WorldWideScience

Sample records for benzyl alcohols benzaldehydes

  1. Biocatalytic oxidation of benzyl alcohol to benzaldehyde via hydrogen transfer

    NARCIS (Netherlands)

    Orbegozo, Thomas; Lavandera, Iván; Fabian, Walter M.F.; Mautner, Barbara; Vries, Johannes G. de; Kroutil, Wolfgang

    2009-01-01

    Various types of biocatalysts like oxidases, alcohol dehydrogenases, and microbial cells were tested for the oxidation of benzyl alcohol. Oxidases in combination with molecular oxygen led to low conversion. Alcohol dehydrogenases and microbial cells were tested in a hydrogen transfer reaction employ

  2. Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites

    Science.gov (United States)

    Wang, Yuan-Yuan; Song, Hua; Song, Hua-Lin; Jin, Zai-Shun

    2016-10-01

    A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.

  3. Purification and characterization of benzyl alcohol- and benzaldehyde- dehydrogenase from Pseudomonas putida CSV86.

    Science.gov (United States)

    Shrivastava, Rahul; Basu, Aditya; Phale, Prashant S

    2011-08-01

    Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD(+) dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD(+), while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K (m) value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K (m) and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.

  4. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    Science.gov (United States)

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  5. Real-Time Detection of Traces of Benzaldehyde in Benzyl Alcohol as a Solvent by a Flexible Lanthanide Microporous Metal-Organic Framework.

    Science.gov (United States)

    Zhang, Huan; Chen, Diming; Ma, Huili; Cheng, Peng

    2015-10-26

    Luminescent 3D lanthanide metal-organic framework (Ln-MOF) {[Tb2 (TATAB)2 ]⋅4 H2 O⋅6 DMF}n (1) was synthesized under solvothermal conditions by using flexible ligand 4,4',4''-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB). A phase transition was observed between low temperature and room temperature. The luminescence of 1 could be enhanced by formaldehyde and quenched efficiently by trace amounts of benzaldehyde in solvents such as benzyl alcohol (0.01-2.0 vol %) and ethanol (0.01-2.5 vol %). This is the first use of a Ln-MOF as chemical sensor for both formaldehyde and benzaldehyde. The high sensitivity and selectivity of the luminescence response of 1 to benzaldehyde allows it to be used as an excellent sensor for identifying benzaldehyde and provides a simple and convenient method for detecting traces of benzaldehyde in benzyl alcohol based injections. This work establishes a new strategy for detection of benzaldehyde in benzyl alcohol by luminescent MOFs.

  6. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    Science.gov (United States)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-03-01

    Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.

  7. Rapid and sensitive determination of benzaldehyde arising from benzyl alcohol used as preservative in an injectable formulation solution using dispersive liquid-liquid microextraction followed by gas chromatography.

    Science.gov (United States)

    Mashayekhi, Hossein Ali; Rezaee, Mohammad; Garmaroudi, Shirin Sadeghi; Montazeri, Naser; Ahmadi, Seyed Javad

    2011-01-01

    A rapid and sensitive method has been developed for the determination of benzaldehyde, a toxic oxidation product of the widely used preservative and co-solvent benzyl alcohol in injectable formulations of non-steroidal anti-inflammatory drugs, diclofenac, vitamin B-complex and Voltaren injection solutions by using dispersive liquid-liquid microextraction followed by gas chromatography. This method involves the use of an appropriate mixture of extraction solvent (43.0 µL 1,2-dichloroethane) and disperser solvent (1.0 mL acetonitrile) for the formation of a cloudy solution in a 5.0-mL aqueous sample containing benzaldehyde. The linear range was 1.0-1000 µg L(-1), and the limit of detection was 0.2 µg L(-1) for benzaldehyde.

  8. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhixin, E-mail: czx@fzu.edu.cn [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002 (China); Xu, Jingjing; Ren, Zhuyun [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); He, Yunhui; Xiao, Guangcan [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002 (China)

    2013-09-15

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4} prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.

  9. [Application of gas chromatography-high resolution quadrupole time of flight mass spectrometry to the analysis of benzaldehyde, benzyl alcohol acetophenone and phenylacetaldehyde in complex aromatic samples].

    Science.gov (United States)

    Liu, Junyan; Cao, Zhe; Li, Jiwen; Wang, Zheming; Wang, Chuan; Gu, Songyuan

    2015-02-01

    The study focuses on the quantitative analytical characterization of benzaldehyde, benzyl alcohol, acetophenone and phenylacetaldehyde in complex aromatic samples by gas chromatography-high resolution quadrupole time of flight mass spectrometry (GC-QTOF MS). The four compounds in real sample were accurately qualified and quantified through a comprehensive analysis of the GC retention times and the accurate masses of the ion fragments obtained by the high resolution MS. The new method therefore effectively avoids the interference of the real sample substrate, which reduces the accuracy of the analysis results. The peak area of the characteristic ion fragment for each compound was used for quantitation calculation. The MS signal responses of the four compounds showed good linear relationships with the corresponding mass concentrations and the linear regression coefficients were greater than 0. 99. The method recoveries were 87. 97% - 103.01%. The limits of detection (LODs) were 0. 01, 0. 03, 0. 02 and 0. 01 mg/L for benzaldehyde, benzyl alcohol, acetophenone and phenylacetaldehyde respectively. The contents of the four compounds in three real samples were analyzed. The study provided a new strategy for oxygenate analysis in complex aromatic samples using GC-QTOF MS. By measuring the accurate masses, the new method reduces the reliance on chromatographic separation ability and makes up the shortcomings of the traditional GC-MS methods.

  10. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    Science.gov (United States)

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-01

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.

  11. Benzyl Alcohol Topical

    Science.gov (United States)

    Benzyl alcohol lotion is used to treat head lice (small insects that attach themselves to the skin) in adults ... children less than 6 months of age. Benzyl alcohol is in a class of medications called pediculicides. ...

  12. Core-Shell Structural CdS@SnO₂ Nanorods with Excellent Visible-Light Photocatalytic Activity for the Selective Oxidation of Benzyl Alcohol to Benzaldehyde.

    Science.gov (United States)

    Liu, Ya; Zhang, Ping; Tian, Baozhu; Zhang, Jinlong

    2015-07-01

    Core-shell structural CdS@SnO2 nanorods (NRs) were fabricated by synthesizing SnO2 nanoparticles with a solvent-assisted interfacial reaction and further anchoring them on the surface of CdS NRs under ultrasonic stirring. The morphology, composition, and microstructures of the obtained samples were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption. It was found that SnO2 nanoparticles can be tightly anchored on the surface of CdS NRs, and the thickness of SnO2 shells can be conveniently adjusted by simply changing the addition amount of SnO2 quantum dots. UV-vis diffuse reflectance spectrum indicated that SnO2 shell layer also can enhance the visible light absorption of CdS NRs to a certain extent. The results of transient photocurrents and photoluminescence spectra revealed that the core-shell structure can effectively promote the separation rate of electron-hole pairs and prolong the lifetime of electrons. Compared with the single CdS NRs, the core-shell structural CdS@SnO2 exhibited a remarkably enhanced photocatalytic activity for selective oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) under visible light irradiation, attributed to the more efficient separation of electrons and holes, improved surface area, and enhanced visible light absorption of core-shell structure. The radical scavenging experiments proved that in acetonitrile solution, ·O2- and holes are the main reactive species responsible for BA to BAD transformation, and the lack of ·OH radicals is favorable to obtaining high reaction selectivity.

  13. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde.

    Science.gov (United States)

    Scharschmidt, M; Fisher, M A; Cleland, W W

    1984-11-01

    Primary intrinsic deuterium and 13C isotope effects have been determined for liver (LADH) and yeast (YADH) alcohol dehydrogenases with benzyl alcohol as substrate and for yeast aldehyde dehydrogenase (ALDH) with benzaldehyde as substrate. These values have also been determined for LADH as a function of changing nucleotide substrate. As the redox potential of the nucleotide changes from -0.320 V with NAD to -0.258 V with acetylpyridine-NAD, the product of primary and secondary deuterium isotope effects rises from 4 toward 6.5, while the primary 13C isotope effect drops from 1.025 to 1.012, suggesting a trend from a late transition state with NAD to one that is more symmetrical. The values of Dk (again the product of primary and secondary isotope effects) and 13k for YADH with NAD are 7 and 1.023, suggesting for this very slow reaction a more stretched, and thus symmetrical, transition state. With ALDH and NAD, the primary 13C isotope effect on the hydride transfer step lies in the range 1.3-1.6%, and the alpha-secondary deuterium isotope effect on the same step is at least 1.22, but 13C isotope effects on formation of the thiohemiacetal intermediate and on the addition of water to the thio ester intermediate are less than 1%. On the basis of the relatively large 13C isotope effects, we conclude that carbon motion is involved in the hydride transfer steps of dehydrogenase reactions.

  14. Photocatalytic oxidation of primary and secondary benzyl alcohol catalyzed by two coenzyme NAD+ models

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Photocatalytic oxidation of primary and secondary benzyl alcohol to corresponding benzaldehyde or acetophenone using Acr+ClO4- or PhAcr+ClO4- as photocatalysts under visible light irradiation at room temperature.

  15. Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes.

    Science.gov (United States)

    Nasrollahzadeh, Mahmoud; Bagherzadeh, Mojtaba; Karimi, Hirbod

    2016-03-01

    The CoFe2O4 nanoparticles (NPs) performance was studied in the oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) with hydrogen peroxide as an oxidant under solvent-free conditions. The influences of reaction conditions like the amount of catalyst, the molar ratio of H2O2:BzOH, reaction temperature and times on the oxidation of BzOH by using CoFe2O4 NPs were investigated in details. Under optimum conditions, excellent result, >99% conversation of BzOH to BzH as the only product, was obtained. The nanocatalyst was also used for the reduction of 4-nitrophenol (4-NP), Congo red (CR), Methylene blue (MB) in water at room temperature. The magnetic properties of the catalyst provided a convenient and easy route for the separation of the catalyst from the reaction mixture by an external bar magnet. No obvious loss of activity was observed when the spent catalyst reused in three consecutive runs.

  16. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk

    2011-01-01

    In this study the phase behavior of mixtures relevant to the selective catalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen in supercritical CO2 is investigated. Initially, the solubility of N2 in benzaldehyde as well as the dew points of CO2–benzyl alcohol–O2 and CO2...

  17. Single Pot Benzylation of O-Xylene with Benzyl Chloride and Benzyl Alcohol Over Pillared Montmorillonites

    Directory of Open Access Journals (Sweden)

    Kurian Manju

    2014-09-01

    Full Text Available Improvement of product selectivity is a major concern of the day. Presence of a coreactant can alter the rate as well as product selectivity of many key reactions like Friedel-Crafts benzylation. Single pot benzylation of o-xylene with benzyl chloride and benzyl alcohol was studied over transition metal exchanged pillared clay catalysts. Complete conversion of benzyl alcohol occured within one hour with 100% monoalkylated product selectivity. The reaction of o-xylene with benzyl alcohol was found to proceed fast in presence of benzyl chloride in single pot, than when present alone as the benzylating species. This enhancement occurs at the expense of no reaction of benzyl chloride, which when present alone reacts faster than benzyl alcohol. Existence of a second transition metal exchanged between the pillars increased the rate of the reaction. A detailed investigation of the reaction variables suggested preferential adsorption of benzyl alcohol to catalyst active sites as the reason.

  18. Engineering Escherichia coli for renewable benzyl alcohol production

    Directory of Open Access Journals (Sweden)

    Shawn Pugh

    2015-12-01

    Full Text Available Benzyl alcohol is an aromatic hydrocarbon used as a solvent and an intermediate chemical in the pharmaceutical, cosmetics, and flavor/fragrance industries. The de novo biosynthesis of benzyl alcohol directly from renewable glucose was herein explored using a non-natural pathway engineered in Escherichia coli. Benzaldehyde was first produced from endogenous phenylpyruvate via three heterologous steps, including hydroxymandelate synthase (encoded by hmaS from Amycolatopsis orientalis, followed by (S-mandelate dehydrogenase (encoded by mdlB and phenylglyoxylate decarboxylase (encoded by mdlC from Pseudomonas putida ATCC 12633. The subsequent rapid and efficient reduction of benzaldehyde to benzyl alcohol occurred by the combined activity and native regulation of multiple endogenous alcohol dehydrogenases and/or aldo-keto reductases. Through systematic deletion of competing aromatic amino acid biosynthesis pathways to promote endogenous phenylpyruvate availability, final benzyl alcohol titers as high as 114±1 mg/L were realized, representing a yield of 7.6±0.1 mg/g on glucose and a ~5-fold improvement over initial strains.

  19. Wheat bran valorisation: Towards photocatalytic nanomaterials for benzyl alcohol photo-oxidation.

    Science.gov (United States)

    Ouyang, Weiyi; Reina, Jose M; Kuna, Ewelina; Yepez, Alfonso; Balu, Alina M; Romero, Antonio A; Colmenares, Juan Carlos; Luque, Rafael

    2016-07-13

    In this work, we have successfully synthesized a set of titania photocatalytic nanocomposites by the incorporation of different TiO2 content on wheat bran residues. The obtained catalysts were characterized by different techniques including UV-Vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Transmission Electron Microscopy (TEM) while their photocatalytic activity was investigated in the oxidation of benzyl alcohol under UV light irradiation. Benzaldehyde yields were ca. 20%, with conversion in the systems of ca. 33% of benzyl alcohol by using 10%Ti-Bran catalyst, as compared to 33% yield to the target product (quantitative conversion of benzyl alcohol) using commercial pure TiO2 (P-25). The photocatalytic activity results indicate that designed waste-derived nanomaterials with low TiO2 content can efficiently photocatalyze the conversion of benzyl alcohol with relative high selectivity towards benzaldehyde.

  20. Inhibition of a Gold-Based Catalyst in Benzyl Alcohol Oxidation: Understanding and Remediation

    NARCIS (Netherlands)

    Skupien, E.; Berger, R.J.; Santos, V.P.; Gascon, J.; Makkee, M.; Kreutzer, M.T.; Kooyman, P.J.; Moulijn, J.A.; Kapteijn, F.

    2014-01-01

    Benzyl alcohol oxidation was carried out in toluene as solvent, in the presence of the potentially inhibiting oxidation products benzaldehyde and benzoic acid. Benzoic acid, or a product of benzoic acid, is identified to be the inhibiting species. The presence of a basic potassium salt (K2CO3 or KF)

  1. Crystal-phase control of molybdenum carbide nanobelts for dehydrogenation of benzyl alcohol.

    Science.gov (United States)

    Li, Zhongcheng; Chen, Chunhui; Zhan, Ensheng; Ta, Na; Li, Yong; Shen, Wenjie

    2014-05-04

    Belt-shaped molybdenum carbides in α- and β-phases were synthesized by reducing and carburizing a nano-sized α-MoO3 precursor with hydrocarbon-hydrogen mixtures at appropriate temperatures; the β-Mo2C nanobelts with a higher fraction of coordinatively unsaturated Mo sites were more active than the α-MoC1-x nanobelts in dehydrogenation of benzyl alcohol to benzaldehyde.

  2. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Alsters, P. L.; Versteeg, G. F.

    2005-01-01

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  3. A Kinetic Model for Toluene Oxidation Comprising Benzylperoxy Benzoate Ester as Reactive Intermediate in the Formation of Benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Alsters, P.L.; Versteeg, G.F.

    2005-01-01

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  4. Synthesis of Nickel Hexacyanoferrate Nanoparticles and Their Potential as Heterogeneous Catalysts for the Solvent-Free Oxidation of Benzyl Alcohol

    Institute of Scientific and Technical Information of China (English)

    Shah R. ALI; Prakash CHANDRA; Mamta LATWAL; Shalabh K. JAIN; Vipin K. BANSAL; Sudhanshu P. SINGH

    2011-01-01

    Nickel hexacyanoferrate nanoparticles were synthesized and characterized using elemental analysis,thermal analysis,infrared spectroscopy,and X-ray diffraction.A FE-SEM image of the nickel hexacyanoferrate showed that it consists of nearly spherical particles with sizes ranging from 30 to 70 nm.The synthesized material was found to be a heterogeneous catalyst useful for the solvent-free oxidation of benzyl alcohol with H2O2 as an oxidant.A 36% conversion of benzyl alcohol to benzaldehyde was achieved under optimized reaction conditions using specific parameters such as the amount of catalyst,the temperature,the benzyl alcohol to H2O2 molar ratio,and the reaction time.

  5. Anchoring Tri(8-QuinolinolatoIron Onto Sba-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent

    Directory of Open Access Journals (Sweden)

    Yang Xiaoyuan

    2014-09-01

    Full Text Available Tri(8-quinolinolatoiron complex immobilized onto SBA-15 catalyst has been synthesized through a stepwise procedure. The characterization results indicated that the BET surface area, total pore volume and average pore width decrease after stepwise modification of SBA-15, while the structure keeps intact. Catalytic tests showed that FeQ3-SBA-15 catalyzes the oxidation reaction well with 34.8% conversion of benzyl alcohol and 74.7% selectivity to benzaldehyde when water is used as the solvent after 1 h reaction. In addition, homogeneous catalyst tri(8-quinolinolatoiron exhibits very bad catalytic behavior using water as the solvent.

  6. Tuning the Synthesis of Manganese Oxides Nanoparticles for Efficient Oxidation of Benzyl Alcohol

    Science.gov (United States)

    Fei, Jingyuan; Sun, Lixian; Zhou, Cuifeng; Ling, Huajuan; Yan, Feng; Zhong, Xia; Lu, Yuxiang; Shi, Jeffrey; Huang, Jun; Liu, Zongwen

    2017-01-01

    The liquid phase oxidation of benzyl alcohol is an important reaction for generating benzaldehyde and benzoic acid that are largely required in the perfumery and pharmaceutical industries. The current production systems suffer from either low conversion or over oxidation. From the viewpoint of economy efficiency and environmental demand, we are aiming to develop new high-performance and cost-effective catalysts based on manganese oxides that can allow the green aerobic oxidation of benzyl alcohol under mild conditions. It was found that the composition of the precursors has significant influence on the structure formation and surface property of the manganese oxide nanoparticles. In addition, the crystallinity of the resulting manganese nanoparticles was gradually improved upon increasing the calcination temperature; however, the specific surface area decreased obviously due to pore structure damage at higher calcination temperature. The sample calcined at the optimal temperature of 600 °C from the precursors without porogen was a Mn3O4-rich material with a small amount of Mn2O3, which could generate a significant amount of {O}_2- species on the surface that contributed to the high catalytic activity in the oxidation. Adding porogen with precursors during the synthesis, the obtained catalysts were mainly Mn2O3 crystalline, which showed relatively low activity in the oxidation. All prepared samples showed high selectivity for benzaldehyde and benzoic acid. The obtained catalysts are comparable to the commercial OMS-2 catalyst. The synthesis-structure-catalysis interaction has been addressed, which will help for the design of new high-performance selective oxidation catalysts.

  7. Selectivity modulation in the consecutive hydrogenation of benzaldehyde via functionalization of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Yonghua Zhou; Jing Liu; Xingyun Li; Xiulian Pan; Xinhe Bao

    2012-01-01

    Hydrogenation of benzaldehyde is a typical consecutive reaction,since the intermediate benzyl alcohol is apt to be further hydrogenated.Here we demonstrate that the selectivity of benzyl alcohol can be tuned via functionalization of carbon nanotubes (CNTs),which are used as the support of Pd.With the original CNTs,the selectivity of benzyl alcohol is 88% at a 100% conversion of benzaldehyde.With introduction of oxygen-containing groups onto CNTs,it drops to 27%.In contrast,doping CNTs with N atoms,the selectivity reaches 96% under the same reaction conditions.The kinetic study shows that hydrogenation of benzyl alcohol is significantly suppressed,which can be attributed to weakened adsorption of benzyl alcohol.This is most likely related to the modified electronic structure of Pd species via interaction with functionalized CNTs,as shown by XPS characterization.

  8. CeO2-modified Au@SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol

    Science.gov (United States)

    Wang, Tuo; Yuan, Xiang; Li, Shuirong; Zeng, Liang; Gong, Jinlong

    2015-04-01

    Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts exhibited higher catalytic activity compared with Au@SBA-15 and Au/CeO2 catalysts under identical conditions along with the high selectivity towards benzaldehyde (>99%). The turnover frequency of benzyl alcohol over the Au-100CeO2@SBA-15 catalyst is about nine-fold and four-fold higher than those of Au@SBA-15 and Au/CeO2 catalysts, respectively. The supported catalysts were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive spectrometry, and X-ray photoelectron spectroscopy. It was found that the Au and small CeO2 nanoparticles (~5 nm) were homogeneously mixed in the channels of SBA-15, which led to an increase in the interfacial area between Au and CeO2 and consequently a better catalytic performance of Au-CeO2@SBA-15 catalysts for the selective oxidation of benzyl alcohol to benzaldehyde compared with that of Au/CeO2. The prevention of agglomeration and leaching of Au nanoparticles by restricting them inside the mesopores of SBA-15 was conducive to the stable existence of large quantities of Au-CeO2 interface, which leads to high stability of the Au-CeO2@SBA-15 catalyst.Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts

  9. FTIR study of hydrogen bonding between substituted benzyl alcohols and acrylic esters

    Directory of Open Access Journals (Sweden)

    P. Sivagurunathan

    2016-11-01

    Full Text Available Hydrogen bonding between substituted benzyl alcohols (benzyl alcohol, o-aminobenzyl alcohol, o-chlorobenzyl alcohol and o-nitrobenzyl alcohol and acrylic esters (methyl methacrylate, ethyl methacrylate is studied in carbon tetrachloride by using the FTIR spectroscopic method. Utilizing the Nash method, the formation constant (K of the 1:1 complexes is calculated. Using the K value, the Gibbs free energy change (ΔG0 is also calculated. The calculated formation constant and Gibbs free energy change values vary with the substituent of benzyl alcohol and ester chain length, which suggests that the proton donating ability of substituted benzyl alcohols is in the order: o-aminobenzyl alcohol < benzyl alcohol < o-chlorobenzyl alcohol < o-nitrobenzyl alcohol, and proton accepting ability of acrylic esters is in the order: methyl methacrylate < ethyl methacrylate.

  10. Identification of Active Phase for Selective Oxidation of Benzyl Alcohol with Molecular Oxygen Catalyzed by Copper-Manganese Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2013-01-01

    Full Text Available Catalytic activity of copper-manganese mixed oxide nanoparticles (Cu/Mn = 1 : 2 prepared by coprecipitation method has been studied for selective oxidation of benzyl alcohol using molecular oxygen as an oxidizing agent. The copper-manganese (CuMn2 oxide catalyst exhibited high specific activity of 15.04 mmolg−1 h−1 in oxidation of benzyl alcohol in toluene as solvent. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a short reaction period at 102°C. It was found that the catalytic performance is dependent on calcination temperature, and best activity was obtained for the catalyst calcined at 300°C. The high catalytic performance of the catalyst can be attributed to the formation of active MnO2 phase or absence of less active Mn2O3 phase in the mixed CuMn2 oxide. The catalyst has been characterized by powder X-ray diffraction (XRD, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Brunauer Emmett-Teller (BET surface area measurement, and Fourier transform infrared (FT-IR spectroscopies.

  11. Enhanced catalytic properties of mesoporous mordenite for benzylation of benzene with benzyl alcohol

    Science.gov (United States)

    Saxena, Sandeep K.; Viswanadham, Nagabhatla

    2017-01-01

    Zeolite mordenite has been treated with nitric acid at different severities so as to facilitate the framework dealumination and optimization of the textural properties such as acidity and porosity. The samples obtained have been characterized by X-ray diffraction, FTIR, SEM, TEM, surface area, porosity by N2 adsorption and ammonia TPD. The resultant samples have been evaluated towards the bulky alkylation reaction of benzylation of benzene with benzyl alcohol. The studies indicated the improvement in the textural properties such as surface area, pore volume and acidity of the samples after the acid treatment. While, the phenomenon of enhancement in properties was exhibited by all the acid treated mordenite samples, the highest improvement in properties was observed at a particular condition of acid treatment (SM-2 sample). This particular sample also exhibited highest acidity and the presence of ∼10 nm size pores that resulted in the effective catalytic activity towards the bulky alkylation reaction of benzene with benzyl alcohol to produce high yields of di-phenyl methane.

  12. CeO2-modified Au@SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Tuo; Yuan, Xiang; Li, Shuirong; Zeng, Liang; Gong, Jinlong

    2015-05-07

    Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts exhibited higher catalytic activity compared with Au@SBA-15 and Au/CeO2 catalysts under identical conditions along with the high selectivity towards benzaldehyde (>99%). The turnover frequency of benzyl alcohol over the Au-100CeO2@SBA-15 catalyst is about nine-fold and four-fold higher than those of Au@SBA-15 and Au/CeO2 catalysts, respectively. The supported catalysts were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive spectrometry, and X-ray photoelectron spectroscopy. It was found that the Au and small CeO2 nanoparticles (∼5 nm) were homogeneously mixed in the channels of SBA-15, which led to an increase in the interfacial area between Au and CeO2 and consequently a better catalytic performance of Au-CeO2@SBA-15 catalysts for the selective oxidation of benzyl alcohol to benzaldehyde compared with that of Au/CeO2. The prevention of agglomeration and leaching of Au nanoparticles by restricting them inside the mesopores of SBA-15 was conducive to the stable existence of large quantities of Au-CeO2 interface, which leads to high stability of the Au-CeO2@SBA-15 catalyst.

  13. A convenient procedure for the synthesis of allyl and benzyl ethers from alcohols and phenols

    Indian Academy of Sciences (India)

    H Surya Prakash Rao; S P Senthilkumar

    2001-06-01

    Allyl and benzyl ethers of alcohols can be prepared conveniently and in high yield with allyl and benzyl bromide in the presence of solid potassium hydroxide without use of any solvent. Phenols can be converted to allyl ethers but are inert to benzylation under above conditions.

  14. Preparation of manganese oxide immobilized on SBA-15 by atomic layer deposition as an efficient and reusable catalyst for selective oxidation of benzyl alcohol in the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Mardani, Mahdieh

    2015-04-01

    Manganese oxide supported on mesoporous silica SBA-15 catalyst (Mn-SBA-15) was tested with Mn contents in the range of 0.8–23 wt%. Samples were prepared by the controlled grafting process of atomic layer deposition (ALD). Other sample was prepared for comparisons by the wet impregnation method. These samples were characterized by the techniques of ICP, XRD, SEM, Raman, FT-IR spectroscopy, diffuse reflectance UV–Vis, TGA-DSC, and N{sub 2} absorption–desorption surface area measurement. Results indicated that anchored manganese oxide particles have been successfully synthesized over the surface of SBA-15. These samples contained Red-Ox ion pairs of Mn{sup 2+} and Mn{sup 3+} highly dispersed on the mesoporous silica surface. The impregnated sample exhibited lower surface area and contained Red-Ox ion pairs of Mn{sup 3+} and Mn{sup 4+} more aggregated particles on the SBA-15 surface. Results determined Mn-SBA-15 as an efficient and selective catalyst for oxidation of benzyl alcohol with tert-butylhydroperoxide in liquid phase. In accordance with expectations, there was a negligible amount of leaching of immobilized manganese oxide from the support during the reaction, because of strong surface interaction between manganese oxide and hydroxyls groups. The influences of reaction temperature, reaction time, solvent, TBHP/benzyl alcohol molar ratio, amount of catalyst and reusability were investigated. Under optimized conditions (0.2 g catalyst, TBHP/benzyl alcohol molar ratio 1, solvent acetonitrile; T = 90 °C; reaction time 8 h), results achieved 70% conversion of benzyl alcohol and 100% selectivity to benzaldehyde. - Highlights: • Manganese oxide immobilized on SBA-15 were prepared by atomic layer deposition (ALD). • Oxidation of benzyl alcohol to benzaldehyde over this catalyst were investigated. • Effects of loading of manganese oxide, T, oxidant/alcohol ratio were investigated. • The leaching of manganese oxide from support during the reaction was

  15. Synthesis and activity of (R)-(-)-m-trimethylacetoxy-alpha-[(methylamino)methyl]benzyl alcohol hydrochloride: a prodrug form of (R)-(-)-phenylephrine.

    Science.gov (United States)

    Yuan, S S; Bador, N

    1976-06-01

    Optically pure (R)-(-)-m-trimethylacetoxy-alpha-[(methylamino)methyl]benzyl alcohol hydrochloride was synthesized by the following sequence: (R)-(-)-phenylephrine was condensed with acetone in the presence of calcium carbide to give an oxazolidine derivative and then treated with thallous ethoxide in ether followed by trimethylacetyl chloride to yield the phenolic ester. Finally, the oxazolidine ring was cleaved by one equivalent of hydrogen chloride in ethanol. Condensation of phenylephrine with benzaldehyde, with or without solvents, gave either 1,1,2-trimethyl-4,6-dihydroxy-1,2,3,4-tetrahydroisoquinoline or a mixture of side-chain oxazolidine and the tetrahydroisoquinoline. Condensation of epinephrine with opianic acid in pyridine also gave a tetrahydroisoquinoline only. When applied on rabbit eyes, the prodrug (R)-(-)-m-trimethylacetoxy-alpha[(methylamino)methyl]benzyl alcohol hydrochloride exhibited an unexpected, three times higher mydriatic activity than the corresponding racemic prodrug and was 15 times more active than the parent, (R)-(-)-phenylephrine.

  16. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    Science.gov (United States)

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  17. Pentanol and Benzyl Alcohol Attack Bacterial Surface Structures Differently

    Science.gov (United States)

    Yano, Takehisa; Miyahara, Yoshiko; Morii, Noriyuki; Okano, Tetsuya

    2015-01-01

    The genus Methylobacterium tolerates hygiene agents like benzalkonium chloride (BAC), and infection with this organism is an important public health issue. Here, we found that the combination of BAC with particular alcohols at nonlethal concentrations in terms of their solitary uses significantly reduced bacterial viability after only 5 min of exposure. Among the alcohols, Raman spectroscopic analyses showed that pentanol (pentyl alcohol [PeA]) and benzyl alcohol (BzA) accelerated the cellular accumulation of BAC. Fluorescence spectroscopic assays and morphological assays with giant vesicles indicated that PeA rarely attacked membrane structures, while BzA increased the membrane fluidity and destabilized the structures. Other fluorescent spectroscopic assays indicated that PeA and BzA inactivate bacterial membrane proteins, including an efflux pump for BAC transportation. These findings suggested that the inactivation of membrane proteins by PeA and BzA led to the cellular accumulation but that only BzA also enhanced BAC penetration by membrane fluidization at nonlethal concentrations. PMID:26519389

  18. Plasmonic Au/CdMoO{sub 4} photocatalyst: Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Jinhong, E-mail: bijinhong@fzu.edu.cn [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); Zhou, Zhiyong; Chen, Mengying [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Liang, Shijing [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); He, Yunhui; Zhang, Zizhong [Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); Wu, Ling, E-mail: wuling@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2015-09-15

    Graphical abstract: - Highlights: • Au/CdMoO{sub 4} composites were constructed for the first time. • Au/CdMoO{sub 4} showed superior activity for selective oxidation of benzylic alcohol. • The visible light photocatalytic activity is ascribed to the SPR effect of Au. - Abstract: Novel visible-light-driven plasmonic Au/CdMoO{sub 4} photocatalysts were synthesized by hydrothermal process following chemical reduction process. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results show the catalysts exhibited strong visible light absorption due to the surface plasmon resonance effect of Au nanoparticles. Compared to CdMoO{sub 4}, Au/CdMoO{sub 4} composites displayed superior photocatalytic activities for the selective oxidation of benzylic alcohol to benzaldehyde under visible light. The highest conversion was obtain by the 1.6% Au loaded CdMoO{sub 4}. The mechanism for the selective oxidation of benzylic alcohol in the Au/CdMoO{sub 4} system is proposed.

  19. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Bahareh; Hosseini-Monfared, Hassan, E-mail: monfared@znu.ac.ir

    2015-02-15

    Graphical abstract: - Highlights: • Characteristics of three different graphene oxide (GO) are studied as a support for Ag nanoparticles. • The required conditions for a best support are determined. • For the first time the silver nanoparticles decorated GO as catalyst for aerobic oxidation of benzyl alcohol and the effects of the degree of reduction of GO on AgNPs on GO are reported. - Abstract: Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV–Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH.

  20. Selective oxidation of benzylic alcohols using copper-manganese mixed oxide nanoparticles as catalyst

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2015-07-01

    Full Text Available The catalytic activity of copper-manganese (CuMn2 mixed oxide nanoparticles (Cu/Mn = 1:2 has been studied for the selective oxidation of benzylic alcohols to the corresponding aldehydes using molecular oxygen as an oxidizing agent. The CuMn2 mixed oxide showed excellent catalytic activity for the oxidation of benzylic alcohols to the corresponding aldehydes with high selectivity (>99%. The complete conversion (100% of all the benzylic alcohols to the corresponding aldehydes is achieved within a short reaction period at 102 °C. The catalytic performance is obtained to be dependent on the electronic and steric effects of the substituents present on the phenyl ring. Electron withdrawing and bulky groups attached to the phenyl ring required longer reaction time for a complete conversion of the benzylic alcohols.

  1. Molecular Interaction Studies of Benzyl Alcohols with Methacrylates in Carbon Tetrachloride using Frequency Domain Technique

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2016-08-01

    Full Text Available The dielectric relaxation of benzyl alcohol substitutents (benzyl alcohol, m-methylbenzyl alcohol and m-nitrobenzyl alcohol with methyl methacrylate and butyl methacrylate in dilute solution of carbon tetrachloride is measured at 9.37 GHz using Frequency domain (X-band technique. Different dielectric parameters like dielectric constant (ε׳, dielectric loss factor (ε״ at Microwave frequency, static dielectric constant (ε0 and dielectric constant at infinite dilution (ε∞ at optical frequency have been determined. From the measured dielectric data, the relaxation time (t calculated using Higasi method and activation energies (∆Ft and ∆Fη have been determined. All the dielectric parameters that are vary with the substitutent change in benzyl alcohol andchain length of acrylic esters. Suggests that, the proton donating ability is varying with the substitution of benzyl alcohol and proton accepting ability is varying with the chain length of acrylic esters. The relaxation time and molar free energy activation of 1:1 molar ratio is greater than other higher molar ratios (i.e. 3:1, 2:1, 1:2, 1:3 confirm that the existence of most likely 1:1 complex formation between the studied systems and also complex formation formed between free hydroxyl group of substituted benzyl alcohols and carbonyl group of acrylic esters (MMA and EMA.

  2. Benzyl alcohol increases voluntary ethanol drinking in rats.

    Science.gov (United States)

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p < 0.01). The present results can explain the previous discrepancy between the two nandrolone studies. No significant BA effects on basal and ethanol-mediated serum testosterone and corticosterone levels were observed in blood samples taken at days 1, 8 and 22. However, 2h after ethanol administration significantly (p = 0.02) higher frequency of testosterone elevations was detected in high drinking AA rats compared to low drinking Wistars, which supports our previous hypotheses of a role of testosterone elevation in promoting ethanol drinking. Skin irritation and dermatitis were shown exclusively in the BA-treated animals. Altogether, the present results indicate that earlier findings obtained with Deca-Durabolin containing BA need to be re-evaluated.

  3. Efficient oxidation of benzyl alcohol with heteropolytungstate as reaction-controlled phase-transfer catalyst

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the properties of reaction-controlled phasetransfer catalysis, and they had excellent catalytic ability to the oxidation of benzyl alcohol. No other by-products were detected by gas chromatography. Once the hydrogen peroxide was consumed completely, the catalyst precipitated from solvent, and the results of the catalyst recycle showed that the catalyst had high stability.

  4. Structural micellar transition for fluorinated and hydrogenated sodium carboxylates induced by solubilization of benzyl alcohol.

    Science.gov (United States)

    González-Pérez, Alfredo; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix

    2004-09-28

    The solubility of benzyl alcohol in micellar solutions of sodium octanoate and sodium perfluorooctanoate was studied. From the isotherms of specific conductivity versus molality at different alcohol concentrations, the critical micelle concentration and the degree of ionization of the micelles were determined. The cmc linearly decreases upon increasing the amount of benzyl alcohol present in aqueous solutions with two distinct slopes. This phenomenon was interpreted as a clustering of alcohol molecules above a critical point, around 0.1 mol kg(-1). Attending to the equivalent conductivity versus square root of molality, the presence of a second micellar structure for the fluorinated compound was assumed. The thermodynamic parameters associated with the process of micellization were estimated by applying Motomura's model for binary surfactant mixtures, modified by Pérez-Villar et al. (Colloid Polym. Sci 1990, 268, 965) for the case of alcohol-surfactant solutions. A comparison of the hydrogenated and fluorinated compounds was carried out and discussed.

  5. Extraction of toluene, o-xylene from heptane and benzyl alcohol from toluene with aqueous cyclodextrins

    NARCIS (Netherlands)

    Meindersma, G.W.; Schoonhoven, van T.; Kuzmanovic, B.; Haan, de A.B.

    2006-01-01

    The separation of aromatic compounds (toluene and o-xylene) from heptane and of benzyl alcohol from toluene with aqueous solutions of cyclodextrins has been experimentally investigated, because cyclodextrins and its derivatives can selectively incorporate several organic compounds, whereas the separ

  6. Pharmacokinetics in Elderly Women of Benzyl Alcohol From an Oil Depot

    NARCIS (Netherlands)

    Kalicharan, Raween; El Amrani, Mohsin; Schot, Peter; Vromans, Herman|info:eu-repo/dai/nl/073088803

    2016-01-01

    Pharmaceutical oil depots are meant to release active substances at a sustained rate. Most of these depots contain benzyl alcohol (BOH) to facilitate the production and administration. Because BOH changes the solubility of components in both the body fluid and the oil formulation, it is relevant to

  7. Solvent-free alkylation of dimethyl malonate using benzyl alcohols catalyzed by FeCl3/SiO2

    Institute of Scientific and Technical Information of China (English)

    Mohammad Reza Shushizadeh; Masumeh Kiany

    2009-01-01

    Activated methylene compound such as dimethyl malonate reacted readily with benzylic alcohols in the presence of ferric chloride/silica gel mixture(FeCl3/SiO2)under microwave irradiation to produce benzylic derivative of dimethyl malonate in high yields in solvent-free condition.

  8. The Kinetic Behavior of Benzaldehyde under Hydrothermal Conditions

    Science.gov (United States)

    Fecteau, K.; Gould, I.; Hartnett, H. E.; Williams, L. B.; Shock, E.

    2013-12-01

    Aldehydes represent an intermediate redox state between alcohols and carboxylic acids and are likely intermediates in the transformation of organic compounds in natural systems. We have conducted kinetic studies of a model aldehyde, benzaldehyde, in high-temperature water (250-350 °C, saturation pressure) in clear fused quartz (CFQ) autoclaves. Under these conditions, benzaldehyde is observed to undergo a disproportionation reaction to benzyl alcohol and benzoic acid reminiscent of the base-catalyzed Cannizzaro reaction known to occur at cooler temperatures. Benzene is also produced via decarbonylation of the aldehyde. We have obtained pseudo second-order rate constants for the decomposition of benzaldehyde at 250, 300, and 350 °C. Rates derived via repeated heating phases and subsequent quantitative 13C-NMR spectroscopy of a single NMR-compatible CFQ tube containing isotopically labeled benzaldehyde are consistent with those obtained by analysis of product suites from individual timed experiments via gas chromatography. Arrhenius parameters for these rate constants are consistent with published values for the reaction under supercritical conditions from one study (Tsao et al. 1992) yet the pre-exponential factor is approximately 7 orders of magnitude smaller than that derived from another study (Ikushima et al. 2001). Moreover, fitting our rate constants with the Eyring equation yields an entropy of activation (ΔS‡) of -26.6 kcal mol-1 K-1, which is consistent for a bimolecular transition state at the rate-limiting step. In contrast, the rates of Ikushima et al. yield a positive value of ΔS‡, which is inconsistent with the putative mechanism for the reaction. The linear Arrhenius behavior of the decomposition of benzaldehyde from high-temperature liquid to supercritical conditions demonstrates the potential for extrapolating experimentally derived rates of reactions for organic functional group transformations to conditions where diagenesis, alteration

  9. Gold( i )-catalysed dehydrative formation of ethers from benzylic alcohols and phenols

    KAUST Repository

    Veenboer, Richard M. P.

    2015-01-01

    © The Royal Society of Chemistry 2015. We report the cross-dehydrative reaction of two alcohols to form unsymmetrical ethers using NHC-gold(i) complexes (NHC = N-heterocyclic carbene). Our progress in developing this reaction into a straightforward procedure is discussed in detail. The optimised methodology proceeds under mild reaction conditions and produces water as the sole by-product. The synthetic utility of this environmentally benign methodology is exemplified by the formation of a range of new ethers from readily available phenols bearing electron withdrawing substituents and secondary benzylic alcohols with various substituents. Finally, we present experimental results to account for the chemoselectivity obtained in these reactions.

  10. One-pot deposition of gold on hybrid TiO{sub 2} nanoparticles and catalytic application in the selective oxidation of benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Mehri, Afef [University Tunis El-Manar, Laboratoire de Chimie des Matériaux et Catalyse, Tunis (Tunisia); Kochkar, Hafedh, E-mail: h_kochkar@yahoo.fr [University Tunis El-Manar, Laboratoire de Chimie des Matériaux et Catalyse, Tunis (Tunisia); Laboratoire de Valorisation des Matériaux Utiles, Centre National de Recherches en Sciences des Matériaux, Technopôle de Borj-Cedria, 2050 Hammam-Lif (Tunisia); Berhault, Gilles [Institut de Recherches sur la Catalyse et de l' Environnement de Lyon, CNRS-Université Lyon I, 69100 Villeurbanne (France); Cómbita Merchán, Diego Fernando; Blasco, Teresa [Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos, s/n, Valencia (Spain)

    2015-01-15

    One-pot deposition of Au onto TiO{sub 2} has been achieved through directly contacting gold (III) salt with nanosized functionalized TiO{sub 2} support initially obtained by sol–gel process using titanium isopropoxide and citric acid. Citrate groups act as functional moieties able to directly reduce the Au salt avoiding any further reducing treatment. Various gold salts (NaAuCl{sub 4}·2H{sub 2}O or HAuCl{sub 4}·3H{sub 2}O) and titanium to citrate (Ti/Cit) molar ratios (20, 50 and 100) were used in order to study the effect of the nature of the precursor and of the citrate content on the final Au particle size and catalytic properties of the as-obtained Au/TiO{sub 2} materials. Au/(TiO{sub 2}){sub x}(Cit){sub 1} catalysts characterization was performed using N{sub 2} adsorption–desorption, ICP-AES, X-ray diffraction and TEM. The effect of the Ti/Cit molar ratio and of the gold precursor was evaluated. The selective oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) was studied as a model reaction. Kinetic analysis showed that the catalytic reaction rate was pseudo first-order and the values of activation energy have been reported. Results showed that the functionalization of TiO{sub 2} by citrate allows tuning the size of the Au nanoparticles deposited onto TiO{sub 2} as well as their morphology. Citrate also strongly enhances the benzyl alcohol oxidation through the control of the size and morphology of gold nanoparticles. - Highlights: • One-pot deposition of Au onto TiO{sub 2} has been achieved. • Citrates act as active sites for selective deposition and reduction of gold. • The presence of citrates influences the size and the morphology of gold NPs. • Au NPs with well-defined morphologies were obtained for Cit/Ti molar ratio of 100. • The selective oxidation of benzyl alcohol was studied as a model reaction.

  11. Polymer characterization and optimization of conditions for the enhanced bioproduction of benzaldehyde by Pichia pastoris in a two-phase partitioning bioreactor.

    Science.gov (United States)

    Craig, Tom; Daugulis, Andrew J

    2013-04-01

    Benzaldehyde, with its apricot and almond-like aroma, is the second most abundantly used molecule in the flavor industry, and is most commonly produced via chemical routes, such as by the oxidation of toluene. Biologically produced benzaldehyde, whether by extraction of plant material or via microbial biotransformation, commands a substantial price advantage, and greater consumer acceptance. Methylotrophic yeast, such as Pichia pastoris, contain the enzyme alcohol oxidase (AOX), which, in the presence of alcohols other than methanol, are able to yield aldehydes as dead-end products, for example, benzaldehyde from benzyl alcohol. In this work, we have determined that benzaldehyde, and not benzyl alcohol, is inhibitory to the transformation reaction by P. pastoris, prompting the development of a selection strategy for identifying sequestering polymers for use in a partitioning bioreactor that was based on the ratio of partition coefficients (PCs) for the two target molecules. Additionally, we have now confirmed for the first time, that the mechanism of solute uptake by amorphous polymers is via absorption, not adsorption. Finally, we have adopted a common strategy used for the production of heterologous proteins by P. pastoris, namely the use of a mixed methanol/glycerol feed for inducing the required AOX enzyme, while reducing the time required for high density biomass generation. All of these components were combined in a final experiment in which 10% of the polymer Kraton D1102K, whose PC ratio of benzaldehyde to benzyl alcohol was 14.9, was used to detoxify the biotransformation in a 5 L partitioning bioreactor, resulting in a 3.4-fold increase in benzaldehyde produced (14.4 g vs. 4.2 g) relative to single phase operation, at more than double the volumetric productivity (97 mg L(-1) h(-1) vs. 41 mg L(-1) h(-1) ).

  12. Influence of Fluorination on the Conformational Properties and Hydrogen-Bond Acidity of Benzyl Alcohol Derivatives

    Science.gov (United States)

    Bogdan, Elena; Compain, Guillaume; Mtashobya, Lewis; Le Questel, Jean-Yves; Besseau, François; Galland, Nicolas; Linclau, Bruno; Graton, Jérôme

    2015-01-01

    The effect of fluorination on the conformational and hydrogen-bond (HB)-donating properties of a series of benzyl alcohols has been investigated experimentally by IR spectroscopy and theoretically with quantum chemical methods (ab initio (MP2) and DFT (MPWB1K)). It was found that o-fluorination generally resulted in an increase in the HB acidity of the hydroxyl group, whereas a decrease was observed upon o,o′-difluorination. Computational analysis showed that the conformational landscapes of the title compounds are strongly influenced by the presence of o-fluorine atoms. Intramolecular interaction descriptors based on AIM, NCI and NBO analyses reveal that, in addition to an intramolecular OH⋅⋅⋅F interaction, secondary CH⋅⋅⋅F and/or CH⋅⋅⋅O interactions also occur, contributing to the stabilisation of the various conformations, and influencing the overall HB properties of the alcohol group. The benzyl alcohol HB-donating capacity trends are properly described by an electrostatic potential based descriptor calculated at the MPWB1K/6-31+G(d,p) level of theory, provided solvation effects are taken into account for these flexible HB donors. PMID:26130594

  13. Development of Highly Effective Nanoparticle Spinel Catalysts for Aerobic Oxidation of Benzylic Alcohols

    Institute of Scientific and Technical Information of China (English)

    JI,Hong-Bing(纪红兵); WANG,Le-Fu(王乐夫)

    2002-01-01

    Spinel catalyst MnFe1.8Cu0.15Ru0.05O4 with particle size of about 42 nm is an effective heterogeneous catalyst for the oxidation of benzylic alcohols. The substitution of Fe for Cu improves its catalytic activity. Based on the characterization of BET, XPS and EXAFS, two factors influencing the structure and texture of the catalyst caused by the substitution of Cu for Fe may be assumed: physical factor responsible for the increasing of surface area; chemical factor responsible for the transformation of Ru-O bonds to Ru = O bonds. β-Elimination is considered to be an important step in the reaction.

  14. Syntheses and molecular structures of novel Ru(II) complexes with bidentate benzimidazole based ligands and their catalytic efficiency for oxidation of benzyl alcohol

    Science.gov (United States)

    Dayan, Osman; Tercan, Melek; Özdemir, Namık

    2016-11-01

    Five bidentate ligands derived from quinoline-2-carboxylic acid, i.e. 2-(1H-benzimidazol-2-yl)quinoline (L1), 2-(1-benzyl-1H-benzimidazol-2-yl)quinoline (L2), 2-[1-(2,3,5,6-tetramethylbenzyl)-1H-benzimidazol-2-yl]quinoline (L3), 2-[1-(4-chlorobenzyl)-1H-benzimidazol-2-yl]quinoline (L4), and 2-[1-(4-methylbenzyl)-1H-benzimidazol-2-yl]quinoline (L5) were synthesized. Treatment of L1-5 with [RuCl2(p-cymene)]2 and KPF6 afforded six-coordinate piano-stool Ru(II) complexes, namely, [RuCl(L1)(p-cymene)]PF6 (C1), [RuCl(L2)(p-cymene)]PF6 (C2), [RuCl(L3)(p-cymene)]PF6 (C3), [RuCl(L4)(p-cymene)]PF6 (C4), and [RuCl(L5)(p-cymene)]PF6 (C5). Synthesized compounds were characterized with different techniques such as 1H and 13C NMR, FT-IR, and UV-vis spectroscopy. The solid state structure of L1 and C3 was confirmed by single-crystal X-ray diffraction analysis. The single crystal structure of C3 verified coordination of L3 to the Ru(II) center. The Ru(II) center has a pseudo-octahedral three legged piano stool geometry. The complexes C1-5 were tested as catalysts for the catalytic oxidation of benzyl alcohol to benzaldehyde in the presence of periodic acid (H5IO6) (Substrate/Catalyst/Oxidant = 1/0.01/0.5). The best result was obtained with C2 (3 h→90%).

  15. Highly Dispersed Gold Nanoparticles Supported on SBA-15 for Vapor Phase Aerobic Oxidation of Benzyl Alcohol.

    Science.gov (United States)

    Kumar, Ashish; Sreedhar, Bojja; Chary, Komandur V R

    2015-02-01

    Gold nanoparticles supported on SBA-15 are prepared by homogenous deposition-precipitation method (HDP) using urea as the precipitating agent. The structural features of the synthesized catalysts were characterized by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption (BET), pore size distribution (PSD), CO chemisorption and X-ray photoelectron spectroscopy (XPS). The catalytic activity and stability of the Au/SBA-15 catalysts are investigated during the vapor phase aerobic oxidation of benzyl alcohol. The BJH pore size distribution results of SBA-15 support and Au/SBA-15 catalysts reveals that the formation of mesoporous structure in all the samples. TEM results suggest that Au nanoparticles are highly dispersed over SBA-15 and long range order of hexagonal mesopores of SBA-15 is well retained even after the deposition of Au metallic nanoparticles. XPS study reveals the formation of Au (0) after chemical reduction by NaBH4. The particle size measured from CO-chemisorption and TEM analysis are well correlated with the TOF values of the reaction. Au/SBA-1 5 catalysts are found to show higher activity compare to Au/TiO2 and Au/MgO catalysts during the vapor phase oxidation of benzyl alcohol. The catalytic functionality are well substantiated with particle size measured from TEM. The crystallite size of Au in both fresh and spent catalysts were measured from X-ray diffraction.

