WorldWideScience

Sample records for benzoic aldehyde

  1. Capillary Electrophoresis of Substituted Benzoic Acids

    Science.gov (United States)

    Mills, Nancy S.; Spence, John D.; Bushey, Michelle M.

    2005-01-01

    A series of substituted benzoic acids (SBAs) are prepared by students. The pKa shift, a result of the electron-withdrawing or electron-donating characteristics of the subsistent is examined in reference to the electrophoretic migration behavior of benzoic acid.

  2. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Directory of Open Access Journals (Sweden)

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  3. 21 CFR 582.3021 - Benzoic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  4. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    Science.gov (United States)

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey

  5. Alcohol, Aldehydes, Adducts and Airways.

    Science.gov (United States)

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  6. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    Science.gov (United States)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  7. Inactivation of myeloperoxidase by benzoic acid hydrazide.

    Science.gov (United States)

    Huang, Jiansheng; Smith, Forrest; Panizzi, Jennifer R; Goodwin, Douglas C; Panizzi, Peter

    2015-03-15

    Myeloperoxidase (MPO) is expressed by myeloid cells for the purpose of catalyzing the formation of hypochlorous acid, from chloride ions and reaction with a hydrogen peroxide-charged heme covalently bound to the enzyme. Most peroxidase enzymes both plant and mammalian are inhibited by benzoic acid hydrazide (BAH)-containing compounds, but the mechanism underlying MPO inhibition by BAH compounds is largely unknown. Recently, we reported MPO inhibition by BAH and 4-(trifluoromethyl)-BAH was due to hydrolysis of the ester bond between MPO heavy chain glutamate 242 ((HC)Glu(242)) residue and the heme pyrrole A ring, freeing the heme linked light chain MPO subunit from the larger remaining heavy chain portion. Here we probed the structure and function relationship behind this ester bond cleavage using a panel of BAH analogs to gain insight into the constraints imposed by the MPO active site and channel leading to the buried protoporphyrin IX ring. In addition, we show evidence that destruction of the heme ring does not occur by tracking the heme prosthetic group and provide evidence that the mechanism of hydrolysis follows a potential attack of the (HC)Glu(242) carbonyl leading to a rearrangement causing the release of the vinyl-sulfonium linkage between (HC)Met(243) and the pyrrole A ring.

  8. Tramadol hydrochloride–benzoic acid (1/1

    Directory of Open Access Journals (Sweden)

    B. P. Siddaraju

    2011-09-01

    Full Text Available In the cation of the title co-crystal salt {systematic name: [2-hydroxy-2-(3-methoxyphenylcyclohexylmethyl]dimethylazanium chloride–benzoic acid (1/1}, C16H31NO2+·Cl−·C7H6O2, the N atom is protonated and the six-membered cyclohexane ring adopts a slightly distorted chair conformation. The dihedral angle between the mean planes of the benzene rings in the cation and the benzoic acid molecule is 75.5 (9°. The crystal packing is stabilized by weak intermolecular O—H...Cl, N—H...Cl and C—H...π interactions, forming a two-dimensional chain network along the b axis. The benzoic acid molecule is not involved in the usual head-to-tail dimer bonding, but instead is linked to the ammonium cation through mutual hydrogen-bonding interactions with the chloride anion.

  9. A kinetic study on benzoic acid pungency and sensory attributes of benzoic acid.

    Science.gov (United States)

    Otero-Losada, M E

    1999-06-01

    Aqueous solutions of benzoic acid (BA) were evaluated by two methods: (i) sensory profile: a descriptive test of sensory attributes combined with semiquantitative analysis; and (ii) pungency intensity measures as a function of time: a computerized recording using specific software. Kinetic parameters evaluated were maximal intensity (I(MAX)), total time of pungency (Ttot), rates of increase (V1) and decrease (V2), half-life (T1/2), area under curve (AUC) and time to maximal intensity (T(IMAX)). Results were analyzed by ANOVA, LSD test, iterative calculations and adjustment to equations according to mathematical models, regression analysis, principal component analysis (PCA) and clusters analysis. Pungency was the main sensory attribute of BA (3-36 mM) in the tongue and epiglottis. The seven kinetic parameters showed concentration-dependency (P pungency intensity best correlated with both concentration and persistence among kinetic parameters. Prototypical prickling of BA was observed at 12 and 18 mM.

  10. Interaction Mechanism of Anthracene with Benzoic Acid and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    HE Ying-Ying; WANG Xiao-Chang; FAN Xiao-Yuan; ZHAO Bo; JIN Peng-Kang

    2008-01-01

    Interaction mechanism of anthracene, one of the typical polycyclic aromatic hydrocarbons, with benzoic acid and its hydroxyl-substituted derivatives, o-hydroxylbenzoic acid and p-hydroxylbenzoic acid, were studied using FFIR, UV and fluorescence spectra. The experiments confirmed that there was a specific and oriented interaction between anthracene and the aromatic carboxylic acids, and the bonding mode depended on both the chemical struc- ture of reactants and acidity of solution. The π-H hydrogen bond played a main role in the interaction between an-thracene and the aromatic carboxylic proton of benzoic acid or o-hydroxylbenzoic acid when pH≤pK, and the π-π electron donor-acceptor (EDA) interaction increasingly became the main binding mode when pH>pK. The de-crease of interaction intensity of benzoic acid was observed by introducing hydroxyl at its ortho position. The spe-cial D-π-A structure of p-hydroxylbenzoic acid made it easy to form the planar multi-molecule congeries that could interact with anthracene, so the interaction between anthracene and p-hydroxylbenzoic acid always followed the π-π EDA model no matter the solution acidity. For p-hydroxylbenzoic acid, the π-π interaction mode remained un-changed when pH increased from 2.0 to 10.0, and the binding intensity was higher than that between benzoic acid and anthracene because of the formation of the multi-molecule congeries.

  11. Estimated intake of benzoic and sorbic acids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Christensen, Tue; Larsen, I. K.

    2010-01-01

    of the intake of these preservatives in relation to acceptable daily intakes. This area is explored in this paper. The content of benzoic and sorbic acids in all food groups, where they are allowed, was monitored in Denmark 17 times between 2001 and 2006 with a total of 1526 samples. Transgressions of maximum...

  12. Gaseous aliphatic aldehydes in Chinese incense smoke

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.M.; Wang, L.H. (National Taiwan Univ., Taipei (China))

    1994-09-01

    Aliphatic aldehydes were found during the combustion of materials. Tobacco smoke contains aldehydes. Fire fighters were exposed to aldehydes when they conducted firefighting. Aldehydes in ambient air come mainly from the incomplete combustion of hydrocarbons and from photochemical reaction. Most aldehydes in ambient air are formaldehyde and acetaldehyde. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde were found in the atmosphere in Los Angeles. Burning Chinese incense for worshipping deities is a Chinese daily routine. It was suspected to be a factor causing nasopharynegeal cancer. Epidemiological studies correlated it with the high risk of childhood brain tumor and the high risk of childhood leukemia. Ames test identified the mutagenic effect of the smoke from burning Chinese incense. The smoke had bee proved to contain polycyclic aromatic hydrocarbons and aromatic aldehydes. Suspicion about formaldehyde and other alphatic aldehydes was evoked, when a survey of indoor air pollution was conducted in Taipei city. This study determined the presence of aliphatic aldehydes in the smoke from burning Chinese incense under a controlled atmosphere. 12 refs., 5 figs., 2 tabs.

  13. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    Science.gov (United States)

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  14. Synthesis of p-(Di-n-propylsulphamyl Benzoic Acid

    Directory of Open Access Journals (Sweden)

    S. K. Shukla

    1968-10-01

    Full Text Available A process for the synthesis of p-carboxybenzene sulphonylchloride by oxidation of toluene-p-sulphonylchloride as well as toluene-p-sulphonic acid has been developed. p-carboxybenzene sulphonylchloride on condensation with di-n-propylamine yield p-(di-n-propylsulphamyl -benzoic acid, an uricusuric agent employed in chronic gouty arthritis and used as an antiuric adjuvant known in trade as "Benemid, Probenecid".

  15. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    Science.gov (United States)

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.

  16. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    Science.gov (United States)

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  17. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    Science.gov (United States)

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-01-01

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix

  18. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    Directory of Open Access Journals (Sweden)

    Chuanjun Liu

    2017-02-01

    Full Text Available The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM sensor arrays based on molecularly imprinted sol-gel (MISG materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL; nonanal (NAL and bezaldehyde (BAL. The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS and tetrabutoxytitanium (TBOT. Aminopropyltriethoxysilane (APT; diethylaminopropyltrimethoxysilane (EAP and trimethoxy-phenylsilane (TMP were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA; nonanoic acid (NA and benzoic acid (BA were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA; multivariate analysis of covariance (MANCOVA and hierarchical cluster analysis (HCA. The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP effect and the matrix

  19. Synthesis and phase behavior of dendrons derived from 3,4,5-tris(tetradecyloxy)benzoic acid with different functional groups in focal point

    Indian Academy of Sciences (India)

    Matvey Gruzdev; Ulyana Chervonova; Olga Akopova; Arkadiy Kolker

    2015-10-01

    A number of dendrons of various chain lengths derived from the esters of 3,4,5-tris(tetrade-cyloxy)benzoic acid were synthesized. These esters were used as building blocks in the design of polyester molecules. Intermediate products, such as branched compounds with variation of functional groups in focal point (aromatic acids and their benzyl esters, aldehydes of different generation) were obtained. The structure and purity of all the compounds were determined by elemental analysis, FT-IR, NMR spectroscopy, mass spectrometry (MALDI-ToF). The phase behavior was investigated by differential scanning calorimetry and confirmed by polarized optical microscopy. Consequently, it was established that the liquid-crystalline properties of this series of dendrons arise from the degree of branching. This behavior can be explained by the formation of hydrogen bonds, as well as microsegregation processes of the links of the macromolecule.

  20. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  1. Chemoenzymatic Fc Glycosylation via Engineered Aldehyde Tags

    OpenAIRE

    2014-01-01

    Glycoproteins with chemically defined glycosylation sites and structures are important biopharmaceutical targets and critical tools for glycobiology. One approach toward constructing such molecules involves chemical glycosylation of aldehyde-tagged proteins. Here, we report the installation of a genetically encoded aldehyde tag at the internal glycosylation site of the crystallizable fragment (Fc) of IgG1. We replaced the natural Fc N-glycosylation sequon with a five amino-acid sequence that ...

  2. QSBR study of substituted phenols and benzoic acids

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The biodegradability of 30 substituted phenols and benzoic acids was determined by BOD technique. The molecular weight (MW), heat of formation (Hf) and the energy of the highest occupied molecular orbital (EHOMO) of the studied compounds were calculated by the quantum chemical method MOPAC6.0-AM1. The quantitative structure-biodegradability relationships (QSBRs) were developed by the linear regression method and neural network approach, respectively. It has been shown that the neural network method is able to provide a superior fit to the training set data and test se t data and produce a lower prediction error than the linear regression method.

  3. An Optical Test Strip for the Detection of Benzoic Acid in Food

    Directory of Open Access Journals (Sweden)

    Fatimah Abu Bakar

    2011-07-01

    Full Text Available Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10. The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (Ki is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products.

  4. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    Science.gov (United States)

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals.

  5. Infrared Spectroscopy of Hydrogen Bonds in Benzoic Acid Derivatives

    Science.gov (United States)

    Tolstorozhev, G. B.; Bel‧kov, M. V.; Skornyakov, I. V.; Bazyl, O. K.; Artyukhov, V. Ya.; Mayer, G. V.; Shadyro, O. I.; Kuzovkov, P. V.; Brinkevich, S. D.; Samovich, S. N.

    2014-03-01

    We have measured the Fourier transform IR spectra of CCl4 solutions of benzoic acid and its biologically active derivatives. We investigated the proton-acceptor properties of the studied molecules theoretically by the molecular electrostatic potential method. The calculations are compared with experimental results. Based on an estimate of the proton-acceptor properties, we give an interpretation of the specific features of the IR spectra of benzoic acid and its derivatives in the region of the O-H and C = O vibrations. The mechanisms for interactions of the molecules are determined by the nature of substituents which are added to the benzene ring in positions para and meta to the carboxyl group. We identify the conditions for appearance of intermolecular hydrogen bonds of O-H · · · O = C, O-H · · · O-H types with formation of cyclic and linear dimers. We show that intramolecular hydrogen bonds of the type O-H · · · O-CH3 prevent the hydroxyl groups from participating in intermolecular interactions.

  6. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  7. Antiherbivore prenylated benzoic acid derivatives from Piper kelleyi.

    Science.gov (United States)

    Jeffrey, Christopher S; Leonard, Michael D; Glassmire, Andrea E; Dodson, Craig D; Richards, Lora A; Kato, Massuo J; Dyer, Lee A

    2014-01-24

    The known prenylated benzoic acid derivative 3-geranyl-4-hydroxy-5-(3″,3″-dimethylallyl)benzoic acid (1) and two new chromane natural products were isolated from the methanolic extract of the leaves of Piper kelleyi Tepe (Piperaceae), a midcanopy tropical shrub that grows in lower montane rain forests in Ecuador and Peru. Structure determination using 1D and 2D NMR analysis led to the structure of the chromene 2 and to the reassignment of the structure of cumanensic acid as 4, an isomeric chromene previously isolated from Piper gaudichaudianum. The structure and relative configuration of new chromane 3 was determined using 1D and 2D NMR spectroscopic analysis and was found to be racemic by ECD spectropolarimetry. The biological activity of 1-3 was evaluated against a lab colony of the generalist caterpillar Spodoptera exigua (Noctuidae), and low concentrations of 2 and 3 were found to significantly reduce fitness. Further consideration of the biosynthetic relationship of the three compounds led to the proposal that 1 is converted to 2 via an oxidative process, whereas 3 is produced through hetero-[4+2] dimerization of a quinone methide derived from the chromene 2.

  8. Synthesis of Polysubstituted Benzoic Esters from 1,2-Dihydropyridines and Its Application to the Synthesis of Fluorenones.

    Science.gov (United States)

    Tejedor, David; Prieto-Ramírez, Mary Cruz; Ingold, Mariana; Chicón, Margot; García-Tellado, Fernando

    2016-06-03

    A convenient, instrumentally simple, and efficient methodology to transform 1,2-dihydropyridines into benzoic esters is described. The generated multisubstituted benzoic esters feature different topologies spanning from simple aromatic rings to fused benzocycloalkane systems. As an extension of this methodology, these benzoic esters are efficiently transformed into an array of fluorenone frameworks featuring interesting and novel topological patterns.

  9. Absorption and metabolism of benzoic acid in growing pigs

    DEFF Research Database (Denmark)

    Kristensen, N B; Nørgaard, J V; Wamberg, S

    2009-01-01

    Dietary benzoic acid (BA) supplementation causes a pronounced reduction in urinary pH but only small changes in blood pH. The present study aimed to investigate the portal absorption profile, hepatic metabolism of BA, and renal excretion of hippuric acid (HA) underlying the relatively small impact...... of BA on systemic acid-base status. Eight growing pigs (BW = 63 ± 1 kg at sampling) fitted with permanent indwelling catheters in the abdominal aorta, hepatic portal vein, hepatic vein, and mesenteric vein were allocated to 4 sampling blocks and randomly assigned to control (CON; nonsupplemented diet...... portal flux and hepatic uptake of BA was 87 ± 5% and 89 ± 15%, respectively. The recovery of dietary BA as urinary excretion of BA and HA was 0.08 ± 0.02% and 85 ± 7%, respectively. It is concluded that the small impact of BA supplementation on systemic acid-base status was caused by a protracted BA...

  10. Oxidation of Aromatic Aldehydes Using Oxone

    Science.gov (United States)

    Gandhari, Rajani; Maddukuri, Padma P.; Thottumkara, Vinod K.

    2007-01-01

    The experiment demonstrating the feasibility of using water as a solvent for organic reactions which highlights the cost and environmental benefits of its use is presented. The experiment encourages students to think in terms of the reaction mechanism of the oxidation of aldehydes knowing that potassium persulfate is the active oxidant in Oxone…

  11. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  12. Chemiluminescence Determination of Benzoic Acid Using A Solid-Phase Verdigris Reactor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new chemiluminescence flow system has been developed for sequential determina-tion of benzoic acid based on the reaction of the compound with copper carbonate entrapped in a solid-phase reactor. It was found that the unsaturated complex of Cu(II) and benzoic acid (1:1) has strong catalytic effect on the luminol-H2O2 chemiluminescence reaction. The calibration graph is linear over the range of 0.025 ~ 60 μg/mL of benzoic acid, with a relative standard deviation of less than 3.0 %, and the detection limit is 0.01μg@mL-1. The proposed method was applied to the determination of benzoic acid content in different pharmaceutical formulations.

