. Conclusion: The bidirectional effect of baicalin and berberine on the uptake of NMD by rBMEC was found. Higher concentration showed an inhibitory effect, and lower concentration demonstrated an increasing effect.

  8. Synthesis and Cytotoxicity Evaluation of 13-n-Alkyl Berberine and Palmatine Analogues as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2012-09-01

    Full Text Available By introducing long carbon-chain alkyl groups at the C-13 position of berberine and palmatine, 13-n-hexyl/13-n-octyl berberine and palmatine chloride analogues 4ad were synthesized and examined by MTT assays for cytotoxic activity in seven human cancer cell lines (7701QGY, SMMC7721, HepG2, CEM, CEM/VCR, KIII, Lewis, yielding IC50 values of 0.02 ± 0.01–13.58 ± 2.84 μM. 13-n-Octyl palmatine (compound 4d gave the most potent inhibitor activity, with an IC50 of 0.02 ± 0.01 μM for SMMC7721. In all cases, the 13-n-alkyl berberine and palmatine analogues 4ad were more cytotoxic than berberine and palmatine. In addition, compounds 4ad also exhibited more potent cytotoxicity than berberine and palmatine in mice with S180 sarcoma xenografted in vivo. The primary screening results indicated that the 13-n-hexyl/13-n-octyl berberine and palmatine analogues might be valuable source for new potent anticancer drug candidates.

  9. Protective Effects of Berberine on Isoproterenol-Induced Acute Myocardial Ischemia in Rats through Regulating HMGB1-TLR4 Axis

    Directory of Open Access Journals (Sweden)

    Tianzhu Zhang

    2014-01-01

    Full Text Available Berberine, an isoquinoline alkaloid originally isolated from the Chinese herb Coptis chinensis (Huanglian, has been shown to display a wide array of pharmacological activities. The present study was to investigate the effects of berberine against myocardial ischemia produced in rats by isoproterenol. 50 male Sprague-Dawley rats were randomized equally into five groups: a control group, an untreated model group, berberine (30, 60 mg/kg treatment, or propranolol (30 mg/kg. Rats were treated for 12 days and then given isoproterenol, 85 mg/kg for 2 consecutive days by subcutaneous injection. ST-segment elevation was measured after the last administration. Serum levels of creatine kinase isoenzyme (CK-MB, lactate dehydrogenase (LDH, tumor necrosis factor-α (TNF-α, and interleukin-6 (IL-6 were measured after the rats were sacrificed. The hearts were excised for determining heart weight index, microscopic examination, high mobility group box 1 (HMGB1, toll-like receptor (TLR4, prodeath protein (Bax, antideath protein (Bcl-2, and tumor necrosis factor (TNF-α protein were determined by western blot. Berberine decreased the ST elevation induced by acute myocardial ischemia, and decreased serum levels of CK-MB, LDH, TNF-α, and IL-6. Berberine increased total superoxide dismutase (T-SOD activity and decreased malondialdehyde (MDA content in myocardial tissue. Berberine can regulate HMGB1-TLR4 axis to protect myocardial ischemia.

  10. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine.

    Directory of Open Access Journals (Sweden)

    Zhen Sheng

    Full Text Available Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, RNA-seq technology was used to detect the differentially expressed genes and differentially alternative spliced genes in BEL-7402 cancer cells induced by berberine. Functional enrichment analysis indicated that these genes were mainly enriched in the p53 and cell cycle signalling pathway. In addition, it was statistically proven that the two sets of genes were locally co-enriched along chromosomes, closely connected to each other based on protein-protein interaction and functionally similar on Gene Ontology tree. These results suggested that the two sets of genes regulated by berberine might be functionally cross-talked and jointly contribute to its cell cycle arresting effect. It has provided new clues for further researches on the pharmacological mechanisms of berberine as well as the other botanical drugs.

  11. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion

    Institute of Scientific and Technical Information of China (English)

    San-hua LENG; Fu-er LU; Li-jun XU

    2004-01-01

    AIM: To explore the anti-diabetic effects of berberine and its influence on insulin secretion. METHODS: Impaired glucose tolerance rats induced by iv injection of streptozotocin 30 mg/kg were treated with berberine 187.5 and 562.5 mg/kg while fed with high fat laboratory chow. After rats were treated for 4 weeks, oral glucose tolerance was determined, and for 8 weeks, the fasting blood glucose, insulin, lipid series were determined. In insulin secretion experiments, berberine 93.75, 187.5, and 562.5 mg/kg was administered orally to BALB/c mice at a bolus. The murine serum was collected 2 h after the berberine administration for insulin determination. Insulin released from HIT-T 15 cells and pancreatic islets incubated with berberine 1-100 μmol/L for 12 h was determined. RESULTS:The levels of fasting blood glucose (7.4± 1.5 or 7.3± 1.3 vs 9.3± 1.3 mmol/L), triglycerides (0.61±0.22 or 0.63±0.17 vs 1.8±0.7 mmol/L), total cholesterol (1.8±0.3 or 1.9±0.3 vs 2.2±0.2 mmol/L), free fatty acid (456±93 or 460±72 vs 550± 113 μmol/L) and apolipoprotein B (0.37±0.02 or 0.42±0.05 vs 0.46±0.04 g/L) were reduced greatly in berberine-treated groups at doses of 187.5 and 562.5 mg.kg-1.d-l, respectively as compared with those in control group (P<0.05 or P<0.01), whereas high density lipoprotein-cholesterol (1.5±0.3 or 1.4±0.3 vs 1.1±0.1 g/L), apolipoprotein A1 (0.80±0.08 or 0.87±0.08 vs 0.71±0.06 g/L) were significantly increased (P<0.05 or P<0.01), and oral glucose tolerance was improved. In vitro experiment showed that berberine 1-10 μmol/L facilitated insulin secretion of HIT-T15 cells and murine pancreatic islets in a dose-dependent manner. Meanwhile murine serum insulin level (27.5±2.7 or 29±4 or 29±4 vs 24.3±2.8 plU/L) was undoubtedly promoted and blood glucose (4.52±0.31 or 4.45±0.29 or 4.30±0.19 vs 4.87±0.21 mmol/L) was reduced after berberine administration at doses of 93.75, 187.5,and 562.5 mg/kg, respectively in the BALB/c mice. CONCLUSION

  12. Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies.

    Directory of Open Access Journals (Sweden)

    Mimi Ghosh

    Full Text Available We investigated the impact of antimicrobials in cervicovaginal lavage (CVL from HIV(+ and HIV(- women on target cell infection with HIV. Since female reproductive tract (FRT secretions contain a spectrum of antimicrobials, we hypothesized that CVL from healthy HIV(+ and (- women inhibit HIV infection.CVL from 32 HIV(+ healthy women with high CD4 counts and 15 healthy HIV(- women were collected by gently washing the cervicovaginal area with 10 ml of sterile normal saline. Following centrifugation, anti-HIV activity in CVL was determined by incubating CVL with HIV prior to addition to TZM-bl cells. Antimicrobials and anti-gp160 HIV IgG antibodies were measured by ELISA. When CXCR4 and CCR5 tropic HIV-1 were incubated with CVL from HIV(+ women prior to addition to TZM-bl cells, anti-HIV activity in CVL ranged from none to 100% inhibition depending on the viral strains used. CVL from HIV(- controls showed comparable anti-HIV activity. Analysis of CH077.c (clone of an R5-tropic, mucosally-transmitted founder virus viral inhibition by CVL was comparable to laboratory strains. Measurement of CVL for antimicrobials HBD2, trappin-2/elafin, SLPI and MIP3alpha indicated that each was present in CVL from HIV(+ and HIV(- women. HBD2 and MIP3alpha correlated with anti-HIV activity as did anti-gp160 HIV IgG antibodies in CVL from HIV(+ women.These findings indicate that CVL from healthy HIV(+ and HIV(- women contain innate and adaptive defense mechanisms that inhibit HIV infection. Our data suggest that innate endogenous antimicrobials and HIV-specific IgG in the FRT can act in concert to contribute toward the anti-HIV activity of the CVL and may play a role in inhibition of HIV transmission to women.

