WorldWideScience

Sample records for benzothiophenes

  1. Benzothiophene-S-oxides-an Overview

    OpenAIRE

    Thiemann, Thies; Arima, Kazuya; Kumazoe, Kazuya; Mataka, Shuntaro

    2000-01-01

    In this review on the class of benzothiophene-S-oxides the preparation, the structural and physical properties as well as the reactivity of these molecules are presented. Moreover, their importance as intermediates into the microbial transformation of environmentally harmful benzothiophenes is highlighted. Possible technical applications are also discussed.

  2. Desulfurization of petroleum induced by ionization radiation: benzothiophene behavior

    International Nuclear Information System (INIS)

    Hydrodesulfurization (HDS) is currently the most common method used by refineries; this removes significantly sulfur compounds from petroleum fractions, however, is not highly effective for removing thiophene compounds such as benzothiophene, and generates high costs for the oil industry. Another factor, are the environmental laws, which over the years has become increasingly strict, especially regarding the sulfur content. This compound cause incalculable damage both to the industry and to the environment. Therefore new methods for petroleum desulfurization should be studied in order to minimize the impacts that these compounds cause. In the present study it was used ionizing radiation, a promising method of advanced oxidation in reducing sulfur compounds. The analysis were performed after purge and trap concentration of samples, followed by gas chromatography-mass spectrometry (GC-MS). Then benzothiophene samples with the same concentration from 27 mg.L-1 to 139 mg.L-1 were irradiated with different absorbed doses of radiation ranging from 1 kGy to 20 kGy in gamma irradiator Cobalt-60, Gammacell. These samples were analyzed by the same procedure used for the calibration curve, and the removals of benzothiophene after ionizing radiation treatment were calculated. It was observed that at higher doses there was a greater degradation of this compound and the formation of fragments, such as 1,2-dimethylbenzene and toluene, which may be removed by simple processes. (author)

  3. Catalytic Desulfurization of Benzothiophene Using Keggin Type Polyoxometalates as Catalyst

    OpenAIRE

    Aldes Lesbani; Arianti Marpaung; Marieska Verawaty; Hesti Rizki Amalia; Risfidian Mohadi

    2015-01-01

    Performance of catalytic desulfurization of benzothiophen (BT) was studied using polyoxometalates as catalyst. Polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40], have different heteroatom in Keggin structure and catalytic activities. Polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] have high crystallinity with homogeneous distribution particles. Desulfurization of BT using polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] resulted % conversion up to 99% for 3 h reaction time and at tempera...

  4. Catalytic Desulfurization of Benzothiophene Using Keggin Type Polyoxometalates as Catalyst

    Directory of Open Access Journals (Sweden)

    Aldes Lesbani

    2015-01-01

    Full Text Available Performance of catalytic desulfurization of benzothiophen (BT was studied using polyoxometalates as catalyst. Polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40], have different heteroatom in Keggin structure and catalytic activities. Polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] have high crystallinity with homogeneous distribution particles. Desulfurization of BT using polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] resulted % conversion up to 99% for 3 h reaction time and at temperature 40 oC. Application of polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] for crude oil desulfurization showed % conversion of 4-88%. The main functional groups of polyoxometalates still retained after catalytic desulfurization indicated the stability of polyoxometalate compounds

  5. Substituent effects on the photochromic properties of benzothiophene-based derivatives.

    Science.gov (United States)

    Galangau, Olivier; Nakashima, Takuyama; Maurel, François; Kawai, Tsuyoshi

    2015-06-01

    Five diarylethene photochromic derivatives, the structures of which incorporate a central benzothiophene unit, a left-hand thiazole group, and a right-hand benzothiophene group, have been prepared. The compound with a thiazole unit with no substituent on the reaction-center carbon atom reveals an unprecedented transformation upon light irradiation. When the 4-position of thiazole is protected by a methyl group, the compounds show high photosensitivity and photochromic properties. In this case, light irradiation affords new compounds with [5]helicene structures featuring the highest redshifted absorption maxima reported to date. PMID:25917528

  6. Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene.

    Science.gov (United States)

    Khan, Nazmul Abedin; Jun, Jong Won; Jeong, Jong Hwa; Jhung, Sung Hwa

    2011-01-28

    Liquid-phase adsorption of benzothiophene over isotypic MOFs such as MIL-47 and MIL-53(Al, Cr) has shown that a metal ion of a MOF-type material has a dominant role in adsorptive desulfurization and MIL-47 has a remarkable performance. PMID:21152546

  7. Synthesis and fungicidal activities of novel benzothiophene-substituted oxime ether strobilurins.

    Science.gov (United States)

    Tu, Song; Xie, Ya-Qiang; Gui, Si-Zhe; Ye, Li-Yi; Huang, Zi-Long; Huang, Yi-Bing; Che, Li-Ming

    2014-05-01

    Twenty-one novel benzothiophene-substituted oxime ether strobilurins, which employed a benzothiophene group to stabilise the E-styryl group in Enoxastrobin (an unsaturated oxime strobilurin fungicide developed by Shenyang Research Institute of Chemical Industry, China) were designed and synthesised. The biological assay indicated that most compounds exhibited good or excellent fungicidal activities, especially against Colletotrichum lagenarium and Puccinia sorghi Schw. In addition, methyl 3-methoxypropenoate oxime ethers and N-methoxy-carbamic acid methyl esters exhibited good in vivo fungicidal activities against Erysiphe graminis, Colletotrichum lagenarium and Puccinia sorghi Schw. under the tested concentrations. Notably, (E,E)-methyl 3-methoxy-2-(2-((((6-chloro-1-(1H-benzo[b]thien-2-yl)ethylidene)amino)oxy)methyl)phenyl)propenoate (5E) exhibited more potent in vivo fungicidal activities against nearly all of the tested fungi at a concentration of 0.39 mg/L compared to Enoxastrobin. PMID:24717155

  8. A46, a Benzothiophene Derived Compound, Suppresses Jak2-Mediated Pathologic Cell Growth

    OpenAIRE

    Majumder, Anurima; Magis, Andrew T.; Park, Sung O.; Figueroa, Nicholas C.; Baskin, Rebekah; Kirabo, Annet; Robert W Allan; Zhao, Zhizhuang Joe; Bisht, Kirpal S.; Keserű, György M.; Sayeski, Peter P.

    2011-01-01

    Hyperkinetic Jak2 tyrosine kinase signaling has been implicated in several hematological disorders including the myeloproliferative neoplasms (MPNs). Effective Jak2 inhibitors can thus have significant therapeutic potential. Here, using structure based virtual screening, we identified a benzothiophene derived Jak2 inhibitor named A46. We hypothesized that this compound would inhibit Jak2-V617F mediated pathologic cell growth. To test this, A46 was analyzed for its ability to i) inhibit recomb...

  9. Ethyl 2-(pyridine-4-carboxamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Asma Mukhtar

    2012-07-01

    Full Text Available In the title compound, C17H18N2O3S, the dihedral angles between the thiophene ring and the ethyl ester group and the pyridine-4-carboxamide unit are 7.1 (2 and 9.47 (11°, respectively. An intramolecular N—H...O hydrogen bond generates an S(6 ring. In the crystal, inversion dimers linked by pairs of C—H...O hydrogen bonds between the tetrahydro-1-benzothiophene and the pyridine-4-carboxamide residues generate R22(16 loops. There exists positional disorder in three methelene groups of the cyclohexane ring and the terminal C atom of the ethyl ester side chain in a 0.691 (14:0.309 (14 occupancy ratio.

  10. Genetic analysis of benzothiophene biodesulfurization pathway of Gordonia terrae strain C-6.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Sulfur can be removed from benzothiophene (BT by some bacteria without breaking carbon-carbon bonds. However, a clear mechanism for BT desulfurization and its genetic components have not been reported in literatures so far. In this study, we used comparative transcriptomics to study differential expression of genes in Gordonia terrae C-6 cultured with BT or sodium sulfate as the sole source of sulfur. We found that 135 genes were up-regulated with BT relative to sodium sulfate as the sole sulfur source. Many of these genes encode flavin-dependent monooxygenases, alkane sulfonate monooxygenases and desulfinase, which perform similar functions to those involved in the 4S pathway of dibenzothiophene (DBT biodesulfurization. Three of the genes were found to be located in the same operon, designated bdsABC. Cell extracts of pET28a-bdsABC transfected E. coli Rosetta (DE3 converted BT to a phenolic compound, identified as o-hydroxystyrene. These results advance our understanding of enzymes involved in the BT biodesulfurization pathway.

  11. Facile Oxidative Desulfurisation of Benzothiophene Using Polyoxometalate H4[α-SiW12O40]/Zr Catalyst

    Directory of Open Access Journals (Sweden)

    Aldes Lesbani

    2015-07-01

    Full Text Available A highly active catalyst H4[α-SiW12O40]/Zr based polyoxometalete Keggin type was prepared by wet impregnation method and was characterized by FTIR spectroscopy, X-ray diffractometer, surface textural property by SEM, and analysis of porosity by BET method. H4[α-SiW12O40]/Zr was successfully synthesized and showed uniform properties with block solid structure which was applied as heterogeneous stable catalyst for oxidative desulfurization of benzothiophene under simple and mild condition using H2O2 as oxidant. Facile conversion of benzothiophene to sulfone by using heterogeneus                    H4[α-SiW12O40]/Zr catalyst up to 99% was observed to show the active catalytically. Keggin             H4[α-SiW12O40]/Zr cage structure after reaction was different from fresh catalyst which was indicated by the instability of H4[α-SiW12O40]/Zr  under reaction condition. © 2015 BCREC UNDIP. All rights reservedReceived: 9th November 2014; Revised: 31st March 2015; Accepted: 23rd April 2015How to Cite: Lesbani, A., Agnes, A., Saragih, R.O., Verawaty, M., Mohadi, R., Zulkifli, H. (2015.    Facile Oxidative Desulfurisation of Benzothiophen Using Polyoxometalate H4[α-SiW12O40]/Zr Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2, 185-191. (doi:10.9767/bcrec.10.2.7734.185-191 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7734.185-191 

  12. Temperature Induced Wetting and Dewetting Effects of Dioctylbenzothieno-benzothiophene on Silicon Oxide Surfaces

    International Nuclear Information System (INIS)

    Full text: The excellent performance of the molecule dioctyl-benzothieno-benzothiophene (C8-BTBT) in organic thin film transistors is strongly influenced by heat treatment. Spin coating of the film at elevated temperatures (within the liquid-crystalline state), leads to an increase in charge carrier mobilities up to 3 cm2/V s. The structural properties of C8-BTBT thin films are investigated as a function of temperature in terms of crystallographic properties and morphology. Spatially resolved microscopic methods (AFM and optical microscopy) as well as integral characterisation methods (Grazing incidence x-ray scattering, x-ray reflectivity) are used. The disordered monolayer film (thickness 2.4 nm) remains unstable after the spin coating process. With increasing temperatures, dewetting of the monolayer is observed by the formation of crystalline islands with an average height of about 15 nm. Approaching the transition temperature to the smectic state, at a temperature of 900C, re-wetting is observed and a monolayer is formed on the substrate surface. This monolayer (thickness 2.9 nm) remains stable in the liquid crystalline state as well as after cooling back to room temperature. Also multilayer films show pronounced dewetting during heating by the formation of huge crystalline islands with a lateral size in the μm range. At 1050C a monolayer (thickness 2.9 nm), at 1080C a bilayer and at 1150C a triple layer has developed. Decreasing temperatures reveal the reversibility of the layer-by-layer formation. All found layered structures can be stabilized by rapid cooling. (author)

  13. A Thieno[3,2-b][1]benzothiophene Isoindigo Building Block for Additive- and Annealing-Free High-Performance Polymer Solar Cells

    KAUST Repository

    Yue, Wan

    2015-08-20

    A novel photoactive polymer with two different molecular weights is reported, based on a new building block: thieno[3,2-b][1]benzothiophene isoindigo. Due to the improved crystallinity, optimal blend morphology, and higher charge mobility, solar-cell devices of the high-molecular-weight polymer exhibit a superior performance, affording efficiencies of 9.1% without the need for additives, annealing, or additional extraction layers during device fabrication.

  14. Reactivity of Mo(PMe3)6 towards benzothiophene and selenophenes: new pathways relevant to hydrodesulfurization.

    Science.gov (United States)

    Buccella, Daniela; Janak, Kevin E; Parkin, Gerard

    2008-12-01

    Mo(PMe(3))(6) cleaves a C-S bond of benzothiophene to give (kappa(2)-CHCHC(6)H(4)S)Mo(PMe(3))(4), which rapidly isomerizes to the olefin-thiophenolate and 1-metallacyclopropene-thiophenolate complexes, (kappa(1),eta(2)-CH(2)CHC(6)H(4)S)Mo(PMe(3))(3)(eta(2)-CH(2)PMe(2)) and (kappa(1),eta(2)-CH(2)CC(6)H(4)S)Mo(PMe(3))(4). The latter two molecules result from a series of hydrogen transfers and are differentiated according to whether the termini of the organic fragments coordinate as olefin or eta(2)-vinyl ligands, respectively. The reactions between Mo(PMe(3))(6) and selenophenes proceed differently from those of the corresponding thiophenes. For example, whereas Mo(PMe(3))(6) reacts with thiophene to give eta(5)-thiophene and butadiene-thiolate complexes, (eta(5)-C(4)H(4)S)Mo(PMe(3))(3) and (eta(5)-C(4)H(5)S)Mo(PMe(3))(2)(eta(2)-CH(2)PMe(2)), selenophene affords the metallacyclopentadiene complex [(kappa(2)-C(4)H(4))Mo(PMe(3))(3)(Se)](2)[Mo(PMe(3))(4)] in which the selenium has been completely abstracted from the selenophene moiety. Likewise, in addition to (kappa(1),eta(2)-CH(2)CC(6)H(4)Se)Mo(PMe(3))(4) and (kappa(1),eta(2)-CH(2)CHC(6)H(4)Se)Mo(PMe(3))(3)(eta(2)-CH(2)PMe(2)), which are counterparts of the species observed in the benzothiophene reaction, the reaction of Mo(PMe(3))(6) with benzoselenophene yields products resulting from C-C coupling, namely [kappa(2),eta(4)-Se(C(6)H(4))(CH)(4)(C(6)H(4))Se]Mo(PMe(3))(2) and [mu-Se(C(6)H(4))(CH)C(CH)(2)(C(6)H(4))](mu-Se)[Mo(PMe(3))(2)][Mo(PMe(3))(2)H]. PMID:18998651

  15. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    Science.gov (United States)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. PMID:22245512

  16. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: Effect of calcination temperature of catalysts

    International Nuclear Information System (INIS)

    Highlights: ► Oxidative desulfurization was studied with WOx/ZrO2 calcined at different temp. ► The importance of the phases of zirconia and tungsten oxide was suggested. ► The catalyst was analyzed thoroughly with Raman and XRD techniques. ► The importance of electron density on S was confirmed with the kinetics of oxidation. - Abstract: Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WOx/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS.

  17. Effect of textural property of coconut shell-based activated carbon on desorption activation energy of benzothiophene

    Institute of Scientific and Technical Information of China (English)

    Moxin YU; Zhong LI; Hongxia XI; Qibin XIA; Shuwen WANG

    2008-01-01

    In this work,the effect of the textural property of activated carbons on desorption activation energy and adsorption capacity for benzothiophene (BT) was investi-gated.BET surface areas and the textural parameters of three kinds of the activated carbons,namely SY-6,SY-13 and SY-19,were measured with an ASAP 2010 instru-ment.The desorption activation energies of BT on the activated carbons were determined by temperature-pro-grammed desorption (TPD).Static adsorption experi-ments were carried out to determine the isotherms of BT on the activated carbons.The influence of the textural property of the activated carbons on desorption activa-tion energy and the adsorption capacity for BT was dis-cussed.Results showed that the BET surface areas of the activated carbons,SY-6,SY-13 and SY-19 were 1106,diameters were 1.96,2.58 and 2.16 nm,respectively.The TPD results indicated that the desorption activation energy of BT on the activated carbons,SY-6,SY-19 and SY-13 were 58.84,53.02 and 42.57 KJ/mol,respectively.The isotherms showed that the amount of BT adsorbed on the activated carbons followed the order of SY-6 > SY-19 > SY-13.The smaller the average pore diameter of the activated carbon,the stronger its adsorption for BT and the higher the activation energy required for BT desorp-tion on its surface.The Freundlich adsorption isotherm model can be properly used to formulate the adsorption behavior of BT on the activated carbons.

  18. Microwave-assisted regioselective [1,3]-dipolar cycloaddition of 3-methyl-2-(substitutedbenzylidene)-5-oxopyrazolidin-2-ium-1-ides to benzothiophene 1,1-dioxide

    OpenAIRE

    DÜRÜST, Yaşar; SAĞIRLI, EDA; SAĞIRLI, AKIN

    2015-01-01

    A series of pyrazolidinium ylides was reacted with benzothiophene 1,1-dioxide to afford (3R,5S,5aS,10bS)-3-methyl-5-substitutedphenyl-2,3,5,5a-tetrahydrobenzo[4,5]thieno[3,2-c]pyrazolo[1,2-a]pyrazol-1(10bH)-one 6,6-dioxides under microwave irradiation and their structures were identified by means of spectral/physical characteristics including X-ray diffraction data and HRMS measurements.

  19. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG

    International Nuclear Information System (INIS)

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness

  20. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Lu; Niu, Dongmei, E-mail: mayee@csu.edu.cnmailto; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng [Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012 (China); Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410012 (China); Gao, Yongli [Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012 (China); Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410012 (China); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States)

    2016-01-21

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.

  1. A theoretical study of the electronic structure and charge transport properties of thieno[2,3-b]benzothiophene based derivatives.

    Science.gov (United States)

    Wang, Lijuan; Li, Tao; Shen, Yuxin; Song, Yan

    2016-03-28

    The electronic structure and charge transport properties of thieno[2,3-b]benzothiophene (TBT) and its eight derivatives are investigated via density functional theory (DFT). The impact of different π-bridge spacers (1, the dimer of TBT; 2, vinyl; 3, phenyl; and 4, tetrafluorophenyl) and substituents (5, phenyl; 6, biphenyl; 7, naphthalenyl; and 8, benzothiophenyl) on the geometric structures, reorganization energy, absorption spectra, frontier orbitals, ionization potentials (IPs) and electron affinities (EAs) of all the compounds is explored to establish the relationship between the structure and properties. All the compounds show wide band gaps and low-lying HOMOs, and the IPs of all the TBT derivatives are higher than that of pentacene. The crystal packing interactions, transfer integrals and charge carrier mobilities of compounds 1, 2, 4 and 6 are also calculated. The calculated results demonstrated that these kinds of materials may exhibit good environmental stability and high charge mobility due to their large conjugated planar structure, close π-stacking arrangement, and multiple intermolecular interactions. For compounds 1 and 4, the predicted hole mobility is as high as 0.28 and 0.17 cm(2) V(-1) s(-1), respectively, indicating that both of them benefit hole transport, while compounds 2 and 6 exhibit balanced charge transport properties with the hole and electron mobilities of 0.012 and 0.013 cm(2) V(-1) s(-1), respectively, for compound 2. Compound 6 shows a relatively lower charge mobilities of 10(-3) order of magnitude for both holes and electrons due to the larger reorganization energy and lower transfer integrals. PMID:26931147

  2. Crystal structure of ethyl (2S,2′R-1′-benzyl-3-oxo-3H-dispiro[1-benzothiophene-2,3′-pyrrolidine-2′,11′′-indeno[1,2-b]quinoxaline]-4′-carboxylate

    Directory of Open Access Journals (Sweden)

    J. Govindaraj

    2015-03-01

    Full Text Available In the title compound, C35H27N3O3S, the spiro-linked five-membered rings both adopt twisted conformations. The pyrrolidine ring makes dihedral angles of 80.5 (1 and 77.4 (9° with the benzothiophene ring system and the quinoxaline ring system, respectively. The S atom and C=O unit of the benzothiophene ring system are disordered over two opposite orientations in a 0.768 (4:0.232 (4 ratio. The atoms of the ethyl side chain are disordered over two sets of sites in a 0.680 (16:0.320 (16 ratio. In the crystal, molecules are linked by C—H...O, C—H...N and π–π interactions [shortest centroid–centroid distance = 3.4145 (19 Å], resulting in a three-dimensional network.

  3. Crystal structures of ethyl (2S*,2′R*-1′-methyl-2′′,3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxylate and ethyl (2S*,2′R*-5′′-chloro-1′-methyl-2′′,3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxylate

    Directory of Open Access Journals (Sweden)

    M. P. Savithri

    2014-08-01

    Full Text Available In the title compounds, C22H20N2O4S, (I, and C22H19ClN2O4S, (II, the pyrrolidine rings have twist conformations on the spiro–spiro C—C bonds. In (I, the five-membered ring of the oxindole moiety has an envelope conformation with the spiro C atom as the flap, while in (II this ring is flat (r.m.s. deviation = 0.042 Å. The mean planes of the pyrrolidine rings are inclined to the mean planes of the indole units [r.m.s deviations = 0.073 and 0.069 Å for (I and (II, respectively] and the benzothiophene ring systems (r.m.s. deviations = 0.019 and 0.034 Å for (I and (II, respectively by 79.57 (8 and 88.61 (7° for (I, and by 81.99 (10 and 88.79 (10° for (II. In both compounds, the ethoxycarbonyl group occupies an equatorial position with an extended conformation. The overall conformation of the two molecules differs in the angle of inclination of the indole unit with respect to the benzothiophene ring system, with a dihedral angle between the planes of 71.59 (5 in (I and 82.27 (7° in (II. In the crystal of (I, molecules are linked via pairs of N—H...O hydrogen bonds, forming inversion dimers enclosing R22(14 loops. The dimers are linked via C—H...O and bifurcated C—H...O(O hydrogen bonds, forming sheets lying parallel to (100. In the crystal of (II, molecules are again linked via pairs of N—H...O hydrogen bonds, forming inversion dimers but enclosing smaller R22(8 loops. Here, the dimers are linked by C—H...O hydrogen bonds, forming ribbons propagating along [010].