  13. Effect of Magnetite Nano Particles on p-n-Alkyl Benzoic Acid Mesogens

    Directory of Open Access Journals (Sweden)

    S. Sreehari Sastry

    2012-01-01

    Full Text Available The magnetite (Fe3O4 nanoparticles (0.5 wt% of size less than 20 nm doped in p-n-alkyl benzoic acids where n varies from heptyl (7 to nonyl (9 are prepared and the presence of Fe+3 is confirmed through UV-Visible spectrophotometer. Textural and phase transition temperature studies are carried out using polarizing optical microscopy on pure and nano doped p-n-alkyl benzoic acids. These results are further confirmed by DSC at a scan rate of 5ºC/min and dielectric studies. Dielectric studies are carried out, in which the variation of dielectric constant, loss and the conductivity are analyzed with respect to temperatures and frequencies. Increment of relaxation times for nano doped heptyl and nonyl benzoic acids are observed which implies that the dielectric nature is strengthened for the nano doped mesogens. The preference of nano doped p-n-alkyl benzoic acids is discussed.

  14. PRENYLATED BENZOIC ACID DERIVATIVES FROM PIPER SPECIES AS SOURCE OF ANTI-INFECTIVE AGENTS

    OpenAIRE

    2012-01-01

    A number of prenylated benzoic acids derivatives with interesting biological activities have been previously isolated and characterized from different species of piperaceae family. Several Piper species contained structurally similar compounds with diverse biological activities such as anti-bacterial, anti-fungal, insecticidal as well as anti-parasitic all of which produces compounds that can be classified as prenylated benzoic acid derivatives. Piper sp has proven to serve as a source of pot...

  15. Aldehyde-induced xanthine oxidase activity in raw milk.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  16. Cytotoxic kurubasch aldehyde from Trichilia emetica.

    Science.gov (United States)

    Traore, Maminata; Zhai, Lin; Chen, Ming; Olsen, Carl Erik; Odile, Nacoulma; Pierre, Guissou I; Bosco, Ouédrago J; Robert, Guigemdé T; Christensen, S Brøgger

    2007-01-01

    Kurubasch aldehyde, a sesquiterpenoid with an hydroxylated humulene skeleton, was isolated as free alcohol from Trichilia emetica Vahl. (Meliaceae), belonging to the order Sapindales. Related substances have been previously found in plants as esters of aromatic acids, and these plants were species belonging to the distant order Apiales. This is the first report of humulenes found in the genus Trichilia and only the second of humulenes in the order Sapindales. The aldehyde is a modest inhibitor of the growth of Plasmodium falciparum (IC50 76 microM) and slow-proliferating breast cancer cells MCF7 (78 microM), but a potent inhibitor of proliferation of S180 cancer cells (IC50 7.4 microM).

  17. Allylation of Aromatic Aldehyde under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu-Mei; JIA,Xue-Feng; WANG,Jin-Xian

    2004-01-01

    @@ Allylation of carbonyl compounds is one of the most interesting processes for the preparation of homoallylic alcohols. Over the past few decades, many reagents have been developed for such reactions[1~3]. In this paper, we first report allylic zinc reagent 1, which can be prepared from zinc dust and allyl bromide conveniently in THF, and reacted with aromatic aldehyde to give homo-allylic alcohols under microwave irradiation.

  18. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    Science.gov (United States)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  19. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN

    Science.gov (United States)

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272

  20. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Soumabha; Hendricks, P.I. [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Reynolds, J.C. [Centre for Analytical Science, Loughborough University, Loughborough, Leicestershire (United Kingdom); Cooks, R.G., E-mail: cooks@purdue.edu [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)

    2015-02-20

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.

  1. Preliminary Study on Benzoic Acid Adsorption from Crude Active Coals and Bentonite

    Directory of Open Access Journals (Sweden)

    Abbes Boucheta

    2016-04-01

    Full Text Available We studied the adsorption of pollutant benzoic acid by the modified bentonite of Maghnia (west of Algeria, and coal (Coal from the mines, southwest of Algeria, Bechar area under three forms, crude and activated. Kinetic data show that the balance of bentonite (as amended adsorbs organic acids better than activated and raw coal. Indeed, the intercalation of bentonite with benzoic acid causes an improvement in the texture of porous material, which allows its use in the adsorption of organic compounds. The adsorption isotherms (Langmuir and Freundlich indicate that the adsorption of benzoic acid by the coal and bentonite yielded results favorably. The results obtained showed the practical value of using the activated coal and bentonite (as amended in the field of remediation of water contaminated with organic pollutants

  2. PRENYLATED BENZOIC ACID DERIVATIVES FROM PIPER SPECIES AS SOURCE OF ANTI-INFECTIVE AGENTS

    Directory of Open Access Journals (Sweden)

    Ibrahim Malami

    2012-06-01

    Full Text Available A number of prenylated benzoic acids derivatives with interesting biological activities have been previously isolated and characterized from different species of piperaceae family. Several Piper species contained structurally similar compounds with diverse biological activities such as anti-bacterial, anti-fungal, insecticidal as well as anti-parasitic all of which produces compounds that can be classified as prenylated benzoic acid derivatives. Piper sp has proven to serve as a source of potential anti-infective agents by developing a biosynthetic route to the synthesis of prenylated benzoic acids derivative natural products as their chemical defense system. Despite the frequent isolation of these interesting compounds with strong biological activity, yet none have been taking into consideration for development into therapeutic agents.

  3. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  4. Optical Dephasing in a Glass-like System : A Photon Echo Study of Pentacene in Benzoic Acid

    NARCIS (Netherlands)

    Duppen, Koos; Molenkamp, Laurens W.; Morsink, Jos B.W.; Wiersma, Douwe A.; Trommsdorff, H.P.

    1981-01-01

    Optical absorption and picosecond photon echo experiments are used to study the dephasing of pentacene in benzoic acid. It is shown that, while the absorption spectrum of pentacene is effected by proton transfer in the benzoic acid dimer, the dephasing is caused by elastic and inelastic phonon scatt

  5. Solvent-free oxidation of aldehydes to acids by TBHP using environmental-friendly MnO$^{−1}_{4}$-exchanged Mg-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    Vasant R Choudhary; Deepa K Dumbre; Vijay S Narkhede

    2012-07-01

    A number of hydrotalcite (Mg-Al, Mn-Al, Co-Al, Ni-Al, Mg-Fe, Mg-Cr and Cu-Al) catalysts, with or without MnO$^{−1}_{4}$-exchange, were evaluated for their performance in the solvent-free oxidation of benzaldehyde to benzoic acid by tert-butyl hydroperoxide under reflux in the absence of any solvent. The MnO$^{−1}_{4}$-exchanged Mg-Al-hydrotalcite (Mg/Al = 10) showed high activity in the oxidation of different aromatic and aliphatic aldehydes to their corresponding acids and also showed excellent reusability in the oxidation process which is environmental-friendly.

  6. Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system

    DEFF Research Database (Denmark)

    Mose, Tina; Kjaerstad, Mia Birkhoej; Mathiesen, Line

    2008-01-01

    group of compounds. Benzoic acid, caffeine, and glyphosate were chosen as model compounds because they are small molecules with large differences in physiochemical properties. Caffeine crossed the placenta by passive diffusion. The initial transfer rate of benzoic acid was more limited in the first part...... of the perfusion compared to caffeine, but reached the same steady-state level by the end of perfusion. The transfer of glyphosate was restricted throughout perfusion, with a lower permeation rate, and only around 15% glyphosate in maternal circulation crossed to the fetal circulation during the study period....

  7. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while oxi

  8. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    Science.gov (United States)

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  9. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2

    Directory of Open Access Journals (Sweden)

    Fengyu Zhao

    2007-07-01

    Full Text Available The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid overcharcoal-supported transition metal catalysts in supercritical CO2 medium has been studiedin the present work. The cyclohexanecarboxylic acid can be produced efficiently insupercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increasesthe reaction rate and several parameters have been discussed.

  10. A new flavonoid with a benzoic acid substituent from Selaginella uncinata

    Institute of Scientific and Technical Information of China (English)

    Jun Xia Zheng; Nai Li Wang; Hao Gao; Hong Wei Liu; Hai Feng Chen; Ming Fan; Xin Sheng Yao

    2008-01-01

    6-(5-Carboxyl-2-methoxyphenyl)-apigenin (1), a new flavonoid, was isolated from the 60% ethanol extract of Selaginella uncinata (Desv.) Spring. Its structure was established by spectroscopic methods. Compound 1 represents the first example of the flavonoids possessing a benzoic acid substituent at C-6.

  11. Comparative thermodynamic study on complex formation of native and hydroxypropylated cyclodextrins with benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Terekhova, Irina V., E-mail: ivt@isc-ras.ru [Institute of Solution Chemistry of RAS, Ivanovo (Russian Federation)

    2011-11-10

    Highlights: Black-Right-Pointing-Pointer Comparative calorimetric study on complexation of benzoic acid by native and modified cyclodextrins was performed. Black-Right-Pointing-Pointer Van der Waals interactions are responsible for complex formation with {alpha}-cyclodextrins. Black-Right-Pointing-Pointer Complex formation of {beta}-cyclodextrins is governed by dehydration and hydrophobic interactions. Black-Right-Pointing-Pointer Binding of two benzoic acid molecules by {gamma}-cyclodextrins is driven by van der Waals interactions and solvent reorganization. Black-Right-Pointing-Pointer Hydroxypropyl groups favor binding of benzoic acid only with hydroxypropyl-{beta}-cyclodextrin. - Abstract: Complex formation of native and hydroxypropylated {alpha}-, {beta}- and {gamma}-cyclodextrins with benzoic acid in water was studied by means of calorimetry of solution at 298.15 K. The 1:1 complexes are formed with {alpha}- and {beta}-cyclodextrins, while 1:2 binding stoichiometry was observed for {gamma}-cyclodextrins. Thermodynamic parameters of complex formation of hydroxypropylated cyclodextrins were determined for the first time and analyzed. Comparison of binding affinity of native and modified cyclodextrins was carried out.

  12. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application

    DEFF Research Database (Denmark)

    Holmgaard, R; Benfeldt, E; Bangsgaard, N

    2012-01-01

    -2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid...

  13. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2

    OpenAIRE

    2007-01-01

    The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid over charcoal-supported transition metal catalysts in supercritical CO2 medium has been studied in the present work. The cyclohexanecarboxylic acid can be produced efficiently in supercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increases the reaction rate and several parameters have been discussed.

  14. 4-[(2-Hydroxy-4-pentadecyl-benzylidene-amino]-benzoic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2013-11-01

    Full Text Available A new Schiff base, 4-[(2-hydroxy-4-pentadecyl-benzylidene-amino]-benzoic acid methyl ester was synthesized and its UV, IR, 1H-NMR, 13C-NMR and ESI-MS spectroscopic data are presented.

  15. Effect of benzoic acid supplementation on acid-base status and mineralmetabolism in catheterized growing pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Fernández, José Adalberto; Sørensen, Kristina Ulrich;

    2010-01-01

    Benzoic acid (BA) in diets for growing pigs results in urinary acidification and reduced ammonia emission. The objective was to study the impact of BA supplementation on the acid-base status and mineral metabolism in pigs. Eight female 50-kg pigs, fitted with a catheter in the abdominal aorta, were...

  16. Caldensinic acid, a benzoic acid derivative and others compounds from Piper carniconnectivum

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Harley da Silva; Souza, Maria de Fatima Vanderlei de; Chaves, Maria Celia de Oliveira, E-mail: cchaves@ltf.ufpb.b [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica

    2010-07-01

    A benzoic acid derivative - caldensinic acid, E-phythyl hexadecanoate, {beta}-sitosterol and stigmasterol mixture and phaeophytin a were isolated from the aerial parts of Piper carniconnectivum. The structures of these compounds were established unambiguously by IR, MS, 1D and 2D NMR analysis. (author)

  17. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Science.gov (United States)

    2010-07-01

    ...)amino-, methyl ester. 721.1728 Section 721.1728 Protection of Environment ENVIRONMENTAL PROTECTION...-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is...

  18. Pharmacological Studies of p, N-(3, 4-Methylenedioxy phenyl Benzoic Acid (RRL-1364 - Part-I

    Directory of Open Access Journals (Sweden)

    Dahanukar Sharadini

    1978-01-01

    Full Text Available Detailed pharmacological investigations of p-N-(3, 4-methylene dioxy phenyl benzoic acid revealed marked hypotensive action which was dose dependent and most marked in cats; it was absent in rats. Atropine could block this hypotensive action, thus suggest-ing cholinomimetic mechanism. Further studies indicated that the hypotension produced was central and possibly medullary in origin.

  19. Deoxygenation of benzoic acid on metal oxides. 2. Formation of byproducts.

    NARCIS (Netherlands)

    Lange, de M.W.; Ommen, van J.G.; Lefferts, L.

    2002-01-01

    Benzene, benzophenone, toluene and benzylalcohol are byproducts in the selective deoxygenation of benzoic acid to benzaldehyde on ZnO and ZrO2. In this paper, the pathways to the byproducts are discussed and a complete overview of the reaction network is presented. Benzene and benzophenone are produ

  20. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    Lange, de M.W.; Ommen, van J.G.; Lefferts, L.

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  1. EXTRACTION AND SORPTION BENZOIC ACID FROM AQUEOUS SOLUTIONS OF POLYMERS BASED ON N-VINYLAMIDES

    Directory of Open Access Journals (Sweden)

    A. G. Savvina

    2015-01-01

    Full Text Available The widespread use of aromatic acids (benzoic acid, salicylic as preservatives necessitates their qualitative and quantitative determination in food. Effective and common way to separation and concentration of aromatic acids liquid extraction. Biphasic system of water-soluble polymers based on (poly-N-vinyl pyrrolidone, and poly-N-vinylcaprolactam satisfy the requirements of the extraction system. When sorption concentration improved definition of the metrological characteristics, comply with the requirements for sensitivity and selectivity definition appears possible, use of inexpensive and readily available analytical equipment. When studying the adsorption of benzoic acid used as a sorbent crosslinked polymer based on N-vinyl pyrrolidone, obtained by radical polymerisation of a functional monomer and crosslinker. In the extraction of benzoic acid to maximize the allocation of water and the organic phase of the polymer used salt solutions with concentrations close to saturation. Regardless of the nature of the anion salt is used as salting-out agent, aromatic acids sorption increases with the size of the cations. In the experiment the maximum recovery rate (80% benzoic acid obtained in the PVP (0.2 weight%. Ammonium sulphate. The dependence stepepni benzoic acid extraction from time sorption sorbent mass and the pH of the aqueous phase. To establish equilibrium in the system, for 20 minutes. The dependence of the degree of extraction of the acid pH indicates that the acid is extracted into the molecular form. The maximum adsorption is reached at pH 3,5, with its efficiency decreases symbatically reduce the amount of undissociated acid molecules in solution.

  2. Aldehyde concentrations in wet deposition and river waters

    Energy Technology Data Exchange (ETDEWEB)

    Dąbrowska, Agata, E-mail: agatadab@amu.edu.pl; Nawrocki, Jacek

    2013-05-01

    The process of pollutants removal from the atmosphere can be responsible for the appearance of aldehydes in surface waters. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in precipitations as well as in surface water samples, while semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. Particularly high level of carbonyls concentration was noted after periods of drought and at the beginning of rainy periods. We estimated that ca. 40% of aldehydes from wet precipitations were delivered into river waters. The level of carbonyl concentration in river was positively correlated with specific local meteorological conditions such as solar radiation and ozone concentration, in contrast, there was negative correlation between aldehyde concentration in the river samples and the precipitation intensity. - Highlights: ► Atmosphere pollutants are responsible for the appearance of aldehydes in surface waters. ► Volatile aldehydes are commonly present in precipitations as well as in surface waters. ► Semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. ► High concentration of carbonyls were noted after periods of drought and at the beginning of rain. ► Carbonyl concentration in river is correlated to meteorological conditions.

  3. Turn on Fluorescent Probes for Selective Targeting of Aldehydes

    Directory of Open Access Journals (Sweden)

    Ozlem Dilek

    2016-03-01

    Full Text Available Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP fluorophore and a xanthene-derived fluorophore (rosamine were prepared. Model compounds of their product with an aldehyde were prepared using salicylaldehyde. Both amino boron dipyrromethene and rosamine derivatives are almost non-fluorescent in polar and apolar solvent. However, imine formation with salicylaldehyde on each fluorophore increases the fluorescence quantum yield by almost a factor of 10 (from 0.05 to 0.4. These fluorophores are therefore suitable candidates for development of fluorescence-based sensors for aldehydes.