  13. HIV Symptoms

    Science.gov (United States)

    ... Submit Home > HIV/AIDS > What is HIV/AIDS? HIV/AIDS This information in Spanish ( en español ) HIV symptoms Photo courtesy of AIDS.gov More information ... and brain Return to top More information on HIV symptoms Explore other publications and websites Basic Information ...

  14. HIV Testing

    Science.gov (United States)

    ... Abroad Treatment Basic Statistics Get Tested Find an HIV testing site near you. Enter ZIP code or city Follow HIV/AIDS CDC HIV CDC HIV/AIDS See RSS | ... All Collapse All Should I get tested for HIV? CDC recommends that everyone between the ages of ...

  15. Peptides Derived from a Distinct Region of GB Virus C Glycoprotein E2 Mediate Strain-Specific HIV-1 Entry Inhibition

    OpenAIRE

    Koedel, Yvonne; Eissmann, Kristin; Wend, Holger; Fleckenstein, Bernhard; Reil, Heide

    2011-01-01

    The nonpathogenic human GB virus C (GBV-C), a member of the Flaviviridae, is highly prevalent in individuals with HIV-1 infections or with parenteral and sexual risk factors. Long-term GBV-C viremia has been associated with better survival or improved diagnosis in several epidemiological studies. In a previous study we reported that the E2 glycoprotein of GBV-C interferes with HIV-1 entry in vitro. To address the question what region of the E2 protein is involved in suppression of HIV-1 repli...

  16. Silver Nanoparticles Exhibit the Dose-Dependent Anti-Proliferative Effect against Human Squamous Carcinoma Cells Attenuated in the Presence of Berberine

    Directory of Open Access Journals (Sweden)

    Arkadiusz Dziedzic

    2016-03-01

    Full Text Available The biological activity of nanosize silver particles towards oral epithelium-derived carcinoma seems to be still underinvestigated. We evaluated the influence of low doses of nanosize scale silver particles on the proliferation and viability of malignant oral epithelial keratinocytes in vitro, alone and in conjunction with the plant alkaloid berberine. Cells of human tongue squamous carcinoma SCC-25 (ATCC CRL-1628, cultivated with the mixture of Dulbecco's modified Eagle’s medium, were exposed to silver nanoparticles alone (AgNPs, concentrations from 0.31 to 10 μg/mL and to a combination of AgNPs with berberine chloride (BER, 1/2 IC50 concentration during 24 h and 48 h. The cytotoxic activity of AgNPs with diameters of 10 nm ± 4 nm was measured by 3-(4,5-dimethyl-2-thiazyl-2,5-diphenyl-2H-tetrazolium bromide (MTT assay. Cell cycle analysis was performed by treating cells with propidium iodide followed by flow-activated cell sorting. RT-QPCR reaction was used to assess expression of anti-apoptotic proteins Bcl-2 and pro-apoptotic protein Bcl-2-associated X protein Bax genes expression. Monodisperse silver nanoparticles at a concentration of 10 μg/mL arrested SCC-25 cells cycle after 48 h at the G0/G1 phase in a dose- and time-dependent manner through disruption G0/G1 checkpoint, with increase of Bax/Bcl-2 ratio gene expression. AgNPs exhibit cytotoxic effects on SCC-25 malignant oral epithelial keratinocytes, which is diminished when combined with BER. The AgNPs concentration required to inhibit the growth of carcinoma cells by 50% (IC50 after 48 h was estimated at 5.19 μg/mL. AgNPs combined with BER increased the expression of Bcl-2 while decreasing the ratio of Bax/Bcl-2 in SCC-25 cells. Silver particles at low doses therefore reduce the proliferation and viability of oral squamous cell carcinoma cells. SCC-25 cells are susceptible to damage from AgNPs-induced stress, which can be regulated by the natural alkaloid berberine, suggesting

  17. Yohimbine enhances protection of berberine against LPS-induced mouse lethality through multiple mechanisms.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Sepsis remains a major cause of mortality in intensive care units, better therapies are urgently needed. Gram-negative bacterial lipopolysaccharide (LPS is an important trigger of sepsis. We have demonstrated that berberine (Ber protects against lethality induced by LPS, which is enhanced by yohimbine (Y pretreatment, and Ber combined with Y also improves survival in septic mice. However, the precise mechanisms by which Y enhances protection of Ber against LPS-induced lethality remain unclear. The present study confirmed that simultaneously administered Y also enhanced protection of Ber against LPS-induced lethality. Ber or/and Y attenuated liver injury, but not renal injury in LPS-challenged mice. Ber or/and Y all inhibited LPS-stimulated IκBα, JNK and ERK phosphorylation, NF-κB activation as well as TNF-α production. Ber also increased IL-10 production in LPS-challenged mice, which was enhanced by Y. Furthermore, Ber or/and Y all suppressed LPS-induced IRF3, TyK2 and STAT1 phosphorylation, as well as IFN-β and IP-10 mRNA expression in spleen of mice at 1 h after LPS challenge. Especially, Y enhanced the inhibitory effect of Ber on LPS-induced IP-10 mRNA expression. In vitro experiments further demonstrated that Y significantly enhanced the inhibitory effect of Ber on TNF-α production in LPS-treated peritoneal macrophages, Ber combined with Y promoted LPS-induced IL-10 production and LPS-stimulated IκBα, JNK, ERK and IRF3 phosphorylation and NF-κB activation were also suppressed by Ber or/and Y pretreatment in peritoneal macrophages. Taken together, these results demonstrate that Y enhances the protection of Ber against LPS-induced lethality in mice via attenuating liver injury, upregulating IL-10 production and suppressing IκBα, JNK, ERK and IRF3 phosphorylation. Ber combined with Y may be an effective immunomodulator agent for the prevention of sepsis.

  18. Study on in vitro antibacterial effect of Berberine on ESBLs-producing K. Pneunmoniae Combing with Cephalothin%黄连素与头孢菌素联用对产ESBLs克雷伯菌的体外抗菌作用初探

    Institute of Scientific and Technical Information of China (English)

    米伟; 张永海

    2009-01-01

    Object To explore antibacterial effect of Berberine on ESBLs-producing K. Pneunmoniae combing with Ceftazidime.Methods ESBLs-producing K. Pneunmoniae confirmation test was done using the method of slip; MIC of Berberine and Ceftazidime on ESBLs-producing K. Pneunmoniae was detected by agar dilution test and double dilution; Evaluation of synergistic antibacterial effect was used by broth chessboard method. Antimicrobial susceptibilities test was done using the methods of Kirby-Bauer according to the standards of CLSI. Results MIC90 of Ceftazidime on ESBLs-producing K. Pneunmoniae is 19.55μg·ml-1,and MIC90 of Berberine on ESBLs-producing K. Pneunmoniae is 35.67mg·ml-1;Activity of β-Lactamase of Berberine is significant lower than Berberine+Ceftazidime by bacterio-lipid compared with bacterio-broth(P<0.05);The diameter of antibacterial ring of Ceftazidime on ESBLs-producing K. Pneunmoniae is 12~23mm,while that of Berberine+Ceftazidime is 13~24.5mm,which there is significant difference using t-test(P<0.05);FIC index of Berberine+Ceftazidime is additive action by antimicrobial susceptibilities test of ESBLs-producing K. pneunmoniae. Conclusion Antibacterial effect of Berberine on ESBLs-producing K. Pneunmoniae combing with Ceftazidime is additive action by antimicrobial susceptibilities test; Berberine can inhibit activity of β-Lactamase of ESBLs-producing K. pneunmoniae combing with Ceftazidime.%目的 探讨黄连素与头孢他啶联用对产ESBLs克雷伯菌抑菌作用. 方法 采用纸片扩散法、琼脂稀释法和液体稀释法测定. 结果 头孢他啶对产ESBLs克雷伯菌MIC90为19.55μg·ml-1 ,黄连素对产ESBLs大肠埃希菌MIC90为35.67mg·ml-1 ;黄连素及黄连素+头孢他啶使β-内酰胺酶活性降低, P<0.05;单用头孢他啶与头孢他啶联合黄连素所测抑菌圈直径均数比较, P<0.05,有统计学意义;头孢他啶、黄连素联合药敏试验对产ESBLs克雷伯菌FIC指数为0.75、0.625、0.625. 结论 黄