  4. Electroreduction and electrocatalytic dimerization of halogenated benzothiophenes and benzothiophene-2-oxazolines. Use of sonication, diastereoselectivity of the coupling reaction

    Czech Academy of Sciences Publication Activity Database

    Ludvík, Jiří; Rejňák, M.; Klíma, Jiří; Svoboda, J.

    Freudenstadt Lauterbad, 2005. [Meeting „Electrode Reaction Mechanisms and Interfacial Structure - ERMIS" /8./. 31.3. - 3.4. 2005, Freudenstadt Lauterbad] R&D Projects: GA ČR(CZ) GA202/02/0840; GA AV ČR IAA4040304; GA ČR GA203/02/0983 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * electrolysis * Ni-DPA Subject RIV: CG - Electrochemistry

  5. Activity of CoMo/MSA Catalysts in Benzothiophene Hydrodesulfurization, Cumene Cracking and Cyclohexene is Omerization

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Kaluža, Luděk; Zdražil, Miroslav; Vít, Zdeněk

    2012-01-01

    Roč. 42, SI (2012), s. 45-48. ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA ČR GAP106/11/0902; GA ČR GA104/09/0751 Institutional support: RVO:67985858 Keywords : CoMo catalyst * silica-alumina * hydrodesulfurization Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Activity of CoMo/MSA Catalysts in Benzothiophene Hydrodesulfurization, Cumene Cracking and Cyclohexene Isomerization

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Kaluža, Luděk; Zdražil, Miroslav; Vít, Zdeněk

    Praha : Orgit, 2012, P3.13. ISBN 978-80-905035-1-9. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague (CZ), 25.08.2012-29.08.2012] R&D Projects: GA ČR GAP106/11/0902; GA ČR GA104/09/0751 Institutional support: RVO:67985858 Keywords : catalyst * hds * izomerization Subject RIV: CI - Industrial Chemistry, Chemical Engineering www.chisa.cz/2012

  7. Benzothiophen-pyrazine scaffold as a potential membrane targeting drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Mazuryk, Olga [Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Niemiec, Elżbieta [Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Institute of Organic and Analytical Chemistry, University of Orléans, UMR-CNRS 7311, rue de Chartres, 45067 Orléans Cedex 2 (France); Stochel, Grażyna [Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Gillaizeau, Isabelle, E-mail: isabelle.gillaizeau@univ-orleans.fr [Institute of Organic and Analytical Chemistry, University of Orléans, UMR-CNRS 7311, rue de Chartres, 45067 Orléans Cedex 2 (France); Brindell, Małgorzata, E-mail: brindell@chemia.uj.edu.pl [Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2013-08-15

    The fluorescent properties of 2,5-di(benzo[b]thiophen-2-yl)pyrazine as a potential membrane targeting drug carrier were characterized and it was shown that its fluorescence intensity was much higher in organic solvent than in water. The embedding of studied compound by liposomes leads to ca. 2 orders of magnitude increase in its fluorescence intensity, suggesting its preferential accumulation in membranes. Preliminary biological studies showed its ability to accumulate in cells, and the concentration of 10 μM was sufficient for homogeneous staining of cells. The treatment of mouse carcinoma CT26 cells with studied compound up to 200 μM resulted in decreasing of viable cells by ca. 30%. Its reactivity towards albumin was found to be moderate with an association constant of 6×10{sup 4} M{sup −1}, while no interaction with DNA was observed. Our findings encourage for further studies on functionalization of this molecule to obtain a new class of anticancer drugs targeting membrane. Highlights: ► The fluorescence of 2,5-di(benzo[b]thiophen-2-yl)pyrazine is solvent dependent. ► Weak fluorescence is found in water while high in organic solvents (DMSO, chloroform). ► Embedding of compound in liposomes remarkably increased its fluorescence. ► No interaction with DNA is observed but moderate reactivity towards albumin is found. ► Homogeneous staining of cells is feasible using nontoxic dose of compound.

  8. 2-[(2-Chlorobenzylideneamino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2011-09-01

    Full Text Available In the title compound, C16H13ClN2S, the mean planes fitted through all non-H atoms of the heterocyclic five-membered and the benzene rings are oriented at a dihedral angle of 5.19 (7°. In the crystal, a weak C—H...π interaction occurs, along with weak π–π interactions [cenroid–centroid distance = 3.7698 (11 Å].

  9. Synthesis and Electrochemical Reduction of Methyl 3-halo-1-benzothiophene-2-carboxylates

    Czech Academy of Sciences Publication Activity Database

    Rejňák, M.; Klíma, Jiří; Svoboda, J.; Ludvík, Jiří

    2004-01-01

    Roč. 69, č. 1 (2004), s. 242-260. ISSN 0010-0765 R&D Projects: GA ČR GA202/02/0840; GA AV ČR IAA4040304 Institutional research plan: CEZ:AV0Z4040901 Keywords : halobenzothiophenes * voltammetry * biaryls Subject RIV: CG - Electrochemistry Impact factor: 1.062, year: 2004

  10. 2-Amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile.

    Science.gov (United States)

    Khan, Ashraf Y; Fathima, Nikhath; Kalashetti, Mallikarjun B; Begum, Noor Shahina; Khazi, I M

    2012-10-01

    In the title compound, C(10)H(12)N(2)S, the thio-phene ring is essentially planar (r.m.s. deviation = 0.0290 Å). The two C atoms of the cyclo-hexene ring (at positions 6 and 7) are disordered over two sets of sites in a 0.810 (5):0.190 (5) ratio. The cyclo-hexene rings in both the major and minor occupancy conformers adopt a half-chair conformation. In the crystal, there are two types of N-H⋯N inter-action. One of these results in centrosymmetric head-to-head dimers corresponding to an R(2) (2)(12) graph-set motif and the other forms a 20-membered macrocyclic ring involving six mol-ecules. PMID:23125792

  11. 2-Amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile

    Directory of Open Access Journals (Sweden)

    Ashraf Y. Khan

    2012-10-01

    Full Text Available In the title compound, C10H12N2S, the thiophene ring is essentially planar (r.m.s. deviation = 0.0290 Å. The two C atoms of the cyclohexene ring (at positions 6 and 7 are disordered over two sets of sites in a 0.810 (5:0.190 (5 ratio. The cyclohexene rings in both the major and minor occupancy conformers adopt a half-chair conformation. In the crystal, there are two types of N—H...N interaction. One of these results in centrosymmetric head-to-head dimers corresponding to an R22(12 graph-set motif and the other forms a 20-membered macrocyclic ring involving six molecules.

  12. Crystal structure of N-(3-benzoyl-4,5,6,7-tetrahydro-1-benzothiophen-2-ylbenzamide

    Directory of Open Access Journals (Sweden)

    Manpreet Kaur

    2014-09-01

    Full Text Available In the title compound, C22H19NO2S, the cyclohexene ring adopts a half-chair conformation. The dihedral angles between the plane of the thiophene ring and those of its amide- and carbonyl-bonded benzene rings are 7.1 (1 and 59.0 (2°, respectively. An intramolecular N—H...O hydrogen bond generates an S(6 ring. In the crystal, very weak aromatic π–π stacking interactions [centroid–centroid separation = 3.9009 (10 Å] are observed.

  13. Identification of homologous series of alkylated thiophenes, thiolanes, thianes and benzothiophenes present in pyrolysates of sulphur-rich kerogens

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kock-van Dalen, A.C.; Leeuw, J.W. de; Schenck, P.A.

    1988-01-01

    The ability of flash pyrolysis-gas chromatography with dual flame ionization and flame photometric detection, and flash pyrolysis-gas chromatography-mass spectrometry, to afford detailed information about the organic sulphur pyrolysis products of kerogens is exemplified through analysis of five diff

  14. Activity and Synergetic Effects of Mo Sulfide Catalysts Promoted by Pd, Rh, Pt and Ru in HDS of Benzothiophene.

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Vít, Zdeněk; Kaluža, Luděk; Zdražil, Miroslav

    - : Norhaven Book, 2007 - (Gani, R.; Dam-Johansen, K.), s. 741-742 ISBN 978-87-91435-56-0. [European Congress of Chemical Engineering ECCE-6. Copenhagen (DK), 16.09.2007-20.09.2007] R&D Projects: GA ČR(CZ) GA104/06/0870; GA ČR(CZ) GP104/06/P034 Institutional research plan: CEZ:AV0Z40720504 Keywords : noble metal sulfides * hydrodesulfurization * benzotiophene Subject RIV: CF - Physical ; Theoretical Chemistry

  15. 2-Amino-6-methyl-4,5,6,7-tetra-hydro-1-benzothio-phene-3-carbonitrile.

    Science.gov (United States)

    Ziaulla, Mohamed; Banu, Afshan; Begum, Noor Shahina; Panchamukhi, Shridhar I; Khazi, I M

    2011-01-01

    In the title compound, C(10)H(12)N(2)S, one of the C atoms of the cyclo-hexene ring (at position 6) and the methyl group attached to it are disordered over two sets of sites in a 0.650 (3):0.350 (3) ratio. The cyclo-hexene ring in both the major and minor occupancy conformers adopts a half-chair conformation. The thio-phene ring is essentially planar (r.m.s. deviation = 0.05 Å). In the crystal, N-H⋯N hydrogen bonds involving the amino groups result in inversion dimers with R(2) (2)(12) graph-set motif. Further N-H⋯N hydrogen bonds involving the amino and carbonitrile groups generate zigzag chains along the a axis. PMID:21522444

  16. Crystal structure of 1,3-bis(4-hexyl-5-iodothiophen-2-yl-4,5,6,7-tetrahydro-2-benzothiophene

    Directory of Open Access Journals (Sweden)

    Julian Linshoeft

    2014-10-01

    Full Text Available In the crystal structure of the title compound, C28H36I2S3, a terthiophene monomer, the central thiophene unit is arranged anti-coplanar to the two outer thiophene rings. There are two crystallographically independent molecules in the asymmetric unit, which show different conformations. In one molecule, the dihedral angles between the inner and the two outer thiophene rings are 15.7 (3 and 3.47 (3°, whereas these values are 4.2 (3 and 11.3 (3° for the second molecule. Differences are also found in the arrangement of the hexyl chains: in one of the two molecules, both chains are nearly in plane to the central moiety, whereas in the second molecule, only one chain is in plane and the other one is nearly perpendicular to the central moiety. Some of the C atoms are disordered and were refined using a split model with occupancy ratios of 0.65:0.35 and 0.70:0.30 in the two molecules.

  17. 3′,6′-Bis(diethylamino-3H-spiro[2-benzothiophene-1,9′-xanthene]-3-thione

    Directory of Open Access Journals (Sweden)

    Bing-Yuan Su

    2008-11-01

    Full Text Available The title compound, C28H30N2OS2, was obtained by thionation of 3′,6′-bis(diethylamino-3H-spiro[isobenzofuran-1,9′-xanthene]-3-one with 2,4-bis(p-methoxyphenyl-1,3-dithiadiphosphetane disulfide (Lawesson's reagent. The planes of the two benzene rings of the xanthene system are inclined at a dihedral angle of 17.4 (1°, and the plane of the dithiophthalide group and the planes through the two benzene rings of the xanthene system make dihedral angles of 80.2 (1 and 82.8 (1°, respectively.

  18. Enantiomerically pure (1S,5R) and racemic 3-(1-benzothiophen-2-yl)-8-azoniabicyclo 3.2.1 oct-2-ene acetate

    DEFF Research Database (Denmark)

    Frostrup, B.; Peters, D.; Bond, A. D.

    2012-01-01

    The title compound, C15H16NS+center dot C2H3O2-, has been crystallized as both a pure enantiomer (1S,5R) and a racemate. The racemate crystallizes in the space group Cc, with molecules of opposite handedness related to each other by the action of the c-glide. The enantiomer is essentially isostru...

  19. Identification of ion series using ion mobility mass spectrometry: the example of alkyl-benzothiophene and alkyl-dibenzothiophene ions in diesel fuels.

    Science.gov (United States)

    Maire, Florian; Neeson, Kieran; Denny, Richard; McCullagh, Michael; Lange, Catherine; Afonso, Carlos; Giusti, Pierre

    2013-06-01

    Ion mobility-mass spectrometry (IMMS) has been presented as a promising method for analysis of highly complex mixtures. This coupling adds an additional postionization separation dimension to MS. The IM separation of ions is obtained in the millisecond time scale and can be particularly helpful when chromatographic separation is not possible. For obtaining relevant information about the samples, data processing is usually the bottleneck because of the high amount of data generated with IMMS. In the current work, we present a new workflow using specific comparison software dedicated to IMMS data, which allows one to compare m/z-drift time plots to highlight differences between samples. Two diesel fuels have been compared, i.e., the feed and the product of hydrodesulfurization (HDS) process, and this approach allowed us to clearly highlight the variation of intensity of several ions distributed along the plots of both samples. Accurate mass measurements and post IM collision induced dissociation experiments allowed us to identify two series of polycyclic aromatic sulfur-containing heterocycle (PASH) compounds among the matrix ions. PMID:23638962

  20. Catalytic Oxidation of Benzothiophene and Dibenzothiophene in Model Light Oil Over Ti-MWW%Ti-MWW催化氧化脱除轻油中苯并噻吩和二苯并噻吩

    Institute of Scientific and Technical Information of China (English)

    程时富; 刘月明; 高金宝; 汪玲玲; 刘秀丽; 高国华; 吴鹏; 何鸣元

    2006-01-01

    以Ti-MWW为催化剂,研究了轻油中的有机硫模型化合物苯并噻吩和二苯并噻吩的氧化脱除.结果表明,在343 K和乙腈为溶剂的条件下,苯并噻吩的转化率可达100%, 二苯并噻吩的转化率可达95%以上.溶剂对苯并噻吩的氧化有很大影响,在相同的反应条件下,三种溶剂中苯并噻吩的转化率为乙腈>甲醇>水.讨论了Ti-MWW催化氧化苯并噻吩的反应历程和溶剂效应.

  1. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B--Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-07-01

    Present study focused on the biodegradation of various heterocyclic nitrogen, sulfur, and oxygen (NSO) compounds using naphthalene-enriched culture. Target compounds in the study were pyridine, quinoline, benzothiophene, and benzofuran. Screening studies were carried out using different microbial consortia enriched with specific polycyclic aromatic hydrocarbon (PAH) and NSO compounds. Among different microbial consortia, naphthalene-enriched culture was the most efficient consortium based on high substrate degradation rate. Substrate degradation rate with naphthalene-enriched culture followed the order pyridine > quinoline > benzofuran > benzothiophene. Benzothiophene and benzofuran were found to be highly recalcitrant pollutants. Benzothiophene could not be biodegraded when concentration was above 50 mg/l. It was observed that 2-(1H)-quinolinone, benzothiophene-2-one, and benzofuran-2,3-dione were formed as metabolic intermediates during biodegradation of quinoline, benzothiophene, and benzofuran, respectively. Quinoline-N and pyridine-N were transformed into free ammonium ions during the biodegradation process. Biodegradation pathways for various NSO compounds are proposed. Monod inhibition model was able to simulate single substrate biodegradation kinetics satisfactorily. Benzothiophene and benzofuran biodegradation kinetics, in presence of acetone, was simulated using a generalized multi-substrate model. PMID:26054616

  2. FXR agonist activity of conformationally constrained analogs of GW 4064

    Energy Technology Data Exchange (ETDEWEB)

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Navas, III, Frank; Parks, Derek J.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce; (GSKNC)

    2010-09-27

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  3. Synthesis and antimicrobial activity of some novel thienopyrimidines and triazolothienopyrimidines

    Indian Academy of Sciences (India)

    Nitinkumar S Shetty; Ravi S Lamani; Imtiyaz Ahmed M Khazi

    2009-05-01

    Novel tricyclic thienopyrimidines (3, 5, 6, 9, 11, 12) and triazole fused tetracyclic thienopyrimidines (4a-c, 10a-c) were synthesized from precursors 2-amino-6-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile 1 and 2-amino-7-oxo-4,5,6,7-tetrahydro-1-benzothio-phene-3-carbonitrile 7 respectively. The corresponding precursors were prepared by employing the Gewald reaction. The structures of newly synthesized compounds were characterized by spectral and analytical data. All the compounds were screened for their biological activities. Some of the compounds displayed promising antibacterial and antifungal activities.

  4. Aerobic microbial metabolism of condensed thiophenes found in petroleum

    International Nuclear Information System (INIS)

    The aerobic microbial degradation of 21 condensed thiophenes found in petroleum or synthetic fuels have been studied, motivated by recent research which showed that resistance to biodegradation increases with increasing methyl-substitution. The specific objective was to identify metabolites in pure cultures of aromatic hydrocarbon-degrading Pseudomonas spp. incubated in mineral medium in the presence of an aromatic growth substrate and a condensed thiophene. Over 80 metabolites of the condensed thiophenes were identified using gas chromatography analysis with an atomic emission detector. Among the metabolites identified were sulfoxides, sulfones, hydroxy- and carboxyl-substituted benzothiophenes, hydroxy-substituted dibenzothiophenes, substituted benzothiophene-2,3-diones, and 3-hydroxy-2-formylbenzothiophenes

  5. High-activity MgO-supported CoMo Hydrodesulfurization Catalysts Prepared by Non-aqueous Impregnation

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Gulková, Daniela; Vít, Zdeněk; Zdražil, Miroslav

    2015-01-01

    Roč. 162, JAN 2015 (2015), s. 430-436. ISSN 0926-3373 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : CoMo/MgO * benzothiophene hydrodesulfurization * non-aqueous impregnation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.435, year: 2014

  6. Phase equilibria study of binary systems comprising an (ionic liquid + hydrocarbon)

    International Nuclear Information System (INIS)

    Highlights: • The (solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) study. • {[PMPyr][CF3SO3] + heptane, or benzene, or thiophene, or benzothiophene}. • {[BCN4Py][TCM] + heptane, or toluene, or 2-methylthiophene, or benzothiophene}. • Thermodynamic NRTL modelling. • Separation of sulfur compounds from alkanes and aromatics from aliphatics. - Abstract: In this study, the interaction of two ionic liquids with hydrocarbons has been investigated. With this aim, (solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) for binary systems of {1-methyl-1-propyl-pyrrolidinium triflate [PMPyr][CF3SO3] + heptane, or benzene, or thiophene, or benzothiophene} and {N-butyl-4-cyanopyridinium tricyanomethanide [BCN4Py][TCM] + heptane, or toluene, or 2-methylthiophene, or benzothiophene} were measured at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (T = 270 to 370) K. An upper critical solution temperature (UCST) was detected for all mutually immiscible systems. The immiscibility gap for [BCN4Py][TCM] in benzene and thiophene is larger than those for [PMPyr][CF3SO3]. Conversely, in heptane it is slightly larger for [PMPyr][CF3SO3]. The basic thermal properties of the pure ILs, i.e. melting and glass-transition temperatures as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). The well-known NRTL model has been used to correlate the experimental SLE data points

  7. The Increased Promotion in Cobalt-Molybdenum Hydrodesulfurization Catalysts Supported on Alumina, Activated Carbon and Zirkonia by the Chelating Agent Nitrilotriacetic Acid

    OpenAIRE

    Kaluža, Luděk

    2013-01-01

    The most active CoMo/Al2O3, C and ZrO2 catalysts in benzothiophene HDS were prepared by the impregnation of the support from the solution made by dissolution of MoO3, CoCO3 and nitrilotriacetic acid in water followed by sulfidation without previous calcination.

  8. Design, synthesis and antitrypanosomal activities of 2,6-disubstituted-4,5,7-trifluorobenzothiophenes

    Czech Academy of Sciences Publication Activity Database

    Bhambra, A.S.; Edgar, M.; Elsegood, M.R.J.; Li, Y.; Weaver, G.W.; Arroo, R.R.J.; Yardley, V.; Burrell-Saward, H.; Kryštof, Vladimír

    2016-01-01

    Roč. 108, JAN 27 (2016), s. 347-353. ISSN 0223-5234 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Benzothiophenes * Fluorinated drugs * Antitrypanosomal activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.447, year: 2014

  9. Oxidation Reactivities of Organic Sulfur Compounds in Fuel Oil Using Immobilized Heteropoly Acid as Crystal

    Institute of Scientific and Technical Information of China (English)

    YAN Xuemin; LEI Jiaheng; LIU Dan; GUO Liping; WU Yangchun

    2007-01-01

    Heteropoly acid of Keggin structure phosphotungstic(HPW) and phosphomolybdic(HPMo) were chemically anchored to the modified SBA-15 channel. The materials were used as catalyst for oxidative desulfurization of organic sulfur compounds including benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethydibenzothiophene (4,6-DMDBT). The experimental results show that the catalysts are efficient and reusable, the catalytic activity is hardly reduced even in the 5th cycle of use.

  10. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2014-01-01

    Full Text Available Various novel Schiff base compounds have been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with substituted benzothiophene-2-carboxylic acid hydrazide and different substituted aromatic or heterocyclic amines in the presence of acetic acid in ethanol. The structures of all these compounds were confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR, and mass spectral data and have been screened for antibacterial and antifungal activity.