  16. The Role of Vanadia for the Selective Oxidation of Benzyl Alcohol over Heteropolymolybdate Supported on Alumina

    Institute of Scientific and Technical Information of China (English)

    Pasupulet Siva Nageswara RAO; Kasanneni Tirumala Venkateswara RAO; Potharaju S. SAI PRASAD; Nakka LINGAIAH

    2011-01-01

    A series of 12-molybdophosphoric acid (MPA) supported on V2O5 dispersed γ-Al2O3 catalysts with different vanadia loadings were prepared by impregnation and characterized by N2 adsorption-desorption,X-ray diffraction,temperature-programmed reduction,in situ laser Raman spectroscopy,UV-Vis diffused reflectance spectroscopy,scanning electron microscopy,and temperature-programmed desorption of NH3 techniques.Their catalytic activities were evaluated for the vapor phase aerobic oxidation of benzyl alcohol.The catalysts exhibited high catalytic activity and the conversion of benzyl alcohol depended on the vanadia content while the catalyst with 15 wt% V2O5 content showed optimum activity.The characterization results suggest the presence of well-dispersed V2O5 and partially disintegrated Keggin ions of MPA on the support.In situ Raman studies showed a reduced Mo(IV) species when the catalysts were calcined at high temperatures.The high oxidation activity of the catalysts is related to the synergistic effect between MPA and V2O5.

  17. Selective liquid phase oxidation of benzyl alcohol catalyzed by copper aluminate nanostructures

    Science.gov (United States)

    Ragupathi, C.; Judith Vijaya, J.; Thinesh Kumar, R.; John Kennedy, L.

    2015-01-01

    In this paper, a simple and economic route for the preparation of CuAl2O4 is proposed. The method was developed with the objective of obtaining a material with greater surface area, when compared to the spinel prepared by conventional combustion method (CCM). The catalytic properties of CuAl2O4 spinel prepared by CCM are compared with the one prepared microwave combustion method (MCM). Nano-sized CuAl2O4 were synthesized by both CCM and MCM using Opuntia dillenii haw as the plant extract, and were characterized by X-ray diffraction analysis (XRD), high resolution scanning electron microscopy (HR-SEM), N2 adsorption/desorption isotherms, and diffuse reflectance spectroscopy (DRS). Oxidation to their corresponding carbonyl compounds, high selectivity, and inexpensive precursors make this catalytic system a useful oxidation method for benzyl alcohol. The XRD results confirmed the formation of a cubic CuAl2O4. The formation of CuAl2O4 nanorices and nanorods structures were confirmed by HR-SEM. Through MCM method, CuAl2O4 (sample B) with a high specific surface area of was obtained. The band gap values of the (2.30 and 2.35 eV) for the obtained oxides are due to the nanometric dimensions of the nanostructures. The effect of the solvent, temperature, and oxidant on the oxidation of benzyl alcohol is reported.

  18. Synthesis of benzyl chlorides and cycloveratrylene macrocycles using benzylic alcohols under homogeneous catalysis by HCl/dioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Marina Vargas-Rodríguez

    2012-01-01

    Full Text Available The synthesis of benzyl chlorides, cyclic derivatives cyclotriveratrylene and cyclotripiperotrylene were carried out in using the HCl/dioxane system as a catalyst. The reaction proceeded with high selectivity and is sensitive to the number of alkyl and methoxy substituent on the aromatic ring.

  19. Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique

    DEFF Research Database (Denmark)

    Olliges‐Stadler, Inga; Stötzel, Jan; Koziej, Dorota

    2012-01-01

    Insight into the complex chemical mechanism for the formation of tungstite nanoparticles obtained by the reaction of tungsten hexachloride with benzyl alcohol is presented herein. The organic and inorganic species involved in the formation of the nanoparticles were studied by time‐dependent gas c...

  20. Ir/Sn dual-reagent catalysis towards highly selective alkylation of arenes and heteroarenes with benzyl alcohols

    Indian Academy of Sciences (India)

    Sujit Roy; Susmita Podder; Joyanta Choudhury

    2008-09-01

    A catalytic combination of [Ir(COD)Cl]2-SnCl4 efficiently promotes the reactions of arenes and heteroarenes with 1°/2°/3° benzyl alcohols as the alkylating agents to afford the corresponding diarylmethane and triarylmethane derivatives in high yields. The scope and limitation of the reaction with respect to catalyst and substrates variation has been studied in detail.

  1. Efficacy of postmilking disinfection with benzyl alcohol versus lodophor in the prevention of new intramammary infections in lactating cows.

    Science.gov (United States)

    Erskine, R J; Sears, P M; Bartlett, P C; Gage, C R

    1998-01-01

    Five Michigan dairy herds participated in a split-herd study to compare the efficacy of two postmilking teat dips in the prevention of new intramammary infections (IMI) in lactating cows. Three hundred seventy cows were assigned to 4% benzyl alcohol, and 387 cows were assigned to 1% iodophor germicidal teat dip. The teat dips were applied by directly immersing the teats immediately after milking. Once a group was assigned to a teat dip, cows in that group maintained on that same teat dip throughout the trial. Total new IMI numbered 254 and 201 for cows treated with benzyl alcohol and iodophor germicidal teat dip, respectively. Staphylococcus spp. (52.0%), Staphylococcus aureus (20.1%), and Corynebacterium bovis (12.2%) were the predominant pathogens that caused new IMI in cows treated with benzyl alcohol. Staphylococcus spp., Staph. aureus, and C. bovis, respectively, were the pathogens responsible for 69.7, 12.4, and 4.5% of the new IMI in cows treated with iodophor. The incidences of new IMI caused by Staph. aureus (0.66 new IMI/100 milking quarters per mo), C. bovis (0.38 new IMI/100 milking quarters per mo), and all pathogens (3.15 new IMI/100 milking quarters per mo) were higher in cows treated with benzyl alcohol than in cows treated with iodophor (0.29, 0.11, and 2.35 new IMI/100 milking quarters per mo, respectively). Incidence of new IMI did not differ between groups for other pathogens. One percent iodophor prevented new IMI caused by contagious pathogens more effectively than did benzyl alcohol.

  2. A green and efficient oxidation of benzylic alcohols using H2O2 catalyzed by Montmorillonite-K10 supported MnCl2

    Institute of Scientific and Technical Information of China (English)

    Cholam Reza Najafi

    2010-01-01

    Primary and secondary benzylic alcohols were oxidized to the corresponding carbonyl compounds in good to high yields by environmentally friendly and green oxidant, H2O2 catalyzed by Montmorillonite-K10 supported manganese(Ⅱ) chloride.

  3. Metal-free g-C{sub 3}N{sub 4} photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ligang [Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Di [Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Ocean University of China, Qingdao 266003 (China); Guan, Jing; Chen, Xiufang; Guo, Xingcui [Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Zhao, Fuhua [Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hou, Tonggang [Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Mu, Xindong, E-mail: muxd@qibebt.ac.cn [Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China)

    2014-11-15

    Highlights: • A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. • The texture, electronic and surface property were tuned by acid modification. • Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. • Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant under visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.

  4. Gold Nanorod@TiO2 Yolk-Shell Nanostructures for Visible-Light-Driven Photocatalytic Oxidation of Benzyl Alcohol.

    Science.gov (United States)

    Li, Ang; Zhang, Peng; Chang, Xiaoxia; Cai, Weiting; Wang, Tuo; Gong, Jinlong

    2015-04-24

    Fine gold nanorod@TiO2 yolk-shell catalysts are synthesized by an improved silica template method. With a hollow TiO2 shell and a unique tunable cylindrical gold core, the catalyst exhibits a high surface area and a wide range of photoabsorption, from ultraviolet to near infrared. The remarkable photochemical activity is obtained when such catalyst is utilized to oxidize benzyl alcohol.

  5. NBS/DBU mediated one-pot synthesis of α-acyloxyketones from benzylic secondary alcohols and carboxylic acids.

    Science.gov (United States)

    Zhu, Minghui; Wei, Wei; Yang, Daoshan; Cui, Hong; Cui, Huanhuan; Sun, Xuejun; Wang, Hua

    2016-11-22

    A simple and efficient one-pot NBS/DBU-mediated method has been developed for the synthesis of α-acyloxyketones from various benzylic secondary alcohols and carboxylic acids. Through this methodology, a series of α-acyloxyketones could be obtained in good to excellent yields under mild conditions. Importantly, this new reaction avoids the direct usage of toxic metal catalysts or potentially dangerous peroxide oxidants.

  6. Cobalt salophen complex supported on magnetic nanoparticles as an efficient reusable catalyst for oxidation of benzylic alcohols

    Directory of Open Access Journals (Sweden)

    Mozhgan Afshari

    2014-01-01

    Full Text Available A novel and general method has been developed for oxidation of benzylic alcohols using magnetic nanoparticles immobilized salophen Co(II as an efficient and recyclable catalyst. The structural and magnetic properties of catalyst are identified by transmission electron microscopy (TEM, vibrating sample magnetometer (VSM instruments. FT-IR, and XRD. Nanocatalyst can be easily recovered by a magnetic field and reused for subsequent reactions for at least 5 times with less deterioration in catalytic activity.

  7. A Helical Polyphenylacetylene Having Amino Alcohol Moieties Without Chiral Side Groups as a Chiral Ligand for the Asymmetric Addition of Diethylzinc to Benzaldehyde.

    Science.gov (United States)

    Liu, Lijia; Long, Qing; Aoki, Toshiki; Zhang, Geng; Kaneko, Takashi; Teraguchi, Masahiro; Zhang, Chunhong; Wang, Yudan

    2015-08-01

    One-handed helical polyphenylacetylenes having achiral amino alcohol moieties, but no chiral side groups, were synthesized by the helix-sense-selective copolymerization of an achiral phenylacetylene having an amino alcohol side group with a phenylacetylene having two hydroxyl groups. Since the resulting helical copolymers were successfully utilized as chiral ligands for the enantioselective alkylation of benzaldehyde with diethylzinc, we can conclude that the main-chain chirality based on the one-handed helical conformation is useful for the chiral catalysis of an asymmetric reaction for the first time. The enantioselectivities of the reaction were controlled by the optical purities of the helical polymer ligands. In addition, the polymer ligands could be easily recovered by precipitation after the reaction.

  8. Effect of Isotacticity of Linear Poly(N-isopropylacrylamide) on its Gelation in Benzyl Alcohol

    Indian Academy of Sciences (India)

    CHANDRA SEKHAR BISWAS; KHEYANATH MITRA; SHIKHA SINGH; DINESH K PATEL; BISWAJIT MAITI; PRALAY MAITI; BISWAJIT RAY

    2016-06-01

    Thermoreversible gelation of three different isotactic linear poly(N-isopropylacrylamide) (PNIPAM)s having meso dyad (m) values 62, 68 and 81% has been observed in benzyl alcohol. All the gels weretransparent in nature. SEM image of the dried gels showed fibrillar network morphology. Melting temperatureof the gels gradually increased with the increase in the concentration. XRD data of dry polymers and their correspondingdry gels showed shifting in the peak positions. Rheological study showed that stronger gels wereformed with increasing isotacticity of PNIPAM while lower isotactic sample exhibited typical polymer meltrheology. The formation of a plunge in the storage modulus as well as in the viscosity plot at the same frequencyrange indicates the reversible nature of the structure breaking/reformation under frequency sweep. Moreover,the mechanical strength of the gel decreased with increase in temperature. UV-Vis kinetic study also indicatedthe change in the conformation and aggregation of PNIPAM chains during gelation. Molecular modelling calculationshowed that the number of solvent molecules involved in forming gel (polymer-solvent compound)decreased with the increase in the isotacticity of the polymer. Gelation rate of these gels was studied as a functionof temperature, concentration and isotacticity using test-tube tilting method. It increased with the increasein the concentration and isoacticity of the polymer, and with the decrease in the temperature. Critical gelationconcentration of the gel gradually increased with the decrease in the isotacticity and with the increase in thetemperature. All these experimental results indicated that gelation occurs presumably through polymer-solventcompound formation.

  9. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production.

    Science.gov (United States)

    Li, Xuan Zhong; Webb, Jeremy S; Kjelleberg, Staffan; Rosche, Bettina

    2006-02-01

    Biotransformation plays an increasingly important role in the industrial production of fine chemicals due to its high product specificity and low energy requirement. One challenge in biotransformation is the toxicity of substrates and/or products to biocatalytic microorganisms and enzymes. Biofilms are known for their enhanced tolerance of hostile environments compared to planktonic free-living cells. Zymomonas mobilis was used in this study as a model organism to examine the potential of surface-associated biofilms for biotransformation of chemicals into value-added products. Z. mobilis formed a biofilm with a complex three-dimensional architecture comprised of microcolonies with an average thickness of 20 microm, interspersed with water channels. Microscopic analysis and metabolic activity studies revealed that Z. mobilis biofilm cells were more tolerant to the toxic substrate benzaldehyde than planktonic cells were. When exposed to 50 mM benzaldehyde for 1 h, biofilm cells exhibited an average of 45% residual metabolic activity, while planktonic cells were completely inactivated. Three hours of exposure to 30 mM benzaldehyde resulted in sixfold-higher residual metabolic activity in biofilm cells than in planktonic cells. Cells inactivated by benzaldehyde were evenly distributed throughout the biofilm, indicating that the resistance mechanism was different from mass transfer limitation. We also found that enhanced tolerance to benzaldehyde was not due to the conversion of benzaldehyde into less toxic compounds. In the presence of glucose, Z. mobilis biofilms in continuous cultures transformed 10 mM benzaldehyde into benzyl alcohol at a steady rate of 8.11 g (g dry weight)(-1) day(-1) with a 90% molar yield over a 45-h production period.

  10. Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds.

    Science.gov (United States)

    Megerle, Uwe; Wenninger, Matthias; Kutta, Roger-Jan; Lechner, Robert; König, Burkhard; Dick, Bernhard; Riedle, Eberhard

    2011-05-21

    Flavin-mediated photooxidations have been described for applications in synthetic organic chemistry for some time and are claimed to be a route to the use of solar energy. We present a detailed investigation of the involved photophysical and photochemical steps in methoxybenzyl alcohol oxidation on a timescale ranging from sub-picoseconds to tens of microseconds. The results establish the flavin triplet state as the key intermediate for the photooxidation. The initial step is an electron transfer from the alcohol to the triplet state of the flavin catalyst with (3)k(ET)≈ 2 × 10(7) M(-1) s(-1), followed by a proton transfer in ∼6 μs. In contrast, the electron transfer involving the singlet state of flavin is a loss channel. It is followed by rapid charge recombination (τ = 50 ps) without significant product formation as seen when flavin is dissolved in pure benzylic alcohol. In dilute acetonitrile/water solutions of flavin and alcohol the electron transfer is mostly controlled by diffusion, though at high substrate concentrations >100 mM we also find a considerable contribution from preassociated flavin-alcohol-aggregates. The model including a productive triplet channel and a competing singlet loss channel is confirmed by the course of the photooxidation quantum yield as a function of substrate concentration: We find a maximum quantum yield of 3% at 25 mM of benzylic alcohol and significantly smaller values for both higher and lower alcohol concentrations. The observations indicate the importance to perform flavin photooxidations at optimized substrate concentrations to achieve high quantum efficiencies and provide directions for the design of flavin photocatalysts with improved performance.

  11. A novel serotonin transporter ligand: (5-Iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Z.-P.; Choi, S.-R.; Hou, Catherine; Mu Mu; Kung, M.-P. E-mail: kunghf@sunmac.spect.upenn.edu; Acton, Paul D.; Kung, Hank F

    2000-02-01

    The serotonin transporters (SERT) are the primary binding sites for selective serotonin reuptake inhibitors, commonly used antidepressants such as fluoxetine, sertraline, and paroxetine. Imaging of SERT with positron emission tomography and single photon emission computed tomography in humans would provide a useful tool for understanding how alterations of this system are related to depressive illnesses and other psychiatric disorders. In this article the synthesis and characterization of [{sup 125}I]ODAM [(5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol, 9)] as an imaging agent in the evaluation of central nervous system SERT are reported. A new reaction scheme was developed for the preparation of compound 9, ODAM, and the corresponding tri-n-butyltin derivative 10. Upon reacting 10 with hydrogen peroxide and sodium[{sup 125}I]iodide, the radiolabeled [{sup 125}I]9 was obtained in good yield (94% yield, radiochemical purity >95%). In an initial binding study using cortical membrane homogenates of rat brain, ODAM displayed a good binding affinity with a value of K{sub i}=2.8{+-}0.88 nM. Using LLC-PK{sub 1} cells specifically expressing the individual transporter (i.e. dopamine [DAT], norepinephrine [NET], and SERT, respectively), ODAM showed a strong inhibition on SERT (K{sub i}=0.12{+-}0.02 nM). Inhibition constants for the other two transporters were lower (K{sub i}=3.9{+-}0.7 {mu}M and 20.0 {+-} 1.9 nM for DAT and NET, respectively). Initial biodistribution study in rats after an intravenous (IV) injection of [{sup 125}I]ODAM showed a rapid brain uptake and washout (2.03, 1.49, 0.79, 0.27, and 0.07% dose/organ at 2, 30, 60, 120, and 240 min, respectively). The hypothalamus region where the serotonin neurons are located exhibited a high specific uptake. Ratios of hypothalamus-cerebellum/cerebellum based on percent dose per gram of these two regions showed values of 0.35, 0.86, 0.86, 0.63, and 0.34 at 2, 30, 60, 120, and 240 min, post-IV injection

  12. Selective Aerobic Oxidation of Benzyl Alcohol Driven by Visible Light on Gold Nanoparticles Supported on Hydrotalcite Modified by Nickel Ion

    Directory of Open Access Journals (Sweden)

    Dapeng Guo

    2016-04-01

    Full Text Available A series of hydrotalcite (HT and hydrotalcite modified by the transition metal ion Ni(II was prepared with a modified coprecipitation method before being loaded with gold nanoparticles. The gold supported on Ni3Al hydrotalcite with a Ni2+/Al3+ molar ratio of 3:1 was investigated. Different techniques such as X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and UV-vis diffuse reflection spectrum (UV-vis DRS were applied to characterize the catalysts. A single-phase catalyst with high crystallinity, a layered structure and good composition was successfully fabricated. Good conversions and superior selectivities in the oxidation of benzyl alcohol and its derivatives were obtained with visible light due to the effect of localized surface plasmon resonance (LSPR of gold nanoparticles and the synergy of the transition metal ion Ni(II. This reaction was proven to be photocatalytic by varying the intensity and wavelength of the visible light. The catalyst can be recycled three times. A corresponding photocatalytic mechanism of the oxidation reaction of benzyl alcohol was proposed.

  13. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol.

    Science.gov (United States)

    Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang

    2014-05-01

    A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen.

  14. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  15. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    Saad Alabbad

    2014-12-01

    Full Text Available Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.

  16. Development of 3-methoxy-4-benzyloxybenzyl alcohol (MBBA) resin as polymer-supported synthesis support: Preparation and benzyl ether cleavage by DDQ oxidation

    Indian Academy of Sciences (India)

    Qiang Huang; Bao-Zhong Zheng; Quan Long

    2010-03-01

    3-Methoxy-4-benzyloxybenzyl alcohol (MBBA) resin was synthesized by a two-step sequence under microwave irradiation involving the reaction of commercially available Merrifield resin with vanillin, followed by reduction with sodium borohydride. MBBA resin was treated with bromides in the presence of sodium hydride to afford the corresponding resin-bound benzyl ethers. Cleavage of the resin-bound benzyl ethers from the MBBA resin was carried out using 2,3-dichloro-5,6-dicyanobenzoqunone (DDQ) to give the corresponding alcohols in good yields. Moreover, the recovery, regeneration, and reuse of this polymer support could be achieved easily. MBBA resin can be developed as a kind of solid-phase synthesis bead of alcohols.

  17. Monolayer HNb3O8 for selective photocatalytic oxidation of benzylic alcohols with visible light response.

    Science.gov (United States)

    Liang, Shijing; Wen, Linrui; Lin, Sen; Bi, Jinhong; Feng, Pingyun; Fu, Xianzhi; Wu, Ling

    2014-03-10

    Monolayer HNb3O8 2D nanosheets have been used as highly chemoselective and active photocatalysts for the selective oxidation of alcohols. The nanosheets exhibit improved photocatalytic activity over their layered counterparts. Results of in situ FTIR, DRS, ESR, and DFT calculations show the formation of surface complexes between the Lewis acid sites on HNb3O8 2D nanosheets and alcohols. These complexes play a key role in the photocatalytic activity of the material. Furthermore, the unique structural features of the nanosheets contributed to their high photocatalytic activity. An electron transition from the coordinated alcohol species to surface Nb atoms takes place and initiates the aerobic oxidation of alcohols with high product selectivity under visible light irradiation. This reaction process is distinct from that of classic semiconductor photocatalysis.

  18. Selective oxidation of benzyl alcohol with tert-butylhydroperoxide catalysed via Mn (II) 2, 2-bipyridine complexes immobilized over the mesoporous hexagonal molecular sieves (HMS)

    Indian Academy of Sciences (India)

    Vahid Mahdavi; Mahdieh Mardani

    2012-09-01

    A series ofMn(II)bipy complexes with different loading of Mn2+ supported on HMS was prepared. These samples were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Thermogravimetric and Differential Scanning Calorimetry (TG-DSC), Ultraviolet and Visible spectra (UV-Vis) and Fourier transforms Infrared (FT-IR). The catalytic activity of the supportedMn(II)bipy complexes, [Mn(bipy)2]2+/HMS was evaluated in the oxidation of benzyl alcohol in the liquid phase using tert-butylhydroperoxide (TBHP) as an oxidant. The effects of Mn2+ loading and various solvents on the conversion and selectivity were studied. A second order function for the variation in catalytic activity with respect to the loading of Mn2+ ions in different catalyst samples was observed. The activity of the [Mn(bipy)2]2+/HMS catalyst differs with the type of the solvent and in this case, acetonitrile gives the best conversion results. The kinetic of benzyl alcohol oxidation was investigated at temperatures of 27, 46, 60, 75 and 90°C using [Mn(bipy)2]2+/HMS and excess TBHP. The order of reaction with respect to benzyl alcohol was determined to be pseudo-first order. The value of the apparent activation energy was also determined.

  19. A new validated method for the simultaneous determination of benzocaine, propylparaben and benzyl alcohol in a bioadhesive gel by HPLC.

    Science.gov (United States)

    Pérez-Lozano, P; García-Montoya, E; Orriols, A; Miñarro, M; Ticó, J R; Suñé-Negre, J M

    2005-10-04

    A new HPLC-RP method has been developed and validated for the simultaneous determination of benzocaine, two preservatives (propylparaben (nipasol) and benzyl alcohol) and degradation products of benzocaine in a semisolid pharmaceutical dosage form (benzocaine gel). The method uses a Nucleosil 120 C18 column and gradient elution. The mobile phase consisted of a mixture of methanol and glacial acetic acid (10%, v/v) at different proportion according to a time-schedule programme, pumped at a flow rate of 2.0 ml min(-1). The DAD detector was set at 258 nm. The validation study was carried out fulfilling the ICH guidelines in order to prove that the new analytical method, meets the reliability characteristics, and these characteristics showed the capacity of analytical method to keep, throughout the time, the fundamental criteria for validation: selectivity, linearity, precision, accuracy and sensitivity. The method was applied during the quality control of benzocaine gel in order to quantify the drug (benzocaine), preservatives and degraded products and proved to be suitable for rapid and reliable quality control method.

  20. Antimicrobial filtration with electrospun poly(vinyl alcohol) nanofibers containing benzyl triethylammonium chloride: Immersion, leaching, toxicity, and filtration tests.

    Science.gov (United States)

    Park, Jeong-Ann; Kim, Song-Bae

    2017-01-01

    Antimicrobial electrospun poly(vinyl alcohol) (PVA) nanofibers were synthesized by impregnating benzyl triethylammonium chloride (BTEAC) as an antimicrobial agent into PVA nanofibers. The BTEAC-PVA nanofibers were heat-methanol treated during the preparation for various tests. The BTEAC-PVA nanofibers became more hydrophilic than the PVA nanofibers due to incorporation of BTEAC. Through heat-methanol treatment, thermal property, crystallinity, and water stability of BTEAC-PVA nanofibers were improved considerably. The immersion test shows that heat-methanol treatment has an advantage over heat treatment to maintain BTEAC content in BTEAC-PVA nanofibers. The acute toxicity test demonstrates that the 24-h EC50 and 48-h EC50 values (EC50 = median effective concentration) of BTEAC to Daphnia magna were 113 and 90 mg/L, respectively. The leaching test indicates that the BTEAC concentration leached from BTEAC-PVA nanofibers was far below the concentration affecting the immobilization of D. magna. For antimicrobial filtration tests, the BTEAC-PVA nanofibers were deposited onto glass fiber filter. The antimicrobial filtration test was conducted against bacteria (Escherichia coli, Staphylococcus aureus) and bacteriophages (MS2, PhiX174), demonstrating that the BTEAC-PVA nanofibers could enhance the removal of E. coli and S. aureus considerably but not the removal of MS2 and PhiX174 under dynamic flow conditions.

  1. The determination of furaldehyde and benzaldehyde in plum brandy

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2005-01-01

    Full Text Available Among all alcohol liqueurs, brandies from drupaceous plants are characterized with the highest level of hydro cyanic acid, benzaldehyde and ethylcarbamate. In fruit brandies ethylcarbamate mainly originates from hydro cyanic acid during the processes of alcohol fermentation of crushed fruit and its preservation, distillation and ripening of the brandy. Hydro cyanic acid and benzaldehyde arise from the hydrolysis of amygdaline that is found exist in the heart of fruit stones and seeds, as well as from the hydrolysis of prunasine from the skin and flesh of drupaceous plants. The content of amygdaline and prunazine depends on the type of fruit, which corresponds to the potential content of hydro cyanic acid and benzaldehyde in the brandy that corresponds the stoichiometric ratio 1:3.94. The content of the aldehydes: furfural and benzaldehyde in plum brandy, strong plum brandy, young brandy, of domestic production in the various regions of Serbia were analyzed in this paper.

  2. Effects of ring fluorination on the transient atropisomerism of benzyl alcohol: the rotational spectrum of 3,4-difluorobenzyl alcohol

    Science.gov (United States)

    Evangelisti, Luca; Gou, Qian; Feng, Gang; Caminati, Walther

    2013-08-01

    The rotational spectra of the -OH and -OD isotopologues of 3,4-difluorobenzyl alcohol have been measured by pulsed jet Fourier transform microwave spectroscopy. The spectrum of one conformer has been assigned, characterised by a OCα-C1C2 dihedral angle of approximately 50°, and with the hydroxyl group zusammen with respect to the meta-F atom. μ c-type transitions of the -OH species are split into two evenly spaced component lines by 0.132(2) MHz, showing that the CH2OH group undergoes a tunnelling motion which connects two equivalent minima above and below the aromatic ring. The barrier for the interconversion of the two mirror forms has been calculated to be 155 cm-1.

  3. Synthesis, structural characterization, and benzyl alcohol oxidation activity of mononuclear manganese(II) complex with 2,2'-bipyridine: [Mn(bipy)2(ClO4)2

    OpenAIRE

    KANİ, İbrahim; KURTÇA, Mehmet

    2012-01-01

    A manganese(II) complex of 2,2'-bipyridine (bipy) was synthesized and characterized by X-ray diffraction, IR, and UV-vis spectroscopy. The activity of the complex was tested for oxidation of benzyl alcohols using t-BuOOH as an oxidant in organic solvents and in an organic/water biphasic system (hexane/H2O, toluene/H2O). The effect of solvent, temperature, oxidant, and some additives (KBr, N(C4H9)Br, and N-bromosuccinimide) on the oxidation of benzyl alcohol is reported. The res...

  4. Mg-AI Mixed Oxides Supported Bimetallic Au-Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol

    Institute of Scientific and Technical Information of China (English)

    王亮; 张伟; 曾尚景; 苏党生; 孟祥举; 肖丰收

    2012-01-01

    Nano-sized Au and Pd catalysts are favorable for oxidations with molecular oxygen, and the preparation of this kind of nanoparticles with high catalytic activities is strongly desirable. We report a successful synthesis of bimetal- lic Au-Pd nanoparticles with rich edge and comer sites on unique support of Mg-AI mixed oxides (Au-Pd/MAO), which are favorable for producing metal nanoparticles with high degree of coordinative unsaturation of metal atoms The systematic microscopic characterizations confirm the bimetallic Au-Pd nanoparticles are present as Au-Pd alloy The irregular shape of the bimetallic nanoparticles are directly observed in HRTEM images. As we expected, Au-Pd/MAO gives very excellent catalytic performances in the aerobic oxidation of benzyl alcohol and glycerol. For example, Au-Pd/MAO shows very high TOF of 91000 h i at 433 K with molecular oxygen at air pressure in solvent-free oxidation of benzyl alcohol; this catalyst also shows relatively high selectivity for tartronic acid (TA- RAC, 36.6%) at high conversion (98.5%) in aerobic oxidation of glycerol. The superior catalytic properties of Au-Pd/MAO would be potentially important tbr production of fine chemicals.

  5. Benzyl Derivatives with in Vitro Binding Affinity for Human Opioid Receptors and Cannabinoid Receptors from the Fungus Eurotium repens

    Science.gov (United States)

    Bioassay-guided fractionation of the fungus Eurotium repens resulted in the isolation of two benzyl derivatives, repenol A (1) and repenol B (2). Seven known secondary metabolites were also isolated including five benzaldehyde compounds, flavoglaucin (3), tetrahydroauroglaucin (4), dihydroauroglauci...

  6. An investigation of the Lewis acid mediated 1,3-dipolar cycloaddition between N-benzyl-C-(2-pyridyl)nitrone and allylic alcohol. Direct entry to isoxazolidinyl C-nucleosides.

    Science.gov (United States)

    Merino, Pedro; Tejero, Tomas; Laguna, Mariano; Cerrada, Elena; Moreno, Ana; Lopez, Jose A

    2003-07-07

    The cycloaddition reaction of N-benzyl C-(2-pyridyl) nitrone with allylic alcohol has been carried out to obtain the corresponding 2-benzyl-3-(2-pyridyl)-5-hydroxymethylisoxazolidine. The influence of Lewis acids in the reaction has been studied and a complete 3,5-regioselectivity and cis diastereoselectivity was observed when the reaction was carried out with 1.0 equiv of AgOTf, [Ag(OClO3)(PPh2Me)] or Zn(OTf)2. Insight into the mechanism of the reaction has been obtained by isolating and characterizing (X-ray) the intermediate complexes. Also, a model based on both experimental and theoretical results is proposed.

  7. Synthesis of his-quaternary ammonium peroxotungstates (peroxomolybdates)and their catalytic activity in oxidation of alcohols by aqueous H2O2

    Institute of Scientific and Technical Information of China (English)

    SHI Xianying; WEI Junfa

    2007-01-01

    Three kinds of bis-quaternary ammonium salts of peroxotungstate and peroxomolybdate,such as PhCH2NO(O2)2(C2O4)] and PhCH2N(CH2)6NCH2Ph [MoO(O2)2(C2Oa)],have been synthesized and characterized.Their catalytic activity in the oxidation of cyclohexanol and benzyl alcohol was investigated with only aqueous 30% hydrogen peroxide.The results show that the bis-quaternary ammonium peroxotungstates are excellent catalysts in the oxidation of benzyl alcohol and cyclohexanol under moderate conditions.However,the catalytic ability of bis-quaternary ammonium peroxomolybadates is relatively poor.The yields of benzyl acid,benzaldehyde,and cyclohexanone reached up to 93.0%,93.6%,and 91.7%,respectively.

  8. Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol

    Indian Academy of Sciences (India)

    A Fallah Shojaei; K Tabatabaeian; M A Zanjanchi; H Fallah Moafi; N Modirpanah

    2015-03-01

    Powder samples of Ag/ZnO nanocomposite containing different amounts of Ag were synthesized by co-precipitation method. The synthesized samples were characterized by XRD, SEM, EDX and TEM techniques. The XRD results revealed that all the samples show wurtzite hexagonal phase of ZnO. The TEM micrographs of the samples showed that size of Ag-ZnO nanoparticles was in the range of 30–50 nm. Catalytic activity was tested using liquid-phase selective oxidation of benzylic alcohols to aldehydes. The influence of some parameters such as optimum weight of Ag, catalyst dosage, oxidant and various solvents were studied. The superior catalytic performance of the Ag/ZnO nanocomposite was observed in microwave condition compared to that performed in reflux condition. The catalysts were recycled three times in the oxidation of alcohols and little change in the conversion efficiency was observed. The highly dispersed Ag metal particles on ZnO surface was considered to be responsible for the catalytic activity.

  9. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  10. Full spectrum and selected spectrum based multivariate calibration methods for simultaneous determination of betamethasone dipropionate, clotrimazole and benzyl alcohol: Development, validation and application on commercial dosage form

    Science.gov (United States)

    Darwish, Hany W.; Elzanfaly, Eman S.; Saad, Ahmed S.; Abdelaleem, Abdelaziz El-Bayoumi

    2016-12-01

    Five different chemometric methods were developed for the simultaneous determination of betamethasone dipropionate (BMD), clotrimazole (CT) and benzyl alcohol (BA) in their combined dosage form (Lotriderm® cream). The applied methods included three full spectrum based chemometric techniques; namely principal component regression (PCR), Partial Least Squares (PLS) and Artificial Neural Networks (ANN), while the other two methods were PLS and ANN preceded by genetic algorithm procedure (GA-PLS and GA-ANN) as a wavelength selection procedure. A multilevel multifactor experimental design was adopted for proper construction of the models. A validation set composed of 12 mixtures containing different ratios of the three analytes was used to evaluate the predictive power of the suggested models. All the proposed methods except ANN, were successfully applied for the analysis of their pharmaceutical formulation (Lotriderm® cream). Results demonstrated the efficiency of the four methods as quantitative tool for analysis of the three analytes without prior separation procedures and without any interference from the co-formulated excipient. Additionally, the work highlighted the effect of GA on increasing the predictive power of PLS and ANN models.

  11. Benzyl alcohol-ammonia (1:1) cluster structure investigated by combined IR-UV double resonance spectroscopy in jet and ab initio calculation

    Indian Academy of Sciences (India)

    Nikhil Guchhait

    2001-06-01

    Laser-induced fluorescence excitation and IR-UV double resonance spectroscopy have been used to determine the hydrogen-bonded structure of benzyl alcohol-ammonia (1:1) cluster in a jet-cooled molecular beam. In addition, ab initio quantum chemical calculations have been performed at HF/6-31G and HF/6-31G(d, p) levels for different ground state equilibrium structures of the cluster to correlate the calculated OH and NH frequencies and their intensities with experimental results. The broad red-shifted OH-stretching mode in the IR-UV double resonance spectrum suggests strong hydrogen bonding between the hydroxyl hydrogen and the lone pair of the ammonia nitrogen. The position and intensity distribution of the calculated NH and OH modes for the minimum-energy gauche form at HF/6-31 level have better correlation with the experimental results compared to other calculated ground state equilibrium conformers. These results lead to the conclusion that the minimum energy gauche form of the cluster is populated in the jet-cooled condition.

  12. Densities, Ultrasonic Speeds, Viscosities and Refractive Indices of Binary Mixtures of Benzene with Benzyl Alcohol,Benzonitrile, Benzoyl Chloride and Chlorobenzene at 303.15 K

    Institute of Scientific and Technical Information of China (English)

    ALI,A.; PANDEY,J.D.; SONI,N.K.; NAIN,A.K.; LAL,B.; CHAND,D.

    2005-01-01

    Densities, p, ultrasonic speeds, u, viscosities, η, and refractive indices, n, of pure benzene, benzyl alcohol (BA),benzonitrile (BN), benzoyl chloride (BC), chlorobenzene (CB) and their thirty six binary mixtures, with benzene as common component, were measured at 303.15 K over the entire mole fraction range. From these experimental data the values of deviations in ultrasonic speed, Au, isentropic compressibility, Δks, excess acoustic impedance, ZE, deviation in viscosity, Δη, and excess Gibbs free energy of activation of viscous flow, G*E, and partial molar isentropic compressibility, Kφ,2 of BA, BN, BC and CB in benzene were computed. The variation of these derived functions with composition of the mixtures suggested the increased cohesion (molecular order) in the solution and that interaction (A-B)>(A-A) or (B-B). Moreover, theoretical prediction of ultrasonic speed, viscosity and refractive index of all the four binary mixtures was made on the basis of empirical and semi-empirical relations by using the experimental values of the pure components. Comparison of theoretical results with the experimental values was made in order to assess the suitability of these relations in reproducing the experimental values of u, η and n. Also, molecular radii of pure liquids and the average molecular radii of binary mixtures were evaluated using the corresponding refractive indices of pure liquids and binary mixtures. The average molecular radii of binary mixtures were found to be additive with respect to mole fraction of the pure component.

  13. 苯甲醛在光催化反应中氧化还原选择性的理论研究%Theoretical Study on the Selective Redox Mechanism of Benzaldehyde in Photo-catalyzed Reaction†

    Institute of Scientific and Technical Information of China (English)

    黄晓; 甘汉麟; 彭亮; 顾凤龙

    2016-01-01

    采用密度泛函理论方法在 M06-2X/6-311G*水平上模拟了不同反应条件下, TiO2对苯甲醛的光催化还原和氧化的反应。计算结果表明,苯甲醛的光催化还原和氧化反应均可在常温下发生;在缺氧但有乙醇存在的条件下,乙醇分子可与氧化性物质发生反应,生成醇自由基,苯甲醛主要发生光催化还原反应生成苯甲醇;在有氧气但无乙醇存在条件下,还原性的光生电子被氧气捕获,避免了苯甲醛被还原,主要发生光催化氧化反应生成苯甲酸。%The photoelectron and photohole could be generated on the surface of TiO2 under the UV irradiation. Some reactive species could be produced indirectly. The photoelectron could be trapped by oxygen leading to yield the superoxide anion radicals, while the photohole can react with the solvent molecules to generate the hydroxyl radical and alcohol radical. The substrate may be reduced by the photoelectron directly, or by alcohol radicals. And it may be oxidized by the photohole directly, or by the reactive species of hydroxyl radicals and superoxide anion radicals. The M06-2X/ 6-311G* method was employed to investigate the selective redox mechanism of benzaldehyde in solution, which was reduced or oxidized by the reactive species generated during the photo-catalyzed process in different reaction conditions. According to the computation results, the photo-redox reaction of benzaldehyde would be happened in room temperature. In oxygen-free ethanol solvent, the ethanol molecules could react with the oxidizing species to yield the alcohol radicals, while benzaldehyde could be mainly reduced to benzyl alcohol. In oxygen-rich without ethanol condition, the reductive photoelectron is trapped by oxygen to prohibit the reduction of benzaldehyde, so benzaldehyde is mainly oxidized to benzoic acid.

  14. Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability

    Science.gov (United States)

    Shanmugam, C.; Sivasubramanian, G.; Parthasarathi, Bera; Baskaran, K.; Balachander, R.; Parameswaran, V. R.

    2016-06-01

    Silver nanoparticles (Ag-NPs) were synthesized from aqueous silver nitrate through a simple route using the leaf extract of Aristolochia indica L. (LAIL) which acted as a reducing as well as capping agent. X-ray diffraction confirmed that the synthesized silver particles have a face centred cubic structure. EDS predicted the presence of elemental silver. The SEM images showed the synthesis of spherically mono-dispersed particles, with nano dimensions accounted by the TEM images. Infra-red spectrum adopted to the different organic functionalities present at the surface of the particles. TGA indicated an overall 11 % weight loss up to 1000 °C, suggesting desorption of biomolecules from the surface. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence of metallic silver nanoparticles. The prepared material was utilized as catalyst in the oxidation of benzyl alcohol with molecular oxygen as the oxidant in methanol, under ambient conditions of temperature and pressure. Also Ag-NPs showed good to moderate anti-microbial activity employing the Agar disc diffusion method against various strains using Ciprofloxacin and Fluconazole as standard. Free radical scavenging activity of the nanoparticles were observed by modified 1,1-diphynyl-2-picrylhydrazyl, DPPH and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS in vitro assays. The work presented here demonstrates the adaptability of the synthesized Ag-NPs in participating as a disinfectant agent, free radical scavenger and an effective oxidation catalyst. The basic premise of attaining sustainability through the green synthesis of smart multifaceted materials has been consciously addressed.

  15. Differential ability of cholesterol-enriched and gel phase domains to resist benzyl alcohol-induced fluidization in multilamellar lipid vesicles.

    Science.gov (United States)

    Maula, Terhi; Westerlund, Bodil; Slotte, J Peter

    2009-11-01

    Benzyl alcohol (BA) has a well-known fluidizing effect on both artificial and cellular membranes. BA is also likely to modulate the activities of certain membrane proteins by decreasing the membrane order. This phenomenon is presumably related to the ability of BA to interrupt interactions between membrane proteins and the surrounding lipids by fluidizing the lipid bilayer. The components of biological membranes are laterally diversified into transient assemblies of varying content and order, and many proteins are suggested to be activated or inactivated by their localization in or out of membrane domains displaying different physical phases. We studied the ability of BA to fluidize artificial bilayer membranes representing liquid-disordered, cholesterol-enriched and gel phases. Multilamellar vesicles were studied by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and trans-parinaric acid, which display different phase partitioning. Domains of different degree of order and thermal stability showed varying abilities to resist fluidization by BA. In bilayers composed of mixtures of an unsaturated phosphatidylcholine, a saturated high melting temperature lipid (sphingomyelin or phosphatidylcholine) and cholesterol, BA fluidized and lowered the melting temperature of the ordered and gel phase domains. In general, cholesterol-enriched domains were more resistant to BA than pure gel phase domains. In contrast, bilayers containing high melting temperature gel phase domains containing a ceramide or a galactosylceramide proved to be the most effective in resisting fluidization. The results of our study suggest that the ability of BA to affect the fluidity and lateral organization of the membranes was dependent on the characteristic features of the membrane compositions studied and related to the intermolecular cohesion in the domains.

  16. 十二烷基苄醇聚氧乙烯醚的合成及性能%Synthesis and physicochemical properties of ethoxylated lauryl benzyl alcohol

    Institute of Scientific and Technical Information of China (English)

    陆颖; 刘雪锋; 方云

    2012-01-01

    Ethoxylated lauryl benzyl alcohol (LBAEOn) ,was synthesized starting from n - dodecylbenzene by a three - step process including chloromethylation, hydrolysis and ethoxylation. Structure of the LBAEOn was characterized by FTIR and 1HNMR, and number of EO moles adducted n =9.5. Distribution of EO mole number in the LBAEO, was characterized by ESI - MS. Critical micelle concentration ( cmc) and surface tension at cmc (γcmc) of the product is 1. 83 × 10-6 mol · L-1 and 39. 0 mN ? m-1 respectively, which were measured by surface tension method at 25 ℃. In comparison with common nonionic surfactants such as ethoxylated fatty alcohol ( AEO9) and ethoxylated nonyl phenol ( NPEO10) , surface activity of the LBAEOn is higher while the foaming power is lower and lime soap dispersing power is similar. Solubilization capacity to octanol of the LBAEOn is higher,and wetting power is lower.%以十二烷基苯为原料,经氯甲基化、水解及环氧乙基化等步骤得到平均乙氧基(EO)数为9.5的十二烷基苄醇聚氧乙烯醚(LBAEOn).分别用FTlR和1HNMR表征了产物LBAEOn的结构特征,并用ESI - MS确定了LBAEOn中的EO分布.以表面张力法测得在25℃时LBAEOn的cmc和γcmc分别为1.83×10-6mol·L-1和39.0 mN·m-1;与脂肪醇聚氧乙烯醚(AEO9)和壬基酚聚氧乙烯醚(NPEO10)相比较,除钙皂分散性能大致相当以外,LBAEOn的表面活性较好、发泡力较低、对正辛醇的增溶能力较强和对帆布的润湿性能较差.

  17. Synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid.

    Science.gov (United States)

    Wang, Yun; Zhang, Dong-Hao; Chen, Na; Zhi, Gao-Ying

    2015-12-01

    In this study, lipase catalysis was successfully applied in synthesis of benzyl cinnamate through esterification of cinnamic acid with benzyl alcohol. Lipozyme TLIM was found to be more efficient for catalyzing this reaction than Novozym 435. In order to increase the yield of benzyl cinnamate, several media, including acetone, trichloromethane, methylbenzene, and isooctane, were used in this reaction. The reaction showed a high yield using isooctane as medium. Furthermore, the effects of several parameters such as water activity, reaction temperature, etc, on this reaction were analyzed. It was pointed out that too much benzyl alcohol would inhibit lipase activity. Under the optimum conditions, lipase-catalyzed synthesis of benzyl cinnamate gave a maximum yield of 97.3%. Besides, reusable experiment of enzyme demonstrated that Lipozyme TLIM retained 63% of its initial activity after three cycles. These results were of general interest for developing industrial processes for the preparation of benzyl cinnamate.

  18. Validation of a High-Performance Liquid Chromatography method for the determination of vitamin A, vitamin D3, vitamin E and benzyl alcohol in a veterinary oily injectable solution

    Directory of Open Access Journals (Sweden)

    Maria Neagu

    2015-06-01

    Full Text Available A new simple, rapid, accurate and precise high – performance liquid chromatography (HPLC method for determination of vitamin A, vitamin D3, vitamin E and benzyl alcohol in oily injectable solution was developed and validated. The method can be used for the detection and quantification of known and unknown impurities and degradants in the drug substance during routine analysis and also for stability studies in view of its capability to separate degradation products. The method was validated for accuracy, precision, specificity, robustness and quantification limits according to ICH Guidelines. The estimation of vitamin A, vitamin D3, vitamin E and benzyl alcohol was done by Waters HPLC system manager using gradient pump system. The chromatographic conditions comprised a reverse-phased C18 column (5 µm particle size, 250 mm×4.6 mm i.d. with a mobile phase consisting of tetrahydrofurane, acetonitrile and water in gradient elution. The flow rate was 0.8 ml/min and 2.0 ml/min. Standard curves were linear over the concentration range of 16.50 µg/ml to 11.00 mg/ml for vitamin A, 10.05 µg/ml to 6.70 mg/ml for vitamin E, 0.075 µg/ml to 0.050 mg/ml for vitamin D3 and 1.25 mg/ml to 5.00 mg/ml for benzylalcohol. Statistical analyses proved the method was precise, reproducible, selective, specific and accurate for analysis of vitamin A, vitamin D3, vitamin E, benzyl alcohol and impurities.

  19. Photocatalytic benzylic C–H bond oxidation with a flavin scandium complex

    OpenAIRE

    Mühldorf, Bernd; Wolf, Robert

    2015-01-01

    The enhanced reduction potential of riboflavin tetraacetate coordinating to scandium triflate enables the challenging photocatalytic C–H oxidation of electron-deficient alkylbenzenes and benzyl alcohols.

  20. β-环糊精微反应器中苯甲醇氧化制备苯甲醛%Preparation of Benzaldehyde Through Oxidation of Benzyl Alcohol in Microreactor of β-Cyclodextrin

    Institute of Scientific and Technical Information of China (English)

    于红杰; 兰支利; 尹笃林; 欧建雄

    2008-01-01

    以β-环糊精为微反应器,用NBS作为氧化剂,能有效进行催化苯甲醇氧化制备苯甲醛.实验结果表明,β-环糊精微反应器中一锅法合成苯甲醛,具有反应条件温和、无环境污染、操作简单、用水作为溶剂、环糊精可以循环使用等优点.在反应温度为25℃,反应时间为10 h,β-环糊精、苯甲醇、NBS的摩尔比为2:1:2时,苯甲醛的产率可达83.7%.

  1. 乙酸镍吡啶配合物催化的分子氧氧化反应研究%Ni(OAc)_2/Pyridine Complex Catalytic Oxidation of Benzylic Compounds and Alcohols with Molecular Oxygen

    Institute of Scientific and Technical Information of China (English)

    陈委; 王培龙; 孙跃; 苏艺明; 郑小琦

    2012-01-01

    Ni(OAc)2 combined with pyridine and tert-Butylhydroperoxide(TBHP) affords selective catalytic aerobic oxidations of benzylic C-Hs and alcohols under mild conditions(80~90 ℃,O2 0.1 MPa).The effects of ligand,solvent,temperature and the nature of the peroxide additives were investigated to give an optimised oxidation protocol for these compounds.In the oxidation of the benzylic C-Hs,a high ketone/alcohol selectivity were obtained.Ni(III) was detected by ESR,and the mechanism was verified.Competition experiments revealed that formation of the carbonyl compounds is not a result of further oxidation of the alcohols.It is suggested that ketone are a product of metal-catalysed decomposition of the hydroperoxide.%Ni(OAc)2结合吡啶和叔丁基过氧化氢(TBHP)实现了苄基C-H与苄基醇类化合物在温和条件下(80~90℃,O21 atm)的选择性催化分子氧氧化反应.研究了过氧化物添加剂,配体,溶剂和温度的影响,得到了优化的反应条件.在苄基C-H的氧化中显示了很高的酮/醇选择性.用ESR法进行了Ni(III)的检测,证实了反应机理.竞争实验说明羰基化合物的生成不是因为醇继续氧化.酮可被解释为过氧化氢中间体受金属催化分解的产物.

  2. Catalytic Enantioselective Alkylation of Benzaldehyde with Diethylzinc Using Chiral Nonracemic (Thio)-phosphoramidates

    NARCIS (Netherlands)

    Hulst, Ron; Heres, Hero; Fitzpatrick, Kevin; Peper, Nathalie C.M.W.; Kellogg, Richard M.

    1996-01-01

    Two chiral nonracemic γ-amino alcohols, ephedrine thiol and the corresponding (thio)-phosphoramidates have been examined as catalysts for the enantioselective alkylation of benzaldehyde by diethylzinc. Addition of titanium tetraisopropoxide increases the yield as well as the enantioselectivity; 1-ph

  3. Synthesis of some novel fluoro isoxazolidine and isoxazoline derivatives using -benzyl fluoro nitrone via cycloaddition reaction in ionic liquid

    Indian Academy of Sciences (India)

    Bhaskar Chakraborty; Govinda Prasad Luitel

    2013-09-01

    1-Butyl-3-methylimidazolium-based ionic liquids are found to accelerate significantly the intermolecular 1,3-dipolar cycloaddition of -benzyl-fluoro nitrone derived in situ from 2,6-difluoro benzaldehyde and -benzylhydroxylamine, with activated alkenes and electron deficient alkynes to afford enhanced rates and improved yields of novel isoxazolidines and isoxazolines.