  19. Why do HIV-1 and HIV-2 use different pathways to develop AZT resistance?

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 develops resistance to all available drugs, including the nucleoside analog reverse transcriptase inhibitors (NRTIs such as AZT. ATP-mediated excision underlies the most common form of HIV-1 resistance to AZT. However, clinical data suggest that when HIV-2 is challenged with AZT, it usually accumulates resistance mutations that cause AZT resistance by reduced incorporation of AZTTP rather than selective excision of AZTMP. We compared the properties of HIV-1 and HIV-2 reverse transcriptase (RT in vitro. Although both RTs have similar levels of polymerase activity, HIV-1 RT more readily incorporates, and is more susceptible to, inhibition by AZTTP than is HIV-2 RT. Differences in the region around the polymerase active site could explain why HIV-2 RT incorporates AZTTP less efficiently than HIV-1 RT. HIV-1 RT is markedly more efficient at carrying out the excision reaction with ATP as the pyrophosphate donor than is HIV-2 RT. This suggests that HIV-1 RT has a better nascent ATP binding site than HIV-2 RT, making it easier for HIV-1 RT to develop a more effective ATP binding site by mutation. A comparison of HIV-1 and HIV-2 RT shows that there are numerous differences in the putative ATP binding sites that could explain why HIV-1 RT binds ATP more effectively. HIV-1 RT incorporates AZTTP more efficiently than does HIV-2 RT. However, HIV-1 RT is more efficient at ATP-mediated excision of AZTMP than is HIV-2 RT. Mutations in HIV-1 RT conferring AZT resistance tend to increase the efficiency of the ATP-mediated excision pathway, while mutations in HIV-2 RT conferring AZT resistance tend to increase the level of AZTTP exclusion from the polymerase active site. Thus, each RT usually chooses the pathway best suited to extend the properties of the respective wild-type enzymes.

  20. Potent inhibitors of HIV-1 integrase display a two-step, slow-binding inhibition mechanism which is absent in a drug-resistant T66I/M154I mutant.

    Science.gov (United States)

    Garvey, Edward P; Schwartz, Benjamin; Gartland, Margaret J; Lang, Scott; Halsey, Wendy; Sathe, Ganesh; Carter, H Luke; Weaver, Kurt L

    2009-02-24

    Two-metal binding HIV-1 integrase inhibitors (INIs) are potent inhibitors of HIV-1 in vitro and in patients. We report here for the first time the kinetics of inhibition of integrase-catalyzed strand transfer. First, the IC(50) values for each of six structurally distinct INIs decreased when a preincubation was included: S-1360 (1.3 microM vs 0.12 microM), L-731,988 (130 nM vs 9 nM), L-870,810 (130 nM vs 4 nM), raltegravir (300 nM vs 9 nM), elvitegravir (90 nM vs 6 nM), and GSK364735 (90 nM vs 6 nM). When reactions with these INIs were initiated with integrase, progress curve analyses indicated time-dependent inhibition, which could be fitted to a two-step mechanism of binding. Overall fitted K(i) values matched the IC(50) values measured with a preincubation: S-1360 (0.17 microM), L-731,988 (34 nM), L-870,810 (2.4 nM), raltegravir (10 nM), elvitegravir (4.0 nM), and GSK364735 (2.5 nM). To begin to understand the mechanism for this slow onset of inhibition and its possible impact on drug resistance, studies of resistance mutations were initiated. T66I/M154I exhibited little if any time-dependent inhibition by any of the six INIs, as measured by differences in potency upon preincubation or by progress curve analysis. These data demonstrate that slow binding is a signature of two-metal binding INIs, and that the second slow step is required for full potency. We discuss a possible structural explanation of the second slow step of inhibition and also the relationship between loss of time-dependent inhibition and drug resistance of this important new class of HIV-1 antiretroviral drugs. PMID:19178153

  1. Broad-Spectrum Inhibition of HIV-1 by a Monoclonal Antibody Directed against a gp120-Induced Epitope of CD4

    OpenAIRE

    Burastero, Samuele E.; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to conta...

  2. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells

    International Nuclear Information System (INIS)

    R5 HIV-1 strains resistant to the CCR5 antagonist Maraviroc (MVC) can use drug-bound CCR5. We demonstrate that MVC-resistant HIV-1 exhibits delayed kinetics of coreceptor engagement and fusion during drug-bound versus free CCR5 infection of cell lines. Antibodies directed against the second extracellular loop (ECL2) of CCR5 had greater antiviral activity against MVC-bound compared to MVC-free CCR5 infection. However, in PBMCs, only ECL2 CCR5 antibodies HGS004 and HGS101, but not 2D7, inhibited infection by MVC resistant HIV-1 more potently with MVC-bound than with free CCR5. In addition, HGS004 and HGS101, but not 2D7, restored the antiviral activity of MVC against resistant virus in PBMCs. In flow cytometric studies, CCR5 binding by the HGS mAbs, but not by 2D7, was increased when PBMCs were treated with MVC, suggesting MVC increases exposure of the relevant epitope. Thus, HGS004 and HGS101 have antiviral mechanisms distinct from 2D7 and could help overcome MVC resistance.

  3. Isolation of Berberine from Berberis vulgaris Linn. and Standardization of Aqueous extract by RP-HPLC

    Directory of Open Access Journals (Sweden)

    Deepak Pradhan

    2013-06-01

    Full Text Available Berberis vulgaris L. belongs to family Berberidaceae is native to Europe and the British Isles in Iran. Barberries is an important production of South Khorasan; biggest producer of barberries in Iran. It is a deciduous shrub having yellow flowers and scarlet colored fruit in the form of berries. Twenty two alkaloids have been reported so far from root, stem leaves and fruit of this plant, which are of medicinal importance. From preliminary Phytochemical analysis showed the presence of carbohydrate, glycoside, alkaloid, protein, amino acid, saponin, tannin and flavonoid. One of the major Isoquinoline alkaloid is Berberine. From the present investigation an attempt has been made to standardize aqueous extract of Berberis vulgaris on the basis %age Berberine content by RP-HPLC.

  4. Modulating gut microbiota as an anti-diabetic mechanism of berberine

    OpenAIRE

    Han, Junling; Lin, Huiling; HUANG, Weiping

    2011-01-01

    Summary Berberine, one of the main constituents of a Chinese traditional herb used to treat bacterial diarrhea, has an effect of lowering glucose, which has been recently confirmed by many studies. However, the mechanism of berberine’s antidiabetic effect has not yet been well explained. Recent evidence suggests that the gut microbiota composition is associated with obesity and type 2 diabetes, which are closely associated with a low-grade inflammatory state. The protective effect against dia...

  5. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents

    OpenAIRE

    Jiaolin Bao; Borong Huang; Lidi Zou; Shenghui Chen; Chao Zhang; Yulin Zhang; Meiwan Chen; Jian-Bo Wan; Huanxing Su; Yitao Wang; Chengwei He

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This st...

  6. The Anticonvulsant and Antioxidant Effects of Berberine in Kainate-induced Temporal Lobe Epilepsy in Rats

    OpenAIRE

    Mojarad, Tourandokht Baluchnejad; Roghani, Mehrdad

    2014-01-01

    Introduction Temporal lobe epilepsy (TLE) is a long lasting neurological disorder in which patients suffer from spontaneous seizures. New treatments with novel mechanisms of action are needed to help those patients whose seizures are resistant to available drugs. In this study, we investigated the possible neuroprotective effect of berberine in an intrahippocampal kainate model of TLE in rat. Methods In the present study, the anticonvulsant and antioxidant effects of intraperitoneal administr...