  4. 取代苯甲酸类化合物在正辛醇中的固液平衡%Solid-Liquid Equilibria of Benzoic Acid Derivatives in 1-Octanol

    Institute of Scientific and Technical Information of China (English)

    贾青竹; 马沛生; 马少娜; 王昶

    2007-01-01

    The solid-liquid equilibrium of benzoic acid derivatives in 1-octanol was first determined in this article.Using a laser monitoring observation technique, the solubility data of o-amino-benzoic acid, p-amino-benzoic acid,o-chloro-benzoic acid, and m-nitro-benzoic acid in 1-octanol were measured by the polythermal method in the temperature range of 20-50 ℃. The experimental data were regressed with the Wilson equation and the λH equation. The experimental results showed that the solubility of the four chemicals in 1-octanol increased significantly with temperature. The results indicate that the molecular structure and interactions affect the solubility significantly.The solubility order of the benzoic acid derivatives is as follows: m-nitro-benzoic acid>o-chloro-benzoic acid>o-amino-benzoic acid>p-amino-benzoic acid. Both the Wilson equation and λH equation are in good agreement with the experimental data.

  5. Lanthanide dithiocarbamate complexes: efficient catalysts for the cyanosilylation of aldehydes

    OpenAIRE

    VALE, JULIANA A.; FAUSTINO, WAGNER M.; Menezes, Paulo H.; Sá,Gilberto F. de

    2006-01-01

    A new class of lanthanide dithiocarbamate complexes was used to promote the cyanosilylation of aldehydes at high yields at room temperature. This represents the first application of lanthanide dithiocarbamate acting as Lewis acid.

  6. Deodorants: an experimental provocation study with cinnamic aldehyde

    DEFF Research Database (Denmark)

    Bruze, Magnus; Johansen, Jeanne Duus; Andersen, Klaus Ejner

    2003-01-01

    BACKGROUND: Axillary dermatitis is common and overrepresented in individuals with contact allergy to fragrances. Many individuals suspect their deodorants to be the incriminating products. OBJECTIVE: Our aim was to investigate the significance of cinnamic aldehyde in deodorants for the developmen...

  7. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    Science.gov (United States)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  8. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  9. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Science.gov (United States)

    2010-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  10. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  11. Amine-functionalized porous silicas as adsorbents for aldehyde abatement.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2013-06-26

    A series of aminopropyl-functionalized silicas containing of primary, secondary, or tertiary amines is fabricated via silane-grafting on mesoporous SBA-15 silica and the utility of each material in the adsorption of volatile aldehydes from air is systematically assessed. A particular emphasis is placed on low-molecular-weight aldehydes such as formaldehyde and acetaldehyde, which are highly problematic volatile organic compound (VOC) pollutants. The adsorption tests demonstrate that the aminosilica materials with primary amines most effectively adsorbed formaldehyde with an adsorption capacity of 1.4 mmolHCHO g(-1), whereas the aminosilica containing secondary amines showed lower adsorption capacity (0.80 mmolHCHO g(-1)) and the aminosilica containing tertiary amines adsorbed a negligible amount of formaldehyde. The primary amine containing silica also successfully abated higher aldehyde VOC pollutants, including acetaldehyde, hexanal, and benzaldehyde, by effectively adsorbing them. The adsorption mechanism is investigated by (13)C CP MAS solid-state NMR and FT-Raman spectroscopy, and it is demonstrated that the aldehydes are chemically attached to the surface of aminosilica in the form of imines and hemiaminals. The high aldehyde adsorption capacities of the primary aminosilicas in this study demonstrate the utility of amine-functionalized silica materials for reduction of gaseous aldehydes.

  12. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C

    1996-01-01

    tests and 6-week graded use tests with 0.02, 0.1 and 0.8% cinnamic aldehyde in ethanol was studied in a group of cinnamic-aldehyde-sensitive eczema patients. The minimum effect level demonstrated was 0.02% cinnamic aldehyde on patch testing and 0.1% cinnamic aldehyde on use testing, which are allowed...... exposure information is needed to evaluate more fully the consequences of cinnamic aldehyde sensitivity....

  13. Mechanistic and Kinetic Insight into Spontaneous Cocrystallization of Isoniazid and Benzoic Acid.

    Science.gov (United States)

    Sarceviča, Inese; Orola, Liana; Nartowski, Karol P; Khimyak, Yaroslav Z; Round, Andrew N; Fábián, László

    2015-08-03

    Solid-state cocrystallization is of contemporary interest because it offers an easy and efficient way to produce cocrystals, which are recognized as prospective pharmaceutical materials. Research explaining solid-state cocrystallization mechanisms is important but still too scarce to give a broad understanding of factors governing and limiting these reactions. Here we report an investigation of the mechanism and kinetics of isoniazid cocrystallization with benzoic acid. This reaction is spontaneous; however, its rate is greatly influenced by environmental conditions (humidity and temperature) and pretreatment (milling) of the sample. The acceleration of cocrystallization in the presence of moisture is demonstrated by kinetic studies at elevated humidity. The rate dependence on humidity stems from moisture facilitated rearrangements on the surface of isoniazid crystallites, which lead to cocrystallization in the presence of benzoic acid vapor. Furthermore, premilling the mixture of the cocrystal ingredients eliminated the induction time of the reaction and considerably increased its rate.

  14. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    Science.gov (United States)

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  15. Substituent Effects on the Low-Frequency Vibrational Modes of Benzoic Acid and Related Compounds

    Institute of Scientific and Technical Information of China (English)

    GE Min; ZHAO Hong-Wei; WANG Wen-Feng; YU Xiao-Han; LI Wen-Xin

    2007-01-01

    Well-resolved absorption spectra of benzoic acid and its derivatives with one hydrogen atom replaced by a substituent group CH3, OH, NH2 or NO2 were reported in the frequency region between 6 and 67 cm-1 at room temperature with terahertz time-domain spectroscopy (THz-TDS). These substances can be distinguished easily based on the terahertz absorption spectra. The measurements suggested that even minor changes in the molecular configuration and chemical composition lead to distinct differences in THz spectrum. Density functional theory (DFT)method was used to assist the analysis and assignment of the individual THz absorption spectra of benzoic acid and its methyl derivatives. Observed THz responses of samples can be assigned to the collective vibrations associated with intermolecular hydrogen bonds.

  16. Syntheses,characteristics,and fluorescence properties of complexes of europium with benzoic acid and its derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhongcheng; SHU Wangen; RUAN Jianming; HUANG Boyun; LIU Younian

    2004-01-01

    The binary complexes of europium with benzoic acid and its derivatives (phthalic acid, m-phthalic acid,o-aminobenzoic acid, salicylic acid, and sulfosalicylic acid) were synthesized and their compositions were identified by elemental analyses. UV and IR of the complexes have been investigated. The UV spectra indicated that the complexes' ultraviolet absorption were mainly the ligands' absorption. The IR spectra showed that the IR spectra of complexes are different from those of free ligands. The fluorescence properties of them were investigated by using luminescence spectroscopy, the results showed that only three complexes appear as better luminescence, they were Eu-benzoic acid,Eu-m-phthalic acid and Eu-phthalic acid, while the others exhibited the ligands' wideband emission.

  17. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    Science.gov (United States)

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  18. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

    Science.gov (United States)

    Yoo, Mi-Young; Lim, Sang-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products. PMID:27433115

  19. Molecular modeling study of para amino benzoic acids recognition by β-cyclodextrin

    Directory of Open Access Journals (Sweden)

    Madi Fatiha

    2009-01-01

    Full Text Available AM1 and PM3 methods were applied to investigate equilibrium geometries of inclusion complexes formed between 3-CD and neutral, anionic and cationic species of PABA (Para amino benzoic acid. 3-CD can bind to these three species (two possible orientations A or B with negative binding energy, where the preference between A and Borientation of each PABA species is due to H-bond interaction. Finally, the HOMO and LUMO energies of each complex were calculated and compared.

  20. Distribution ratio, distribution constant and partition coefficient. Countercurrent chromatography retention of benzoic acid.

    Science.gov (United States)

    Berthod, Alain; Mekaoui, Nazim

    2011-09-09

    There is some confusion in chromatography between terms such as solute distribution ratio, distribution constant and partition coefficient. These terms are very precisely defined in the field of liquid-liquid systems and liquid-liquid extraction as well as in the field of chromatography with sometimes conflicting definitions. Countercurrent chromatography (CCC) is a chromatographic technique in which the stationary phase is a support-free liquid. Since the mobile phase is also liquid, biphasic liquid systems are used. This work focuses on the exact meaning of the terms since there are consequences on experimental results. The retention volumes of solutes in CCC are linearly related to their distribution ratios. The partition coefficient that should be termed (IUPAC recommendation) distribution constant is linked to a single definite species. Using benzoic acid that can dimerize in heptane and ionize in aqueous phase and an 18 mL hydrodynamic CCC column, the role and relationships between parameters and the consequences on experimental peak position and shape are discussed. If the heptane/water distribution constant (marginally accepted to be called partition coefficient) of benzoic acid is 0.2 at 20 °C and can be tabulated in books, its CCC measured distribution ratio or distribution coefficient can change between zero (basic aqueous mobile phase) and more than 25 (acidic aqueous mobile phase and elevated concentration). Benzoic acid distribution ratio and partition coefficient coincide only when both dimerization and ionization are quenched, i.e. at very low concentration and pH 2. It is possible to quench dimerization adding butanol in the heptane/water system. However, butanol additions also affect the partition coefficient of benzoic acid greatly by increasing it.

  1. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    Directory of Open Access Journals (Sweden)

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  2. Ordered cleavage of myeloperoxidase ester bonds releases active site heme leading to inactivation of myeloperoxidase by benzoic acid hydrazide analogs.

    Science.gov (United States)

    Huang, Jiansheng; Smith, Forrest; Panizzi, Peter

    2014-04-15

    Myeloperoxidase (MPO) catalyzes the breakdown of hydrogen peroxide and the formation of the potent oxidant hypochlorous acid. We present the application of the fluorogenic peroxidase substrate 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) in steady-state and transient kinetic studies of MPO function. Using initial kinetic parameters for the MPO system, we characterized under the same conditions a number of gold standards for MPO inhibition, namely 4-amino benzoic acid hydrazide (4-ABAH), isoniazid and NaN3 before expanding our focus to isomers of 4-ABAH and benzoic acid hydrazide analogs. We determined that in the presence of hydrogen peroxide that 4-ABAH and its isomer 2-ABAH are both slow-tight binding inhibitors of MPO requiring at least two steps, whereas NaN3 and isoniazid-based inhibition has a single observable step. We also determined that MPO inhibition by benzoic acid hydrazide and 4-(trifluoromethyl) benzoic acid hydrazide was due to hydrolysis of the ester bond between MPO heavy chain Glu 242 residue and the heme pyrrole A ring, freeing the light chain and heme b fragment from the larger remaining MPO heavy chain. This new mechanism would essentially indicate that the benzoic acid hydrazide analogs impart inhibition through initial ejection of the heme catalytic moiety without prior loss of the active site iron.

  3. Exposure assessment of food preservatives (sulphites, benzoic and sorbic acid) in Austria.

    Science.gov (United States)

    Mischek, Daniela; Krapfenbauer-Cermak, Christine

    2012-01-01

    An exposure assessment was performed to estimate the potential intake of preservatives in the Austrian population. Food consumption data of different population groups, such as preschool children aged 3-6 years, female and male adults aged 19-65 years were used for calculation. Levels of the preservatives in food were derived from analyses conducted from January 2007 to August 2010. Dietary intakes of the preservatives were estimated and compared to the respective acceptable daily intakes (ADIs). In the average-intake scenario, assuming that consumers randomly consume food products that do or do not contain food additives, estimated dietary intakes of all studied preservatives are well below the ADI for all population groups. Sulphite exposure accounted for 34%, 84% and 89% of the ADI in preschool children, females and males, respectively. The mean estimated daily intake of benzoic acid was 32% (preschool children), 31% (males) and 36% (females) of the ADI. Sorbic acid intakes correspond to 7% of the ADI in preschool children and 6% of the ADI in adults. In the high-intake scenario assuming that consumers always consume food products that contain additives and considering a kind of brand loyalty of consumers, the ADI is exceeded for sulphites among adults (119 and 124%, respectively). Major contributors to the total intake of sulphites were wine and dried fruits for adults. Mean estimated dietary intakes of benzoic acid exceeded the ADI in all population groups, 135% in preschool children, 124% in females and 118% of the ADI in males, respectively. Dietary intakes of sorbic acid are well below the ADI, accounting for a maximum of 30% of the ADI in preschool children. The highest contributors to benzoic and sorbic acid exposure were fish and fish products mainly caused by high consumption data of this large food group, including also mayonnaise-containing fish salads. Other important sources of sorbic acid were bread, buns and toast bread and fruit and vegetable

  4. Topical use of tea tree oil reduces the dermal absorption of benzoic acid and methiocarb.

    Science.gov (United States)

    Nielsen, Jesper Bo; Nielsen, Flemming

    2006-03-01

    Tea tree oil (TTO) is a complex mixture of terpene hydrocarbons. Intensive topical use of TTO in different cosmetics and investigations into its potential as an antimicrobial or anti-inflammatory agent has accentuated the need for studies on the toxicity of TTO. We have applied an experimental in vitro model using static diffusion cells with human skin to study penetration characteristics of terpinen-4-ol and the way TTO affects the barrier integrity of the skin and the percutaneous penetration of two chemicals covering a range of solubilities from 0.03 g/l (methiocarb) to 3.0 g/l (benzoic acid). Through GC-MS analysis we identified the major constituents of TTO. In our experimental set-up with full-thickness skin, only the least lipophilic ingredients of TTO penetrated the skin. Barrier integrity was evaluated through measurement of percutaneous penetration of tritiated water. Data indicate that 1% TTO does not affect barrier conditions. The Kp value for tritiated water was increased significantly at 5% TTO, which demonstrate that the barrier integrity is affected at this relatively low concentration of TTO. The barrier integrity is, however, not seriously damaged, but our data indicate an initiated and concentration-dependent effect on the barrier integrity. TTO changed the penetration characteristics for benzoic acid as well as for methiocarb. The general effect was that TTO reduced the maximal flux. For methiocarb, the lag-time was also prolonged by increasing the TTO concentration in the donor phase to 5%. Thus, TTO reduced the overall amount of benzoic acid as well as methiocarb entering the receptor chamber.

  5. A Benzoic Acid Derivative and Flavokawains from Piper species as Schistosomiasis Vector Controls

    Directory of Open Access Journals (Sweden)

    Ludmila N. Rapado

    2014-04-01

    Full Text Available The search of alternative compounds to control tropical diseases such as schistosomiasis has pointed to secondary metabolites derived from natural sources. Piper species are candidates in strategies to control the transmission of schistosomiasis due to their production of molluscicidal compounds. A new benzoic acid derivative and three flavokawains from Piper diospyrifolium, P. cumanense and P. gaudichaudianum displayed significant activities against Biomphalaria glabrata snails. Additionally, “in silico” studies were performed using docking assays and Molecular Interaction Fields to evaluate the physical-chemical differences among the compounds in order to characterize the observed activities of the test compounds against Biomphalaria glabrata snails.

  6. A benzoic acid derivative and flavokawains from Piper species as schistosomiasis vector controls.

    Science.gov (United States)

    Rapado, Ludmila N; Freitas, Giovana C; Polpo, Adriano; Rojas-Cardozo, Maritza; Rincón, Javier V; Scotti, Marcus T; Kato, Massuo J; Nakano, Eliana; Yamaguchi, Lydia F

    2014-04-23

    The search of alternative compounds to control tropical diseases such as schistosomiasis has pointed to secondary metabolites derived from natural sources. Piper species are candidates in strategies to control the transmission of schistosomiasis due to their production of molluscicidal compounds. A new benzoic acid derivative and three flavokawains from Piper diospyrifolium, P. cumanense and P. gaudichaudianum displayed significant activities against Biomphalaria glabrata snails. Additionally, "in silico" studies were performed using docking assays and Molecular Interaction Fields to evaluate the physical-chemical differences among the compounds in order to characterize the observed activities of the test compounds against Biomphalaria glabrata snails.

  7. Alkaline earth layered benzoates as reusable heterogeneous catalysts for the methyl esterification of benzoic acid

    Directory of Open Access Journals (Sweden)

    Swamy Arêa Maruyama

    2012-01-01

    Full Text Available This paper describes the synthesis and characterization of layered barium, calcium and strontium benzoates and evaluates the potential of these materials as catalysts in the synthesis of methyl benzoate. The methyl esterification of benzoic acid was investigated, where the effects of temperature, alcohol:acid molar ratio and amount of catalyst were evaluated. Ester conversions of 65 to 70% were achieved for all the catalysts under the best reaction conditions. The possibility of recycling these metallic benzoates was also demonstrated, evidenced by unaltered catalytic activity for three consecutive reaction cycles.

  8. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  9. Cyclodextrin Aldehydes are Oxidase Mimics

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Bjerre, Jeannette; Bols, Mikael

    2009-01-01

    Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin...

  10. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    Directory of Open Access Journals (Sweden)

    Rodríguez-García Ignacio

    2007-02-01

    Full Text Available Abstract Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans.

  11. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  12. Lipid-derived aldehyde degradation under thermal conditions.