  4. Facile coupling of propargylic, allylic and benzylic alcohols with allylsilane and alkynylsilane, and their deoxygenation with Et3SiH, catalyzed by Bi(OTf)3 in [BMIM][BF4] ionic liquid (IL), with recycling and reuse of the IL.

    Science.gov (United States)

    Kumar, G G K S Narayana; Laali, Kenneth K

    2012-09-28

    Allyltrimethylsilane (allyl-TMS) reacts with propargylic alcohols 1a-1d in the presence of 10% Bi(OTf)(3) in [BMIM][BF(4)] solvent to furnish the corresponding 1,5-enynes in respectable isolated yields (87-93%) at room temperature. The utility of Bi(OTf)(3) as a superior catalyst was demonstrated in a survey study on coupling of allyl-TMS with employing several metallic triflates (Bi, Ln, Al, Yb) as well as, B(C(6)F(5))(3), Zn(NTf(2))(2) and Bi(NO(3))(3)·5H(2)O. Coupling of cyclopropyl substituted propargylic alcohol with allyl-TMS gave the skeletally intact 1,5-enyne and a ring opened derivative as a mixture. Coupling of propargylic/allylic alcohol with allyl-TMS resulted in allylation at both benzylic (2 isomers) and propargylic positions, as major and minor products respectively. The scope of this methodology for allylation of a series of allylic and benzylic alcohols was explored. Chemoselective reduction of a host of propargylic, propagylic/allylic, bis-allylic, allylic, and benzylic alcohols with Et(3)SiH was achieved in high yields with short reaction times. The same approach was successfully applied to couple representative propargylic and allylic alcohols with 1-phenyl-2-trimethylsilylacetylene. The recovery and reuse of the ionic liquid (IL) was gauged in a case study with minimal decrease in isolated yields after six cycles.

  5. Heterocyclyl linked anilines and benzaldehydes as precursors for biologically significant new chemical entities

    Indian Academy of Sciences (India)

    Raman K Verma; Vijay Kumar; Prithwish Ghosh; Lalit K Wadhwa

    2012-09-01

    Benzylidene and benzyl thiazolidinediones, oxazolidinediones, isoxazolidinediones and their acyclic analogs like alpha alkylthio/alkoxy phenylpropanoic acids, beta-keto esters and tyrosine-based compounds possess broad therapeutic potential in general and as Peroxisome Proliferator Activated Receptors (PPARs) agonists in particular in the management of hyperglycemia and hyperlipidaemia for the treatment of Type 2 Diabetes (T2D). We have synthesised and characterized some novel and suitably substituted heterocyclyl linked benzaldehydes and anilines, which can be easily and very readily derivatized to all the above mentioned classes to generate new chemical entities of broader biological significance. Synthesis of their benzylidene thiazolidinedione and diethyl malonate and also benzyl diethyl malonate and alpha-bromoesters derivatives is reported in some of the cases in the present work.

  6. 2-Phenyl-tetrahydropyrimidine-4(1H-ones – cyclic benzaldehyde aminals as precursors for functionalised β2-amino acids

    Directory of Open Access Journals (Sweden)

    Markus Nahrwold

    2009-09-01

    Full Text Available Novel procedures have been developed to condense benzaldehyde effectively with β-amino acid amides to cyclic benzyl aminals. Double carbamate protection of the heterocycle resulted in fully protected chiral β-alanine derivatives. These serve as universal precursors for the asymmetric synthesis of functionalised β2-amino acids containing acid-labile protected side chains. Diastereoselective alkylation of the tetrahydropyrimidinone is followed by a chemoselective two step degradation of the heterocycle to release the free β2-amino acid. In the course of this study, an L-asparagine derivative was condensed with benzaldehyde and subsequently converted to orthogonally protected (R-β2-homoaspartate.

  7. A Sequential Preparation of Organic Compounds for Senior Chemistry Classes

    Science.gov (United States)

    Merrigan, Cecilia; Crotty, Patricia

    1971-01-01

    Describes procedures suitable for student preparation of benzaldehyde, benzoic acid, and ethyl benzoate sequentially from benzyl alcohol. Preparation for benzyl chloride also given. All reagents except benzyl alcohol are common inorganic chemicals. (AL)

  8. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    Science.gov (United States)

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, pbenzaldehyde in combination with ascorbic acid should be avoided.

  9. FT-IR spectroscopy and DFT calculation study on the solvent effects of benzaldehyde in organic solvents.

    Science.gov (United States)

    Li, Yi; Zhang, Hui; Liu, Qing

    2012-02-01

    FT-IR spectra of benzaldehyde in 11 different organic solvents were recorded and analyzed. The density functional theory (DFT) B3LYP/6-31G* method was chosen to calculate the infrared spectrum of benzaldehyde in gaseous state. The electrostatic effects of different solvents in benzaldehyde solutions were calculated using DFT with the self-consistent isodensity polarizable continuum model (SCI-PCM). Two remarkable carbonyl (C=O) peaks of benzaldehyde were observed by FT-IR in alcohol solvents, which were caused by different hydrogen bond species and explained by ab initio calculation. The results showed that the combination of SCI-PCM model and ab initio calculation could give excellent agreements with FT-IR spectra of title compound in solutions.

  10. Catalyst system and process for benzyl ether fragmentation and coal liquefaction

    Science.gov (United States)

    Zoeller, Joseph Robert

    1998-04-28

    Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.

  11. PPA-SiO2 Catalyzed Multi-component Synthesis of N-[α-(β-Hydroxy-α-naphthyl)(benzyl)]O-Alkyl Carbamate Derivatives

    Institute of Scientific and Technical Information of China (English)

    SHATERIAN,Hamid Reza; HOSSEINIAN,Asghar; GHASHANG,Majid

    2009-01-01

    Silica-supported polyphosphoric acid (PPA-SiO2) was found to be an efficient catalyst for the multi-component condensation reaction of benzaldehydes,2-naphthol,and methyl/benzyl carbamate to afford the corresponding N-[α-(β-hydroxy-α-naphthyl)(benzyl)]O-alkyl carbamate derivatives in good to excellent yields.This new approach consistently has the advantage of short reaction time,high conversions,clean reaction profiles,and simple experimental and work-up procedures.

  12. Oxidation of Fluoroalkanesulfonyl fluoride/hydrogen peroxide/base/acetone System with Benzyl Alcohol Derivatives%氟烷磺酰氟/双氧水/碱/丙酮体系与苄醇衍生物的氧化反应

    Institute of Scientific and Technical Information of China (English)

    严兆华; 胡伟; 田伟生; 许云

    2013-01-01

    Oxidation of fluoroalkanesulfonyl fluoride/hydrogen peroxide/base/acetone system with six benzyl alcohol derivative substrates was reported. Fluoroalkanesulfonyl fluorides(RfSO2F) include 5-H-3-oxa-l ,1,2, 2,4,4,5, 5-octafluoropentanesulfonyl fluoride ( HCF2CF2OCF2CF2SO2F ) , perfluorobutanesulfonyl fluoride (n-C4F9SO2F) and perfluorooctanesulfonyl fluoride( n-C8F17SO2F). The optimized reaction condition was n ( Substrate) : n ( Rf SO2 F):n(H2O2):?( NaOH) = 1 : 4 : 8 : 8, solvent was acetone, reaction temperature was 20 °C and reaction time was 24 h. Yield of product ketones was 23%—92%. A plausible mechanism was proposed. Experimental results showed that in-situ generated fluorinatedalkano persulfonic acid intermediate could efficiently oxidize acetone and resulted dimethyl dioxirane could oxidize benzyl alcohol derivatives yielding corresponding ketones. The oxidizing ability of fluoroalkanesulfonyl fluoride/hydrogen peroxide/base/acetone system for the oxidation of benzyl alcohol derivatives is similar to that of the traditional Oxone/CH3COCH3 system. A novel method for the in-situ generation of dimethyl dioxirane was developed.%研究了氟烷磺酰氟/双氧水/氢氧化钠/丙酮体系与6个苄醇衍生物的氧化反应,其中氟烷磺酰氟包括HCF2CF2OCF2 CF2SO2F,n-C4F9 SO2F和n-C8F17SO2F.最优反应条件为n(苄醇衍生物)∶n(氟烷磺酰氟)∶n(双氧水)∶n(氢氧化钠)=1∶4∶8∶8,溶剂为丙酮,反应温度为20℃,反应时间为24 h.产物酮的收率为23% ~92%.探讨了该氧化反应的机理,原位生成的氟烷基过氧磺酸中间体可将丙酮氧化为二甲基二氧杂环丙烷,进而将反应体系中共存的苄醇衍生物氧化成相应的产物酮.氟烷磺酰氟/双氧水/氢氧化钠/丙酮体系原位生成的二甲基二氧杂环丙烷氧化苄位羟基的能力和传统的Oxone/CH3COCH3体系相当.本研究提供了一种新颖的原位制备二甲基二氧杂环丙烷的方法.

  13. Friction behavior of 304 stainless steel of varying hardness lubricated with benzene and some benzyl structures

    Science.gov (United States)

    Buckley, D. H.

    1974-01-01

    The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.

  14. Pd/C催化剂氢解α,α-二甲基苄醇制异丙苯%Hydrogenolysis of α,α-dimethyl-benzyl alcohol to cumene over Pd/C catalyst

    Institute of Scientific and Technical Information of China (English)

    王德举; 郭友娣; 王辉; 黄琴琴

    2016-01-01

    采用等体积浸渍法将活性组分钯负载在活性炭载体上,经化学还原制备负载Pd/C催化剂。将制备的Pd/C催化剂用于α,α-二甲基苄醇氢解制异丙苯反应,考察不同活性炭载体和热氢活化处理温度对催化剂性能的影响。结果表明,采用比表面积适中和孔容较大的活性炭作为催化剂载体,并在250℃进行热氢处理的催化剂具有良好的反应活性。比较适宜的工艺条件为:入口温度(140~160)℃,反应压力(2.0~3.0)MPa,氢油体积比200~300,空速4.0 h-1。催化剂寿命试验中,α,α-二甲基苄醇转化率99.00%,异丙苯选择性大于99.50%,催化剂稳定性优良,具有良好的工业应用前景。%The activated carbon carriers loaded with the active component was obtained by incipient-wetness impregnation method,and then was treated by chemical reduction to prepare Pd/C catalyst. The as-prepared catalyst was used for hydrogenolysis of α,α-dimethyl-benzyl alcohol to cumene. The effects of different activated carbon carriers and activation conditions on the performace of the catalyst were investigated. The results showed that the as-prepared catalyst prepared by using activated carbon carrier with the moderate specific surface area and larger pore volume and hot-hydrogenation treatment at 250 ℃possessed good catalytic reactivity. The optimum process condition was as follows:reactor inlet temperature (140-160)℃,reaction pressure(2. 0 -3. 0)MPa,hydrogen/oil volume ratio 200 -300 and LHSV 4 . 0 h-1 . The results of the catalyst service life experiment indicated that α,α-dimethyl-benzyl alcohol conversion of 99 . 00% and the selectivity to cumene of over 99 . 50% were attained;the catalyst exhibited good stability and industrial application prospects.

  15. 用清洁生产理念优化苯甲醇和苯甲酸的合成实验%Experiment of Synthesis Optimization for Benzyl Alcohol and Benzoic Acid by Stratagem of Clean Production

    Institute of Scientific and Technical Information of China (English)

    鹿桂芳; 赵喜芝; 王珩

    2009-01-01

    Preparing benzyl alcohol and benzoic acid by benzyalde is an important experiment in organic chemistry experiment teaching in colleges. But in conventional experiment some problem appears including great consumption of alkali and acid as well as pollution of benzene and hydrogen chloride on the laboratory. In the highlight of clean production such as source controlling, pollution reduction and efficiency enhancement, the parameters of traditional experiment were optimized for the purpose of reducing the pollution of laboratory. The stratagem of clean production may direct a new way for students' life.%以苯甲醛为原料制备苯甲醇与苯甲酸是高校有机化学实验教学中的一个重要实验,但在传统实验中,存在原料用量大,苯、氯化氢污染实验室环境等问题.文章利用清洁生产从源头控制、减污增效的思想,对本实验的传统参数进行了优化,从而减轻对实验室的污染.并在该思想的引领下,使学生了解清洁生产可从身边的事做起.

  16. Nanoscaled copper metal-organic framework (MOF) based on carboxylate ligands as an efficient heterogeneous catalyst for aerobic epoxidation of olefins and oxidation of benzylic and allylic alcohols.

    Science.gov (United States)

    Qi, Yue; Luan, Yi; Yu, Jie; Peng, Xiong; Wang, Ge

    2015-01-19

    Aerobic epoxidation of olefins at a mild reaction temperature has been carried out by using nanomorphology of [Cu3(BTC)2] (BTC = 1,3,5-benzenetricarboxylate) as a high-performance catalyst through a simple synthetic strategy. An aromatic carboxylate ligand was employed to furnish a heterogeneous copper catalyst and also serves as the ligand for enhanced catalytic activities in the catalytic reaction. The utilization of a copper metal-organic framework catalyst was further extended to the aerobic oxidation of aromatic alcohols. The shape and size selectivity of the catalyst in olefin epoxidation and alcohol oxidation was investigated. Furthermore, the as-synthesized copper catalyst can be easily recovered and reused several times without leaching of active species or significant loss of activity.

  17. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Taichi [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Processing Development Research Laboratory, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497 (Japan); Kitaoka, Takuya, E-mail: tkitaoka@agr.kyushu-u.ac.jp [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-05-01

    Highlights: • Flexible and porous paper-structured Ru(OH){sub x} catalysts were prepared successfully. • Ru(OH){sub x} catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O{sub 2}-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors.

  18. RING-OPENING POLYMERIZATION OF LACTONE IN THE PRESENCE OF BENZYL ALCOHOL CATALYZED BY ALIPHATIC TERTIARY AMINE%苄醇存在下脂肪叔胺催化内酯开环聚合

    Institute of Scientific and Technical Information of China (English)

    颜明发; 王涛; 黄永凯; 强娜; 全大萍

    2011-01-01

    In order to study the structure and the catalytic activity of aliphatic tertiary amines, the ring-opening polymerizations of trimethylene carbonate ( TMC ) and L-lactide ( L-LA) were catalyzed by aliphatic tertiary amines,including triethylamine ( TEA) , N, N, N', N'-tetramethylethylenediamine ( TMEDA ) , 1, 1,4,7, 7-pentamethyldiethylenetriamine (PMDTA) and 4-( dimethylamino) pyridine (DMAP) , using benzyl alcohol as initiator in THF at 551. Studies revealed the catalytic activity of these tertiary amines was increased according to the order; TEA < TMEDA ≈ PMDTA < DMAP. The relationships of polymer molecular weight with the conversion of monomer were linear, which were consistent with a living polymerization character. Finally, the plausible polymerization pathway was through an alcohol-activating mechanism. Aliphatic tertiary amines which were abundant in source and cheap in price were suitable for catalyzing the ring-opening bulk polymerization of lactone in low temperature because of their low boiling point, being liquid under ordinary conditions and being easy to get rid of.%为研究脂肪叔胺结构对内酯开环聚合规律的影响,以三乙胺( TEA)、N,N,N′,N′-四甲基乙二胺(TMEDA)、N,N,N′,N″,N″-五甲基二亚乙基三胺(PM DTA)3种不同结构的叔胺催化碳酸三亚甲基酯(TMC)和左旋丙交酯( L-LA)开环聚合.结果显示,在55℃的THF溶液中,以苄醇为引发剂,3种叔胺均能催化TMC和L-LA的开环聚合,聚合物的分子量与单体转化率成线性关系,表现出活性聚合特征.三者催化能力为TEA< TMEDA<PMDTA.对聚合物进行端基分析发现聚合反应可能是一个由醇活化机理引发的过程.

  19. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.

    Science.gov (United States)

    da Silva, Gabriel; Bozzelli, Joseph W

    2012-12-14

    The resonance stabilized benzyl radical is an important intermediate in the combustion of aromatic hydrocarbons and in polycyclic aromatic hydrocarbon (PAH) formation in flames. Despite being a free radical, benzyl is relatively stable in thermal, oxidizing environments, and is predominantly removed through bimolecular reactions with open-shell species other than O(2). In this study the reaction of benzyl with ground-state atomic oxygen, O((3)P), is examined using quantum chemistry and statistical reaction rate theory. C(7)H(7)O energy surfaces are generated at the G3SX level, and include several novel pathways. Transition state theory is used to describe elementary reaction kinetics, with canonical variational transition state theory applied for barrierless O atom association with benzyl. Apparent rate constants and branching ratios to different product sets are obtained as a function of temperature and pressure from solving the time-dependent master equation, with RRKM theory for microcanonical k(E). These simulations indicate that the benzyl + O reaction predominantly forms the phenyl radical (C(6)H(5)) plus formaldehyde (HCHO), with lesser quantities of the C(7)H(6)O products benzaldehyde, ortho-quinone methide, and para-quinone methide (+H), along with minor amounts of the formyl radical (HCO) + benzene. Addition of O((3)P) to the methylene site in benzyl produces a highly vibrationally excited C(7)H(7)O* adduct, the benzoxyl radical, which can β-scission to benzaldehyde + H and phenyl + HCHO. In order to account for the experimental observation of benzene as the major reaction product, a roaming radical mechanism is proposed that converts the nascent products phenyl and HCHO to benzene + HCO. Oxygen atom addition at the ortho and para ring sites in benzyl, which has not been previously considered, is shown to lead to the quinone methides + H; these species are less-stable isomers of benzaldehyde that are proposed as important combustion intermediates, but

  20. Direct Spectrophotometric Assay for Benzaldehyde Lyase Activity

    Directory of Open Access Journals (Sweden)

    Dessy Natalia

    2011-01-01

    Full Text Available Benzaldehyde lyase from Pseudomonas fluorescens Biovar I. (BAL, EC 4.1.2.38 is a versatile catalyst for the organic synthesis of chiral α-hydroxy ketones. To allow fast assessment of enzyme activity, a direct spectrophotometric assay is desirable. Here, a new robust and easy-to-handle assay based on UV absorption is presented. The assay developed is based on the ligation of the α-hydroxy ketone (R-2,2′-furoin from 2-furaldehyde. A robust assay with direct monitoring of the product is facilitated with a convenient concentration working range minimising experimental associated with low concentrations.

  1. Benzyl 2-((E-Tosyliminomethylphenylcarbamate

    Directory of Open Access Journals (Sweden)

    Kwang Min Ko

    2016-10-01

    Full Text Available Benzyl 2-((E-tosyliminomethylpenylcarbamate was prepared in good yield and characterized by the condensation reaction of benzyl 2-formylphenylcarbamate with p-toluenesulfonyl amine. The structure of the newly synthesized compound was determined using 1H, 13C-NMR, IR and mass spectral data.

  2. Alcohol

    Science.gov (United States)

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  3. Alcohol

    Science.gov (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  4. Adsorption, mobility, and dimerization of benzaldehyde on Pt(111)

    DEFF Research Database (Denmark)

    Rasmussen, Anton Michael Havelund; Hammer, Bjørk

    2012-01-01

    Building on results for the adsorption of benzene on Pt(111), the adsorption of benzaldehyde is investigated using density functional theory. Benzaldehyde is found to chemisorb preferentially with its aromatic ring in the flat-lying bridge geometry that is also preferred for benzene. Across the i...

  5. Benzaldehyde suppresses murine allergic asthma and rhinitis.

    Science.gov (United States)

    Jang, Tae Young; Park, Chang-Shin; Kim, Kyu-Sung; Heo, Min-Jeong; Kim, Young Hyo

    2014-10-01

    To evaluate the antiallergic effects of oral benzaldehyde in a murine model of allergic asthma and rhinitis, we divided 20 female BALB/c mice aged 8-10 weeks into nonallergic (intraperitoneally sensitized and intranasally challenged to normal saline), allergic (intraperitoneally sensitized and intranasally challenged to ovalbumin), and 200- and 400-mg/kg benzaldehyde (allergic but treated) groups. The number of nose-scratching events in 10 min, levels of total and ovalbumin-specific IgE in serum, differential counts of inflammatory cells in bronchoalveolar lavage (BAL) fluid, titers of Th2 cytokines (IL-4, IL-5, IL-13) in BAL fluid, histopathologic findings of lung and nasal tissues, and expressions of proteins involved in apoptosis (Bcl-2, Bax, caspase-3), inflammation (COX-2), antioxidation (extracellular SOD, HO-1), and hypoxia (HIF-1α, VEGF) in lung tissue were evaluated. The treated mice had significantly fewer nose-scratching events, less inflammatory cell infiltration in lung and nasal tissues, and lower HIF-1α and VEGF expressions in lung tissue than the allergic group. The number of eosinophils and neutrophils and Th2 cytokine titers in BAL fluid significantly decreased after the treatment (Pbenzaldehyde exerts antiallergic effects in murine allergic asthma and rhinitis, possibly through inhibition of HIF-1α and VEGF.

  6. Vanadia Supported on Mesoporous Carbon Nitride as a New Catalyst for Selective Oxidation of Benzyl Alcohol%介孔氮化碳负载氧化钒催化苯甲醇选择氧化反应

    Institute of Scientific and Technical Information of China (English)

    尚介坤; 王悦; 蒋权; 许杰; 李永昕

    2016-01-01

    Mesoporous graphitic carbon nitride (CND)was prepared and used as a catalytic support to load vanadia.The obtained V/CND materials were characterized by several characterization techniques including N2 adsorption-desorption,SAXS,TEM,XPS,Raman,FT-IR,and XPS spectroscopy.In the selective ox-idation reactions of benzyl alcohol,the V/CND showed high catalytic performances and good recyclability, especially superior selectivities (> 84%)to the values obtained over other vanadia catalysts supported on traditional materials (SBA-1 5 ,carbon nanotubes,and active carbon).As revealed by FT-IR and XPS re-sults,the active sites were attributed to the dispersed vanadia species.More importantly,the basic chemi-cal environment of the CND support was regarded to effectively restrain the deep oxidation of benzalde-hyde.%制备一系列介孔石墨相氮化碳负载氧化钒催化剂(V/CND)。通过 N2吸-脱附、小角 X 射线散射、透射电镜、X射线衍射、拉曼光谱、傅里叶红外光谱、X射线光电子能谱等表征手段对 V/CND材料的结构、形貌等理化性质进行表征。在苯甲醇选择氧化反应中,V/CND催化剂表现出较高的催化活性及良好的循环使用性。与传统载体材料(SBA-15、碳纳米管和活性炭)相比,V/CND催化剂具有更高的选择性(>84%)。测试结果表明催化剂活性中心是分散的氧化钒物种。CND材料作为一种碱性载体可以有效地抑制苯甲醛的深度氧化。

  7. Study of Oxidation Kinetics of Benzyl Alcohol Catalyzed by Nanoporous Metal-Organic Frameworks%纳米孔洞金属-有机骨架催化氧化苯甲醇动力学研究

    Institute of Scientific and Technical Information of China (English)

    吴云; 杨本宏; 李萌; 裘灵光

    2011-01-01

    具有纳米孔洞的金属-有机骨架材料Cu3(BTC)2(H2O)3为催化剂,过氧化氢为氧化剂,利用紫外可见光谱研究其催化氧化苯甲醇生成苯甲醛的催化反应动力学行为,系统地讨论了纳米孔洞金属-有机骨架材料的催化动力学。研究结果表明,随着反应介质的pH、催化剂与反应底物的摩尔比和反应温度的升高,准一级反应速率常数kobsd也会随之增大。根据所得实验结果,讨论了催化氧化反应动力学机理,建立了催化反应动力学模型。基于所建立的动力学模型和准一级反应速率常数kobsd,计算了催化反应的活化能Ea,催化剂与底物间的吸脱附平衡常数KS以及该反应在催化剂催化内表面生成产物的表观一级速率常数kN。%Kinetics of oxidation of benzyl alcohol catalyzed by nanoporous metal-organic frameworks Cu3(BTC)2(H2O)3was studied using UV-Vis spectral method.It was found that the apparent first-order rate constant increased remarkably with the increasing of pH,molar ratio of the catalyst to the substrate and reaction temperature.Based on the experimental results,catalysis mechanism for the catalytic oxidation was discussed,and a kinetic model was proposed.The apparent activation energy(Ea),association equilibrium constant between the catalyst and the substrate(KS),and apparent first-order rate constants of the catalytic reaction taking place on the surface of channels in the framework(kN) for each reaction have been calculated.

  8. Application of Magnetic Dicationic Ionic Liquid Phase Transfer Catalyst in Nuclophilic Substitution Reactions of Benzyl Halids in Water

    OpenAIRE

    Manouchehr Aghajeri; Ali Reza Kiasat; Bijan Mombeni Goodajdar

    2016-01-01

    magnetic dicationic ionic liquid (MDIL) was successfully prepared and evaluated as phase-transfer catalyst for nucleophilic substitution reactions. The reactions was occurred in water and furnished the corresponding benzyl derivatives in high yields. No evidence for the formation of by-product for example benzyl alcohol of the reaction was observed and the products were obtained in pure form without further purification.

  9. Preparation and characterization of new and improved soluble-starches, -amylose, and -amylopectin by reaction with benzaldehyde/zinc chloride.

    Science.gov (United States)

    Johnston, David A; Mukerjea, Rupendra; Robyt, John F

    2011-12-13

    Seven different starches from potato, rice, maize, waxymaize, amylomaize-VII, shoti, and tapioca, and potato amylose and potato amylopectin have been reacted with benzaldehyde, catalyzed by ZnCl(2), to give new water-soluble starches and water soluble-amylose and soluble-amylopectin. In contrast to the native starches, aqueous solutions of the modified starches could not be precipitated with 2-, 3-, or 4-volumes of ethanol. β-Amylase gave no reaction with the modified starches, in contrast to the native starches, indicating that the modification occurred exclusively at the nonreducing-ends, giving 4,6-benzylidene-D-glucopyranose at the nonreducing-ends. Reactions of α-amylase with native and modified potato and rice starches gave a decrease in the triiodide blue color and an increase in the reducing-value that were similar for the native- and modified-starches, indicating the modified starches had not been significantly altered by the modification. The benzaldehyde-modified starches and benzaldehyde-modified potato amylose and potato amylopectin components, therefore, have a starch structure very much like their native counterparts, in contrast to the Lintner, Small, and the alcohol/acid-hydrolyzed soluble-starches that have undergone acid hydrolysis. The benzaldehyde-modified starches and starch components have significantly higher water solubility than their native counterparts even though the structures of the modified starches had only been slightly altered from the structures of their native counterparts. They all gave crystal-clear solutions that did not retrograde.

  10. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives

    Science.gov (United States)

    Shakhatreh, Muhamad Ali K; Al-Smadi, Mousa L; Khabour, Omar F; Shuaibu, Fatima A; Hussein, Emad I; Alzoubi, Karem H

    2016-01-01

    Several applications of chalcones and their derivatives encouraged researchers to increase their synthesis as an alternative for the treatment of pathogenic bacterial and fungal infections. In the present study, chalcone derivatives were synthesized through cross aldol condensation reaction between 4-(N,N-dimethylamino)benzaldehyde and multiarm aromatic ketones. The multiarm aromatic ketones were synthesized through nucleophilic substitution reaction between 4-hydroxy acetophenone and benzyl bromides. The benzyl bromides, multiarm aromatic ketones, and corresponding chalcone derivatives were evaluated for their activities against eleven clinical pathogenic Gram-positive, Gram-negative bacteria, and three pathogenic fungi by the disk diffusion method. The minimum inhibitory concentration was determined by the microbroth dilution technique. The results of the present study demonstrated that benzyl bromide derivatives have strong antibacterial and antifungal properties as compared to synthetic chalcone derivatives and ketones. Benzyl bromides (1a and 1c) showed high ester activity against Gram-positive bacteria and fungi but moderate activity against Gram-negative bacteria. Therefore, these compounds may be considered as good antibacterial and antifungal drug discovery. However, substituted ketones (2a–b) as well as chalcone derivatives (3a–c) showed no activity against all the tested strains except for ketone (2c), which showed moderate activity against Candida albicans. PMID:27877017

  11. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  12. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    Science.gov (United States)

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  13. Fluorescence Quenching of Benzaldehyde in Water by Hydrogen Atom Abstraction.

    Science.gov (United States)

    Fletcher, Katharyn; Bunz, Uwe H F; Dreuw, Andreas

    2016-09-01

    We computed the mechanism of fluorescence quenching of benzaldehyde in water through relaxed potential energy surface scans. Time-dependent density functional theory calculations along the protonation coordinate from water to benzaldehyde reveal that photoexcitation to the bright ππ* (S3 ) state is immediately followed by ultrafast decay to the nπ* (S1 ) state. Evolving along this state, benzaldehyde (BA) abstracts a hydrogen atom, resulting in a BAH(.) and OH(.) radical pair. Benzaldehyde does not act as photobase in water, but abstracts a hydrogen atom from a nearby solvent molecule. The system finally decays back to the ground state by non-radiative decay and an electron transfers back to the OH(.) radical. Proton transfer from BAH(+) to OH(-) restores the initial situation, BA in water.

  14. Crystal structure of benzyl (E)-2-(3,4-di-meth-oxy-benzyl-idene)hydrazine-1-carbodi-thio-ate.

    Science.gov (United States)

    Tan, Yew-Fung; Break, Mohammed Khaled Bin; Tahir, M Ibrahim M; Khoo, Teng-Jin

    2015-02-01

    The title compound, C17H18N2O2S2, synthesized via a condensation reaction between S-benzyl di-thio-carbazate and 3,4-di-meth-oxy-benzaldehyde, crystallized with two independent mol-ecules (A and B) in the asymmetric unit. Both mol-ecules have an L-shape but differ in the orientation of the benzyl ring with respect to the 3,4-di-meth-oxy-benzyl-idine ring, this dihedral angle is 65.59 (8)° in mol-ecule A and 73.10 (8)° in mol-ecule B. In the crystal, the A and B mol-ecules are linked via pairs of N-H⋯S hydrogen bonds, forming dimers with an R 2 (2)(8) ring motif. The dimers are linked via pairs of C-H⋯O hydrogen bonds, giving inversion dimers of dimers. These units are linked by C-H⋯π inter-actions, forming ribbons propagating in the [100] direction.

  15. Alcohol

    NARCIS (Netherlands)

    Hendriks, H.F.; Tol, A. van

    2005-01-01

    Alcohol consumption affects overall mortality. Light to moderate alcohol consumption reduces the risk of coronary heart disease; epidemiological, physiological and genetic data show a causal relationship. Light to moderate drinking is also associated with a reduced risk of other vascular diseases an

  16. Benzylation of Aromatic Compounds with Benzyl Chloride Catalyzed by Nafion/SiO2 Nanocomposite Catalyst

    Institute of Scientific and Technical Information of China (English)

    Kun Guo YANG; Rui Mao HUA; Hai WANG; Bo Qing XU1

    2005-01-01

    In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields.The catalyst showed high catalytic activity not only for electron-rich aromatic compounds, but also for electron-poor aromatic compounds. Under identical conditions, the self-benzylation of benzyl chloride, and dibenzylation and/or multi-benzylation of aromatic compounds were negligible.

  17. Alcohol

    Science.gov (United States)

    ... changes that come from drinking alcohol can make people do stupid or embarrassing things, like throwing up or peeing on themselves. Drinking also gives people bad breath, and no one enjoys a hangover. ...

  18. Adsorption of Benzaldehyde on Granular Activated Carbon: Kinetics, Equilibrium, and Thermodynamic

    OpenAIRE

    Rajoriya, R.K.; Prasad, B; Mishra, I.M.; Wasewar, K. L.

    2007-01-01

    Adsorption isotherms of benzaldehyde from aqueous solutions onto granular activated carbon have been determined and studied the effect of dosage of granular activated carbon, contact time, and temperature on adsorption. Optimum conditions for benzaldehyde removal were found adsorbent dose 4 g l–1 of solution and equilibrium time t 4 h. Percent removal of benzaldehyde increases with the increase in adsorbent dose for activated carbon, however, it decreases with increase in benzaldehyde m...

  19. 纳米SiO2负载Preyssler杂多酸催化剂对水杨酸与苄醇或脂肪醇酯化反应的催化性能%Catalytic Performance of Nano-SiO2-Supported Preyssler Heteropolyacid in Esterification of Salicylic Acid with Aliphatic and Benzylic Alcohols

    Institute of Scientific and Technical Information of China (English)

    Fatemeh F. BAMOHARRAM; Majid M. HERAVI; Javad EBRAHIMI; Ali AHMADPOUR; Mojtaba ZEBARJAD

    2011-01-01

    An efficient and environmentally benign procedure for the catalytic esterification of salicylic acid with aliphatic alcohols,CnH2n+1OH (n = 1-5) and benzylic alcohols, RC6H4CH2OH (R = H, NO2, OCH3, Bt, Cl, Me) was developed using nano-SiO2-supported Preyssler heteropolyacid both under thermal conditions and microwave irradiation. Silica nanostructures were obtained through a sol-gel method and were characterized by transmission electron microscopy and powder X-ray diffraction. The effects of various parameters such as solvent type, molar ratio of substrates, Preyssler heteropolyacid loading on silica, catalyst amount, temperature, and reaction time were studied and the optimum conditions were obtained. It has been found that the catalyst with 30 wt% loading is highly active and shows high yields in esterification reactions. The use of nano-SiO2-supported Preyssler heteropolyacid coupled with microwave irradiation allows a solvent-free, rapid (3 min), and high-yielding reaction. This catalyst can be easily recovered and reused for many times without a significant loss in its activity.

  20. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 20, Revision 3 (FGE.20Rev3): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider in this revision 3 of Flavouring Group Evaluation 20, the SCF Opinion on benzoic acid. Furthermore information on stereoisomeric composition for two substa...

  1. Application of Magnetic Dicationic Ionic Liquid Phase Transfer Catalyst in Nuclophilic Substitution Reactions of Benzyl Halids in Water

    Directory of Open Access Journals (Sweden)

    Manouchehr Aghajeri

    2016-06-01

    Full Text Available magnetic dicationic ionic liquid (MDIL was successfully prepared and evaluated as phase-transfer catalyst for nucleophilic substitution reactions. The reactions was occurred in water and furnished the corresponding benzyl derivatives in high yields. No evidence for the formation of by-product for example benzyl alcohol of the reaction was observed and the products were obtained in pure form without further purification.

  2. A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology.

    Science.gov (United States)

    Zhang, Dong-Hao; Zhang, Jiang-Yan; Che, Wen-Cai; Wang, Yun

    2016-09-01

    In this work, the new approach to synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid with benzyl alcohol is optimized by response surface methodology. The effects of various reaction conditions, including temperature, enzyme loading, substrate molar ratio of benzyl alcohol to cinnamic acid, and reaction time, are investigated. A 5-level-4-factor central composite design is employed to search for the optimal yield of benzyl cinnamate. A quadratic polynomial regression model is used to analyze the experimental data at a 95% confidence level (P<0.05). The coefficient of determination of this model is found to be 0.9851. Three sets of optimum reaction conditions are established, and the verified experimental trials are performed for validating the optimum points. Under the optimum conditions (40°C, 31mg/mL enzyme loading, 2.6:1 molar ratio, 27h), the yield reaches 97.7%, which provides an efficient processes for industrial production of benzyl cinnamate.

  3. Infrared Spectra and Hydrogen Bonds of Biologically Active Benzaldehydes

    Science.gov (United States)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shimko, A. N.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2013-09-01

    IR-Fourier spectra of solutions and crystals of biologically active benzaldehyde derivatives were studied. Specific features of the formation of intra- and intermolecular hydrogen bonds were analyzed. Spectral signatures that characterized participation of the hydroxyl OH group and also the OCH3 and C=O groups in the formation of intramolecular hydrogen bonds of the three different types O-H···O-H, O-H···O-CH3, and O-H···O=C were revealed. Intramolecular hydrogen bonds of the types O-H···O-H and O-H···O-CH3 were absent for benzaldehyde derivatives in the crystal phase. Only hydroxyl and carbonyl groups participated in intermolecular interactions. This resulted in the formation of linear intermolecular dimers. Seven various configurations of the linear dimers were identified in solutions and crystals.

  4. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    Science.gov (United States)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  5. [A new benzaldehyde from aerial part of Rehmannia glutinosa].

    Science.gov (United States)

    Zou, Yan; Zhang, Lei; Xu, Jie-kun; Cheng, Qian; Ye, Xian-sheng; Li, Ping; Zhang, Wei-ku; Li, Yong-ji

    2015-04-01

    A new benzaldehyde, 3-hydroxy-4-(4-(2-hydroxyethyl) phenoxy) henzaldehyde(1), together with six known compounds, including isovanillic acid(2), pyrocatechol(3), glutinosalactone A(4), chrysoeriol(5), apigenin(6) and luteolin(7) were isolated from aerial part of Rehmannia glutinosa. The compounds were isolated by macroporous resin, silica gel, Sephadex LH-20 and HPLC chromatographies. The chemical structures of 1-7 were elucidated on the basis of spectral analysis (MS, 1D NMR and 2D NMR).

  6. Biomass pyrolysis: thermal decomposition mechanisms of furfural and benzaldehyde.

    Science.gov (United States)

    Vasiliou, AnGayle K; Kim, Jong Hyun; Ormond, Thomas K; Piech, Krzysztof M; Urness, Kimberly N; Scheer, Adam M; Robichaud, David J; Mukarakate, Calvin; Nimlos, Mark R; Daily, John W; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G Barney

    2013-09-14

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  7. Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation

    Science.gov (United States)

    Su, Li; Ye, Xiangju; Meng, Sugang; Fu, Xianliang; Chen, Shifu

    2016-10-01

    A series of ternary chalcogenides, zinc indium sulphide (ZnIn2S4), were synthesized by a simple solvothermal method with different solvents. The structure, textural, and optical properties of the resulting materials were thoroughly characterized by several techniques. The as-prepared ZnIn2S4 samples could all be employed as excellent photocatalysts to activate O2 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light illumination. The results showed that ZnIn2S4 prepared in ethanol solvent (ZIS-EtOH) exhibited the highest photocatalytic activity among the screened samples. The differences of photocatalytic performance for ZnIn2S4 samples prepared in different media were mainly attributed to the different levels of exposed {0001} special facets caused by the exposure extent of the basic crystal plane. In addition, rad O2- and positive holes were proved to be the main active species during the photocatalytic process. Combined with the previous reports, a possible photocatalytic mechanism for the selective oxidation of benzyl alcohol to benzaldehyde over ZnIn2S4 sample was proposed.

  8. Serotonin mediates a learned increase in attraction to high concentrations of benzaldehyde in aged C. elegans.

    Science.gov (United States)

    Tsui, David; van der Kooy, Derek

    2008-11-01

    We utilized olfactory-mediated chemotaxis in Caenorhabditis elegans to examine the effect of aging on information processing and animal behavior. Wild-type (N2) young adults (day 4) initially approach and eventually avoid a point source of benzaldehyde. Aged adult animals (day 7) showed a stronger initial approach and a delayed avoidance to benzaldehyde compared with young adults. This delayed avoidance is due to an increased attraction rather than a decreased avoidance to benzaldehyde because (1) aged odr-3 mutants that are defective in odor attraction showed no delayed benzaldehyde avoidance, and (2) the delay in avoidance was also observed with another attractant diacetyl, but not the repellent octanol. Interestingly, the stronger expression of attractive behavior was only observed at benzaldehyde concentrations of 1% or higher. When worms were grown on nonbacterial growth media instead of Escherichia coli, thus removing the contingency between odors released from the food and the food itself, the increase in attraction to benzaldehyde disappeared. The increased attraction recovered after reinitiating the odor-food contingency by returning animals to E. coli food or supplementing axenic media with benzaldehyde. Moreover, serotonin-deficient mutants showed a deficit in the age-enhanced attraction. These results suggest that the increased attraction to benzaldehyde in aged worms is (1) serotonin mediated, (2) specific to high concentration of odorants, and (3) dependent on a learned association of odor metabolites with the presence of food. We propose that associative learning may selectively modify pathways at or downstream from a low-affinity olfactory receptor.

  9. Benzyl 2-β-Glucopyranosyloxybenzoate, a New Phenolic Acid Glycoside from Sarcandra glabra

    OpenAIRE

    Xudong Xu; Haifeng Wu; Xiaoru Hu; Shilin Chen; Junshan Yang; Xiaopo Zhang

    2012-01-01

    From the whole plant of Sarcandra glabra, a new phenolic acid glycoside, benzyl 2-β-glucopyranosyloxybenzoate (1), together with seven known compounds including eleutheroside B1 (2), 5-O-caffeoylshikimic acid (3), (–)-(7S, 8R)-dihydrodehydro-diconiferyl alcohol (

  10. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xinbo [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Wang, Danjun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Li, Kebin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Zhen, Yanzhong [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Hu, Huaiming [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Xue, Ganglin, E-mail: xglin707@163.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China)

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.

  11. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

    Science.gov (United States)

    Gang, D R; Kasahara, H; Xia, Z Q; Vander Mijnsbrugge, K; Bauw, G; Boerjan, W; Van Montagu, M; Davin, L B; Lewis, N G

    1999-03-12

    Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

  12. Cherry-flavoured electronic cigarettes expose users to the inhalation irritant, benzaldehyde.

    Science.gov (United States)

    Kosmider, Leon; Sobczak, Andrzej; Prokopowicz, Adam; Kurek, Jolanta; Zaciera, Marzena; Knysak, Jakub; Smith, Danielle; Goniewicz, Maciej L

    2016-04-01

    Many non-cigarette tobacco products, including e-cigarettes, contain various flavourings, such as fruit flavours. Although many flavourings used in e-cigarettes are generally recognised as safe when used in food products, concerns have been raised about the potential inhalation toxicity of these chemicals. Benzaldehyde, which is a key ingredient in natural fruit flavours, has been shown to cause irritation of respiratory airways in animal and occupational exposure studies. Given the potential inhalation toxicity of this compound, we measured benzaldehyde in aerosol generated in a laboratory setting from flavoured e-cigarettes purchased online and detected benzaldehyde in 108 out of 145 products. The highest levels of benzaldehyde were detected in cherry-flavoured products. The benzaldehyde doses inhaled with 30 puffs from flavoured e-cigarettes were often higher than doses inhaled from a conventional cigarette. Levels in cherry-flavoured products were >1000 times lower than doses inhaled in the workplace. While e-cigarettes seem to be a promising harm reduction tool for smokers, findings indicate that using these products could result in repeated inhalation of benzaldehyde, with long-term users risking regular exposure to the substance. Given the uncertainty surrounding adverse health effects stemming from long-term inhalation of flavouring ingredients such as benzaldehyde, clinicians need to be aware of this emerging risk and ask their patients about use of flavoured e-cigarettes.

  13. Polycondensation of pyrrole and benzaldehyde catalyzed by Maghnite–H+

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Rapid synthesis of poly[(pyrrole-2,5-diyl-co-(benzylidene] was achieved under microwave irradiation via the condensation of pyrrole and benzaldehyde in 1,2-dichloroethane using acid exchanged montmorillonite clay called Maghnite–H+ (Mag–H+ as an efficient catalyst. The effect of the amount of catalyst and of time on the polymerization yield and on the viscosity of the polymers was studied. Compared with conventional static interfacial polymerization, the microwave-radiation polymerization reaction proceeded rapidly and was completed within 35 s. The conjugated polymer was characterized by means of 1H-NMR, X-ray diffraction, FT-IR spectroscopy and AFM. The X-ray data showed the presence of a backbone form of the [(pyrrole-2,5-diyl-co-(benzylidene] formed.

  14. Explorations of Crystalline Effects on 4-(Benzyloxy)Benzaldehyde Properties

    Science.gov (United States)

    Harismah, Kun; Ozkendir, O. Murat; Mirzaei, Mahmoud

    2015-12-01

    The properties of 4-(benzyloxy)benzaldehyde (BBA), as a pharmaceutically important compound, have been investigated through the density functional theory (DFT) calculations. The properties of original crystalline and optimised gaseous structures have been evaluated to recognise the crystalline effects. In addition to the structural properties, nuclear magnetic resonance (NMR) properties have also been evaluated for both investigated systems to better detect the effects in atomic levels. The results indicated that the structural shape of BBA is significantly changed in the optimised gaseous system, showing significant crystalline effects on the geometrical positions. Moreover, the magnitudes for energies and dipole moments indicate notable effects on the electronic properties. The evaluated NMR properties also show that the atoms of aromatic systems detect significant changes more than the atoms of aliphatic systems in the investigated BBA. And finally, the oxygen bridge atom plays a dominant role in combining two benzene rings of BBA.

  15. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  16. Origin of the SN2 benzylic effect.

    Science.gov (United States)

    Galabov, Boris; Nikolova, Valia; Wilke, Jeremiah J; Schaefer, Henry F; Allen, Wesley D

    2008-07-30

    The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.

  17. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021.

    Science.gov (United States)

    Ullah, Ihsan; Khan, Abdul Latif; Ali, Liaqat; Khan, Abdur Rahim; Waqas, Muhammad; Hussain, Javid; Lee, In-Jung; Shin, Jae-Ho

    2015-02-01

    The Photorhabdus temperata M1021 secretes toxic compounds that kill their insect hosts by arresting immune responses. Present study was aimed to purify the insecticidal and antimicrobial compound(s) from the culture extract of P. temperata M1021 through bioassay guided fractionation. An ethyl acetate (EtOAc) extract of the P. temperata M1021 exhibited 100% mortality in Galleria mellonella larvae within 72 h. In addition, EtOAc extract and bioactive compound 1 purified form the extract through to column chromatography, showed phenol oxidase inhibition up to 60% and 80% respectively. The analysis of (1)H and (13)C NMR spectra revealed the identity of pure compound as "benzaldehyde". The benzaldehyde showed insecticidal activity against G. mellonella in a dose-dependent manner and 100% insect mortality was observed at 108 h after injection of 8 mM benzaldehyde. In a PO inhibition assay, 4, 6, and 8 mM concentrations of benzaldehyde were found to inhibit PO activity about 15%, 42%, and 80% respectively. In addition, nodule formation was significantly (P benzaldehyde as compare to control. Moreover, benzaldehyde was found to have great antioxidant activity and maximum antioxidant activity was 52.9% at 8 mM benzaldehyde as compare to control. Antimicrobial activity was assessed by MIC values ranged from 6 mM 10 mM for bacterial strains and 8 mM to 10 mM for fungal strains. The results suggest that benzaldehyde could be applicable for developing novel insecticide for agriculture use.

  18. Influence of Photosensitive Group Concentration on Birefringence Induced in Benzaldehyde Polymers

    Science.gov (United States)

    Mahilny, U. V.; Stankevich, A. I.; Trofimova, A. V.

    2014-01-01

    Induction of optical anisotropy in benzaldehyde polymer layers by linearly polarized UV radiation was investigated experimentally. Negative dichroism in absorption spectra and strong negative birefringence (-2 · 10-3) were related to the presence of an oriented ensemble of residual benzaldehyde groups. The thermal stability of photoinduced birefringence at high photosensitive group concentration was associated with a high density of photocross-links formed between macromolecules.

  19. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... groups. NIH: National Institute on Alcohol Abuse and Alcoholism

  20. Selective oxidation of benzyl alcohol in dense CO2

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Grunwaldt, Jan-Dierk; Tsivintzelis, Ioannis

    2012-01-01

    Catalytic reactions in pressurized CO2 are often strongly affected by the phase behavior. Knowledge on phase behavior is therefore desirable for optimizing the reaction conditions but often requires considerable experimental effort. Here, a previously established thermodynamic model for complex s...

  1. Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols

    NARCIS (Netherlands)

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2016-01-01

    Benzylamines play a prominent role in numerous pharmaceutically active compounds. Thus, the development of novel, sustainable catalytic methodologies to provide access to these privileged structural motifs is of central importance. Herein we describe a systematic study for the construction of a larg

  2. Oxidation of N-benzyl groups

    Institute of Scientific and Technical Information of China (English)

    QIU, Wen-Ge; CHEN, Shu-Sen; YU, Yong-Zhong

    2000-01-01

    The oxidative reactivity of 2,6,8, 12-tetraacetyl-4, 10- dibenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9. 03,11] dodecane (3) in several conditions was studied. It was found that the N-benzyl groups in compound 3 could be oxidized to benzoyl groups byCr(Ⅳ) reagents, and could be removed by cerium ammonium nitrate (CAN), meanwhile nttroamine prooducts were given.

  3. Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects.

    Science.gov (United States)

    Chakraborty, Sumit; Nemeria, Natalia; Yep, Alejandra; McLeish, Michael J; Kenyon, George L; Jordan, Frank

    2008-03-25

    Direct spectroscopic observation of thiamin diphosphate-bound intermediates was achieved on the enzyme benzaldehyde lyase, which carries out reversible and highly enantiospecific conversion of ( R)-benzoin to benzaldehyde. The key enamine intermediate could be observed at lambda max 393 nm in the benzoin breakdown direction and in the decarboxylase reaction starting with benzoylformate. With benzaldehyde as substrate, no intermediates could be detected, only formation of benzoin at 314 nm. To probe the rate-limiting step in the direction of ( R)-benzoin synthesis, the (1)H/ (2)H kinetic isotope effect was determined for benzaldehyde labeled at the aldehyde position and found to be small (1.14 +/- 0.03), indicating that ionization of the C2alphaH from C2alpha-hydroxybenzylthiamin diphosphate is not rate limiting. Use of the alternate substrates benzoylformic and phenylpyruvic acids (motivated by the observation that while a carboligase, benzaldehyde lyase could also catalyze the slow decarboxylation of 2-oxo acids) enabled the observation of the substrate-thiamin covalent intermediate via the 1',4'-iminopyrimidine tautomer, characteristic of all intermediates with a tetrahedral C2 substituent on ThDP. The reaction of benzaldehyde lyase with the chromophoric substrate analogue ( E)-2-oxo-4(pyridin-3-yl)-3-butenoic acid and its decarboxylated product ( E)-3-(pyridine-3-yl)acrylaldehyde enabled the detection of covalent adducts with both. Neither adduct underwent further reaction. An important finding of the studies is that all thiamin-related intermediates are in a chiral environment on benzaldehyde lyase as reflected by their circular dichroism signatures.