  7. Berberine Ameliorates Cold and Mechanical Allodynia in a Rat Model of Diabetic Neuropathy

    OpenAIRE

    Kim, Si Oh; Kim, Hyun Jee

    2013-01-01

    This study evaluated the antiallodynic properties of berberine on cold and mechanical allodynia after streptozotocin (STZ)-induced diabetes using a rat model. Diabetic neuropathy was induced in rats by intraperitoneal injection of STZ. To measure cold and mechanical allodynia, a 4°C plate and von Frey filament were used, respectively. Cold and mechanical allodynia induced by diabetes were significantly decreased by single and repeated intraperitoneal treatment of amitriptyline at 10 mg/kg, an...

  8. Berberine and Coptidis Rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations

    OpenAIRE

    Feng, Y.; Tsao, S; Tang, J; Wang, N.; Curtain, R; Wang, Y.

    2009-01-01

    Ethnopharmacological relevance: Coptidis Rhizoma (Huanglian) and its major component, berberine, have drawn extensive attention toward their antineoplastic effects in the recent years. The antineoplastic effects are related to the Chinese Medicine (CM) properties of Huangliang in treating diseases by removing damp-heat and purging fire and counteracting toxicity. Aim of the review: To trace the long history of the traditional use of Huanglian from folk medicines, especially from Chinese medic...

  9. Inhibitory Effects of Coptidis rhizoma and Berberine on Cocaine-induced Sensitization

    OpenAIRE

    Bombi Lee; Chae Ha Yang; Dae-Hyun Hahm; Eun Sang Choe; Hye-Jung Lee; Kwang-Ho Pyun; Insop Shim

    2007-01-01

    Substantial evidence suggests that the behavioral and reinforcing effects of cocaine can be mediated by the central dopaminergic systems. Repeated injections of cocaine produce an increase in locomotor activity and the expression of tyrosine hydroxylase (TH) in the main dopaminergic areas. Protoberberine alkaloids affect neuronal functions. Coptidis rhizoma (CR) and its main compound, berberine (BER) reduced the dopamine content in the central nervous system. In order to investigate the effec...

  10. Yohimbine Enhances Protection of Berberine against LPS-Induced Mouse Lethality through Multiple Mechanisms

    OpenAIRE

    Hui Li; Yiyang Wang; Haoqing Zhang; Baoyin Jia; Daan Wang; Hongmei Li; Daxiang Lu; Renbin Qi; Yuxia Yan; Huadong Wang

    2012-01-01

    Sepsis remains a major cause of mortality in intensive care units, better therapies are urgently needed. Gram-negative bacterial lipopolysaccharide (LPS) is an important trigger of sepsis. We have demonstrated that berberine (Ber) protects against lethality induced by LPS, which is enhanced by yohimbine (Y) pretreatment, and Ber combined with Y also improves survival in septic mice. However, the precise mechanisms by which Y enhances protection of Ber against LPS - induced lethality remain un...

  11. Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats

    OpenAIRE

    Tan, Xiang-Shan; Ma, Jing-Yi; Feng, Ru; Ma, Chao; Chen, Wen-Jing; Sun, Yu-Peng; Fu, Jie; Huang, Min; He, Chi-Yu; Shou, Jia-Wen; He, Wen-Yi; Wang, Yan; Jiang, Jian-Dong

    2013-01-01

    Berberine (BBR) has been confirmed to have multiple bioactivities in clinic, such as cholesterol-lowering, anti-diabetes, cardiovascular protection and anti- inflammation. However, BBR’s plasma level is very low; it cannot explain its pharmacological effects in patients. We consider that the in vivo distribution of BBR as well as of its bioactive metabolites might provide part of the explanation for this question. In this study, liquid chromatography coupled to ion trap time-of-flight mass sp...

  12. Significant pharmacokinetic differences of berberine are attributable to variations in gut microbiota between Africans and Chinese.

    Science.gov (United States)

    Alolga, Raphael N; Fan, Yong; Chen, Zhuo; Liu, Li-Wei; Zhao, Yi-Jing; Li, Jin; Chen, Yan; Lai, Mao-De; Li, Ping; Qi, Lian-Wen

    2016-01-01

    We investigated the influence of gut microbiotal metabolism on the pharmacokinetics of berberine in healthy male Africans and Chinese. The Cmax and AUC in the Africans were 2.67-fold and 2.0-fold higher than the Chinese, respectively. Microbiotal compositions by 16S rRNA pyrosequencing showed higher abundance of the genera Prevotella, Bacteroides, and Megamonas (34.22, 13.88, and 10.68%, respectively) in the Chinese than the Africans (30.08, 9.43, and 0.48%, respectively). Scatter plot showed a strong negative correlation between the microbiotal abundance and the berberine AUC, especially for the genus Prevotella (r = -0.813) and its species. A more extensive metabolism was observed in Chinese with 1.83-fold higher metabolites, possibly contributing to the lower AUC than the Africans. In conclusion, significant PK differences of berberine were observed between Africans and Chinese, which is partly attributable to variations in gut microbiota and its corresponding metabolic capacity. PMID:27283523

  13. Spectroscopic investigation on the sonodynamic damage to proteins in the presence of berberine in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xin [School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036 (China); He Lingling, E-mail: helingling76@163.co [College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142 (China); Liu Bin [School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036 (China); Wang Jun [Department of Chemistry, Liaoning University, Shenyang 110036 (China)

    2011-07-15

    In this paper, bovine serum albumin (BSA) was selected as a target molecule, and the sonodynamic damage to proteins in the presence of berberine (BER) and its mechanism were studied by means of absorption and fluorescence spectra. The results of hyperchromic effect of absorption spectra, and quenching of intrinsic fluorescence spectra indicated that the ultrasound-induced BSA molecules damage was enhanced by BER. The damage degree of BSA molecules increased with the increase in ultrasonic irradiation time and BER concentration. The results of synchronous fluorescence and three-dimensional fluorescence spectra confirmed that the synergistic effects of ultrasound and BER induced the damage of BSA molecules. The results of oxidation-extraction photometry with several reactive oxygen species (ROS) scavengers indicated that the damage of BSA molecules could be mainly due to the generation of ROS, and {sup 1}O{sub 2} was the major mediator of the ultrasound-induced BSA molecules damage in the presence of BER. - Highlights: {yields} Sonodynamic activity of berberine and its mechanism is first reported. {yields} Ultrasound-induced BSA molecules damage is enhanced by berberine. {yields} Damage of BSA molecules is mainly due to the generation of ROS.

  14. Binding Studies of Natural Product Berberine with DNA G-Quadruplex

    Directory of Open Access Journals (Sweden)

    Nagendra K. Sharma

    2011-01-01

    Full Text Available Problem statement: The ends of chromosome had highly repetitive short G and C-rich sequences of DNA. These sequences were known to form stable tetraplex type of secondary structures which help to maintain gene integratity after cell divison. Approach: Any reagent which controls the random cell division would be useful to design anticancer drugs. Therefore a many natural and synthesized molecules which stabilized tetraplex structures are targeted as anticancer drug entities. Results: Among them, Berberine hydrochloride natural product and its analogues are well studies as G-quadruplex stabilizing agent. In this report, DNA sequence 5’-G3-C5-G3-3’ has been designed which has probability to form i-motif and G-qua druplex types of secondary structures. Herein we studied the interaction between this DNA strands and Berberine hydrochloride by 1H-NMR techniques and UV in two different PH (4.7 and 7.4 conditions. Conclusion/Recommendations: Our preliminary results showed that Berberine bind with this DNA strand in both pH conditions which is further supported by UV melting experiments. In future this sequence can be used as probe to screen out tetraplex binding natural products which help to generate new anticancer drugs.