    Science.gov (United States)

    Zamora, Rosario; Navarro, José L; Aguilar, Isabel; Hidalgo, Francisco J

    2015-05-01

    Nucleophilic degradation produced by reactive carbonyls plays a major role in food quality and safety. Nevertheless, these reactions are complex because reactive carbonyls are usually involved in various competitive reactions. This study describes the thermal degradation of 2-alkenals (2-pentenal and 2-octenal) and 2,4-alkadienals (2,4-heptadienal and 2,4-decadienal) in an attempt to both clarify the stability of aldehydes and determine new compounds that might also play a role in nucleophile/aldehyde reactions. The obtained results showed that alkenals and alkadienals decomposed rapidly in the presence of buffer and air to produce formaldehyde, acetaldehyde, and the aldehydes corresponding to the breakage of the carboncarbon double bonds: propanal, hexanal, 2-pentenal, 2-octenal, glyoxal, and fumaraldehyde. The activation energy of double bond breakage was relatively low (∼ 25 kJ/mol) and the yield of alkanals (10-18%) was higher than that of 2-alkenals (∼ 1%). All these results indicate that these reactions should be considered in order to fully understand the range of nucleophile/aldehyde adducts produced.

  13. Aldehydic acids in frying oils: formation, toxicological significance and analysis

    Directory of Open Access Journals (Sweden)

    Kamal-Eldin, Afaf

    1996-10-01

    Full Text Available Aldehydic acids are generated in oxidized lipids as a result of decomposition of hydroperoxides by (β-scission reactions. Aldehydes are known to interact with proteins and DNA and to impair enzymatic functions. Aldehydic esters from oxidized lipids were reabsorbed to a significant extent in rats. This paper reviews the mechanism of formation of esterified aldehydic acids in frying oils and their physiological/toxicological effects. The paper also gives an overview of relevant basic analytical techniques that needs to be improved to establish reliable quantitative method (s.

    Ácidos aldehídicos son producidos en lípidos oxidados como resultado de la descomposición de hidroperóxidos por reacciones de (β-escición. Es conocido que los aldehídos interaccionan con las proteínas y el ADN y debilitan las funciones enzimáticas. Los esteres aldehídicos de lípidos oxidados fueron reabsorbidos en una cantidad significativa en ratas. Este artículo revisa los mecanismos de formación de ácidos aldehídicos esterificados en aceites de fritura y sus efectos fisiológicos/toxicológicos. El artículo también ofrece una visión de conjunto de las técnicas analíticas básicas que necesitan ser mejoradas para establecer métodos cuantitativos fiables.

  14. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  15. In vitro skin absorption and metabolism of benzoic acid, p-aminobenzoic acid, and benzocaine in the hairless guinea pig.

    Science.gov (United States)

    Nathan, D; Sakr, A; Lichtin, J L; Bronaugh, R L

    1990-11-01

    The percutaneous absorption and metabolism of three structurally related compounds, benzoic acid, p-aminobenzoic acid (PABA), and ethyl aminobenzoate (benzocaine), were determined in vitro through hairless guinea pig skin. Benzocaine was also studied in human skin. Absorption of benzocaine was rapid and similar through both viable and nonviable skin. The absorption of the two acidic compounds, benzoic acid and PABA, was greater through nonviable skin. A small portion (6.9%) of absorbed benzoic acid was conjugated with glycine to form hippuric acid. Although N-acetyl-benzocaine had not been observed as a metabolite of benzocaine when studied by other routes of administration, both PABA and benzocaine were extensively N-acetylated during percutaneous absorption. Thus, the metabolism of these compounds should be considered in an accurate assessment of absorption after topical application.

  16. Catalyst-Controlled Wacker-Type Oxidation: Facile Access to Functionalized Aldehydes

    OpenAIRE

    Wickens, Zachary K.; Skakuj, Kacper; Morandi, Bill; Grubbs, Robert H

    2014-01-01

    The aldehyde-selective oxidation of alkenes bearing diverse oxygen groups in the allylic and homoallylic position was accomplished with a nitrite-modified Wacker oxidation. Readily available oxygenated alkenes were oxidized in up to 88% aldehyde yield and as high as 97% aldehyde selectivity. The aldehyde-selective oxidation enabled the rapid, enantioselective synthesis of an important pharmaceutical agent, atomoxetine. Finally, the influence of proximal functional groups on this anti-Markovni...

  17. Antibiotics from basidiomycetes. 26. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens.

    Science.gov (United States)

    Anke, H; Casser, I; Steglich, W; Pommer, E H

    1987-04-01

    Phlebiakauranol aldehyde and the corresponding alcohol were isolated from cultures of Punctularia atropurpurascens. The aldehyde but not the alcohol exhibited strong antifungal activity against several phytopathogens as well as antibacterial and cytotoxic activities. Two acetylated derivatives prepared from the aldehyde showed only very weak antifungal and antibacterial and moderate cytotoxic activities. We therefore assume, that the aldehyde group together with the high number of hydroxyl groups are responsible for the biological activity of the compound.

  18. Effects of benzoic acid on nitrogen, phosphorus and energy balance and on ammonia emission from slurries in the heavy pig

    Directory of Open Access Journals (Sweden)

    G. Matteo Crovetto

    2011-07-01

    Full Text Available The effects of two dietary levels of benzoic acid on nitrogen, phosphorus and energy balance were evaluated in the typical Italian heavy pig during the last phase of growth. Six Landrace x Large White barrows of 125 kg body weight (BW on average were used in a repeated 3x3 Latin Square design and housed in metabolic cages to collect faeces and urine separately, in 3 collection periods of 7 days, after 14 days of adaptation. The animals were individually housed in open circuit respiration chambers to determine the energy metabolism. The dietary treatments were as follows [% on dry matter (DM]: i diet C (control: 14.2 crude protein (CP, 3.7 EE, 13.8 NDF; ii diet B05: diet C plus 0.5% benzoic acid; iii diet B10: diet C plus 1.0% benzoic acid. DM fed was fixed at 6.8% BW0.75. Apparent digestibility was similar among treatments for all the parameters studied. Nitrogen (N retention was 35.8, 37.4, 41.6% of intake N for C, B05 and B10, respectively, with no significant difference. Energy and phosphorus balances were not influenced by dietary treatments. Ammonia nitrogen emission from the slurry, expressed as a proportion of the initial slurry nitrogen, was decreased (P=0.049 by the inclusion of benzoic acid in the diet: 35.2, 28.1, 26.2% for C, B05, B10, respectively. The addition of benzoic acid to the diet determined a numerically decrease of the urinary pH. In conclusion, the inclusion of benzoic acid in the diet of the heavy pig is beneficial to the environment without effects on N, phosphorus (P and energy balances.

  19. Using a Simulated Industrial Setting for the Development of an Improved Solvent System for the Recrystallization of Benzoic Acid: A Student-Centered Project

    Science.gov (United States)

    Hightower, Timothy R.; Heeren, Jay D.

    2006-01-01

    Recrystallization of benzoic acid is an excellent way to remove insoluble impurities. In a traditional organic laboratory experiment, insoluble impurities are removed through the recrystallization of benzoic acid utilizing water as the recrystallization solvent. It was our goal to develop a peer-led, problem-solving organic laboratory exercise…

  20. The benzoic acid-water complex: a potential atmospheric nucleation precursor studied using microwave spectroscopy and ab initio calculations.

    Science.gov (United States)

    Schnitzler, Elijah G; Jäger, Wolfgang

    2014-02-14

    The pure rotational, high-resolution spectrum of the benzoic acid-water complex was measured in the range of 4-14 GHz, using a cavity-based molecular beam Fourier-transform microwave spectrometer. In all, 40 a-type transitions and 2 b-type transitions were measured for benzoic acid-water, and 12 a-type transitions were measured for benzoic acid-D2O. The equilibrium geometry of benzoic acid-water was determined with ab initio calculations, at the B3LYP, M06-2X, and MP2 levels of theory, with the 6-311++G(2df,2pd) basis set. The experimental rotational spectrum is most consistent with the B3LYP-predicted geometry. Narrow splittings were observed in the b-type transitions, and possible tunnelling motions were investigated using the B3LYP/6-311++G(d,p) level of theory. Rotation of the water moiety about the lone electron pair hydrogen-bonded to benzoic acid, across a barrier of 7.0 kJ mol(-1), is the most likely cause for the splitting. Wagging of the unbound hydrogen atom of water is barrier-less, and this large amplitude motion results in the absence of c-type transitions. The interaction and spectroscopic dissociation energies calculated using B3LYP and MP2 are in good agreement, but those calculated using M06-2X indicate excess stabilization, possibly due to dispersive interactions being over-estimated. The equilibrium constant of hydration was calculated by statistical thermodynamics, using ab initio results and the experimental rotational constants. This allowed us to estimate the changes in percentage of hydrated benzoic acid with variations in the altitude, region, and season. Using monitoring data from Calgary, Alberta, and the MP2-predicted dissociation energy, a yearly average of 1% of benzoic acid is expected to be present in the form of benzoic acid-water. However, this percentage depends sensitively on the dissociation energy. For example, when using the M06-2X-predicted dissociation energy, we find it increases to 18%.

  1. Urine acidification and mineral metabolism in growing pigs feddiets supplemented with dietary methionine and benzoic acid

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Fernández, José Adalberto; Eriksen, Jørgen

    2010-01-01

    ) source in diets for pigs on urine acidification and mineral metabolism. Twenty-four 45 kg pigs in a 2 × 2 factorial design were fed one of 4 diets, containing 0 or 2% BA and a low or high dietary S level provided through diet supplementation of 0 or 1% Met. The pigs were placed in metabolic cages for a 5...... d adaptation period and a 7 d period with collection of faeces and urine. Benzoic acid was metabolized into hippuric acid which reduced urinary pH by 0.8 pH units (P dietary supplementation with 1% Met reduced urinary pH by 1.0 unit (P pigs receiving......Benzoic acid (BA) reduces pH of urine and thereby reduces the emission of ammonia and possibly also odorous sulphur-compounds from slurry. The effect of BA on mineral metabolism in growing pigs is not clear. The objective was therefore to study the effect of BA and methionine (Met) as a sulphur (S...

  2. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    Science.gov (United States)

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  3. Interactions Between Exogenous Bt Insecticidal Protein and Cotton Terpenoid Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jun; GUO Yu-yuan; WU Kong-ming; WANG Wu-gang

    2002-01-01

    The contents of terpenoid aldehydes in Bt transgenic cotton and their non-Bt parental varieties were analyzed by the HPLC method. Statistical analysis of variance showed that Bt insecticidal protein Bt-ICP expression has no negative effect on the synthesis of gossypol, total heliocides and total resistant terpenoids.The results of the combined dosage test of Bt-ICP and gossypoi in vitro showed that there is no interaction between gossypol and Bt-ICP on the mortality of cotton boilworm larvae Helicoverpa armigera (Hubnner). It is indicated that the actions of Bt-ICP and gossypol on cotton bollworm are additive. Therefore, it is advantageous to combine Bt-ICP with cotton terpenoid aldehydes in controlling cotton bollworm.

  4. The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, Zoran; Nigovic, Biljana; Simunic, Branimir

    2004-02-15

    The electrochemical reduction of 2-hydroxy-5-[(4-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(3-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(2-sulfophenyl)azo]benzoic acid and 2-hydroxy-5-azo-benzoic acid has been carried out in aqueous solutions at glassy carbon electrode using cyclic voltammetry and chronoamperometry. The position of sulfo substituent relative to azo bridge as well as pH of the solution have significant impact on the electrochemical behavior of these compounds. It has been proposed that these compounds are reduced predominantly as hydrazone tautomers resulting in corresponding hydrazo compounds. The overall electrochemical reduction follows DISP2 mechanism, ultimately leading to the 5-amino salicylic acid and sulfanilic acid. The rate determining step is the homogenous redox reaction between intermediate hydrazo compound and 5-amino salicylic acid quinoneimine. The mechanism is proposed in which activated complex of 5-amino salicylic acid quinoneimine and intermediate hydrazo compound is formed with the simultaneous loss of one proton.

  5. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  6. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  7. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Science.gov (United States)

    2010-07-01

    ... amino-, di-2-propenyl ester. 721.1725 Section 721.1725 Protection of Environment ENVIRONMENTAL...-, di-2-propenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i)...

  8. Dietary exposure estimates for the food preservatives benzoic acid and sorbic acid in the total diet in Taiwan.

    Science.gov (United States)

    Ling, Min-Pei; Lien, Keng-Wen; Wu, Chiu-Hua; Ni, Shih-Pei; Huang, Hui-Ying; Hsieh, Dennis P H

    2015-02-25

    The purpose was to assess the health risk to general consumers in Taiwan associated with dietary intake of benzoic acid and sorbic acid by conducting a total diet study (TDS). The hazard index (HI) in percent acceptable daily intake (%ADI) of benzoic acid and sorbic acid for eight exposure groups classified by age were calculated. In high-intake consumers, the highest HI of benzoic acid was 54.1%ADI for males aged 1-2 years old at the 95th percentile, whereas for females, the HI was 61.7%ADI for aged over 66 years old. The highest HI of sorbic acid for male and female consumers aged 3-6 years old at the 95th percentile were 14.0%ADI and 12.2%ADI, respectively. These results indicate that the use of benzoic acid and sorbic acid as preservatives at the current level of use in the Taiwanese diet does not constitute a public health and safety concern.

  9. Temperature-dependent benzoic acid elimination mechanisms in pyrolysis of (--cocaine

    Directory of Open Access Journals (Sweden)

    Michal Novák

    2011-01-01

    Full Text Available The thermal elimination of benzoic acid from (--cocaine is shown to be temperature-dependent. In the temperature range of 200-500 °C only a trans-elimination is observed leading to methylecgonidine. Above ca. 500 °C a second mechanism, the cis-elimination, comes up yielding a novel alkaloid methylisoecgonidine which has been characterized by means of mass spectrometry. At 600 °C the cis-elimination predominates. The trans-elimination is postulated a two-step process consisting of a 1,7- and a 1,5-hydrogen shift. The chemistry of cocaine base smoking is explained using the theory of chemical activation.

  10. Synthesis and Crystal Structure of a Complex of Melamine with Benzoic Acid

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiu-lian

    2008-01-01

    A new complex of melamine(MA) with benzoic acid(HBA) was prepared,affording [(HMA+)(BA-)]·2H2O.Each HBA molecule is deprotonated and one triazine nitrogen atom of MA is protonated,The adjacent HMA+ cations are hydrogen bonded to alternate sides of the (HMA+)∞ ribbons to generate indention 1D tapes,which are extended into the hydrogen bond present in the complex are anion/water and amino/water tape structures,The hydrogen-bonding patterns consist of alternate 6,10-membered rings sharing two edges,Infrared(IR) spectroscopy conforms that proton transfer has taken place in the complex.

  11. Imidazolium ionic liquid-supported sulfonic acids: Efficient and recyclable catalysts for esterification of benzoic acid

    Institute of Scientific and Technical Information of China (English)

    Yue Qin Cai; Guo Qiang Yu; Chuan Duo Liu; Yuan Yuan Xu; Wei Wang

    2012-01-01

    Several imidazolium ionic liquid (IL)-supported sulfonic acids with different anions,[C3SO3Hmim]HSO4,[C3SO3Hmim]BF4,[C3SO3Hmim]PF6,and [C3SO3Hmim]CF3SO3,were synthesized and applied as catalysts for esterification reaction of benzoic acid.The experimental results indicate that imidazolium IL-supported sulfonic acid containing anion of HSO4- shows the best catalytic activity.Only when less [C3SO3Hmim]HSO4 (0.3 equiv.) applied,was the product obtained with high yield of 97%.Furthermore,the produced esters could be separated by decantation,and the catalyst could be reused after the removal of water.

  12. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  13. Sorbic and benzoic acid in non-preservative-added food products in Turkey.

    Science.gov (United States)

    Cakir, Ruziye; Cagri-Mehmetoglu, Arzu

    2013-01-01

    Sorbic acid (SA) and benzoic acid (BA) were determined in yoghurt, tomato and pepper paste, fruit juices, chocolates, soups and chips in Turkey by using high-pressure liquid chromatography (HPLC). Levels were compared with Turkish Food Codex limits. SA was detected only in 2 of 21 yoghurt samples, contrary to BA, which was found in all yoghurt samples but one, ranging from 10.5 to 159.9 mg/kg. Both SA and BA were detected also in 3 and 6 of 23 paste samples in a range of 18.1-526.4 and 21.7-1933.5 mg/kg, respectively. Only 1 of 23 fruit juices contained BA. SA was not detected in any chips, fruit juice, soup, or chocolate sample. Although 16.51% of the samples was not compliant with the Turkish Food Codex limits, estimated daily intake of BA or SA was below the acceptable daily intake.