  11. Effect of aromatics on the adsorption of thiophenic sulfur compounds from model diesel fuel by activated carbon cloth

    OpenAIRE

    NAVIRI FALLAH, Rahimeh; Azizian, Saeid; REGGERS, Guy; Carleer, Robert; Schreurs, Sonja; Ahenach, Janat; Meynen, Vera; Yperman, Jan

    2014-01-01

    The effects of aromatic compound presence in real diesel fuel on the adsorption of sulfur species onto activated carbon cloth (ACC) were investigated. Equilibrium and kinetics adsorption of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) in the presence of naphthalene (NP) and 1-methylnaphthalene (1-MNP) from prepared model diesel fuels onto ACC and its oxidized forms were studied. The total sulfur concentration inmodel diesel fuelwas 300 ppmw. The initial...

  12. CoMo/ZrO2 Hydrodesulfurization Catalysts Prepared by Chelating Agent Assisted Spreading

    OpenAIRE

    Kaluža, L. (Luděk); Gulková, D. (Daniela); Vít, Z. (Zdeněk); Zdražil, M. (Miroslav)

    2012-01-01

    The novel Mo/ZrO2 and CoMo/ZrO2 catalysts were prepared by impregnation of the monoclinic ZrO2 by the chelating agent nitrilotriacetic acid (NTA) assisted spreading of MoO3 with CoCO3 xH2O and compared with samples prepared conventionally. The application of NTA during the catalysts preparation systematically increased the activity in benzothiophene HDS by the factor 1.2–1.7.

  13. Solvent extraction of aromatic sulfur compounds from n-heptane using the 1-ethyl-3-methylimidazolium tricyanomethanide ionic liquid

    International Nuclear Information System (INIS)

    Highlights: • LLE data for (EMIMTCM + thiophene/benzothiophene + n-heptane) were determined. • High S and β for the extraction of thiophene/benzothiophene from n-heptane was found. • Results of S and β were compared with available literature. • The NRTL model satisfactorily correlates the LLE data. -- Abstract: The ionic liquid 1-ethyl-3-methylimidazolium tricyanomethanide ([EMIM][TCM]) has been tested as a solvent for the separation of sulfur compounds from aliphatic hydrocarbon. Liquid–liquid phase equilibrium data have been determined for ternary systems containing the ionic liquid, thiophene or benzothiophene and n-heptane. The influence of temperature on the separation of thiophene from n-heptane was determined. High solubility of sulfur compounds and practical immiscibility of aliphatic hydrocarbon in ionic liquid have been found. The values of selectivity and solute distribution ratios have been calculated for all systems and compared with literature data for other 1-ethyl-3-methylimidazolium-based ionic liquids. High values of selectivity were obtained. The experimental data were correlated using the NRTL equation, and the binary interaction parameters have been reported. The phase equilibria diagrams for the ternary mixtures including the experimental and calculated tie-lines have been presented

  14. Discovery of a new series of potent and selective linear tachykinin NK2 receptor antagonists.

    Science.gov (United States)

    Fedi, Valentina; Altamura, Maria; Catalioto, Rose-Marie; Giannotti, Danilo; Giolitti, Alessandro; Giuliani, Sandro; Guidi, Antonio; Harmat, Nicholas J S; Lecci, Alessandro; Meini, Stefania; Nannicini, Rossano; Pasqui, Franco; Tramontana, Manuela; Triolo, Antonio; Maggi, Carlo Alberto

    2007-10-01

    Starting from 1 (MEN14268), a selective tachykinin NK2 receptor antagonist with an interesting in vitro pharmacological profile, a family of numerous antagonists was obtained through an optimization process focused on iterated structural modifications. The effects of the introduction of a wide variety of substituents on the lipophilic aromatic part of the molecule and the modulation of the structural constraint through the insertion of different achiral alpha,alpha-dialkylamino acids were investigated. In particular, aromatic and benzofused heteroaromatic moieties were introduced at the pseudo-N-terminal residue to replace the 2-benzothiophene moiety, and a systematic investigation of the best positioning of substituents onto the aromatic platform was reported for the benzothiophene core. Studies on the modulation of the length and the rigidity of the hydrophilic pseudo-C-terminal pendant are presented. Many heteroaliphatic groups are well tolerated by the receptor in this part of the ligand. The product 48f (MEN15596), bearing a methyl substituent on the benzothiophene and a tetrahydropyranylmethylpiperidine pendant, was finally selected for its good in vivo activity after intravenous, intraduodenal, and oral administration in guinea pigs. PMID:17850056

  15. Petroleum and diesel sulfur degradation under gamma radiation

    International Nuclear Information System (INIS)

    Hydrodesulfurization (HDS) is currently the most common method used by refineries to remove sulfur compounds from petroleum fractions. However, it is not highly effective for removing thiophene compounds such as benzothiophene. Additionally, this process generates high costs for the oil industry. In the present work, ionizing radiation was used in order to study the effect on the degradation of petroleum and diesel sulfur compounds. Crude oil and diesel fuel samples were studied, without any pretreatment, and irradiated using a cobalt-60 gamma cell in a batch system at absorbed doses of 30 kGy and 50 kGy. The sulfur compounds were extracted and then analyzed by gas chromatography associated with mass spectrometry (GCMS). A high efficiency of ionizing radiation was observed regarding the degradation of sulfur compounds such as benzothiophene and benzenethiol and the formation of fragments, for example 1.2-dimethylbenzene and toluene. - Highlights: • Sulfur compound degradation in petroleum and diesel by ionizing radiation. • Radiation interaction with benzothiophene. • Organic sulfur compounds analysis by GC–MS

  16. Extraction desulfurization process of fuels with ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • Extraction of thiophene and benzothiophene from heptane. • The ternary (liquid + liquid) equilibria using ILs. • High selectivity and solute distribution ratio for the extraction of sulfur compounds form alkanes. • [BMPYR][TCM] was proposed as entrainer for the separation process. - Abstract: In this work, we studied the applicability of three ionic liquids (ILs) in the extraction of thiophene, or benzothiophene from heptane at T = 308.15 K and ambient pressure. Experimental data for (liquid + liquid) phase equilibrium (LLE) were obtained for five ternary systems. The 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, [BMPYR][CF3SO3], 1-butyl-1-methylpyrrolidinium tricyanomethanide, [BMPYR][TCM] and 1-hexyl-3-methylimidazolium tetracyanoborate, [HMIM][TCB] were used for the desulfurization process. The [BMPYR][CF3SO3] showed much better selectivity than [HMIM][TCB] in the extraction of thiophene from heptane and all of them showed excellent results in terms of benzothiophene selectivity and distribution ratio compared to what is currently published for different ILs. Chromatography analysis showed that IL was not present in the heptane layer. This eliminates the process of the separation of the solvent from the raffinate layer. The data obtained have been correlated with the non-random two liquid NRTL model. The experimental tie-lines and the phase composition in mole fraction in the ternary systems were calculated with an average root mean square deviation (RMSD) of 0.005

  17. Nitrosation, nitration, and autoxidation of the selective estrogen receptor modulator raloxifene by nitric oxide, peroxynitrite, and reactive nitrogen/oxygen species.

    Science.gov (United States)

    Toader, Violeta; Xu, Xudong; Nicolescu, Adrian; Yu, Linning; Bolton, Judy L; Thatcher, Gregory R J

    2003-10-01

    The regulation of estrogenic and antiestrogenic effects by selective estrogen receptor modulators (SERMs) provides the basis for use in long-term therapy in cancer chemoprevention and postmenopausal osteoporosis. However, the evidence for carcinogenic properties within this class requires study of potential pathways of toxicity. There is strong evidence for the elevation of cellular levels of NO in tissue treated with SERMs, including the benzothiophene derivative, raloxifene, in part via up-regulation of nitric oxide synthases. Therefore, the reactions of 17beta-estradiol (E(2)), raloxifene, and an isomer with NO, peroxynitrite, and reactive nitrogen/oxygen species (RNOS) generated from NO(2)(-)/H(2)O(2) systems were examined. Peroxynitrite from bolus injection or slow release from higher concentrations of 3-morpholinosydnonimine (SIN-1) reacted with the benzothiophenes and E(2) to give aromatic ring nitration, whereas peroxynitrite, produced from the slow decomposition of lower concentrations of SIN-1, was relatively unreactive toward E(2) and yielded oxidation and nitrosation products with raloxifene and its isomer. The oxidation and nitrosation products formed were characterized as a dimer and quinone oxime derivative. Interestingly, the reaction of the benzothiophenes with NO in aerobic solution efficiently generated the same oxidation products. Stable quinone oximes are not unprecedented but have not been previously reported as products of RNOS-mediated metabolism. The reaction of glutathione (GSH) with the quinone oxime gave both GSH adducts from Michael addition and reduction to the corresponding o-aminophenol. The ready autoxidation of raloxifene, observed in the presence of NO, is the first such observation on the reactivity of SERMs and is potentially a general phenomenon of significance to SERM chemical toxicology. PMID:14565768

  18. Selective estrogen receptor modulator BC-1 activates antioxidant signaling pathway in vitro via formation of reactive metabolites

    Institute of Scientific and Technical Information of China (English)

    Bo-lan YU; Zi-xin MAI; Xu-xiang LIU; Zhao-feng HUANG

    2013-01-01

    Aim:Benzothiophene compounds are selective estrogen receptor modulators (SERMs),which are recently found to activate antioxidant signaling.In this study the molecular mechanisms of antioxidant signaling activation by benzothiophene compound BC-1 were investigated.Methods:HepG2 cells were stably transfected with antioxidant response element (ARE)-Iuciferase reporter (HepG2-ARE cells).The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in HepG2-ARE cells was suppressed using siRNA.The metabolites of BC-1 in rat liver microsome incubation were analyzed using LC-UV and LC-MS.Results:Addition of BC-1 (5 μmol/L) in HepG2-ARE cells resulted in a 17-fold increase of ARE-luciferase activity.Pretreatment with the estrogen receptor agonist E2 (5 μmol/L) or antagonist ICl 182,780 (5 μmol/L) did not affect BC-1-induced ARE-luciferase activity.However,transfection of the cells with anti-Nrf2 siRNA suppressed this effect by 79%.Addition of BC-1 in rat microsome incubation resulted in formation of di-quinone methides and o-quinones,followed by formation of GSH conjugates.BC-1 analogues with hydrogen (BC-2) or fluorine (BC-3) at the 4' position did not form the di-quinone methides.Both BC-2 and BC-3 showed comparable estrogenic activity with BC-1,but did not induce ARE-luciferase activity in HepG2-ARE cells.Conclusion:Benzothiophene compound BC-1 activates ARE signaling via reactive metabolite formation that is independent of estrogen receptors.

  19. Effect of the alkyl side chain of the 1-alkylpiperidinium-based ionic liquids on desulfurization of fuels

    International Nuclear Information System (INIS)

    Highlights: • Extraction of thiophene and benzothiophene from heptane. • The ternary (liquid + liquid) equilibria using alkyl-piperidinium-based ILs. • High selectivity and solute distribution ratio for the extraction of sulphur compounds form alkanes. • [PMPIP][NTf2] was proposed as entrainer for the separation process. - Abstract: In this work the desulfurization ability of three alkyl-piperidinium-based ionic liquids (PIPILs) from heptane, which is used as a model of gasoline and diesel oils, has been developed. With this aim, ternary (liquid + liquid) phase equilibrium data (LLE) have been obtained for mixtures of {PIPIL (1) + thiophene (2) + heptane (3)} at T = 298.15 K and ambient pressure and for the best thiophene entrainer {[PMPIP][NTf2] (1) + benzothiophene (2) + heptane (3)} at T = 308.15 K and ambient pressure. Three PIPILs have been studied: 1-propyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide [PMPIP][NTf2], 1-butyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide [BMPIP][NTf2] and 1-hexyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide, [HMPIP][NTf2]. The suitability of PIPILs used as solvents for extractive desulfurization has been evaluated in terms of solute distribution ratio and selectivity. Immiscibility was observed in the binary liquid systems of (thiophene, or benzothiophene + heptane) with all PIPILs used. One of proposed PIPILs, [PMPIP][NTf2] shows high selectivities and high distribution ratios for extraction of sulfur compounds. The data obtained have been correlated with the non-random two liquid NRTL model. The experimental tie-lines and the phase composition in mole fraction in the ternary systems were calculated with an average root mean square deviation (RMSD) of 0.0037

  20. A chemical probe for the estrogen receptor: synthesis of the {sup 3}H-isotopomer of raloxifene

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, J.A.; Stocksdale, M.G.; Jones, C.D. [Lilly (Eli) and Co., Indianapolis, IN (United States). Lilly Research Labs.

    1995-01-01

    Radiolabelled raloxifene (LY 156758) has been prepared by tritium gas hydrogenolysis of a 3-aroyl-bis-brominated precursor. The requisite halogenated intermediate was accessed by regioselective aroylation of benzothiophene with the acid chloride of 3,5-dibromo-4-[2-(1-piperdinyl)ethoxy]benzoic acid. Selective deprotection of the aryl methyl ethers in the presence of the ethoxy side-chain followed by palladium catalyzed halogen-tritium exchange provided the target compound with a specific activity of 30.1 Ci/mmol. (author).

  1. A chemical probe for the estrogen receptor: synthesis of the 3H-isotopomer of raloxifene

    International Nuclear Information System (INIS)

    Radiolabelled raloxifene (LY 156758) has been prepared by tritium gas hydrogenolysis of a 3-aroyl-bis-brominated precursor. The requisite halogenated intermediate was accessed by regioselective aroylation of benzothiophene with the acid chloride of 3,5-dibromo-4-[2-(1-piperdinyl)ethoxy]benzoic acid. Selective deprotection of the aryl methyl ethers in the presence of the ethoxy side-chain followed by palladium catalyzed halogen-tritium exchange provided the target compound with a specific activity of 30.1 Ci/mmol. (author)

  2. Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization.

    Science.gov (United States)

    Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2014-01-01

    Acidic ionic-liquids (IL) supported on metal-organic frameworks (MOFs) have been shown to be beneficial for adsorptive desulfurization. A remarkable improvement in the adsorption capacity (ca. 71%) was observed in for ILs supported on MIL-101 compared with virgin MIL-101. The improved adsorptive performance might be explained by the acid-base interactions between the acidic ionic liquid and basic benzothiophene (BT). Moreover, from this study, it can be suggested that porous MOFs, supported with ionic liquids, may introduce a new class of highly porous adsorbents for the efficient adsorption of various compounds. PMID:24390909

  3. Activity of Transition Metal Sulfides Supported on Al2O3,

    OpenAIRE

    Kaluža, L. (Luděk)

    2015-01-01

    Sulfided conventional transition metals Co, Ni, Mo, and W and noble metals Rh, Pd, Ir, Pt, and Re deposited over conventional support c-Al2O3 (SBET = 262 m2g-1), and unconventional supports TiO2 (anatase, SBET = 140 m2- g-1) and ZrO2 (baddeleyite, SBET = 108 m2g-1) were studied in the parallel hydrodesulfurization of 1-benzothiophene (HDS) and hydrogenation of 1-methylcyclohex- 1-ene (o-HYD) at 360 Cand 1.6 MPa. Mo, W, Co, and Ni sulfided catalysts exhibited relatively low activity in bot...

  4. Synthesis and anti-tubercular activity of 3-substituted benzo[b]thiophene-1,1-dioxides

    Directory of Open Access Journals (Sweden)

    N. Susantha Chandrasekera

    2014-10-01

    Full Text Available We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure–activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM. Oxadiazoles had good anti-tubercular activity (MICs of 3–8 µM, but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1–5 µM. We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.

  5. Crystal structures of (Z)-5-[2-(benzo[b]thio-phen-2-yl)-1-(3,5-di-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole and (Z)-5-[2-(benzo[b]thio-phen-3-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole.

    Science.gov (United States)

    Penthala, Narsimha Reddy; Yadlapalli, Jaishankar K B; Parkin, Sean; Crooks, Peter A

    2016-05-01

    (Z)-5-[2-(Benzo[b]thio-phen-2-yl)-1-(3,5-di-meth-oxy-phen-yl)ethen-yl]-1H-tetrazole methanol monosolvate, C19H16N4O2S·CH3OH, (I), was prepared by the reaction of (Z)-3-(benzo[b]thio-phen-2-yl)-2-(3,5-di-meth-oxy-phen-yl)acrylo-nitrile with tri-butyl-tin azide via a [3 + 2]cyclo-addition azide condensation reaction. The structurally related compound (Z)-5-[2-(benzo[b]thio-phen-3-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole, C20H18N4O3S, (II), was prepared by the reaction of (Z)-3-(benzo[b]thio-phen-3-yl)-2-(3,4,5-tri-meth-oxy-phen-yl)acrylo-nitrile with tri-butyl-tin azide. Crystals of (I) have two mol-ecules in the asymmetric unit (Z' = 2), whereas crystals of (II) have Z' = 1. The benzo-thio-phene rings in (I) and (II) are almost planar, with r.m.s deviations from the mean plane of 0.0084 and 0.0037 Å in (I) and 0.0084 Å in (II). The tetra-zole rings of (I) and (II) make dihedral angles with the mean planes of the benzo-thio-phene rings of 88.81 (13) and 88.92 (13)° in (I), and 60.94 (6)° in (II). The di-meth-oxy-phenyl and tri-meth-oxy-phenyl rings make dihedral angles with the benzo-thio-phene rings of 23.91 (8) and 24.99 (8)° in (I) and 84.47 (3)° in (II). In both structures, mol-ecules are linked into hydrogen-bonded chains. In (I), these chains involve both tetra-zole and methanol, and are parallel to the b axis. In (II), mol-ecules are linked into chains parallel to the a axis by N-H⋯N hydrogen bonds between adjacent tetra-zole rings. PMID:27308011

  6. A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

    Energy Technology Data Exchange (ETDEWEB)

    John G. Verkade

    2001-11-01

    Column chromatographic separation of the S=PBu{sub 3}/PBu{sub 3} product mixture followed by weighing the S=PBu{sub 3}, and by vacuum distillation of S=PBu{sub 3}/PBu{sub 3}mixture followed by gas chromatographic analysis are described. Effects of coal mesh size, pre-treatment with methanol Coal (S) + excess PR{sub 3} {yields} Coal + S=PR{sub 3}/PBu{sub 3} and sonication on sulfur removal by PBu{sub 3} revealed that particle size was not observed to affect desulfurization efficiency in a consistent manner. Coal pretreatment with methanol to induce swelling or the addition of a filter aid such as Celite reduced desulfurization efficiency of the PBu{sub 3} and sonication was no more effective than heating. A rationale is put forth for the lack of efficacy of methanol pretreatment of the coal in desulfurization runs with PBu{sub 3}. Coal desulfurization with PBu{sub 3} was not improved in the presence of miniscule beads of molten lithium or sodium as a desulfurizing reagent for SPBu{sub 3} in a strategy aimed at regenerating PBu{sub 3} inside coal pores. Although desulfurization of coals did occur in sodium solutions in liquid ammonia, substantial loss of coal mass was also observed. Of particular concern is the mass balance in the above reaction, a problem which is described in some detail. In an effort to solve this difficulty, a specially designed apparatus is described which we believe can solve this problem reasonably effectively. Elemental sodium was found to remove sulfur quantitatively from a variety of polycyclic organosulfur compounds including dibenzothiophene and benzothiophene under relatively mild conditions (150 C) in a hydrocarbon solvent without requiring the addition of a hydrogen donor. Lithium facilitates the same reaction at a higher temperature (254 C). Mechanistic pathways are proposed for these transformations. Curiously, dibenzothiophene and its corresponding sulfone was virtually quantitatively desulfurized in sodium solutions in liquid

  7. Interplay of ortho- with spiro-cyclisation during iminyl radical closures onto arenes and heteroarenes

    Directory of Open Access Journals (Sweden)

    Roy T. McBurney

    2013-06-01

    Full Text Available Sensitised photolyses of ethoxycarbonyl oximes of aromatic and heteroaromatic ketones yielded iminyl radicals, which were characterised by EPR spectroscopy. Iminyls with suitably placed arene or heteroarene acceptors underwent cyclisations yielding phenanthridine-type products from ortho-additions. For benzofuran and benzothiophene acceptors, spiro-cyclisation predominated at low temperatures, but thermodynamic control ensured ortho-products, benzofuro- or benzothieno-isoquinolines, formed at higher temperatures. Estimates by steady-state kinetic EPR established that iminyl radical cyclisations onto aromatics took place about an order of magnitude more slowly than prototypical C-centred radicals. The cyclisation energetics were investigated by DFT computations, which gave insights into factors influencing the two cyclisation modes.

  8. Application of liquid-phase microextraction for the determination of sulfur compounds in crude oil and diesel.

    Science.gov (United States)

    Al-Zahrani, Ibrahim; Basheer, Chanbasha; Htun, Than

    2014-02-21

    A liquid-phase microextraction (LPME) method was for the first time developed for the determination of sulfur compounds in Arabian crude oil and diesel. A wide range of sulfur compounds, which included benzothiophene, dibenzothiophene and their derivatives, was used for model compounds. The analyses were performed by a gas chromatography equipped with a sulfur chemiluminescence detector (GC-SCD). Under optimum conditions, a linearity was achieved for the extraction sulfur compounds between 0.10 and 250μgmL(-1) with the correlation of determination ranging from 0.98 to 0.99. Applying the same optimum conditions, the extraction of 77-91% of the sulfur compounds in the Arabian light, Arabian medium and Arabian heavy, and diesel was achieved. PMID:24461639

  9. Fluid Catalytic Cracking Feed Hydrotreatment and its Impact on Distribution of Sulfur and Nitrogen Compounds in FCC Diesel

    Institute of Scientific and Technical Information of China (English)

    Bai Rui; Chai Yongming; Zhang Chengtao; Liu Chenguang

    2015-01-01

    The sulfides and nitrogen compounds in FCC diesel were analyzed by gas chromatography equipped with a pulsed lfame photometric detector (GC-PFPD) and gas chromatography coupled with nitrogen chemiluminescence detection (GC-NCD). And the variation of sulifdes and nitrogen compounds in FCC diesel produced from gas oil feed hydrotreated at different temperatures was investigated. The test results showed that two main types of sulfur compounds, i.e. benzothio-phenes (BTs) and dibenzothiophenes (DBTs) were found in diesel. Nitrogen compounds are mainly composed of non-basic nitrogen compounds, and indoles and carbazoles account for about 98% of the total nitrogen contents. The sulifdes in FCC diesel obtained from hydrotreated feed are mainly BTs with a small amount of 4-MDBT and 4,6-DMDBT. With the increase in FCC feed hydrotreating temperature, indoles content in FCC diesel increases, while carbazoles content decreases.