  15. Microcalorimetric investigation of effect of berberine alkaloids from Coptis chinensis Franch on intestinal diagnostic flora growth

    Institute of Scientific and Technical Information of China (English)

    YAN Dan; WEI Li; XIAO XiaoHe; ZHOU DanLei; HAN YuMei

    2009-01-01

    The inhibitory effect of three berberine alkaloids (BAs) from Coptis chinensis Franch, a traditional Chinese medicinal (TCM) herb, on Bifidobacterium adolescentis growth was investigated by micro-calorimetry. The power-time curves of B. adolescentis with and without BAs were acquired, meanwhile the extent and duration of inhibitory effect on the metabolism were evaluated by the growth rate con-stant (k), half inhibitory ratio (IC50), maximum heat-output power (Pmax), peak time of maximum heat-output power (tp) and total heat production (Qt). k, Pmax and Qt decreased, and tp was prolonged with the increase of BAs concentration. The IC50 of BAs is 806 μg/mL for berberine, 341 μg/mL for cop-tisine and 236 μg/mL for palmatine. The sequence of antimicrobial activity of BAs is berberine coptisine > pal-matine. The structure-function relationship of BAs indicates that the functional group methylenedioxy or methoxyl at C2 and C3 might be the major group inducing the activities of BAs on E. coli and B. adolescentis. Meanwhile, the substituent groups at C2, C3, C9 and C10 almost have equal effect on B. shigae.

  16. Influence of berberine on protein tyrosine kinase of erythrocyte insulin receptors from type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Xianglei Deng; Xinrong Li; Chenggong Tian

    2005-01-01

    Objective: Bererine has been used to treat type 2 diabetes mellitus in Chinese traditional medicine because of its hypoglycemic effect. In this report, we compared the intrinsic tyrosine kinase activities of erythrocyte insulin receptors from type 2 diabetes mellitus with or without stimulation by berberine in vitro. Methods: Preparations containing insulin receptors were obtained from soluble human erythrocytes, and the insulin receptors were partially purified by affinity chromatography. The tyrosine kinase activity was measured by the exogenous substrate phosphorylation. Results: Both the membrane tyrosine kinase activity and the purified receptor tyrosine kinase activity from diabetics decreased significantly compared with those of normal individuals (reduced by 67.4 % and 47.2 %, respectively).After incubation with berberine, there is a statistical difference in the activity of membrane tyrosine kinase for diabetic patients (a 150% increase). Bererine had no effect on the tyrosine kinase activity of purified insulin receptors. Conclusion: We concluded from these results that berberine was able to improve the insulin sensitivity by increasing the protein tyrosine kinase activity of membrane-bound insulin receptors from type 2 diabetes mellitus.

  17. Microcalorimetric investigation of the effect of berberine alkaloids from Coptis chinensis Franch on Staphylococcus aureus growth

    Institute of Scientific and Technical Information of China (English)

    YAN Dan; XIAO XiaoHe; JIN Cheng; DONG XiaoPing

    2008-01-01

    The inhibitory effects of three berberine alkaloids (Bas) from rhizome of Coptis chinensis Franch, a traditional Chinese medicinal (TCM) herb, on Staphylococcus aureus growth were investigated by mi-crocalorimetry. The power-time curves of S. Aureus with and without Bas were acquired; meanwhile the extent and duration of inhibitory effects on the metabolism were evaluated by studying the growth rate constant (k), half inhibitory ratio (IC50), maximum heat-output power (Pmax), peak time of maximum heat-output power (tp) and total heat production (Qt). The value of k of S. Aureus in the presence of the three Bas decreased with the increasing concentrations of Bas. Moreover, Pmax was reduced and the value of tp increased with increasing concentrations of the three drugs. The inhibitory activity varied with different drugs. The values of IC50 of the three Bas are respectively, 101.4 μg/mL for berberine, 241.0 μg/mL for palmatine and 792.3 μg/mL for jateorrhizine. The sequence of antimicrobial activity of the three Bas is: berberine > palmatine > jateorrhizine. It is suggested that the functional group me-thylenedioxy or methoxyl at C2 on the phenyl ring could possibly improve antimicrobial activity more strongly than hydroxyl at C2 on the phenyl ring.

  18. Microcalorimetric investigation of the effect of berberine alkaloids from Coptis chinensis Franch on Staphylococcus aureus growth

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The inhibitory effects of three berberine alkaloids (BAs) from rhizome of Coptis chinensis Franch, a traditional Chinese medicinal (TCM) herb, on Staphylococcus aureus growth were investigated by mi- crocalorimetry. The power–time curves of S. aureus with and without BAs were acquired; meanwhile the extent and duration of inhibitory effects on the metabolism were evaluated by studying the growth rate constant (k), half inhibitory ratio (IC50), maximum heat-output power (Pmax), peak time of maximum heat-output power (tp) and total heat production (Qt). The value of k of S. aureus in the presence of the three BAs decreased with the increasing concentrations of BAs. Moreover, Pmax was reduced and the value of tp increased with increasing concentrations of the three drugs. The inhibitory activity varied with different drugs. The values of IC50 of the three BAs are respectively, 101.4 μg/mL for berberine, 241.0 μg/mL for palmatine and 792.3 μg/mL for jateorrhizine. The sequence of antimicrobial activity of the three BAs is: berberine > palmatine > jateorrhizine. It is suggested that the functional group me- thylenedioxy or methoxyl at C2 on the phenyl ring could possibly improve antimicrobial activity more strongly than hydroxyl at C2 on the phenyl ring.

  19. Activity of isoflavones and berberine on vasomotor symptoms and lipid profile in menopausal women.

    Science.gov (United States)

    Cianci, Antonio; Cicero, Arrigo F G; Colacurci, Nicola; Matarazzo, Maria Grazia; De Leo, Vincenzo

    2012-09-01

    The aim of this study was to evaluate the efficacy of a food supplement combination based on isoflavones and berberine (ISB) in the treatment of menopausal symptoms and dyslipidaemia. Isoflavones are extracted from soy and absorbed in the body after being activated by lactobacillus. Berberine, extracted from the plant Berberis aristata, lowers plasma cholesterol and triglycerides (TG) by increasing low-density lipoprotein (LDL) receptors and reducing hepatic synthesis of TG. One hundred twenty women with a mean age of 54.8 ± 0.6 years were enrolled and randomized to treatment with ISB (estromineral lipid [EL] = 60 cases) or calcium and vitamin D(3) (CaD = 60 cases). Menopausal symptoms, plasma cholesterol, and TG were evaluated at baseline, and after 4 and 12 weeks. EL treatment significantly lowered plasma total cholesterol (-13.5% ± 0.7 vs -0.2% ± 0.5), LDL cholesterol (-12.4% ± 1.5 vs + 0.8 % ± 0.7) and TG (-18.9% ± 2.5 vs -1.3% ± 1.2) and improved menopausal symptoms compared with CaD treatment. Safety parameters were unchanged during the study. The combination of berberine and isoflavones was effective in lowering cardiovascular (CV) risk factors in menopausal women with moderate dyslipidaemia and in improving their quality of life. PMID:22313171

  20. Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells.