  4. Benzyl 2-β-glucopyranosyloxybenzoate, a new phenolic acid glycoside from Sarcandra glabra.

    Science.gov (United States)

    Wu, Haifeng; Hu, Xiaoru; Zhang, Xiaopo; Chen, Shilin; Yang, Junshan; Xu, Xudong

    2012-05-04

    From the whole plant of Sarcandra glabra, a new phenolic acid glycoside, benzyl 2-β-glucopyranosyloxybenzoate (1), together with seven known compounds including eleutheroside B₁ (2), 5-O-caffeoylshikimic acid (3), (-)-(7S, 8R)-dihydrodehydrodiconiferyl alcohol (4), (-)-(7S, 8R)-dihydrodehydrodiconiferyl alcohol 9-, 9′- and 4-O-α-D-glucopyranoside (5-7), and (-)-(7S, 8R)-5-methoxydihydrodehydrodiconiferyl alcohol 4-O-β-D-glucopyranoside (8) was isolated. Their structures were elucidated by spectral analysis including 1D-, 2D-NMR and HR-ESI-MS. Compound 2 was found to exhibit potent cytotoxic activity against BGC-823 and A2780 cancer cell lines using MTT method with IC₅₀ value of 2.53 and 1.85 μM, respectively.

  5. A practical one-pot synthesis of azides directly from alcohols

    Indian Academy of Sciences (India)

    Lalthazuala Rokhum; Ghanashyam Bez

    2012-05-01

    Alkyl/benzyl azides can be readily synthesized in excellent yields from their corresponding alcohols by stirring a solution of sodium azide in DMSO with a thoroughly ground equimolecular mixture of triphenylphosphine, iodine and imidazole.

  6. delta(13)C and delta(2)H isotope ratios in amphetamine synthesized from benzaldehyde and nitroethane.

    Science.gov (United States)

    Collins, Michael; Salouros, Helen; Cawley, Adam T; Robertson, James; Heagney, Aaron C; Arenas-Queralt, Andrea

    2010-06-15

    Previous work in these laboratories and by Butzenlechner et al. and Culp et al. has demonstrated that the delta(2)H isotope value of industrial benzaldehyde produced by the catalytic oxidation of toluene is profoundly positive, usually in the range +300 per thousand to +500 per thousand. Synthetic routes leading to amphetamine, methylamphetamine or their precursors and commencing with such benzaldehyde may be expected to exhibit unusually positive delta(2)H values. Results are presented for delta(13)C and delta(2)H isotope values of 1-phenyl-2-nitropropene synthesized from an industrial source of benzaldehyde, having a positive delta(2)H isotope value, by a Knoevenagel condensation with nitroethane. Results are also presented for delta(13)C and delta(2)H isotope values for amphetamine prepared from the resulting 1-phenyl-2-nitropropene. The values obtained were compared with delta(13)C and delta(2)H isotope values obtained for an amphetamine sample prepared using a synthetic route that did not involve benzaldehyde. Finally, results are presented for samples of benzaldehyde, 1-phenyl-2-nitropropene and amphetamine that had been seized at a clandestine amphetamine laboratory.

  7. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    NARCIS (Netherlands)

    Kuzmanovic, Boris; Kuipers, Norbert J.M.; Haan, de André B.; Kwant, Gerard

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aque

  8. β-Cyclodextrin Promoted Oxidation of Cinnamaldehyde to Natural Benzaldehyde in Water

    Institute of Scientific and Technical Information of China (English)

    陈鸿雁; 纪红兵

    2011-01-01

    A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin (abbreviated as β-CD). Different factors influencing cinnamaldehyde oxidation e.g. reaction temperature, the amount of catalyst and oxidant, have been investigated. The yield of benzaldehyde reaches 76% under the optimum conditions (333 K, 4 h, molar ratio of cinnamaldehyde to β-CD is 1:1). Furthermore, a feasible reaction mecha-nism including the formation of benzaldehyde and the two main byproducts (phenylacetaldehyde and epoxide of cinnamaldehyde) has been proposed.

  9. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  10. Adsorption of benzaldehyde at the surface of ice, studied by experimental method and computer simulation.

    Science.gov (United States)

    Petitjean, Mélanie; Hantal, György; Chauvin, Coline; Mirabel, Philippe; Le Calvé, Stéphane; Hoang, Paul N M; Picaud, Sylvain; Jedlovszky, Pál

    2010-06-15

    Adsorption study of benzaldehyde on ice surfaces is performed by combining experimental and theoretical approaches. The experiments are conducted over the temperature range 233-253 K using a coated wall flow tube coupled to a mass spectrometric detector. Besides the experimental way, the adsorption isotherm is also determined by performing a set of grand canonical Monte Carlo simulations at 233 K. The experimental and calculated adsorption isotherms show a very good agreement within the corresponding errors. Besides, both experimental and theoretical studies permit us to derive the enthalpy of adsorption of benzaldehyde on ice surfaces DeltaH(ads), which are in excellent agreement: DeltaH(ads) = -61.4 +/- 9.7 kJ/mol (experimental) and DeltaH(ads) = -59.4 +/- 5.1 kJ/mol (simulation). The obtained results indicate a much stronger ability of benzaldehyde of being adsorbed at the surface of ice than that of small aliphatic aldehydes, such as formaldehyde or acetaldehyde. At low surface coverages the adsorbed molecules exclusively lie parallel with the ice surface. With increasing surface coverage, however, the increasing competition of the adsorbed molecules for the surface area to be occupied leads to the appearance of two different perpendicular orientations relative to the surface. In the first orientation, the benzaldehyde molecule turns its aldehyde group toward the ice phase, and, similarly to the molecules in the lying orientation, forms a hydrogen bond with a surface water molecule. In the other perpendicular orientation the aldehyde group turns to the vapor phase, and its O atom interacts with the delocalized pi system of the benzene ring of a nearby lying benzaldehyde molecule of the second molecular layer. In accordance with this observed scenario, the saturated adsorption layer, being stable in a roughly 1 kJ/mol broad range of chemical potentials, contains, besides the first molecular layer, also traces of the second molecular layer of adsorbed

  11. GRAFTED STYRENE-DIVINYLBENZENE COPOLYMERS CONTAINING BENZALDEHYDES AND THEIR WITTIG REACTIONS WITH VARIOUS PHOSPHONIUM SALTS

    Institute of Scientific and Technical Information of China (English)

    Adriana Popa; Gheorghe Ilia; Aurelia Pascariu; Smaranda Iliescu; Nicoleta Plesu

    2005-01-01

    A chloromethylated styrene-divinylbenzene copolymer support system functionalized with 4-benzaldehyde and 2-benzaldehyde was prepared. The degree of functionalization with aldehyde groups is well suited for the subsequent use of the products as Wittig reagents. The polymer bound aldehyde was reacted with Wittig reagents to give olefin groups grafted on styrene-divinylbenzene copolymers. The reactions were carried out in phase transfer catalysis conditions. A simple procedure for the calculation of the degree of functionalization and the statistical modeling of the structural repetitive unit of the copolymer are reported.

  12. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  13. Benzylic oxidation catalyzed by dirhodium(II,III) caprolactamate.

    Science.gov (United States)

    Catino, Arthur J; Nichols, Jason M; Choi, Hojae; Gottipamula, Sidhartha; Doyle, Michael P

    2005-11-10

    [reaction: see text] Dirhodium caprolactamate [Rh2(cap)4] is an effective catalyst for benzylic oxidation with tert-butyl hydroperoxide (TBHP) under mild conditions. Sodium bicarbonate is the optimal base additive for substrate conversion. Benzylic carbonyl compounds are readily obtained, and a formal synthesis of palmarumycin CP2 using this methodology is described.

  14. Whole cells in enantioselective reduction of benzyl acetoacetate

    Directory of Open Access Journals (Sweden)

    Joyce Benzaquem Ribeiro

    2014-09-01

    Full Text Available The β-ketoester benzyl acetoacetate was enantioselectively reduced to benzyl (S-3-hydroxybutanoate by seven microorganism species. The best result using free cells was obtained with the yeast Hansenula sp., which furnished 97% ee and 85% of conversion within 24 h. After immobilization in calcium alginate spheres, K.marxianus showed to be more stable after 2 cycles of reaction.

  15. Modeling, Simulation, and Kinetic Studies of Solvent-Free Biosynthesis of Benzyl Acetate

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Garlapati

    2013-01-01

    Full Text Available Solvent-free biosynthesis of benzyl acetate through immobilized lipase-mediated transesterification has been modeled and optimized through statistical integrated artificial intelligence approach. A nonlinear response surface model has been successfully developed based on central composite design with transesterification variables, namely, molarity of alcohol, reaction time, temperature, and immobilized lipase amount as input variables and molar conversion (% as an output variable. Statistical integrated genetic algorithm optimization approach results in an optimized molar conversion of 96.32% with the predicted transesterification variables of 0.47 M alcohol molarity in a reaction time of 13.1 h, at 37.5°C using 13.31 U of immobilized lipase. Immobilized lipase withstands more than 98% relative activity up to 6 recycles and maintains 50% relative activity until 12 recycles. The kinetic constants of benzyl acetate, namely, Km and Vmax were found to be 310 mM and 0.10 mmol h−1 g−1, respectively.

  16. Serotonin Mediates a Learned Increase in Attraction to High Concentrations of Benzaldehyde in Aged "C. elegans"

    Science.gov (United States)

    Tsui, David; van der Kooy, Derek

    2008-01-01

    We utilized olfactory-mediated chemotaxis in "Caenorhabditis elegans" to examine the effect of aging on information processing and animal behavior. Wild-type (N2) young adults (day 4) initially approach and eventually avoid a point source of benzaldehyde. Aged adult animals (day 7) showed a stronger initial approach and a delayed avoidance to…

  17. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    Science.gov (United States)

    Rafiee, Marjan; Javaheri, Masoumeh

    2015-01-01

    Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect. PMID:27844007

  18. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    Directory of Open Access Journals (Sweden)

    Marjan Rafiee

    2015-09-01

    Full Text Available Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect.

  19. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    Lange, de M.W.; Ommen, van J.G.; Lefferts, L.

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  20. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Science.gov (United States)

    Many pathogenic fungi are becoming resistant to currently available drugs. Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. The aim of this study was to identify benzaldehydes that...

  1. Chemo-sensitization of fungal pathogens to antimicrobial agents using benzaldehyde analogs

    Science.gov (United States)

    Activity of conventional antifungal agents, fludioxonil, strobilurin and antimycinA, which target the oxidative and osmotic stress response systems, was elevated by co-application of certain analogs of benzaldehyde. Fungal tolerance to 2,3-dihydroxybenzaldehyde or 2,3-dihydroxybenzoic acid was foun...

  2. Benzyl (E-3-(2-methylbenzylidenedithiocarbazate

    Directory of Open Access Journals (Sweden)

    Shang Shan

    2011-09-01

    Full Text Available The title compound, C16H16N2S2, was obtained from the condensation reaction of benzyl dithiocarbazate and 2-methylbenzaldehyde. The asymmetric unit contains two independent molecules. In both molecules, the methylphenyl ring and the dithiocarbazate fragment are located on opposite sides of the C=N bond, showing an E conformation. In each molecule, the dithiocarbazate fragment is approximately planar, the r.m.s deviations being 0.018 and 0.025 Å. The mean plane of dithiocarbazate group is oriented at dihedral angles of 7.9 (3 and 68.24 (12°, respectively, to the methylphenyl and phenyl rings in one molecule, while the corresponding angles in the other molecule are 10.9 (3 and 69.76 (16°. Intermolecular N—H...S hydrogen bonding occurs in the crystal structure to generate inversion dimers for both molecules.

  3. Aziridino Alcohols as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kornø, Hanne Tøfting; Guijarro, David;

    1998-01-01

    addition of diethylzinc to benzaldehyde, with up to 90% stereoselectivity. The absolute configuration of the alcohol product is dependent on the substitution pattern of the aziridine ring, and different transition state models are proposed to explain the observed switch in enantioselectivity. The C-2...

  4. Sensitization and quenching in the conversion of light energy into chemical energy. Progress report, February 1, 1979-January 31, 1980. [Benzylic chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, S.J.

    1979-09-01

    Data have been accumulated on the rates of excitation transfer from acetone or acetophenone sensitizers to several benzylic chlorides in acetonitrile-t-butyl alcohol or acetone-t-butyl alcohol and on the lifetimes of the excited triplet intermediates leading to solvolysis products (arylmethyl t-butyl ethers and arylmethanols). Lifetimes were found to be in the 0-2 nsec range. In direct irradiation, in t-butyl alcohol or acetonitrile-t-butyl alcohol, t-butyl ethers are formed from intermediates which are either singlets or are triplets of short lifetimes (0-2 nsec). Long-lived triplets, which do not lead to t-butyl ethers or to other products, but which decay to starting materials, and which arise by intersystem crossing from excited singlet states, were discovered by their ability to isomerize cis-piperylene (Hammond-Lamola quenching). These hidden triplets were shown to be produced as well by excitation transfer from benzophenone. They represent a large fraction of the energy wastage in this system. Work has begun on the preparation of materials for study of optically active benzylic chloride solvolyses, for study of optically active benzylic chloride solvolyses, for study of intramolecular (2 + 2) cycloadditions and for di-..pi..-methane studies, in our attempts to understand the mechanistic details of these important photochemical reactions.

  5. Palladium-catalyzed α-arylation of benzylic phosphine oxides.

    Science.gov (United States)

    Montel, Sonia; Jia, Tiezheng; Walsh, Patrick J

    2014-01-03

    A novel approach to prepare diarylmethyl phosphine oxides from benzyl phosphine oxides via deprotonative cross-coupling processes (DCCP) is reported. The optimization of the reaction was guided by High-Throughput Experimentation (HTE) techniques. The Pd(OAc)2/Xantphos-based catalyst enabled the reaction between benzyl diphenyl or dicyclohexyl phosphine oxide derivatives and aryl bromides in good to excellent yields (51-91%).

  6. First Magnesium-mediated Carbonyl Benzylation in Water

    Institute of Scientific and Technical Information of China (English)

    DENG,Wei(邓维); TAN,Xiang-Hui(谭翔辉); LIU,Lei(刘磊); GUO,Qing-Xiang(郭庆祥)

    2004-01-01

    Catalyzed by AgNO3, Mg was found for the first time to be able to mediate the coupling reaction between aromatic aldehydes and benzyl bromide or chloride in water. The yields were slightly higher than the recent results for Mg-mediated allylation despite the fact that aqueous benzylation is intrinsically much harder than allylation. It was also found that the coupling reaction was chemoselective for aromatic aldehydes over aliphatic aldehydes, and chemoselective for aromatic aldehydes over aromatic ketones.

  7. Lignin-derived oxygenate reforming on a bimetallic surface: The reaction of benzaldehyde on Zn/Pt(111)

    Science.gov (United States)

    Shi, Daming; Vohs, John M.

    2016-08-01

    Temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) were used to characterize the adsorption and reaction of benzaldehyde (C6H5CHO) on hydrogen-covered Pt(111) and Zn-modified Pt(111) surfaces. Benzaldehyde was found to interact with Pt(111) via both the phenyl ring and carbonyl of the aldehyde group. This bonding configuration facilitates unselective decomposition of the benzaldehyde to produce CO, H2, and small hydrocarbon fragments at relatively low temperatures. On the other hand, benzaldehyde was found to bond to Zn-decorated Pt(111) surface exclusively via the carbonyl group in an η2(C, O) configuration, with the phenyl ring tilted away from the surface. This configuration weakens Csbnd O bond in the carbonyl facilitating its cleavage and helps prevent hydrogenation of the phenyl ring.

  8. Benzylation of Toluene over Iron Modified Mesoporous Ceria

    Directory of Open Access Journals (Sweden)

    K.J. Rose Philo

    2012-12-01

    Full Text Available Green chemistry has been looked upon as a sustainable science which accomplishes both economical and environmental goals, simultaneously.With this objective, we developed an alternative process to obtain the industrially important benzyl aromatics by benzylation of aromatics using benzyl chloride, catalysed by mesoporous solid acid catalysts. In this work mesoporous ceria is prepared using neutral surfactant which helped the calcination possible at a lower temperature enabling a higher surface area. Mesoporous ceria modified with Fe can be successfully utilized for the selective benzylation of toluene to more desirable product methyl diphenyl methane with 100% conversion and selectivity in 2 hours using only 50mg of the catalyst under milder condition. The reusability, regenerability, high selectivity, 100% conversion, moderate reaction temperature and absence of solvent, etc. make these catalysts to be used in a truly heterogeneous manner and make the benzylation reaction an environment friendly one. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 30th June 2012; Revised: 7th November 2012; Accepted: 10th November 2012[How to Cite: K.J. Rose Philo, S. Sugunan. (2012. Benzylation of Toluene over Iron Modified Mesoporouxs Ceria. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 158-164. (doi:10.9767/bcrec.7.2.3759.158-164][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3759.158-164 ] | View in 

  9. Feasibility of gas/solid carboligation: conversion of benzaldehyde to benzoin using thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Mikolajek, R; Spiess, A C; Büchs, J

    2007-05-10

    A carboligation was investigated for the first time as an enzymatic gas phase reaction, where benzaldehyde was converted to benzoin using thiamine diphosphate (ThDP)-dependent enzymes, namely benzaldehyde lyase (BAL) and benzoylformate decarboxylase (BFD). The biocatalyst was immobilized per deposition on non-porous support. Some limitations of the gas/solid biocatalysis are discussed based on this carboligation and it is also demonstrated that the solid/gas system is an interesting tool for more volatile products.

  10. Kinetics of the Benzaldehyde-Inhibited Oxidation of Sulfite by Chlorine Dioxide.

    Science.gov (United States)

    Pan, Changwei; Gao, Qingyu; Stanbury, David M

    2016-01-04

    There has been steady interest in the aqueous reaction of ClO2• with sulfur(IV) since the 1950s, and a wide variety of rate laws and mechanisms have been proposed. In neutral-to-alkaline media, the reaction is challenging to study because of its great rate. Here it is shown that benzaldehyde can be used as an additive to slow the reaction and make its rates more amenable to study. The rates can be quantitatively modeled by a mechanism that includes reversible binding of sulfur(IV) by benzaldehyde and a rate-limiting mixed second-order reaction of ClO2• with SO3(2-). The latter reaction occurs through parallel electron transfer from SO3(2-) to ClO2• and oxygen-atom transfer from ClO2• to SO3(2-).

  11. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    Science.gov (United States)

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  12. Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and FTIR.

    Science.gov (United States)

    Chu, Fong Lam; Yaylayan, Varoujan A

    2008-11-26

    Benzaldehyde, a potent aroma chemical of bitter almond, can also be formed thermally from phenylalanine and may contribute to the formation of off-aroma. To identify the precursors involved in its generation during Maillard reaction, various model systems containing phenylalanine, phenylpyruvic acid, phenethylamine, or phenylacetaldehyde were studied in the presence and absence of moisture using oxidative and nonoxidative Py-GC-MS. Analysis of the data indicated that phenylacetaldehyde, the Strecker aldehyde of phenylalanine, is the most effective precursor and that both air and water significantly enhanced the rate of benzaldehyde formation from phenylacetaldehyde. Phenylpyruvic acid was the most efficient precursor under nonoxidative conditions. Phenethylamine, on the other hand, needed the presence of a carbonyl compound to generate benzaldehyde only under oxidative conditions. On the basis of the results obtained, a free radical initiated oxidative cleavage of the carbon-carbon double bond of the enolized phenylacetaldehyde was proposed as a possible major mechanism for benzaldehyde formation, and supporting evidence was provided through monitoring of the evolution of the benzaldehyde band from heated phenylacetaldehyde in the presence and absence of 1,1'-azobis(cyclohexanecarbonitrile) on the ATR crystal of an FTIR spectrophotometer. In the presence of the free radical initiator, the enol band of the phenylacetaldehyde centered at 1684 cm(-1) formed and increased over time, and after 18 min of heating time the benzaldehyde band centered at 1697 cm(-1) formed and increased at the expense of the enol band of phenylacetaldehyde, indicating a precursor product relationship.

  13. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    Science.gov (United States)

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  14. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  15. Embryolethality of butyl benzyl phthalate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ema, N.; Itami, T.; Kawasaki, H. (National Inst. Hyg. Science, Osaka (Japan))

    1991-03-15

    The developmental toxicity of butyl benzyl phthalate (BBP) was studied in Wistar rats. Pregnant rats were given BBP at a dosage of 0, 0.25, 0.5, 1.0 or 2.0% in the diet from day 0 to day 20 of pregnancy. Morphological examinations of the fetuses revealed no evidence of teratogenesis. In the 2.0% group, all dams exhibited complete resorption of all the implanted embryos, and their food consumption, body weight gain and adjusted weight gain during pregnancy were markedly lowered. To determine whether the embryolethality was the result of reduced food consumption during pregnancy, a pair-feeding study was performed in which the pregnant rats received the same amount of diet consumed by the 2.0% BBP-treated pregnant rats. The pair-fed and 2.0 % BBP-treated pregnant rats showed significant and comparable reductions in the adjusted weight gain. The number of live fetuses was lowered in the pair-fed group. However, the complete resorption of all the implanted embryos was not found in any of the pair-fed pregnant rats. The data suggest that the embryolethality observed in the 2.0 % BBP-treated pregnant rats is attributable to the effects o dietary BBP.

  16. Acridin-9-ylmethoxycarbonyl (Amoc): A New Photochemically Removable Protecting Group for Alcohols

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Bo; TANG Wen-Jian; YU Jing-Yu; SONG Qin-Hua

    2006-01-01

    Synthesis and photochemistry of acridin-9-ylmethoxycarbonyl (Amoc) as a new photochemically removable protecting group for alcohols were described. Three carbonates of alcohols 1-3 were synthesized through condensation of 9-hydroxymethylacridine and chloroformates of alcohols, including benzyl alcohol, phenethyl alcohol and one galactose derivative. The photolysis of protected alcohols can efficiently release the corresponding alcohol in the efficiencies (Qu1ε) of 100-200 (quantum yield Qu1=0.011-0.023, and molar absorptivity ε=9.1 × 103-9.8 × 103 mol-1·L·cm-1) under 360 nm light.

  17. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The mechanism for the gold-catalyzed aerobic oxidation of alcohols was studied using a series of para-substituted benzyl alcohols (Hammett methodology). The competition experiments clearly show that the rate-determining step of the reaction involves the generation of a partial positive charge in ...

  18. Biotransformation of Benzaldehyde to L-Phenylacetylcarbinol (L-PAC by Free Cells of Torulaspora delbrueckii in presence of Beta-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Vilas. B. Shukla

    2002-09-01

    Full Text Available Studies were carried out to explore the possibility of decreasing the toxic and inhibitory effects of the substrate benzaldehyde during its biotransformation to L-PAC by free cells of Torulaspora delbrueckii using beta -cyclodextrin (beta -CD. Use of various levels of benzaldehyde and acetaldehyde in presence of 2% of beta -CD showed that, in presence of beta -CD, the organism could tolerate higher levels of benzaldehyde and acetaldehyde. Semi-continuous feeding of benzaldehyde and acetaldehyde was found to increase the yield of L-PAC in comparison with one time feeding.

  19. Alcohol Alert

    Science.gov (United States)

    ... main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & ... on a single aspect of alcohol abuse and alcoholism. Please click on the desired publication for full ...

  20. Benzyl-chloridobis(quinolin-8-olato)tin(IV).

    Science.gov (United States)

    Wang, Qibao

    2009-07-11

    In the title compound, [Sn(C(7)H(7))(C(9)H(6)NO)(2)Cl], the Sn(IV) ion is in a distorted octa-hedral coordination environment formed by the O and N atoms of two bis-chelating quinolin-8-olate ligands, a Cl atom and a C atom from a benzyl ligand. The axial sites are occupied by an N atom of a quinolinate ligand and the C atom of the benzyl ligand. The axial Sn-N bond is slightly shorter than the equatorial Sn-N bond.

  1. Benzyl­chloridobis(quinolin-8-olato)tin(IV)

    OpenAIRE

    Wang, Qibao

    2009-01-01

    In the title compound, [Sn(C7H7)(C9H6NO)2Cl], the SnIV ion is in a distorted octa­hedral coordination environment formed by the O and N atoms of two bis-chelating quinolin-8-olate ligands, a Cl atom and a C atom from a benzyl ligand. The axial sites are occupied by an N atom of a quinolinate ligand and the C atom of the benzyl ligand. The axial Sn—N bond is slightly shorter than the equatorial Sn—N bond.

  2. Probing the active center of benzaldehyde lyase with substitutions and the pseudosubstrate analogue benzoylphosphonic acid methyl ester.

    Science.gov (United States)

    Brandt, Gabriel S; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J; Yep, Alejandra; Kenyon, George L; Petsko, Gregory A; Jordan, Frank; Ringe, Dagmar

    2008-07-22

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of ( R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg (2+) as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 A (Protein Data Bank entry 3D7K ) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  3. Approach to a Facile and Selective Benzyl-Protection of Carbohydrates Based on Silyl Migration

    Institute of Scientific and Technical Information of China (English)

    WANG,Wei; LI,Xiao-Liu; ZHANG,Ping-Zhu; CHEN,Hua

    2008-01-01

    A convenient and selective benzyl protection of carbohydrates has been investigated on the basis of the silyl migration under the conventional benzylation conditions, developing a facile and short synthesis of methyl 2,3,6-tri-O-benzyl-a-D-glucopyranoside.

  4. Synthesis of Aminophosphine Ligands with Binaphthyl Backbones for Silver(I)-catalyzed Enantioselective Allylation of Benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    WANG,Yi(王以); JI,Bao-Ming(吉保明); DING,Kui-Ling(丁奎岭)

    2002-01-01

    A series of aminophosphine ligands was synthesized from 2amino-2′-hydroxy-1,1′-binaphthyl (NOBIN). Their asymmetric induction efficiency was examined for silver(I)catalyzed enantioselective allylation reaction of benzaldehyde with allyltributyltin.Under the optimized reaction conditions,quantitative yield as well as moderate ee value (54.5% ee)of product was achieved by the catalysis with silver(I)/3 complex. The effects of the binaphthyl backbone and the substituted situated at chelating N, Patoms on enantioselectivity of the reaction were also discussed.

  5. A Novel Acetate Selective UV-Vis Chemosensor Containing a Tripodal Benzaldehydic-phenylhydrazone

    Institute of Scientific and Technical Information of China (English)

    QIAO Yan-Hong; LIN Hai; SHAO Jie; LIN Hua-Kuan

    2008-01-01

    A new colorimetric chemosensor 1 based on a tripodal benzaldehydic-phenylhydrazone selectively sensing acetate ion has been synthesized. The highly selective binding ability of receptor I to acetate ion over other studied anions was demonstrated by UV-Vis absorption spectroscopy in DMSO. Compared with other anions studied, its sorption spectrum change has occurred when receptor 1 was treated with other different guest anions (F-, Cl-, Br-,I-, H2PO4- and OH-). The Kass of receptor 1 binding with acetate ion is 1.69×104.

  6. Engineering NiO sensitive materials and its ultra-selective detection of benzaldehyde.

    Science.gov (United States)

    Yang, Fuchao; Guo, Zhiguang

    2016-04-01

    Ongoing interest in oxide semiconductor as components of gas sensing devices is motivated by environmental monitoring and intelligent control. NiO with different precursor solution were synthesized by aqueous chemical deposition and pyrolysis process. Here the method is quite facile, green and free of surfactant. Their morphology, crystal structure and chemical composition have been systemically characterized by various techniques. Interestingly, the microstructures of NiO can be engineered by different nickel salt (nitrate or chloride). These NiO based gas sensors showed substantially enhanced responses to benzaldehyde target analyte and exhibited fast response-recover feature. The observed gas sensing behavior is explained in terms of oxygen ionosorption mechanism.

  7. Crystal structure of 4-(4-meth-oxy-phen-oxy)benzaldehyde.

    Science.gov (United States)

    Schäfer, Andreas; Iovkova-Berends, Ljuba; Gilke, Stefan; Kossmann, Paul; Preut, Hans; Hiersemann, Martin

    2015-12-01

    The title compound, C14H12O3, was synthesized via the nucleophilic addition of 4-meth-oxy-phenol to 4-fluoro-benzaldehyde. The dihedral angle between the least-squares planes of the benzene rings is 71.52 (3)° and the C-O-C angle at the central O atom is 118.82 (8)°. In the crystal, weak C-H⋯O hydrogen bonds link the molecules to generate supra-molecular layers in the bc plane. The layers are linked by weak C-H⋯π inter-actions.

  8. L-天门冬氨酸-β-苄酯的制备研究%Synthesis and characterization of L-aspartic acid-β-benzyl ester

    Institute of Scientific and Technical Information of China (English)

    王昌济; 王永秋

    2013-01-01

    L-aspartic acid and benzyl alcohol as raw materials, studied on the synthesis of L-aspartic acid-/3-benzyl ester. The results showed that the best experimental conditions was; the concentrated sulfuric acid as catalyst,n (L-aspartic acid) : n (benzyl alcohol) = 1 : 10,100℃ reflux reaction 3 h,placed at room temperature 24 h, in this condition, the yield was about 60% .%以L-天门冬氨酸和苯甲醇为原料,对L-天门冬氨酸-β-苄酯的合成进行了研究.结果表明,较佳实验条件是:以浓硫酸为催化剂,n(L-天门冬氨酸)∶n(苯甲醇)=1∶10,100℃回流反应3h,室温放置24h,在该条件下,产率约60%.

  9. Iron-catalysed Negishi coupling of benzyl halides and phosphates.

    Science.gov (United States)

    Bedford, Robin B; Huwe, Michael; Wilkinson, Mark C

    2009-02-01

    Iron-based catalysts containing either 1,2-bis(diphenylphosphino)benzene or 1,3-bis(diphenylphosphino)propane give excellent activity and good selectivity in the Negishi coupling of aryl zinc reagents with a range of benzyl halides and phosphates.

  10. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(αMe)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, Ron; Broxterman, Quirinus B.; Kamphuis, Johan; Formaggio, Fernando; Crisma, Marco; Toniolo, Claudio; Kellogg, Richard M.

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (αMe)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented.

  11. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(alpha-Me)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, R; Broxterman, QB; Kamphuis, J; Formaggio, F; Crisma, M; Toniolo, C; Kellogg, RM

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (alpha Me)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented. (C)

  12. The effect of solvent on the kinetics of the oxidation of benzaldehydes by quinolinium chlorochromate in aqueous organic solvent media

    Directory of Open Access Journals (Sweden)

    G. FATIMA JEYANTHI

    2002-12-01

    Full Text Available The kinetics of the oxidation of benzaldehyde and para-substituted benzaldehydes by quinolinium chlorochromate in water-dimethylformamide mixtures has been studied under pseudo-first-order conditions at 25±0.2°C. The operation of non-specific and specific solvent-solute interactions was explored by correlating the rate data with solvent parameters through a correlation analysis technique. Both electron-releasing and electron-withdrawing substitutents enhance the rate of oxidation and the Hammett plot shows a break in the reactivity order indicating the applicability of a dual mechanism.

  13. Synthesis, spectral and computational analysis of 2-(N-bromoalkoxy)-5-(phenylazo)benzaldehydes and their oximes

    Science.gov (United States)

    Balachander, R.; Manimekalai, A.

    2017-04-01

    2-(N-Bromoalkoxy)-5-(phenylazo)benzaldehydes 1-3, 2-(3-bromomethylbenzyloxy)-5-(phenylazo)benzaldehyde 4 and their oximes 5-8 were synthesized and characterized by FT-IR, GC-MS, 1H, 13C and 2D NMR spectroscopy. The favoured conformations of aldehydes 1-4 and oximes 5-8 were predicted theoretically by geometry optimization and potential energy scan (PES) studies. Selected geometrical parameters and molecular properties such as AIM, NBO, HOMO-LUMO and MEP surfaces were derived from optimized structures. IR, 1H and 13C NMR data were also computed using Gaussian-03 package and compared with the observed values.

  14. Enhancement of reaction rates for catalytic benzaldehyde hydrogenation and sorbitol dehydration in water solvent by addition of carbon dioxide

    Indian Academy of Sciences (India)

    Masayuki Shirai; Osamu Sato; Norihito Hiyoshi; Aritomo Yamaguchi

    2014-03-01

    The effect of pressured carbon dioxide on heterogeneous hydrogenation of benzaldehyde and homogeneous dehydration of sorbitol in water solvent was studied. Initial hydrogenation rates of benzaldehyde over a charcoal-supported palladium catalyst in water at 313 K were enhanced by the addition of carbon dioxide. The initial rate increased with an increase in carbon dioxide pressure and became a maximum at 5 MPa. Dehydration of sorbitol proceeded in water phase at 500 K and initial dehydration rates were enhanced by addition of 30 MPa of carbon dioxide.

  15. Stereocontrol of the Schiff Base of Substituted Benzaldehyde to Staudinger Cycloaddition Reaction

    Institute of Scientific and Technical Information of China (English)

    齐传民; 杨凌春; 孙彭利

    2003-01-01

    Syntheses of 4 novel chiral azetidin-2-one derivatives,which were characterized by 1H NMR,IR,specific rotation and elemental analysis,through Staudinger cycloaddition reaction of Schiff base of benzaldehyde with chlorine substitution at different position in benzene ring,were described.For the first time,this type of 3S,4R configuration azetidin-2-one monocrystals with many chiral centers [(3S,4R)-3-hydroxy-N-[(S)-(1-phenyl)ethyl]-4-(2''-chlorophenyl)-azetidin-2-one monocrystal]were obtained,the structures of which were determined by X-ray diffraction analysis.The effects of Schiff base of benzaldehyde with chlorine substitution at different position in benzene ring on stereoselectivity of Staudinger cycloaddition reaction products were discussed and the results are showed as below:2-chlorophenyl Schiff base favored to yield 3S,4R configuration product,but 4-chlorophenyl Schiff base favored to yield 3R,4S configuration product.The reaction orientation of 2,4-dichlorophenyl Schiff base was determined by corporate effect of 2- and 4-chlorine,and that of the 4-chlorine was more obvious.In contrast to 4-chlorophenyl,although the main product was 3R,4S configuration,3-chlorophenyl owned lower selectivity.

  16. Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni–W alloys

    Institute of Scientific and Technical Information of China (English)

    U. Pramod Kumar; C. Joseph Kennady

    2015-01-01

    The effect of different concentrations of benzaldehyde on the electrodeposition of Ni–W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath (pH 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni–W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40?·cm2 and a lower double-layer capacitance of 29.4 μF·cm?2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value (Rmax) of the deposits is confirmed by atomic force microscopy.

  17. Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni-W alloys

    Science.gov (United States)

    Pramod Kumar, U.; Kennady, C. Joseph

    2015-10-01

    The effect of different concentrations of benzaldehyde on the electrodeposition of Ni-W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath (pH 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni-W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40 Ω·cm2 and a lower double-layer capacitance of 29.4 μF·cm-2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value ( R max) of the deposits is confirmed by atomic force microscopy.

  18. Coupled electron and proton transfer processes in 4-dimethylamino-2-hydroxy-benzaldehyde.

    Science.gov (United States)

    Zgierski, Marek Z; Fujiwara, Takashige; Lim, Edward C

    2011-09-08

    TDDFT calculations, picosecond transient absorption, and time-resolved fluorescence studies of 4-dimethylamino-2-hydroxy-benzaldehyde (DMAHBA) have been carried out to study the electron and proton transfer processes in polar (acetonitrile) and nonpolar (n-hexane) solvents. In n-hexane, the transient absorption (TA) as well as the fluorescence originate from the ππ* state of the keto form (with the carbonyl group in the benzaldehyde ring), which is produced by an intramolecular proton transfer from the initially excited ππ* state of the enol form (OH group in the ring). The decay rate of TA and fluorescence are essentially identical in n-hexane. In acetonitrile, on the other hand, the TA exhibits features that can be assigned to the highly polar twisted intramolecular charge transfer (TICT) states of enol forms, as evidenced by the similarity of the absorption to the TICT-state absorption spectra of the closely related 4-dimethylaminobenzaldehyde (DMABA). As expected, the decay rate of the TICT-state of DMAHBA is different from the fluorescence lifetime of the ππ* state of the keto form. The occurrence of the proton and electron transfers in acetonitrile is in good agreement with the predictions of the TDDFT calculations. The very short-lived (∼1 ps) fluorescence from the ππ* state of the enol form has been observed at about 380 nm in n-hexane and at about 400 nm in acetonitrile.

  19. Electropolymerized fluorinated aniline-based fiber for headspace solid-phase microextraction and gas chromatographic determination of benzaldehyde in injectable pharmaceutical formulations.

    Science.gov (United States)

    Mohammadi, Ali; Mohammadi, Somayeh; Bayandori Moghaddam, Abdolmajid; Masoumi, Vahideh; Walker, Roderick B

    2014-10-01

    In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography-flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50-800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n = 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms.

  20. Holograms preparation using commercial fluorescent benzyl

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes-GarcIa, V; Olivares-Perez, A; Ordonez-Padilla, M J; Mejias-Brizuela, N Y, E-mail: valdoga@Hotmail.com, E-mail: olivares@inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Coordinacion de Optica, Calle Luis Enrique Erro N0 1, Santa Maria Tonantzintla, Puebla (Mexico)

    2011-01-01

    We have been able to make holograms with substances such as fluorescence thought of light blue laser to make transmissions holograms, using ammonium dichromate as photo-sensitizer and polyvinyl alcohol (PVA) as matrix. Ammonium dichromate inhibit the fluorescence properties of inks, both mixed in a (PVA) matrix, but we avoid this chemical reaction and we show the results to use the method of painting hologram with fluorescents ink and we describe how the diffraction efficiency parameter changes as a function of the ink absorbed by the emulsion recorded with the gratings, we got good results, making holographic gratings with a blue light from laser diode 470 nm. And we later were painting with fluorescent ink, integrating fluorescence characteristics to the hologram.

  1. Alcohol Intolerance

    Science.gov (United States)

    ... beer-alcohol.aspx. Accessed Jan. 16, 2015. Alcohol angioedema and uticaria. American Academy of Allergy, Asthma & Immunology. http://www.aaaai.org/ask-the-expert/alcohol-angioedema-urticaria.aspx. Accessed Jan. 16, 2015. Alcohol and ...

  2. Benzaldehyde thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Xiu-Ping Ju

    2008-12-01

    Full Text Available The title compound, C8H9N3S, contains two molecules in the asymmetric unit. One molecule is close to being planar (r.m.s. deviation from the mean plane = 0.06 Å for the non-H atoms, while the other exhibits a dihedral angle of 21.7 (1° between the benzene ring and the mean plane of the thiosemicarbazone unit. Intermolecular N—H...S hydrogen bonds link the molecules into layers parallel to the (010 plane.

  3. Production of the flavor compound benzaldehyde by lactic acid bacteria: role of manganese and its transport systems in Lactobacillus plantarum

    NARCIS (Netherlands)

    Nierop Groot, M.N.

    2001-01-01

    One of the aims of the research described in this thesis (Chapter 1 and 2) was to investigate the conversion of phenylalanine to the aromatic flavor compound benzaldehyde in lactic acid bacteria (LAB) (Chapter 3). Lactobacillus plantarum was used as the model organism to study phenylalanine degradat

  4. Quantification of brown dog tick repellents, 2-hexanone and benzaldehyde, and release from tick-resistant beagles, Canis lupus familiaris

    Science.gov (United States)

    We have recently shown that repellency of the tick Rhipicephalus sanguineus sensu lato by the tick resistant dog breed Beagle is mediated by volatile organic compounds 2-hexanone and benzaldehyde present in Beagle dog odour. Ectoparasite location on animal hosts is affected by variation in odour com...

  5. Chemical reactivity and skin sensitization potential for benzaldehydes: can Schiff base formation explain everything?

    Science.gov (United States)

    Natsch, Andreas; Gfeller, Hans; Haupt, Tina; Brunner, Gerhard

    2012-10-15

    Skin sensitizers chemically modify skin proteins rendering them immunogenic. Sensitizing chemicals have been divided into applicability domains according to their suspected reaction mechanism. The widely accepted Schiff base applicability domain covers aldehydes and ketones, and detailed structure-activity-modeling for this chemical group was presented. While Schiff base formation is the obvious reaction pathway for these chemicals, the in silico work was followed up by limited experimental work. It remains unclear whether hydrolytically labile Schiff bases can form sufficiently stable epitopes to trigger an immune response in the living organism with an excess of water being present. Here, we performed experimental studies on benzaldehydes of highly differing skin sensitization potential. Schiff base formation toward butylamine was evaluated in acetonitrile, and a detailed SAR study is presented. o-Hydroxybenzaldehydes such as salicylaldehyde and the oakmoss allergens atranol and chloratranol have a high propensity to form Schiff bases. The reactivity is highly reduced in p-hydroxy benzaldehydes such as the nonsensitizing vanillin with an intermediate reactivity for p-alkyl and p-methoxy-benzaldehydes. The work was followed up under more physiological conditions in the peptide reactivity assay with a lysine-containing heptapeptide. Under these conditions, Schiff base formation was only observable for the strong sensitizers atranol and chloratranol and for salicylaldehyde. Trapping experiments with NaBH₃CN showed that Schiff base formation occurred under these conditions also for some less sensitizing aldehydes, but the reaction is not favored in the absence of in situ reduction. Surprisingly, the Schiff bases of some weaker sensitizers apparently may react further to form stable peptide adducts. These were identified as the amides between the lysine residues and the corresponding acids. Adduct formation was paralleled by oxidative deamination of the parent

  6. Design, synthesis and hypoglycemic activity of 3-methyl-1-phe nyl-4-{ 4-[ ( 5-m et hyl-2-phenyloxazol-4-yl) methoxy ] benzylene (benzyl) }-2-pyrazol-5-one

    Institute of Scientific and Technical Information of China (English)

    Xing LIU; Yalou WANG; Guanzhong WU; Jiangchuan LI; Xiaoyan WU

    2008-01-01

    Based on the SAR (structure activity relation-ship) of TZDs (thiazolidinediones), 3-methyl-1-phenyl-2-pyrazoline-5-one was selected as a substitute for TZD. Compounds of 3-methyl- 1-phenyl-4- {4-[(5-methyl-2-phe-nyloxazol-4-yl)methoxy]benzylene(benzyl) }-2-pyrazol-5-one were designed and synthesized to find some more hypoglycemic active agents and further investigate the SAR of this class of compounds. Butanedione monoxime reacted with (substituted) benzaldehyde via cyclization and chlorination to give 4-(chloromethyl)-5-methyl-2-phenyloxazole derivatives, which condensed with 4-hydroxybenzaldehyde or vanillin, and was followed by the Knoevenagel reaction with 3-methyl-1-phenyl-2-pyrazol-5-one to give compounds Ⅰa-Ⅰh. Compounds Ⅰa-Ⅰh were hydrogenated with Pd-C to giveⅡa-Ⅱh, and their hypoglycemic activity was evaluated with a glucose oxidase kit and insulin load test on normal mice. Sixteen new target compounds were synthesized. All the com-pounds were characterized by 1H NMR, IR, MS and elemental analysis. The preliminary pharmacological tests show that the compounds have good hypoglycemic activity and can enhance the action of insulin, especially Ib, Id and If.

  7. Determination of NO chemical affinities of benzyl nitrite in acetonitrile

    Institute of Scientific and Technical Information of China (English)

    Xin LI; Xiaoqing ZHU; Jinpei CHENG

    2008-01-01

    There is an increasing interest in the study of NO chemical affinities of organic nitrites, for the bio-logical and physiological effects of organic nitrites seem to be due to their ability to release NO. In this paper, NO chemical affinities of ten substituted benzyl nitrites were determined by titration calorimetry combined with a ther-modynamic cycle in acetonitrile solution. The results show that ΔHhet(O-NO)s of benzyl nitrites are substan-tially larger than the corresponding ΔHhomo(O-NO)s, suggesting that these O-nitroso compounds much more easily release NO radicals by the O-NO bond homolytic cleavage. It is believed that the structural and energetic information disclosed in this work should be useful in understanding chemical and biological functions of organic nitrites.

  8. 3-Benzyl-5-methyl-1,2-benzoxazole 2-oxide

    Directory of Open Access Journals (Sweden)

    G. Anuradha

    2012-10-01

    Full Text Available In the title compound, C15H13NO2, the isoxazole unit and the attached benzene ring are almost coplanar, making a dihedral angle of 1.42 (8°. The benzyl ring is inclined to the isoxazole ring by 74.19 (8° and is in a +sc conformation with respect to the benzisoxazole unit. In the crystal, C—H...O hydrogen bonds link the molecules, forming zigzag chains propagating along the b axis. There are also π–π interactions present involving the isoxazole and benzyl rings [centroid–centroid distance = 3.5209 (10 Å], and C—H...π interactions involving the benzene ring of the benzoisoxazole unit and the methylene bridging group.

  9. Preparation of soluble and insoluble polymer supported IBX reagents.

    Science.gov (United States)

    Reed, Neal N; Delgado, Mercedes; Hereford, Kristina; Clapham, Bruce; Janda, Kim D

    2002-08-05

    A series of soluble and insoluble polymer supported versions of the versatile oxidizing reagent IBX has been prepared. Each of the reagents were evaluated for their efficiency in the conversion of benzyl alcohol to benzaldehyde. Results from this study were that the soluble, non-crosslinked polystyrene supported IBX reagent gave the best rate of conversion to benzaldehyde, while the macroporous polymer supported IBX resin provided a superior rate of conversion to benzaldehyde when compared with a gel type resin. The macroporous IBX reagent was also shown to convert a series of alcohols to the corresponding aldehydes and ketones.

  10. Heats of formation and protonation thermochemistry of gaseous benzaldehyde, tropone and quinone methides

    Science.gov (United States)

    Bouchoux, Guy

    2010-08-01

    Quantum chemistry calculations using composite G3B3, G3MP2B3 and CBS-QB3 methods were performed for benzaldehyde, 1, tropone, 2, ortho-quinone methide, 3, para-quinone methide, 4, their protonated forms 1H+- 4H+ and the isomeric meta-hydroxybenzyl cation 5H+. The G3B3 298 K heats of formation values obtained in this work are: -39, 61, 52, 39, 661, 679, 699, 680 and 733 kJ mol -1 for 1- 4, 1H+- 5H+, respectively. At the same level of theory, computed proton affinities are equal to 834, 916, 887 and 892 kJ mol -1 for molecules 1- 4. These results allow to correct discrepancies on the previously reported thermochemistry of molecules 2- 4 and cations 2H+- 5H+.

  11. STUDY ON THE TREATMENT OF 3—PHENOXY—BENZALDEHYDE INDUSTRIAL WASTEWATER WITH POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    ZhuShiyun; ChenJinlong; 等

    1998-01-01

    In this paper,the two effluents from PBA (3-phenoxy-benzaldehyde) production process were treated by polymeric adsorbent CHA-111.PBA or PBC (3-phenoxy-benzoic acid) was recovered from the wastewater in the process of neutralization.As a secondary treatment method,adsorption with CHA-111 showed better efficiency than photocatolytic decomposition and solvent extraction.The optimal technological parameters were:adsorption:current velocity:2.0BV/hr(bed volume per hour),room temperature;desorption:current velocity:2.0BV/hr(bed volume per hour),room temperature;desorption:current velocity:1.0 BV/hr,80℃,8% sodium hydroxide aqueous solutions.In conclusion,99.9% COD in the neutralizing wastewater and 98.4% COD in the hydrolysis wastewater are removed successfully.

  12. Antitrypanosomal Activity of Novel Benzaldehyde-Thiosemicarbazone Derivatives from Kaurenoic Acid †

    Directory of Open Access Journals (Sweden)

    Cecília M. A. de Oliveira

    2011-01-01

    Full Text Available A series of new thiosemicarbazones derived from natural diterpene kaurenoic acid were synthesized and tested against the epimastigote forms of Trypanosoma cruzi to evaluate their antitrypanosomal potential. Seven of the synthesized thiosemicarbazones were more active than kaurenoic acid with IC50 values between 2-24.0 mM. The o-nitro-benzaldehyde-thiosemicarbazone derivative was the most active compound with IC50 of 2.0 mM. The results show that the structural modifications accomplished enhanced the antitrypanosomal activity of these compounds. Besides, the thiocyanate, thiosemicarbazide and the p- methyl, p-methoxy, p-dimethylamine, m-nitro and o-chlorobenzaldehyde-thiosemicarbazone derivatives displayed lower toxicity for LLMCK2 cells than kaurenoic acid, exhibing an IC50 of 59.5 mM.

  13. Rh2(esp)2-catalyzed allylic and benzylic oxidations.

    Science.gov (United States)

    Wang, Yi; Kuang, Yi; Wang, Yuanhua

    2015-04-07

    The dirhodium(II) catalyst Rh2(esp)2 allows direct solvent-free allylic and benzylic oxidations by T-HYDRO with a remarkably low catalyst loading. This method is operationally simple and scalable at ambient temperature without the use of any additives. The high catalyst stability in these reactions may be attributed to a dirhodium(II,II) catalyst resting state, which is less prone to decomposition.

  14. Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering

    OpenAIRE

    2009-01-01

    Tissue engineering is a multidisciplinary field focused on in vitro reconstruction of mammalian tissues. In order to allow a similar three-dimensional organization of in vitro cultured cells, biocompatible scaffolds are needed. This need has provided immense momentum for research on “smart scaffolds” for use in cell culture. One of the most promising materials for tissue engineering and regenerative medicine is a hyaluronan derivative: a benzyl ester of hyaluronan (HYAFF®). HYAFF® can be proc...

  15. Tertiary amines nucleophilicity in quaternization reaction with benzyl chloride

    Directory of Open Access Journals (Sweden)

    Ksenia S. Yutilova

    2016-03-01

    Full Text Available Quaternization reaction of tertiary amines with benzyl chloride was investigated. Reaction orders with respect to the reactants were determined. Kinetic scheme of quaternization reaction was found to be corresponding to reversible process. An influence of amines basicity and steric factor of alkyl substituent bound to the nitrogen atom on tertiary amines reactivity as nucleophiles was studied. It was shown that the rate constants of direct reaction step may serve as a measure of nucleophilicity of amines.

  16. Synthesis and Properties of Polyurethane Resins from Liquefied Benzylated Wood

    Institute of Scientific and Technical Information of China (English)

    Yu Ping WEI; Fa CHENG; Hou Ping LI; Jiu Gao YU

    2005-01-01

    In this paper, polyurethane resins were synthesized from liquefied benzylated wood and TDI (toluene diisocyanate)-TMP (trihydromethylene propane) prepolymer. And the relation between microphase structure and properties of PU samples were also studied. The results indicated that coatings obtained had good mechanical and thermal properties. The amount of the curing agent has great effect on the degree of phase segregation. In addition, with increased the curing agent amount, the thermal stabilities were also improved.