  14. 3,5-Bis[(pyridin-4-ylmethoxy]benzoic acid

    Directory of Open Access Journals (Sweden)

    Hong Lin

    2013-01-01

    Full Text Available Single crystals of the title compound, C19H16N2O4, were obtained under hydrothermal conditions by an unintended recrystallization of the employed microcrystalline starting material. The [(pyridin-4-ylmethoxy]benzoic acid unit is nearly planar, with a maximum deviation from the least-squares plane of 0.194 (2 Å. This plane is inclined by 35.82 (6° to that defined by the second (pyridin-4-ylmethoxy group [in which the largest deviation from the least-squares plane is 0.013 (2 Å]. In the crystal, molecules are linked by O—H...N hydrogen bonds involving the acid hydroxy group and a pyridine N atom into chains parallel to [-201].

  15. Preparation and Physical Properties of Chitosan Benzoic Acid Derivatives Using a Phosphoryl Mixed Anhydride System

    Directory of Open Access Journals (Sweden)

    Kyu Yun Chai

    2012-02-01

    Full Text Available Direct benzoylation of the two hydroxyl groups on chitosan was achieved using a phosphoryl mixed anhydride system, derived from trifluoroacetic anhydride (TFAA, benzoic acids (BAs, and phosphoric acid (PA. The reaction is operated as a one pot process under mild conditions that does not require neither an inert atmosphere nor dry solvents. The structures of the synthesized compounds were confirmed by NMR and IR spectroscopy. Solubility tests on the products revealed that they were soluble in organic solvents such as N,N-dimethylformamide (DMF, dimethylsulfoxide (DMSO, and acetone. In the meantime, a morphological study by scanning electron microscopy (SEM evidently indicated that the chitosan benzoates underwent significant structural changes after the benzoylation.

  16. Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane%Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane

    Institute of Scientific and Technical Information of China (English)

    程柯; 范甜甜; 孙健

    2011-01-01

    Easily accessible chiral phosphoric acid lb has been applied as efficient organocatalyst for the asymmetric al- lylation of aldehydes with allyltrichlorosilane. In the presence of 20 mol% of lb, the allylation of a broad range of aldehydes proceeded smoothly to give the corresponding homoallylic alcohol with up to 87% ee and 97% yield.

  17. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.

    Science.gov (United States)

    Rathinasabapathi, B; McCue, K F; Gage, D A; Hanson, A D

    1994-01-01

    Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline-->betaine aldehyde-->glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and Km for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.

  18. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    Science.gov (United States)

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass.

  19. Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food.

    Science.gov (United States)

    Giebułtowicz, Joanna; Dziadek, Marta; Wroczyński, Piotr; Woźnicka, Katarzyna; Wojno, Barbara; Pietrzak, Monika; Wierzchowski, Jacek

    2010-01-01

    Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (r(s) ~0.27; p=0.004 and r(s) =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in

  20. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  1. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    Science.gov (United States)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  2. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Science.gov (United States)

    Mason, Katelynn M; Meyers, Michael S; Fox, Abbie M

    2016-01-01

    Summary Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation. PMID:27829908

  3. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Directory of Open Access Journals (Sweden)

    Katelynn M. Mason

    2016-09-01

    Full Text Available Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation.

  4. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  5. Electron transmission through a class of anthracene aldehyde molecules

    Science.gov (United States)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupco; Kocarev, Ljupco

    2016-03-01

    Transmission of electrons via metal-molecule-metal junctions, involving rotor-stator anthracene aldehyde molecules is investigated. Two model barriers having input parameters evaluated from accurate ab initio calculations are proposed and the transmission coefficients are obtained by using the quasiclassical approximation. Transmission coefficients further enter in the integral for the net current, utilizing Simmons' method. Conformational dependence of the tunneling processes is evident and the presence of the side groups enhances the functionality of the future single-molecule based electronic devices.

  6. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.

  7. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Science.gov (United States)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  8. DNA-Templated Introduction of an Aldehyde Handle in Proteins

    DEFF Research Database (Denmark)

    Kodal, Anne Louise Bank; Rosen, Christian Bech; Mortensen, Michael Rosholm;

    2016-01-01

    -templated reductive amination we create DNA-protein conjugates with control over labeling stoichiometry without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing coupling of a second reactive DNA strand to the vicinity of a protein metal......-binding site. Here, we demonstrate DNA-templated reductive amination for His6-tagged proteins and native metal-binding proteins, including IgG1 antibodies. We also use a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde to proteins. This functions as a handle...

  9. Piperidine Promoted Regioselective Synthesis of α, β-unsaturated Aldehydes

    Directory of Open Access Journals (Sweden)

    *A. H. Banday

    2013-03-01

    Full Text Available An efficient, facile and regioselective synthesis of α,β-unsaturated aldehydes from β-hydroxynitriles is reported. The reaction is carried out using DIBAL-H and promoted by piperidine under dry conditions at a temperature of -78 oC and can be described as a concomitant reduction-elimination reaction. The same reaction if carried out in the absence of piperidine gives mainly the uneliminated reduction product. The products formed are of immense importance as synthons in a large number of chemical reactions and biological processes.

  10. ADSORPTION OF UNSATURATED ALDEHYDES ON TiO2

    OpenAIRE

    Natalia Ortega; Oswaldo Núñez

    2012-01-01

    In this work, the unsaturated aldehydes adsorption on TiO2 surface was studied. To test their efficiency as catalyst, experiments on heterogeneous photocatalysis of p-nitrophenol (PNP) and a sample obtained from an oil industry effluent were carried out using a solar simulator and modified-TiO2 systems. The systems of TiO2 used were: TiO2 pure (without modifying) and TiO2-dienal systems constituted by the chemical adsorption of 2,4 hexadienal, 2,4 heptadienal and trans-cinamaldehyde on the su...

  11. Self-assembled structure of alkyloxy substituted benzoic acid methyl ester on HOPG:An STM study

    Institute of Scientific and Technical Information of China (English)

    YUAN Qunhui; LU Jun; WAN Lijun; BAI Chunli

    2004-01-01

    Self-assembled structures of 3,4,5-tris-dodecy- loxy benzoic acid methyl ester (E12), 3,4,5-tris-tetradecy- loxy-benzoic acid methyl ester (E14) and their mixture (E12/E14) have been studied on HOPG by scanning tunneling microscopy (STM). Dimer-like patterns induced by dipole-dipole interaction are observed in E12 and E14 monolayers. The molecules form close-packed rows and interdigitate with the alkyl chains in adjacent molecules. The structural differences are proposed to be from the different length of substituted alkyl chains. Owing to similar adsorption energy, phase separation is observed in the E12 and E14 mixed adlayer with different domains.

  12. Natural oils affect the human skin integrity and the percutaneous penetration of benzoic acid dose-dependently

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo

    2006-01-01

    Abstract: Natural oils are extensively used in cosmetics and as treatment for a growing number of more or less specific ailments. Skin irritation and cases of allergy have repeatedly been described in the literature following exposure to these oils. The present study evaluated the extent to which...... three natural oils (eucalyptus oil, tea tree oil, peppermint oil) would affect the skin integrity and the percutaneous penetration of benzoic acid when applied topically in relevant concentrations. An experimental in vitro model using static diffusion cells mounted with human breast or abdominal skin...... was applied. The three natural oils decreased the skin integrity dose-dependently. Concomitant dermal exposure to low concentrations of peppermint oil reduced the percutaneous penetration of benzoic acid. The present study lends support to the notion that low concentrations of peppermint oil may act...

  13. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng, E-mail: zhxch@zzu.edu.cn

    2014-03-15

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H{sub 2}O{sub 2} indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions. Highlights: • 5–45 wt% HPW/MCM-48 mesoporous catalysts were prepared and characterized. • Their catalytic activities for the green synthesis of benzoic acid were investigated. • HPW/MCM-48 was approved to be an efficient catalyst. • 5 wt% HPW/MCM-48 exhibited the highest catalytic activity.

  14. A Green Synthesis of 2-Ethylanthraquinone by Dehydration of 2-(4'-ethylbenzoyl) benzoic Acid over Solid Acid Catalysts

    Institute of Scientific and Technical Information of China (English)

    Ren Shu XU; Xin Wen GUO; Gui Ru WANG; Zhu Xia ZHANG

    2005-01-01

    The dehydration of 2-(4'-ethylbenzoyl) benzoic acid (BE acid) to 2-ethylanthraquinone(2-EAQ) was investigated over solid acid catalysts. The results showed that H-beta zeolite catalyst modified by dilute HNO3 solution exhibited an excellent performance. In our study, theconversion of BE acid can reach 96.7%, and the selectivity to 2-EAQ is up to 99.6%.

  15. The Complete Molecular Geometry of Salicyl Aldehyde from Rotational Spectroscopy

    Science.gov (United States)

    Dorosh, O.; Bialkowska-Jaworska, E.; Kisiel, Z.; Pszczolkowski, L.; Kanska, M.; Krygowski, T. M.; Maeder, H.

    2013-06-01

    Salicyl aldehyde is a well known planar molecule containing an internal hydrogen bond. In preparing the publication of our previous report of the study of its rotational spectrum we have taken the opportunity to update the structure determination of this molecule to the complete r_e^{SE} geometry. The molecule contains 15 atoms and we have used supersonic expansion FTMW spectroscopy to obtain rotational constants for a total 26 different isotopic species, including all singly substitued species relative to the parent molecule. The ^{13}C and ^{18}O substitutions were measured in natural abundance, while deuterium substitutions were carried out synthetically. The r_e^{SE} determination requires the calculation of vibration-rotation changes in rotational constants from an ab initio anharmonic force field, which necessitates some compromises in the level of calculation for a molecule of the size of salicyl aldehyde. For this reason we studied the five lowest vibrationally excited states, by using the combination of room-temperature mm-wave spectroscopy and waveguide Fourier transform cm-wave spectroscopy. The experimental excited state rotational constants were then used to calibrate the anharmonic force field calculation. The resulting r_e^{SE} geometry is compared with other types of geometry determination possible from this data, with emphasis on the effect of the near zero principal coordinate of the important C_2 atom. Z.Kisiel et al., 61^{st} OSU Symposium on Molecular Spectroscopy, The Ohio State University, Ohio 2006, RI-12.

  16. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  17. Benzoic acid–2-{(E-[(E-2-(2-pyridylmethylidenehydrazin-1-ylidene]methyl}pyridine (2/1

    Directory of Open Access Journals (Sweden)

    Hadi D. Arman

    2010-11-01

    Full Text Available The asymmetric unit of the title cocrystal, C12H10N4·2C7H6O2, comprises a single molecule of benzoic acid and one half-molecule of 2-pyridinealdazine situated about a centre of inversion. The carboxyl group is coplanar with the benzene ring to which it is connected [O—C—C—C = −172.47 (12°] and similarly, the 2-pyridinealdazine molecule is planar (r.m.s. deviation of the 16 non-H atoms = 0.017 Å. In the crystal, molecules are connected into a non-planar three-molecule aggregate [dihedral angle between the benzene and pyridyl ring connected by the hydrogen bond = 61.30 (7°] with a twisted Z-shape. Layers of 2-pyridinealdazine molecules in the ab plane are sandwiched by benzoic acid molecules being connected by O—H...N and C—H...O interactions, the latter involving the carbonyl O atom so that each benzoic acid molecule links three different 2-pyridinealdazine molecules. Interdigitated layers stack along the c axis.

  18. ADSORPTION OF BENZOIC ACID AND P-NITROBENZOIC ACID ON A NEW HYPERCROSSLINKED PHENOL GROUP PST ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gencheng; LIUFuqiang; FEI Zhenghao; LI Aimin; ZHANG Quanxing

    2003-01-01

    A comparison of the adsorption of benzoic acid and p-nitrobenzoic acid on the new hypercrosslinked polymeric adsorbent AM-I, with that by macroporous Amberlite XAD-4, including the equilibrium adsorption isotherms, the dynamic adsorption behaviors through column and the adsorption thermodynamics were studied. Results show that Freundlich equation gives a fitting adsorption isotherm. The specific surface of AM-l is only 67% of that of Amberlite XAD-4, but the adsorption capacities on AM-1 are much higher about 125%~166% than that on Amberlite XAD-4,which is contributed to the micropore mechanism and polarity. The negative values of the adsorption enthalpy are indicative of an exothermic process. Enthalpy and free energy changes of adsorption both manifest a physic-sorption process. The negative values of the adsorption entropy indicate that the adsorption is well consistent with the restricted mobilities and the configurations of the adsorbed benzoic acid molecules on the surface of studied adsorbents with superficial heterogeneity. Both adsorbents were used in mini-column experiments for adsorbing benzoic acid expecting to elucidate the higher breakthrough adsorption capacity of the new hypercrosslinked polymeric adsorbent AM-1 as compared with that of Amberlite XAD-4.

  19. PROPERTIES AND THERMODYNAMICS OF ADSORPTION OF BENZOIC ACID ONTO XAD-4 AND A WATER-COMPATIBLE HYPERCROSSLINKED ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    Fu-qiang Liu; Jin-long Chen; Ai-min Li; Zheng-hao Fei; Zhao-lian Zhu; Quan-xing Zhang

    2003-01-01

    The adsorption behavior of benzoic acid onto a water-compatible hypercrosslinked polymeric adsorbent NJ-8 was compared with that onto macroporous Amberlite XAD-4. This paper focuses on the static equilibrium adsorption behaviors,the adsorption thermodynamics and the column dynamic adsorption profiles. Five isotherm models are used to fit the results.This shows that the Freundlich equation can give a perfect fit. The specific surface area of NJ-8 is about as high as that of Amberlite XAD-4, but the adsorbing capacity for benzoic acid on NJ-8 is about 14.9%-64.8% higher than that on Amberlite XAD-4, which is attributed to its microporous mechanism and partial polarity. The negative values of the adsorption enthalpy are indicative of an exothermic process. Both enthalpy and free energy changes of adsorption manifest a physical sorption process. The negative values of the adsorption entropy indicate that adsorption is well consistent with the restricted mobilities and the configurations of the adsorbed molecules on the surface of the studied adsorbents with superficial heterogeneity. Both adsorbents were used in mini-column experiments to demonstrate the higher breakthrough adsorbing capacity of the hypercrosslinked polymeric adsorbent NJ-8 to benzoic acid, as compared with that of Amberlite XAD-4.

  20. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Science.gov (United States)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  1. Mn(II) complexes with bipyridine, phenanthroline and benzoic acid: Biological and catalase-like activity

    Indian Academy of Sciences (India)

    Ibrahim Kani; Özlem Atlier; Kiymet Güven

    2016-04-01

    Five mononuclear Mn(II) complexes, [Mn(phen)2(ClO4)2] (1), [Mn(phen)3](ClO4)2(H2CO3)2(2), [Mn(bipy)2(ClO4)2] (3), [Mn(bipy)3](ClO4)2) (4), and Mn(phen)2(ba)(H2O)](ClO4)(CH3OH) (5), where bipy = 2,2’-bipyridine, phen = 1,10-phenanthroline, and ba = benzoic acid were prepared and characterized by Xray, IR and UV-Vis spectroscopies, and their catalase-like and biological activities were studied. The presence of two different types and the number of chelating NN-donor neutral ligands allowed for analysis of their effects on the catalase and biological activities. It was observed that the presence and number of phen ligands improved the activity more than the bipy ligand. Complexes 1 and 2, which contain more basic phen ligands, disproportionate H2O2 faster than complexes 3 and 4, which contain less basic bipy ligands. The in vitro antimicrobial activities of all the complexes were also tested against seven bacterial strains by microdilution tests. All the bacterial isolates demonstrated sensitivity to the complexes and the antifungal (anticandidal) activities of the Mn(II) complexes were remarkably higher than the reference drug ketoconazole.

  2. Spontaneous adsorption of 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid onto carbon

    Energy Technology Data Exchange (ETDEWEB)

    Paez, Julieta I.; Strumia, Miriam C. [Departamento de Quimica Organica (IMBIV-CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (5000) (Argentina); Passeggi, Mario C.G. [Laboratorio de Superficies e Interfaces (INTEC-CONICET), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe (3000) (Argentina); Ferron, Julio [Laboratorio de Superficies e Interfaces (INTEC-CONICET), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe (3000) (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe (3000) (Argentina); Baruzzi, Ana M. [Departamento de Fisicoquimica (INFIQC-CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (5000) (Argentina); Brunetti, Veronica [Departamento de Fisicoquimica (INFIQC-CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (5000) (Argentina)], E-mail: brunetti@fcq.unc.edu.ar

    2009-07-01

    Dendritic molecules contain multifunctional groups that can be used to efficiently control the properties of an electrode surface. We are developing strategies to generate a highly functionalized surface using multifunctional and rigid dendrons immobilized onto different substrates. In the present work, we explore the immobilization of a dendritic molecule: 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid (D-NO{sub 2}) onto carbon surfaces showing a simple and rapid way to produce conductive surfaces with electroactive chemical functions. The immobilized D-NO{sub 2} layer has been characterized using atomic force microscopy and cyclic voltammetry. D-NO{sub 2} adsorbs onto carbon surfaces spontaneously by dipping the electrode in dendron solutions. Reduction of this layer generates the hydroxylamine product. The resulting redox-active layer exhibits a well-behaved redox response for the adsorbed nitroso/hydroxylamine couple. The film permeability of the derivatized surface has been analyzed employing the electrochemical response of redox probes: Ru(NH{sub 3}){sub 6}{sup 3+}/Ru(NH{sub 3}){sub 6}{sup 2+} and Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-}. Electrocatalytic oxidation of nicotinamide adenine dinucleotide onto a modified carbon surface was also observed.