    Science.gov (United States)

    Ovádeková, Renáta; Jantová, Sona; Letasiová, Silvia; Stepánek, Ivan; Labuda, Ján

    2006-12-01

    Multi walled carbon nanotubes (MWNT) in dimethylformamide (DMF) or aqueous sodium dodecyl sulfate (SDS) solution, colloidal gold nanoparticles (GNP) in phosphate buffer solution (PBS), and a GNP-MWNT mixture in aqueous SDS solution have been investigated for chemical modification of a screen-printed carbon electrode used as the signal transducer of a dsDNA-based biosensor. Differential pulse voltammetry of the DNA redox marker Co[(phen)3]3+ and the guanine moiety anodic oxidation and cyclic voltammetry with K3[Fe(CN)6] as indicator revealed substantial enhancement of the response of the biosensor, particularly when MWNT in SDS solution was used. The biosensor was used in testing of berberine, an isoquinoline plant alkaloid with significant antimicrobial and anticancer activity. Berberine had a very strong, concentration-dependent, effect on the structural stability of DNA from the human cancer cells (U937 cells) whereas non-cancer cells were changed only when berberine concentrations were relatively high 75 and 50 microg mL(-1). PMID:17053918

  1. Studies on quantitative determination of total alkaloids and berberine in five origins of crude medicine "Sankezhen".

    Science.gov (United States)

    Li, Luyang; Long, Weifang; Wan, Xiangluan; Ding, Qi; Zhang, Fei; Wan, Dingrong

    2015-02-01

    The roots of Berberis plants are widely used as a traditional Chinese medicine called "Sankezhen", having the activities of antibacterial and anti-inflammatory, and the ingredients are alkaloids. This work aims to study and compare the total alkaloids and individual alkaloid (berberine) contents in roots and stems from five origins of Berberis plants (Berberis soulieana Schneid., B. henryana Schneid., B. triacanthophora Fedde, B. gagnepainii Schneid. and B. bergmanniae Schneid.) and provides some references for resource and quality evaluation of the medicine. Acid dye colorimetry and high-performance liquid chromatography were used in the determination. The results showed that the contents for the total alkaloids in root and stem samples were in the range of 1.60-4.72% and 0.76-2.70%, while those of the berberine were 0.70-2.92% and 0.23-1.07%. With higher contents of the total alkaloids and berberine, the roots of B. soulieana, B. gagnepainii and B. bergmanniae were good sources of "Sankezhen". Meanwhile, the contents were also high in stems of the three plants, indicating that the stems were likely to be alternative sources of "Sankezhen" after further research. As the results of precision, stability and recovery tests shown, the methods were simple, rapid and reliable, and provided valuable basis for quality evaluation and new resource investigation of "Sankezhen". PMID:25013028

  2. Role of berberine in ameliorating Schistosoma mansoni-induced hepatic injury in mice

    Directory of Open Access Journals (Sweden)

    Mohamed A Dkhi

    2014-01-01

    Full Text Available BACKGROUND: Schistosomiasis is caused by helminth parasites of the genus Schistosoma. Berberine chloride (BER, an isoquinoline alkaloid, has been used in vivo for its antiparasitic, antioxidant and hepatoprotective properties. In this study, the protective effect of BER and praziquantel has been compared for the extent of schistosomiasis-induced oxidative stress in hepatic tissue of mice. RESULTS: S. mansoni was able to induce inflammation and injury to the liver, evidenced (i by an increase in inflammatory cellular infiltrations, dilated sinusoids and vacuolated hepatocytes, (ii by decreased levels of alanine and aspartate aminotransferases and increased levels of alkaline phosphatase, γ-glutamyl transferase in the liver homogenate, (iii by increased production of nitric oxide and thiobarbituric acid reactive substances, and (iv by lowered glutathione levels and decreased activities of catalase and superoxide dismutase, respectively. All these infection-induced parameters were significantly altered during BER treatment. In particular, berberine counteracted the S. mansoni-induced loss of glutathione and the activities of catalase and superoxide dismutase. CONCLUSION: Based on these results, it is concluded that berberine could ameliorate pre-existing liver damage and oxidative stress conditions due to schistosomiasis.

  3. Digoxin Suppresses HIV-1 Replication by Altering Viral RNA Processing

    OpenAIRE

    Wong, Raymond W; Ahalya Balachandran; Ostrowski, Mario A.; Alan Cochrane

    2013-01-01

    Author Summary Antiretroviral therapies (ART) for HIV/AIDS are successful in slowing disease progression by inhibiting viral proteins. However, the ability of HIV to adapt to ARTs has given rise to drug-resistant virus strains that now represent ≥16% of newly infected people. This development calls for the generation of new treatment strategies. Since HIV is dependent upon RNA processing under control of the host, we searched for compounds/drugs that inhibit HIV-1 replication at this step. We...

  4. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes.

    Science.gov (United States)

    Yu, Seon-Mi; Cho, Hongsik; Kim, Gwang-Hoon; Chung, Ki-Wha; Seo, Sung-Yum; Kim, Song-Ja

    2016-04-01

    Osteoarthritis is a nonrheumatologic joint disease characterized by progressive degeneration of the cartilage extracellular matrix. Berberine (BBR) is an isoquinoline alkaloid used in traditional Chinese medicine, the majority of which is extracted from Huang Lian (Coptis chinensis). Although numerous studies have revealed the anticancer activity of BBR, its effects on normal cells, such as chondrocytes, and the molecular mechanisms underlying its actions remain elusive. Therefore, we examined the effects of BBR on rabbit articular chondrocytes, and the underlying molecular mechanisms, focusing on actin cytoskeletal reorganization. BBR induced dedifferentiation by inhibiting activation of phosphoinositide-3(PI3)-kinase/Akt and p38 kinase. Furthermore, inhibition of p38 kinase and PI3-kinase/Akt with SB203580 and LY294002, respectively, accelerated the BBR-induced dedifferentiation. BBR also caused actin cytoskeletal architecture reorganization and, therefore, we investigated if these effects were involved in the dedifferentiation. Disruption of the actin cytoskeleton by cytochalasin D reversed the BBR-induced dedifferentiation by activating PI3-kinase/Akt and p38 kinase. In contrast, the induction of actin filament aggregation by jasplakinolide accelerated the BBR-induced dedifferentiation via PI3-kinase/Akt inhibition and p38 kinase activation. Taken together, these data suggest that BBR strongly induces dedifferentiation, and actin cytoskeletal reorganization is a crucial requirement for this effect. Furthermore, the dedifferentiation activity of BBR appears to be mediated via PI3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. PMID:26851252

  5. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application.

    Science.gov (United States)

    Liu, Shao Pu; Yang, Zhuo; Liu, Zhong Fang; Liu, Jiang Tao; Shi, Yan

    2006-07-21

    The interaction of gold nanoparticles with berberine hydrochloride has been studied by using resonance Rayleigh scattering (RRS) spectra. In pH 3.8-5.5 aqueous solution, citrate acid ([H2L2-]) self-assembled on the surface of positively charged gold nanoparticles (average diameter is about 12.0 nm) to form a supermolecular complex with negative charges. By virtue of electrostatic attraction, hydrophobic force and charge transfer, the complex bound with berberine to form complex, which had bigger diameter (35 nm) than gold nanoparticles. The formation of the binding production not only resulted in the red shift of absorption of gold nanoparticles from 518 to 672 nm, but also led to the greatly enhancement of RRS intensity. At the same time, the intensities of second-order scattering (SOS) and frequency-doubling scattering (FDS) were also increased. Under definite condition, the increment of the RRS (DeltaI) were proportional to the concentration of berberine. A sensitive and simple method for the determination of berberine based on the RRS technique has been developed. The detection limit (3sigma) for berberine was 0.40 ng mL(-1) and the quantitative determination range was 1.33-240 ng mL(-1). In this work, the optimum conditions of reaction, the effect of foreign substances and the analytical application had been investigated. PMID:17723490

  6. LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs.

    Directory of Open Access Journals (Sweden)

    Rik Schrijvers

    Full Text Available Lens epithelium-derived growth factor (LEDGF/p75 is a cellular cofactor of HIV-1 integrase (IN that interacts with IN through its IN binding domain (IBD and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14 were knocked out. In the absence of LEDGF/p75 replication of laboratory HIV-1 strains was severely delayed while clinical HIV-1 isolates were replication-defective. The residual replication was predominantly mediated by the Hepatoma-derived growth factor related protein 2 (HRP-2, the only cellular protein besides LEDGF/p75 that contains an IBD. Importantly, the recently described IN-LEDGF/p75 inhibitors (LEDGINs remained active even in the absence of LEDGF/p75 by blocking the interaction with the IBD of HRP-2. These results further support the potential of LEDGINs as allosteric integrase inhibitors.