  17. Multichromic polymers of benzotriazole derivatives: Effect of benzyl substitution

    Energy Technology Data Exchange (ETDEWEB)

    Yigitsoy, Basak [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Abdul Karim, S.M. [Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka 1208 (Bangladesh); Balan, Abidin; Baran, Derya [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Toppare, Levent, E-mail: toppare@metu.edu.t [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Biotechnology, Middle East Technical University, 06531 Ankara (Turkey); Department of Polymer Science and Technology, Middle East Technical University, 06531 Ankara (Turkey)

    2011-02-01

    Two electroactive monomers 1-benzyl-4,7-di(thiophen-2-yl))-2H-benzo[d][1,2,3]triazole (BBTA) and 2-benzyl-4,7-di(thiophen-2-yl))-2H-benzo[d][1,2,3]triazole (BBTS) were synthesized with satisfactory yields. The effect of substitution site on electrochemical and optical properties was investigated with cyclic voltammetry and spectroelectrochemical studies. Results showed that position of pendant group alters the electronic structure of the resulting polymer causing different optical and electrochemical behaviors. Symmetrically positioned benzyl unit on benzotriazole moiety resulted in a neutral state red polymer, PBBTS, having multi-colored property in its different oxidized and reduced states. Its analogue PBBTA exhibited maximum absorption at 390 nm in its neutral state and also revealed multicolored electrochromic property upon stepwise oxidation. Very different optical band gap values were calculated: 1.55 eV and 2.25 eV for PBBTS and PBBTA, respectively.

  18. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light.

    Science.gov (United States)

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-14

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.

  19. Synthesis of Pharmaceutical Intermediates by Toluene Benzylation over Heteropoly Acids on Different Support

    Institute of Scientific and Technical Information of China (English)

    V. V. Bokade; G.D. Yadav

    2007-01-01

    Selective formation of pharmaceutical intermediates like diphenylmethane, dimethyldiphenylmethane, benzyl toluene and benzoic acid by liquid phase, toluene benzylation with benzyl chloride as a benzylating agent, was systematically studied over plane clay (K-10, montmorillonite),plane H-Beta, plane MFI structured titanosilicate (TS-1) and heteropoly acids [HPA, namely dodecasupported on clay, H-beta and TS-1. The 20%TPA/Clay, 30%TPA/H-Beta and 30%TPA/TS-1, were observed to be the best catalyst samples over plane clay, plane H-Beta and plane TS-1. The catalyst samples are compared with respect to benzyl chloride conversion and selectivities for diphenylmethane,dimethyl-diphenylmethane, benzyl toluene and benzoic acid. The reaction follows the pseudo-first order rate power law model. The apparent rate constants are calculated and compared with the reported ones.

  20. Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates

    OpenAIRE

    Qinggang Mei; Chun Wang; Weicheng Yuan; Guolin Zhang

    2015-01-01

    A strategy for selective mono-, di- and tri-O-methylation of kaempferol, predominantly on the basis of selective benzylation and controllable deacetylation of kaempferol acetates, was developed. From the selective deacetylation and benzylation of kaempferol tetraacetate (1), 3,4′,5,-tri-O-acetylkaempferol (2) and 7-O-benzyl-3,4′5,-tri-O-acetylkaempferol (8) were obtained, respectively. By controllable deacetylation and followed selective or direct methylation of these two intermediates, eight...

  1. Aerobic dehydrogenative α-diarylation of benzyl ketones with aromatics through carbon-carbon bond cleavage.

    Science.gov (United States)

    More, Nagnath Yadav; Jeganmohan, Masilamani

    2014-02-01

    Substituted benzyl ketones reacted with aromatics in the presence of K2S2O8 in CF3COOH at room temperature, yielding α-diaryl benzyl ketones through a carbon-carbon bond cleavage. In the reaction, two new carbon-carbon bonds were formed and one carbon-carbon bond was cleaved. It is very interesting that two different nucleophiles such as benzyl ketones and aromatics were coupled together without metal, which is unusual in organic synthesis.

  2. An Efficient and Chemoselective Deprotection of tert-Butyldimethylsilyl Protected Alcohols Using SnCl2·2H2O as Catalyst

    Institute of Scientific and Technical Information of China (English)

    Jun HUA; Zhi Yong JIANG; Yan Guang WANG

    2004-01-01

    An efficient and selective method for the deprotection of primary alcoholic tert-butylallow primary alcoholic TBS ethers to be desilylated chemoselectively in the presence of phenolic TBS ethers, secondary and tertiary alcolholic TBS ethers, and the extensively used TBDPS-,acetyl-, benzyloxycarbonyl-, p-toluenesulfonyl- and benzyl protective groups.

  3. A new pyrroloquinazoline alkaloid from Linaria vulgaris.

    Science.gov (United States)

    Hua, Huiming; Cheng, Maosheng; Li, Xian; Pei, Yuehu

    2002-10-01

    A new alkaloid, 1,2,3,9-tetrahydropyrrolo(2,1-b)quinazolin-1-carboxylic acid (1), together with eight known compounds, 7-hydroxy vasicine (2), benzyl alcohol beta-D-(2'-O-beta-xylopyranosyl)glucopyranoside (3), benzyl alcohol O-beta-D-glucopyranoside (4), benzyl alcohol O-beta-D-primveroside (5), 3,5-dimethyl-4-hydroxy benzaldehyde (6), gluco-syringic acid (7), syringin (8), and liriodendrin (9), were isolated from the plants of Linaria vulgaris. Their structures were established by spectroscopic methods.

  4. New preparation of benzylic aluminum and zinc organometallics by direct insertion of aluminum powder.

    Science.gov (United States)

    Blümke, Tobias D; Groll, Klaus; Karaghiosoff, Konstantin; Knochel, Paul

    2011-12-16

    The reaction of commercial Al-powder (3 equiv) and InCl(3) (1-5 mol %) with benzylic chlorides provides various functionalized benzylic aluminum sesquichlorides under mild conditions (THF, 20 °C, 3-24 h) without homocoupling (organometallics reacted smoothly with various electrophiles (Pd-catalyzed cross-couplings, or Cu-mediated acylations, allylations, or 1,4-addition reactions). Electron-poor benzylic chlorides or substrates prone to Wurtz coupling can be converted to benzylic zinc compounds by the reaction of Al-powder in the presence of ZnCl(2).

  5. Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; DeLa Riva, Andrew T.; Helveg, Stig

    2008-01-01

    Gold nanoparticles are deposited on potassium titanate nanowires and used as heterogeneous catalysts in the aerobic oxidation of benzyl alcohol in methanol to methyl benzoate at ambient conditions. The presence of a catalytic amount of base promotes the reaction and the formation of free benzoic...

  6. Tungstosilicic Acid: An Efficient and Ecofriendly Catalyst for the Conversion of Alcohols to Alkyl Iodides

    Directory of Open Access Journals (Sweden)

    Masoud Mokhtary

    2011-01-01

    Full Text Available Treatment of a range of benzylic, allylic, and secondary aliphatic alcohols with potassium iodides in the presence of H4SiW12O40 affords the corresponding alkyl iodides in good to excellent yield with straightforward purification at room temperature in CH3CN.

  7. Substitution controlled functionalization of ortho-bromobenzylic alcohols via palladium catalysis: synthesis of chromenes and indenols.

    Science.gov (United States)

    Mahendar, Lodi; Satyanarayana, Gedu

    2014-03-07

    An efficient domino Pd-catalyzed transformation of simple ortho-bromobenzyl tertiary alcohols to chromenes is presented. Their formation is believed to proceed via the formation of a five-membered palladacycle, which, in turn, involves in an intermolecular homocoupling with the second ortho-bromobenzyltertiary alcohol to yield the homo-biaryl bond followed by intramolecular C-O bond formation. Interestingly, when there is an allylic substituent on the benzylic carbon atom, a chemoselective switch was observed, which preferred intramolecular Heck coupling and gave indenols. Further, it has been confirmed that the tertiary alcohol functionality is indispensible to give the coupled products, whereas the use of primary/secondary benzylic alcohols furnished the simple carbonyl products via a possible reductive debromination followed by oxidation due to the availability of β-hydrogen(s).

  8. Studies on crystal growth and physical properties of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline single crystal

    Science.gov (United States)

    Jebin, R. P.; Suthan, T.; Rajesh, N. P.; Vinitha, G.; Dhas, S. A. Britto

    2016-07-01

    The organic material 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline has been grown by slow evaporation technique. Single crystal and Powder X-ray diffraction studies have been carried out to conform the grown crystal. FTIR and FT-Raman spectra were recorded to identify the functional groups present in the crystal. The optical property of the grown crystal was analysed by UV-Vis-NIR measurement. The thermal property of the grown crystal was analysed by thermogravimetric (TG) and differential thermal analyses (DTA). Thermal diffusivity of the grown crystal was analysed by Photo acoustic spectroscopic (PAS) studies. The third order nonlinear optical properties of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. The mechanical property of the grown crystal was analysed by using microhardness studies.

  9. The Production of Benzaldehyde by Rhizopus oligosporus USM R1 in a Solid State Fermentation (SSF System of Soy Bean Meal: Rice Husks

    Directory of Open Access Journals (Sweden)

    Norliza, A. W.

    2005-01-01

    Full Text Available The cultivation of Rhizopus oligosporus USM R1 for the production of benzaldehyde, a bitter cherry almond flavour was performed using soya bean meal and rice husks as the substrates. The identification of R. oligosporus USM R1 was performed based on the observation made under light microscope and scanning electron microscope (SEM. The optimum conditions for the SSF in a 250-ml Erlenmeyer flask system were 40% (v/w water content, substrate particle size of 0.7 mm; inoculum size of 1 x 10^5 spores/g substrate; incubation temperature of 30C; substrate amount of 7 g and the ratio of soy bean meal: rice husks of 50:50%. A maximum benzaldehyde production was obtained when the substrate was agitated after 48 hour for a 96 hour fermentation time. The highest benzaldehyde production obtained after 96 hour cultivation was 5.47 mg g-1 substrate. The supplementation of carbon and nitrogen sources in the substrate mixture revealed an enhancement in the growth and benzyldehyde production. A maximum production of benzaldehyde was obtained with the supplementation of L-phenylalanine, a precursor for benzaldehyde biosynthesis which gave 38.69 mg benzaldehyde/g substrate. This is approximately 6-folds higher compared to the substrates without the supplementation of L-phenylalanine.

  10. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light

    Science.gov (United States)

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-01

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%. Electronic supplementary information (ESI) available: Experimental procedure, XRD patterns, TEM and HRTEM images, energy-dispersive X-ray spectra, UV-vis spectra, X-ray photoelectron spectroscopy (XPS), and EDS. See DOI: 10.1039/c6nr02949c

  11. Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp.

    Science.gov (United States)

    Krizevski, Raz; Bar, Einat; Shalit, O R; Levy, Asaf; Hagel, Jillian M; Kilpatrick, Korey; Marsolais, Frédéric; Facchini, Peter J; Ben-Shabat, Shimon; Sitrit, Yaron; Lewinsohn, Efraim

    2012-09-01

    Ephedrine and pseudoephedrine are phenylpropylamino alkaloids widely used in modern medicine. Some Ephedra species such as E. sinica Stapf (Ephedraceae), a widely used Chinese medicinal plant (Chinese name: Ma Huang), accumulate ephedrine alkaloids as active constituents. Other Ephedra species, such as E. foeminea Forssk. (syn. E. campylopoda C.A. Mey) lack ephedrine alkaloids and their postulated metabolic precursors 1-phenylpropane-1,2-dione and (S)-cathinone. Solid-phase microextraction analysis of freshly picked young E. sinica and E. foeminea stems revealed the presence of increased benzaldehyde levels in E. foeminea, whereas 1-phenylpropane-1,2-dione was detected only in E. sinica. Soluble protein preparations from E. sinica and E. foeminea stems catalyzed the conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol, (S)-phenylacetylcarbinol, (R)-2-hydroxypropiophenone (S)-2-hydroxypropiophenone and 1-phenylpropane-1,2-dione. The activity, termed benzaldehyde carboxyligase (BCL) required the presence of magnesium and thiamine pyrophosphate and was 40 times higher in E. sinica as compared to E. foeminea. The distribution patterns of BCL activity in E. sinica tissues correlates well with the distribution pattern of the ephedrine alkaloids. (S)-Cathinone reductase enzymatic activities generating (1R,2S)-norephedrine and (1S,1R)-norephedrine were significantly higher in E. sinica relative to the levels displayed by E. foeminea. Surprisingly, (1R,2S)-norephedrine N-methyltransferase activity which is a downstream enzyme in ephedrine biosynthesis was significantly higher in E. foeminea than in E. sinica. Our studies further support that benzaldehyde is the metabolic precursor to phenylpropylamino alkaloids in E. sinica.

  12. Benzyl 2-β-Glucopyranosyloxybenzoate, a New Phenolic Acid Glycoside from Sarcandra glabra

    Directory of Open Access Journals (Sweden)

    Xudong Xu

    2012-05-01

    Full Text Available From the whole plant of Sarcandra glabra, a new phenolic acid glycoside, benzyl 2-β-glucopyranosyloxybenzoate (1, together with seven known compounds including eleutheroside B1 (2, 5-O-caffeoylshikimic acid (3, (–-(7S, 8R-dihydrodehydro-diconiferyl alcohol (4, (–-(7S, 8R-dihydrodehydrodiconiferyl alcohol 9-, 9′- and 4-O-â-D-glucopyranoside (57, and (–-(7S, 8R-5-methoxydihydrodehydrodiconiferyl alcohol 4-O-β-D-glucopyranoside (8 was isolated. Their structures were elucidated by spectral analysis including 1D-, 2D-NMR and HR-ESI-MS. Compound 2 was found to exhibit potent cytotoxic activity against BGC-823 and A2780 cancer cell lines using MTT method with IC50 value of 2.53 and 1.85 µM, respectively.

  13. Dual stereoselectivity in the dialkylzinc reaction using (-)-beta-pinene derived amino alcohol chiral auxiliaries.

    Science.gov (United States)

    Binder, Caitlin M; Bautista, April; Zaidlewicz, Marek; Krzemiński, Marek P; Oliver, Allen; Singaram, Bakthan

    2009-03-20

    (+)-Nopinone, prepared from naturally occurring (-)-beta-pinene, was converted to the two regioisomeric amino alcohols 3-MAP and 2-MAP in very good yield and excellent isomeric purity. Amino alcohol 3-MAP was synthesized by converting (+)-nopinone to the corresponding alpha-ketooxime. This was reduced to the primary amino alcohol and was converted to the morpholino group through a simple substitution reaction. 3-MAP was characterized by X-ray crystallography, which displayed the rigidity of the pinane framework. Amino alcohol 2-MAP was prepared from its trans isomer 2, which in turn was synthesized via hydroboration/oxidation of the morpholine enamine of (+)-nopinone. Two-dimensional NMR was used to characterize amino alcohol 2-MAP, and NOE was used to confirm its relative stereochemistry. These amino alcohols were employed as chiral auxiliaries in the addition of diethylzinc to benzaldehyde to obtain near-quantitative asymmetric induction in the products. The use of 3-MAP yielded (S)-phenylpropanol in 99% ee, and its regioisomer 2-MAP gave the opposite enantiomer, (R)-phenylpropanol, also in 99% ee. Other aromatic, aliphatic, and alpha,beta-unsaturated aldehydes were implemented in this method, affording secondary alcohols in high yield and enantiomeric excess. Amino alcohols 2-MAP and 3-MAP were also found to be useful in the dimethylzinc addition reaction, both catalyzing the addition to benzaldehyde with nearly quantitative ee. Regioisomeric amino alcohols 2-MAP and 3-MAP, even though they were prepared from one enantiomer of nopinone, provide antipodal enantiofacial selectivity in the dialkylzinc addition reaction. This circumvents the necessity to synthesize amino alcohols derived from (-)-nopinone, which in turn requires the unnatural (+)-beta-pinene. Possible mechanistic insights are offered to explain the dual stereoselectivity observed in the diethylzinc addition reaction involving regioisomeric, pseudo-enantiomeric amino alcohols 3-MAP and 2-MAP.

  14. [N-Benzyl-N-(diphenylphosphanylmethylpyridin-2-amine]chloridomethylplatinum(II

    Directory of Open Access Journals (Sweden)

    Chong-Qing Wan

    2011-01-01

    Full Text Available In the mononuclear title complex, [Pt(CH3Cl(C25H23N2P], the N-benzyl-N-(diphenylphosphanylmethylpyridin-2-amine functions as a bidentate ligand with the pyridyl N atom and the phosphine P atom chelating the PtII ion, forming a six-membered metallocycle. The PtII atom adopts a square-planar coordination geometry with one methyl group and one chloride ligand bonding to the metal center in a cis relationship. C—H...π and C—H...Cl interactions help to consolidate the packing.

  15. Multireference Calculation of the Photodissociation of Benzyl Chloride

    Institute of Scientific and Technical Information of China (English)

    CAO Jun; LIU Ya-Jun; FANG Wei-Hai

    2007-01-01

    The photodissociation mechanism of benzyl chloride (BzCl) under 248 nm has been investigated by the complete active space SCF (CASSCF) method by calculating the geometries of the ground (S0) and lower excited states,the vertical (Tv) and adiabatic (T0) excitation energies of the lower states,and the dissociation reaction pathways on the potential energy surfaces (PES) of S1, T1 and T2 states.The calculated results clearly elucidated the photodissociation mechanism of BzCl,and indicated that the photodissociation on the PES of T1 state is the most favorable.

  16. Palladium-Catalyzed Nucleophilic Substitution of Alcohols : Mechanistic Studies and Synthetic Applications

    OpenAIRE

    Sawadjoon, Supaporn

    2013-01-01

    This thesis deals with the palladium-catalyzed nucleophilic substitution of π-activated alcohols in which the C–O bond of a non-manipulated hydroxyl group is cleaved. The thesis is divided in two chapters describing two different catalytic systems. Chapter 2 describes a heterogeneous palladium-catalyzed transfer hydrogenolysis of primary, secondary, and tertiary benzylic alcohols to generate the corresponding aromatic hydrocarbons using formic acid as the hydrogen donor. A detailed mechanisti...

  17. Inhibitory Kinetics of p-Substituted Benzaldehydes on Polyphenol Oxidase from the Fifth Instar of Pieris Rapae L.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polyphenol oxidase (PPO) is the enzyme responsible for enzymatic browning during the growth of insects. It is also involved in defense reactions and is related with immunities in insects. PPO,a metalloenzyme oxidase, catalyzes the oxidation of o-diphenol to o-quinone. The present paper describes the effects of benzaldehyde and its p-substituted derivatives on the activity of PPO from the fifth instar of Pieris rapae L. PPO from the fifth instar of Pieris rapae L. was purified using ammonium sulfate fractionation and chromatography on Sephadex G-100. The enzyme kinetics was characterized using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. The results show that benzaldehyde, p-hydroxybenzaldehyde, p-chlorobenzaldehyde, and p-cyanobenzaldehyde can inhibit the PPO activity for the oxidation of L-DOPA. The inhibitor concentration leading to 50% activity lost, IC50, was estimated to be 5.90, 5.62, 2.83, and 2.91 mmol/L for the four tested inhibitors, respectively. Kinetic analyses show that the inhibitory effects of these compounds are reversible. Benzaldehyde, p-hydroxybenzaldehyde, and p-chlorobenzaldehyde are noncompetitive inhibitors while p-cyanobenzaldehyde is a mixed-type inhibitor. The inhibition constants were determined for all four inhibitors.p-chlorobenzaldehyde and p-cyanobenzaldehyde were more potent inhibitors than the other compounds. These results provide a basis for developing PPO inhibition-based pesticides.

  18. Structure of the ThDP-dependent enzyme benzaldehyde lyase refined to 1.65 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Maraite, Andy; Schmidt, Thomas; Ansörge-Schumacher, Marion B. [Department of Biotechnology, Faculty of Natural Sciences, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Brzozowski, A. Marek; Grogan, Gideon, E-mail: grogan@ysbl.york.ac.uk [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom); Department of Biotechnology, Faculty of Natural Sciences, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany)

    2007-07-01

    The X-ray crystal structure of the ThDP-dependent enzyme benzaldehyde lyase has been refined to 1.65 Å. Benzaldehyde lyase (BAL; EC 4.1.2.38) is a thiamine diphosphate (ThDP) dependent enzyme that catalyses the enantioselective carboligation of two molecules of benzaldehyde to form (R)-benzoin. BAL has hence aroused interest for its potential in the industrial synthesis of optically active benzoins and derivatives. The structure of BAL was previously solved to a resolution of 2.6 Å using MAD experiments on a selenomethionine derivative [Mosbacher et al. (2005 ▶), FEBS J.272, 6067–6076]. In this communication of parallel studies, BAL was crystallized in an alternative space group (P2{sub 1}2{sub 1}2{sub 1}) and its structure refined to a resolution of 1.65 Å, allowing detailed observation of the water structure, active-site interactions with ThDP and also the electron density for the co-solvent 2-methyl-2,4-pentanediol (MPD) at hydrophobic patches of the enzyme surface.

  19. Quantification of brown dog tick repellents, 2-hexanone and benzaldehyde, and release from tick-resistant beagles, Canis lupus familiaris.

    Science.gov (United States)

    de Oliveira Filho, Jaires Gomes; Sarria, André Lucio Franceschini; Ferreira, Lorena Lopes; Caulfield, John C; Powers, Stephen J; Pickett, John A; de León, Adalberto A Pérez; Birkett, Michael A; Borges, Lígia Miranda Ferreira

    2016-06-01

    We have recently shown that repellency of the tick Rhipicephalus sanguineus sensu lato by the tick resistant dog breed, the beagle, is mediated by volatile organic compounds (VOCs) 2-hexanone and benzaldehyde present in beagle odour. Ectoparasite location of animal hosts is affected by variation in these odour components and their ratios. The aim of this study was to quantify the release rate, and the ratio, of 2-hexanone and benzaldehyde from beagles. The odour of three beagles was collected, for four days, over one week (day 0, day 1, day 4 and day 7). The compounds were identified using coupled high-resolution gas chromatography-mass spectrometry (GC-MS), and authentic standards of compounds were used to generate external calibration curves for quantification. Both compounds were found in all dogs on all days. The amount of benzaldehyde was always higher than that of 2-hexanone and so their ratio varied from unity, on average (over time) being 3.128±0.365, 1.902±0.390, 1.670±0.671ngmL(-1) for beagle 1, 2 and 3, respectively. There was no significant (pbenzaldehyde in beagle odour samples covering a 7-day period. This knowledge enables development of repellents to protect dogs from R. sanguineus s. l. infestation.

  20. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  1. Oxidative cleavage of benzylic C-N bonds under metal-free conditions.

    Science.gov (United States)

    Gong, Jin-Long; Qi, Xinxin; Wei, Duo; Feng, Jian-Bo; Wu, Xiao-Feng

    2014-10-14

    An interesting procedure for the oxidative cleavage of benzylic C-N bonds has been developed. Using TBAI as the catalyst and H2O2 as the oxidant, various benzylamines were transformed into their corresponding aromatic aldehydes in moderate to good yields. Notably, this is the first example of an oxidative cleavage of benzylic C-N bonds under metal-free conditions.

  2. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aqueous solution containing a reactive extractant, like borate salts, borate complexes, a monosalt of dicarboxylic acid,hydroxypropyl-cyclodextrins, and silver nitrate, shows limited potential to be used. Another approach, in which the alcohol is chemically modified prior to the extraction into an easy-extractable form, in this case a monoesterlcarboxylic acid, shows much more potential. An environmentally benign aqueous solution of sodium hydrogen carbonate can provide a distribution ratio of benzyl alcohol up to 200, leaving the solubility of the organic solvent in the aqueous solution unchanged relative to pure water and therefore increasing the selectivity with two orders of magnitude. The modification of aromatic, cyclo-aliphatic, and linear aliphatic alcohols can be performed efficiently in the apolar organic solvent without need for a catalyst. The recovery of the modified alcohol can be performed by back-extraction in combination with a spontaneous hydrolysis.

  3. National Institute on Alcohol Abuse and Alcoholism

    Science.gov (United States)

    Skip to main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use ...

  4. Polyoxometalate coordinated transition metal complexes as catalysts: Oxidation of styrene to benzaldehyde/benzoic acid

    Indian Academy of Sciences (India)

    Srinivasa Rao Amanchi; Anjali Patel; Samar K Das

    2014-11-01

    Oxidation of styrene is carried out by using heptamolybdate coordinated transition metal (Co2+, Zn2+) complexes, [2-ampH]4[{Co(H2O)5}Mo7O24]·9H2O (1), [3-ampH]4[{Co(H2O)5}Mo7O24]·9H2O (2), [2-ampH]4[{Zn(H2O)5}Mo7O24]·4H2O (3) and [3-ampH]4[{Zn(3-ampy)(H2O)4}Mo7O24]·4H2O (4) as catalysts and H2O2 as an oxidant at 80°C. The leaching study has been carried out to check the quality of catalyst and it has been reused for three times with good percentage of conversion. For the first two catalysts (compounds 1 and 2), the major product obtained is benzaldehyde, and benzoic acid is the major product for next two catalysts (compounds 3 and 4). Stability of the catalysts has been analyzed by IR, UV-spectroscopy and powder X-ray crystallography.

  5. Amorphous metal-aluminophosphate catalysts for aldol condensation of n-heptanal and benzaldehyde to jasminaldehyde

    Institute of Scientific and Technical Information of China (English)

    A. Hamza; N. Nagaraju

    2015-01-01

    Amorphous aluminophosphate (AlP) and metal‐aluminophosphates (MAlPs, where M=2.5 mol%Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity for the synthesis of jasminaldehyde through the aldol condensation of n‐heptanal and benzaldehyde were investigated. The nitrogen adsorption‐desorption isotherms showed that the microporosity exhibited by the aluminophosphate was changed to a mesoporous and macroporous structure which depended on the metal incorporated, with a concomitant change in the surface area. Temperature‐programmed desorption of NH3 and CO2 revealed that the materials possessed both acidic and basic sites. The acidic strength of the material was either increased or decreased depending on the nature of the metal. The basicity was increased compared to AlP. All the materials were X‐ray amorphous and powder X‐ray diffraction studies indicated the absence of metal oxide phases. The Fourier transform infrared analysis confirmed the presence of phosphate groups and also the absence of any M‐O moieties in the materials. The selected organic reaction occurred only in the presence of the AlP and MAlPs. The selectivity for the jasminaldehyde product was up to 75%with a yield of 65%. The best conversion of n‐heptanal with a high selectivity to jasminaldehyde was obtained with FeAlP as the catalyst, and this material was characterized to have less weak acid sites and more basic sites.

  6. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Elizandra Aparecida Britta

    Full Text Available BACKGROUND: Leishmaniasis is a major health problem that affects more than 12 million people. Treatment presents several problems, including high toxicity and many adverse effects, leading to the discontinuation of treatment and emergence of resistant strains. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the in vitro antileishmanial activity of benzaldehyde thiosemicarbazone derived from limonene complexed with copper, termed BenzCo, against Leishmania amazonensis. BenzCo inhibited the growth of the promastigote and axenic amastigote forms, with IC(50 concentrations of 3.8 and 9.5 µM, respectively, with 72 h of incubation. Intracellular amastigotes were inhibited by the compound, with an IC(50 of 10.7 µM. BenzCo altered the shape, size, and ultrastructure of the parasites. Mitochondrial membrane depolarization was observed in protozoa treated with BenzCo but caused no alterations in the plasma membrane. Additionally, BenzCo induced lipoperoxidation and the production of mitochondrial superoxide anion radicals in promastigotes and axenic amastigotes of Leishmania amazonensis. CONCLUSION/SIGNIFICANCE: Our studies indicated that the antileishmania activity of BenzCo might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death.

  7. Structure and Luminescence Property of a Hexanuclear Silver(Ⅰ) Cluster Containing Benzaldehyde Thiosemicarbazone

    Institute of Scientific and Technical Information of China (English)

    SUN Qiao-Zhen

    2011-01-01

    A new hexanuclear silver (I) compound 2 containing thiosemicarbazone with the group of benzene was synthesized and structurally characterized by single-crystal X-ray diffraction, elemental analysis and fluorescence spectrum. The title compound crystallizes in triclinic, space group P with a = 11.611(3), b = 15.610(5), c = 15.624(7) , α = 113.942(6), β = 104.520(6), γ = 104.230(4)°, V = 2304.1(14) 3, C60H77Ag6N22O4.5S6, Mr = 2018.02, Dc = 1.454 g/cm3, μ(MoKα) = 1.435 mm-1, F(000) = 1005, Z = 1, the final R = 0.0468 and wR = 0.1474 for 6608 observed reflections (I 2σ(I)). In the structure, the S atom of the ligand L2 (L2 = benzaldehyde thiosemicarbazone) served as a triply bridged chelator to connect the six silver atoms into a Ag6L26 cluster. The luminescence property of compound 2 was investigated at room temperature.

  8. Assessment of cytotoxic and apoptotic effects of benzaldehyde using different assays.

    Science.gov (United States)

    Ulker, Z; Alpsoy, L; Mihmanli, A

    2013-08-01

    Benzaldehyde (BA) occurs naturally in a number of plants, including cherry, fig and peach fruit and carnation flowers at therapeutic doses. In addition, it is used in cosmetics, personal care products and food as a preservative. In this study, we aimed to determine the cytotoxic and apoptotic effects of different concentrations of BA on cultured human lymphocytes using lactate dehydrogenase assay, cell proliferation (water-soluble tetrazolium salts-1) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test (apoptotic test) as a group of cytotoxicity tests at 6th and 24th h on human lymphocyte cell culture. The cytotoxicity increased when cells were treated with 10, 25 and 50 μg/mL concentrations of BA (p < 0.05). Moreover, treatment of the cells with the same concentrations significantly decreased the cell number at the 6th and 24th hours (p < 0.05). TUNEL assay results also show that the concentration of BA at 10, 25 and 50 μg/mL caused DNA damage significantly (p < 0.05). According to our results, the toxic and genotoxic effects of BA have to be further evaluated before using in cosmetic and food products.

  9. Synthesis and Anti-HIV-1 Activity of New MKC-442 Analogues with an Alkynyl-Substituted 6-Benzyl Group

    DEFF Research Database (Denmark)

    Aly, Youssef L.; Pedersen, Erik Bjerreg.; La Colla, Paolo;

    2007-01-01

    Synthesis and antiviral activities are reported of a series of 6-(3-alkynyl benzyl)-substituted analogues of MKC-442 (6-benzyl-1-(ethoxymethyl)-5-isopropyluracil), a highly potent agent against HIV. The 3-alkynyl group is assumed to give a better stacking of the substituted benzyl group to revers...

  10. Antimicrobial, antioxidant, cytotoxic and molecular docking properties of N-benzyl-2,2,2-trifluoroacetamide

    Science.gov (United States)

    Balachandran, C.; Kumar, P. Saravana; Arun, Y.; Duraipandiyan, V.; Sundaram, R. Lakshmi; Vijayakumar, A.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N. A.; Perumal, P. T.

    2015-02-01

    N-Benzyl-2,2,2-trifluoroacetamide was obtained by acylation of benzylamine with trifluoroacetic anhydride using Friedel-Crafts acylation method. The synthesised compound was confirmed by spectroscopic and crystallographic techniques. N-Benzyl-2,2,2 -trifluoroacetamide was assessed for its antimicrobial, antioxidant, cytotoxic and molecular docking properties. It showed good antifungal activity against tested fungi and moderate antibacterial activity. The minimum inhibitory concentration values of N-benzyl-2,2,2 -trifluoroacetamide against fungi were 15.62 μg/mL against A. flavus, 31.25 μg/mL against B. Cinerea and 62.5 μg/mL against T. mentagrophytes, Scopulariopsis sp., C. albicans and M. pachydermatis. N-Benzyl-2,2,2-trifluoroacetamide showed 78.97 ± 2.24 of antioxidant activity at 1,000 μg/mL. Cupric ion reducing antioxidant capacity of N-benzyl-2,2,2-trifluoroacetamide was dependent on the concentration. Ferric reducing antioxidant power assay of N-benzyl-2,2,2-trifluoroacetamide showed (1.352 ± 0.04 mM Fe(II)/g) twofold higher value compared to the standard. N-Benzyl-2,2,2-trifluoroacetamide showed 75.3 % cytotoxic activity at the dose of 200 μg/mL with IC50 (54.7 %) value of 100 μg/mL. N-Benzyl-2,2,2-trifluoroacetamide was subjected to molecular docking studies for the inhibition AmpC beta-lactamase, Glucosamine-6-Phosphate Synthase and lanosterol 14 alpha-demethylase (CYP51) enzymes which are targets for antibacterial and antifungal drugs. Docking studies of N-benzyl-2,2,2-trifluoroacetamide showed low docking energy. N-Benzyl-2,2,2-trifluoroacetamide can be evaluated further for drug development.

  11. Synthesis of pterostilbene by Julie Olefination

    Science.gov (United States)

    A simple, stereoselective route for the synthesis of the biologically active compounds trans-pterostilbene and tetramethoxy stilbene from the readily available starting materials 3,5-dimethoxy benzyl alcohol and 4-hydroxy benzaldehyde was developed using Julia olefination as a key reaction....

  12. Conversion of Alcohols to Bromides by Trimethylsilane and lithium Bromide in Acetone

    Institute of Scientific and Technical Information of China (English)

    Wei Feng; Zhang Xiao-xia; Zhang Qing; Wang Ji-yu; Chen Dai-mo

    2004-01-01

    Conversion of alcohols to alkyl bromides is one of the most frequently used functional group transformation reactions. Phosphorus tribromide is one of the most popular classical reagents.Triphenylphosphine has been used in combination with bromine,carbon tetrabromide,N-halo imides and other bromide compounds as a mild reagents for the preparation of alkyl bromides.More reacently, halotrimethylsilanes were found to be useful for halogenation of alcohols. George A.Olah successfully converted alcohols to bromides with chlorotrimethylsilane/lithium bromide in acetonitrile. But in our research, we found that we got no bromides but methylation products when we planed to convered our substances to bromides according to Gerge's method. We did some experiments, and we found that when the substituent group in the 2-N was donor group,we got the methylation products,but when it was acceptor group,the bromide could be got.(Scheme 1).Then we did some experiments with several other solvents, we found excitedly that when the solvent was acetone ,the bromides could be got even the substituent group was donor.(Scheme 2).When we changed the substances to normal alcohols ,such as ethyl alcohol,benzyl alcohol,isopropyl alcohol and 3,4-dimethoxy benzyl alcohol,we also got the bromides.In conclusion, we found a simple method to convert alcohols to bromides with trimethylsilane/li thium bromide in acetone,which was better than Geroge's method.

  13. BENZYLATION AND CHARACTERIZATION OF COLD NAOH/UREA PRE-SWELLED BAMBOO

    Directory of Open Access Journals (Sweden)

    Ming-Fei Li,

    2012-02-01

    Full Text Available Ball-milled bamboo was pre-swelled with a cold aqueous solution of NaOH and urea, and then reacted directly with benzyl chloride to synthesize benzylated bamboo. The effects of the molar ratio of benzyl chloride to OH groups in the bamboo (1 to 4, the reaction temperature (70 to 110 °C, and the reaction time (2 to 8 h on both the product yield and the degree of substitution (DS were evaluated. Yields between 67.6 and 94.0% and DS between 0.31 and 0.74 of the benzylated bamboo were obtained under such conditions. The incorporation of benzyl groups was evidenced by FT-IR and CP/MAS 13C-NMR spectroscopy. It was found that the crystalline structure of the native ball-milled bamboo was markedly damaged after modification. In addition, the benzylated bamboo was subjected to thermal degradation at a high temperature with an increase in substitution. It was suggested that the benzylated bamboo with a low crystallinity as well as large non-polar groups is promising as a filler for use in the composite material industry.

  14. Alcohol Abuse

    Science.gov (United States)

    ... even small amounts of alcohol may hurt an unborn child)Drink alcohol while you are looking after ... shakes, being very suspicious), and can even include death. This is why you need your doctor’s care ...

  15. Solvent effects in the reaction between piperazine and benzyl bromide

    Indian Academy of Sciences (India)

    S Ranga Reddy; P Manikyamba

    2007-11-01

    The reaction between piperazine and benzyl bromide was studied conductometrically and the second order rate constants were computed. These rate constants determined in 12 different protic and aprotic solvents indicate that the rate of the reaction is influenced by electrophilicity (), hydrogen bond donor ability () and dipolarity/polarizability (*) of the solvent. The LSER derived from the statistical analysis indicates that the transition state is more solvated than the reactants due to hydrogen bond donation and polarizability of the solvent while the reactant is more solvated than the transition state due to electrophilicity of the solvent. Study of the reaction in methanol, dimethyl formamide mixtures suggests that the rate is maximum when dipolar interactions between the two solvents are maximum.

  16. 1-Benzyl-5-bromoindoline-2,3-dione

    Directory of Open Access Journals (Sweden)

    Yassine Kharbach

    2016-04-01

    Full Text Available In the title compound, C15H10BrNO2, the indoline ring system, the two ketone O atoms and the Br atom lie in a common plane, with the largest deviation from the mean plane being 0.073 (1 Å for the Br atom. The fused-ring system is nearly perpendicular to the benzyl ring, as indicated by the dihedral angle between them of 74.58 (10°. In the crystal, molecules are linked by weak C—H...O hydrogen bonds and by π–π interactions [inter-centroid distance = 3.625 (2 Å], forming a two-dimensional structure.

  17. 1-Benzyl-3-[(trimethylsilylmethyl]benzimidazolium chloride monohydrate

    Directory of Open Access Journals (Sweden)

    Mehmet Akkurt

    2010-07-01

    Full Text Available The title compound, C18H23N2Si+·Cl−·H2O, was synthesized from 1-[(trimethylsilylmethyl]benzimidazole and benzyl chloride in dimethylformamide. The benzimidazole ring system is approximately planar, with a maximum deviation of 0.022 (2 Å, and makes an angle of 74.80 (12° with the phenyl ring. The crystal packing is stabilized by O—H...Cl, C—H...Cl, C—H...O and C—H...π interactions between symmetry-related molecules together with π–π stacking interactions between the imidazolium and benzene rings [centroid–centroid distance = 3.5690 (15 Å] and between the benzene rings [centroid–centroid distance = 3.7223 (14 Å].

  18. Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols

    Indian Academy of Sciences (India)

    Ahmad Shaabani; Sajjad Keshipour; Mona Hamidzad; Mozhdeh Seyyedhamzeh

    2014-01-01

    Ethylenediamine-functionalized nanocellulose complexed with cobalt(II) was found to be a highly efficient heterogeneous catalyst for the room temperature aerobic oxidation of various types of primary and secondary benzylic alcohols into their corresponding aldehydes and ketones, respectively. The catalyst showed no significant loss of efficiency after five reaction cycles.

  19. Benzyl alcohol and ethanol can enhance the pathogenic potential of clinical Staphylococcus epidermidis strains.

    NARCIS (Netherlands)

    Milisavljevic, V.; Tran, L.P.; Batmalle, C.; Bootsma, H.J.

    2008-01-01

    BACKGROUND: Staphylococcus epidermidis is the most frequent cause of health care-associated infections, particularly in neonates and patients with indwelling catheters. The pathogenesis of infections caused by this organism is associated with its ability to form biofilms. We hypothesized that alcoho

  20. PROCESS INTENSIFICATION: OXIDATION OF BENZYL ALCOHOL USING A CONTINUOUS ISOTHERMAL REACTOR UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    In the past two decades, several investigations have been carried out using microwave radiation for performing chemical transformations. These transformations have been largely performed in conventional batch reactors with limited mixing and heat transfer capabilities. The reacti...

  1. Alcohol Test

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The recent alcohol tax increase poses a challenge to China’s white spirits makers Alcohol, rather than wine, is an in-dispensable component to Chinese table culture. The financial crisis has failed to affect white spirits sales, but an alcohol tax increase might.

  2. Alcohol Poisoning

    Science.gov (United States)

    ... t be awakened is at risk of dying. Alcohol poisoning is an emergency If you suspect that someone has alcohol poisoning — even if you don't see the ... immediately. Never assume the person will sleep off alcohol poisoning. Be prepared to provide information. If you ...

  3. A nanoporous 3D zinc(II) metal–organic framework for selective absorption of benzaldehyde and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Moradpour, Tahereh [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Abbasi, Alireza, E-mail: aabbassi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Van Hecke, Kristof [XStruct, Department of Inorganic and Physical Chemistry, Ghent University, Krigslaan 281-S3, Ghent B-9000 (Belgium)

    2015-08-15

    A new 3D nanoporous metal–organic framework (MOF), [[Zn{sub 4}O(C{sub 24}H{sub 15}N{sub 6}O{sub 6}){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O·DMF]{sub n} (1) based on 4,4′,4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) ligand was solvothermally synthesized and characterized by single–crystal X-ray diffraction, Powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and Brunauer–Emmett–Teller (BET) analyses. X-ray single crystal diffraction analysis reveals that 1 exhibits a 3D network with new kvh1 topology. Semi-empirical (AM1) calculations were carried out to obtain stable conformers for TATAB ligand. In addition, the absorption of two typical aldehydes (benzaldehyde and formaldehyde) in the presence of 1 was investigated and the effect of the aldehyde concentration, exposure time and temperature was studied. It was found that compound 1 has a potential for the absorption of aldehydes under mild conditions. - Graphical abstract: Absorption of two typical aldehydes (formaldehyde and benzaldehyde) by solvothermally synthesized of a 3D nano-porous MOF based on TATAB tricarboxylate ligand and Zn (NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • We present a 3D Zn(II)-MOF with TATAB linker by solvothermal method. • The framework possesses a new kvh1 topology. • The framework displays formaldehyde and benzaldehyde absorption property. • Conformational analysis was performed to determine the stable linker geometry.

  4. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Directory of Open Access Journals (Sweden)

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  5. β-cyclodextrin functionalized on glass micro-particles: A green catalyst for selective oxidation of toluene to benzaldehyde

    Science.gov (United States)

    Tahir, M. Nazir; Nielsen, Thorbjørn T.; Larsen, Kim L.

    2016-12-01

    Oxidation of toluene is considered an important process which often requires high temperatures and specific conditions along with heavy-metals based catalysts. In this study, we have developed a green catalyst by functionalizing beta-cyclodextrin onto glass micro-particle surfaces. All surfaces were characterized by X-ray photoelectron spectroscopy and applied to catalyze the selective oxidation of toluene into benzaldehyde (82% yield) at room temperature. The catalyst was stable and could be used repeatedly for several cycles without losing efficiency.

  6. 4-{Phenyl[4-(6-phenyl-2,2′-bipyridin-4-ylphenyl]amino}benzaldehyde

    Directory of Open Access Journals (Sweden)

    Yu-yang Zhang

    2014-08-01

    Full Text Available The title molecule, C35H25N3O, is a triphenylamine derivative with the 4-position substituted by an aldehyde group, and the 4′-position substituted by a 6-phenyl-2,2′-bipyridine group. The whole molecule is non-planar and the dihedral angle between the core benzene and pyridine rings is 36.96 (5°. The dihedral angle between the phenyl and benzaldehyde groups bonded to the amine N atom is 70.86 (5°.

  7. Alcoholic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Gonzalo; Guzzo-Merello; Marta; Cobo-Marcos; Maria; Gallego-Delgado; Pablo; Garcia-Pavia

    2014-01-01

    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy(ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM.

  8. Toluene oxidization to benzaldehyde in subcritical water%近临界水中甲苯氧化生成苯甲醛

    Institute of Scientific and Technical Information of China (English)

    朱宪; 王倩

    2006-01-01

    Effects of reaction parameter on yield of benzaldehyde produced from toluene oxidization using hydrogen peroxide in subcriti cal water are investigated. The experimental results show that if the molar ratio of hydrogen peroxide to toluene is controlled within a reasonable range, the by-products may be neglected. The optimum technology of toluene oxidization to benzaldehyde is reaction time 60 min,reaction temperature 350 ℃, molar ratio of hydrogen peroxide to toluene 3.5. The yield of benzaldehyde can reach 17.2% under the optimum condition. Research results of chemical reaction kinetics show that the consecutive reaction consists of two first-order reaction, and activation energy of these two reactions are 89 kJ· mol-1 and 76 kJ· mol-1 respectively.

  9. Polystyrene-supported Benzyl Selenide: An Efficient Reagent for Highly Stereocontrolled Synthesis of Substituted Olefins

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Polystyrene-supported benzyl selenide has been prepared. This novel reagent was treated with LDA to produce a selenium stabilized carbanion, which reacted with alkyl halide, followed by selenoxide syn-elimination, to give substituted olefins stereospecificly.

  10. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)

    2014-02-15

    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  11. Photostimulated SRN 1 Reactions of Benzyl Chloride with Carbazolyl Nitrogen Anion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The photostimulated reactions of benzyl chloride with carbazolyl nitrogen anion in dimethyl sulfoxide gave 9-benzylcarbazole and 3-benzylcarbazole.The reactions are suggested in term of SRN1 mechanism of nucleophilic substitution.

  12. Palladium-catalyzed Cascade Cyclization-Coupling Reaction of Benzyl Halides with N,N-Diallylbenzoylamide

    Institute of Scientific and Technical Information of China (English)

    Yi Min HU; Yu ZHANG; Jian Lin HAN; Cheng Jian ZHU; Yi PAN

    2003-01-01

    A novel type of palladium-catalyzed cascade cyclization-coupling reaction has been found. Reaction of N, N-diallylbenzoylamide 1 with benzyl halides 2 afforded the corresponding dihydropyrroles 3 in moderate to excellent yields.

  13. SIDE CHAIN LIQUID CRYSTALLINE POLYSILOXANES CONTAINING CROWN ETHER AND BENZYL ETHER MOIETIES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Two kinds of side chain liquid crystalline polysiloxanes containing crown ether and benzyl ether were synthesized and characterized by optical polarization microscopy. Both the monomeric liquid crystals and polymeric liquid crystals show smectic phases.

  14. Alcohol and pregnancy

    Science.gov (United States)

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... When a pregnant woman drinks alcohol, the alcohol travels through her blood and into the baby's blood, tissues, and organs. Alcohol breaks down much more slowly in ...

  15. 氨基磺酸催化合成苯甲醛乙二醇缩醛%Synthesis of Benzaldehyde Ethylene Glycol Acetal with Aminosulfonic Acid as Catalyst

    Institute of Scientific and Technical Information of China (English)

    王俏; 张玉琦; 魏清勃

    2013-01-01

    The benzaldehyde ethylene glycol acetal was synthesized from benzaldehyde and ethylene glycol in the presence of aminosulfonic acid which was used as catalyst.The effects of molar ratio of benzaldehyde to ethylene glycol,reaction time,amount of catalyst and water carrying agent,etc.on the yield of benzaldehyde ethylene glycol acetal were investigated.The best reaction conditions were found as follows:n(benzaldehyde):n (ethylene glycol)=1:1.5,the mass ratio of aminosulfonic acid was 1.5% of total reactants,the water carrying agent was 16mL (2.18% of total reactants) and the reaction time was 1.5h.Under these conditions,the yield of benzaldehyde ethylene glycol acetal could reach 83.73%.%以氨基磺酸为催化剂合成了苯甲醛乙二醇缩醛,考察了醛醇摩尔比,反应时间,催化剂用量,带水剂用量等因素对苯甲醛乙二醇缩醛收率的影响.结果表明:最适宜的工艺条件是:n(苯甲醛):n(乙二醇)=1:1.5,催化剂用量占反应物总质量的1.5%,带水剂环己烷用量为16mL(占反应物总质量的2.18%),反应时间1.5h,上述条件下,苯甲醛乙二醇缩醛收率可达到83.73%.

  16. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA

    Directory of Open Access Journals (Sweden)

    Artavazd Badalyan

    2014-11-01

    Full Text Available Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V (vs. Ag|AgCl, 1 M KCl. The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1 of benzaldehyde. The relative standard deviation in a series (n = 13 for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T and PaoABC in the osmium containing redox polymer.

  17. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA.

    Science.gov (United States)

    Badalyan, Artavazd; Dierich, Marlen; Stiba, Konstanze; Schwuchow, Viola; Leimkühler, Silke; Wollenberger, Ulla

    2014-12-01

    Biosensors for the detection of benzaldehyde and γ-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.

  18. Asymmetric synthesis of tertiary alcohols by the use of tricarbonylchromium (O) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, O.R.; Gomes Costa, M.R.; Marcelo Curto, M.J. [Instituto Nacional de Engenharia e Tecnolgia Industrial, Queluz (Portugal)] [and others

    1995-12-31

    The demand for homochiral compounds by the pharmaceutical and related industries has stimulated great interest in the development of asymmetric methodology for organic synthesis. The authors report herein the stereoselective synthesis of tertiary benzylic alcohols. These homochiral tertiary alcohols could be obtained by stereoselective addition to the carbonyl function of chiral [(aryl)Cr(CO){sub 3}] ketones. The syntheses of these ketones were performed by reaction of lithiated (arene)Cr(CO){sub 3} complexes with acyl halides or aldehydes followed by Swern oxidation of the alcohols obtained.

  19. Initiation Chemistries in Hydrocarbon (Aut)Oxidation.

    Science.gov (United States)

    Sandhiya, Lakshmanan; Zipse, Hendrik

    2015-09-28

    For the (aut)oxidation of toluene to benzyl hydroperoxide, benzyl alcohol, benzaldehyde, and benzoic acid, the thermochemical profiles for various radical-generating reactions have been compared. A key intermediate in all of these reactions is benzyl hydroperoxide, the heat of formation of which has been estimated by using results from CBS-QB3, G4, and G3B3 calculations. Homolytic O-O bond cleavage in this hydroperoxide is strongly endothermic and thus unlikely to contribute significantly to initiation processes. In terms of reaction enthalpies the most favorable initiation process involves bimolecular reaction of benzyl hydroperoxide to yield hydroxy and benzyloxy radicals along with water and benzaldehyde. The reaction enthalpy and free energy of this process is significantly more favorable than those for the unimolecular dissociation of known radical initiators, such as dibenzoylperoxide or dibenzylhyponitrite.

  20. Effects of HCl and HNO3 on the oxidation of toluene to benzaldehyde by H2O2 over TS-1 modified with Al in aqueous phase

    Directory of Open Access Journals (Sweden)

    Paricha Pongjirawat

    2014-09-01

    Full Text Available This research studies effects of HCl and HNO3 in aqueous solution on the oxidation reaction between toluene and hydrogen peroxide to benzaldehyde over titanium silicalite-1 catalyst modified with Al. The reaction was carried out at reaction temperature 120°C in a pressurized autoclave reactor. The research found that the addition of HCl and HNO3 not only increases the concentration of toluene in the aqueous phase but also increases the formation of benzaldehyde as main product in the reaction.