  3. Self-Assembled Structures of Benzoic Acid on Au(111) Surface

    Science.gov (United States)

    Vu, Thu-Hien; Wandlowski, Thomas

    2017-02-01

    Electrochemical scanning tunneling microscopy combined with cyclic voltammetry were employed to explore the self-assembly of benzoic acid (BA) on a Au(111) substrate surface in a 0.1-M HClO4 solution. At the negatively charged surface, BA molecules form two highly ordered physisorbed adlayers with their phenyl rings parallel to the substrate surface. High-resolution scanning tunneling microscopy images reveal the packing arrangement and internal molecular structures. The striped pattern and zigzag structure of the BA adlayers are composed of parallel rows of dimers, in which two BA molecules are bound through a pair of O-H···O hydrogen bonds. Increasing the electrode potential further to positive charge densities of Au(111) leads to the desorption of the physisorbed hydrogen-bonded networks and the formation of a chemisorbed adlayer. BA molecules change their orientation from planar to upright fashion, which is accompanied by the deprotonation of the carboxyl group. Furthermore, potential-induced formation and dissolution of BA adlayers were also investigated. Structural transitions between the various types of ordered adlayers occur according to a nucleation and growth mechanism.

  4. Polyoxometalate coordinated transition metal complexes as catalysts: Oxidation of styrene to benzaldehyde/benzoic acid

    Indian Academy of Sciences (India)

    Srinivasa Rao Amanchi; Anjali Patel; Samar K Das

    2014-11-01

    Oxidation of styrene is carried out by using heptamolybdate coordinated transition metal (Co2+, Zn2+) complexes, [2-ampH]4[{Co(H2O)5}Mo7O24]·9H2O (1), [3-ampH]4[{Co(H2O)5}Mo7O24]·9H2O (2), [2-ampH]4[{Zn(H2O)5}Mo7O24]·4H2O (3) and [3-ampH]4[{Zn(3-ampy)(H2O)4}Mo7O24]·4H2O (4) as catalysts and H2O2 as an oxidant at 80°C. The leaching study has been carried out to check the quality of catalyst and it has been reused for three times with good percentage of conversion. For the first two catalysts (compounds 1 and 2), the major product obtained is benzaldehyde, and benzoic acid is the major product for next two catalysts (compounds 3 and 4). Stability of the catalysts has been analyzed by IR, UV-spectroscopy and powder X-ray crystallography.

  5. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-09-15

    The absolute quantification method of benzoic acid (BA) in processed foods using solvent extraction and quantitative proton nuclear magnetic resonance spectroscopy was developed and validated. BA levels were determined using proton signals (δ(H) 7.53 and 7.98) referenced to 2-dimethyl-2-silapentane-5-sulfonate-d(6) sodium salt (DSS-d(6)) after simple solvent extraction from processed foods. All recoveries from several kinds of processed foods, spiked at their specified maximum Japanese usage levels (0.6-2.5 g kg(-1)) and at 0.13 g kg(-1) and 0.063 g kg(-1), were greater than 80%. The limit of quantification was confirmed as 0.063 g kg(-1) in processed foods, which was sufficiently low for the purposes of monitoring BA. The accuracy of the proposed method is equivalent to the conventional method using steam-distillation extraction and high-performance liquid chromatography. The proposed method was both rapid and simple. Moreover, it provided International System of Units traceability without the need for authentic analyte standards. Therefore, the proposed method is a useful and practical tool for determining BA levels in processed foods.

  6. Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid

    Science.gov (United States)

    Yu, Shiqin; Plan, Manuel R.; Winter, Gal; Krömer, Jens O.

    2016-01-01

    para-Hydroxy benzoic acid (PHBA) is the key component for preparing parabens, a common preservatives in food, drugs, and personal care products, as well as high-performance bioplastics such as liquid crystal polymers. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase encoded by gene aroGD146N were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA) or competing for the precursor chorismate (pheA and trpE) were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose 4-phosphate and NADPH supply. The best strain achieved a maximum titer of 1.73 g L−1 and a carbon yield of 18.1% (C-mol C-mol−1) in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase. PMID:27965953

  7. Metabolic engineering of Pseudomonas putida KT2440 for the production of para-hydroxy benzoic acid

    Directory of Open Access Journals (Sweden)

    Shiqin Yu

    2016-11-01

    Full Text Available para-hydroxy benzoic acid (PHBA is the key component for preparing parabens, a common preservatives in food, drugs and personal care products, as well as high performance bioplastics such as liquid crystal polymers (LCP. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by gene aroGD146N were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA or competing for the precursor chorismate (pheA and trpE were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose-4- phosphate and NAPH supply. The best strain achieved a maximum titre of 1.73 g L-1 and a carbon yield of 18.1 % (C-mol C-mol-1 in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase.

  8. Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids: Product identification and reaction mechanisms

    Science.gov (United States)

    Deng, Yiwei; Zhang, Kai; Chen, Hao; Wu, Taixing; Krzyaniak, Metthew; Wellons, Amina; Bolla, Dawn; Douglas, Kenneth; Zuo, Yuegang

    This study investigated iron-catalyzed photochemical oxidation of benzoic acid (BA), one of the major photodegradation products of petroleum hydrocarbons, under sunlight or monochromatic light irradiation in a wavelength range of 254-419 nm. The photochemical degradation of BA in the absence of iron (III) occurred at irradiation wavelengths below 300 nm. The photochemical transformation of BA in the presence Fe(III) was observed at both 254, 350, 419 nm and under solar irradiation. The half-life for the photodegradation of BA (100 μM) was 160±20 min in the presence of 20 μM Fe(III) at pH 3.20 on sunny August days at noon time. The degradation rate increased with increasing concentration of Fe(III). The reaction products were separated and identified using capillary electrophoresis (CE), gas chromatography/mass spectrometry (GC/MS) and UV-Visible spectrophotometry. The major reaction products were 2-hydroxybenzoic, 3-hydroxybenzoic and 4-hydroxybenzoic acids. Hydrogen peroxide (H 2O 2) and Fe(II) species were also formed during the photochemical reactions. The proposed reaction mechanisms include the photoexcitation of Fe(III) hydroxide complexes to form Fe(II) ions and hydroxyl radicals (OH rad ) that attack ortho, meta and para positions of BA to form corresponding monohydroxybenzoic acids and H 2O 2. The monohydroxybenzoic acids formed further react with hydroxyl and surperoxide radicals (HO 2- rad /O 2- rad ) to yield dihydroxybenzoic acids in atmospheric water droplets.

  9. Benzoic Acid Interactions Affect Aquatic Properties and Toxicity of Copper Oxide Nanoparticles.

    Science.gov (United States)

    Wang, Zhuang; Fang, Hao; Wang, Se

    2016-08-01

    Effects of benzoic acid (BA) on physicochemical properties and ecotoxicities of CuO nanoparticles (CuONPs) in model aqueous media were studied. The CuONPs had larger hydrodynamic sizes and higher surface zeta potentials during 96 h of settling in the presence of BA than when the BA were not present. BA interaction with CuONPs is shown to promote dissolved Cu release from CuONPs in a dose-dependent manner. The contribution of free Cu(2+)-ions to growth inhibition toxicity of the CuONP suspensions at a toxicologically relevant concentration for the green alga Scenedesmus obliquus was around 22 %, indicating that dissolved fraction was not the major source of toxicity of CuONPs. The toxicity of CuONPs increased as the BA concentration increased. BA significantly altered total antioxidant capacity of CuONPs-exposed algal cells. The mechanism of the BA effect on the CuONPs toxicity may be mainly associated with degree of agglomeration, dissolved Cu, and particle-induced oxidative stress.

  10. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.

    Science.gov (United States)

    Zhang, Haoran; Stephanopoulos, Gregory

    2016-07-01

    3-amino-benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coli-E. coli co-culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co-culture system was found to improve 3AB production by 15 fold, compared to the mono-culture approach. Further engineering of the co-culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co-culture engineering can be a powerful new approach in the broad field of metabolic engineering.

  11. Short communication: Change of naturally occurring benzoic acid during skim milk fermentation by commercial cheese starters.

    Science.gov (United States)

    Han, Noori; Park, Sun-Young; Kim, Sun-Young; Yoo, Mi-Young; Paik, Hyun-Dong; Lim, Sang-Dong

    2016-11-01

    This study sought to investigate the change of naturally occurring benzoic acid (BA) during skim milk fermentation by 4 kinds of commercial cheese starters used in domestic cheese. The culture was incubated at 3-h intervals for 24h at 30, 35, and 40°C. The BA content during fermentation by Streptococcus thermophilus STB-01 was detected after 12h at all temperatures, sharply increasing at 30°C. In Lactobacillus paracasei LC431, BA was detected after 9h at all temperatures, sharply increasing until 18h and decreasing after 18h at 30 and 35°C. In the case of R707 (consisting of Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris), BA increased from 6h to 15h and decreased after 15h at 40°C. The BA during STB-01 and CHN-11 (1:1; mixture of S. thermophilus, Lc. lactis ssp. lactis, Lc. lactis ssp. cremoris, Lc. lactis ssp. diacetylactis, Leuconostoc mesenteroides ssp. cremoris) fermentation was detected after 3h at 35 and 40°C, sharply increasing up to 12h and decreasing after 15h at 35°C, and after 6h, increasing up to 9h at 30°C. After 3h, it steadily decreased at 40°C. The highest amount of BA was found during the fermentation by R707 at 30°C; 15h with 12.46mg/kg.

  12. Syntheses,characteristics and fluorescence properties of complexes of terbium with benzoic acid and its derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-cheng; SHU Wan-gen; RUAN Jian-ming; HUANG Bai-yun; LIU You-nian

    2005-01-01

    The binary complexes of terbium with benzoic acid and its derivatives (phthalic acid,iso-phthalic acid,oaminobenzoic acid,salicylic acid,sulfosalicylic acid) were synthesized and their compositions were identified by elemental analyses.UV,IR of the complexes were investigated.The UV spectra indicate that the complexes'ultraviolet absorption is mainly the ligands' absorption,but the location of peak drifts.The IR spectra show that the IR spectra of complexes are different from those of free ligands,and the band at 400-500 cm-1,due to the stretching vibration of Tb-O,is absent for free ligands.The fluorescence properties were investigated by using luminescence spectroscope,the results show that all the six complexes of terbium exhibit excellent luminescence,due to the transition from the lowest excited state 5D4 to 7F ground state manifold,the complexes of terbium with sulfosalicylic acid have the strongest fluorescence intensity,and is stronger than o-aminobenzoic acid-terbium,whose fluorescence intensity is regarded as the strongest one in the literature,and even stronger than some phosphor of terbium.

  13. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    Science.gov (United States)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  14. Modified ferrous ammonium sulfate benzoic acid xyelenol orange (MFBX) and thermoluminescent dosimeters--a comparative study.

    Science.gov (United States)

    Brindha, S; Rose, J V R; Sathyan, S; Singh I, Rabi Raja; Ravindran, B Paul

    2002-06-07

    Radiation dosimetry deals with the determination of absorbed dose to the medium exposed to ionizing radiation. Chemical dosimetry depends on oxidation or reduction of chemicals by ionizing radiation. A ferrous ammonium sulfate benzoic acid xyelenol orange (FBX) dosimeter based on this principle is being used as a clinical dosimeter at present. Certain modifications were carried out in the preparation and storage of the FBX dosimeter to increase its shelf life. The resulting dosimeter was called a modified FBX (MFBX) dosimeter and has been used in our department for the past few years. An extensive study of the dose, dose rate and energy response of the dosimeter was carried out and compared with a thermoluminescent (LiF7) dosimeter. The results obtained were found to be comparable to the thermoluminescent (LiF7) dosimeter. Hence it was concluded that the MFBX dosimeter could be used for phantom dosimetry, data collection and in vivo measurements. Easier preparation and availability of the reagents are added advantages of using MFBX as a clinical dosimeter in small radiotherapy departments.

  15. Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films.

    Science.gov (United States)

    Mohite, V S; Mahadik, M A; Kumbhar, S S; Hunge, Y M; Kim, J H; Moholkar, A V; Rajpure, K Y; Bhosale, C H

    2015-01-01

    Highly transparent pure and Au doped TiO2 thin films are successfully deposited by using simple chemical spray pyrolysis technique. The effect of Au doping onto the structural and physicochemical properties has been investigated. The PEC study shows that, both short circuit current (Isc) and open circuit voltage (Voc) are (Isc=1.81mA and Voc=890mV) relatively higher at 3at.% Au doping percentage. XRD study shows that the films are nanocrystalline in nature with tetragonal crystal structure. FESEM images show that the film surface covered with a smooth, uniform, compact and rice shaped nanoparticles. The Au doped thin films exhibit indirect band gap, decreases from 3.23 to 3.09eV with increase in Au doping. The chemical composition and valence states of pure and Au doped TiO2 films are studied by using X-ray photoelectron spectroscopy. The photocatalytic degradation effect is 49% higher in case 3at.% Au doped TiO2 than the pure TiO2 thin film photoelectrodes in the degradation of benzoic acid. It is revealed that Au doped TiO2 can be reused for five cycles of experiments without a requirement of post-treatment while the degradation efficiency was retained.

  16. Biogenic aldehyde(s) derived from the action of monoamine oxidase may mediate the antidipsotropic effect of daidzin.

    Science.gov (United States)

    Keung, W M

    2001-01-30

    Daidzin, a major active principle of an ancient herbal treatment for 'alcohol addiction', was first shown to suppress ethanol intake in Syrian golden hamsters. Since then this activity has been confirmed in Wistar rats, Fawn hooded rats, genetically bred alcohol preferring P rats and African green moneys under various experimental conditions, including two-level operant, two-bottle free-choice, limited access, and alcohol-deprivation paradigms. In vitro, daidzin is a potent and selective inhibitor of mitochondrial aldehyde dehydrogenase (ALDH-2). However, in vivo, it does not affect overall acetaldehyde metabolism in golden hamsters. Using isolated hamster liver mitochondria and 5-hydroxytryptamine (5-HT) and dopamine (DA) as the substrates, we demonstrated that daidzin inhibits the second but not the first step of the MAO/ALDH-2 pathway, the major pathway that catalyzes monoamine metabolism in mitochondria. Correlation studies using structural analogs of daidzin led to the hypothesis that the mitochondrial MAO/ALDH-2 pathway may be the site of action of daidzin and that one or more biogenic aldehydes such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or DOPAL derived from the action of monoamine oxidase (MAO) may be mediators of its antidipsotropic action.

  17. Flavour release of aldehydes and diacetyl in oil/water systems

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Bredie, W. L. P.; Stahnke, Louise Heller;

    2000-01-01

    The concentration- and time-dependent release of three C-6-aldehydes, six C-9-aldehydes and diacetyl was studied in model systems. The systems were water, rapeseed oil and oil-in-water emulsions. Dynamic headspace sampling was used to collect the volatile compounds. In the concentration-dependent...

  18. Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods

    NARCIS (Netherlands)

    Smit, B.A.; Engels, W.J.M.; Smit, G.

    2009-01-01

    Branched aldehydes, such as 2-methyl propanal and 2- and 3-methyl butanal, are important flavour compounds in many food products, both fermented and non-fermented (heat-treated) products. The production and degradation of these aldehydes from amino acids is described and reviewed extensively in lite

  19. Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes

    DEFF Research Database (Denmark)

    Thygesen, Mikkel Boas; Sørensen, Kasper Kildegaard; Cló, Emiliano

    2009-01-01

    Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell.......Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell....

  20. Metal-Free Direct Oxidation of Aldehydes to Esters Using TCCA.

    Science.gov (United States)

    Gaspa, Silvia; Porcheddu, Andrea; De Luca, Lidia

    2015-08-07

    Aromatic and aliphatic aldehydes are simply converted into esters by an efficient oxidative esterification carried out under mild conditions. The aldehydes are converted in situ into their corresponding acyl chlorides, which are then reacted with primary and secondary aliphatic, benzylic, allylic, and propargylic alcohols and phenols. A variety of esters are obtained in high yields.

  1. Effect of whey protein on the In Vivo Release of Aldehydes.

    NARCIS (Netherlands)

    Weel, K.G.C.; Boelrijk, A.E.M.; Burger, J.J.; Claassen, N.E.; Gruppen, H.; Voragen, A.G.J.

    2003-01-01

    Retention of aldehydes by whey proteins in solutions buffered at a range of pH values was studied under static and dynamic headspace conditions and in vivo in exhaled air. Static headspace measurements showed a clear increase in retention in the presence of whey proteins for aldehydes with longer ca

  2. β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water

    Institute of Scientific and Technical Information of China (English)

    Dong Po Shi; Hong Bing Ji

    2009-01-01

    A facile,efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaC10 catalyzed by β-cyclodextdn in water has been developed.A series of aldehydes which could form inclusion complex with β-cyclodextrin(β-CD)were oxidized selectively with excellent yields.