  7. LEDGF/p75-Independent HIV-1 Replication Demonstrates a Role for HRP-2 and Remains Sensitive to Inhibition by LEDGINs

    Science.gov (United States)

    Schrijvers, Rik; De Rijck, Jan; Demeulemeester, Jonas; Adachi, Noritaka; Vets, Sofie; Ronen, Keshet; Christ, Frauke; Bushman, Frederic D.; Debyser, Zeger; Gijsbers, Rik

    2012-01-01

    Lens epithelium–derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase (IN) that interacts with IN through its IN binding domain (IBD) and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14) were knocked out. In the absence of LEDGF/p75 replication of laboratory HIV-1 strains was severely delayed while clinical HIV-1 isolates were replication-defective. The residual replication was predominantly mediated by the Hepatoma-derived growth factor related protein 2 (HRP-2), the only cellular protein besides LEDGF/p75 that contains an IBD. Importantly, the recently described IN-LEDGF/p75 inhibitors (LEDGINs) remained active even in the absence of LEDGF/p75 by blocking the interaction with the IBD of HRP-2. These results further support the potential of LEDGINs as allosteric integrase inhibitors. PMID:22396646

  8. Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe

    Science.gov (United States)

    Miskolczy, Zsombor; Biczók, László

    2009-07-01

    A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.

  9. Women and HIV

    Science.gov (United States)

    ... Consumer Information by Audience For Women Women and HIV Share Tweet Linkedin Pin it More sharing options ... HIV? What should pregnant women know about HIV? HIV Quick Facts What is HIV? HIV is the ...

  10. Berberine Pretreatment Confers Cardioprotection Against Ischemia-Reperfusion Injury in a Rat Model of Type 2 Diabetes.

    Science.gov (United States)

    Chang, Wenguang; Li, Kun; Guan, Fengying; Yao, Fan; Yu, Yang; Zhang, Ming; Hatch, Grant M; Chen, Li

    2016-09-01

    Preclinical and clinical studies have demonstrated that berberine (BBR) improves diabetic complications and reduces mortality of patients with congestive heart failure. The therapeutic effects of BBR have been reported to be mediated by its regulation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). We previously reported that BBR protects against ischemia-reperfusion injury via regulating AMPK activity in both ischemic and nonischemic areas of the rat heart. Since diabetic hearts are more sensitive to ischemia-reperfusion injury, we examined whether BBR treatment exhibited cardioprotective effects in the diabetic heart. Type 2 diabetic rats were pretreated plus or minus BBR for 7 days and subjected to 30-minute ischemia followed by 120-minute reperfusion. Pretreatment of type 2 diabetic rats with BBR reduced ischemia-reperfusion injury infarct size and attenuated arrhythmia compared to untreated diabetic controls. Subsequent to ischemia-reperfusion, serum triglyceride, total cholesterol, and malondialdehyde levels were reduced by pretreatment of type 2 diabetic rats with BBR compared to untreated diabetic controls. In contrast, serum glucose and superoxide dismutase levels were unaltered. The mechanism for the BBR-mediated cardioprotective effect was examined. Pretreatment with BBR did not alter AMPK activity in ischemic areas at risk but increased AMPK activity in nonischemic areas compared to untreated diabetic controls. The increased AMPK activity in nonischemic areas was due an elevated ratio of AMP to adenosine triphosphate (ATP) and adenosine diphosphate to ATP. In addition, pretreatment with BBR increased protein kinase B (AKT) phosphorylation and reduced glycogen synthase kinase 3β (GSK3β) activity in nonischemic areas compared to untreated diabetic controls. These findings indicate that BBR protects the diabetic heart from ischemia-reperfusion injury. In addition, BBR may mediate this cardioprotective effect through AMPK activation, AKT

  11. Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis.

    Science.gov (United States)

    Zhao, Yuwan; Jing, Zuolei; Li, Yan; Mao, Weifeng

    2016-07-01

    Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants such as Hydrastis canadensis, Berberis aristata and Coptis chinensis. BBR displays a number of beneficial roles in the treatment of various types of cancers, yet the precise mechanisms of its action remain unclear. Cisplatin is an effective cancer chemotherapeutic agent and functions by generating DNA damage, promoting DNA damage-induced cell cycle arrest and apoptosis; however, its efficacy is challenged by the resistance of tumor cells in clinical application. The aim of the present study was to investigate the effects of BBR in combination with cisplatin on human breast cancer cells. MTT assay showed that BBR inhibited breast cancer MCF-7 cell growth with a 50% inhibitory concentration (IC50) value of 52.178±1.593 µM and the IC50 value of cisplatin was 49.541±1.618 µM, while in combination with 26 µM BBR, the IC50 value of cisplatin was 5.759±0.76 µM. BBR sensitized the MCF-7 cells to cisplatin in a time- and dose-dependent manner. After treatment of BBR and cisplatin, the cellular pro-apoptotic capase-3 and cleaved capspase-3 and caspase-9 were upregulated and the anti-apoptotic Bcl-2 was downregulated. Importantly, BBR restrained the expression of cellular PCNA, and immunofluoresence analysis of γH2AX showed that BBR increased the DNA damages induced by cisplatin. Taken together, the results demonstrated that BBR sensitized MCF-7 cells to cisplatin through induction of DNA breaks and caspase-3-dependent apoptosis. PMID:27177238

  12. Effect of Berberine on Expression of Hepatocyte Nuclear Factor-4α in Rats with Fructose-induced Insulin Resistance

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang GAO; Sanhua LENG; Fuer LU; Meijuan XIE; Lijun XU; Kaifu WANG

    2008-01-01

    The effects of berberine on the expression of hepatocyte nuclear factor-4α (HNF-4α) in liver of rats with fructose-induced insulin resistance and the molecular mechanism of berberine preventing insulin resistance were investigated. The experimental animals were divided into two groups of 16 animals each. The control group received a control routine diet containing 60% carbohydrate, and the study group a high-fructose diet containing 60% fructose as the sole source of carbohydrate. At the end of 6 weeks these were each subdivided into two groups. One was administered with berberine [187.5mg/(kg·d) in 5g/L carboxymethyl cellulosel] by intragastric intubation and the other group was treated with a vehicle (5g/L carboxymethyl cellulose). The rats were fed on the same dietary regimen for the next 4 weeks. After the experimental period of 10 weeks, plasma glucose, insulin and triglyceride levels were measured. HOMA insulin resistance index (HOMA-IR) was assayed. Immunohistochemistry, semiquantitative RT-PCR and western blot were used to detect the expression of HNF-4α in liver. Compared with control diet, fructose feeding induced hyperinsulinemia, HOMA-IR and increased triglyceride (all P<0.01). Berberine prevented the rise in plasma insulin (P<0.01), HOMA-IR (P<0.01) and triglyceride (P<0.05) in the fructose-fed rats. No change in plasma glucose was seen among these groups. The mRNA and protein expression of HNF-4α was decreased in the fructose-fed rats, but berberine could promote its expression. It was concluded that berberine could prevent fructose-induced insulin resistance in rats possibly by promoting the expression HNF-4α in liver.

  13. Berberine Improves Glucose Homeostasis in Streptozotocin-Induced Diabetic Rats in Association with Multiple Factors of Insulin Resistance

    OpenAIRE

    Junzeng Zhang; Changhao Sun; Alfonso Lopez; Yanwen Wang; Yanfeng Chen

    2011-01-01

    The present study was carried out to determine the effect of berberine on glucose homeostasis and several biomarkers associated with insulin sensitivity in male Wistar rats with intraperitoneal injection of streptozotocin (STZ)-induced diabetes. Rats with fasting blood glucose 16.7 mmol/L after 2 weeks of STZ injection were divided into two groups. One group was used as the diabetic control and another treated by gavage feeding with 100 mg/kg/d of berberine in water containing 0.5% carboxymet...