  1. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations

    Science.gov (United States)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.

    2016-04-01

    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  2. Study of selected benzyl azides by UV photoelectron spectroscopy and mass spectrometry

    Science.gov (United States)

    Pinto, R. M.; Olariu, R. I.; Lameiras, J.; Martins, F. T.; Dias, A. A.; Langley, G. J.; Rodrigues, P.; Maycock, C. D.; Santos, J. P.; Duarte, M. F.; Fernandez, M. T.; Costa, M. L.

    2010-09-01

    Benzyl azide and the three methylbenzyl azides were synthesized and characterized by mass spectrometry (MS) and ultraviolet photoelectron spectroscopy (UVPES). The electron ionization fragmentation mechanisms for benzyl azide and their methyl derivatives were studied by accurate mass measurements and linked scans at constant B/ E. For benzyl azide, in order to clarify the fragmentation mechanism, labelling experiments were performed. From the mass analysis of methylbenzyl azides isomers it was possible to differentiate the isomers ortho, meta and para. The abundance and nature of the ions resulting from the molecular ion fragmentation, for the three distinct isomers of substituted benzyl azides, were rationalized in terms of the electronic properties of the substituent. Concerning the para-isomer, IRC calculations were performed at UHF/6-31G(d) level. The photoionization study of benzyl azide, with He(I) radiation, revealed five bands in the 8-21 eV ionization energies region. From every photoelectron spectrum of methylbenzyl azides isomers it has been identified seven bands, on the same range as the benzyl azide. Interpretation of the photoelectron spectra was accomplished applying Koopmans' theorem to the SCF orbital energies obtained at HF/6-311++G(d, p) level.

  3. Dietary Exposure to Benzyl Butyl Phthalate in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; JIANG Ding Guo; SUI Hai Xia; WU Ping Gu; LIU Ai Dong; YANG Da Jin; LIU Zhao Ping; SONG Yan; LI Ning

    2016-01-01

    ObjectiveBenzyl butyl phthalate (BBP) is a plasticizer used in food contact materials. Dietary exposure to BBP might lead to reproduction and developmental damages to human. The present paper was aimed to assess the health risk of BBP dietary exposure in Chinese population. MethodsThe BBP contents were detected in 7409 food samples from 25 foodcategories by gas chromatography-mass spectrometry operated in selected ion monitoring (SIM) mode. The dietary exposures of BBP in different age and sex groups were estimated by combining the content data with food consumption data derived from 2002 China National Nutrient and Health Survey, and evaluated according to the tolerable daily intake (TDI) of BBP established by European Food safety Agency. ResultsIt was found that BBP was undetectable in most samples and the highest level was 1.69 mg/kg detected in a vegetable oil sample. The average dietary exposure of BBP in people aged≥2 years was 1.03 μg/kgbw perday and the highest average exposure was found in 2-6 years old children (1.98 μg/kg bw perday). The BBP exposure in 7-12 months old children excessed 10% of tolerable daily intake (TDI) in worst scenario. ConclusionThe health risk of BBP dietary exposure in Chinese population is low and, considering BBP alone, there is no safety concern.

  4. Thiol and Disulfide Derivatives of Ephedra Alkaloids 2 : A Mechanistic Study of Their Effect on the Addition of Diethyl Zinc to Benzaldehyde

    NARCIS (Netherlands)

    Fitzpatrick, Kevin; Hulst, Ron; Kellogg, Richard M.

    1995-01-01

    Thiol and disulfide derivatives of ephedrine have been shown previously to catalyse in high enantiomeric excess (ee) the reaction of diethyl zinc with benzaldehyde. We find that this reaction involves non-linear correlations between the ee of product and catalyst. Osmotic measurements indicate a hig

  5. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.

    Science.gov (United States)

    Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio

    2007-04-01

    This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response

  6. Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly(ethylene glycol)/CO2 system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bimetallic Au/Pd nanoparticles were prepared and used to catalyze oxidation of alcohols in the poly(ethylene glycol) (PEG)/CO2 biphasic system using O2 as the oxidant without adding any base.The catalytic activity of Au/Pd bimetal with different mole ratios was studied using benzyl alcohol as the substrate.It was found that bimetallic Au/Pd nanoparticles with Au:Pd=1:3.5 had higher catalytic activity than monometallic Au,Pd and the bimetallic Au/Pd nanoparticles with other molar ratios.The effect of CO2 pressure on the oxidation of benzyl alcohol and 1-phenylethanol in PEG/CO2 was investigated.It was demonstrated that CO2 pressure could be used to tune the conversion and selectivity of the reactions effectively.α,β-Unsaturated alcohols were also studied and found to be more reactive than benzyl alcohol and 1-phenylethanol.Recycling experiments showed that the Au/Pd/PEG/CO2 catalytic system could be recycled at least four times without reducing the activity.In addition,the catalytic system is clean and the products can be separated easily.

  7. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure-microbicidal activity relationship.

    Science.gov (United States)

    Xia, Lei; Xia, Yu-Fen; Huang, Li-Rong; Xiao, Xiao; Lou, Hua-Yong; Liu, Tang-Jingjun; Pan, Wei-Dong; Luo, Heng

    2015-06-05

    There is an urgent need to develop new antibacterial agents because of multidrug resistance by bacteria and fungi. Schiff bases (aldehyde or ketone-like compounds) exhibit intense antibacterial characteristics, and are therefore, promising candidates as antibacterial agents. To investigate the mechanism of action of newly designed benzaldehyde Schiff bases, a series of high-yielding benzaldehyde Schiff bases were synthesized, and their structures were determined by NMR and MS spectra data. The structure-microbicidal activity relationship of derivatives was investigated, and the antibacterial mechanisms were investigated by gene assays for the expression of functional genes in vitro using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The active compounds were selective for certain active groups. The polar substitution of the R2 group of the amino acids in the Schiff bases, affected the antibacterial activity against E. coli and S. aureus; specific active group at the R3 or R4 groups of the acylhydrazone Schiff bases could improve their inhibitory activity against these three tested organisms. The antibacterial mechanism of the active benzaldehyde Schiff bases appeared to regulate the expression of metabolism-associated genes in E. coli, hemolysis-associated genes in B. subtilis, and key virulence genes in S. aureus. Some benzaldehyde Schiff bases were bactericidal to all the three strains and appeared to regulate gene expression associated with metabolism, hemolysis, and virulence, in vitro. The newly designed benzaldehyde Schiff bases possessed unique antibacterial activity and might be potentially useful for prophylactic or therapeutic intervention of bacterial infections.

  8. Alcohol during Pregnancy

    Science.gov (United States)

    ... Home > Pregnancy > Is it safe? > Alcohol during pregnancy Alcohol during pregnancy E-mail to a friend Please ... and fetal alcohol spectrum disorders. How does drinking alcohol during pregnancy affect your baby's health? Drinking alcohol ...

  9. Alcohol Energy Drinks

    Science.gov (United States)

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 24018 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  10. Ionic liquid mediated esterification of alcohol with acetic acid

    Institute of Scientific and Technical Information of China (English)

    Beilei ZHOU; Yanxiong FANG; Hao GU; Saidan ZHANG; Baohua HUANG; Kun ZHANG

    2009-01-01

    Highly efficient esterification of alcohols with acetic acid by using a Bransted acidic ionic liquid, i.e., 1-methyl-2-pyrrolidonium hydrogen sulfate ([Hnmp]HSo4), as catalyst has been realized. The turnover numbers (TON) were able to reach up to 11000 and turnover frequency (TOF) was 846. The catalytic system is suitable for the esterification of long chain aliphatic alcohols, benzyl alcohol and cyclohexanol with good yields of esters. The procedure of separating the product and catalyst is simple, and the catalyst could be reused. [Hnmp]HSO4 had much weaker corrosiveness than H2SO4. The corrosive rate of H2SO4 was 400 times more than that of [Hnmp]HSO4 to stainless steel.

  11. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    Science.gov (United States)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  12. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.

    Science.gov (United States)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L; Youn, Buhyun; Lawrence, Paulraj K; Gang, David R; Halls, Steven C; Park, HaJeung; Hilsenbeck, Jacqueline L; Davin, Laurence B; Lewis, Norman G; Kang, ChulHee

    2003-12-12

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  13. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst

    Directory of Open Access Journals (Sweden)

    Martin Obst

    2016-11-01

    Full Text Available A method for the solvent-free photocatalytic conversion of solid and liquid substrates was developed, using a novel rod mill apparatus. In this setup, thin liquid films are realized which is crucial for an effective photocatalytic conversion due to the low penetration depth of light in heterogeneous systems. Several benzylic alcohols were oxidized with riboflavin tetraacetate as photocatalyst under blue light irradiation of the reaction mixture. The corresponding carbonyl compounds were obtained in moderate to good yields.

  14. Synthesis, Anticancer and Antibacterial Activity of Salinomycin N-Benzyl Amides

    Directory of Open Access Journals (Sweden)

    Michał Antoszczak

    2014-11-01

    Full Text Available A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA and Staphylococcus epidermidis (MRSE, and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  15. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    Science.gov (United States)

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  16. Synthesis and tunability of highly electron-accepting, N-benzylated "phosphaviologens".

    Science.gov (United States)

    Stolar, Monika; Borau-Garcia, Javier; Toonen, Mark; Baumgartner, Thomas

    2015-03-11

    We report a structure-property study on phosphoryl-bridged viologen analogues with a remarkably low reduction threshold. Utilizing different benzyl groups for N-quaternization, we were able to confirm the p-benzyl substituent effect on the electronic tunability of the system while maintaining the characteristic chromic response of viologens with two fully reversible one-electron reductions. Due to the considerably increased electron-acceptor properties of the phosphoryl-bridged bipyridine precursor, N-benzylation was found to be very challenging and required the development of new synthetic strategies toward the target viologen species. This study also introduces a new and convenient way for the anion exchange of viologen systems by utilizing methyl triflate. Finally, the practical utility of the new species was verified in simplified proof-of-concept electrochromic devices.

  17. Structure-activity relationship of dopaminergic halogenated 1-benzyl-tetrahydroisoquinoline derivatives.

    Science.gov (United States)

    El Aouad, Noureddine; Berenguer, Inmaculada; Romero, Vanessa; Marín, Paloma; Serrano, Angel; Andujar, Sebastián; Suvire, Fernando; Bermejo, Almudena; Ivorra, M Dolores; Enriz, Ricardo D; Cabedo, Nuria; Cortes, Diego

    2009-11-01

    Two series of halogenated 1-benzyl-7-chloro-6-hydroxy-tetrahydroisoquinolines were prepared to explore the influence of each series on the affinity for dopamine receptors. All the compounds displayed a high affinity for D(1)-like and/or D(2)-like dopamine receptors in striatal membranes, although they were unable to inhibit [(3)H]-dopamine uptake in striatal synaptosomes. The halogen placed on the benzylic ring in 1-benzyl-THIQs, compounds of the series 1, 2'-bromobenzyl derivatives with K(i) values into the nanomolar range, and the series 2, 2',4'-dichlorobenzyl-THIQ homologues, proves to be an important factor to modulate affinity at dopamine receptor.

  18. Ruthenium-Catalyzed Transformations of Alcohols: Mechanistic Investigations and Methodology Development

    DEFF Research Database (Denmark)

    Makarov, Ilya; Madsen, Robert; Fristrup, Peter

    in the transition state of the turnover-determining step. The value of the kinetic isotope effect of 2.290.15 indicated that the C–H bond breakage is not the rate-determining step, but that it is one of several slow steps in the catalytic cycle. Experiments with deuterium-labeled alcohols and amines revealed......The mechanism of the ruthenium-catalyzed dehydrogenative synthesis of amides from alcohols and amines was studied in detail by employing the combination of experimental and theoretical techniques. The Hammett study revealed that a small positive charge is formed at the benzylic position...... alcohols to give esters. Addition of 16.7 mol% of Mg3N2 to the reaction mixture gave esters from aliphatic alcohols in similar yields but at lower temperature as compared with previously a reported catalytic system. This additive also suppressed the decarbonylation of aromatic alcohols. A previously...

  19. Heteropolymolybdate as a New Reaction-controlled Phase-transfer Catalyst for Efficient Alcohol Oxidation with Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    Zhi Huan WENG; Jin Yan WANG; Xi Gao JIAN

    2006-01-01

    A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H2O2 with high selectivity was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3{PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.

  20. Therapeutic Agents in Acne Vulgaris: Part II. D-Alpha Amino Benzyl Penicillin, Erythromycin and Sulfadimethoxine.

    Science.gov (United States)

    Stewart, W D; Maddin, S; Nelson, A J; Danto, J L

    1965-06-26

    A total of 379 patients with pustular and cystic acne vulgaris were selected for study in three groups. Each group was assigned one of the following medications: benzyl penicillin, erythromycin, sulfadimethoxine, or placebo; these were to be compared with tetracycline, a medication whose effectiveness was previously demonstrated in this type of acne. The study revealed a larger number of favourable responses to tetracycline and erythromycin than to sulfadimethoxine. Sulfadimethoxine, however, produced a greater number of favourable responses than did the benzyl penicillin or the placebo; the last-named had equivalent results.

  1. 微波辐射硫酸氢钠催化合成对氨基苯甲酸苄酯%Synthesis of 4-aminobenzoic acid benzyl ester catalyzed by sodium bisulfate under microwave radiation

    Institute of Scientific and Technical Information of China (English)

    杨晓军; 李西安

    2011-01-01

    在微波辐射下,以一水合硫酸氢钠为催化剂,对氨基苯甲酸和苯甲醇为原料,合成对氨基苯甲酸苄酯.结果表明,当微波辐射功率为500W,0.05mol对氨基苯甲酸为基准,催化剂的用量为1.6 g,酸醇的摩尔比为1∶1.2,反应时间14 min时,醋化率达93.8%.%The 4-aminobcnzoic acid benzyl ester was synthesized under microwave radiacion from 4-aminobenzoic acid and benzyl alcohol using sodium bisulfate as catalyst. When the power of microwave radiation was 500 W, amount of catalyst was 1. 6 g, the molar ratio of acid to alcohol was 1∶ 1.2( using 0. 05 mol of 4-aminobenzoic acid ) and reaction time was 14 min, the yield reached 93. 8% .

  2. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  3. Effect of cotton pectin content and bioscouring on alkyl-dimethyl-benzyl-ammonium chloride adsorption

    Science.gov (United States)

    Our previous research has shown both the rate and the total amount of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC) exhausted from a bulk solution of ADBAC are significantly greater for greige cotton nonwovens than cotton nonwovens that have been both scoured and bleached. The presence of pectin ...

  4. Adsorption of alkyl-dimethyl-benzyl-ammonium chloride on differently pretreated nonwoven cotton substrate

    Science.gov (United States)

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on greige, alkaline scoured, and bleached nonwoven cotton fabrics was investigated at varying surfactant concentrations and liquor ratios using UV-vis absorption spec...

  5. Growing up Radical: Investigation of Benzyl-Like Radicals with Increasing Chain Lengths

    Science.gov (United States)

    Korn, Joseph A.; Jawad, Khadija M.; Hewett, Daniel M.; Zwier, Timothy S.

    2015-06-01

    Combustion processes involve complex chemistry including pathways leading to polyaromatic hydrocarbons (PAHs) from small molecule precursors. Resonance stabilized radicals (RSRs) likely play an important role in the pathways to PAHs due to their unusual stability. Benzyl radical is a prototypical RSR that is stabilized by conjugation with the phenyl ring. Earlier work on α-methyl benzyl radical showed perturbations to the spectroscopy due to a hindered methyl rotor. If the alkyl chain is lengthened then multiple conformations become possible. This talk will discuss the jet-cooled spectroscopy of α-ethyl benzyl radical and α-propyl benzyl radical produced from the discharge of 1-phenyl propanol and 1-phenyl butanol respectively. Electronic spectra were obtained via resonant two-photon ionization, and IR spectra were obtained by resonant ion-dip infrared spectroscopy. Kidwell, N. M.; Reilly, N. J.; Nebgen, B.; Mehta-Hurt, D. N.; Hoehn, R. D.; Kokkin, D. L.; McCarthy, M. C.; Slipchenko, L. V.; Zwier, T. S. The Journal of Physical Chemistry A 2013, 117, 13465.

  6. Support influences in the Pd-catalyzed racemization and dynamic kinetic resolution of chiral benzylic amines

    NARCIS (Netherlands)

    Parvulescu, A.N.; Jacobs, P.A.; De Vos, D.E.

    2009-01-01

    The acid–base properties of the supports for Pd catalysts strongly affect their performance in racemization and dynamic kinetic resolution (DKR) of chiral benzylic amines. The need for a basic support was proven by comparing the racemization results obtained for Pd on silica, on LDH (layered double

  7. Temperature dependence of the lifetime of excited benzyl and other arymethyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    Miesel, D.; Das, P.K.; Hug, G.L.; Bhattacharyya, K.; Fessenden, R.W.

    1986-08-06

    The temperature dependence of the fluorescence lifetime of benzyl, benzyl-d/sub 7/, ..cap alpha..-methylbenzyl, and triphenylmethyl radicals has been studied in 2-methyltetrahydroduran from 77 to 300 K. Temperature independent and unusual temperature dependent relaxation pathways are observed for the excited states of all four radicals. Activation energies for the temperature-dependent relaxation process are approx.1400 cm/sup -1/ for all these radicals, and frequency factors are in the range of (2-20) x 10/sup 11/ s/sup -1/. For Ph/sub 3/C radicals, the temperature-dependent process leads to observable photochemistry. However, no photochemistry is observed to result from the thermally activated relaxation of benzyl radicals. Possible pathways of these nonradiative decay processes are discussed and contrasted with the weak temperature dependence for the relaxation of diphenylmethyl radicals. It is proposed that the temperature-dependent route for the radiationless decay of benzyl radicals results from differential vibronic mixing of the two excited states, the 1/sup 2/A/sub 2/ and 2/sup 2/B/sub 2/ states. Most efficient in that mixing seems to be C-C stretching vibrational modes.

  8. A Case of Abnormal Bishler-Napieralski Cyclization Reaction, Leading to Form Benzyl Oxazole Derivatives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A benzyl oxazole compound 3 was obtained with an excellent yield of 90% when N-acetyl-(2?methoxy-4?5?methylenedioxy)-phenylalanine methyl ester 1 was refluxed in POCl3 /benzene. However, the anticipated product 3,4-dihydroisoquinoline-3-carboxylic acid methyl ester 2 could not be found. The mechanism was discussed in this article.

  9. Design, synthesis and biological activity of novel peptidyl benzyl ketone FVIIa inhibitors

    DEFF Research Database (Denmark)

    Storgaard, Morten; Henriksen, Signe Teuber; Zaragoza, Florencio

    2011-01-01

    Herein is described the synthesis of a novel class of peptidyl FVIIa inhibitors having a C-terminal benzyl ketone group. This class is designed to be potentially suitable as stabilization agents of liquid formulations of rFVIIa, which is a serine protease used for the treatment of hemophilia A an...

  10. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  11. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study.

    Science.gov (United States)

    Sinha, Sourab; Raj, Abhijeet

    2016-03-21

    The role of resonantly stabilized radicals such as propargyl, cyclopentadienyl and benzyl in the formation of aromatic hydrocarbons such as benzene and naphthalene in the high temperature environments has been long known. In this work, the possibility of benzyl recombination to form three-ring aromatics, phenanthrene and anthracene, is explored. A reaction mechanism for it is developed, where reaction energetics are calculated using density functional theory (B3LYP functional with 6-311++G(d,p) basis set) and CBS-QB3, while temperature-dependent reaction kinetics are evaluated using transition state theory. The mechanism begins with barrierless formation of bibenzyl from two benzyl radicals with the release of 283.2 kJ mol(-1) of reaction energy. The further reactions involve H-abstraction by a H atom, H-desorption, H-migration, and ring closure to gain aromaticity. Through mechanism and rate of production analyses, the important reactions leading to phenanthrene and anthracene formation are determined. Phenanthrene is found to be the major product at high temperatures. Premixed laminar flame simulations are carried out by including the proposed reactions for phenanthrene formation from benzyl radicals and compared to experimentally observed species profiles to understand their effects on species concentrations.

  12. The Synthesis and Methanolysis of Benzyl Tosylates: An Advanced Organic Chemistry Laboratory Experiment.

    Science.gov (United States)

    Garst, Michael E.; Gribble, Gordon W.

    1984-01-01

    Describes a series of experiments (requiring six hours/week for six to eight weeks) involving the synthesis and methanolysis of substituted benzyl tosylates. The experiments provide students with experiences in kinetic data manipulation and an introduction and firm basis for structure-activity relationships and solvent effects in organic…

  13. "Decarbonization" of an imino N-heterocyclic carbene via triple benzyl migration from hafnium

    Science.gov (United States)

    An imino N-heterocyclic carbene underwent three sequential benzyl migrations upon reaction with tetrabenzylhafnium, resulting in complete removal of the carbene carbon from the ligand. The resulting eneamido-amidinato hafnium complex showed alkene polymerization activity comparable to that of a prec...

  14. Effects of benzyl isothiocyanate on the reproduction of Meloidogyne incognita on Glycine max and Capsicum annuum

    Science.gov (United States)

    Reproduction of Meloidogyne incognita on Capsicum annuum or Glycine max was suppressed when infective juveniles (J2) were exposed to 0.03 millimolar benzyl isothiocyanate (BITC) for 2hr prior to inoculation of the host. Infectivity assessed by gall index was significantly reduced on both G. max (co...

  15. The retro Grignard addition reaction revisited: the reversible addition of benzyl reagents to ketones

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    The Grignard addition reaction is known to be a reversible process with allylic reagents, but so far the reversibility has not been demonstrated with other alkylmagnesium halides. By using crossover experiments it has been established that the benzyl addition reaction is also a reversible transfo...

  16. Enantiopure inherently chiral calix[4]arene derivatives containing quinolin-2-yl-methanol moiety:Synthesis and application in the catalytic asymmetric addition of diethylzinc to benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A series of novel N,O-type chiral ligands derived from enantiopure inherently chiral calix[4]arenes containing quinolin-2-yl-methanol moiety in the cone or partialcone conformation have been synthe-sized and characterized. Moreover,they have been applied to the catalytic asymmetric addition of diethylzinc to benzaldehyde,which represents the first example that the inherently chiral calixarene can be used as the chiral ligands for the catalytic asymmetric synthesis.

  17. Alcohol and Hepatitis

    Science.gov (United States)

    ... Home » Living with Hepatitis » Daily Living: Alcohol Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one of the ...

  18. Alcohol and Hepatitis

    Science.gov (United States)

    ... code here Enter ZIP code here Daily Living: Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one ... related to choices you make about your lifestyle . Alcohol and fibrosis Fibrosis is the medical term for ...

  19. Gas Phase Selective Catalytic Oxidation of Toluene to Benzaldehyde on V2O5-Ag2O/η-Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Tonglai Zhang; Liqiu Mao; Weihua Liu

    2004-01-01

    Gas phase selective catalytic oxidation of toluene to benzaldehyde was studied on V2O5-Ag2O/η-Al2O3 catalyst prepared by impregnation. The catalyst was characterized by XRD, XPS, TEM,and FT-IR. The catalytic results showed that toluene conversion and selectivity for benzaldehyde on catalyst sample No.4 (V/(V+Ag)=0.68) was higher than other catalysts with different V/Ag ratios. This was attributed to the higher surface area, larger pore volume and pore diameter of the catalyst sample No.4 than the other catalysts. The XRD patterns recorded from the catalyst before and after the oxidation reaction revealed that the new phases were developed, and this suggested that silver had entered the vanadium lattice. XPS results showed that the vanadium on the surface of No.4 and No.5 sample was more than that in the bulk, thus forming a vanadium rich layer on the surface. It was noted that when the catalyst was doped by potassium promoter, the toluene conversion and selectivity for benzaldehyde were higher than those on the undoped catalyst. This was attributed to the disordered structure of V2O5 lattice of the K-doped catalyst and a better interfacial contact between the particles.

  20. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    Science.gov (United States)

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.

  1. Synthetic scope, computational chemistry and mechanism of a base induced 5-endo cyclization of benzyl alkynyl sulfides

    Science.gov (United States)

    Motto, John M.; Castillo, Álvaro; Montemayer, Laura K.; Sheepwash, Erin E.

    2011-01-01

    We present an experimental and computational study of the reaction of aryl substituted benzyl 1-alkynyl sulfides with potassium alkoxide in acetonitrile, which produces 2-aryl 2,3-dihydrothiophenes in poor to good yields. The cyclization is most efficient with electron withdrawing groups on the aromatic ring. Evidence indicates there is rapid exchange of protons and tautomerism of the alkynyl unit prior to cyclization. Theoretical calculations were also conducted to help rationalize the base induced 5-endo cyclization of benzyl 1-propynyl sulfide (1a). The potential energy surface was calculated for the formation of 2,3-dihydrothiophene in a reaction of benzyl 1-propynyl sulfide (1a) with potassium methoxide. Geometries were optimized with CAM-B3LYP/6-311+G(d,p) in acetonitrile with the CPCM solvent model. It is significant that the benzyl propa-1,2-dien-1-yl sulfane (6) possessed a lower benzylic proton affinity than the benzyl prop-2-yn-1-yl sulfane (8) thus favoring the base induced reaction of the former. From benzyl(propa-1,2-dien-1-yl sulfane (6), 2,3-dihydrothiophene can be formed via a conjugate base that undergoes 5-endo-trig cyclization followed by a protonation step. PMID:21442022

  2. Investigation of comparative efficacy of eugenol and benzyl benzoate in therapy of sheep mange

    Directory of Open Access Journals (Sweden)

    Jezdimirović Milanka

    2010-01-01

    Full Text Available The acaricide efficacy, tolerance and safety of eugenol (10 and 20 % in the treatment of sarcoptic mange in sheep have been investigated. The results were compared with those corresponding for benzyl benzoate (25 %, which was applied to sheep in the same way. The treatment was applied on sheep three times in one-week intervals. Skin scrapings were sampled seven days after each treatment, as well as twenty-eight days following the third one. The changes on the skin were quantified and the mean recovery response (MRR was calculated. The clinical efficacy was assessed according to the MRR and the number of mites in the samples. Following the first treatment 10%eugenol was not significantly less efficacious in comparison with the higher concentration. Having been applied twice 20% eugenol was significantly more efficacious when compared to the lower concentration, which remained the same seven and twenty-eight days after the third application. The efficacy of 10% eugenol in the therapy of mange was significantly higher in comparison with benzyl benzoate following one, two or three administrations. The efficacy of benzyl benzoate four weeks after the third treatment was still significantly lower in comparison with 10% eugenol. The efficacy of 20% eugenol was significantly higher in comparison with its lower concentration as well as that of benzyl benzoate, following the second, and seven and twenty-eight days after the third one. No signs of local or systemic intolerance were observed in sheep treated with either 10 or 20% eugenol, or 25 % benzyl benzoate. .

  3. Synthesis, X-ray structure analysis, thermodynamic and electronic properties of 4-acetamido benzaldehyde using vibrational spectroscopy and DFT calculations

    Science.gov (United States)

    Jeeva Jasmine, N.; Arunagiri, C.; Subashini, A.; Stanley, N.; Thomas Muthiah, P.

    2017-02-01

    Theoretical Spectrograms, namely, FT-Raman (3500-50 cm-1) and FT-Infrared (4000-400 cm-1) spectra have been studied for 4-acetamido benzaldehyde (4ABA) and are assigned to different normal modes of the molecule. Vibrational spectral analysis was compared with the experimental and theoretical, FT-IR and FT-Raman spectra. The effect of polarity on the Harmonic vibrational frequencies, intensities, optimized geometrical parameters and several thermodynamic parameters in the ground state have been computed by the B3LYP method using 6-311 + G(d,p) basis set. The results of the optimized molecular structure is presented and compared with the XRD values. The global chemical reactivity relate to some parameters, such as HOMO, LUMO, gap energy (ΔE) and other parameters, including electronegativity (χ) and global hardness (η). The values of the reactivity descriptors indicated that the interaction between 4ABA molecules reduced its reactivity in comparison with the exhibited in gas phase. In addition, the local reactivity has been analyzed through the Fukui function and condensed softness indices.

  4. Using heavy atom rare gas matrix to control the reactivity of 4-methoxybenzaldehyde: A comparison with benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Nihal [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Department of Physics, Anadolu University, 26470 Eskisehir (Turkey); Sharma, Archna; Reva, Igor; Fausto, Rui [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Lapinski, Leszek [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2012-04-14

    Different patterns of photochemical behavior were observed for 4-methoxybenzaldehyde (p-anisaldehyde) isolated in xenon and in argon matrices. Monomers of the compound isolated in solid Xe decarbonylate upon middle ultraviolet irradiation, yielding methoxybenzene (anisole), and CO. On the other hand, p-anisaldehyde isolated in an Ar matrix and subjected to identical irradiation, predominantly isomerizes to the closed-ring isomeric ketene (4-methoxycyclohexa-2,4-dien-1-ylidene) methanone. Experimental detection of a closed-ring ketene photoproduct, generated from an aromatic aldehyde, constitutes a rare observation. The difference between the patterns of photochemical transformations of p-anisaldehyde isolated in argon and xenon environments can be attributed to the external heavy-atom effect, where xenon enhances the rate of intersystem crossing from the singlet to the triplet manifold in which decarbonylation (via p-methoxybenzoyl radical) takes place. The parent compound, benzaldehyde, decarbonylates (to benzene + CO) when subjected to middle ultraviolet irradiation in both argon and xenon matrices. This demonstrates the role of the methoxy p-anisaldehyde substituent in activation of the reaction channel leading to the formation of the ketene photoproduct.

  5. A nanoporous 3D zinc(II) metal-organic framework for selective absorption of benzaldehyde and formaldehyde

    Science.gov (United States)

    Moradpour, Tahereh; Abbasi, Alireza; Van Hecke, Kristof

    2015-08-01

    A new 3D nanoporous metal-organic framework (MOF), [[Zn4O(C24H15N6O6)2(H2O)2]·6H2O·DMF]n (1) based on 4,4‧,4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) ligand was solvothermally synthesized and characterized by single-crystal X-ray diffraction, Powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and Brunauer-Emmett-Teller (BET) analyses. X-ray single crystal diffraction analysis reveals that 1 exhibits a 3D network with new kvh1 topology. Semi-empirical (AM1) calculations were carried out to obtain stable conformers for TATAB ligand. In addition, the absorption of two typical aldehydes (benzaldehyde and formaldehyde) in the presence of 1 was investigated and the effect of the aldehyde concentration, exposure time and temperature was studied. It was found that compound 1 has a potential for the absorption of aldehydes under mild conditions.

  6. The cytotoxicity of benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone being involved in topoisomerase IIα inhibition.

    Science.gov (United States)

    Fu, Yun; Zhou, Sufeng; Liu, Youxun; Yang, Yingli; Sun, Xingzhi; Li, Changzheng

    2014-01-01

    The antitumor property of iron chelators and aromatic nitrogen mustard derivatives has been well documented. Combination of the two pharmacophores in one molecule in drug designation is worth to be explored. We reported previously the syntheses and preliminary cytotoxicity evaluation of benzaldehyde nitrogen mustard pyridine carboxyl acid hydrazones (BNMPH) as extended study, more tumor cell lines (IC50 for HepG2: 26.1 ± 3.5 μM, HCT-116: 57.5 ± 5.3 μM, K562: 48.2 ± 4.0 μM, and PC-12: 19.4 ± 2.2 μM) were used to investigate its cytotoxicity and potential mechanism. In vitro experimental data showed that the BNMPH chelating Fe(2+) caused a large number of ROS formations which led to DNA cleavage, and this was further supported by comet assay, implying that ROS might be involved in the cytotoxicity of BNMPH. The ROS induced changes of apoptosis related genes, but the TFR1 and NDRG1 metastatic genes were not obviously regulated, prompting that BNMPH might not be able to deprive Fe(2+) of ribonucleotide reductase. The BNMPH induced S phase arrest was different from that of iron chelators (G1) and alkylating agents (G2). BNMPH also exhibited its inhibition of human topoisomerase IIα. Those revealed that the cytotoxic mechanism of the BNMPH could stem from both the topoisomerase II inhibition, ROS generation and DNA alkylation.

  7. Growth and characterization of benzaldehyde 4-nitro phenyl hydrazone (BPH) single crystal: A proficient second order nonlinear optical material

    Science.gov (United States)

    Saravanan, M.; Abraham Rajasekar, S.

    2016-04-01

    The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.

  8. Growth and characterization of novel organic 3-Hydroxy Benzaldehyde-N-methyl 4 Stilbazolium Tosylate crystals for NLO applications

    Science.gov (United States)

    Jagannathan, K.; Umarani, P.; Ratchagar, V.; Ramesh, V.; Kalainathan, S.

    2016-01-01

    The 3-Hydroxy Benzaldehyde-N-methyl 4-Stilbazolium Tosylate (3- HBST) is a new organic NLO crystal and it is a new derivative in stilbazolium tosylate family. In this work we have synthesized 3-HBST and the single crystal was grown by conventional slow cooling method. The structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction (XRD) technique and it is exhibiting good crystalline nature which is observed from the powder XRD. In order to check the crystalline quality the rocking curve was recorded using multi crystal X-ray diffractometer. The functional groups were identified from both FTIR and NMR spectral analyses. The π-π* and n-π* optical transition energy levels were estimated from the absorption peaks. The NLO property was confirmed by measuring relative SHG efficiency by Kurtz powder test; it shows 24 times higher SHG efficiency than that of urea. In order to test the mechanical stability the Vickers and Knoop micro hardness measurement were carried out and found that the micro hardness number decreases with increasing load. The melting point was determined from Differential Scanning Colorimetry (DSC).

  9. 苯甲醛、2-异丁腈与丙二酸二乙酯的三组分Passerini反应%Three components Passerini reactions of Benzaldehyde, 2 -Isobutyronitrile and Diethyl Malonate

    Institute of Scientific and Technical Information of China (English)

    陈懿; 谢兵; 高斌

    2012-01-01

    The paper explores three multieomponent Passerini reactions by using diethyl malonate instead of car- boxylic acid or alcohol. The significant applied value of compounds including double functional group diethyl malonate derivative from benzaldehyde, 2 - isobutyrenitrile and diethyl malonate was synthesized by one - pot in moderate yield by using H2SO4 as catalyst at microwave and heat under free - solvent. The optimized reaction condition follows the aspects: 2mL H2SO4 as catalyst; reaction temperature was 120 ℃, power rating for micrwave was 300 W and reaction time was 40 min.%探索用丙二酸二乙酯替代羧酸或醇进行三组分Passerini反应。在无溶剂条件下,用浓硫酸作为催化剂,苯甲醛、2-异丁腈和丙二酸二乙酯通过微波辅助和加热,一锅法进行三组分Passerini反应,以中等收率得到具有重要应用价值的双官能团化合物丙二酸二乙酯衍生物。该反应的最佳条件为:以浓硫酸为催化剂,催化剂用量为2mL,反应温度为120℃,微波功率为BOOW,反应时间为40min。

  10. Solid-state conformation of copolymers of ß-benzyl-L-aspartate with L-alanine, L-leucine, L-valine, γ-benzyl-L-glutamate, or ε-carbobenzoxy-L-lysine

    NARCIS (Netherlands)

    Sederel, Willem L.; Bantjes, Adriaan; Feijen, Jan; Anderson, James M.

    1980-01-01

    The solid-state conformation of copolymers of ß-benzyl-L-aspartate [L-Asp(OBzl)] with L-leucine (L-Leu), L-alanine (L-Ala), L-valine (L-Val), γ-benzyl-L-glutamate [L-Glu(OBzl)], or ε-carbobenzoxy-L-lysine (Cbz-L-Lys) has been studied by ir spectroscopy and circular dichroism (CD). The ir spectra in

  11. Synthesis and anticonvulsant activity of 1-substituted benzyl-N-substituted-1, 2, 3-triazole-4-for-mamides

    Institute of Scientific and Technical Information of China (English)

    WANG Junmin; JUN Changsoo; CHAI Kyuyun; KWAK Kyungchell; QUAN Zheshan

    2006-01-01

    Substituted benzyl azids were synthesized through the reaction of substituted benzyl chloride and sodium azid, which subsequently underwent cyclization with ethyl propiolate and amidation to give thirteen 1-substituted benzyl-N-substituted-1, 2, 3-triazole-4-formamide derivatives (3a-3m). The structure of the synthesized compounds was confirmed by IR, 1H-NMR, MS and elemental analysis. Their anticonvulsant activity against maximal electrolshock (MES) induced seizure was tested and the result showed that all these compounds possess anticonvulsant activity in different degrees. Among those, the compounds containing chloro atoms on the phenyl ring were less potent in anticonvulsant activity, while introducing one or two fluorin atoms on benzyl system increased its activity. Furthermore, their activity decreased when there was substituent on the nitrogen atom of carboxamide, and the larger the substituent, the lower the activity.

  12. Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic clay for Friedel-Crafts type benzylation reactions

    Indian Academy of Sciences (India)

    Vasant R Choudhary; Rani Jha; Pankaj A Choudhari

    2005-11-01

    Fe-Mg-hydrotalcite (Mg/Fe = 3) anionic clay with or without calcination (at 200-800°C) has been used for the benzylation of toluene and other aromatic compounds by benzyl chloride. Hydrotalcite before and after its calcination was characterized for surface area, crystalline phases and basicity. Both the hydrotalcite, particularly after its use in the benzylation reaction, and the catalyst derived from it by its calcination at 200-800°C show high catalytic activity for the benzylation of toluene and other aromatic compounds. The catalytically active species present in the catalyst in its most active form are the chlorides and oxides of iron on the catalyst surface.

  13. The facile insertion of β-keto sulfones to arynes: The direct preparation of polysubstituted ortho-keto benzyl sulfones

    Institute of Scientific and Technical Information of China (English)

    Jian Xue; Lu Ling Wu; Xian Huang

    2008-01-01

    One novel carbon-carbon bond insertion reaction of arynes has been developed. By this reaction β-keto sulfones can insert the triple bond of arynes to prepare polysubstituted ortho-keto benzyl sulfones.

  14. Comparison of ivermectin and benzyl benzoate lotion for scabies in Nigerian patients.

    Science.gov (United States)

    Sule, Halima M; Thacher, Tom D

    2007-02-01

    Few studies have compared ivermectin directly with topical agents in developing countries. We compared the effectiveness of oral ivermectin (200 microg/kg) with topical 25% benzyl benzoate and monosulfiram soap in 210 subjects of age 5 to 65 years with scabies. Subjects with persistent lesions after 2 weeks received a second course of treatment. All lesions had resolved after 2 weeks in 77 of 98 (79%) subjects treated with ivermectin and in 60 of 102 (59%) subjects treated topically (P = 0.003). The improvement in severity score was greater in the ivermectin group than in the topical treatment group (P topical treatment group (P = 0.04). Compared with topical benzyl benzoate and monosulfiram in the treatment of scabies, ivermectin was at least as effective and led to more rapid improvement.

  15. The Benzyl Moiety in a Quinoxaline-Based Scaffold Acts as a DNA Intercalation Switch.

    Science.gov (United States)

    Mahata, Tridib; Kanungo, Ajay; Ganguly, Sudakshina; Modugula, Eswar Kalyan; Choudhury, Susobhan; Pal, Samir Kumar; Basu, Gautam; Dutta, Sanjay

    2016-06-27

    Quinoxaline antibiotics intercalate dsDNA and exhibit antitumor properties. However, they are difficult to synthesize and their structural complexity impedes a clear mechanistic understanding of DNA binding. Therefore design and synthesis of minimal-intercalators, using only part of the antibiotic scaffold so as to retain the key DNA-binding property, is extremely important. Reported is a unique example of a monomeric quinoxaline derivative of a 6-nitroquinoxaline-2,3-diamine scaffold which binds dsDNA by two different modes. While benzyl derivatives bound DNA in a sequential fashion, with intercalation as the second event, nonbenzyl derivatives showed only the first binding event. The benzyl intercalation switch provides important insights about molecular architecture which control specific DNA binding modes and would be useful in designing functionally important monomeric quinoxaline DNA binders and benchmarking molecular simulations.

  16. Flotation of kaolinite and diaspore with hexadecyl dimethyl benzyl ammonium chloride

    Institute of Scientific and Technical Information of China (English)

    HU Yue-hua; OUYANG Kui; CAO Xue-feng; ZHANG Li-min

    2008-01-01

    Tertiary amine was synthesized from fatty amine and formaldehyde. And then the synthesized tertiary amine was used toreact with benzyl chloride to synthesize hexadecyl dimethyl benzyl ammonium chloride (1627) at ambient pressure. Using thesynthesized 1627 as collector, the flotation properties of diaspore and kaolinite were investigated by single mineral and mixedmineral test. The flotation mechanism of diaspore, kaolinite and 1627 was discussed based on FTIR spectra. The results show that themass ratio of aluminum to silicate achieves 15.02 and the recovery of alumina in concentrate is 43.07% using 1627 as a collector. The 1627 is found to be a more effective and a promising collector for reverse flotation to remove aluminum-silicate minerals frombauxite.

  17. Enantiomeric resolution of p-toluenesulfonate of valine benzyl ester by preferential crystallizaion.

    Science.gov (United States)

    Munegumi, Toratane; Wakatsuki, Aiko; Takahashi, Yutaro

    2012-02-01

    Preferential crystallization of amino acid derivatives by seeding a pure enantiomer into racemic amino acid solutions has been studied for many years. However, few examples of valine derivatives have been reported so far. Although there have been some reports using valine hydrogen chloride with preferential crystallization, it is difficult to obtain optical isomers for valine derivatives using preferential crystallization. In this study, repeated preferential crystallization of p-toluenesulfonate valine benzyl ester with a 20% e.e. in 2-propanol gave a 94% e.e. on sonication. Sonication accelerated crystallization rate, but there was not a big difference in e.e. between with and without sonication. However, this research demonstrates the first preferential crystallization of p-toluenesulfonate of valine benzyl esters with an acceleration of crystallization using sonication.

  18. Lipase-catalysed selective deacetylation of phenolic/enolic acetoxy groups in peracetylated benzyl phenyl ketones.

    Science.gov (United States)

    Parmar, V S; Pati, H N; Azim, A; Kumar, R; Himanshu; Bisht, K S; Prasad, A K; Errington, W

    1998-01-01

    Highly chemo- and regioselective de-esterification has been observed in the deacetylation of peracetylated enolic forms of polyphenolic benzyl phenyl ketones by lipase from porcine pancreas (PPL) suspended in tetrahydrofuran (THF). The enzyme selectively deacetylates the enolic acetoxy over the phenolic acetoxy group(s) and continuation of the reaction resulted, in addition the regioselective deacetylation of acetoxy function para to the nuclear carbonyl group.

  19. Carbamate-directed benzylic lithiation for the diastereo- and enantioselective synthesis of diaryl ether atropisomers

    Directory of Open Access Journals (Sweden)

    Abigail Page

    2011-09-01

    Full Text Available Diaryl ethers carrying carbamoyloxymethyl groups may be desymmetrised enantio- and diastereoselectively by the use of the sec-BuLi–(−-sparteine complex in diethyl ether. Enantioselective deprotonation of one of the two benzylic positions leads to atropisomeric products with ca. 80:20 e.r.; an electrophilic quench typically provides functionalised atropisomeric diastereoisomers in up to 97:3 d.r.

  20. Benzyl Isothiocyanate Inhibits Epithelial-Mesenchymal Transition in Cultured and Xenografted Human Breast Cancer Cells

    OpenAIRE

    Sehrawat, Anuradha; Singh, Shivendra V.

    2011-01-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells, and suppresses mammary cancer development in a transgenic mouse model. We now demonstrate, for the first time, that BITC inhibits epithelial-to-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell ...

  1. Linear free energy relationship in reactions between diphenyl amine and benzyl bromides

    Indian Academy of Sciences (India)

    S Ranga Reddy; P Manikyamba

    2006-05-01

    Rate of reaction between benzyl bromide and diphenyl amine is retarded by electron-donating groups and enhanced by electron-withdrawing groups present on the benzene ring of the substrate. Hammett's reaction constant of the reaction decreases with increase in temperature according to the equation, \\rho = -11.92 + 3.54/ T. Minimal structural effects observed are attributed to the fact that the isokinetic temperature of the reaction is close to the reaction temperature.

  2. Thermal Decomposition of C7H7 Radicals; Benzyl, Tropyl, and Norbornadienyl

    Science.gov (United States)

    Buckingham, Grant; Ellison, Barney; Daily, John W.; Ahmed, Musahid

    2015-06-01

    Benzyl radical (C6H5CH2) and two other C7H7 radicals are commonly encountered in the combustion of substituted aromatic compounds found in biofuels and gasoline. High temperature pyrolysis of benzyl radical requires isomerization to other C7H7 radicals that may include cycloheptatrienyl (tropyl) radical (cyc-C7H7) and norbornadienyl radical. The thermal decomposition of all three radicals has now been investigated using a micro-reactor that heats dilute gas-phase samples up to 1600 K and has a residence time of about 100 μ-sec. The pyrolysis products exit the reactor into a supersonic expansion and are detected using synchrotron-based photoionization mass spectrometry and matrix-isolation IR spectroscopy. The products of the pyrolysis of benzyl radical (C6H5CH2) along with three isotopomers (C6H513CH2, C6D5CH2, and C6H5CD2) were detected and identified. The distribution of 13C atoms and D atoms indicate that multiple different decomposition pathways are active. Buckingham, G. T., Ormond, T. K., Porterfield, J. P., Hemberger, P., Kostko, O., Ahmed, M., Robichaud, D. J., Nimlos, M. R., Daily, J. W., Ellison, G. B. 2015, Journal of Chemical Physics 142 044307

  3. Alcoholic liver disease

    Science.gov (United States)

    Liver disease due to alcohol; Cirrhosis or hepatitis - alcoholic; Laennec's cirrhosis ... Alcoholic liver disease occurs after years of heavy drinking. Over time, scarring and cirrhosis can occur. Cirrhosis is the ...

  4. Breath alcohol test

    Science.gov (United States)

    Alcohol test - breath ... There are various brands of breath alcohol tests. Each one uses a different method to test the level of alcohol in the breath. The machine may be electronic or manual. One ...

  5. Behind the Label "Alcoholic."

    Science.gov (United States)

    Wright, Deborah M.

    1989-01-01

    Relates individual's personal story of her childhood influenced by her parent's alcoholism, her own alcoholism as a young adult, and her experiences with counseling. Asks others not to reject her because of the label "alcoholic." (ABL)

  6. The Production of Benzaldehyde by Rhizopus oligosporus USM R1 in a Solid State Fermentation (SSF) System of Soy Bean Meal: Rice Husks

    OpenAIRE

    Norliza, A. W.; Ibrahim, C. O.

    2005-01-01

    The cultivation of Rhizopus oligosporus USM R1 for the production of benzaldehyde, a bitter cherry almond flavour was performed using soya bean meal and rice husks as the substrates. The identification of R. oligosporus USM R1 was performed based on the observation made under light microscope and scanning electron microscope (SEM). The optimum conditions for the SSF in a 250-ml Erlenmeyer flask system were 40% (v/w) water content, substrate particle size of 0.7 mm; inoculum size of 1 x 10^5 s...

  7. Influence of basic properties of Mg,Al-mixed oxides on their catalytic activity in knoevenagel condensation between benzaldehyde and phenylsulfonylacetonitrile

    Directory of Open Access Journals (Sweden)

    Caridad Noda Pérez

    2009-01-01

    Full Text Available The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33 derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.

  8. Density, Viscosity, Sound Speed, and Thermoacoustical Parameters of Benzaldehyde with Chlorobenzene or Nitrobenzene at 303.15 K, 308.15 K, and 313.15 K

    Science.gov (United States)

    Lavanya, T. G.; Saravanakumar, K.; Baskaran, R.; Kubendran, T. R.

    2013-07-01

    The values of the density, viscosity, and speed of sound for binary liquid mixtures of benzaldehyde with chlorobenzene or nitrobenzene have been measured over the entire range of composition at (303.15, 308.15, and 313.15) K. These values have been used to calculate the excess molar volume (), and excess free volume (). McAllister's three-body interaction model is used for correlating the kinematic viscosity of binary mixtures. The thermophysical properties (density, viscosity, and ultrasonic velocity) under study were fit to the Jouyban-Acree model.

  9. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum.

    Science.gov (United States)

    Sun, Jian-Fan; Lin, Xiuping; Zhou, Xue-Feng; Wan, Junting; Zhang, Tianyu; Yang, Bin; Yang, Xian-Wen; Tu, Zhengchao; Liu, Yonghong

    2014-06-01

    Five alkenyl phenol and benzaldehyde derivatives, pestalols A-E (1-5), as well as seven known compounds (6-12), were isolated from endophytic fungus Pestalotiopsis sp. AcBC2 derived from the Chinese mangrove plant Aegiceras corniculatum. Their structures were determined by spectroscopic analyses. Compounds 2 and 3 showed cytotoxicity against a panel of 10 tumor cell lines. Compounds 1-5, 8, 9, 11, and 12 showed inhibitory activities against Influenza A virus subtype (H3N2) and Swine Flu (H1N1) viruses. Compound 2 also showed inhibitory activity against tuberculosis.

  10. Genetics and alcoholism

    OpenAIRE

    Edenberg, Howard J; Foroud, Tatiana

    2013-01-01

    Alcohol is widely consumed, but excessive use creates serious physical, psychological and social problems and contributes to many diseases. Alcoholism (alcohol dependence, alcohol use disorders) is a maladaptive pattern of excessive drinking leading to serious problems. Abundant evidence indicates that alcoholism is a complex genetic disease, with variations in a large number of genes affecting risk. Some of these genes have been identified, including two genes of alcohol me...

  11. ALCOHOL AND ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2014-01-01

    Full Text Available The article considers the questions of the relationship between the amount of the consumed alcohol, the type of alcoholic beverage, pattern of alcohol consumption and the blood pressure level. The article presents data on the positive effect of alcohol intake restrictions and recommendations for permissible limits of alcohol consumption. New possibilities of drug therapy aimed at limiting alcohol consumption are being reported.

  12. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren

    2008-01-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may...... be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking...... and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men...

  13. Tracking of the organic species during the synthesis of cobalt-based nanoparticles in non-aqueous solution

    Science.gov (United States)

    Staniuk, M.; Niederberger, M.; Koziej, D.