  10. Validation of an analysis method to determine raloxifene in a Cuban formulation

    International Nuclear Information System (INIS)

    Raloxifene is a selective estrogen receptor modulator from the benzothiophene family. The results of several large clinical trials have shown that raloxifene reduces the rate of bone loss in the dorsal spine and may increase bone mass at certain sites. High performance liquid chromatography analytical method has been developed for the estimation of raloxifene in Cuban pharmaceutical dosage form. In this method, RP 18 LichrosphermL 100 column with mobile phase consisting of methanol, de-ionized water and trietanolamine (ratio of 70:30:0.1) and 286 nm wavelength ultraviolet detector were used. The mobile phase flow was 1.5 mL/min and the injected volume reached 20 mL

  11. Transient phases during fast crystallization of organic thin films from solution

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2016-01-01

    Full Text Available We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s, mobility up to 3.0 cm2/V-s has been observed.

  12. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Directory of Open Access Journals (Sweden)

    C. N. Warwick

    2015-09-01

    Full Text Available We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT and 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT. The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  13. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: Film morphology and field effect mobility

    International Nuclear Information System (INIS)

    We have investigated the film morphology and the field effect mobility of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) thin films which were formed by spin coating on the SiO2 substrate with solution-processed graphene electrodes. The domain size and the density of aggregates in the C8-BTBT film showed the same dependence on the spinning speed. These competitive two factors (domain size and density of aggregates) give an optimum spinning speed, at which the field effect mobility of C8-BTBT transistor showed a maximum (2.6 cm2/V s). This result indicates the importance of spinning speed in the fabrication of solution processed organic thin film transistors by spin coating.

  14. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES; A

    International Nuclear Information System (INIS)

    Using the classical coordination compound, Ru(NH(sub 3))(sub 5)(H(sub 2)O)(sup 2+), they have prepared a metal complex with a 4,6-dimenthyldibenzothiophene ligand. The compound Ru(NH(sub 3))(sub 5)(H(sub 2)O)(sup 2+) also reacts with thiophene, benzothiophene and dibenzothiophene (DBT) at room temperature. They have found that Ru(NH(sub 3))(sub 5)(H(sub 2)O)(sup 2+) removes over 50% of the DBT in simulated petroleum feedstocks by a biphasic extraction process. The extraction phase is readily generated by air-oxidation thereby completing a cyclic process that removes DBT from petroleum feedstocks

  15. Low-temperature loading of Cu+ species over porous metal-organic frameworks (MOFs) and adsorptive desulfurization with Cu+-loaded MOFs.

    Science.gov (United States)

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2012-10-30

    Porous metal-organic frameworks (MOFs, MIL-100-Fe, iron-benzenetricarboxylate) supported with Cu(+) species were obtained for the first time under mild condition without high temperature calcinations. The Cu(+)-loaded MOFs were evaluated as efficient adsorbents for the liquid-phase adsorption of benzothiophene (BT). The effect of Cu(+) loading on the adsorption kinetics and maximum adsorption capacity (Q(0)) for the adsorption of BT was also studied. Q(0) increased with increasing copper loading up to a Cu/Fe (wt./wt.) ratio of 0.07 in Cu(+)-loaded-MIL-100-Fe, resulting in an increase in the Q(0) by 14% compared with the virgin MIL-100-Fe without Cu(+) ions. Since the surface area and pore volume decrease with the loading of copper, the increased Q(0) over the Cu(+)-loaded MIL-100-Fe adsorbents suggests specific favorable interactions (probably by π-complexation) between Cu(+) and BT. PMID:22959132

  16. Study on Reduction of Sulfur Content in FCC Gasoline

    Institute of Scientific and Technical Information of China (English)

    Hou Dianguo

    2003-01-01

    Reduction of sulfur content in FCC gasoline was studied in a fixed fluid bed (FFB) unit by using metal-modified LV-23 FCC catalyst. The results showed that the sulfur content in FCC gasoline could be reduced with LV-23 catalyst modified with zinc, palladium, zinc-palladium, zinc-cobalt, and zinc-nickel. Among these metals or metal combinations, palladium-containing catalyst was the most effective. Desulfurization of the heavy fraction of FCC gasoline was more effective than full-range gasoline under the same conditions with palladium-containing catalysts. A high reaction temperature was favorable to desulfurization, but it would reduce the yield of liquid product. After desulfurization reaction, the olefin content of product gasoline decreased while the aromatic and iso-alkane contents increased. Removal of thiophene and benzothiophene is higher.

  17. Transient phases during fast crystallization of organic thin films from solution

    Science.gov (United States)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.

    2016-01-01

    We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.

  18. CoMo/ZrO2 Hydrodesulfurization Catalysts Prepared by Chelating Agent Assisted Spreading

    OpenAIRE

    Kaluža, L. (Luděk); Zdražil, M. (Miroslav); Vít, Z. (Zdeněk); Gulková, D. (Daniela)

    2012-01-01

    The Mo/ZrO2 and CoMo/ZrO2 catalysts were prepared by impregnation of the monoclinic ZrO2 by the chelating agent nitrilotriacetic acid (NTA) assisted spreading of MoO3 with CoCO3, or (NH4)6Mo7O24.4H2O with Co(NO3)2.6H2O. The catalysts were characterized by X-ray diffraction, N2 physisorption, O2 chemisorption and activity in reaction of 1-benzothiophene hydrodesulfurization. The properties of these unconventional catalysts were compared with behavior of conventional Mo/ZrO2 and CoMo/ZrO2 catal...

  19. 4-Imino-2,7-dimethyl-5,6,7,8-tetra-hydro-4H-1-benzothieno[2,3-d]pyrimidin-3-amine.

    Science.gov (United States)

    Kalashetti, Mallikarjun B; Fathima, Nikhath; Khan, Ashraf Y; Begum, Noor Shahina; Khazi, I M

    2012-08-01

    In the title compound, C(12)H(16)N(4)S, the fused benzothio-phene and the pyrimidine rings are coplanar [dihedral angle = 1.61 (6)°]. Three C atoms of the cyclohexene ring (at positions 3, 6 and 7) are disordered over two sites with an occupancy ratio of 0.702 (8):0.298 (8). The cyclo-hexene ring in both the major and minor components adopts a half-chair conformation. The crystal structure is stabilized by N-H⋯N and C-H⋯N inter-actions, resulting in the formation of inversion dimers with R(2) (2)(10) and R(2) (2)(12) graph-set motifs. PMID:22904911

  20. 4-Imino-2,7-dimethyl-5,6,7,8-tetrahydro-4H-1-benzothieno[2,3-d]pyrimidin-3-amine

    Directory of Open Access Journals (Sweden)

    Mallikarjun B. Kalashetti

    2012-08-01

    Full Text Available In the title compound, C12H16N4S, the fused benzothiophene and the pyrimidine rings are coplanar [dihedral angle = 1.61 (6°]. Three C atoms of the cyclohexene ring (at positions 3, 6 and 7 are disordered over two sites with an occupancy ratio of 0.702 (8:0.298 (8. The cyclohexene ring in both the major and minor components adopts a half-chair conformation. The crystal structure is stabilized by N—H...N and C—H...N interactions, resulting in the formation of inversion dimers with R22(10 and R22(12 graph-set motifs.

  1. Low-Temperature Band Transport and Impact of Contact Resistance in Organic Field-Effect Transistors Based on Single-Crystal Films of Ph-BTBT-C10

    Science.gov (United States)

    Cho, Joung-min; Mori, Takehiko

    2016-06-01

    Transistors based on single-crystal films of 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) fabricated using the blade-coating method are investigated by the four-probe method down to low temperatures. The four-probe mobility is as large as 18 cm2/V s at room temperature, and increases to 45 cm2/V s at 80 K. At 60 K the two-probe mobility drops abruptly by about 50%, but the mobility drop is mostly attributed to the increase of the source resistance. The carrier transport in the present single-crystal film is regarded as essentially bandlike down to 30 K.

  2. Characterization of sulfur compounds in supercritical coal extracts by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gryglewicz, Grazyna; Rutkowski, Piotr [Institute of Chemistry and Technology of Petroleum and Coal, Wroclaw University of Technology, ul. Gdanska 7/9, 50-344 Wroclaw (Poland); Yperman, Jan [Laboratory of Applied Chemistry, IMO, Limburgs Universitair Centrum, Universiteitslaan, B-3590 Diepenbeek (Belgium)

    2002-06-20

    The organosulfur compounds (OSC) in the supercritical extracts obtained from flame coal (subA) and orthocoking coal (mvb) were identified by gas chromatography-mass spectrometry. Supercritical fluid extraction was carried out with three different solvents, i.e., toluene, toluene/2-propanol and toluene/THF mixtures, at 360 C and 10 MPa in an apparatus with continuous flow of solvent. The extraction yield was in the range of 11.4-39.9 wt.% depending on the type of solvent and coal. For flame coal, diphenyl sulfide and disulfide, thiophene, benzothiophene, dibenzothiophene and benzonaphtothiophene and their C{sub 1}-C{sub 4} alkyl derivatives were detected, whereas for orthocoking coal only polycyclic aromatic sulfur heterocycles (PASH) containing two to five rings and their alkyl derivatives were found. Ligand exchange chromatography was applied to separate the PASH fraction.

  3. Theoretical Study on Interactions between N-Butylpyridinium Nitrate and Thiophenic Compounds

    International Nuclear Information System (INIS)

    By using density functional theory calculations, we have performed a systemic study on the electronic structures and topological properties of interactions between N-butylpyridinium nitrate ([BPY]+[NO3]-) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT), naphthalene (NAP). The most stable structure of [BPY]+[NO3]- ion pair indicates that hydrogen bonding interactions between oxygen atoms on [NO3]- anion and C2-H2 on pyridinium ring play a dominating role in the formation of ion pair. The occurrence of hydrogen bonding, π···H-C, and π···π interactions between [BPY]+[NO3]- and TS, BT, DBT, NAP has been corroborated at the molecular level. But hydrogen bonding and π···π interactions between [BPY]+[NO3]- and NAP are weak in terms of structural properties and NBO, AIM analyses. DBT is prior to adsorption on N-butylpyridinium nitrate ionic liquid

  4. Diversity-Oriented Synthesis of Substituted Benzo[b]thiophenes and Their Hetero-Fused Analogues through Palladium-Catalyzed Oxidative C-H Functionalization/Intramolecular Arylthiolation.

    Science.gov (United States)

    Acharya, Anand; Kumar, S Vijay; Ila, Hiriyakkanavar

    2015-11-16

    An efficient, high yielding route to multisubstituted benzo[b]thiophenes has been developed through palladium-catalyzed intramolecular oxidative C-H functionalization-arylthiolation of enethiolate salts of α-aryl-β-(het)aryl/alkyl-β-mercaptoacrylonitriles/acrylates or acrylophenones. The overall strategy involves a one-pot, two-step process in which enethiolate salts [generated in situ through base-mediated condensation of substituted arylacetonitriles, deoxybenzoins, or arylacetates with (het)aryl (or alkyl) dithioates] are subjected to intramolecular C-H functionalization-arylthiolation under the influence of a palladium acetate (or palladium chloride)/cupric acetate catalytic system and tetrabutylammonium bromide as additive in N,N-dimethylformamide (DMF) as solvent. In a few cases, the yields of benzo[b]thiophenes were better in a two-step process by employing the corresponding enethiols as substrates. In a few examples, Pd(OAc)2 (or PdCl2) catalyst in the presence of oxygen was found to be more efficient than cupric acetate as reoxidant, furnishing benzothiophenes in improved yields by avoiding formation of side products. The method is compatible with a diverse range of substituents on the aryl ring as well as on the 2- and 3-positions of the benzothiophene scaffold. The protocol could also be extended to the synthesis of a raloxifene precursor and a tubulin polymerization inhibitor in good yields. The versatility of this newly developed method was further demonstrated by elaborating it for the synthesis of substituted thieno-fused heterocycles such as thieno[2,3-b]thiophenes, thieno[2,3-b]indoles, thieno[3,2-c]pyrazole, and thieno[2,3-b]pyridines in high yields. A probable mechanism involving intramolecular electrophilic arylthiolation via either a Pd-S adduct or palladacycle intermediate has been proposed on the basis of experimental studies. PMID:26429766

  5. Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Maria Elisabete; Cappelli Fontanive, Fernando; Bastos Caramao, Elina; Alcaraz Zini, Claudia [Universidade Federal do Rio Grande do Sul, Instituto de Quimica, Porto Alegre, RS (Brazil); Oliveira, Jose Vladimir de [URI, Universidade Regional Integrada do Alto Uruguai e das Missoes, Erechim, RS (Brazil)

    2011-11-15

    The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO{sub x} gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC x GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC x GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC x GC. (orig.)

  6. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    Science.gov (United States)

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  7. Structural features underlying raloxifene's biophysical interaction with bone matrix.

    Science.gov (United States)

    Bivi, Nicoletta; Hu, Haitao; Chavali, Balagopalakrishna; Chalmers, Michael J; Reutter, Christopher T; Durst, Gregory L; Riley, Anna; Sato, Masahiko; Allen, Matthew R; Burr, David D; Dodge, Jeffrey A

    2016-02-15

    Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure-activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen. PMID:26795112

  8. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material

    International Nuclear Information System (INIS)

    Highlights: • One-pot synthesized PTA@MIL-101(Cr) shows high capacity of benzothiophene. • PTA/MIL-101(Cr) obtained via post-modification performs poor in the adsorption. • PTA and MIL-101(Cr) exhibit synergetic effect on adsorption of benzothiophene. • In the presence of aromatics, PTA@MIL-101(Cr) and MIL-101(Cr) remain their capacity. • PTA-dispersed MOFs adsorb dibenzothiophene through acid–base interaction. -- Abstract: Hybrid nanomaterials comprising phosphotungstic acid (PTA) and MIL-101(Cr) were prepared through one-pot synthesis and post-modification methods and then were used as adsorbents of dibenzothiophene (DBT) from simulated diesel fuels. Samples obtained by different ways (encapsulation and impregnation) were characterized by nitrogen adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and series of adsorption experiments. The equilibrium adsorption capacities of PTA@MIL-101(Cr) illustrated that the direct introduction of PTA into MIL-101(Cr) during synthesis resulted in a 10.7% increase compared with MIL-101(Cr). However, porous hybrid adsorbent PTA/MIL-101(Cr) prepared via post-modification method exhibited lower adsorption capacity than virgin MIL-101(Cr). The theoretical maximum adsorption capacity (Q0) of PTA@MIL-101(Cr) is 136.5 mg S/g adsorbent, 4.2 times of MIL-101(Cr). Even in competitive adsorption between aromatic compounds, which possess strong affinity with MOFs, and DBT, PTA@MIL-101(Cr) and MIL-101(Cr) remained their effectiveness in removal of DBT in the system. Based on these results, it can be presumed that MIL-101(Cr), modified properly, can be used as a promising adsorbent for eliminating aromatics and S-compounds in commercial fuels simultaneously

  9. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death.

    Directory of Open Access Journals (Sweden)

    Kelly N Owens

    2008-02-01

    Full Text Available Inner ear sensory hair cell death is observed in the majority of hearing and balance disorders, affecting the health of more than 600 million people worldwide. While normal aging is the single greatest contributor, exposure to environmental toxins and therapeutic drugs such as aminoglycoside antibiotics and antineoplastic agents are significant contributors. Genetic variation contributes markedly to differences in normal disease progression during aging and in susceptibility to ototoxic agents. Using the lateral line system of larval zebrafish, we developed an in vivo drug toxicity interaction screen to uncover genetic modulators of antibiotic-induced hair cell death and to identify compounds that confer protection. We have identified 5 mutations that modulate aminoglycoside susceptibility. Further characterization and identification of one protective mutant, sentinel (snl, revealed a novel conserved vertebrate gene. A similar screen identified a new class of drug-like small molecules, benzothiophene carboxamides, that prevent aminoglycoside-induced hair cell death in zebrafish and in mammals. Testing for interaction with the sentinel mutation suggests that the gene and compounds may operate in different pathways. The combination of chemical screening with traditional genetic approaches is a new strategy for identifying drugs and drug targets to attenuate hearing and balance disorders.

  10. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil

    Institute of Scientific and Technical Information of China (English)

    Ashutosh Bahuguna; Madhuri K. Lily; Ashok Munjal; Ravindra N. Singh; Koushalya Dangwal

    2011-01-01

    A new bacterial strain DMT-7 capable of selectively desulfurizing dibenzothiophene (DBT) was isolated from diesel contaminated soil.The DMT-7 was characterized and identified as Lysinibacillus sphaericus DMT-7 (NCBI GenBank Accession No.GQ496620) using 16S rDNA gene sequence analysis.The desulfurized product of DBT, 2-hydroxybiphenyl (2HBP), was identified and confirmed by high performance liquid chromatography analysis and gas chromatography-mass spectroscopy analysis respectively.The desulfurization kinetics revealed that DMT-7 started desulfurization of DBT into 2HBP after the lag phase of 24 hr, exponentially increasing the accumulation of 2HBP up to 15 days leading to approximately 60% desulfurization of the DBT.However, further growth resulted into DBT degradation.The induced culture of DMT-7 showed shorter lag phase of 6 hr and early onset of stationary phase within 10 days for desulfurization as compared to that of non-induced culture clearly indicating the inducibility of the desulfurization pathway of DMT-7.In addition, Lysinibacillus sphaericus DMT-7 also possess the ability to utilize broad range of substrates as sole source of sulfur such as benzothiophene, 3,4-benzo DBT, 4,6-dimethyl DBT, and 4,6-dibutyl DBT.Therefore, Lysinibacillus sphaericus DMT-7 could serve as model system for efficient biodesulfurization of diesel and petrol.

  11. Chemistry and morphology of coal liquefaction. Quarterly report, January 1, 1984-March 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1984-04-01

    In task 1, selective synthesis of gasoline-range components from synthesis gas, rate expressions were developed for four different iron catalysts (promoted and unpromoted). Data for all four catalysts can be correlated by a semi-empirical expression. In task 2 catalyzed low temperature reactions of carbon and water, the catalytic activity for the production of hydrocarbons from graphite and water over KOH plus a co-catalyst was investigated for several first row transition metals. NiO showed the greatest activity. Several samples of /sup 13/CO, /sup 13/CO/sub 2/ and H/sub 2/O adsorbed on graphite and on catalyst-graphite systems after reaction with steam were prepared for NMR investigation. In task 3 chemistry of coal solubilization and liquefaction, rate studies of quinoline reduction to tetrahydroquinoline in the presence of the homogeneous catalysts (phi/sub 3/P)/sub 3/RhCl have provided definitive evidence that benzothiophene, indole, pyrrole, carbazole, thiophene, p-cresol and dibenzothiophene enhance the initial rate of hydrogenation of quinoline by a factor greater than 1.5. P-cresol was found to enhance the initial rate of hydrogenation of quinoline (1.6 to 2 fold) in a model coal liquid with polymer-supported (2% cross-linked) (phi/sub 3/P)/sub 3/ RhCl. 2 references, 6 figures.

  12. Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-dopamine activity modulator.