  3. Colorimetric monitoring of solid-phase aldehydes using 2,4-dinitrophenylhydrazine.

    Science.gov (United States)

    Shannon, Simon K; Barany, George

    2004-01-01

    A simple and rapid method to achieve colorimetric monitoring of resin-bound aldehydes, based on ambient temperature reaction with 2,4-dinitrophenylhydrazine (DNPH) in the presence of dilute acid, has been developed as an adjunct to solid-phase organic synthesis and combinatorial chemistry. By this test, the presence of aldehydes is indicated by a red to dark-orange appearance, within a minute. Alternatively, resins that are free of aldehydes or in which aldehyde functions have reacted completely retain their original color. The DNPH test was demonstrated for poly(ethylene glycol)-polystyrene (PEG-PS), aminomethyl polystyrene (AMP), cross-linked ethoxylate acrylate resin (CLEAR), and acryloylated O,O'-bis(2-aminopropyl)poly(ethylene glycol) (PEGA) supports and gave results visible to the naked eye at levels as low as 18 micromol of aldehyde per gram of resin.

  4. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T.K. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Clarke, S.M., E-mail: stuart@bpi.cam.ac.u [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Bhinde, T. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Castro, M.A.; Millan, C. [Instituto Ciencia de los Materiales de Sevilla, Departamento de Quimica Inorganica (CSIC-Universidad de Sevilla) (Spain); Medina, S. [Centro de Investigacion, Tecnologia e Innovacion de la Universidad de Sevilla (CITIUS), Sevilla (Spain)

    2011-03-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C{sub 7}, C{sub 9} and C{sub 11}) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C{sub 11} homologue is determined to have a plane group of either p2, pgb or pgg, and for the C{sub 7} homologue the p2 plane group is preferred.

  5. Does acute exposure to aldehydes impair pulmonary function and structure?

    Science.gov (United States)

    Abreu, Mariana de; Neto, Alcendino Cândido; Carvalho, Giovanna; Casquillo, Natalia Vasconcelos; Carvalho, Niedja; Okuro, Renata; Ribeiro, Gabriel C Motta; Machado, Mariana; Cardozo, Aléxia; Silva, Aline Santos E; Barboza, Thiago; Vasconcellos, Luiz Ricardo; Rodrigues, Danielle Araujo; Camilo, Luciana; Carneiro, Leticia de A M; Jandre, Frederico; Pino, Alexandre V; Giannella-Neto, Antonio; Zin, Walter A; Corrêa, Leonardo Holanda Travassos; Souza, Marcio Nogueira de; Carvalho, Alysson R

    2016-07-15

    Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1β, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group.

  6. Reduction of Aldehydes and Ketones with Potassium Borohydride as Reductant

    Institute of Scientific and Technical Information of China (English)

    罗慧谋; 李毅群

    2005-01-01

    A series of aldehydes and ketones were reduced by potassium borohydride in an ionic liquid/water ([bmim]PF6/H2O) biphasic system to afford corresponding alcohol with high purity in excellent yields. The ionic liquid/water biphasic system could promote the chemoselectivity and the substituents such as nitro group and chlorine remained intact. Aromatic ketones were not as active as aromatic aldhydes and cyclic ketones owing to their higher steric hindrance. The ionic liquid could be recycled and reused. This protocol has notable advantages of no need of phase transfer catalyst and organic solvents, mild conditions, simple operation, short reaction time, ease work-up, high yields and recycling of the ionic liquid.

  7. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    Science.gov (United States)

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages.

  8. Differential effect of three polyunsaturated aldehydes on marine bacterial isolates.

    Science.gov (United States)

    Ribalet, Francois; Intertaglia, Laurent; Lebaron, Philippe; Casotti, Raffaella

    2008-01-31

    Bioactive polyunsaturated aldehydes (PUAs) are produced by several marine phytoplankton (mainly diatoms) and have been shown to have a detrimental effect on a wide variety of organisms, including phytoplankton and invertebrates. However, their potential impact on marine bacteria has been largely neglected. We assess here the effect of three PUAs produced by marine diatoms: 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, on the growth of 33 marine bacterial strains, including 16 strains isolated during a bloom of the PUA-producing diatom Skeletonema marinoi in the Northern Adriatic Sea. A concentration-dependent growth reduction was observed for 19 bacterial strains at concentrations ranging from 3 to 145 micromolL(-1). Surprisingly, Eudora adriatica strain MOLA358 (Flavobacteriaceae) and Alteromonas hispanica strain MOLA151 (Alteromonadaceae) showed growth stimulation upon exposure to PUAs at concentrations between 13 and 18 micromolL(-1). The remaining 12 strains were unaffected by even very high PUA concentrations. Strains isolated during the diatom bloom showed remarkable resistance to PUA exposures, with only two out of 16 strains showing growth inhibition at PUA concentrations below 106, 130, and 145 micromolL(-1) for 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, respectively. No correlation between taxonomical position and sensitivity to PUA was observed. Considering that many bacteria thrive in close vicinity of diatom cells, it is likely that these compounds may shape the structure of associated bacterial communities by representing a selection force. This is even more relevant during the final stages of blooms, when senescence and nutrient limitation increase the potential production and release of aldehydes.

  9. Photorheologically reversible micelle composed of polymerizable cationic surfactant and 4-phenylazo benzoic acid☆

    Institute of Scientific and Technical Information of China (English)

    Jie Chen; Bo Fang; Hao Jin; Licheng Yu; Meng Tian; Kejing Li; Leiping Jin; Mo Yang

    2016-01-01

    A photorheologically reversible micelle composed of polymerizable cationic surfactant n-cetyl dimethylallyl am-monium chloride (CDAAC) and trans-4-phenylazo benzoic acid (trans-ACA) was prepared. The effects of molar ratio of CDAAC/trans-ACA, time of UV and visible light irradiation and temperature on the rheological properties of micellar system were investigated. The results show that before UV irradiation the system with an optimum CDAAC/trans-ACA molar ratio of 1.4 forms viscoelastic micelles at 45 °C. After 365 nm UV irradiation, the viscos-ities of micel e systems with different concentrations at fixed molar ratio of 1.4 are decreased by 85%–95%. The CDAAC/trans-ACA (14 mmol·L−1/10 mmol·L−1) micel e system exhibits shear thinning property and its viscos-ity is decreased obviously with the increases of UV irradiation time less than 1 h. The rheological process during UV irradiation for CDAAC/trans-ACA (14 mmol·L−1/10 mmol·L−1) micelle proves that viscosity, elastic modulus G′and viscous modulus G″will reduce quickly with the UV light. Furthermore, the micelle system after 1 h UV-irradiation is able to revert to its initial high viscosity with 460 nm visible light irradiation for 4 h, and the micelle can be cycled between low and high viscosity states by repetitive UV and visible light irradiations. The UV–Vis spectra of CDAAC/trans-ACA micelle indicate that its photosensitive rheological properties are related closely to photoisomerization of trans-ACA to cis-ACA.

  10. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    Science.gov (United States)

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  11. Effects of benzoic Acid and dietary calcium:phosphorus ratio on performance and mineral metabolism of weanling pigs.

    Science.gov (United States)

    Gutzwiller, A; Schlegel, P; Guggisberg, D; Stoll, P

    2014-04-01

    In a 2×2 factorial experiment the hypotheses tested were that the metabolic acid load caused by benzoic acid (BA) added to the feed affects bone mineralization of weanling pigs, and that a wide dietary calcium (Ca) to phosphorus (P) ratio in phytase-supplemented feeds with a marginal P concentration has a positive effect on bone mineralization. The four experimental diets, which contained 0.4% P and were supplemented with 1,000 FTU phytase/kg, contained either 5 g BA/kg or no BA and either 0.77% Ca or 0.57% Ca. The 68 four-week-old Large White pigs were fed the experimental diets ad libitum for six weeks and were then slaughtered. Benzoic acid increased feed intake (p = 0.009) and growth rate (p = 0.051), but did not influence the feed conversion ratio (p>0.10). Benzoic acid decreased the pH of the urine (p = 0.031), but did not affect breaking strength and mineralization of the tibia (p>0.10). The wide Ca:P ratio decreased feed intake (p = 0.034) and growth rate (p = 0.007) and impaired feed the conversion ratio (p = 0.027), but increased the mineral concentration in the fat-free DM of the tibia (p = 0.013) without influencing its breaking strength (p>0.10). The observed positive effect of the wide Ca:P ratio on bone mineralization may be attributed, at least in part, to the impaired feed conversion ratio, i.e. to the higher feed intake and consequently to the higher mineral intake per kg BW gain. The negative impact on animal performance of the wide dietary Ca:P ratio outweighs its potentially positive effect on bone mineralization, precluding its implementation under practical feeding conditions.

  12. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    Science.gov (United States)

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-01

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H2O2 indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions.

  13. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    Science.gov (United States)

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.

  14. 苯甲酸釜残液全部回收的工艺开发利用%Development on the Technique of Total Recovery of Benzoic Acid Residue

    Institute of Scientific and Technical Information of China (English)

    徐姣; 何杰; 张卫江; 杨焘; 焦书军; 胡雪东

    2009-01-01

    Benzoic acid residue is solid waste produced from the production of benzoic acid by oxidizing toluene. Because it contained important chemical raw materials such as benzoic acid, benzyl benzoate and fluorenone, it is necessary to recover them from the residue. In this work the technique featured with high efficiency evaporation and vacuum distillation was developed to obtain total recovery and utilization of the benzoic acid residue. By con-trolling the operation temperature at 260℃ and the pressure of 16 kPa in the rising and falling film evaporators, heavy components separated efficiently from the residue can be polymerized and the light components consisting of 63% of the residue entered into a benzoic acid vacuum distillation column. Keeping the temperature of polymeriza-tion at (280±10)℃, coumarone resin was produccd after adjusting the softening point according to the market re-quirements. Vacuum distillation was operated under the following conditions: top temperature at 186℃, top pres-sure of 16 kPa, bottom temperature at 240 250℃, reflux ratio being 3:1. Benzoic acid of 98% purity was distilled out from the column as a side stream and the bottom product was crude benzyl benzoate. By the developed tech-nique, the benzoic acid residue was splitted into three products, benzoic acid, crude benzyl benzoate and coumarone resin without any surplus waste.

  15. Nasal pungency and odor of homologous aldehydes and carboxylic acids.

    Science.gov (United States)

    Cometto-Muñiz, J E; Cain, W S; Abraham, M H

    1998-01-01

    Airborne substances can stimulate both the olfactory and the trigeminal nerve in the nose, giving rise to odor and pungent (irritant) sensations, respectively. Nose, eye, and throat irritation constitute common adverse effects in indoor environments. We measured odor and nasal pungency thresholds for homologous aliphatic aldehydes (butanal through octanal) and carboxylic acids (formic, acetic, butanoic, hexanoic, and octanoic). Nasal pungency was measured in subjects lacking olfaction (i.e., anosmics) to avoid odor biases. Similar to other homologous series, odor and pungency thresholds declined (i.e., sensory potency increased) with increasing carbon chain length. A previously derived quantitative structure-activity relationship (QSAR) based on solvation energies predicted all nasal pungency thresholds, except for acetic acid, implying that a key step in the mechanism for threshold pungency involves transfer of the inhaled substance from the vapor phase to the receptive biological phase. In contrast, acetic acid - with a pungency threshold lower than predicted - is likely to produce threshold pungency through direct chemical reaction with the mucosa. Both in the series studied here and in those studied previously, we reach a member at longer chain-lengths beyond which pungency fades. The evidence suggests a biological cut-off, presumably based upon molecular size, across the various series.

  16. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  17. Measurements Alcohols, Ketones, and Aldehydes During Trace-P

    Science.gov (United States)

    Apel, E. C.; Riemer, D. D.; Hills, A.; Lueb, R.; Fried, A.; Sachse, G.; Crawford, J.; Singh, H.; Blake, D.

    2002-12-01

    A sensitive and selective instrument (fast gas chromatographic mass spectrometer - FGCMS) was developed for the continuous measurement of oxygenated volatile organic compounds (OVOCs: alcohols, ketones and aldehydes (except for formaldehyde)) containing fewer than 6 carbon atoms and subsequently deployed during the NASA's TRACE-P (Transport and Chemical Evolution over the Pacific) experiment. This paper will briefly describe the instrument and present results obtained from 15 mission flights. Dramatic differences were observed in the mixing ratios and vertical profiles of the longer-lived species, acetone and methanol, compared to the shorter-lived species. For example, between 6 and 7 km, the median mixing ratios for the two longest lived species measured, acetone and methanol, are 765 pptv and 1061 pptv, respectively whereas the combined mixing ratio for all other species measured was less than 500 pptv. A large variety of air masses were encountered during this experiment and this is reflected in the behavior of the measured OVOCs. Relationships between the OVOCs and other trace species will be explored. Implications of these measurements for our current understanding of global tropospheric chemistry will be discussed.

  18. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  19. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  20. In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L.

    Science.gov (United States)

    Bisignano, G; Laganà, M G; Trombetta, D; Arena, S; Nostro, A; Uccella, N; Mazzanti, G; Saija, A

    2001-04-20

    In the present paper we report the 'in vitro' activity of eight aliphatic long-chain aldehydes from olive flavor (hexanal, nonanal, (E)-2-hexenal, (E)-2-eptenal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal and (E,E)-2,4-decadienal) against a number of standard and freshly isolated bacterial strains that may be causal agents of human intestinal and respiratory tract infections. The saturated aldehydes characterized in the present study do not exhibit significant antibacterial activity, while the alpha,beta-unsaturated aldehydes have a broad antimicrobial spectrum and show similar activity against Gram-positive and Gram-negative microorganisms. The effectiveness of the aldehydes under investigation seems to depend not only on the presence of the alpha,beta-double bond, but also on the chain length from the enal group and on the microorganism tested.

  1. Ambient Ionic Liquids Used in the Reduction ofAldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Dan Qian XU; Shu Ping LUO; Bao You LIU; Zhen Yuan XU; Yin Chu SHEN

    2004-01-01

    The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.

  2. The applications of Schiff bases in Ti-catalyzed asymmetric alkynylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Xian Jia; Lu Yin; Xuan Zhao; Xing Shu Li

    2007-01-01

    Sciff bases 1 and 2, which were derived from chiral aminoalcohols, were used as ligands in Ti-catalyzed asymmetric alkynylation of aldehydes. Good enantioselectivities (up to 88% ee) and high chemical yields (80-90 %) were obtained.

  3. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)

    2014-02-15

    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  4. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  5. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: A combined experimental and theoretical study

    DEFF Research Database (Denmark)

    Fristrup, Peter; Kreis, Michael; Palmelund, Anders;

    2008-01-01

    The mechanism for the rhodium-catalyzed decarbonylation of aldehydes was investigated by experimental techniques (Hammett studies and kinetic isotope effects) and extended by a computational study (DFT calculations). For both benzaldehyde and phenyl acetaldehyde derivatives, linear Hammett plots ...

  6. Direct preparation of copper organometallics bearing an aldehyde function via an iodine-copper exchange.

    Science.gov (United States)

    Yang, Xiaoyin; Knochel, Paul

    2006-06-21

    The iodine-copper exchange reaction allows the direct preparation of various aryl, heteroaryl and alkenyl cuprates bearing a formyl group, thus allowing a direct synthesis of polyfunctional aldehydes without the need of protecting groups or an additional oxidation step.

  7. A new resistance source of aldehyde reductase functions from Scheffersomyces stipitis against biomass fermentation inhibitor furfural

    Science.gov (United States)

    Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment are a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuels production. This study identified five uncharacterized putative genes of Scheffersomyces stipiti...

  8. Syntheses and fluorescent properties of complexes of Eu(Ⅲ) with HTTA,TPPO and benzoic acid

    Institute of Scientific and Technical Information of China (English)

    ZHAN Xuehui; XIAO Zhongliang; ZHAN Hanhui; ZHAO Xuehui; ZHOU Suian; LI Fei

    2009-01-01

    A series of Eu(Ⅲ) complexes of α-thenoyltrifluoroacetone(HTTA) with trioctylphosphine oxide(TPPO) and benzoic acid(BA) or its two derivatives, p-toluic acid(PTA) and p-methoxybenzoic acid(POA) were synthesized and were characterized with elemental analysis, IR spectroscopy, scanning electronic microscopy and fluorescent spectra. The complexes were revealed to be Eu(BA)(TTA)2TPPO2, Eu(PTA)(TTA)2TPPO2 and Eu(POA)(TTA)2TPPO2. The excitation and absorption spectra of the complex Eu(POA)(TTA)2TPPO2 in MeOH solution were investigated in detail. The experimental result showed that relatively cheap materials with sharp red luminescence could be pre-pared, when benzoic acid or its two derivatives were added in Eu(Ⅲ) complexes of α-thenoyltdfluoroacetone with trioctylphosphine oxide. The relative fluorescence intensity of the Eu(Ⅲ) complexes decreased in the following order: Eu(POA)(TTA)2TPPO2> Eu(PTA)(TTA)2TPPO2>Eu(BA)(TTA)2TPPO2.