    2014-08-01

    In this work we investigate the organic products of the synthesis of Co-based nanoparticles in benzyl alcohol. Our GC and in situ IR studies provide the experimental proofs for the formation of benzaldehyde, toluene and isopropanol in the reaction solution. These organic products can be correlated with formation of cobalt-based nanoparticles with oxidation state from 0 to 3+. These results shine the light on the complexity of organic and inorganic reactions in solution during crystallization of nanoparticles.

  14. Initial evaluation of {sup 227}Th-p-benzyl-DOTA-rituximab for low-dose rate {alpha}-particle radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Jostein [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway)]. E-mail: jostein.dahle@labmed.uio.no; Borrebaek, Jorgen [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Melhus, Katrine B. [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Bruland, Oyvind S. [Department of Clinical Medicine, University of Oslo, 0316 Oslo (Norway); Department of Oncology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Salberg, Gro [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Larsen, Roy H. [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway)

    2006-02-15

    Radioimmunotherapy has proven clinically effective in patients with non-Hodgkin's lymphoma. Radioimmunotherapy trials have so far been performed with {beta}-emitting isotopes. In contrast to {beta}-emitters, the shorter range and high linear energy transfer (LET) of {alpha} particles allow for more efficient and selective killing of individually targeted tumor cells. However, there are several obstacles to the use of {alpha}-particle immunotherapy, including problems with chelation chemistry and nontarget tissue toxicity. The {alpha}-emitting radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab is a new potential anti-lymphoma agent that might overcome some of these difficulties. The present study explores the immunoreactivity, in vivo stability and biodistribution, as well as the effect on in vitro cell growth, of this novel radioimmunoconjugate. To evaluate in vivo stability, uptake in balb/c mice of the {alpha}-particle-emitting nuclide {sup 227}Th alone, the chelated form, {sup 227}Th-p-nitrobenzyl-DOTA and the radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab was compared in a range of organs at increasing time points after injection. The immunoreactive fraction of {sup 227}Th-DOTA-p-benzyl-rituximab was 56-65%. During the 28 days after injection of radioimmunoconjugate only, very modest amounts of the {sup 227}Th had detached from DOTA-p-benzyl-rituximab, indicating a relevant stability in vivo. The half-life of {sup 227}Th-DOTA-p-benzyl-rituximab in blood was 7.4 days. Incubation of lymphoma cells with {sup 227}Th-DOTA-p-benzyl-rituximab resulted in a significant antigen-dependent inhibition of cell growth. The data presented here warrant further studies of {sup 227}Th-DOTA-p-benzyl-rituximab.

  15. Alcohol Alert: Link Between Stress and Alcohol

    Science.gov (United States)

    ... body at even greater risk for harm. Ongoing stress, or chronic, heavy alcohol use, may impair the body’s ability ... J.A., and Chard, K.M. Alcohol and stress in the military. Alcohol Research: ... suicide ideation and attempts associated with adverse childhood experiences. ...

  16. Health risks of alcohol use

    Science.gov (United States)

    Alcoholism - risks; Alcohol abuse - risks; Alcohol dependence - risks; Risky drinking ... Beer, wine, and liquor all contain alcohol. If you are drinking any of these, you are using alcohol. Your drinking patterns may vary, depending on who you are with ...

  17. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  18. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction.

    Science.gov (United States)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-04-21

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO˙ is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.

  19. Selective oxidation of alcohols over nickel zirconium phosphate

    Institute of Scientific and Technical Information of China (English)

    Abdol R. Hajipour; Hirbod Karimi; Afshin Koohi

    2015-01-01

    Nickel zirconium phosphate nanoparticles were found to function as efficient catalysts for the selec-tive oxidation of a wide range of alcohols to their corresponding ketones and aldehydes using H2O2 as an oxidizing agent and without any organic solvents, phase transfer catalysts, or additives. The steric and electronic properties of various substrates had significant influence on the reaction con-ditions required to achieve acetylation. The results showed that this method can be applied for the chemoselective oxidation of benzyl alcohols in the presence of aliphatic alcohols. The catalyst used in the current study was characterized by ICP-OES, XRD, NH3-TPD, Py-FTIR, N2 adsorp-tion-desorption, SEM and TEM. These analyses revealed that the interlayer distance in the catalyst increased from 0.75 to 0.98 nm when Ni2+ was intercalated between the layers, whereas the crystal-linity of the material was reduced. The nanocatalyst could also be recovered and reused at least seven times without any discernible decrease in its catalytic activity. This new method for the oxi-dation of alcohols has several key advantages, including mild and environmentally friendly reaction conditions, short reaction time, excellent yields and a facile work-up.

  20. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.

    2009-12-07

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  1. Experimental and Theoretical Mechanistic Investigation of the Iridium-Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols

    DEFF Research Database (Denmark)

    Olsen, Esben Paul Krogh; Singh, Thishana; Harris, Pernille

    2015-01-01

    cycles. One carbon monoxide ligand was shown to remain coordinated to iridium throughout the reaction, and release of carbon monoxide was suggested to occur from a dicarbonyl complex. IrH2Cl(CO)(rac-BINAP) was also synthesized and detected in the dehydrogenation of benzyl alcohol. In the same experiment......, IrHCl2(CO)(rac-BINAP) was detected from the release of HCl in the dehydrogenation and subsequent reaction with IrCl(CO)(rac-BINAP). This indicated a substitution of chloride with the alcohol to form a square planar iridium alkoxo complex that could undergo a beta-hydride elimination. A KIE of 1......The mechanism for the iridium-BINAP catalyzed dehydrogenative decarbonylation of primary alcohols with the liberation of molecular hydrogen and carbon monoxide was studied experimentally and computationally. The reaction takes place by tandem catalysis through two catalytic cycles involving...

  2. Influence of periodic nitrogen functionality on the selective oxidation of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Chan-Thaw, Carine E. [Universita di Milano, Italy; Villa, Alberto [Universita di Milano, Italy; Veith, Gabriel M [ORNL; Kaiasam, Kamalakannan [Berlin Institute of Technology (Technische Universitat Berlin); Adamczyk, Leslie A [ORNL; Unocic, Raymond R [ORNL; Prati, Laura [Universita di Milano, Italy; Thomas, Arne [Berlin Institute of Technology (Technische Universitat Berlin)

    2012-01-01

    For the first time, we attribute the enhancement in catalytic alcohol oxidation activity to the presence of nitrogen heteroatoms on the external surface of a support material surface. The same Pd particles (3.1 3.2 nm) were supported on polymeric carbon-nitrogen supports and used as catalysts to selectively oxidize benzyl alcohol. The polymeric carbon-nitrogen materials include covalent triazine frameworks (CTF) and carbon nitride (CN) materials with nitrogen content varying from 9 to 58 atomic percent N. Withcomparable metal exposure, via XPS, the activity of these catalysts correlates with the concentration of nitrogen species on the surface which enhanced the Lewis basicity of these moieties thus promoting alcoholate formation and subsequent hydride abstraction.

  3. (E)-4-[4-(Diethyl-amino)-benzyl-idene-ammonio]-benzene-sulfonate.

    Science.gov (United States)

    Ruanwas, Pumsak; Chantrapromma, Suchada; Fun, Hoong-Kun

    2012-07-01

    The title compound, C(17)H(20)N(2)O(3)S, synthesised from sulfanilic acid and 4-diethyl-amino-benzaldehyde, crystallized out as a zwitterion with the central N atom protonated. The zwitterion exists in an E conformation with respect to the C=N double bond. The dihedral angle between the benzene rings is 37.57 (5)°. In the crystal, the zwitterions are linked into a tape along the a axis by N-H⋯O hydrogen bonds. The crystal structure is further stabilized by weak C-H⋯O inter-actions and π-π inter-actions with a centroid-centroid distance of 3.8541 (6) Å. An O⋯O [2.8498 (11) Å] short contact is present.

  4. Effect of manganese and potassium addition on CeO2-Al2O3 catalyst for hydrogenation of benzoic acid to benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dangguo; HOU; Chunyang; CHEN; Fengqiu; ZHAN; Xiaol

    2009-01-01

    A series of Mn/CeO2-Al2O3 and K/CeO2-Al2O3 catalysts for hydrogenation of benzoic acid to benzaldehyde were prepared to in-vestigate the effect of Mn, K addition on CeO2-Al2O3 catalyst. X-ray diffraction (XRD) and H2-temperature-programmed reduction (H2-TPR) results suggested that the interaction between CeO2 and MnOx enhanced the reducibility of catalysts and therefore benzoic acid conversion.The addition of K increased the number of basic number on the catalyst which leads to a high selectivity to benzaldehyde, but excessive addition imposed negative effects on the catalyst performance. A Mn-K/CeO2Al2O3 catalyst was developed and investigated in the reaction. The simul-taneous addition of Mn and K enhanced not only the catalytic activity but also the capacity to resist the coke formation over catalyst.

  5. Synthesis and antimicrobial activities of 1-(3-benzyl-4-oxo-3H-quinazolin-2-yl-4-(substitutedthiosemicarbazide derivatives

    Directory of Open Access Journals (Sweden)

    Alagarsamy Veerachamy

    2015-01-01

    Full Text Available A series of 1-(3-benzyl-4-oxo-3H-quinazolin-2-yl-4-(substituted thiosemicarbazides (AS1-AS10 were obtained by the reaction of 2-hydrazino- 3-benzyl quinazolin-4(3H-one (6 with different dithiocarbamic acid methyl ester derivatives. The key intermediate 3-benzyl-2-thioxo-2,3-dihydro-1Hquinazolin-4-one (4 was obtained by reacting benzyl amine (1 with carbon disulphide and sodium hydroxide in dimethyl sulphoxide to give sodium dithiocarbamate, which was methylated with dimethyl sulfate to yield the dithiocarbamic acid methyl ester (2 and condensed with methyl anthranilate (3 in ethanol yielded the desired compound (4 via the thiourea intermediate. The SH group of compound (4 was methylated for the favorable nucleophilic displacement reaction with hydrazine hydrate, which afford 2-hydrazino-3- benzyl-3H-quinazolin-4-one (6. The IR, 1H, and 13C NMR spectrum of these compounds showed the presence of peaks due to thiosemicarbazides, carbonyl (C=O, NH and aryl groups. The quinazolin-4-one moiety molecular ion peaks (m/z 144 were observed all the mass spectrum of compounds (AS1-AS10. Elemental (C, H, N analysis satisfactorily confirmed purity of the synthesized compounds and elemental composition. All synthesized compounds were also screened for their antimicrobial activity against selective gram positive and gram negative by agar dilution method. In the present study compounds AS8 and AS9 were emerged as the most active compounds of the series.

  6. Benzaldehyde thiosemicarbazone monohydrate

    Directory of Open Access Journals (Sweden)

    Sheng-Jiu Gu

    2008-08-01

    Full Text Available In the title compound, C8H9N3S·H2O, intramolecular N—H...N hydrogen bonding contributes to the molecular conformation. Water molecules are involved in intermolecular N—H...O and O—H...S hydrogen bonds, which link the molecules into ribbons extended along the a axis. Weak intermolecular N—H...S hydrogen bonds link these ribbons into layers parallel to the ab plane with the phenyl rings pointing up and down.

  7. Metal/oxide interfacial effects on the selective oxidation of primary alcohols

    Science.gov (United States)

    Zhao, Guofeng; Yang, Fan; Chen, Zongjia; Liu, Qingfei; Ji, Yongjun; Zhang, Yi; Niu, Zhiqiang; Mao, Junjie; Bao, Xinhe; Hu, Peijun; Li, Yadong

    2017-01-01

    A main obstacle in the rational development of heterogeneous catalysts is the difficulty in identifying active sites. Here we show metal/oxide interfacial sites are highly active for the oxidation of benzyl alcohol and other industrially important primary alcohols on a range of metals and oxides combinations. Scanning tunnelling microscopy together with density functional theory calculations on FeO/Pt(111) reveals that benzyl alcohol enriches preferentially at the oxygen-terminated FeO/Pt(111) interface and undergoes readily O-H and C-H dissociations with the aid of interfacial oxygen, which is also validated in the model study of Cu2O/Ag(111). We demonstrate that the interfacial effects are independent of metal or oxide sizes and the way by which the interfaces were constructed. It inspires us to inversely support nano-oxides on micro-metals to make the structure more stable against sintering while the number of active sites is not sacrificed. The catalyst lifetime, by taking the inverse design, is thereby significantly prolonged.

  8. Alcohol and Breastfeeding

    DEFF Research Database (Denmark)

    Haastrup, Maija Bruun; Pottegård, Anton; Damkier, Per

    2014-01-01

    While the harmful effects of alcohol during pregnancy are well-established, the consequences of alcohol intake during lactation have been far less examined. We reviewed available data on the prevalence of alcohol intake during lactation, the influence of alcohol on breastfeeding......, the pharmacokinetics of alcohol in lactating women and nursing infants and the effects of alcohol intake on nursing infants. A systematic search was performed in PubMed from origin to May 2013, and 41 publications were included in the review. Approximately half of all lactating women in Western countries consume...... alcohol while breastfeeding. Alcohol intake inhibits the milk ejection reflex, causing a temporary decrease in milk yield. The alcohol concentrations in breast milk closely resemble those in maternal blood. The amount of alcohol presented to nursing infants through breast milk is approximately 5...

  9. Molecular characterization and expression of a novel alcohol oxidase from Aspergillus terreus MTCC6324.

    Directory of Open Access Journals (Sweden)

    Mitun Chakraborty

    Full Text Available The alcohol oxidase (AOx cDNA from Aspergillus terreus MTCC6324 with an open reading frame (ORF of 2001 bp was constructed from n-hexadecane induced cells and expressed in Escherichia coli with a yield of ∼4.2 mg protein g-1 wet cell. The deduced amino acid sequences of recombinant rAOx showed maximum structural homology with the chain B of aryl AOx from Pleurotus eryngii. A functionally active AOx was achieved by incubating the apo-AOx with flavin adenine dinucleotide (FAD for ∼80 h at 16°C and pH 9.0. The isoelectric point and mass of the apo-AOx were found to be 6.5±0.1 and ∼74 kDa, respectively. Circular dichroism data of the rAOx confirmed its ordered structure. Docking studies with an ab-initio protein model demonstrated the presence of a conserved FAD binding domain with an active substrate binding site. The rAOx was specific for aryl alcohols and the order of its substrate preference was 4-methoxybenzyl alcohol >3-methoxybenzyl alcohol>3, 4-dimethoxybenzyl alcohol > benzyl alcohol. A significantly high aggregation to ∼1000 nm (diameter and catalytic efficiency (kcat/Km of 7829.5 min-1 mM-1 for 4-methoxybenzyl alcohol was also demonstrated for rAOx. The results infer the novelty of the AOx and its potential biocatalytic application.

  10. Primary amino acid derivatives: substitution of the 4'-N'-benzylamide site in (R)-N'-benzyl 2-amino-3-methylbutanamide, (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide, and (R)-N'-benzyl 2-amino-3-methoxypropionamide provides potent anticonvulsants with pain-attenuating properties.

    Science.gov (United States)

    King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold

    2011-10-13

    Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.

  11. 5-Benzyl-5H-pyrido[3,2-b]indole

    Directory of Open Access Journals (Sweden)

    Julien Letessier

    2011-09-01

    Full Text Available The title compound, C18H14N2, was prepared by twofold Pd-catalyzed arylamination of a cyclic pyrido–benzo–iodolium salt. In the crystal, two molecules of 9-benzyl-δ-carboline form centrosymmetrical dimers with distances of 3.651 (2 Å between the centroids of the pyridine rings and 3.961 (2 Å between the centroids of the pyrrole and pyridine rings. The phenyl rings point to the other molecule in the dimer and the carboline core is essentially planar [maximum deviation of 0.027 (2 Å].

  12. Ultrasonic Investigations of Molecular Interaction in Binary Mixtures of Benzyl Benzoate with Acetonitrile and Benzonitrile

    Directory of Open Access Journals (Sweden)

    N. Jaya Madhuri

    2011-01-01

    Full Text Available Ultrasonic velocity, density and viscosity have been measured in the binary mixtures of benzyl benzoate with acetonitrile, benzonitrile at three temperatures 30, 40 and 50 °C. From the experimental data, thermodynamic parameters like adiabatic compressibility, internal pressure, enthalpy, activation energy etc., were computed and the molecular interactions were predicted based on the variation of excess parameters in the mixture. Also theoretical evaluation of velocities was made employing the standard theories. CFT and NOMOTO were found to have an edge. All the three mixtures have shown out strong intermolecular interactions between the unlike molecules and endothermic type of chemical reaction.

  13. Ultrasonicated Synthesis of N-Benzyl-2,3-substituted Morpholines, via the Mitsunobu Diol Cyclisation

    Directory of Open Access Journals (Sweden)

    B. Jayachandra Reddy

    2010-01-01

    Full Text Available A facile five step synthesis of N-benzyl-2,3-substituted morpholines (i-iii was performed. The key steps were microwave assisted Friedel-crafts acylation and diol cyclization carried out via an ultra sonication of Mitsunobu reaction using DEAD (diethylazodicarboxylate, TPP in THF for 1 h. The morpholine products were generated as diasteriomers (ii andiii which has been separated by the column chromatography to good yield. The structure of compounds (i-iii has been characterized by the spectral and chemical studies.

  14. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    Science.gov (United States)

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  15. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    Directory of Open Access Journals (Sweden)

    Paul P. Kelly

    2015-09-01

    Full Text Available Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  16. 3-Benzyl-8-methoxy-2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one

    Directory of Open Access Journals (Sweden)

    Rashad Al-Salahi

    2012-06-01

    Full Text Available The tetrahydroquinazole fused-ring system of the title compound, C16H14N2O2S, is roughly planar (r.m.s. deviation = 0.039 Å; the phenyl ring of the benzyl substituent is aligned at 78.1 (1° with respect to the mean plane of the fused-ring system. In the crystal, two molecules are linked by a pair of N—H...S hydrogen bonds about a center of inversion, generating a dimer.

  17. N-Benzyl-2,5-bis(2-thienyl)pyrrole.

    Science.gov (United States)

    Palenzuela Conde, Jesús; Elsegood, Mark R J; Ryder, Karl S

    2004-03-01

    The solid-state structure of the title compound, C19H15NS2, is unusual among substituted thiophene/pyrrole derivatives in that the molecular packing is dominated by pi-pi interactions between the benzyl substituents. This may be due to the large torsion angles observed between adjacent heterocycles. Torsion angles between adjacent rings in polypyrrole and polythiophene conducting polymers are related to conjugation length and the conductivity properties of the polymer materials. The title compound crystallizes in space group P21/c with two molecules in the asymmetric unit, both of which exhibit disorder in one of their thiophene rings.

  18. Structure and properties of poly(benzyl acrylate) synthesized under microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Oberti, Tamara G. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Laboratorio de Estudio de Compuestos Organicos (LADECOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Schiavoni, M. Mercedes [Laboratorio de Estudio de Compuestos Organicos (LADECOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Cortizo, M. Susana [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina)], E-mail: gcortizo@inifta.unlp.edu.ar

    2008-05-15

    Benzyl acrylate was polymerized under microwave irradiation using radical initiation (benzoyl peroxide, BP). The effect of the concentration of BP and power irradiation on the conversion, average molecular weights and the polydispersity index (M{sub w}/M{sub n}) were investigated. The {sup 1}H NMR and {sup 13}C NMR spectra analysis showed tendency to syndiotacticity and branched polymers were obtained at high conversion of reactions. A significant enhancement of the rates of polymerization and similar thermodynamic behavior, as compared with those obtained under thermal conditions was found.

  19. A sustainable and efficient synthesis of benzyl phosphonates using PEG/KI catalytic system

    Science.gov (United States)

    Gawande, Manoj; Disale, Shamrao; Kale, Sandip; Abraham, George; Kahandal, Sandeep; Sawarkar, Ashish

    2016-08-01

    An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI) could be used for other related organic transformations.

  20. A sustainable and efficient synthesis of benzyl phosphonates using PEG/KI catalytic system

    Directory of Open Access Journals (Sweden)

    Manoj B. Gawande

    2016-08-01

    Full Text Available An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI could be used for other related organic transformations.

  1. Pseudo-Four Component Synthesis of Mono- and Di-Benzylated-1,2,3-Triazoles Derived from Aniline

    Directory of Open Access Journals (Sweden)

    Daniel Mendoza-Espinosa

    2013-12-01

    Full Text Available The pseudo-four component click synthesis of dibenzylated 1,2,3-triazoles derived from aniline is reported. The cycloaddition of sodium azide to N-(prop-2-ynyl-benzenamine (I in the presence of equimolar amounts of p-substituted benzyl derivatives, yields a mixture of mono- and dibenzylated 1,2,3-triazoles. When two equivalents of the benzyl derivative are added to the multicomponent reaction, the selective preparation of the dibenzylated compounds is achieved. The reactivity of the aniline N-H bond in monobenzylated 1,2,3-triazoles was tested by treatment with one equivalent of a p-substituted benzyl chloride at 40 °C, rendering the dibenzylated derivatives quantitatively.

  2. 对羟基苯甲酸苄酯的合成%Synthesis of Benzyl p-hydroxybenzoate

    Institute of Scientific and Technical Information of China (English)

    王明星; 宋溪明; 张淑芬; 杨锦宗; 吕挺乔

    2001-01-01

    Benzyl p-hydroxybenzoate was prepared from benzyl chloride and p-hydroxybenzoic acid byphase transfer catalysis, in which xylene was used as an organic solvent, Na2CO3 aqueous solution asa condensing agent and Bu4NC1 as a phase transfer catalyst. The effects of reaction time, Na2CO3 con-centration and feed amount of raw materials were investigated. The concentration of Na2CO3 aqueoussolution was the most important factor. Prodact with purity greater 98% and yield more 85% was ob-tained.

  3. Efficient desymmetrization of 4,6-di-O-benzyl-myo-inositol by Lipozyme TL-IM.

    Science.gov (United States)

    Vasconcelos, Marcela G; Briggs, Raissa H C; Aguiar, Lucia C S; Freire, Denise M G; Simas, Alessandro B C

    2014-03-11

    The enantioselective enzymatic desymmetrization of 4,6-di-O-benzyl-myo-inositol, a myo-inositol derivative, was effectively catalyzed by Thermomyces lanuginosus lipase (TL-IM). The product 1D-1-O-acetyl-4,6-di-O-benzyl-myo-inositol, a useful precursor to inositol phosphates, was obtained in excellent yield and enantiomeric excess. Through the investigation of the effects of solvent, biocatalyst load, and temperature, a more economical procedure resulted. The feasibility of biocatalyst reuse was also shown.

  4. Biocatalytic resolution of benzyl glycidyl ether and its derivates by Talaromyces flavus: effect of phenyl ring substituents on enantioselectivity.

    Science.gov (United States)

    Wei, Chun; Chen, Yunyun; Shen, Honglei; Wang, Shan; Chen, Lin; Zhu, Qing

    2012-08-01

    Talaromyces flavus containing a constitutive epoxide hydrolase (EH) resolved racemic benzyl glycidyl ether and nine derivatives into their (R)-enantiomers. After optimization of the fermentation conditions, the specific EH activity and biomass concentration were improved from 13.5 U/g DCW and 14.8 g DCW/l to 26.2 U/g DCW and 31.3 g DCW/l, respectively, with final values for e.e. ( s ) of 96 % and E of 13 with (R)-benzyl glycidyl ether. Substituents on the phenyl ring, however, gave low enantioselectivities.

  5. Enzymatic reduction of 4-(dimethylamino)benzaldehyde with carrot bits (Daucus carota): a simple experiment for understanding biocatalysis; Reducao enzimatica do 4-(dimetilamino)benzaldeido com pedacos de cenoura (Daucus carota): um experimento simples na compreensao da biocatalise

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Alvaro Takeo; Portas, Viviane Barbosa; Oliveira, Camila de Souza de, E-mail: alvaro.omori@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, SP (Brazil)

    2012-07-01

    The present paper describes a simple, low-costly and environmentally friendly procedure for reduction of 4-(dimethylamino)benzaldehyde using carrot bits in water. This interdisciplinary experiment can be used to introduce the concepts of biocatalysis and green chemistry to undergraduate students. (author)

  6. OZONE REACTION WITH N-ALDEHYDES (N=4-10), BENZALDEHYDE, ETHANOL, ISOPROPANOL, AND N-PROPANOL ADSORBED ON A DUAL-BED GRAPHITIZED CARBON/CARBON MOLECULAR SIEVE ADSORBENT CARTRIDGE

    Science.gov (United States)

    Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...

  7. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes.

    Science.gov (United States)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren; Tybjaerg-Hansen, Anne; Grønbaek, Morten

    2008-06-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men with the ADH1B.1/1 genotype compared to men with the ADH1B.1/2 genotype. Furthermore, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1/1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1/1 genotype was 67 and 62% among the white population compared with 9 and 24% among the East Asian population.

  8. Deciding to quit drinking alcohol

    Science.gov (United States)

    ... quitting drinking; Quitting drinking; Quitting alcohol; Alcoholism - deciding to quit ... drinking problem when your body depends on alcohol to function and your drinking is causing problems with ...

  9. Antioxidant activity of the new thiosulfinate derivative, S-benzyl phenylmethanethiosulfinate, from Petiveria alliacea L.

    Science.gov (United States)

    Okada, Youji; Tanaka, Kaoru; Sato, Eisuke; Okajima, Haruo

    2008-03-21

    The antioxidant effects of the new thiosulfinate derivative, S-benzyl phenylmethanethiosulfinate (BPT), against the oxidation of cumene and methyl linoleate (ML) in chlorobenzene were studied in detail using HPLC. The results showed that BPT provided effective inhibition with a well-defined induction period under these oxidation conditions, and it was found that the stoichiometric factor (n), the number of peroxyl radicals trapped by one antioxidant molecule, of BPT is about 2. We then undertook a thorough investigation aimed at elucidating the active structural site of BPT. Various model compounds, such as diphenyl disulfide, dibenzyl disulfide, S-phenyl benzenethiosulfinate and S-ethyl phenylmethanethiosulfinate, were used which provided evidence that the benzylic hydrogen of BPT is mainly associated with the peroxyl radical scavenging. Moreover, we measured the rate constant for the reaction of BPT with peroxyl radicals derived from cumene and ML in chlorobenzene, and based on these measurements, BPT reacts with these peroxyl radicals with a rate constant of k(inh) = 8.6 x 10(3) and 6.2 x 10(4) M(-1) s(-1), respectively.

  10. Dethreading of Tetraalkylsuccinamide-Based [2]Rotaxanes for Preparing Benzylic Amide Macrocycles.

    Science.gov (United States)

    Martinez-Cuezva, Alberto; Rodrigues, Leticia V; Navarro, Cristian; Carro-Guillen, Fernando; Buriol, Lilian; Frizzo, Clarissa P; Martins, Marcos A P; Alajarin, Mateo; Berna, Jose

    2015-10-16

    The dethreading of a series of succinamide-based [2]rotaxanes bearing benzylic amide macrocycles is reported herein. These transformations proceeded quantitatively either under flash vacuum pyrolysis, conventional heating, or microwave irradiation. Studying the size complementarity of the stoppers at the ends of the thread and the cavity of the macrocycle allowed us to set up the best substituents for implementing the extrusion of the thread from the interlocked precursors. A variety of (1)H NMR kinetic experiments were carried out in order to evaluate the rate constants of the dethreading process, the half-life times of the rotaxanes, and the influence of temperature and solvents on these processes. The use of dibutylamino groups as stoppers yielded the rotaxane precursor in a reasonable yield and allowed the quantitative deslipping of the rotaxane. The overall process, including the rotaxane formation and its further dethreading, has been exploited for preparing benzylic amide macrocycles enhancing, in most cases, the results of the classical (2 + 2) condensation and other reported stepwise syntheses. The kinetics of the dethreading process is fairly sensitive to the electronic effects of the substituents on the isophthalamide unit or to the electronic nature of the pyridine rings through a conformational equilibrium expanding or contracting the cavity of the interlocked precursor.

  11. Gas-phase synthesis of the benzyl radical (C(6)H(5)CH(2)).

    Science.gov (United States)

    Dangi, Beni B; Parker, Dorian S N; Yang, Tao; Kaiser, Ralf I; Mebel, Alexander M

    2014-04-25

    Dicarbon (C2 ), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas-phase synthesis is presented of the benzyl radical (C6 H5 CH2 ) by the crossed molecular beam reaction of dicarbon, C2 (X(1) Σg (+) , a(3) Πu ), with 2-methyl-1,3-butadiene (isoprene; C5 H8 ; X(1) A') accessing the triplet and singlet C7 H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon-carbon double bond of the 2-methyl-1,3-butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7 H7 radical species through atomic hydrogen elimination. The benzyl radical (C6 H5 CH2 ), the thermodynamically most stable C7 H7 isomer, is determined as the major product.

  12. Alcohol Dependence and Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Karl Mann

    2015-01-01

    Full Text Available Alcohol dependence is a disabling condition that has a high prevalence, but in Europe only a small fraction of the people diagnosed with alcohol abuse and dependence are treated, representing the widest treatment gap, as compared with other mental disorders. Early diagnosis and monitoring of alcoholic liver disease (ALD is still insufficiently solved. Although ALD is the most common cause for liver disease in the Western world, it largely remains underestimated and underdiagnosed for many reasons. The recent introduction of non-invasive elastographic techniques such as transient elastography (TE has significantly improved the early diagnosis of alcoholic liver cirrhosis (ALC. As demonstrated in the literature, inflammation-associated liver stiffness (LS rapidly decreases during alcohol detoxification, and is also directly correlated to change in LS in both abstinent and relapsing patients. Newly published data show that LS could be used to monitor and validate hepatoprotective effects during nalmefene usage. Nalmefene is an opioid system modulator that diminishes the reinforcing effects of alcohol, helping the patient to reduce drinking. Three randomised, multicentre, double-blind, placebo-controlled, parallelgroup Phase III studies were designed to assess the efficacy and safety of nalmefene in reducing alcohol consumption. Patients with a high or very high drinking risk level (DRL at baseline and randomisation show a clinically significant effect from nalmefene treatment, which is generally well tolerated. Moreover, reduced alcohol consumption supported by nalmefene in combination with psychosocial support may indeed help to reduce the alcohol-related burden and the large treatment gap.

  13. Synthesis of naphthalene-naphthol-benzaldehyde pitch resin%萘-萘酚-苯甲醛沥青树脂的合成研究

    Institute of Scientific and Technical Information of China (English)

    周广明; 赖仕全; 岳莉; 赵雪飞; 李小侠; 王荣荣

    2012-01-01

    Naphthalene -naphtho]-berzaldlehyde three components pitch resin has been synthesized by cationic polymerization in the presence of concentrated sulfuric acid, in which the naphtho] molecule was introduced lo the molecular chains of naphthalene -benzaldehyde two components pitch resin. The structure of the pitch resin obtained was characterized by Fourier transform infrared spectnoscopy (VI - IR). The effects of synthesis conditions on the properties of the pitch resin such as softening point, coking value and bond strength were investigated by single factor experiments. Experimental results showed that the suitable technology conditions of synthesizing the naphthalene-naphthol-benzaldehyde pilch resin were: the amount of subatance ratio of naphthalene, naphthol and benzaldehyde 0.67*0.33:1, the reaction temperature 160 ℃, the reaction time 300 min and the usage of catalyst 10%. Under the optimal conditions, the pitch resin exhibits the softening point of 87,5 ℃, coking value of 32.1% and the bond strength of 41.1. The naphthalene - naphthol - benzaldehyde three components pilch resin with different bond properties can be obtained by controlling the substance amount of naphthol in reaction system.%在浓硫酸的催化作用下,采用阳离子聚合法在萘-苯甲醛二元组分沥青树脂分子链上引入了萘酚分子,合成了萘-萘酚-苯甲醛三元组分沥青树脂.用FT-IR光谱仪表征了合成树脂的结构.通过单因素实验,考察了合成条件对沥青树脂软化点、结焦值和黏结强度等黏结性能的影响规律.实验结果表明,合成萘-萘酚-苯甲醛沥青树脂适宜的工艺条件:萘、萘酚和苯甲醛的物质的量比为0.67:0.33:1,反应温度为160℃,反应时间为300 min,催化剂用量为10%.在此条件下,合成沥青树脂的软化点为87.5℃,结焦值为32.1%,黏结强度为41.1.改变反应体系中萘酚的物质的量,能获得具有不同黏结性能的萘-萘酚-苯甲醛三元组分沥青树脂.

  14. A closed concept of extractive whole cell microbial transformation of benzaldehyde into L-phenylacetylcarbinol by Saccharomyces cerevisiae in novel polyethylene-glycol-induced cloud-point system.

    Science.gov (United States)

    Wang, Zhilong; Liang, Rui; Xu, Jian-He; Liu, Yubo; Qi, Hanshi

    2010-03-01

    Extractive microbial transformation of benzaldehyde into L-phenylacetylcarbinol (L-PAC) by Saccharomyces cerevisiae (Baker's yeast) has been carried out in a novel polyethylene-glycol-induced cloud-point system (PEG-CPS). The extractive microbial transformation in the PEG-CPS and a downstream process for stripping of the product from the microbial transformation broth with microemulsion extraction are demonstrated. The results indicate that the PEG-CPS maintains the advantage of CPS for in situ extraction of polar product in the microbial transformation. At the same time, the utilization of hydrophilic nonionic surfactant in the PEG-CPS is favorable for stripping of product from the nonionic surfactant in the microbial transformation broth by Winsor I microemulsion extraction. Thus, a closed concept of in situ extraction of polar product in microbial transformation and its downstream process of product recovery are fulfilled at the same time.

  15. MCM-41 supported 12-tungstophosphoric acid mesoporous materials: Preparation, characterization, and catalytic activities for benzaldehyde oxidation with H2O2

    Science.gov (United States)

    Chen, Ya; Zhang, Xiao-Li; Chen, Xi; Dong, Bei-Bei; Zheng, Xiu-Cheng

    2013-10-01

    Mesoporous molecular sieves MCM-41 and bulk 12-tungstophosphoric acid (HPW) were synthesized and employed to prepare 5-45 wt.% HPW/MCM-41 mesoporous materials. Characterization results suggested the good dispersion of HPW within MCM-41 when the loading of HPW was less than 35 wt.% and HPW/MCM-41 retained the typical mesopore structure of the supports. The results of the catalytic oxidation of benzaldehyde to benzoic acid with 30% H2O2, in the absence of any organic solvent and co-catalysts, indicated that HPW/MCM-41 was an efficient catalyst and 30 wt.% HPW/MCM-41 sample exhibited the highest catalytic activity among these materials.

  16. Structural, spectral, electrochemistry, thermal properties and theoretical studies on 4-[N, N-di(4-tolyl)amino] benzaldehyde-2-chloro benzoylhydrazone

    Science.gov (United States)

    Lizeng, Liu; Wei, Li; Xianfang, Meng; Dongzhi, Liu; Gongfeng, Xu; Zhengchen, Bai

    2014-11-01

    The title compound 4-[N, N-di(4-tolyl)amino] benzaldehyde-2-chloro benzoylhydrazone (C28H24ClN3O, Mr = 453.96) was synthesized by the reaction of 4-[N, N-di(4-tolyl)amino] benzaldehyde with 2-chlorobenzohydrazide, and its structure was characterized by IR, 1H NMR, 13H NMR, high-resolution mass spectrometry and single-crystal X-ray diffraction. The crystal belongs to Monoclinic, space group P2(1)/n with a = 12.626(3), b = 12.609(3), c = 15.837(3) Å, β = 90.00(3)°, Z = 5, V = 2512.5(9) Å3, Mr = 453.95, Dc = 1.280 g/cm3, μ = 0.183 mm-1, F(0 0 0) = 1024, R = 0.0432 and wR = 0.1087. X-ray analysis revealed that one of the benzene ring and acylhydrazone were essentially planar, the 2-chloro benzene ring and amide were non-planar, the torsion angles C(1)sbnd C(6)sbnd C(7)sbnd O(1) and C(5)sbnd C(6)sbnd C(7)sbnd O(1) are 61.4(5)° and -114.4(4)°. The thermal stability studies indicate that the title compound is stable up to 341.1 °C. The spectral, electrochemistry properties and theoretical studies show that the title compound is a good candidate for the charge-transporting materials.

  17. Alcohol homograph priming in alcohol-dependent inpatients

    NARCIS (Netherlands)

    Woud, M.L.; Salemink, E.; Gladwin, T.E.; Wiers, R.W.H.J.; Becker, E.S.; Lindenmeyer, J.; Rinck, M.

    2016-01-01

    Aim: Alcohol dependency is characterized by alcohol-related interpretation biases (IBs): Individuals with high levels of alcohol consumption generate more alcohol-related than alcohol-unrelated interpretations in response to ambiguous alcohol-related cues. However, a response bias could be an altern

  18. Alcohol Use and Older Adults

    Science.gov (United States)

    ... version of this page please turn Javascript on. Alcohol Use and Older Adults Alcohol and Aging Adults of any age can have ... Escape (Esc) button on your keyboard.) What Is Alcohol? Alcohol, also known as ethanol, is a chemical ...

  19. Alcohol in moderation

    DEFF Research Database (Denmark)

    Mueller, Simone; Lockshin, Larry; Louviere, Jordan J.

    2011-01-01

    Purpose: The study examines the market potential for low and very low alcohol wine products under two different tax regimes. The penetration and market share of low alcohol wine are estimated under both tax conditions. Consumers’ alcoholic beverage purchase portfolios are analysed and those...... products identified, which are jointly purchased with low alcohol wines. The effect of a tax increase on substitution patterns between alcoholic beverages is examined. Methodology: In a discrete choice experiment, based on their last purchase, consumers select one or several different alcoholic beverages...... volume is estimated under the current tax regime. Between six to eight percent of consumers are expected to adopt low alcohol wine alternatives as part of their alcoholic beverage portfolio. Consumers of cask wine and light beer are more likely and consumers of medium-full strength beer and spirits...

  20. Myths about drinking alcohol

    Science.gov (United States)

    ... gov/ency/patientinstructions/000856.htm Myths about drinking alcohol To use the sharing features on this page, ... We know much more about the effects of alcohol today than in the past. Yet, myths remain ...

  1. Alcohol Use Screening

    Science.gov (United States)

    ... Centers Diseases + Condition Centers Mental Health Medical Library Alcohol Use Screening (AUDIT-C) - Instructions The following questions ... this tool, there is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following ...

  2. Women and Alcohol

    Science.gov (United States)

    ... turn JavaScript on. Feature: Rethinking Drinking Women and Alcohol Past Issues / Spring 2014 Table of Contents Women react differently than men to alcohol and face higher risks from it. Pound for ...

  3. Alcohol Facts and Statistics

    Science.gov (United States)

    ... Standard Drink? Drinking Levels Defined Alcohol Facts and Statistics Print version Alcohol Use in the United States: ... 1245, 2004. PMID: 15010446 11 National Center for Statistics and Analysis. 2014 Crash Data Key Findings (Traffic ...

  4. Children of alcoholics

    Directory of Open Access Journals (Sweden)

    Robert Oravecz

    2002-09-01

    Full Text Available The author briefly interprets the research – results, referring to the phenomenon of children of alcoholics, especially the psychological and psychopathological characteristics of children of alcoholics in adolescence and young adulthood. The author presents a screening study of adolescents. The sample contains 200 high school students at age 18. The aim of the survey was to discover the relationship between alcohol consumption of parents, PTSD - related psychopathological symptoms and reported life quality of their children. The study confirmed the hypothesis about a substantial correlation between high alcohol consumption of parents, higher psychopathological symptom - expression and lower reported life quality score of their children. Higher PTSD-related symptomatology in children of alcoholics is probably resulted by home violence, which is very often present in family of alcoholics. The article also evaluated the results regarding suicide ideation of children of alcoholics, which is definitely more frequent and more intense than in their peers living in non alcohol – dependent families.

  5. Alcohol and Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Gao Yinglan; Song Jingyu; Jin Junshuo; Zhong Xiuhong; Ren Xiangshan; Liu Shuangping

    2005-01-01

    Objectives To study the relationship between alcohol and atherosclerosis (AS).Methods The paper reviewed the mechanism of the alcohol leading to AS from four aspects such as the introduction of alcohol and AS, imbalance of oxidationantioxidation system, oxygen free radical (OFR) and endothelium cell (EC) apoptosis, apoptosis and AS.Results Excessive alcohol could lead to imbalance of oxidation-antioxidation system, and increase OFR, in the meanwhile, OFR could lead to EC apoptosis,which could lead to AS.

  6. Ivermectin alone or in combination with benzyl benzoate in the treatment of human immunodeficiency virus-associated scabies.

    Science.gov (United States)

    Alberici, F; Pagani, L; Ratti, G; Viale, P

    2000-05-01

    In order to establish a safe and reliable treatment for human immunodeficiency virus (HIV)-associated scabies, we have treated 60 episodes of scabies in this setting, occurring in 39 patients, with one of the following regimens: (i) topical treatment with benzyl benzoate solution; (ii) single-dose oral treatment with ivermectin alone; and (iii) combination therapy with benzyl benzoate solution and oral ivermectin, employing the same regimens as single-agent therapy. Patients were stratified according to the severity score of the disease and the outcome (eradication, relapse, failure). We found that both benzyl benzoate and ivermectin alone were quite effective in mild to moderate scabies, but they were both associated with an unacceptable rate of relapse and failure in severe or crusted scabies. In contrast, combined treatment produced an optimal rate of success, without significant treatment-related side-effects. Therefore, we consider that combination treatment with benzyl benzoate solution and oral ivermectin is preferable to single-agent therapy in crusted scabies occurring in HIV/acquired immune deficiency syndrome patients.

  7. Preparation of Novel meta- and para-Substituted N-Benzyl Protected Quinuclidine Esters and Their Resolution with Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Srđanka Tomić

    2012-01-01

    Full Text Available Since the optically active quinuclidin-3-ol is an important intermediate in the preparation of physiologically or pharmacologically active compounds, a new biocatalytic method for the production of chiral quinuclidin-3-ols was examined. Butyrylcholinesterase (BChE; EC 3.1.1.8 was chosen as a biocatalyst in a preparative kinetic resolution of enantiomers. A series of racemic, (R- and (S-esters of quinuclidin-3-ol and acetic, benzoic, phthalic and isonicotinic acids were synthesized, as well as their racemic quaternary N-benzyl, meta- and para-N-bromo and N-methylbenzyl derivatives. After the resolution, all N-benzyl protected groups were successfully removed by catalytic transfer hydrogenation with ammonium formate (10% Pd-C. Hydrolyses studies with BChE confirmed that (R-enantiomers of the prepared esters are much better substrates for the enzyme than (S-enantiomers. Introduction of bromine atom or methyl group in the meta or para position of the benzyl moiety resulted in a considerable improvement of the stereoselectivity compared to the non-substituted compounds. Optically pure quinuclidin-3-ols were prepared in high yields and enantiopurity by the usage of various N-benzyl protected groups and BChE as a biocatalyst.

  8. Disposition kinetics and bioavailability of the glucosidase inhibitor N-benzyl-1-deoxynojirimycin after various routes of administration in mice

    NARCIS (Netherlands)

    Faber, ED; Delbressine, LPC; vandeVorstenbosch, CG; vandenBroek, LAGM; Meijer, DKF; Stok, B.P.

    1997-01-01

    Pharmacokinetics, biodistribution, and excretion of the alpha-glucosidase inhibitor and antiviral compound N-benzyl-1-deoxynojirimycin (BndNM) were studied in mice, after intravenous, subcutaneous, and oral administration of a single radiolabeled dose, No metabolites were detected in plasma, urine,

  9. Nuclear magnetic resonance of D(-)-{alpha}-amino-benzyl penicillin; Ressonancia magnetica nuclear da D(-)-{alpha}-amino-benzil penicilina

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1995-12-31

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-{alpha}-amino-benzyl penicillin were analysed using {sup 13} C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed 7 figs., 4 tabs.

  10. New chiral N, S-ligands with Thiophenyl at Benzylic Position. Palladium(Ⅱ)-catalyzed Enantioselective Allylic Alkylation

    Institute of Scientific and Technical Information of China (English)

    WU,Hao(吴昊); WU,Xun-Wei(巫循伟); HOU,Xue-Long(侯雪龙); DAI,Li-Xin(戴立信); WANG,Quan-Rui(王全瑞)

    2002-01-01

    New chiral N, S-ligands with oxazoline and thiphenyl substituents at benzene ring and benzylic position have been prepared and applied in palladium-catalyzed asymmetric allylic alkylation reaction to provide the product with high yield and entantioselectivity (82%-93% ee).

  11. Alcohol and liver

    Institute of Scientific and Technical Information of China (English)

    Natalia Osna

    2009-01-01

    @@ Liver is a primary site of ethanol metabolism, which makes this organ susceptible to alcohol-induced damage.Alcoholic liver disease (ALD) has many manifestations and complicated pathogenesis. In this Topic Highlight, we included the key reviews that characterize new findings about the mechanisms of ALD development and might be of strong interest for clinicians and researchers involved in liver alcohol studies.

  12. Alcoholism and Lesbians

    Science.gov (United States)

    Gedro, Julie

    2014-01-01

    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and…

  13. Television: Alcohol's Vast Adland.

    Science.gov (United States)

    2002

    Concern about how much television alcohol advertising reaches underage youth and how the advertising influences their attitudes and decisions about alcohol use has been widespread for many years. Lacking in the policy debate has been solid, reliable information about the extent of youth exposure to television alcohol advertising. To address this…

  14. Hispanic Alcoholic Treatment Considerations.

    Science.gov (United States)

    Costello, Raymond M.

    1987-01-01

    A path analytic model for Hispanic alcoholics relating socioclinical prognostic variables to outcome following treatment in a therapeutic community differs markedly from that fitted to Anglo alcoholics. The differential relationship of education to alcoholism severity and outcome was noted specifically as reflecting different racial-ethnic paths…

  15. Fetal Alcohol Exposure

    Science.gov (United States)

    ... her child’s genetic make-up, and changes in gene activity caused by prenatal alcohol exposure. NIH . . . Turning Discovery Into Health ® National Institute on Alcohol Abuse and Alcoholism www. niaaa. nih. gov • 301.443.3860 Interventions ...

  16. Alcohol and Minority Youth.

    Science.gov (United States)

    Wright, Roosevelt, Jr.; Watts, Thomas D.

    1991-01-01

    Maintains that minority youth who use (or abuse) alcohol in American society deal with using alcohol, being minority, and being young, three dimensions viewed by society with mixed, sometimes hostile and/or fearful reactions. Suggests that examining alcoholism among minority youth involves coming to grips with poverty, education, income, and life…

  17. Development studies on determination of preservatives decomposition products.

    Science.gov (United States)

    Zabrzewska, Beata; Chyła, Anna; Bogdan, Anna

    2014-01-01

    Preservatives are chemical substances whose role is to protect medicinal products against harmful changes caused by microorganisms. They are added to sterile medicinal products, such as eye drops and multidose solutions for injections, as well as to non-sterile products, such as water oral solutions, creams, gels, suppositories and capsules with liquid content. The most commonly used preservatives include: benzyl alcohol, butyl, ethyl, methyl and propyl p-hydroxybenzoates and their sodium salts. In medicinal products benzyl alcohol slowly oxidizes to benzaldehyde and benzoic acid while esters of p-hydroxybenzoic acid hydrolyze to p-hydroxybenzoic acid. HPLC methods were elaborated for identification and quantitative determination of the parabens, benzyl alcohol, active substances as well as their impurities in pharmaceuticals: oral solutions Amertil and Efforil (contain cetirizine hydrochloride or etilefrine hydrochloride and parabens), eye drops Difadol (contains diclofenac sodium and benzyl alcohol) and cream Tenasil (contains terbinafine hydrochloride and benzyl alcohol). The HPLC systems consisted of columns: Supelcosil LC-DP, Inertsil ODS-3 or Discovery HS F5 and three mobile phases mixtures of acetonitrile with buffers of various pH (3, 5 and 7) in proportions 45 : 55 (v/v). These systems have been characterized with appropriate selectivity (all the Rs values > 2) and sensitivity (LOD approx. 0.01 microg/mL). They also demonstrated satisfactory precision and a linear dependence between the analyte content and the peak area.

  18. Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Hansen, Thomas Willum; Grunwaldt, Jan-Dierk

    2009-01-01

    A number of silver catalysts supported on SiO2, Al2O3, Celite, CeO2, kaolin, MgO, and activated carbon were screened for their catalytic activity in the selective liquid-phase oxidation of benzyl alcohol using a special screening approach. For this purpose 5–6 catalyst samples were mixed and tested....... Compared to palladium and gold catalysts, the new silver catalyst performed similarly or even superior in the presence of CeO2. In addition, the presence of ceria increased the catalytic activity of all investigated catalysts....... by in situ XAS experiments. Oxygen species incorporated in the silver lattice appear to be important for the catalytic oxidation of the alcohol for which a preliminary mechanism is presented. The application of the catalyst was extended to the oxidation of a wide range of primary and secondary alcohols...

  19. Formation of Benzyl Carbanion in Collision-Induced Dissociation of Deprotonated Phenylalanine Homologues.

    Science.gov (United States)

    Sekimoto, Kanako; Matsuda, Natsuki; Takayama, Mitsuo

    2014-01-01

    The fragmentation behavior of deprotonated L-phenylalanine (Phe) and its homologues including L-homophenylalanine (HPA) and L-phenylglycine (PG) was investigated using collision-induced dissociation mass spectrometry coupled with a negative ion atmospheric pressure corona discharge ionization (APCDI) technique. The deprotonated molecules [M-H](-) fragmented to lose unique neutral species, e.g., the loss of NH3, CO2, toluene and iminoglycine for [Phe-H](-); styrene and ethenamine/CO2 for [HPA-H](-); and CO2 for [PG-H](-). All of the fragmentations observed are attributable to the formation of intermediates and/or product ions which include benzyl carbanions having resonance-stabilized structures. The carbanions are formed via proton rearrangement through a transition state or via a simple dissociation reaction. These results suggest that the principal factor governing the fragmentation behavior of deprotonated Phe homologues is the stability of the intermediate and/or product ion structures.