    Science.gov (United States)

    Maeda, Kenji; Sugino, Haruhiko; Akazawa, Hitomi; Amada, Naoki; Shimada, Jun; Futamura, Takashi; Yamashita, Hiroshi; Ito, Nobuaki; McQuade, Robert D; Mørk, Arne; Pehrson, Alan L; Hentzer, Morten; Nielsen, Vibeke; Bundgaard, Christoffer; Arnt, Jørn; Stensbøl, Tine Bryan; Kikuchi, Tetsuro

    2014-09-01

    Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel drug candidate in clinical development for psychiatric disorders with high affinity for serotonin, dopamine, and noradrenaline receptors. In particular, it bound with high affinity (Ki 1000 nM). Brexpiprazole potently bound to rat 5-HT2A and D2 receptors in vivo, and ex vivo binding studies further confirmed high 5-HT1A receptor binding potency. Brexpiprazole inhibited DOI (2,5-dimethoxy-4-iodoamphetamine)-induced head twitches in rats, suggestive of 5-HT2A antagonism. Furthermore, in vivo D2 partial agonist activity of brexpiprazole was confirmed by its inhibitory effect on reserpine-induced DOPA accumulation in rats. In rat microdialysis studies, brexpiprazole slightly reduced extracellular dopamine in nucleus accumbens but not in prefrontal cortex, whereas moderate increases of the dopamine metabolites, homovanillic acid and DOPAC (3,4-dihydroxy-phenyl-acetic acid), in these areas also suggested in vivo D2 partial agonist activity. In particular, based on a lower intrinsic activity at D2 receptors and higher binding affinities for 5-HT1A/2A receptors than aripiprazole, brexpiprazole would have a favorable antipsychotic potential without D2 receptor agonist- and antagonist-related adverse effects. In conclusion, brexpiprazole is a serotonin-dopamine activity modulator with a unique pharmacology, which may offer novel treatment options across a broad spectrum of central nervous system disorders. PMID:24947465

  13. NiMo/γ-Al2O3 Catalysts from Ni Heteropolyoxomolybdate and Effect of Alumina Modification by B, Co, or Ni%NiMo/γ-Al2O3Catalysts from Ni Heteropolyoxomolybdate and Effect of Alumina Modification by B,Co,or Ni

    Institute of Scientific and Technical Information of China (English)

    Radostina PALCHEVA; Luděk KALU(Z)A; Alla SPOJAKINA; Květuse JIR(A)TOV(A); Georgi TYULIEV

    2012-01-01

    A hydrotreating NiMo/γ-Al2O3 catalyst (12 wt% Mo and 1,1 wt% Ni) was prepared by impregnation of the support with the Anderson-type heteropolyoxomolybdate (NH4)4 Ni(OH)6 Mo6O18.Before impregnation of the support,it was modified with an aqueous solution of H3BO3,Co(NO3)2,or Ni(NO3)2.The catalysts were investigated using N2 adsorption,O2 chemisorption,X-ray diffraction,UV-Vis spectroscopy,Fourier transform infrared spectroscopy,temperature-programmed reduction,temperature-programmed desorption,and X-ray photoelectron spectroscopy.The addition of Co,Ni,or B influenced the A12O3 phase composition and gave increased catalytic activity for 1-benzothiophene hydrodesulfurization (HDS).X-ray photoelectron spectroscopy confirmed that the prior loading of Ni,Co or B increased the degree of sulfidation of the NiMo/γ-A12O3 catalysts.The highest HDS activity was observed with the NiMo/γ-Al2O3 catalyst with prior loaded Ni.

  14. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    Science.gov (United States)

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process. PMID:26695105

  15. Thiophene-bithiazole based metal-free dye as DSSC sensitizer: Effect of co-adsorbents on photovoltaic efficiency

    Indian Academy of Sciences (India)

    Jayanthy S Panicker; Bijitha Balan; Suraj Soman; Tanwistha Ghosh; Vijayakumar C Nair

    2016-01-01

    A new molecule consisting of a bithiazole chromophore sandwiched between two thiophenes, functionalized with benzothiophene unit at one end and cyanoacrylic acid at the other end (BT1) was synthesized, photophysical properties were studied and employed as a photosensitizer in dye-sensitized solar cells (DSSCs). The molecule exhibited an intense absorption in the UV-visible region with absorption extending up to 500 nm. The ground and excited state potentials of BT1 were calculated to be 1.29 and -0.65 V, respectively vs. NHE using cyclic voltammetry. The ground state energy level is more positive than the triiodide electrolyte and excited state energy level is considerably more negative than the TiO2 satisfying the energetic requirements for a photosensitizer in DSSC. The solar cells fabricated from BT1 exhibited an efficiency of 1.13%. The effect of various co-adsorbents (CDCA, TP1 and TP2) on the DSSC performance was investigated in detail. In the presence of CDCA, the photovoltaic efficiency was enhanced to 1.25%, whereas, in the presence of TP1 and TP2, the efficiency lowered to 0.20% and 0.59%, respectively. The increased efficiency in the presence of CDCA could be attributed to the prevention of the aggregation of dye molecules induced by CDCA. On the other hand, TP1 and TP2 were found to be not as effective as CDCA to prevent aggregation leading to the lowering of photoconversion efficiency.

  16. Solvent tailoring in coal liquefaction. Quarterly report, May 1982-August 1982. [Comparison of subcritical and supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A.R.; Guin, J.A.; Curtis, C.W.; Williams, D.C.

    1982-01-01

    The initial objective of this work was to study the phase distribution of donor solvents and solvent mixtures during the liquefaction of coal, to investigate the effects of phase distribution on coal conversion, and to determine the advantages, if any, of operating at subcritical and/or supercritical conditions. Computer simulations were used to predict the phase distribution, for various binary systems, as a function of temperature. The FLASH program was used to theoretically predict phase distribution for various model systems. Due to limitations in the computer program, success was achieved only in a few cases. Even in these cases, the existence of two-phase regions was observed only at temperatures and pressures far below normal liquefaction conditions. An extensive review of the literature was carried out in order to survey methods of experimentally studying vapor-liquid equilibria. Finally, some preliminary laboratory studies were carried out with the use of benzothiophene-dodecane as the model reaction system. It was felt that the study of the effect of reactor configuration on conversion would provide insight into whether phase distribution or mass transfer was the limiting consideration for coal conversion. However, no conclusive results were obtained from these studies.

  17. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    Science.gov (United States)

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth. PMID:26681208

  18. Pyrolysis comprehensive two-dimensional gas chromatography study of petroleum source rock.

    Science.gov (United States)

    Wang, Frank Cheng-Yu; Walters, Clifford C

    2007-08-01

    Detailed compositional analyses of sedimentary organic matter can provide information on its biotic input, environment of deposition, and level of thermal maturation. Pyrolysis-gas chromatography (py-GC), often coupled with a mass spectrometer (py-GC/MS), is one technique used to provide this information. New developments in comprehensive two-dimensional gas chromatography (GC x GC or 2D-GC), coupled with pyrolysis (py-GC x GC), offer the prospect of providing more complete and quantitative compositional information of complex organic solids, such as kerogen and coals. This study will describe applications of pyrolysis-GC x GC to the characterization of petroleum source rocks using flame ionization detector (FID) and sulfur chemiluminescence detector (SCD). In the hydrocarbon analysis by FID, paraffins, naphthenes, and aromatics form distinct two-dimensional separated groups. In the analysis with SCD, sulfur-containing compounds can be distinguished as different classes, such as mercaptans, sulfides, thiophenes, benzothiophenes, and dibenzothiophenes. Single components or summed bands of homologous components can be analyzed qualitatively and quantitatively. With these detailed molecular fingerprints, the relations between kerogen composition and its biotic input, environment of deposition, and thermal maturation may be better understood. PMID:17585835

  19. Carotenoids play a positive role in the degradation of heterocycles by Sphingobium yanoikuyae.

    Directory of Open Access Journals (Sweden)

    Xiaorui Liu

    Full Text Available BACKGROUND: Microbial oxidative degradation is a potential way of removing pollutants such as heterocycles from the environment. During this process, reactive oxygen species or other oxidants are inevitably produced, and may cause damage to DNA, proteins, and membranes, thereby decreasing the degradation rate. Carotenoids can serve as membrane-integrated antioxidants, protecting cells from oxidative stress. FINDINGS: Several genes involved in the carotenoid biosynthetic pathway were cloned and characterized from a carbazole-degrading bacterium Sphingobium yanoikuyae XLDN2-5. In addition, a yellow-pigmented carotenoid synthesized by strain XLDN2-5 was identified as zeaxanthin that was synthesized from β-carotene through β-cryptoxanthin. The amounts of zeaxanthin and hydrogen peroxide produced were significantly and simultaneously enhanced during the biodegradation of heterocycles (carbazole < carbazole + benzothiophene < carbazole + dibenzothiophene. These higher production levels were consistent with the transcriptional increase of the gene encoding phytoene desaturase, one of the key enzymes for carotenoid biosynthesis. CONCLUSIONS/SIGNIFICANCE: Sphingobium yanoikuyae XLDN2-5 can enhance the synthesis of zeaxanthin, one of the carotenoids, which may modulate membrane fluidity and defense against intracellular oxidative stress. To our knowledge, this is the first report on the positive role of carotenoids in the biodegradation of heterocycles, while elucidating the carotenoid biosynthetic pathway in the Sphingobium genus.

  20. Adsorption of Thiophenic Compounds from Model Diesel Fuel Using Copper and Nickel Impregnated Activated Carbons

    Directory of Open Access Journals (Sweden)

    Ramin Karimzadeh

    2012-10-01

    Full Text Available Adsorption of sulfur compoundsby porous materials is an effective way to produce cleaner diesel fuel.In this study, adsorption of refractory thiophenic sulfur compounds, i.e., benzothiophene (BT, dibenzothiophene (DBT, and 4,6-dimethyldibenzothiophene (4,6-DMDBT in single-solute systems from n-hexane solutions onto metal-impregnated activated carbons was investigated. A hydrogen-treated activated carbon fiber was selectively loaded with Ni, NiO, Cu, Cu2O, and CuO species to systematically assess the impact of each metal species on the adsorption of thiophenic compounds (TC. Metal-loaded adsorbents had the same total metal contents and similar microporosities, but contained different types of copper or nickel species. All metal-loaded adsorbents showed enhanced adsorption of tested TC. Cu2O- or NiO-loaded adsorbents exhibited the highest uptakes, due to more specific interactions between Cu+ or Ni2+ species and TC molecules. The theoretical monolyer coverage of TC on the exposed Cu+ sites was estimated and compared with that calculated from the experimental data. Results suggested catalytic conversion of TC molecules to other compounds on the Cu+ sites, followed by adsorption of reaction products onto the carbon surface or multilayer accumulation of TC molecules on the Cu+sites. TC adsorption uptake of the majority of adsorbents followed the order of: 4,6-DMDBT > DBT > BT due to higher intensity of specific and non-specific interactions of larger TC molecules with adsorbents.

  1. Liquid-phase adsorption of multi-ring thiophenic sulfur compounds on carbon materials with different surface properties.

    Science.gov (United States)

    Zhou, Anning; Ma, Xiaoliang; Song, Chunshan

    2006-03-16

    This work examines the effects of structural and surface properties of carbon materials on the adsorption of benzothiophene (BT), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT) in the presence of 10 wt % of aromatics in liquid alkanes that simulate sulfur compounds in diesel fuels. The equilibrium-adsorption capacity varies significantly, from 1.7 to 7.0 mg-S/g-A. The results show that different carbon materials have significantly different sulfur-adsorption capacities and selectivities that depend not only on textural structure but also on surface functional groups. The adsorption of multi-ring sulfur compounds on carbon materials was found to obey the Langmuir isotherm. On the basis of adsorption tests and the characterization of carbon materials by BET and XPS, the oxygen-containing functional groups on the surface appear to play an important role in increasing sulfur-adsorption capacity. The adsorption-selectivity trend of the carbon materials for various compounds increases in the order of BT adsorption over nickel-based adsorbents. The regeneration of spent activated carbons was also conducted by solvent washing. The high-adsorption capacity and selectivity for methyl DBTs indicate that certain activated carbons are promising adsorbents for selective adsorption for removing sulfur (SARS) as a new approach to ultra deep desulfurization of diesel fuels. PMID:16526705

  2. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    Science.gov (United States)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-01

    M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2-W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2-W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV-Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed.

  3. Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration.

    Science.gov (United States)

    Wang, Yuhe; Yang, Ralph T

    2007-03-27

    Several carbon-based adsorbents, CuCl/AC, PdCl2/AC, and Pd/AC (where AC denotes activated carbon), were studied for desulfurization of a model jet fuel by selective adsorption of thiophenic molecules. Comparisons with gamma-Al2O3 support and desulfurization of a commercial jet fuel were also studied. The results showed that the selective sulfur adsorption capacity of PdCl2 was higher than that of CuCl and Pd(0), in agreement with molecular orbital results. It was also found that the activated carbon is the best support for pi-complexation sorbents to remove sulfur-containing compounds, i.e., benzothiophene and methylbenzothiophene. Among all the adsorbents studied, PdCl2/AC had the highest capacity for desulfurization. A significant synergistic effect was observed between the carbon substrate and the supported pi-complexation sorbent, and this effect was explained by a geometric effect. The saturated sorbent was regenerated by desorption assisted by ultrasound with a solvent of 30 wt % benzene and 70 wt % n-octane. The results showed that the amount of sulfur desorbed was higher with ultrasound, 65 wt % desorption vs 45 wt % without ultrasound in a static system at 50 degrees C. PMID:17315903

  4. Production of ultra-low-sulfur gasoline: an equilibrium and kinetic analysis on adsorption of sulfur compounds over Ni/MMS sorbents.

    Science.gov (United States)

    Subhan, Fazle; Liu, B S; Zhang, Q L; Wang, W S

    2012-11-15

    High performance nickel-based micro-mesoporous silica (Ni/MMS) sorbent was prepared by incipient wetness impregnation with ultrasonic aid (IWI-u) for adsorptive desulfurization (ADS) of commercial gasoline and simulated fuels. The sorbents were characterized with BET, XRD, TPR, SEM, HRTEM and TG/DTG. These results show that 20 wt%Ni/MMS (IWI-u) can still retain the framework of MMS and nickel particles were homogeneously distributed in the MMS channels without any aggregation, which improved significantly the ADS performance of the sorbents. The studies on the ADS kinetics indicate that the adsorption behavior of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over 20 wt%Ni/MMS (IWI-u) can be described appropriately by pseudo second-order kinetic model. The intraparticle diffusion model verified that the steric hindrance and intraparticle diffusion were the rate controlling step of the adsorption process of DBT molecules. Langmuir model can be used to describe the adsorption isotherms for T, BT and DBT due to low coverage. The regeneration sorbent maintains the sulfur removal efficiency of 85.9% for 6 cycles. PMID:23022413

  5. The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis.

    Science.gov (United States)

    Subhan, Fazle; Yan, Zifeng; Peng, Peng; Ikram, Muhammad; Rehman, Sadia

    2014-04-15

    High performance nickel supported on mesoporous AlKIT-6 (Si/Al=15, 25, 50, 100) sorbents were prepared by incipient wetness impregnation (IWI) with ultrasonic aid for adsorptive desulfurization of commercial diesel and simulated fuels. The sorbents were characterized by N2 adsorption-desorption, XRD, NH3-TPD, Py-FT-IR, HRTEM, SEM and atomic absorption spectroscopy techniques. The analysis results confirmed that Aluminum atoms entered the framework and 20%Ni-AlKIT-6(15) can still retain three dimensional structure of AlKIT-6(15) and Ni is highly dispersed in the support. The kinetic pseudo second-order model and Langmuir isotherm are shown to exhibits the best fits of experimental data for the adsorption of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over AlKIT-6 and 5-30%Ni-AlKIT-6. Intraparticle diffusion and steric hindrance were the rate controlling step of the adsorption of T and DBT over AlKIT-6(15) and 20%Ni-AlKIT-6(15) as verified through the intraparticle diffusion model. The characterization of regenerated 20%Ni-AlKIT-6(15) revealed that three-dimensional cubic Ia3d symmetric structure was maintained in the sorbent after 6 successive desulfurization-regeneration cycles. PMID:24556462

  6. COSMO-RS based predictions for the desulphurization of diesel oil using ionic liquids: Effect of cation and anion combination

    Energy Technology Data Exchange (ETDEWEB)

    Anantharaj, R.; Banerjee, Tamal [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam (India)

    2011-01-15

    Ionic Liquids ILs provide an important alternative in removing aromatic sulphur compounds by Liquid-Liquid Extraction (LLE). A total of 28 anions and 6 cations resulting in 168 possible combinations were screened via COSMO-RS (COnductor Like Screening MOdel for Real Solvents). Initially benchmarking was performed to predict the infinite dilution activity coefficients of thiophene in ionic liquids. Comparison with literature values involving 8 ILs with 20 points gave the average root mean square deviation (RMS) to be 11%. Thereafter artificial simulated diesel, aromatic sulphur compound and the cation and anion combination was used to predict the capacity (C) and selectivity (S) at infinite dilution. In general the selectivities were found to decrease in the following order: thiophene (4-24) > benzothiophene (2-12)> dibenzothiophene (1-7). The different hetero atom (N,S,O) and its location in the cation structure strongly influenced the selectivity and capacity at infinite dilution for all the three aromatic sulphur compounds. It was found that the cation without the aromatic ring combined with anions having sterical shielding effect such as [SCN], [CH{sub 3}SO{sub 3}], [CH{sub 3}COO], [Cl], and [Br] proved to be the most favourable IL for desulphurization. [EMMOR][SCN] proved to be the most viable IL for the removal of all the three aromatic sulphur compounds. (author)

  7. Biocatalytic Desulfurization Capabilities of a Mixed Culture during Non-Destructive Utilization of Recalcitrant Organosulfur Compounds

    Science.gov (United States)

    Ismail, Wael; El-Sayed, Wael S.; Abdul Raheem, Abdul Salam; Mohamed, Magdy E.; El Nayal, Ashraf M.

    2016-01-01

    We investigated the biodesulfurization potential of a mixed culture AK6 enriched from petroleum hydrocarbons-polluted soil with dibenzothiophene (DBT) as a sulfur source. In addition to DBT, AK6 utilized the following compounds as sulfur sources: 4-methyldibenzothiophene (4-MDBT), benzothiophene (BT), and 4,6- dimethyldibenzothiophene (4,6-DM-DBT). None of these compounds supported the growth of AK6 as the sole carbon and sulfur source. AK6 could not grow on dibenzylsulfide (DBS) as a sulfur source. The AK6 community structure changed according to the provided sulfur source. The major DGGE bands represented members of the genera Sphingobacterium, Klebsiella, Pseudomonas, Stenotrophomonas, Arthrobacter, Mycobacterium, and Rhodococcus. Sphingobacterium sp. and Pseudomonas sp. were abundant across all cultures utilizing any of the tested thiophenic S-compounds. Mycobacterium/Rhodococcus spp. were restricted to the 4-MDBT culture. The 4-MDBT culture had the highest species richness and diversity. Biodesulfurization of DBT by resting cells of AK6 produced 2-hydroxybiphenyl (2-HBP) in addition to trace amounts of phenylacetate. AK6 transformed DBT to 2-hydroxybiphenyl with a specific activity of 9 ± 0.6 μM 2-HBP g dry cell weight−1 h−1. PCR confirmed the presence in the AK6 community of the sulfur-specific (4S) pathway genes dszB and dszC. Mixed cultures hold a better potential than axenic ones for the development of a biodesulfurization technology. PMID:26973637

  8. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    Science.gov (United States)

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  9. Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis

    Science.gov (United States)

    Moreno-Tost, Ramón; Jiménez-Jiménez, José; Infantes-Molina, Antonia; Cavalcante, Celio L.; Azevedo, Diana C. S.; Soriano, María Dolores; López Nieto, José Manuel; Jiménez-López, Antonio; Rodríguez-Castellón, Enrique

    Porous phosphate heterostructures (PPHs) are solids formed by a layered metal(IV) phosphate expanded with silica galleries obtained by combining the two main strategies for obtaining mesoporous materials [pillared layered structures (PLS') and MCM-41]. The different synthetic pathways for obtaining mesoporous phosphate structures with silica galleries with Zr- or Ti-doped silica, the study of their structural, textural and acid properties, its functionalisation with different organic substances such as propionitrile, 3-aminopropyl triethoxysilane, (3-mercaptopropyl)trimethoxysilane, vinyltrimethoxysilane, phenyltriethoxysilane and 3-(triethoxysilyl)propionitrile are discussed. The preparation of metal-supported catalysts and their application in gas separation, adsorption and catalysis are reviewed. Specifically, the use of Cu- and Fe-exchanged PPH for the adsorption of benzothiophene and the separation of propane/propene is the main application as adsorbent. The hydrotreating of aromatic hydrocarbons using ruthenium-impregnated catalysts via hydrogenation and hydrogenolysis/hydrocracking for the production of clean diesel fuels, the selective catalytic reduction of NO from stationary and mobile sources by using Cu-PPH with 1, 3 and 7 wt% of Cu and the selective oxidation of hydrogen sulphide to sulphur with vanadium-containing PPH are the three catalytic reactions of environmental interest studied.

  10. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  11. Novel arylsulfonamide derivatives with 5-HT₆/5-HT₇ receptor antagonism targeting behavioral and psychological symptoms of dementia.

    Science.gov (United States)

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Pawłowski, Maciej; Mitka, Katarzyna; Jaśkowska, Jolanta; Kowalski, Piotr; Kazek, Grzegorz; Siwek, Agata; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2014-06-12

    In order to target behavioral and psychological symptoms of dementia (BPSD), we used molecular modeling-assisted design to obtain novel multifunctional arylsulfonamide derivatives that potently antagonize 5-HT(6/7/2A) and D2 receptors, without interacting with M1 receptors and hERG channels. In vitro studies confirmed their antagonism of 5-HT(7/2A) and D2 receptors and weak interactions with key antitargets (M1R and hERG) associated with side effects. Marked 5-HT6 receptor affinities were also observed, notably for 6-fluoro-3-(piperidin-4-yl)-1,2-benzoxazole derivatives connected by a 3-4 unit alkyl linker with mono- or bicyclic, lipophilic arylsulfonamide moieties. N-[4-[4-(6-Fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]butyl]benzothiophene-2-sulfonamide (72) was characterized in vitro on 14 targets and antitargets. It displayed dual blockade of 5-HT6 and D2 receptors and negligible interactions at hERG and M1 receptors. Unlike reference antipsychotics, 72 displayed marked antipsychotic and antidepressant activity in rats after oral administration, in the absence of cognitive or motor impairment. This profile is particularly attractive when targeting a fragile, elderly BPSD patient population. PMID:24805037

  12. Synthesis of model compounds for coal liquefaction research

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Asaro, M.; Bottaro, J.