  14. Berberine induces mitochondrial apoptosis of EBV-transformed B cells through p53-mediated regulation of XAF1 and GADD45α.

    Science.gov (United States)

    Park, Ga Bin; Park, Sang Hyun; Kim, Daejin; Kim, Yeong Seok; Yoon, Sung Ho; Hur, Dae Young

    2016-07-01

    Berberine exhibits antiproliferative or cytotoxic effects against various cancers. ROS and wild-type p53 play a critical role in berberine-induced cytotoxic effects. In this study, we investigated the correlation between XAF1 and functional p53 in EBV-transformed B cells or cancerous B cells after treatment with berberine. Berberine decreased cell viability and induced apoptosis through a mitochondria-dependent pathway in EBV-transformed B cells and cancerous B cells, but not in normal peripheral blood mononuclear cells. Activated p53 and its downstream targets XAF1 and GADD45α interacted with PUMA, Bax, and Bim in mitochondria after treatment with berberine. Blocking phosphorylation of p38/JNK MAPK and treatment with PFT-α, a selective p53 inhibitor, effectively prevented apoptosis and the upregulation of phosphorylated p53, XAF1, and GADD45α. NAC, a ROS scavenger, also suppressed berberine-induced mitochondria disruption and the whole apoptotic process via restoration of p53-related proteins and proapoptotic Bcl-2 family proteins. Taken together, our results suggest that ROS generation might be a predisposing event in berberine-induced mitochondrial apoptosis in EBV-transformed B cells through the upregulation of XAF1 and GADD45α expression by MAPK and functional p53. PMID:27121748

  15. Neurotoxic effects of berberine on long-term L-DOPA administration in 6-hydroxydopamine-lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Shin, Keon Sung; Choi, Hyun Sook; Zhao, Ting Ting; Suh, Kwang Hoon; Kwon, Ik Hyun; Choi, Soon Ok; Lee, Myung Koo

    2013-06-01

    The effects of berberine on long-term administration of L-DOPA in 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) were investigated. Rat models of PD were prepared by 6-OHDA lesions in the ipsilateral sides, and then were treated with berberine (5 and 15 mg/kg) and/or L-DOPA (10 mg/kg) once daily for 21 days. Treatments with either concentration of berberine (5 and 15 mg/kg) in 6-OHDA-lesioned groups decreased the numbers of tyrosine hydroxylase (TH)-immunopositive neurons in the substantia nigra and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum as compared to 6-OHDA-lesioned groups. In addition, dopaminergic neuronal cell death of the ipsilateral sides in 6-OHDA-lesioned groups was attenuated by L-DOPA administration. However, both concentrations of berberine in 6-OHDA-lesioned groups treated with L-DOPA aggravated the numbers of TH-immunopositive neurons in the substantia nigra and the levels of dopamine, norepinephrine, DOPAC and HVA in the striatum as compared to rats not treated with berberine. These results suggest that berberine leads to the degeneration of dopaminergic neuronal cells in the substantia nigra in the rat model of PD with chronic L-DOPA administration. Long-term L-DOPA therapy that may involve possibly neurotoxic isoquinoline agents including berberine should involve monitoring for adverse symptoms. PMID:23539311

  16. The cellular TAR RNA binding protein, TRBP, promotes HIV-1 replication primarily by inhibiting the activation of double-stranded RNA-dependent kinase PKR.

    Science.gov (United States)

    Sanghvi, Viraj R; Steel, Laura F

    2011-12-01

    The TAR RNA binding protein, TRBP, is a cellular double-stranded RNA (dsRNA) binding protein that can promote the replication of HIV-1 through interactions with the viral TAR element as well as with cellular proteins that affect the efficiency of translation of viral transcripts. The structured TAR element, present on all viral transcripts, can impede efficient translation either by sterically blocking access of translation initiation factors to the 5'-cap or by activating the dsRNA-dependent kinase, PKR. Several mechanisms by which TRBP can facilitate translation of viral transcripts have been proposed, including the binding and unwinding of TAR and the suppression of PKR activation. Further, TRBP has been identified as a cofactor of Dicer in the processing of microRNAs (miRNAs), and sequestration of TRBP by TAR in infected cells has been proposed as a viral countermeasure to potential host cell RNA interference-based antiviral activities. Here, we have addressed the relative importance of these various roles for TRBP in HIV-1 replication. Using Jurkat T cells, primary human CD4(+) T cells, and additional cultured cell lines, we show that depletion of TRBP has no effect on viral replication when PKR activation is otherwise blocked. Moreover, the presence of TAR-containing mRNAs does not affect the efficacy of cellular miRNA silencing pathways. These results establish that TRBP, when expressed at physiological levels, promotes HIV-1 replication mainly by suppressing the PKR-mediated antiviral response, while its contribution to HIV-1 replication through PKR-independent pathways is minimal. PMID:21937648

  17. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    OpenAIRE

    Kremb, Stephan; Helfer, Markus; Kraus, Birgit; Wolff, Horst; Wild, Christian; Schneider, Martha; Voolstra, Christian R; Brack-Werner, Ruth

    2014-01-01

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions,...

  18. Toward Eradicating HIV Reservoirs in the Brain: Inhibiting P-glycoprotein at the Blood-Brain Barrier with Prodrug Abacavir Dimers

    OpenAIRE

    Namanja, Hilda A.; Emmert, Dana; Davis, David A.; Campos, Christopher; Miller, David S.; Hrycyna, Christine A.; Chmielewski, Jean

    2011-01-01

    Eradication of HIV reservoirs in the brain necessitates penetration of antiviral agents across the blood-brain barrier (BBB), a process limited by drug efflux proteins such as P-glycoprotein (P-gp) at the membrane of brain capillary endothelial cells. We present an innovative chemical strategy toward the goal of therapeutic brain penetration of the P-gp substrate and anti-viral agent abacavir, in conjunction with a traceless tether. Dimeric prodrugs of abacavir were designed to have two funct...

  19. Quantitative Analysis of Berberine in Processed Coptis by Near-Infrared Diffuse Reflectance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; XIE Yun-fei; SONG Feng-rui; LIU Zhi-qiang; CONG Qian; ZHAO Bing

    2008-01-01

    The near-infrared(NIR) diffuse reflectance spectroscopy was used to study the content of Berberine in the processed Coptis.The allocated proportions of Coptis to ginger,yellow liquor or Evodia rutaecarpa changed according to the results of orthogonal design as well as the temperature.For as withdrawing the full and effective information from the spectral data as possible,the spectral data was preprocessed through first derivative and muitiplicative scatter correction(MSC) according to the optimization results of different preprocessing methods.Firstly,the model was established by partial least squares(PLS); the coefficient of determination(R2) of the prediction was 0.839,the root mean squared error of prediction(RMSEP) was 0.1422,and the mean relative error(RME) was 0.0276.Secondly,for reducing the dimension and removing noise,the spectral variables were highly effectively compressed via the wavelet transformation(WT) technology and the Haar wavelet was selected to decompose the spectral signals.After the wavelet coefficients from WT were input into the artificial neural network(ANN) instead of the spectra signal,the quantitative analysis model of Berberine in processed Coptis was established.The R2 of the model was 0.9153,the RMSEP was 0.0444,and the RME was 0.0091.The values of appraisal index,namely R2,RMSECV,and RME,indicate that the generalization ability and prediction precision of ANN are superior to those of PLS.The overall results show that NIR spectroscopy combined with ANN can be efficiently utilized for the rapid and accurate analysis of routine chemical compositions in Coptis.Accordingly,the result can provide technical support for the further analysis of Berberine and other components in processed Coptis.Simultaneously,the research can also offer the foundation of quantitative analysis of other NIR application.

  20. HIV Prevention

    Science.gov (United States)

    ... PrEP PEP Living With HIV Opportunistic Infections Travel Abroad Treatment Basic Statistics Get Tested Find an HIV ... kill or neutralize viruses and bacteria. Researchers are studying both vaginal and rectal microbicides to see if ...