  20. Cytotoxic C-benzylated chalcone and other constituents of Ellipeiopsis cherrevensis.

    Science.gov (United States)

    Wirasathien, Lalita; Pengsuparp, Thitima; Moriyasu, Masataka; Kawanishi, Kazuko; Suttisri, Rutt

    2006-06-01

    A new natural C-benzylated chalcone, 2',4'-dihydroxy-3'-(2-hydroxybenzyl)-6'-methoxychalcone (2), along with two other flavonoids, tiliroside and kaempferol 3-O-rutinoside, and an oxoaporphine alkaloid, lanuginosine were isolated from the aerial parts of Ellipeiopsis cherrevensis (Annonaceae). Two known polyoxygenated cyclohexene derivatives, ferrudiol and zeylenol, and a new analog, ellipeiopsol D, were also isolated. The chalcone 2 exhibited cytotoxic activity against human small-cell lung-cancer (NCI-H187), epidermoid carcinoma (KB) and breast cancer (BC) cell lines with IC50 values of 1.40, 5.31 and 13.92 microg/mL, respectively. This compound also showed antimalarial activity against Plasmodium falciparum with an IC50 value of 7.1 microg/mL as well as antimicrobacterial activity against Mycobacterium tuberculosis with a MIC of 25 mg/mL.

  1. SYNTHESIS AND CHARACTERIZATION OF SIDE CHAIN LIQUID CRYSTALLINE POLYSILOXANES CONTAINING BENZYL ETHER LINKING UNITS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Side chain liquid crystalline polysiloxanes containing benzyl ether linking units were synthesized by the hydrosilylation of poly(methylhydrosiloxane) with a series of 4-(4-alkoxybenzyloxy)-4'-allyloxybiphenyl monomers [4-(4-methoxybenzyloxy)-4'-allyloxybiphenyl (M1), 4-(4-ethoxybenzyloxy)-4'-allyloxybiphenyl (M2), 4-(4-propoxybenzyloxy)-4'-allyloxybiphenyl (M3), 4-(4-butoxybenzyloxy)-4'-allyloxybiphenyl (M4), 4-(4-pentoxybenzyloxy)-4'-allyloxybiphenyl (Ms), 4-benzyloxy-4'-allyloxybiphenyl (M6)]. The phase behavior of monomeric and polymeric liquid crystals was characterized by differential scanning calorimetry and optical polarization microscopy where the groups are ranged from methoxy to pentoxy. Both the monomeric and polymeric liquid crystals exhibit liquid crystal behaviors.

  2. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide

    Science.gov (United States)

    Abbas, Aadil; Murtaza, Shahzad; Tahir, Muhammad Nawaz; Shamim, Saima; Sirajuddin, Muhammad; Rana, Usman Ali; Naseem, Khadija; Rafique, Hummera

    2016-08-01

    A series of novel N-benzylated derivatives of sulfonamide were synthesized and characterized by FT-IR, NMR and XRD analysis. The synthesized compounds were assayed for their biological potential. The biological studies involved antioxidant, enzyme inhibition, and DNA interaction studies. Antioxidant potential was investigated by Ferric Reducing Antioxidant Power assay (FRAP) and DPPH free radical scavenging method, the capacity of synthesized compounds to inhibit the enzyme's activity was assayed by using the well-known Elman method whereas DNA interaction studies were carried out with the help UV-Vis absorption titration method. Moreover, a direct correlation between enzyme inhibition activity and concentration of the compounds was observed both in experimental and molecular docking studies. DNA interaction studies of the synthesized compounds showed weak interaction.

  3. 17O NMR parameters of some substituted benzyl ethers components: Ab initio study

    Directory of Open Access Journals (Sweden)

    Mahdi Rezaei Sameti

    2016-09-01

    Full Text Available The 17O NMR chemical shielding tensors and chemical shift for a set of substituted benzyl ethers derivatives containing (methyl, ethyl, isopropyl, t-butyl, brome and lithium have been calculated. The molecular structures were fully optimized using B3LYP/6-31G(d,p. The calculation of the 17O shielding tensors employed the GAUSSIAN 98 implementation of the gauge-including atomic orbital (GIAO and continuous set of gauge transformations (CSGT by using 6-31G (d,p, 6-31++G(d,p and 6-311++G(d,p basis set methods at density functional levels of theories (DFT. The values determined using the GIAO and CSGT were found to give a good agreement with the experimental chemical shielding.

  4. New fatty acid, aromatic ester and monoterpenic benzyl glucoside from the fruits of Withania coagulans Dunal.

    Science.gov (United States)

    Ali, Abuzer; Jameel, Mohammad; Ali, Mohammed

    2015-01-01

    The fruits of Withania coagulans Dunal (family: Solanaceae) are sweet, sedative, emetic, alterative and diuretic; used to treat asthma, biliousness, strangury, wounds, dyspepsia, flatulent colic, liver complaints and intestinal infections in the indigenous system of medicine. Phytochemical investigation of the methanolic extract of W. coagulans fruits led to the isolation of a new fatty acid, an aromatic ester and a monoterpenic benzyl glucoside characterised as n-octatriacont-17-enoic acid (3), geranilan-10-olyl dihydrocinnamoate (4) and geranilan-8-oic acid-10-olyl salicyloxy-2-O-β-D-glucofuranosyl-(6″→1‴)-O-β-D-glucofuranosyl-6‴-n-octadec-9‴',11‴'-dienoate (5) along with two known fatty acids, n-dotriacont-21-enoic acid (1) and n-tetratriacontanoic acid (2). The structures of isolated phytoconstituents were established on the basis of 1D and 2D NMR, FT-IR, UV, and MS data and chemical means.

  5. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    Science.gov (United States)

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  6. Complex conformational heterogeneity of the highly flexible O6-benzyl-guanine DNA adduct.

    Science.gov (United States)

    Wilson, Katie A; Wetmore, Stacey D

    2014-07-21

    The conformational preference of the O6-benzyl-guanine (BzG) adduct was computationally examined using nucleoside, nucleotide, and DNA models, which provided critical information about the potential mutagenic consequences and toxicity of the BzG adduct in our cells. Substantial conformational flexibility of the BzG moiety, including rotation of the bulky group with respect to the base and the internal conformation of the bulk moiety, is seen in the nucleoside and nucleotide models. This large conformational flexibility suggests the conformation adopted by BzG is dependent on the local environment of the BzG adduct. Upon incorporation of the adduct into the DNA helix, the BzG conformational flexibility is maintained. The range of BzG conformations adopted in DNA likely arises due to a combination of the long and flexible (-CH2-) linker, the small adduct size, and the lack of discrete interactions between the bulky moiety and G. Because of the conformational flexibility of the adduct, many DNA conformations are observed for BzG adducted DNA, including those not previously reported in the literature, and thus, a modified nomenclature for adducted DNA conformations is presented. Furthermore, the preferred conformation of BzG adducted DNA is greatly dependent on a number of factors, including the pairing nucleotide, the discrete interactions in the helix, and the solvation of the benzyl moiety. These factors in turn lead to a complicated mutagenic and toxic profile that may invoke pairing with natural C, mispairs, or deletion mutations, which is supported by previously reported experimental biochemical studies. Despite this complex mutagenic profile, pairing with C leads to the most stable helical structure, which is the first combined structural and energetic explanation for experimental studies reporting a higher rate of C incorporation than any other nucleobase upon BzG replication.

  7. Genetics and alcoholism.

    Science.gov (United States)

    Edenberg, Howard J; Foroud, Tatiana

    2013-08-01

    Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

  8. [Physical diseases in alcoholism].

    Science.gov (United States)

    Takase, Kojiro

    2015-09-01

    Rapid excessive alcohol drinking frequently causes disturbance of consciousness due to head trauma, brain edema, hypoglycemia, hyponatremia, hepatic coma and so on, provoked by acute alcohol intoxication. Rapid differential diagnosis and management are extremely important to save a life. On the other hands, the chronic users of alcohol so called alcoholism has many kinds of physical diseases such as liver diseases (i.e., fatty liver, alcoholic hepatitis, alcoholic liver cirrhosis and miscellaneous liver disease), diabetes mellitus, injury to happen in drunkenness, pancreas disease (i.e., acute and chronic pancreatitis and deterioration of chronic pancreatitis), gastrontestinal diseases (i.e., gastroduodenal ulcer), and so on. Enough attention should be paid to above mentioned diseases, otherwise they would turn worse more with continuation and increase in quantity of the alcohol. It should be born in its mind that the excessive drinking becomes the weapon threatening life.

  9. Direct determination of rate constants for coupling between aromatic radical anions and alkyl and benzyl radicals by laser-flash photolysis

    DEFF Research Database (Denmark)

    Lund, T.; Christensen, P.; Wilbrandt, Robert Walter

    2003-01-01

    Coupling rates between the radicals methyl, n-, sec-, tert-butyl and benzyl (R-.) and the aromatic radical anions of 1,4-dicyanonaphthalene, 9,10-dicyanoanthracene and fluorenone (A(-.)) have been obtained using a new laser-flash photolysis method. The radicals R-. and the radical anions A(-.) were...... generated by a photoinduced electron transfer reaction between the aromatic compound A and the alkyl or benzyl triphenylborate anion RB(Ph)(3)(-). For the first time the rate constants of the coupling reaction between methyl and benzyl radicals with aromatic radical anions have been obtained. For all...... of the radicals and the structure and standard potentials of the aromatic radical anions....

  10. Mechanistic investigation of the iridium-catalysed alkylation of amines with alcohols

    DEFF Research Database (Denmark)

    Fristrup, Peter; Tursky, Matyas; Madsen, Robert

    2012-01-01

    The [Cp*IrCl2]2-catalysed alkylation of amines with alcohols was investigated using a combination of experimental and theoretical methods. A Hammett study involving a series of para-substituted benzyl alcohols resulted in a line with a negative slope. This clearly documents that a positive charge......, a line with a negative slope was obtained suggesting that nucleophilic attack on the aldehyde is selectivity-determining. A computational investigation of the entire catalytic cycle with full-sized ligands and substrates was performed using density functional theory. The results suggest a catalytic cycle...... where the intermediate aldehyde stays coordinated to the iridium catalyst and reacts with the amine to give a hemiaminal which is also bound to the catalyst. Dehydration to the imine and reduction to the product amine also takes place without breaking the coordination to the catalyst. The fact...

  11. Alcohol disrupts sleep homeostasis.

    Science.gov (United States)

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  12. Alcohol and pregnancy

    Directory of Open Access Journals (Sweden)

    Anna Maria Paoletti

    2013-06-01

    Full Text Available Alcohol exerts teratogenic effects in all the gestation times, with peculiar features in relationship to the trimester of pregnancy in which alcohol is assumed. Alcohol itself and its metabolites modify DNA synthesis, cellular division, cellular migration and the fetal development. The characteristic facies of feto-alcoholic syndrome (FAS-affected baby depends on the alcohol impact on skull facial development during the first trimester of pregnancy. In association there are cerebral damages with a strong defect of brain development up to the life incompatibility. Serious consequences on fetal health also depends on dangerous effects of alcohol exposure in the organogenesis of the heart, the bone, the kidney, sensorial organs, et al. It has been demonstrated that maternal binge drinking is a high factor risk of mental retardation and of delinquent behaviour. Unfortunately, a lower alcohol intake also exerts deleterious effects on fetal health. In several countries of the world there is a high alcohol use, and this habit is increased in the women. Therefore, correct information has to be given to avoid alcohol use by women in the preconceptional time and during the pregnancy. Preliminary results of a study performed by the authors show that over 80% of pregnant and puerperal women are not unaware that more than 2 glasses of alcohol/week ingested during pregnancy can create neurological abnormalities in the fetus. However, after the information provided on alcoholic fetopathy, all women are conscious of the damage caused by the use of alcohol to the fetus during pregnancy. This study confirms the need to provide detailed information on the negative effects of alcohol on fetal health. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  13. Alcohol Expectancies in Young Adult Sons of Alcoholics and Controls.

    Science.gov (United States)

    Brown, Sandra A.; And Others

    Adolescent offspring of alcoholics have been found to have higher alcohol reinforcement expectancies than do teenagers from nonalcoholic families. In particular, those with a positive family history of alcoholism expect more cognitive and motor enhancement with alcohol consumption. This study examined the alcohol expectancies of 58 matched pairs…

  14. Trapping of carbolithiation-derived tertiary benzylic α-lithio piperidines with carbon electrophiles: Controlling the formation of α-amino quaternary and vicinal stereocenters.

    Science.gov (United States)

    Beng, Timothy K; Fox, Nathan; Bassler, Daniel P; Alwali, Amir; Sincavage, Kayla; Silaire, Ann Wens V

    2015-08-28

    The interception of carbolithiation-derived tertiary benzylic α-lithio piperidines with carbon electrophiles, under HMPA-mediated conditions, has led to the diastereoselective synthesis of vicinally functionalized piperidines bearing α-amino quaternary stereocenters.

  15. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Murilo Foppa

    2001-02-01

    Full Text Available Observational studies have attributed a protective effect to alcohol consumption on the development of atherosclerosis and cardiovascular morbidity and mortality. Alcohol intake in the amount of one to two drinks per day results in an estimated 20-40% reduction in cardiovascular events. An additional protective effect, according to major cohort studies, has been attributed to wine, probably due to antioxidant effects and platelet antiaggregation agents. On the other hand, the influence of different patterns of alcohol consumption and environmental factors may explain a great part of the additional effect of wine. Protection may be mediated by modulation of other risk factors, because alcohol increases HDL-C, produces a biphasic response on blood pressure, and modulates the endothelial function, while it neither increases body weight nor impairs glucose-insulin homeostasis. Alcohol may also have a direct effect on atherogenesis. Despite these favorable effects, the current evidence is not enough to justify prescribing alcohol to prevent cardiovascular disease.

  16. [Alcohol and nutrition].

    Science.gov (United States)

    Maillot, F; Farad, S; Lamisse, F

    2001-11-01

    Alcoholism and alcohol-associated organ injury is one of the major health problems worldwide. Alcohol may lead to an alteration in intermediary metabolism and the relation between alcohol intake and body weight is a paradox. The effect of alcohol intake on resting metabolic rate, assessed by indirect calorimetry, and lipid oxidation, is still controversial. Small quantities of ethanol seem to have no effect on body weight. Ingestion of moderate amounts may lead to an increase in body weight, via a lipid-oxidizing suppressive effect. Chronic intake of excessive amounts in alcoholics leads to a decrease in body weight, probably via increased lipid oxidation and energy expenditure. Chronic ethanol abuse alters lipid-soluble (vitamins A, D and E) and water-soluble (B-complex vitamins, vitamin C) vitamins status, and some trace elements status such as magnesium, selenium or zinc.

  17. Novel Synthesis and Anti-HIV-1 Activity of 2-Arylthio-6-benzyl-2,3-dihydro-1H-pyrimidin-4-ones (Aryl S-DABOs)

    DEFF Research Database (Denmark)

    Aly, Youssef L.; Pedersen, Erik Bjerreg.; La Colla, Paolo;

    2007-01-01

    The synthesis and the anti-HIV-1 activity of a series of 2-arylthio-6-benzyl-2,3-dihydro-1H-pyrimidin-4-ones (aryl S-DABOs) are reported. These compounds were synthesized via a coupling reaction of the corresponding 6-benzyl-2-thiouracils with aryl iodides in the presence of neocuproine hydrate......, copper(I) iodide, and sodium tert-butoxide. Target compounds showed moderate activity against HIV-1....

  18. Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Dai Jin Kim

    2009-11-01

    Full Text Available For a long time, alcohol was thought to exert a general depressant effect on the central nervous system (CNS. However, currently the consensus is that specific regions of the brain are selectively vulnerable to the acute effects of alcohol. An alcohol-induced blackout is the classic example; the subject is temporarily unable to form new long-term memories while relatively maintaining other skills such as talking or even driving. A recent study showed that alcohol can cause retrograde memory impairment, that is, blackouts due to retrieval impairments as well as those due to deficits in encoding. Alcoholic blackouts may be complete (en bloc or partial (fragmentary depending on severity of memory impairment. In fragmentary blackouts, cueing often aids recall. Memory impairment during acute intoxication involves dysfunction of episodic memory, a type of memory encoded with spatial and social context. Recent studies have shown that there are multiple memory systems supported by discrete brain regions, and the acute effects of alcohol on learning and memory may result from alteration of the hippocampus and related structures on a cellular level. A rapid increase in blood alcohol concentration (BAC is most consistently associated with the likelihood of a blackout. However, not all subjects experience blackouts, implying that genetic factors play a role in determining CNS vulnerability to the effects of alcohol. This factor may predispose an individual to alcoholism, as altered memory function during intoxication may affect an individual‟s alcohol expectancy; one may perceive positive aspects of intoxication while unintentionally ignoring the negative aspects. Extensive research on memory and learning as well as findings related to the acute effects of alcohol on the brain may elucidate the mechanisms and impact associated with the alcohol- induced blackout.

  19. Alcoholism and Diabetes Mellitus

    OpenAIRE

    Soo-Jeong Kim; Dai-Jin Kim

    2012-01-01

    Chronic use of alcohol is considered to be a potential risk factor for the incidence of type 2 diabetes mellitus (T2DM), which causes insulin resistance and pancreatic β-cell dysfunction that is a prerequisite for the development of diabetes. However, alcohol consumption in diabetes has been controversial and more detailed information on the diabetogenic impact of alcohol seems warranted. Diabetes, especially T2DM, causes dysregulation of various metabolic processes, which includes a defect i...

  20. Alcohol use and menopause.

    Science.gov (United States)

    Wilsnack, Richard W; Wilsnack, Sharon C

    2016-04-01

    Clinicians should periodically assess their menopausal patients' alcohol use. Specific health hazards from excessive alcohol consumption, as well as potential benefits of low-level consumption (for cardiovascular disease, bone health, and type 2 diabetes), should be discussed with their patients who drink. The information in this Practice Pearl can help clinicians provide evidence-based guidance about alcohol consumption and its relationship to common health concerns.

  1. Affordability of alcohol and alcohol-related mortality in Belarus.

    Science.gov (United States)

    Razvodovsky, Yury E

    2013-01-01

    Alcohol abuse has numerous adverse health and social consequences. The consumer response to changes in alcohol affordability is an important issue on alcohol policy debates. Studies from many countries have shown an inverse relationship between alcohol prices and alcohol consumption in the population. There are, however, suggestions that increasing the price of alcohol by rising taxes may have limited effect on alcohol-related problems, associated with long-term heavy drinking. The aim of the present study was to evaluate the relationship between alcohol affordability and alcohol-related mortality rates in post-Soviet Belarus. For this purpose trends in alcohol-related mortality rates (mortality from liver cirrhosis, pancreatitis, alcoholism and alcohol psychoses) and affordability of vodka between 1990 and 2010 were compared. The time series analysis revealed that 1% increase in vodka affordability is associated with an increase in liver cirrhosis mortality of 0,77%, an increase in pancreatitis mortality of 0.53%, an increase in mortality from alcoholism and alcohol psychoses of 0,70%. The major conclusion emerging from this study is that affordability of alcohol is one of the most important predictor of alcohol-related problems in a population. These findings provide additional evidence that decreasing in affordability of alcohol is an effective strategy for reducing alcohol consumption and alcohol-related harm.

  2. Alcohol Alert: Alcohol's Damaging Effects on the Brain

    Science.gov (United States)

    ... Alcohol abuse and alcoholism. In: Nixon, S.J., ed. Neuropsychology for Clinical Practice. Washington, DC: American Psychological Press, ... alcoholic men: Relationships to changes in brain structure. Neuropsychology 14:178–188, 2000. (38) Rosenbloom, M. ; Sullivan, ...

  3. Theoretical Studies of Water's and Methanol's Effects on Alcoholysis of N-Benzyl-3-oxo-β-sultam

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mechanisms about the water's and methanol's effects on the alcoholysis of N-benzyl-3-oxo-β-sultam together with their differences have been studied by using density functional theory at the B3LYP/6-31G* level. The results, in comparison with a previous study on the relative reaction without the assistance of water and methanol, show that the added water or methanol can remarkably reduce the energy barrier of alcoholysis reaction of N-benzyl-3-oxo-β-sultam and the most favorite pathway is the breaking of C-N bond instead of S-N. It is also found that the reaction energy barrier of methanol-assisted alcoholysis is a little higher than that of the water-assisted one.

  4. 苄基红景天的工艺改进%Improved Synthesis of Benzyl-salidroside

    Institute of Scientific and Technical Information of China (English)

    张智勇; 张丽娟; 张达盼; 李正年; 王玉玲

    2011-01-01

    The benzyl-salidroside, a key intermediate for salidroside, was prepared from anhydrous glucose and tyrosol by acylation, benzylation and glucosidation in overall yield of 21.8%. The structure of the target compound was characterized with IR and 1H NMR.%以无水葡萄糖和对羟基苯乙醇为起始原料,经过乙酰化、苄基保护、苷化三步反应合成了苄基红景天,总收率21.8%;考察了反应物料配比、干燥条件、反应时间对收率的影响.目标化合物的结构经IR和1H NMR确证.改进后的工艺降低了合成成本,简单可行,适合工业化生产.

  5. I2-Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C-H functionalization.

    Science.gov (United States)

    Yi, Xiangli; Jiao, Lei; Xi, Chanjuan

    2016-10-18

    I2-Mediated benzyl C-H functionalization has been developed for the synthesis of 2H-indazoles, which features high efficiency, simple conditions and no need for metals. Mechanistic experiments and DFT calculations have revealed halogen bond assistance and a radical chain process for this reaction. The azo group and the bound iodine cooperate in the hydrogen abstraction step, which circumvents the thermodynamic disfavor of direct hydrogen abstraction by a simple iodine radical.

  6. Dendritic Macroinitiator for the Ring-Opening Polymerization of γ-Benzyl L-Glutamate N-Carboxyanhydride

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using OH-terminated polyarylether dendrimer and N-Fmoc-glycine as raw materials, the dendritic polyarylether 2-aminoacetate (G3-NH2) was synthesized via two step reactions. G3-NH2 as a macroinitiator for the ring-opening polymerization of γ-benzyl L-glutamate N-carboxyanhydride was investigated. It is found that the resulting copolymers possessed relatively high molecular weight and narrow molecular weight distribution (1.12< Mw/Mn<1.28).

  7. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    Science.gov (United States)

    Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.; Ellison, G. Barney

    2016-07-01

    Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H513CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H513CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

  8. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Grant T. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA; National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Porterfield, Jessica P. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA; Kostko, Oleg [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Troy, Tyler P. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Robichaud, David J. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Nimlos, Mark R. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Daily, John W. [Department of Mechanical Engineering, Center for Combustion and Environmental Research, University of Colorado, Boulder, Colorado 80309-0427, USA; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA

    2016-07-05

    Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 us. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H5 13CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H5 13CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

  9. Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides.

    Science.gov (United States)

    Čobeljić, Božidar; Milenković, Milica; Pevec, Andrej; Turel, Iztok; Vujčić, Miroslava; Janović, Barbara; Gligorijević, Nevenka; Sladić, Dušan; Radulović, Siniša; Jovanović, Katarina; Anđelković, Katarina

    2016-04-01

    Square-planar azido Ni(II) complex with condensation product of 2-(diphenylphosphino)benzaldehyde and Girard's T reagent was synthesized and its crystal structure was determined. Cytotoxic activity of the azido complex and previously synthesized isothiocyanato, cyanato and chlorido Ni(II) complexes with this ligand was examined on six tumor cell lines (HeLa, A549, K562, MDA-MB-453, MDA-MB-361 and LS-174) and two normal cell line (MRC-5 and BEAS-2B). All the investigated nickel(II) complexes were cytotoxic against all tumor cell lines. The newly synthesized azido complex showed selectivity to HeLa and A549 tumor cell lines compared to the normal cells (for A549 IC50 was similar to that of cisplatin). Azido complex interferes with cell cycle phase distribution of A549 and HeLa cells and possesses nuclease activity towards supercoiled DNA. The observed selectivity of the azido complex for some tumor cell lines can be connected with its strong DNA damaging activity.

  10. Crystal Structures of Two Calix[4]arene Isomers with Benzaldehyde Moiety and Their Photophysical Properties with Terbium(Ⅲ) Ions

    Institute of Scientific and Technical Information of China (English)

    王浩; 张衡益; 刘育

    2005-01-01

    Two calix[4]arene isomers with benzaldehyde moieties, i.e., 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(o-formyl-phenoxy)ethoxy]-26,28-dihydroxycalix[4]arene (3) and 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(p-formylphenoxy)-ethoxy]-26,28-dihydroxycalix[4]arene (4), were synthesized according to a newly designed route in high yields, and their crystal structures have been determined by X-ray crystallographic study. The photophysical behavior on complexation of calix[4]arene derivatives 3 and 4 with terbium(Ⅲ) nitrate was investigated in anhydrous acetonitrile at 25℃ by UV-Vis and fluorescence spectroscopies. The crystallographic structure of 3 indicated that the eight oxygen atoms formed a preorganized ionophoric cavity due to intramolecular π-π stacking, which could encapsulate lanthanide ions tightly. In sharp contrast, the compound 4 formed a linear array by intermolecular π-π stacking, hence the oxygen atoms of pendant arms could not coordinate with metal ions, giving a poor binding ability to Tb3+. The absorption spectra of 3 with Tb3+ showed clearly a new broad intense absorption at 385nm. Interestingly, the narrow emission line spectrum has also been observed for compound 3 with Tb3+, and the results obtained were discussed from the viewpoint of energy transfer mechanism between host structures and the properties of lanthanide ions.

  11. Ab-initio and DFT calculations on molecular structure, NBO, HOMO-LUMO study and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde.

    Science.gov (United States)

    Rocha, Mariana; Di Santo, Alejandro; Arias, Juan Marcelo; Gil, Diego M; Ben Altabef, Aída

    2015-02-05

    The experimental and theoretical study on the molecular structure and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde (DMABA) is presented. The IR and Raman spectra were recorded in solid state. Optimized geometry, vibrational frequencies and various thermodynamic parameters of the title compound were calculated using DFT methods and are in agreement with the experimental values. A detailed interpretation of the IR and Raman spectra of the title compound were reported. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using NBO analysis and AIM approach. The HOMO and LUMO analysis were used to determine the charge transfer within the molecule and some molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, hardness, softness and global electrophilicity index. The TD-DFT approach was applied to assign the electronic transitions observed in the UV-visible spectrum measured experimentally. Molecular electrostatic potential map was performed by the DFT method. According to DSC measurements, the substance presents a melting point of 72.34°C and decomposes at temperatures higher than 193°C.

  12. Ab-initio and DFT calculations on molecular structure, NBO, HOMO-LUMO study and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde

    Science.gov (United States)

    Rocha, Mariana; Di Santo, Alejandro; Arias, Juan Marcelo; Gil, Diego M.; Altabef, Aída Ben

    2015-02-01

    The experimental and theoretical study on the molecular structure and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde (DMABA) is presented. The IR and Raman spectra were recorded in solid state. Optimized geometry, vibrational frequencies and various thermodynamic parameters of the title compound were calculated using DFT methods and are in agreement with the experimental values. A detailed interpretation of the IR and Raman spectra of the title compound were reported. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using NBO analysis and AIM approach. The HOMO and LUMO analysis were used to determine the charge transfer within the molecule and some molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, hardness, softness and global electrophilicity index. The TD-DFT approach was applied to assign the electronic transitions observed in the UV-visible spectrum measured experimentally. Molecular electrostatic potential map was performed by the DFT method. According to DSC measurements, the substance presents a melting point of 72.34 °C and decomposes at temperatures higher than 193 °C.

  13. Synthesis, spectroscopic investigations and computational study of 4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy)benzaldehyde

    Science.gov (United States)

    Kanaani, A.; Ajloo, D.; Kiyani, H.; Farahani, M.

    2014-04-01

    The molecular structure, vibrational frequencies, corresponding vibrational assignments of 4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy)benzaldehyde in “trans” and “ana” forms have been investigated by UV-Vis, FT-IR and NMR spectroscopy as well as density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set. The vibrational analysis of the two forms of cited compound was performed by means of infrared absorption spectroscopy in combination with theoretical simulations. The obtained geometrical parameters and wavenumbers of vibrational normal modes from the DFT method were in good consistency with the experimental values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO method. Computed molecular orbital and time dependent DFT oscillator renderings agree closely with experimental observations. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. In order to predict the reactive sites, a molecular electrostatic potential map (MEP) for the title compound was obtained. Transition structures were calculated by QST3 and IRC methods which yielded the potential energy surface and activation energy.

  14. 2,4-dihydroxy benzaldehyde derived Schiff bases as small molecule Hsp90 inhibitors: rational identification of a new anticancer lead.

    Science.gov (United States)

    Dutta Gupta, Sayan; Revathi, B; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, C V S; Gowrishankar, N L; Raghavendra, N M

    2015-04-01

    Hsp90 is a molecular chaperone that heals diverse array of biomolecules ranging from multiple oncogenic proteins to the ones responsible for development of resistance to chemotherapeutic agents. Moreover they are over-expressed in cancer cells as a complex with co-chaperones and under-expressed in normal cells as a single free entity. Hence inhibitors of Hsp90 will be more effective and selective in destroying cancer cells with minimum chances of acquiring resistance to them. In continuation of our goal to rationally develop effective small molecule azomethines against Hsp90, we designed few more compounds belonging to the class of 2,4-dihydroxy benzaldehyde derived imines (1-13) with our validated docking protocol. The molecules exhibiting good docking score were synthesized and their structures were confirmed by IR, (1)H NMR and mass spectral analysis. Subsequently, they were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The antiproliferative effect of the molecules were examined on PC3 prostate cancer cell lines by adopting 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay methodology. Finally, schiff base 13 emerged as the lead molecule for future design and development of Hsp90 inhibitors as anticancer agents.

  15. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    Science.gov (United States)

    Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen; Liu, Xin

    2016-12-01

    A 3D lanthanide MOF with formula [Sm2(abtc)1.5(H2O)3(DMA)]·H2O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol.

  16. Fe3+-Exchanged Titanate Nanotubes: A New Kind of Highly Active Heterogeneous Catalyst for Friedel-Crafts Type Benzylation

    Directory of Open Access Journals (Sweden)

    Yunchen Du

    2015-01-01

    Full Text Available Heterogeneous catalysis for Friedel-Crafts type benzylation has received much attention in recent years due to its characteristic of environmental benefits. In this paper, titanate nanotubes (TNTs were employed as heterogeneous catalyst support, and a new kind of Fe3+-exchanged titanate nanotubes (Fe-TNTs catalyst with highly dispersed ferric sites was constructed by an ion exchange technique. The obtained catalyst was systematically characterized by XRD, TEM, N2 adsorption, XPS, and UV-vis spectra. As expected, Fe-TNTs showed excellent catalytic activities in the benzylation of benzene and benzene derivatives. The recycling tests for Fe-TNTs were also carried out, where the reason for the gradually decreased activity was carefully investigated. Superior to some reported catalysts, the catalytic ability of used Fe-TNTs could be easily recovered by ion exchange again, indicating that Fe-TNTs herein were a highly active and durable heterogeneous catalyst for Friedel-Crafts type benzylation. These results might be helpful for the design and preparation of novel heterogeneous catalysts by combining the structural advantages of titanate nanotubes and active metal ions.

  17. FastStats: Alcohol Use

    Science.gov (United States)

    ... this? Submit What's this? Submit Button NCHS Home Alcohol Use Recommend on Facebook Tweet Share Compartir Data ... alcoholic liver disease deaths: 19,388 Number of alcohol-induced deaths, excluding accidents and homicides: 30,722 ...

  18. Molecular basis of alcoholism.

    Science.gov (United States)

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.

  19. Alcoholism and diabetes mellitus.

    Science.gov (United States)

    Kim, Soo-Jeong; Kim, Dai-Jin

    2012-04-01

    Chronic use of alcohol is considered to be a potential risk factor for the incidence of type 2 diabetes mellitus (T2DM), which causes insulin resistance and pancreatic β-cell dysfunction that is a prerequisite for the development of diabetes. However, alcohol consumption in diabetes has been controversial and more detailed information on the diabetogenic impact of alcohol seems warranted. Diabetes, especially T2DM, causes dysregulation of various metabolic processes, which includes a defect in the insulin-mediated glucose function of adipocytes, and an impaired insulin action in the liver. In addition, neurobiological profiles of alcoholism are linked to the effects of a disruption of glucose homeostasis and of insulin resistance, which are affected by altered appetite that regulates the peptides and neurotrophic factors. Since conditions, which precede the onset of diabetes that are associated with alcoholism is one of the crucial public problems, researches in efforts to prevent and treat diabetes with alcohol dependence, receives special clinical interest. Therefore, the purpose of this mini-review is to provide the recent progress and current theories in the interplay between alcoholism and diabetes. Further, the purpose of this study also includes summarizing the pathophysiological mechanisms in the neurobiology of alcoholism.

  20. Alcoholism and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Soo-Jeong Kim

    2012-04-01

    Full Text Available Chronic use of alcohol is considered to be a potential risk factor for the incidence of type 2 diabetes mellitus (T2DM, which causes insulin resistance and pancreatic β-cell dysfunction that is a prerequisite for the development of diabetes. However, alcohol consumption in diabetes has been controversial and more detailed information on the diabetogenic impact of alcohol seems warranted. Diabetes, especially T2DM, causes dysregulation of various metabolic processes, which includes a defect in the insulin-mediated glucose function of adipocytes, and an impaired insulin action in the liver. In addition, neurobiological profiles of alcoholism are linked to the effects of a disruption of glucose homeostasis and of insulin resistance, which are affected by altered appetite that regulates the peptides and neurotrophic factors. Since conditions, which precede the onset of diabetes that are associated with alcoholism is one of the crucial public problems, researches in efforts to prevent and treat diabetes with alcohol dependence, receives special clinical interest. Therefore, the purpose of this mini-review is to provide the recent progress and current theories in the interplay between alcoholism and diabetes. Further, the purpose of this study also includes summarizing the pathophysiological mechanisms in the neurobiology of alcoholism.

  1. Children of Alcoholics

    Science.gov (United States)

    ... 11) • Abuse of drugs or alcohol; or • Aggression towards other children • Risk taking behaviors • Depression or suicidal thoughts or behavior Some children of alcoholics may cope by taking the role of responsible "parents" within the family and among friends. They may ...

  2. Fetal Alcohol Spectrum Disorder

    Science.gov (United States)

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  3. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    DA LUZ PROTASIO L.

    2001-01-01

    Full Text Available Atherosclerosis is manifested as coronary artery disease (CAD, ischemic stroke and peripheral vascular disease. Moderate alcohol consumption has been associated with reduction of CAD complications. Apparently, red wine offers more benefits than any other kind of drinks, probably due to flavonoids. Alcohol alters lipoproteins and the coagulation system. The flavonoids induce vascular relaxation by mechanisms that are both dependent and independent of nitric oxide, inhibits many of the cellular reactions associated with atherosclerosis and inflammation, such as endothelial expression of vascular adhesion molecules and release of cytokines from polymorphonuclear leukocytes. Hypertension is also influenced by the alcohol intake. Thus, heavy alcohol intake is almost always associated with systemic hypertension, and hence shall be avoided. In individuals that ingest excess alcohol, there is higher risk of coronary occlusion, arrhythmias, hepatic cirrhosis, upper gastrointestinal cancers, fetal alcohol syndrome, murders, sex crimes, traffic and industrial accidents, robberies, and psychosis. Alcohol is no treatment for atherosclerosis; but it doesn't need to be prohibited for everyone. Thus moderate amounts of alcohol (1-2 drinks/day, especially red wine, may be allowed for those at risk for atherosclerosis complications.

  4. Alcohol and atherosclerosis

    DEFF Research Database (Denmark)

    Tolstrup, Janne; Grønbaek, Morten

    2007-01-01

    Light to moderate alcohol intake is known to have cardioprotective properties; however, the magnitude of protection depends on other factors and may be confined to some subsets of the population. This review focuses on factors that modify the relationship between alcohol and coronary heart diseas...

  5. Leisure and Alcohol Expectancies.

    Science.gov (United States)

    Carruthers, Cynthia P.

    1993-01-01

    Presents the results of a study that investigated the ways individuals expected drinking to affect their leisure experiences, and the relationship of those expectancies to alcohol consumption patterns. Data from a sample of 144 adults indicated they expected alcohol to positively affect their leisure experiences. (SM)

  6. Pentoxifylline for alcoholic hepatitis

    DEFF Research Database (Denmark)

    Whitfield, Kate; Rambaldi, Andrea; Wetterslev, Jørn

    2009-01-01

    BACKGROUND: Alcoholic hepatitis is a life-threatening disease, with an average mortality of approximately 40%. There is no widely accepted, effective treatment for alcoholic hepatitis. Pentoxifylline is used to treat alcoholic hepatitis, but there has been no systematic review to assess its effects....... OBJECTIVES: To assess the benefits and harms of pentoxifylline in alcoholic hepatitis. SEARCH STRATEGY: The Cochrane Hepato-Biliary Group Controlled Trials Register, The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, LILACS......, clinicaltrials.gov, and full text searches were conducted until August 2009. Manufacturers and authors were contacted. SELECTION CRITERIA: All randomised clinical trials of pentoxifylline in participants with alcoholic hepatitis compared to control were selected for inclusion. DATA COLLECTION AND ANALYSIS: Two...

  7. Alcohol consumption in adolescents

    Directory of Open Access Journals (Sweden)

    Ilona Plevová

    2016-03-01

    Full Text Available Aim: To determine the level of alcohol consumption in a selected group of adolescents. Design: A descriptive cross-sectional study. Methods: The data were obtained using a part of the standardized ESPAD questionnaire for assessing consumption of alcoholic beverages. The sample comprised 422 students from seven secondary schools of different types in the city of Ostrava. For statistical analysis, the chi-squared test and Fisher's exact test (for n ≤ 5 were used. The data were processed using Stata v. 10. Results: More than half of respondents first tried alcohol before the age of 15. The most frequent alcohol-related problems were unprotected sex, decreased school performance and problems with parents or friends. Incomplete families were found to be an important factor in adolescents preferring and more frequently drinking beer. Conclusion: The study confirmed results reported by the Europe-wide survey ESPAD, namely that adolescents start to drink alcohol as early as before they turn fifteen.

  8. Homocysteine and alcoholism.

    Science.gov (United States)

    Bleich, S; Degner, D; Javaheripour, K; Kurth, C; Kornhuber, J

    2000-01-01

    Chronic alcohol consumption can induce alterations in the function and morphology of most if not all brain systems and structures. However, the exact mechanism of brain damage in alcoholics remains unknown. Partial recovery of brain function with abstinence suggests that a proportion of the deficits must be functional in origin (i.e. plastic changes of nerve cells) while neuronal loss from selected brain regions indicates permanent and irreversible damage. There is growing evidence that chronic alcoholism is associated with a derangement in the sulfur amino acid metabolism. Recently, it has been shown that excitatory amino acid (EAA) neurotransmitters and homocysteine levels are elevated in patients who underwent withdrawal from alcohol. Furthermore, it has been found that homocysteine induces neuronal cell damage by stimulating NMDA receptors as well as by producing free radicals. Homocysteine neurotoxicity via overstimulation of N-methyl-D-aspartate receptors may contribute to the pathogenesis of both brain shrinkage and withdrawal seizures linked to alcoholism.

  9. Alcohol and sex.

    Science.gov (United States)

    Vijayasenan, M E

    1981-01-14

    Diminished sexual functioning among individuals dependent upon alcohol has been assessed. Ninety-seven male patients entered the study, all inpatients as the unit for treatment of alcoholism and drug addiction (Villa 6) in Porirua Hospital, Porirua. The sexual ability of these patients before the development of alcoholism was also rated for the same items and this rating was used as a control. Of the 97 patients, 69 (71 percent) suffered from sexual dysfunction for a period more than 12 months prior to admission to hospital. The disturbances noted were diminished sexual desire (58 percent of patients), erectile impotence (16 percent), premature ejaculation (4 percent), ejaculatory in competence (22 percent). A high proportion of the alcoholics showed signs of sexual deviation-19 percent having performed sexual crimes and a further 28 percent having repeated thought of sexual crimes. The possible causes of alcohol induced sexual dysfunction are discussed.

  10. Glucuronoyl Esterase Screening and Characterization Assays Utilizing Commercially Available Benzyl Glucuronic Acid Ester

    Directory of Open Access Journals (Sweden)

    Hampus Sunner

    2015-09-01

    Full Text Available Research on glucuronoyl esterases (GEs has been hampered by the lack of enzyme assays based on easily obtainable substrates. While benzyl d-glucuronic acid ester (BnGlcA is a commercially available substrate that can be used for GE assays, several considerations regarding substrate instability, limited solubility and low apparent affinities should be made. In this work we discuss the factors that are important when using BnGlcA for assaying GE activity and show how these can be applied when designing BnGlcA-based GE assays for different applications: a thin-layer chromatography assay for qualitative activity detection, a coupled-enzyme spectrophotometric assay that can be used for high-throughput screening or general activity determinations and a HPLC-based detection method allowing kinetic determinations. The three-level experimental procedure not merely facilitates routine, fast and simple biochemical characterizations but it can also give rise to the discovery of different GEs through an extensive screening of heterologous Genomic and Metagenomic expression libraries.

  11. SOME BENZYL CARBOXYLATO DERIVATIVES AND ADDUCTS: SYNTHESIS, INFRARED AND NMR STUDIES

    Directory of Open Access Journals (Sweden)

    Daouda Ndoye

    2014-05-01

    Full Text Available Cy2NH2BzCO2•SnPh3Cl, Bz2NH2BzCO2•SnPh3Cl, BzCO2SnPh3•SnPh3Cl•1/4Bz2NH2Cl, Bz2NH2BzCO2•SnPhCl(OH2, Bz2NH2BzCO2•SnBu2Cl2, [BzCO2SnPh3][SnPhCl3•EtOH•H2O] adducts and complexes have been obtained on allowing Cy2NH2BzCO2 or Bz2NH2BzCO2•4H2O to react respectively with SnPh3Cl, SnPh2Cl2 or SnBu2Cl2 in specific ratios. The molecular structures of these compounds have been determined on the basis of infrared and NMR data. The suggested structures are discrete, dimers and tetramer, the tin atom being tetra-, penta- and hexacoordinated; the benzyl carboxylate anions are monodentate, bidentate and chelating and the cations involved in hydrogen bonds.

  12. Pertumbuhan Plantlet Anggrek Cattleya sp. dengan Perlakuan Benzyl Amino Purine pada Media Dasar Pupuk Daun Modifikasi

    Directory of Open Access Journals (Sweden)

    HESTIN YUSWANTI

    2015-09-01

    Full Text Available Growth of Plantlets of Cattleya Orchid on The Fooliar Fertilizer-Based Medium added with Benzyl Amino Purine. The aim of the current research was to investigate the appropriate concentrationof plant growth regulator BAP on the growth of Cattleya plantlet. The experiment was utilized a Randomized Completely Design with five treatments and six replications. The basal medium used was modification of foliar fertilizer of Growmore (trade mark with addition of fish emulsion, Vitamin B1 and active charcoal. BAP concentration used as treatment were 0 ppm, 0.5 ppm, 1.0 ppm, 1.5 ppm and 2.0 ppm. Variables observed were height, leaf number, root number, root length, fresh weight and dry weight of plantlets. The result showed that concentration of 1 ppm BAP resulted in the highest value for plantlet height (5.67 cm, leaf number (4.67, root length (2.07 cm, fresh weight (0.36 g and dry weight (0.043 g.

  13. Isolation and identification of 4-α-rhamnosyloxy benzyl glucosinolate in Noccaea caerulescens showing intraspecific variation.

    Science.gov (United States)

    de Graaf, Rob M; Krosse, Sebastian; Swolfs, Ad E M; te Brinke, Esra; Prill, Nadine; Leimu, Roosa; van Galen, Peter M; Wang, Yanli; Aarts, Mark G M; van Dam, Nicole M

    2015-02-01

    Glucosinolates are secondary plant compounds typically found in members of the Brassicaceae and a few other plant families. Usually each plant species contains a specific subset of the ∼ 130 different glucosinolates identified to date. However, intraspecific variation in glucosinolate profiles is commonly found. Sinalbin (4-hydroxybenzyl glucosinolate) so far has been identified as the main glucosinolate of the heavy metal accumulating plant species Noccaea caerulescens (Brassicaceae). However, a screening of 13 N. caerulescens populations revealed that in 10 populations a structurally related glucosinolate was found as the major component. Based on nuclear magnetic resonance (NMR) and mass spectrometry analyses of the intact glucosinolate as well as of the products formed after enzymatic conversion by sulfatase or myrosinase, this compound was identified as 4-α-rhamnosyloxy benzyl glucosinolate (glucomoringin). So far, glucomoringin had only been reported as the main glucosinolate of Moringa spp. (Moringaceae) which are tropical tree species. There was no apparent relation between the level of soil pollution at the location of origin, and the presence of glucomoringin. The isothiocyanate that is formed after conversion of glucomoringin is a potent antimicrobial and antitumor agent. It has yet to be established whether glucomoringin or its breakdown product have an added benefit to the plant in its natural habitat.

  14. Enhancement of cisplatin cytotoxicity by benzyl isothiocyanate in HL-60 cells.

    Science.gov (United States)

    Lee, Younghyun; Kim, Yang Jee; Choi, Young Joo; Lee, Joong Won; Lee, Sunyeong; Chung, Hai Won

    2012-07-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is one of the most widely used chemotherapeutic drugs, but its effectiveness is limited by tumor cell resistance and the severe side effects it causes. One strategy for overcoming this problem is the concomitant use of natural dietary compounds as therapeutic agents. Benzyl isothiocyanate (BITC) is a promising chemopreventive agent found in cruciferous vegetables and papaya fruits. The aim of this study was to investigate the effects of BITC on cisplatin-induced cytotoxicity in human promyelocytic leukemia cells and normal human lymphocytes. The combined treatment of HL-60 cells with BITC followed by cisplatin (BITC/cisplatin) caused a significant decrease in cell viability. BITC also increased apoptotic cell death compared to cisplatin treatment alone. In normal human lymphocytes, BITC did not enhance the cytotoxic effects of cisplatin. Cellular exposure to BITC/cisplatin increased reactive oxygen species (ROS) generation but decreased the total glutathione (GSH) level in HL-60 cells. Pretreatment of HL-60 cells with N-acetylcysteine or glutathione monoethyl ester effectively decreased BITC/cisplatin-induced cell death. The addition of the extracellular signal-regulated kinase (ERK) inhibitor PD98059 abolished BITC/cisplatin-induced apoptosis. Taken together, our results suggest that BITC enhances cisplatin-induced cytotoxicity through the generation of ROS, depletion of GSH, and ERK signaling in HL-60 cells.

  15. Piezoelectric property of hot pressed electrospun poly( γ-benzyl- α, L-glutamate) fibers

    Science.gov (United States)

    Ren, Kailiang; Wilson, William L.; West, James E.; Zhang, Q. M.; Yu, S. Michael

    2012-06-01

    Since the 1960s, the piezoelectricity in biopolymers (e.g. proteins and polynucleotides) has attracted considerable scientific attention. In particular, poly(glutamate)s have been one of the most popular targets for this research due to their well-defined helical structure and permanent polarity along the helical axis. To date, films of poly(glutamate)s have been shown to exhibit piezoelectricity only in shear mode (d14), mainly due to the limitation in fabricating electrically poled polymer samples. This paper describes a combined electrospinning and hot press method that allows production of poled poly( γ-benzyl- α,L-glutamate) (PBLG) films with piezoelectricity in all d33, d31 and d14 modes for the first time. It is found that this PBLG film belongs to the matrix structure of C∞ v group, which is the same as that of poled PVDF film. The moderately high piezoelectric coefficients in both d33 and d14 modes as well as their thermal stability make the poled PBLG film an excellent candidate for use in flexible transducers and small energy harvesting devices.

  16. Size distribution and chemical composition of secondary organic aerosol formed from Cl-initiated oxidation of toluene

    Institute of Scientific and Technical Information of China (English)

    Mingqiang Huang; Weijun Zhang; Xuejun Gu; Changjin Hu; Weixiong Zhao; Zhenya Wang; Li Fang

    2012-01-01

    Secondary organic aerosol (SOA) formed from Cl-initiated oxidation of toluene was investigated in a home-made smog chamber.The size distribution and chemical composition of SOA particles were measured using aerodynamic particle sizer spectrometer and the aerosol laser time-of-flight mass spectrometer (ALTOFMS),respectively.According to a large number of single aerosol diameter and mass spectra,the size distribution and chemical composition of SOA were obtained statistically.Experimental results showed that SOA particles created by Cl-initiated oxidation of toluene is predominantly in the form of fine particles,which have diameters less than 2.5 μm (i.e.,PM2.5),and glyoxal,benzaldehyde,benzyl alcohol,benzoquinone,benzoic acid,benzyl hydroperoxide and benzyl methyl nitrate are the major products components in the SOA.The possible reaction mechanisms leading to these products are also proposed.

  17. (R)-PAC biosynthesis in [BMIM][PF₆]/aqueous biphasic system using Saccharomyces cerevisiae BY4741 cells.

    Science.gov (United States)

    Kandar, Smita; Suresh, A K; Noronha, Santosh B

    2015-02-01

    (R)-phenylacetylcarbinol or (R)-PAC is a pharmaceutical precursor of (1R, 2S) ephedrine and (1S, 2S) pseudoephedrine. Biotransformation of benzaldehyde and glucose by pyruvate decarboxylase produces (R)-PAC. This biotransformation suffers from toxicity of the substrate, product [(R)-PAC] and by-product (benzyl alcohol). In the present study, ionic liquid/aqueous biphasic system was employed to enhance (R)-PAC production. Fermented broth was the reaction medium in which Saccharomyces cerevisiae BY4741 was the source of pyruvate decarboxylase. Hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was the non-aqueous phase in which toxic compounds reside. Biocompatibility of [BMIM][PF6] and adequate distribution coefficients of benzaldehyde, (R)-PAC and benzyl alcohol were determined. A Box-Behnken design and response surface methodology were used for the optimization of biotransformation variables in order to maximize (R)-PAC yield and productivity. The results showed higher (R)-PAC yield and productivity of ∼1.5-fold each in the biphasic biotransformation of phase volume ratio 0.05 as compared to the monophasic (conventional) biotransformation. Moreover, the level of major by-product benzyl alcohol was also 3.5-fold lower in biphasic biotransformation. [BMIM][PF6]/aqueous biphasic system is a new approach which could intensify the (R)-PAC production.

  18. 78 FR 42530 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-16

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review..., Ph.D., Scientific Review Officer, National Institute on Alcohol Abuse & Alcoholism,...

  19. 76 FR 78014 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Science.gov (United States)

    2011-12-15

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review...., Scientific Review Administrator, National Institutes on Alcohol Abuse & Alcoholism, National Institutes...

  20. 75 FR 10808 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-09

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis... Officer, National Institute on Alcohol Abuse & Alcoholism, National Institutes of Health, 5635...