    1990-11-02

    The objectives of this project are to develop feasible synthetic routes to produce (1) 4(4'-hydroxy-5',6',7',8'-tetrahydro-l'-naphthylmethyl)-6-methyldibenzothiophene, and (2) a 1-hydroxynaphthalene-benzothiophene polymer. Our experimental work during this quarter concentrated on. As several possible synthetic routes to the target molecule, 4(4'-hydroxy-5',6',7',8'-tetrahydro-l'-naphthylmethyl)-6-methyldibenzothiophene. We tried synthesizing the intermediates for our first method, in which we couple a metalated 4-methyldibenzothiophene with 4-formyl-5,6,7,8-tetrahydro-1-naphthol. We found that we could easily metalate dibenzothiophene, and then add a methyl group to the 4-position to give 4-methyldibenzothiophene in greater than 80% yield by using t-butyllithium in tetrahydropyran followed by dimethylsulfate. However, adding the second metal to the desired 4' position using the same method was more difficult, and instead the reaction occurred on the methyl group. Therefore, we will investigate an alternative method, in which a hydroxy group is added in order to help direct the second metalation step to the 4' position on 4-methyldibenzothiophene.

  13. Synthesis of model compounds for coal liquefaction research. Quarterly report No. 1, June 21, 1990--September 20, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Asaro, M.; Bottaro, J.

    1990-11-02

    The objectives of this project are to develop feasible synthetic routes to produce (1) 4(4`-hydroxy-5`,6`,7`,8`-tetrahydro-l`-naphthylmethyl )- 6-methyldibenzothiophene, and (2) a 1-hydroxynaphthalene-benzothiophene polymer. Our experimental work during this quarter concentrated on. As several possible synthetic routes to the target molecule, 4(4`-hydroxy-5`,6`,7`,8`-tetrahydro- l`-naphthylmethyl )-6-methyldibenzothiophene. We tried synthesizing the intermediates for our first method, in which we couple a metalated 4-methyldibenzothiophene with 4-formyl-5,6,7,8-tetrahydro-1-naphthol. We found that we could easily metalate dibenzothiophene, and then add a methyl group to the 4-position to give 4-methyldibenzothiophene in greater than 80% yield by using t-butyllithium in tetrahydropyran followed by dimethylsulfate. However, adding the second metal to the desired 4` position using the same method was more difficult, and instead the reaction occurred on the methyl group. Therefore, we will investigate an alternative method, in which a hydroxy group is added in order to help direct the second metalation step to the 4` position on 4-methyldibenzothiophene.

  14. Biocatalytic desulfurization capabilities of a mixed culture during non-destructive utilization of recalcitrant organosulfur compounds

    Directory of Open Access Journals (Sweden)

    Wael eIsmail

    2016-03-01

    Full Text Available We investigated the biodesulfurization potential of a mixed culture AK6 enriched from petroleum hydrocarbons-polluted soil with dibenzothiophene (DBT as a sulfur source. In addition to DBT, AK6 utilized the following compounds as sulfur sources: 4-methyldibenzothiophene (4-MDBT, benzothiophene (BT, and 4,6- dimethyldibenzothiophene (4,6-DM-DBT. None of these compounds supported the growth of AK6 as the sole carbon and sulfur source. AK6 could not grow on dibenzylsulfide (DBS as a sulfur source. The AK6 community structure changed according to the provided sulfur source. The major DGGE bands represented members of the genera Sphingobacterium, Klebsiella, Pseudomonas, Stenotrophomonas, Arthrobacter, Mycobacterium and Rhodococcus. Sphingobacterium sp. and Pseudomonas sp. were abundant across all cultures utilizing any of the tested thiophenic S-compounds. Mycobacterium/Rhodococcus spp. were restricted to the 4-MDBT culture. The 4-MDBT culture had the highest species richness and diversity. Biodesulfurization of DBT by resting cells of AK6 produced 2-hydroxybiphenyl (2-HBP in addition to trace amounts of phenylacetate. AK6 transformed DBT to 2-hydroxybiphenyl with a specific activity of 9 ± 0.6 µM 2-HBP g dry cell weight-1 h-1. PCR confirmed the presence in the AK6 community of the sulfur-specific (4S pathway genes dszB and dszC. Mixed cultures hold a better potential than axenic ones for the development of a biodesulfurization technology.

  15. Biocatalytic Desulfurization Capabilities of a Mixed Culture during Non-Destructive Utilization of Recalcitrant Organosulfur Compounds.

    Science.gov (United States)

    Ismail, Wael; El-Sayed, Wael S; Abdul Raheem, Abdul Salam; Mohamed, Magdy E; El Nayal, Ashraf M

    2016-01-01

    We investigated the biodesulfurization potential of a mixed culture AK6 enriched from petroleum hydrocarbons-polluted soil with dibenzothiophene (DBT) as a sulfur source. In addition to DBT, AK6 utilized the following compounds as sulfur sources: 4-methyldibenzothiophene (4-MDBT), benzothiophene (BT), and 4,6- dimethyldibenzothiophene (4,6-DM-DBT). None of these compounds supported the growth of AK6 as the sole carbon and sulfur source. AK6 could not grow on dibenzylsulfide (DBS) as a sulfur source. The AK6 community structure changed according to the provided sulfur source. The major DGGE bands represented members of the genera Sphingobacterium, Klebsiella, Pseudomonas, Stenotrophomonas, Arthrobacter, Mycobacterium, and Rhodococcus. Sphingobacterium sp. and Pseudomonas sp. were abundant across all cultures utilizing any of the tested thiophenic S-compounds. Mycobacterium/Rhodococcus spp. were restricted to the 4-MDBT culture. The 4-MDBT culture had the highest species richness and diversity. Biodesulfurization of DBT by resting cells of AK6 produced 2-hydroxybiphenyl (2-HBP) in addition to trace amounts of phenylacetate. AK6 transformed DBT to 2-hydroxybiphenyl with a specific activity of 9 ± 0.6 μM 2-HBP g dry cell weight(-1) h(-1). PCR confirmed the presence in the AK6 community of the sulfur-specific (4S) pathway genes dszB and dszC. Mixed cultures hold a better potential than axenic ones for the development of a biodesulfurization technology. PMID:26973637

  16. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method

    Science.gov (United States)

    Yuan, Yongbo; Giri, Gaurav; Ayzner, Alexander L.; Zoombelt, Arjan P.; Mannsfeld, Stefan C. B.; Chen, Jihua; Nordlund, Dennis; Toney, Michael F.; Huang, Jinsong; Bao, Zhenan

    2014-01-01

    Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm2 Vs-1 (25 cm2 Vs-1 on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.

  17. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES

    Energy Technology Data Exchange (ETDEWEB)

    Scott G. McKinley; Celedonio M. Alvarez

    2003-03-01

    The purpose of this study was to remove thiophene, benzothiophene and dibenzothiophene from a simulated gasoline feedstock. We found that Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} reacts with a variety of thiophenes (Th*), affording Ru(NH{sub 3}){sub 5}(Th*){sup 2+}. We used this reactivity to design a biphasic extraction process that removes more than 50% of the dibenzothiophene in the simulated feedstock. This extraction system consists of a hydrocarbon phase (simulated petroleum feedstock) and extractant Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} in an aqueous phase (70% dimethylformamide, 30% H{sub 2}O). The DBT is removed in situ from the newly formed Ru(NH{sub 3}){sub 5}(DBT){sup 2+} by either an oxidation process or addition of H{sub 2}O, to regenerate Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}.

  18. Effect of Olefins on Formation of Sulfur Compounds in FCC Gasoline

    Institute of Scientific and Technical Information of China (English)

    Tang Jinlian; Xu Youhao; Gong Jianhong; Wang Xieqing

    2008-01-01

    The effect of olefins on formation of sulfur compounds in FCC gasoline was studied in a small-scale fixed fluidized bed (FFB) unit at temperatures ranging from 400℃ to 500℃, a weight hourly space velocity (WHSV) of 10 h-1, and a catalyst/oil ratio of 6. The results showed that C4-C6 olefins contained in the FCC gasoline could react with H2S to form predominantly thiophenes, alkyl-thiophenes as well as a fractional amount of thiols, while large molecular olefins such as heptene could react with hydrogen sulfide to form benzothiophenes. The amount of sulfur compounds formed at different tem-peratures over different catalysts were in proportion to the mass fractions of olefins in the feedstock,with the amount of sulfur compounds formed over REUSY catalyst exceeding those formed over the shape selective zeolite catalyst owing to the effect of catalyst performance and the impact of catalyst on the degree of olefin conversion. The amount of sulfur compounds generated and their increase reached a maximum at 450℃ and a minimum at 400℃ because of the influence of temperature on the thermody-namic and kinetic constants for formation of sulfur compound as well as on the olefin conversion degree.Based on the above-mentioned study, a reaction network and a model for prediction of sulfur com-pounds generated upon reaction of olefins in FCC gasoline with H2S were established.

  19. Application of gas chromatography with atomic emission detection to the geochemical investigation of polycyclic aromatic sulfur heterocycles in Egyptian crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Hegazi, A.H.; Andersson, J.T. [Institute of Inorganic and Analytical Chemistry, University of Munster, Wilhelm-Klemm Strasse 8, 48149 Munster (Germany); El-Gayar, M.Sh. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321 (Egypt)

    2004-01-15

    Twelve crude oils from a number of producing wells in the Gulf of Suez and Western Desert, Egypt were characterized by a variety of saturate biomarker compositions. The biomarker distribution clearly grouped the Gulf of Suez oils into two source-related types but revealed significant differences among the Western Desert oils. The oils were fractionated into saturates, mono- and polyaromatics; and the distribution of polycyclic aromatic sulfur heterocycles (PASH) in the polyaromatics fraction was investigated by gas chromatography (GC) with atomic emission detector (AED) in the carbon- and sulfur-selective modes. This makes possible the evaluation of the distribution patterns of PASHs even in cases where their relative abundance is low. The thiophenic distribution fingerprints were utilized for oil/oil correlations. Significant differences in the relative abundance of benzothiophenes and dibenzothiophenes were obvious between the Gulf of Suez and Western Desert oils. Moreover, the PASH pattern distinguished between oils derived from carbonate and siliciclastic source rocks. Maturity parameters based upon methyldibenzothiophene isomers were found consistent with other maturity-dependent saturate biomarkers.

  20. Fourier-transform ion cyclotron resonance mass spectrometry for the investigation of large polycyclic aromatic sulfur heterocycles in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S.K.; Andersson, J.T. [Munster Univ., Munster (Germany); Schrader, W. [Max-Planck Inst. fur Kohlenforschung, Munich (Germany)

    2005-07-01

    The molecular features leading to resistance to hydrodesulfurization (HDS) among polycyclic aromatic sulfur heterocycles (PASH) in vacuum gas oils and vacuum residues were examined. Liquid chromatographic methods were used to eliminate fractions separated based on well-defined separation principles. Aromatic fractions were isolated from other classes of compounds through column chromatography on silica/alumina cartridges. Aromatic compounds were then separated into 2 fractions on a palladium (Pd) containing column. Results suggested that PASHs were retained on the column. The analysis also showed that non-cata condensed thiophenes were eluted in the first fraction. Sulfur-containing compounds were then pre-ionized by methylating the sulfur atoms to form methylithiophenium ions. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was then used to determine a mass range of ca 350-800 Da with signals at each m/z value. Between 2 to 4 masses were observed for each nominal mass. A chemical composition was then assigned to the signals. A double bond equivalent (DBE) was then calculated. It was concluded that benzothiophenes with up to 47 aliphatic side-chain atoms were determined in addition to dibenzothiophenes with up to 42 carbon atoms.

  1. Polycyclic aromatic compounds in oils derived from the fluidised bed pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Paul T.; Nazzal, Jamal M. [Department of Fuel and Energy, The University of Leeds, Leeds (United Kingdom)

    1995-12-01

    Oil shale was pyrolysed in a 10 cm diameterx100 cm high fluidised bed reactor with nitrogen as the fluidising gas at pyrolysis temperatures of 400, 450, 520, 570 and 620C. The gases were analysed by packed column gas chromatography. The condensed pyrolytic oils were analysed for their content of polycyclic aromatic compounds (PAC), including polycyclic aromatic hydrocarbons (PAH), sulphur-PAH (PASH) and nitrogen-PAH (PANH). The oils were fractionated into chemical classes using mini-column liquid chromatography followed by analysis using capillary column gas chromatography with flame ionisation detection (GC/FID) and capillary column GC with mass spectrometry (GC/MS) for identification and quantification of PAH. PASH and PANH were identified in the chemical class fractions using capillary column GC with selective detection and GC/MS. The pyrolytic shale oils were found to contain significant concentrations of PAH, PASH and PANH. The concentrations of PAC were increased with increasing reactor temperature and residence time. The PAH consisted mainly of naphthalene, fluorene and phenanthrene and their alkylated homologues, and lower concentrations of fluoranthene, pyrene and chrysene. The PASH identified included benzothiophene, and dibenzothiophene, and the PANH identified including indole and carbazole and their alkylated derivatives. Some of the PAC identified have been reported to be mutagenic and/or carcinogenic

  2. Pyrolysis of oil shales: influence of particle grain size on polycyclic aromatic compounds in the derived shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Nazzal, J.M. [University of Leeds (United Kingdom). Dept. of Fuel and Energy

    1999-06-01

    Oil shales of different particle grain sizes were pyrolysed in a 10 cm diameter x 100 cm high fluidized-bed reactor under both a nitrogen and a steam atmosphere. The oil shales were from the Kimmeridge clay of Jurassic age from the UK. The influence of particle grain size on the yield and composition of the oil and gases was determined. The gases were analysed for H{sub 2}, CO, CO{sub 2}, CH{sub 4} and other hydrocarbons to C{sub 4}. The condensed oils were analysed for their content of polycyclic aromatic compounds (PAC), including polycyclic aromatic hydrocarbons (PAH), sulphur-PAH (PASH) and nitrogen-PAH (PANH). The oil yield increased with increasing particle grain size. The derived shale oils contained significant concentrations of PAH, PASH and PANH. The concentration of PAC increased with decreasing particle grain size. The PAH consisted mainly of naphthalene, fluorene and phenanthrene and their alkylated homologues, and lower concentrations of fluoranthene, pyrene and chrysene. The PASH identified included benzothiophene and dibenzothiophene, and the PANH identified included indole, carbazole and their alkylated derivatives. Increased secondary reactions linked to the formation of PAC were indicated by the alkene/alkane ratio. The effect of steam was to significantly increase the yield of oil and also to increase the concentration of PAH, PASH and PANH in the derived shale oil compared with using nitrogen as the sweep gas. (author)

  3. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Hongying, E-mail: hylv@ytu.edu.cn; Wang, Shunan; Deng, Changliang; Ren, Wanzhong; Guo, Baocun

    2014-08-30

    Highlights: • A protic ionic liquid, [Hnmp]HCOO, was used as in ODS. • The mechanism of ODS was involved in dual activation by the PIL. • The [Hnmp]HCOO exhibited high catalytic activity in ODS. • The amounts of PILs and oxidant dosage play vital roles in desulfurization system. • This system can be recycled five times with an unnoticeable decrease in activity. - Abstract: A novel and green carboxylate-anion-based protic ionic liquid (PIL), [Hnmp]HCOO, was prepared through a simple and atom economic neutralization reaction between N-methyl-2-pyrrolidonium (NMP) and formic acids. Both FT-IR spectra and {sup 1}H NMR confirmed its simple salt structure. [Hnmp]HCOO exhibited so high catalytic activity that the dibenzothiophene (DBT) removal reached 99% at 50 °C in 3 h under conditions of V{sub PIL}/V{sub model} {sub oil} = 1:10 and H{sub 2}O{sub 2}/DBT (O/S, molar ratio) = 5. The catalytic oxidation reactivity of S-compounds was found to be in the order of DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT). The investigation on mechanism showed that oxidative desulfurization was realized through dual activation of PIL. Moreover, [Hnmp]HCOO can be recycled for five times with an unnoticeable decrease in desulfurization activity.

  4. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    International Nuclear Information System (INIS)

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system. (plasma technology)

  5. Deep Oxidative Desulfurization of Dibenzothiophene in Simulated Oil and Real Diesel Using Heteropolyanion-Substituted Hydrotalcite-Like Compounds as Catalysts

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2013-11-01

    Full Text Available Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs including Mg9Al3(OH24[PW12O40](MgAl-PW12, Mg9Al3(OH24[PMo12O40] (MgAl-PMo12 and Mg12Al4(OH32[SiW12O40] (MgAl-SiW12, were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane. MgAl-PMo12 was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic system using hydrogen peroxide as oxidant and acetonitrile as extractant. The conversion of DBT was nearly 100%. As a result, because of the influence of the electron density and the space steric hindrance, the oxidation reactivity of the different sulfur compounds in simulated oil followed the order DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT > benzothiophene (BT > thiophene (TH. When the reaction is finished, the catalysts can be recovered from the acetonitrile phase by filtration. The recovered MgAl-PMo12 retains nearly the same catalytic activity as the fresh material. Moreover, MgAl-PMo12 was found to exhibit an ideal catalytic activity in the oxidative desulfurization of real diesel resulting in a total remaining sulfur content of 9.12 ppm(w.

  6. Scandium-Triflate/Metal-Organic Frameworks: Remarkable Adsorbents for Desulfurization and Denitrogenation.

    Science.gov (United States)

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2015-12-01

    Scandium-triflate (Sc(OTf)3) was introduced for the first time on metal-organic frameworks (MOFs), to utilize acidic Sc(OTf)3 for adsorptive desulfurization and denitrogenation of fuel containing benzothiophene (BT), dibenzothiophene (DBT), quinoline (QUI), and indole (IND). A remarkable improvement in the adsorption capacity (about 65% based on the weight of adsorbents; 90% based on the surface area of the adsorbents) was observed with the Sc(OTf)3/MOFs as compared to the virgin MOFs for the adsorption of BT from liquid fuel. The basic QUI was also adsorbed preferentially onto the acidic Sc(OTf)3/MOFs. However, nonsupported Sc(OTf)3 showed negligible adsorption capacities. The improved adsorptive performance for BT, DBT, and QUI might be derived from acid-base interactions between the acidic Sc(OTf)3 and basic adsorbates. On the other hand, the Sc(OTf)3, loaded on MOFs, reduced the adsorption capacity for neutral IND due to lack of interaction between the neutral adsorbate and acidic adsorbent and the reduced porosities of the modified adsorbents. The reusability of the adsorbents was found satisfactory up to the fourth run. On the basis of the result, it is suggested that metal-triflates, such as Sc(OTf)3, can be prospective materials for adsorptive desulfurization/denitrogenation of fuels when supported on porous materials such as MOFs. PMID:26575418

  7. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    Science.gov (United States)

    Ban, Lili; Liu, Ping; Ma, Cunhua; Dai, Bin

    2013-12-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system.

  8. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid

    International Nuclear Information System (INIS)

    Highlights: • A protic ionic liquid, [Hnmp]HCOO, was used as in ODS. • The mechanism of ODS was involved in dual activation by the PIL. • The [Hnmp]HCOO exhibited high catalytic activity in ODS. • The amounts of PILs and oxidant dosage play vital roles in desulfurization system. • This system can be recycled five times with an unnoticeable decrease in activity. - Abstract: A novel and green carboxylate-anion-based protic ionic liquid (PIL), [Hnmp]HCOO, was prepared through a simple and atom economic neutralization reaction between N-methyl-2-pyrrolidonium (NMP) and formic acids. Both FT-IR spectra and 1H NMR confirmed its simple salt structure. [Hnmp]HCOO exhibited so high catalytic activity that the dibenzothiophene (DBT) removal reached 99% at 50 °C in 3 h under conditions of VPIL/Vmodel oil = 1:10 and H2O2/DBT (O/S, molar ratio) = 5. The catalytic oxidation reactivity of S-compounds was found to be in the order of DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT). The investigation on mechanism showed that oxidative desulfurization was realized through dual activation of PIL. Moreover, [Hnmp]HCOO can be recycled for five times with an unnoticeable decrease in desulfurization activity

  9. Development of a Potent, Specific CDK8 Kinase Inhibitor Which Phenocopies CDK8/19 Knockout Cells.

    Science.gov (United States)

    Koehler, Michael F T; Bergeron, Philippe; Blackwood, Elizabeth M; Bowman, Krista; Clark, Kevin R; Firestein, Ron; Kiefer, James R; Maskos, Klaus; McCleland, Mark L; Orren, Linda; Salphati, Laurent; Schmidt, Steve; Schneider, Elisabeth V; Wu, Jiansheng; Beresini, Maureen H

    2016-03-10

    Beginning with promiscuous COT inhibitors, which were found to inhibit CDK8, a series of 6-aza-benzothiophene containing compounds were developed into potent, selective CDK8 inhibitors. When cocrystallized with CDK8 and cyclin C, these compounds exhibit an unusual binding mode, making a single hydrogen bond to the hinge residue A100, a second to K252, and a key cation-π interaction with R356. Structure-based drug design resulted in tool compounds 13 and 32, which are highly potent, kinase selective, permeable compounds with a free fraction >2% and no measurable efflux. Despite these attractive properties, these compounds exhibit weak antiproliferative activity in the HCT-116 colon cancer cell line. Further examination of the activity of 32 in this cell line revealed that the compound reduced phosphorylation of the known CDK8 substrate STAT1 in a manner identical to a CDK8 knockout clone, illustrating the complex effects of inhibition of CDK8 kinase activity in proliferation in these cells. PMID:26985305

  10. Palladium-catalyzed thiocarbonylation of aryl, vinyl, and benzyl bromides.

    Science.gov (United States)

    Burhardt, Mia N; Ahlburg, Andreas; Skrydstrup, Troels

    2014-12-19

    A catalytic protocol for synthesis of thioesters from aryl, vinyl, and benzyl bromides as well as benzyl chlorides was developed using only stoichiometric amounts of carbon monoxide, produced from a solid CO precursor inside a two-chamber system. As a catalytic system, the combination of bis(benzonitrile) palladium(II) chloride and Xantphos furnished the highest yields of the desired compounds, along with the weak base, NaOAc, in anisole at 120 °C. The choice of catalytic system as well as solvent turned out to be important in order to ensure a high chemoselectivity in the reaction. Both electron-rich and electron-deficient aryl bromides worked well in this reaction. Addition of 1 equiv of sodium iodide to the reaction improved the chemoselectivity with the electron-deficient aryl bromides. The thiol scope included both aryl and alkyl thiols, including 2-mercaptobenzophenones, whereby a thiocarbonylation followed by a subsequent McMurry coupling yielded differently substituted benzothiophenes. It was demonstrated that the methodology could be applied for (13)C introduction into the thiophene ring. PMID:24919457

  11. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  12. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    Science.gov (United States)

    Zhang, Yang; Liu, Zhao-Peng

    2016-03-16

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed. PMID:26861002

  13. Going Beyond Common Drug Metabolizing Enzymes: Case Studies of Biotransformation Involving Aldehyde Oxidase, γ-Glutamyl Transpeptidase, Cathepsin B, Flavin-Containing Monooxygenase, and ADP-Ribosyltransferase.

    Science.gov (United States)

    Fan, Peter W; Zhang, Donglu; Halladay, Jason S; Driscoll, James P; Khojasteh, S Cyrus

    2016-08-01

    The significant roles that cytochrome P450 (P450) and UDP-glucuronosyl transferase (UGT) enzymes play in drug discovery cannot be ignored, and these enzyme systems are commonly examined during drug optimization using liver microsomes or hepatocytes. At the same time, other drug-metabolizing enzymes have a role in the metabolism of drugs and can lead to challenges in drug optimization that could be mitigated if the contributions of these enzymes were better understood. We present examples (mostly from Genentech) of five different non-P450 and non-UGT enzymes that contribute to the metabolic clearance or bioactivation of drugs and drug candidates. Aldehyde oxidase mediates a unique amide hydrolysis of GDC-0834 (N-[3-[6-[4-[(2R)-1,4-dimethyl-3-oxopiperazin-2-yl]anilino]-4-methyl-5-oxopyrazin-2-yl]-2-methylphenyl]-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxamide), leading to high clearance of the drug. Likewise, the rodent-specific ribose conjugation by ADP-ribosyltransferase leads to high clearance of an interleukin-2-inducible T-cell kinase inhibitor. Metabolic reactions by flavin-containing monooxygenases (FMO) are easily mistaken for P450-mediated metabolism such as oxidative defluorination of 4-fluoro-N-methylaniline by FMO. Gamma-glutamyl transpeptidase is involved in the initial hydrolysis of glutathione metabolites, leading to formation of proximate toxins and nephrotoxicity, as is observed with cisplatin in the clinic, or renal toxicity, as is observed with efavirenz in rodents. Finally, cathepsin B is a lysosomal enzyme that is highly expressed in human tumors and has been targeted to release potent cytotoxins, as in the case of brentuximab vedotin. These examples of non-P450- and non-UGT-mediated metabolism show that a more complete understanding of drug metabolizing enzymes allows for better insight into the fate of drugs and improved design strategies of molecules in drug discovery. PMID:27117704

  14. The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis

    International Nuclear Information System (INIS)

    Highlights: • High stable and regenerable 20%Ni-AlKIT-6(15) were synthesized. • High dispersion of nickel correlated with ultrasonic dispersion and three-dimensional pore network of AlKIT-6(15). • Sulfur adsorption capacity increases with increasing Lewis acid sites. • The kinetic pseudo second-order model and Langmuir isotherm fit the adsorption of sulfur compounds. - Abstract: High performance nickel supported on mesoporous AlKIT-6 (Si/Al = 15, 25, 50, 100) sorbents were prepared by incipient wetness impregnation (IWI) with ultrasonic aid for adsorptive desulfurization of commercial diesel and simulated fuels. The sorbents were characterized by N2 adsorption–desorption, XRD, NH3-TPD, Py-FT-IR, HRTEM, SEM and atomic absorption spectroscopy techniques. The analysis results confirmed that Aluminum atoms entered the framework and 20%Ni-AlKIT-6(15) can still retain three dimensional structure of AlKIT-6(15) and Ni is highly dispersed in the support. The kinetic pseudo second-order model and Langmuir isotherm are shown to exhibits the best fits of experimental data for the adsorption of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over AlKIT-6 and 5–30%Ni-AlKIT-6. Intraparticle diffusion and steric hindrance were the rate controlling step of the adsorption of T and DBT over AlKIT-6(15) and 20%Ni-AlKIT-6(15) as verified through the intraparticle diffusion model. The characterization of regenerated 20%Ni-AlKIT-6(15) revealed that three-dimensional cubic Ia3d symmetric structure was maintained in the sorbent after 6 successive desulfurization–regeneration cycles

  15. C-H and N-H bond dissociation energies of small aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barckholtz, C.; Barckholtz, T.A.; Hadad, C.M.

    1999-01-27

    A survey of computational methods was undertaken to calculate the homolytic bond dissociation energies (BDEs) of the C-H and N-H bonds in monocyclic aromatic molecules that are representative of the functionalities present in coal. These include six-membered rings (benzene, pyridine, pyridazine, pyrimidine, pyrazine) and five-membered rings (furan, thiophene, pyrrole, oxazole). By comparison of the calculated C-H BDEs with the available experimental values for these aromatic molecules, the B3LYP/6-31G(d) level of theory was selected to calculate the BDEs of polycyclic aromatic hydrocarbons (PAHs), including carbonaceous PAHs (naphthalene, anthracene, pyrene, coronene) and heteroatomic PAHs (benzofuran, benzothiophene, indole, benzoxazole, quinoline, isoquinoline, dibenzofuran, carbazole). The cleavage of a C-H or a N-H bond generates a {sigma} radical that is, in general, localized at the site from which the hydrogen atom was removed. However, delocalization of the unpaired electron results in {approximately} 7 kcal {center{underscore}dot} mol{sup {minus}1} stabilization of the radical with respect to the formation of phenyl when the C-H bond is adjacent to a nitrogen atom in the azabenzenes. Radicals from five-membered rings are {approximately} 6 kcal {center{underscore}dot} mol{sup {minus}1} less stable than those formed from six-membered rings due to both localization of the spin density and geometric factors. The location of the heteroatoms in the aromatic ring affects the C-H bond strengths more significantly than does the size of the aromatic network. Therefore, in general, the monocyclic aromatic molecules can be used to predict the C-H BDE of the large PAHs within 1 kcal {center{underscore}dot} mol{sup {minus}1}.

  16. Discovery and Evaluation of Thiazinoquinones as Anti-Protozoal Agents

    Directory of Open Access Journals (Sweden)

    Marcel Kaiser

    2013-09-01

    Full Text Available Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2 to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM and Plasmodium falciparum (K1 dual drug resistant strain (IC50 3.3 μM while exhibiting low levels of cytotoxicity (L6, IC50 167 μM. A series of C-7 amide and Δ2(3 analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM, and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively, while Δ2(3-phenethylamide 8e (IC50 0.67 μM, SI 78 exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM combined with excellent selectivity (SI 560–4000. In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively.

  17. Study on ionizing radiation effects in diesel and crude oil: organic compounds, hydrocarbon, sulfur and nitrogen; Estudo do efeito da radiacao ionizante em compostos organicos do diesel e do petroleo: hidrocarbonetos, sulfurados e nitrogenados

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luana dos Santos

    2014-07-01

    Petroleum is the most important energy and pollution source in the world, nowadays. New technologies in petrochemical industry aim to minimize energy spending at the process and to reduce pollution products. Sulfur and nitrogen compounds generate environmental problems; the most relevant is air pollution that affects the population health directly. The nuclear technology has been used in environmental protection through pollutants removal by free radicals produced at action of the radiation in water molecule. The objective of this study is to evaluate the radiation effects on oil and diesel, mainly in the hydrocarbons, organic sulfur, and nitrogen compounds. It was studied a molecule model of sulfur, named benzothiophene, diesel and crude oil samples. The samples were irradiated using a Co-60 source, Gammacell type. The total sulfur concentration in the samples was determined by X-ray fluorescence spectrometry, and organic compounds were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The study of molecular model showed that 95% was degraded at 20 kGy dose rate. Irradiation at 15 kGy of absorbed dose showed some cracking in petrol hydrocarbons, however with higher doses it was observed polymerization and low efficiency of cracking. It was observed that the sulfur compounds from diesel and petroleum was efficiently reduced. The applied doses of 15 kGy and 30 kGy were the most efficient on desulfurization of petroleum, and for diesel the highest variation was observed with 30 kGy and 50 kGy of absorbed dose. The distillation and chromatographic separation using an open column with palladium chloride as stationary phase showed a preferential separation of organic sulfur compounds in petroleum. (author)

  18. Study on ionizing radiation effects in diesel and crude oil: organic compounds, hydrocarbon, sulfur and nitrogen

    International Nuclear Information System (INIS)

    Petroleum is the most important energy and pollution source in the world, nowadays. New technologies in petrochemical industry aim to minimize energy spending at the process and to reduce pollution products. Sulfur and nitrogen compounds generate environmental problems; the most relevant is air pollution that affects the population health directly. The nuclear technology has been used in environmental protection through pollutants removal by free radicals produced at action of the radiation in water molecule. The objective of this study is to evaluate the radiation effects on oil and diesel, mainly in the hydrocarbons, organic sulfur, and nitrogen compounds. It was studied a molecule model of sulfur, named benzothiophene, diesel and crude oil samples. The samples were irradiated using a Co-60 source, Gammacell type. The total sulfur concentration in the samples was determined by X-ray fluorescence spectrometry, and organic compounds were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The study of molecular model showed that 95% was degraded at 20 kGy dose rate. Irradiation at 15 kGy of absorbed dose showed some cracking in petrol hydrocarbons, however with higher doses it was observed polymerization and low efficiency of cracking. It was observed that the sulfur compounds from diesel and petroleum was efficiently reduced. The applied doses of 15 kGy and 30 kGy were the most efficient on desulfurization of petroleum, and for diesel the highest variation was observed with 30 kGy and 50 kGy of absorbed dose. The distillation and chromatographic separation using an open column with palladium chloride as stationary phase showed a preferential separation of organic sulfur compounds in petroleum. (author)

  19. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Material Science, Northwest University, Xi’an 710069, Shaanxi (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Gao, Ruimin [Research Institute of Shaanxi Yanchang Petroleum Group Corp. Ltd., Xi’an 710075 (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Zhao, Jianshe, E-mail: jszhao@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Material Science, Northwest University, Xi’an 710069, Shaanxi (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Wang, Junlong [Research Institute of Shaanxi Yanchang Petroleum Group Corp. Ltd., Xi’an 710075 (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China)

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.

  20. Photophysical properties of heteroaromatic ring-fused (di)benzosiloles

    Institute of Scientific and Technical Information of China (English)

    SHIMIZU Masaki; MOCHIDA Kenji; KATOH Masaki; HIYAMA Tamejiro

    2012-01-01

    Benzosiloles fused to heterocycles such as thiophene,benzothiophene,and benzofuran,and indole- and benzosilole-fused dibenzosiloles were prepared by palladium-catalyzed intramolecular coupling of the corresponding 2-(arylsilyl)aryl triflates in good to high yields.Molecular and crystal structures of 5,7-dihydro-5,5,7,7-tetrakis(1- methylethyl)bis[1]benzosilolo-[2,3-b:3',2'-d]thiophene,6-methyl- 12,12-diisopropyl- 12H-indololo[3,2-b][ 1 ]silafluorene,and 5,5,11,11-tetraisopropyl-5,11H-benzosi lolo[3,2-c]silafluorene were determined by X-ray diffraction analysis.The UV absorption spectra of the (di)benzosilole derivatives in cyclohexane red-shifted when compared to 1,1-diisopropyldibenzosilole,indicating that replacing a benzene ring of dibenzosilole by the heterocycles as well as fusion of indole and benzosilole moieties onto dibenzosilole narrowed the HOMO-LUMO gaps of the π-conjugation system.The thiophene-fused benzosiloles were faintly fluorescent in solution and in the solid state,whereas the dibenzosiloles exhibited luminescence with moderate and high quantum yields in cyclohexane and in microcrystals,respectively.In other words,aggregation-induced emission was observed for the dibenzosiloles.Notably,5,5,11,11- tetraisopropyl-5,11 H-benzosilolo[3,2-c]silafluorene in microcrystals exhibited violet fluorescence (λmax =396 nm) with a quantum yield of 0.70.Density functional theory (DFT) calculations of the prepared (di)benzosiloles were also performed.

  1. Ultra-Deep Adsorptive Desulfurization of Light-Irradiated Diesel Fuel over Supported TiO2-CeO2 Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jing; Wang, Xiaoxing; Chen, Yongsheng; Fujii, Mamoru; Song, Chunshan [SCUT-China; (Penn)

    2014-02-13

    This study investigates ultra-deep adsorptive desulfurization (ADS) from light-irradiated diesel fuel over supported TiO2–CeO2 adsorbents. A 30-fold higher desulfurization capacity of 95 mL of fuel per gram of adsorbent (mL-F/g-sorb) or 1.143 mg of sulfur per gram of adsorbent (mg-S/g-sorb) was achieved from light-irradiated fuel over the original low-sulfur fuel containing about 15 ppm by weight (ppmw) of sulfur. The sulfur species on spent TiO2–CeO2/MCM-48 adsorbent was identified by sulfur K-edge XANES as sulfones and the adsorption selectivity to different compounds tested in a model fuel decreases in the order of indole > dibenzothiophenesulfone → dibenzothiophene > 4-methyldibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiophene > phenanthrene > 2-methylnaphthalene ~ fluorene > naphthalene. The results suggest that during ADS of light-irradiated fuel, the original sulfur species were chemically transformed to sulfones, resulting in the significant increase in desulfurization capacity. For different supports for TiO2–CeO2 oxides, the ADS capacity increases with a decrease in the point of zero charge (PZC) value; for silica-supported TiO2–CeO2 oxides (the lowest PZC value of 2–4) with different surface areas, the ADS capacity increases monotonically with increasing surface area. The supported TiO2–CeO2/MCM-48 adsorbent can be regenerated using oxidative air treatment. The present study provides an attractive new path to achieve ultraclean fuel more effectively.

  2. Analysis of the reactivity of sulphur compounds in petroleum cuts: kinetics and modelling of hydro-treating; Analyse de la reactivite des composes soufres dans les coupes petrolieres: cinetique et modelisation de l'hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Garcia, C.

    2000-12-01

    The study of the hydro-treating of middle distillates comprised the following steps: - Identification and reactivity study of the sulphur compounds present in these petroleum cuts; - Modelling of the process by a chemical kinetic approach. The hydro-treating of middle distillates is a refining process that allows elimination of organic compounds containing sulphur, nitrogen, oxygen and metals. The process also hydrogenates the aromatic compounds providing improved cetane index gas-oils while respecting the regulations that severely limit the content of sulphur compounds. The extension and the improvement of a kinetic model for the hydro-treating of LCO gas-oils (light cycle oil gas-oils) are presented in this work. In order to improve the hydro-desulfurization model predictions, a detailed identification of the sulphur compounds contained in LCO gas-oils was carried out using gas chromatography with a sulphur chemiluminescence detector (GC-SCD). The most refractory sulphur compounds (alkyl-di-benzothiophenes) were identified and lumped into different families. Based on a lumped reaction scheme with a Langmuir-Hinshelwood representation, the model takes into account the influence of temperature, total pressure and hydrogen sulphide partial pressure on the reaction rates for hydro-desulfurization, hydro-denitrogenation and hydro-de-aromatization. The model parameter estimation was based on experiments that were carried out on a micro-pilot unit using an industrial sulfided NiMo/Al{sub 2}O{sub 3} catalyst and LCO feedstocks. The analytical study of the sulphur compounds was also extended to the case of straight run gas-oils (SR). For these feedstocks, a method using high-resolution mass spectrometry coupled with gas chromatography (GC-HRMS) was developed. In this way, the kinetic model can now be extended for the SR gas-oil hydro-treating or for LCO-SR mixtures. (author)

  3. Growth directions of C8-BTBT thin films during drop-casting

    Science.gov (United States)

    Iizuka, Naoki; Zanka, Tomohiko; Onishi, Yosuke; Fujieda, Ichiro

    2016-02-01

    Because charge transport in a single crystal is anisotropic, control of its orientation is important for enhancing electrical characteristics and reducing variations among devices. For growing an organic thin film, a solution process such as inkjet printing offers advantages in throughput. We have proposed to apply an external temperature gradient during drop-casting and to control the direction of solvent evaporation. In experiment, a temperature gradient was generated in a bare Si substrate by placing it on a Si plate bridging two heat stages. When a solution containing 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) was dropped on the substrate, evaporation started at the hotter side of the droplet and proceeded toward the colder side. The front line of the liquid was not pinned and the solution extended toward the colder region. As a result, a thin film was formed in a 7mm-long region. The peripheral region of the film was significantly thicker due to the coffee ring effect. The surface of the rest of the film was mostly smooth and terrace structures with 2.6nm steps were observed. The step roughly corresponds to the length of the C8-BTBT molecule. The film thickness varied from 20nm to 50nm over the distance of 3mm. Another film was grown on a glass substrate under a similar condition. Observation of the film with a polarizing microscope revealed that fan-shaped domains were formed in the film and that their optical axes were mostly along the directions of the solvent evaporation.

  4. The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Subhan, Fazle, E-mail: fazle@awkum.edu.pk [Department of Chemistry, Abdul Wali Khan University, Mardan, K.P.K (Pakistan); State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Yan, Zifeng, E-mail: zfyancat@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Peng, Peng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Ikram, Muhammad [Department of Chemistry, Abdul Wali Khan University, Mardan, K.P.K (Pakistan); Rehman, Sadia [Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, K.P.K (Pakistan)

    2014-04-01

    Highlights: • High stable and regenerable 20%Ni-AlKIT-6(15) were synthesized. • High dispersion of nickel correlated with ultrasonic dispersion and three-dimensional pore network of AlKIT-6(15). • Sulfur adsorption capacity increases with increasing Lewis acid sites. • The kinetic pseudo second-order model and Langmuir isotherm fit the adsorption of sulfur compounds. - Abstract: High performance nickel supported on mesoporous AlKIT-6 (Si/Al = 15, 25, 50, 100) sorbents were prepared by incipient wetness impregnation (IWI) with ultrasonic aid for adsorptive desulfurization of commercial diesel and simulated fuels. The sorbents were characterized by N{sub 2} adsorption–desorption, XRD, NH{sub 3}-TPD, Py-FT-IR, HRTEM, SEM and atomic absorption spectroscopy techniques. The analysis results confirmed that Aluminum atoms entered the framework and 20%Ni-AlKIT-6(15) can still retain three dimensional structure of AlKIT-6(15) and Ni is highly dispersed in the support. The kinetic pseudo second-order model and Langmuir isotherm are shown to exhibits the best fits of experimental data for the adsorption of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over AlKIT-6 and 5–30%Ni-AlKIT-6. Intraparticle diffusion and steric hindrance were the rate controlling step of the adsorption of T and DBT over AlKIT-6(15) and 20%Ni-AlKIT-6(15) as verified through the intraparticle diffusion model. The characterization of regenerated 20%Ni-AlKIT-6(15) revealed that three-dimensional cubic Ia3d symmetric structure was maintained in the sorbent after 6 successive desulfurization–regeneration cycles.

  5. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Angelici

    2003-06-01

    Refractory 4,6-dimethyldibenzothiophene, which is difficult to remove from petroleum feedstocks, binds to the Ru in Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} by displacing the H{sub 2}O ligand. Thiophene, benzothiophene and dibenzothiophene (DBT) also react with Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} similarly. This binding ability of Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} has been used to remove over 50% of the DBT in simulated petroleum feedstocks by a biphasic extraction process. The extraction phase is readily regenerated by air-oxidation thereby completing a cyclic process that removes DBT from petroleum feedstocks. Solid phase extractants consisting of Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}, CpRu(CO){sub 2}(BF{sub 4}), CpFe(CO){sub 2}(C{sub 4}H{sub 8}){sup +} and AgX (where X = BF{sub 4}{sup -}, PF{sub 6}{sup -} or NO{sub 3}{sup -}) adsorbed on silica have also been used to remove DBT and 4,6-Me{sub 2}DBT from simulated petroleum feedstocks. The AgX/silica adsorbents remove 90% of the DBT and 4,6-Me{sub 2}DBT and can be regenerated and re-used for multiple extractions, which makes these adsorbents of potential industrial use for the removal of refractory dibenzothiophenes from petroleum feedstocks.

  6. Genotoxicity of heterocyclic PAHs in the micronucleus assay with the fish liver cell line RTL-W1.

    Directory of Open Access Journals (Sweden)

    Markus Brinkmann

    Full Text Available Heterocyclic aromatic hydrocarbons are, together with their un-substituted analogues, widely distributed throughout all environmental compartments. While fate and effects of homocyclic PAHs are well-understood, there are still data gaps concerning the ecotoxicology of heterocyclic PAHs: Only few publications are available investigating these substances using in vitro bioassays. Here, we present a study focusing on the identification and quantification of clastogenic and aneugenic effects in the micronucleus assay with the fish liver cell line RTL-W1 that was originally derived from rainbow trout (Oncorhynchus mykiss. Real concentrations of the test items after incubation without cells were determined to assess chemical losses due to, e.g., sorption or volatilization, by means of gas chromatography-mass spectrometry. We were able to show genotoxic effects for six compounds that have not been reported in vertebrate systems before. Out of the tested substances, 2,3-dimethylbenzofuran, benzothiophene, quinoline and 6-methylquinoline did not cause substantial induction of micronuclei in the cell line. Acridine caused the highest absolute induction. Carbazole, acridine and dibenzothiophene were the most potent substances compared with 4-nitroquinoline oxide, a well characterized genotoxicant with high potency used as standard. Dibenzofuran was positive in our investigation and tested negative before in a mammalian system. Chemical losses during incubation ranged from 29.3% (acridine to 91.7% (benzofuran and may be a confounding factor in studies without chemical analyses, leading to an underestimation of the real potency. The relative potency of the investigated substances was high compared with their un-substituted PAH analogues, only the latter being typically monitored as priority or indicator pollutants. Hetero-PAHs are widely distributed in the environment and even more mobile, e.g. in ground water, than homocyclic PAHs due to the higher water

  7. Polycyclic aromatic compounds in shale oils: influence of process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Nazzal, J.M. [University of Leeds (United Kingdom). Dept. of Fuel and Energy

    1998-08-01

    Polycyclic aromatic compounds (PAC) are a significant environmental chemical group, with an associated health hazard. They have been shown to be present in oils derived from the pyrolysis of oil shales; however, the influence of process conditions on their concentration is less well known. Oil shales were pyrolysed in a 200 cm{sup 3} stainless steel fixed bed reactor in relation to temperature from 400{sup o}C to 620{sup o}C in both a nitrogen and nitrogen/steam atmosphere. The condensed oils were analysed for their content of PAC, including polycyclic aromatic hydrocarbons (PAH), sulphur-PAH (PASH) and Nitrogen-PAH (PANH). The derived gases were analysed in terms of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and other hydrocarbons to C{sub 4} and the alkene/alkane ratio determined. The derived shale oils were found to contain significant concentrations of PAH, PASH and PANH some of which have been shown to be biologically active. The main PAH were napthalene, fluorene and phenanthrene and their alkylated homologues; PASH identified included, benzothiophene, and dibenzothiophene and the PANH included indole, carbazole and quinoline and their alkylated derivatives. The concentration of PAC increased with increasing pyrolysis temperature and their formation was linked to increased secondary reactions as indicated by the gas phase alkene/alkane ratio. The influence of steam was to increase the yield of oil significantly. The presence of steam also increased the concentration of PAC in the derived shale oil compared to using nitrogen as the sweep gas. (author)

  8. Effect of gasoline composition on oxidative desulfurization using a phosphotungstic acid/activated carbon catalyst with hydrogen peroxide

    International Nuclear Information System (INIS)

    Highlights: • Concerned with the question why ODS catalyst is not effective for real gasoline. • Reported the strong inhibiting effect of gasoline composition on ODS for the 1st time. • ODS reactivity is suggested to be determined by partial charge on S atom of thiophene. • Proposed approaches to improve ODS selectivity for real gasoline desulfurization. - Abstract: This work is concerned with the question of why oxidative desulfurization (ODS) catalyst that show good catalytic performance for ODS of model gasoline thiophenic compounds is not effective for real gasoline. For the first time, the effects of gasoline composition on ODS using a phosphotungstic acid/activated carbon (HPW/AC) catalyst with H2O2 were investigated. ODS of thiophene, one of the most difficult thiophenic compounds to be oxidized, was studied in a model fuel system, where a high thiophene conversion rate of 90% could be reached in 2 h at 90 °C. However, when applying the ODS to a real gasoline, the ODS conversion rate decreased to only 32%, suggesting a strong inhibiting effect of gasoline composition on ODS. The ODS studies in different model fuels suggested that the inhibiting effect can be ascribed to the competitive adsorption and oxidation with the presence of the alkenes and alkylated aromatic hydrocarbons in real gasoline. The active pi-electrons in alkenes and alkyl groups in alkylated aromatic hydrocarbons may react with polyoxoperoxo species or peroxo-metallate complexes formed by phosphotungstic acid–H2O2 interaction. Additionally, it was indicated that the ODS selectivity followed the order of benzothiophene > trimethylthiophene > dimethylthiophene ∼ methylthiophene > thiophene, suggesting the partial charge on the electron-rich sulfur atom may play a decisive role for its oxidation reactivity. To mitigate the inhibiting effect of gasoline composition on ODS, we propose (a) implementation of selective separation–oxidation processes; (b) choice of suitable selective

  9. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    International Nuclear Information System (INIS)

    M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2–W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2–W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu2(PcAN)2–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed

  10. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    Science.gov (United States)

    Meshoulam, Alexander; Ellis, Geoffrey S.; Said Ahmad, Ward; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon

    2016-09-01

    The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰). Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4 dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and

  11. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT; FINAL

    International Nuclear Information System (INIS)

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  12. Transport of creosote compounds in a large, intact, macroporous clayey till column

    Science.gov (United States)

    Broholm, Kim; Jørgensen, Peter R.; Hansen, Asger B.; Arvin, Erik; Hansen, Martin

    1999-10-01

    The transport in macroporous clayey till of bromide and 25 organic compounds typical of creosote was studied using a large intact soil column. The organic compounds represented the following groups: polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, monoaromatic hydrocarbons (BTEXs), and heterocyclic compounds containing oxygen, nitrogen or sulphur in the aromatic ring structure (NSO-compounds). The clayey till column (0.5 m in height and 0.5 m in diameter) was obtained from a depth of 1-1.5 m at an experimental site located on the island of Funen, Denmark. Sodium azide was added to the influent water of the column to prevent biodegradation of the studied organic compounds. For the first 24 days of the experiment, the flow rate was 219 ml day -1 corresponding to an infiltration rate of 0.0011 m day -1. At this flow rate, the effluent concentrations of bromide and the organic compounds increased very slowly. The transport of bromide and the organic compounds were successfully increased by increasing the flow rate to 1353 ml day -1 corresponding to 0.0069 m day -1. The experiment showed that the transport of low-molecular-weight organic compounds was not retarded relative to bromide. The high-molecular-weight organic compounds were retarded significantly. The influence of sorption on the transport of the organic compounds through the column was evaluated based on the observed breakthrough curves. The observed order in the column experiment was, with increasing retardation, the following: benzene=pyrrole=toluene= o-xylene= p-xylene=ethylbenzene=phenol=benzothiophene=benzofuran

  13. Simulations of charge transport in organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vehoff, Thorsten

    2010-05-05

    We study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The high mobility of rubrene is explained by two main

  14. Polymer-bound oxidovanadium(IV) and dioxidovanadium(V) complexes as catalysts for the oxidative desulfurization of model fuel diesel.

    Science.gov (United States)

    Maurya, Mannar R; Arya, Aarti; Kumar, Amit; Kuznetsov, Maxim L; Avecilla, Fernando; Costa Pessoa, João

    2010-07-19

    The Schiff base (Hfsal-dmen) derived from 3-formylsalicylic acid and N,N-dimethyl ethylenediamine has been covalently bonded to chloromethylated polystyrene to give the polymer-bound ligand, PS-Hfsal-dmen (I). Treatment of PS-Hfsal-dmen with [V(IV)O(acac)(2)] in the presence of MeOH gave the oxidovanadium(IV) complex PS-[V(IV)O(fsal-dmen)(MeO)] (1). On aerial oxidation in methanol, complex 1 was oxidized to PS-[V(V)O(2)(fsal-dmen)] (2). The corresponding neat complexes, [V(IV)O(sal-dmen)(acac)] (3) and [V(V)O(2)(sal-dmen)] (4) were similarly prepared. All these complexes are characterized by various spectroscopic techniques (IR, electronic, NMR, and electron paramagnetic resonance (EPR)) and thermal as well as field-emission scanning electron micrographs (FE-SEM) studies, and the molecular structures of 3 and 4 were determined by single crystal X-ray diffraction. The EPR spectrum of the polymer supported V(IV)O-complex 1 is characteristic of magnetically diluted V(IV)O-complexes, the resolved EPR pattern indicating that the V(IV)O-centers are well dispersed in the polymer matrix. A good (51)V NMR spectrum could also be measured with 4 suspended in dimethyl sulfoxide (DMSO), the chemical shift (-503 ppm) being compatible with a VO(2)(+)-center and a N,O binding set. The catalytic oxidative desulfurization of organosulfur compounds thiophene, dibenzothiophene, benzothiophene, and 2-methyl thiophene (model of fuel diesel) was carried out using complexes 1 and 2. The sulfur in model organosulfur compounds oxidizes to the corresponding sulfone in the presence of H(2)O(2). The systems 1 and 2 do not loose efficiency for sulfoxidation at least up to the third cycle of reaction, this indicating that they preserve their integrity under the conditions used. Plausible intermediates involved in these catalytic processes are established by UV-vis, EPR, (51)V NMR, and density functional theory (DFT) studies, and an outline of the mechanism is proposed. The (51)V NMR spectra

  15. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Pienkos, Philip T.

    2002-01-15

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  16. Effect of Polymer Binders on UV-Responsive Organic Thin-Film Phototransistors with Benzothienobenzothiophene Semiconductor.

    Science.gov (United States)

    Ljubic, Darko; Smithson, Chad S; Wu, Yiliang; Zhu, Shiping

    2016-02-17

    The influence of polymer binders on the UV response of organic thin-film phototransistors (OTF-PTs) is reported. The active channel of the OTF-PTs was fabricated by blending a UV responsive 2,7-dipenty-[1]benzothieno[2,3-b][1]benzothiophene (C5-BTBT) as small molecule semiconductor and a branched unsaturated polyester (B-upe) as dielectric binder (ratio 1:1). To understand the influence of the polymer composition on the photoelectrical properties and UV response of C5-BTBT, control blends were prepared using common dielectric polymers, namely, poly(vinyl acetate) (PVAc), polycarbonate (PC), and polystyrene (PS), for comparison. Thin-film morphology and nanostructure of the C5-BTBT/polymer blends were investigated by means of optical and atomic force microscopy, and powder X-ray diffraction, respectively. Electrical and photoelectrical characteristics of the studied OTF-PTs were evaluated in the dark and under UV illumination with a constant light intensity (P = 3 mW cm(-2), λ = 365 nm), respectively, using two- and three-terminal I-V measurements. Results revealed that the purposely chosen B-upe polymer binder strongly affected the UV response of OTF-PTs. A photocurrent increase of more than 5 orders of magnitude in the subthreshold region was observed with a responsivity as high as 9.7 AW(-1), at VG = 0 V. The photocurrent increase and dramatic shift of VTh,average (∼86 V) were justified by the high number of photogenerated charge carriers upon the high trap density in bulk 8.0 × 10(12) cm(-2) eV(-1) generated by highly dispersed C5-BTBT in B-upe binder. Compared with other devices, the B-upe OTF-PTs had the fastest UV response times (τr1/τr2 = 0.5/6.0) reaching the highest saturated photocurrent (>10(6)), at VG = -5 V and VSD = -60 V. The enhanced UV sensing properties of B-upe based OTF-PTs were attributed to a self-induced thin-film morphology. The enlarged interface facilitated the electron withdrawing/donating functional groups in the polymer chains in

  17. STUDY ON THE TRANSFORMATION OF DIBENZOTHIOPHENE IN FCC PROCESS%二苯并噻吩在催化裂化过程中的转化规律研究

    Institute of Scientific and Technical Information of China (English)

    崔琰; 高永灿; 姜楠

    2011-01-01

    The transformation mechanism of dibenzothiophene (DBT) in FCC process was studied on a fixed fluidized bed unit in laboratory using DBT containing hexadecane as feed. Test results showed that under the conditions of a reaction temperature of 500 ℃ ,a catalyst to oil mass ratio of 6 and a space velocity of 10 h-1 ,the conversion of DBT was about 45%. Alkylation reactions were the main reactions in which DBT took place. The main product was methtyl-benzothiophene and followed by C2-C5 alkylDBT. Nearly 90 percentage of the sulfur in the DBT-hexadecane reaction system was distributed in the liquid products,only a small portion was converted to H2S and coke. The presence of DBT reduced the conversion of hexadecane,the yield of gasoline fractions decreased, the yields of dry gas, diesel fractions and coke increased.%在小型固定流化床(FFB)装置上以二苯并噻吩(DBT)十六烷体系为原料,研究DBT在催化裂化过程中的转化规律.结果表明,在反应温度500℃、剂油质量比6、空速10 h-1的条件下,DBT的转化率为45%左右.在DBT参与的反应中,烷基化反应占主要地位.DBT转化为甲基苯并噻吩的比例最高,其次为C2~C5的烷基二苯并噻吩.DBT-十六烷反应体系的硫90%左右分布在催化裂化液体产品中,少量反应生成硫化氢,少量进入焦炭中.DBT的加入降低了十六烷的转化率,促使千气生成,汽油产率减少,柴油产率增加,焦炭产率显著增加.

  18. Benzene and ethylene in Bio-SNG production. Nuisance, fuel or valuable products?

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M. Rabou; Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2011-11-15

    , it has no use for benzene as an additional heat source. That is why ECN research focuses on solving problems associated with the conversion of benzene and ethylene to methane. One of the problems is removal of organic sulphur compounds, especially thiophene and its derivatives like benzo-thiophene. The main route pursued by ECN is conversion of thiophenes by a hydrodesulphurization (HDS) catalyst, followed by adsorption of the hydrogensulphide produced. Benzene removed from producer gas by liquid scrubbing or adsorption to a solid sorbent can also be recovered for use as fuel in a separate boiler. An advantage of that approach would be that benzene can be stored more easily than producer gas to match heat production with demand by e.g. a district heat system or to provide heat during gasifier maintenance. In fact, that would copy the approach followed in Harbooere with tar. Another promising option is cryogenic separation of producer gas. In principle, that would make it possible to separate and recover not only benzene but also ethylene. Even without purification, these may have more value as chemical base materials than when used as fuel. The cryogenic treatment would probably also capture sulphur compounds, thus considerably simplifying the gas cleaning needed for protection of the methanation catalyst. Advantages and disadvantages of the above options will be discussed. Experimental results of ECN research on hydrodesulphurization and adsorbents will be presented. Further research questions will be addressed.

  19. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    O catalysts for decomposition of sulfones showed that these catalysts are effective in decomposing oxidized sulfur compounds such as dibenzothiophene sulfone and 3-methyl benzothiophene sulfone to biphenyl and isopropyl benzene respectively and SO2. Study of catalyst structure-activity relationship revealed that in the range of 40--140 nm of MgO, crystallite size plays a critical role on activity of the catalyst for sulfone decomposition. In testing other alkali oxides, it was demonstrated that CaO was effective as a reagent in decomposing oxidized sulfur compounds in a crude oil at a much lower temperature than used for MgO based catalyst. Preliminary data on potential regeneration scheme of spent CaO is also discussed.

  20. Selective Estrogen Receptor Modulators – an Updatebr (Joint Statement by the German Society for Gynecological Endocrinology and Reproductive Medicine [DGGEF] and the German Professional Association of Gynecologists [BVF

    Directory of Open Access Journals (Sweden)

    Rabe T

    2015-01-01

    (with at least 12 months since the last menses for whom treatment with progestin-containing therapy is not appropriate.br Clomifene (Triphenylethylene derivative: Treatment of ovarian dysfunction (infertility. Ospemifene: FDA registration for treatment of moderate or severe dyspareunia, a symptom of vulvar and vaginal atrophy, due to menopause; EU-registration for moderate or severe symptoms of vulvo-vaginal atrophy.br Ormeloxifene used in India for contraception and treatment of dysfunctional uterine bleeding. Raloxifene (Benzothiophene derivative used for treatment and prevention of osteoporosis in postmenopausal women and in some countries (including the USA for breast cancer prevention in high risk women. Raloxifene has no marketing authorization for this indication in Europe. The VTE risk is increased, similar to HRT. Death due to stroke was increased in the RUTH study (secondary prevention study, but not in the MORE or CORE studies (osteoporosis treatment and extension studies.br Tamoxifene (triphenylethylene derivative is licensed for adjuvant use in women with primary or metastasized breast cancer and in some countries for the primary prevention of breast cancer. Tamoxifene is an antiestrogen, used (20 mg/day in women who have estrogen receptor-positive (ER+ breast cancer. Unfortunately, resistance to tamoxifene is common in women with metastatic disease. Possible side effects include an increased risk of endometrial cancer and, like with all SERMs, an increased risk of VTE. An increased risk of stroke has been observed in the NSABP-1 study (RR1.42, but this was not statistically significant. Some antidepressants (SSRIs abolish the effect of tamoxifene.br Toremifene (citrate (also a triphenylethylene derivative has EU marketing authorization for first line endocrine treatment of hormone-dependent meta static breast cancer in postmenopausal patients. Fareston is not recommended for patients with estrogen receptor negative tumors. According to the US license

  1. Compound-specific sulfur isotope analysis of thiadiamondoids of oils from the Smackover Formation, USA

    Science.gov (United States)

    Gvirtzman, Zvi; Said-Ahmad, Ward; Ellis, Geoffrey S.; Hill, Ronald J.; Moldowan, J. Michael; Wei, Zhibin; Amrani, Alon

    2015-10-01

    Thiadiamondoids (TDs) are diamond-like compounds with a sulfide bond located within the cage structure. These compounds were suggested as a molecular proxy for the occurrence and extent of thermochemical sulfate reduction (TSR). Compound-specific sulfur-isotope analysis of TDs may create a multi-parameter system, based on molecular and δ34S values that may be sensitive over a wider range of TSR and thermal maturation stages. In this study, we analyzed a suite of 12 Upper Jurassic oil and condensate samples generated from source rocks in the Smackover Formation to perform a systematic study of the sulfur isotope distribution in thiadiamondoids (one and two cages). For comparison we measured the δ34S composition of benzothiophenes (BTs) and dibenzothiophenes (DBTs). We also conducted pyrolysis experiments with petroleum and model compounds to have an insight into the formation mechanisms of TDs. The δ34S of the TDs varied significantly (ca 30‰) between the different oils depending on the degree of TSR alteration. The results showed that within the same oil, the one-cage TDs were relatively uniform, with 34S enriched values similar to those of the coexisting BTs. The two-cage TDs had more variable δ34S values that range from the δ34S values of BTs to those of the DBTs, but with general 34S depletion relative to one cage TDs. Hydrous pyrolysis experiments (360 °C, 40 h) with either CaSO4 or elemental S (equivalent S molar concentrations) and adamantane as a model compound demonstrate the formation of one cage TDs in relatively low yields (compounds, most notably 2-thiaadamantanone and phenol, were also formed during these pyrolysis experiments. This may represent the first stage in the formation of sulfurized compounds and the oxidation of organic matter under TSR conditions. Pyrolysis experiments with elemental S and a TD-enriched oil showed that the δ34S values of the TDs did not change, whereas the BTs did change significantly. It is therefore concluded

  2. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    Science.gov (United States)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.

  3. Oxidative desulfurization of diesel oil over Ti-MWW catalyst with TBHP as oxidant%Ti-MWW分子筛催化叔丁基过氧化氢氧化脱硫

    Institute of Scientific and Technical Information of China (English)

    程时富; 安莹; 司晓娟; 付贤磊; 高国华

    2011-01-01

    以Ti-MWW为催化剂,考察了不同氧化剂对分别含有苯并噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩等有机硫化物模拟油品氧化反应的影响,结果表明,叔丁基过氧化氢对有机含硫化合物的氧化活性明显高于过氧化氢水溶液.以叔丁基过氧化氢为氧化剂,三种噻吩类含硫化合物氧化的难易顺序为二苯并噻吩>4,6-二甲基二苯并噻吩>苯并噻吩,其氧化活性顺序与含硫化合物中硫原子的电子云密度和空间位阻有关.考察了Ti-MWW/叔丁基过氧化氢催化氧化体系对成品柴油的催化氧化脱硫,结果表明,成品柴油中的含硫化合物可被有效地氧化脱除,在优化的反应条件下,经过两次氧化、萃取后,成品柴油中的总硫含量从1 015 μg/mL降低至11 μg/mL,总脱硫率达到99%.%Oxidative desulfurization (ODS) of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyl dibenzothiophene (DMDBT) in model light oil was investigated with different oxidants over Ti-MWW catalyst. The results indicated that te/t-butyl hydroperoxide (TBHP) exhibits higher reactivity with these organic sulfur-containing compounds than hydogen peroxide. In the presence of TBHP, the reactivity of these sulfur-containing compounds over Ti-MWW catalyst is in the order of DBT > DMDBT > BT, which is determined by the electron density of sulfur atom in thiophene ring as well as the steric hindrance of sulfur compounds. ODS of a commercial diesel oil was also investigated over the Ti-MWW/TBHP system. The sulfur compounds in the commercial diesel oil can be efficiently oxidized to corresponding sulfone under mild reaction conditions; by oxidation and extraction twice, the sulfur content in the commercial diesel oil is decreased from 1 015 μg/mL to 11 μg/ mL and the sulfur removal reaches 99%.

  4. Vieillissement du polyamide 11 utilisé dans les conduites flexibles : influence de la composition du fluide transporté Influence of the Chemical Nature of the Environment on the Aging of Polyamide 11 Used for Offshore Flexible Pipes

    Directory of Open Access Journals (Sweden)

    Ubrich E.

    2006-11-01

    hydrocarbons absorbed preferentially, and having a pasticating role, was determined. These are two-cycle aromatics (alkylnaphthalenes, acenaphthenes, diphenyls, acenaphthylenes, fluorenes and sulfur-containing aromatics (benzothiophenes and dibenzothiophenes. The different results led to the conclusion that the principal phenomenon involved in aging is a hydrolysis caused by the presence of absorbed water in the material, which leads to the cutting of the macromolecular chains and embrittlement of the polymer. Lastly, the model created with gas-oil cuts was applied to a case of aging of a crude oil, and this led to the satisfactory prediction of how the mechanical and physicochernical properties of the polymer evolve in such an environment.