  9. Rh(I)-Catalyzed Intermolecular Hydroacylation: Enantioselective Cross-Coupling of Aldehydes and Ketoamides

    Science.gov (United States)

    2015-01-01

    Under Rh(I) catalysis, α-ketoamides undergo intermolecular hydroacylation with aliphatic aldehydes. A newly designed Josiphos ligand enables access to α-acyloxyamides with high atom-economy and enantioselectivity. On the basis of mechanistic and kinetic studies, we propose a pathway in which rhodium plays a dual role in activating the aldehyde for cross-coupling. A stereochemical model is provided to rationalize the sense of enantioinduction observed. PMID:24937681

  10. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  11. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Directory of Open Access Journals (Sweden)

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  12. Silicon Amine Reagents for the Photocatalytic Synthesis of Piperazines from Aldehydes and Ketones.

    Science.gov (United States)

    Hsieh, Sheng-Ying; Bode, Jeffrey W

    2016-05-06

    Silicon amine protocol (SLAP) reagents for photocatalytic cross-coupling with aldehydes and ketones to form N-unprotected piperazines have been developed. This blue light promoted process tolerates a wide range of heteroaromatic, aromatic, and aliphatic aldehydes and structurally and stereochemically complex SLAP reagents. It provides a tin-free alternative to SnAP (tin amine protocol) reagents for the synthesis of substituted piperazines.

  13. Iron-Catalyzed Regioselective Transfer Hydrogenative Couplings of Unactivated Aldehydes with Simple Alkenes.

    Science.gov (United States)

    Zheng, Yan-Long; Liu, Yan-Yao; Wu, Yi-Mei; Wang, Yin-Xia; Lin, Yu-Tong; Ye, Mengchun

    2016-05-17

    An FeBr3 -catalyzed reductive coupling of various aldehydes with alkenes that proceeds through a direct hydride transfer pathway has been developed. With (i) PrOH as the hydrogen donor under mild conditions, previously challenging coupling reactions of unactivated alkyl and aryl aldehydes with simple alkenes, such as styrene derivatives and α-olefins, proceeded smoothly to furnish a diverse range of functionalized alcohols with complete linear regioselectivity.

  14. Nitric Oxide Mediates the Stress Response Induced by Diatom Aldehydes in the Sea Urchin Paracentrotus lividus

    OpenAIRE

    Giovanna Romano; Maria Costantini; Isabella Buttino; Adrianna Ianora; Anna Palumbo

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadie...

  15. Brain and Liver Headspace Aldehyde Concentration Following Dietary Supplementation with n-3 Polyunsaturated Fatty Acids.

    Science.gov (United States)

    Ross, Brian M; Babay, Slim; Malik, Imran

    2015-11-01

    Reactive oxygen species react with unsaturated fatty acids to form a variety of metabolites including aldehydes. Many aldehydes are volatile enough to be detected in headspace gases of blood or cultured cells and in exhaled breath, in particular propanal and hexanal which are derived from omega-3 and omega-6 polyunsaturated fatty acids, respectively. Aldehydes are therefore potential non-invasive biomarkers of oxidative stress and of various diseases in which oxidative stress is thought to play a role including cancer, cardiovascular disease and diabetes. It is unclear, however, how changes in the abundance of the fatty acid precursors, for example by altered dietary intake, affect aldehyde concentrations. We therefore fed male Wistar rats diets supplemented with either palm oil or a combination of palm oil plus an n-3 fatty acid (alpha-linolenic, eicosapentaenoic, or docosahexaenoic acids) for 4 weeks. Fatty acid analysis revealed large changes in the abundance of both n-3 and n-6 fatty acids in the liver with smaller changes observed in the brain. Despite the altered fatty acid abundance, headspace concentrations of C1-C8 aldehydes, and tissue concentrations of thiobarbituric acid reactive substances, did not differ between the 4 dietary groups. Our data suggest that tissue aldehyde concentrations are independent of fatty acid abundance, and further support their use as volatile biomarkers of oxidative stress.

  16. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    Science.gov (United States)

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed.

  17. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.

    Science.gov (United States)

    Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente

    2016-01-27

    Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.

  18. Aldehyde measurements in indoor environments in Strasbourg (France)

    Science.gov (United States)

    Marchand, C.; Bulliot, B.; Le Calvé, S.; Mirabel, Ph.

    Formaldehyde and acetaldehyde concentrations have been measured in indoor environments of various public spaces (railway station, airport, shopping center, libraries, underground parking garage, etc.) of Strasbourg area (east of France). In addition, formaldehyde, acetaldehyde propionaldehyde and hexanal concentrations have been measured in 22 private homes in the same area. In most of the sampling sites, indoor and outdoor formaldehyde and acetaldehyde concentrations were measured simultaneously. Gaseous aldehydes levels were quantified by a conventional DNHP-derivatization method followed by liquid chromatography coupled to UV detection. Outdoor formaldehyde and acetaldehyde concentrations were both in the range 1-10 μg m -3, the highest values being measured at the airport and railway station. Indoor concentrations were strongly dependant upon the sampling sites. In homes, the average concentrations were 37 μg m -3 (living rooms) and 46 μg m -3 (bedrooms) for formaldehyde, 15 μg m -3 (living rooms) and 18 μg m -3 (bedrooms) for acetaldehyde, 1.2 μg m -3 (living rooms) and 1.6 μg m -3 (bedrooms) for propionaldehyde, 9 μg m -3 (living rooms) and 10 μg m -3 (bedrooms) for hexanal. However, concentrations as high as 123, 80 and 47 μg m -3 have been found for formaldehyde, acetaldehyde and hexanal respectively. In public spaces, the highest formaldehyde concentration (62 μg m -3) was found in a library and the highest concentration of acetaldehyde (26 μg m -3) in the hall of a shopping center. Additional measurements of formaldehyde and acetaldehyde were made inside a car both at rest or in a fluid or heavy traffic as well as in a room where cigarettes were smoked. Our data have been discussed and compared with those of previous studies.

  19. Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea

    Directory of Open Access Journals (Sweden)

    Vanisree Mulabagal

    2011-01-01

    Full Text Available Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO and cyclooxygenase (COX-1 and COX-2 enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 g/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 g/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50 at 9.7 g/mL. The analogs showed only marginal LPO activity at 6.25 g/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 g/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 g/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 g/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities.

  20. Residues that influence coenzyme preference in the aldehyde dehydrogenases.

    Science.gov (United States)

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A

    2015-06-01

    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  1. Greener Friedel-Crafts Acylation using Microwave-enhanced reactivity of Bismuth Triflate in the Friedel-Crafts Benzoylation of Aromatic Compounds with Benzoic Anhydride

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Nguyen, hai Truong; Hansen, Poul Erik

    2017-01-01

    An efficient and facile bismuth trifluoromethanesulfonate-catalyzed benzoylation of aromatic compounds using benzoic anhydride under solvent-free microwave irradiation has been developed. The microwave-assisted Friedel-Crafts benzoylation results in good yields within short reaction times. Bismut...

  2. A limited LCA of bio-adipic acid: Manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks

    NARCIS (Netherlands)

    Duuren, van J.B.J.H.; Brehmer, B.; Mars, A.E.; Eggink, G.; Martins Dos Santos, V.A.P.; Sanders, J.P.M.

    2011-01-01

    A limited life cycle assessment (LCA) was performed on a combined biological and chemical process for the production of adipic acid, which was compared to the traditional petrochemical process. The LCA comprises the biological conversion of the aromatic feedstocks benzoic acid, impure aromatics, tol

  3. Optical dephasing by uncorrelated phonon scattering to librations. An optical and picosecond photon echo study of a photosite of pentacene in benzoic acid

    NARCIS (Netherlands)

    Molenkamp, L.W.; Wiersma, Douwe A.

    1984-01-01

    We report results of an optical and picosecond photon echo study on the zero-phonon line of photosite I of pentacene in benzoic acid. The results show that optical dephasing in this system proceeds via uncorrelated phonon scattering processes from the ground and optically excited state to singly exc

  4. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey proteins.

    Science.gov (United States)

    Listiyani, M A D; Campbell, R E; Miracle, R E; Dean, L O; Drake, M A

    2011-09-01

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations in dried whey products. No legal limit exists in the United States for BP use in whey, but international concerns exist. The objectives of this study were to determine the effect of hydrogen peroxide (HP) or BP bleaching on the flavor of 34% WPC (WPC34) and to evaluate residual BA in commercial and experimental WPC bleached with and without BP. Cheddar whey was manufactured in duplicate. Pasteurized fat-separated whey was subjected to hot bleaching with either HP at 500 mg/kg, BP at 50 or 100 mg/kg, or no bleach. Whey was ultrafiltered and spray dried into WPC34. Color [L*(lightness), a* (red-green), and b* (yellow-blue)] measurements and norbixin extractions were conducted to compare bleaching efficacy. Descriptive sensory and instrumental volatile analyses were used to evaluate bleaching effects on flavor. Benzoic acid was extracted from experimental and commercial WPC34 and 80% WPC (WPC80) and quantified by HPLC. The b* value and norbixin concentration of BP-bleached WPC34 were lower than HP-bleached and control WPC34. Hydrogen peroxide-bleached WPC34 displayed higher cardboard flavor and had higher volatile lipid oxidation products than BP-bleached or control WPC34. Benzoyl peroxide-bleached WPC34 had higher BA concentrations than unbleached and HP-bleached WPC34 and BA concentrations were also higher in BP-bleached WPC80 compared with unbleached and HP-bleached WPC80, with smaller differences than those observed in WPC34. Benzoic acid extraction from permeate showed that WPC80 permeate contained more BA than did WPC34 permeate. Benzoyl peroxide is more effective in color removal of whey and results in fewer flavor side effects compared with HP and residual BA is

  5. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  6. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ma YM

    2016-04-01

    Full Text Available Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1 activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, the prognostic value of an individual ALDH1 isoenzyme in ovarian cancer is not clear. Thus, we accessed the prognostic value of ALDH1 isoenzymes in ovarian cancer patients through the “Kaplan–Meier plotter” online database, which can be used to determine the effect of the genes on ovarian cancer prognosis. We found that high mRNA expression of five ALDH1 isoenzymes, such as ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, was not correlated with overall survival (OS for all 1,306 ovarian cancer patients. In addition, all five of the ALDH1 isoenzymes’ high mRNA expression was found to be uncorrelated with OS in serous cancer or endometrioid cancer patients. However, ALDH1A3’s high mRNA expression is associated with worse OS in grade II ovarian cancer patients, hazard ratio (HR 1.53 (1.14–2.07, P=0.005. ALDH1A2’s high mRNA expression is significantly associated with worse OS in TP53 wild-type ovarian cancer patients, HR 2.86 (1.56–5.08, P=0.00036. In addition, ALDH1A3’s high mRNA expression is significantly associated with better OS in TP53 wild-type ovarian cancer patients, HR 0.56 (0.32–1.00, P=0.04. Our results indicate that although ALDH1 isoenzyme mRNA might not be a prognostic marker for overall ovarian cancer patients, some isoenzymes, such as ALDH1A2 and ALDH1A3, might be a good prognostic marker for some types of ovarian cancer patients. Keywords: ALDH1, cancer stem cell, prognosis, KM plotter, hazard ratio

  7. Experimental investigation of benzoic acid diffusion coefficient in γ-Al2O3 nanofluids at different temperatures

    Science.gov (United States)

    Manouchehrian Fard, Manouchehr; Beiki, Hossein

    2016-10-01

    An experimental study was performed to measure benzoic acid diffusion coefficient in water-based γ-Al2O3 nanofluids at different temperatures. Measurements were carried out at 15, 20 and 25 °C. γ-Al2O3 nanoparticles with an average diameter of 10-20 nm were added into de-ionized water as the based fluid. Nanoparticles volume fractions used in the based fluid were 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 %. Measurements showed that the diffusion coefficients was not changed with nanoparticles concentration and no enhancement was found. Dependence of diffusion coefficients on nanoparticles concentration followed the same trend in all temperatures investigated in this work. Nano stirring and nano-obstacles could be regarded as two reasons for mass diffusivity changes in nanofluids.

  8. In situ N{sub 2}O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krol, D.J., E-mail: dominika.krol@teagasc.ie; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G.

    2015-04-01

    Ruminant urine patches deposited onto pasture are a significant source of greenhouse gas nitrous oxide (N{sub 2}O) from livestock agriculture. Increasing food demand is predicted to lead to a rise in ruminant numbers globally, which, in turn will result in elevated levels of urine-derived N{sub 2}O. Therefore mitigation strategies are urgently needed. Urine contains hippuric acid and together with one of its breakdown products, benzoic acid, has previously been linked to mitigating N{sub 2}O emissions from urine patches in laboratory studies. However, the sole field study to date found no effect of hippuric and benzoic acid concentration on N{sub 2}O emissions. Therefore the aim of this study was to investigate the in situ effect of these urine constituents on N{sub 2}O emissions under conditions conducive to denitrification losses. Unadulterated bovine urine (0 mM of hippuric acid, U) was applied, as well as urine amended with either benzoic acid (96 mM, U + BA) or varying rates of hippuric acid (8 and 82 mM, U + HA1, U + HA2). Soil inorganic nitrogen (N) and N{sub 2}O fluxes were monitored over a 66 day period. Urine application resulted in elevated N{sub 2}O flux for 44 days. The largest N{sub 2}O fluxes accounting for between 13% (U) and 26% (U + HA1) of total loss were observed on the day of urine application. Between 0.9 and 1.3% of urine-N was lost as N{sub 2}O. Cumulative N{sub 2}O loss from the control was 0.3 kg N{sub 2}O–N ha{sup −1} compared with 11, 9, 12, and 10 kg N{sub 2}O–N ha{sup −1} for the U, U + HA1, U + HA2, and U + BA treatments, respectively. Incremental increases in urine HA or increase in BA concentrations had no effect on N{sub 2}O emissions. Although simulation of dietary manipulation to reduce N{sub 2}O emissions through altering individual urine constituents appears to have no effect, there may be other manipulations such as reducing N content or inclusion of synthetic inhibitory products that warrant further investigation

  9. Synthesis and Properties of Dimesogenic Compounds Containing Cholesterol and 4-(trans-4-n-Alkylcyclohexyl)- benzoic Acid Moieties

    Institute of Scientific and Technical Information of China (English)

    YU, Haibo; HOU, Ruibin; CHEN, Tie; YIN, Bingzhu; MUHAMMAD, Jamil; JEON, Youngja

    2009-01-01

    A series of novel dimesogenic compounds containing cholesterol and 4-(trans-4-n-alkylcyclohexyl)benzoic acid moieties were synthesized. The two mesogenic units of these compounds are linked with ω-oxyalkanoyl spacers of varying lengths. The chemical structure and mesomorphic properties of this series of compounds were characterized by FT-IR, MS, 1H NMR, polarizing optical microscopy (POM) and DSC techniques. The average viscosity and helical twisting power (HTP) in host liquid crystals of selected dimesogenic compounds were also measured. It was found that most of the present novel series of compounds exhibited only cholesteric mesophase with lower phase transition temperatures, and the average viscosity and HTP of selected compounds were similar to or superior to cholesteryl nonylate.

  10. Synthesis, characterization and biocidal activity of new organotin complexes of 2-(3-oxocyclohex-1-enyl)benzoic acid.

    Science.gov (United States)

    Vieira, Flaviana T; de Lima, Geraldo M; Maia, José R da S; Speziali, Nivaldo L; Ardisson, José D; Rodrigues, Leonardo; Correa, Ary; Romero, Oscar B

    2010-03-01

    The reaction of 1,3-cyclohexadione with 2-aminobenzoic acid has produced the 2-(3-oxocyclohex-1-enyl)benzoic acid (HOBz). Subsequent reactions of the ligand with organotin chlorides led to [Me(2)Sn(OBz)O](2) (1), [Bu(2)Sn(OBz)O](2) (2), [Ph(2)Sn(OBz)O](2) (3), [Me(3)Sn(OBz)] (4), [Bu(3)Sn(OBz)] (5) and [Ph(3)Sn(OBz)] (6). All complexes have been fully characterized. In addition the structure of complexes (2) and (4) have been authenticated by X-ray crystallography. The biological activity of all derivatives has been screened against Cryptococcus neoformans and Candida albicans. In addition we have performed toxicological testes employing human kidney cell. The complexes (3), (5) and (6) displayed the best values of inhibition of the fungus growing, superior to ketoconazole. Compound (5) presented promising results in view of the antifungal and cytotoxicity assays.

  11. On the Formation of Benzoic Acid and Higher Order Benzene Carboxylic Acids in Interstellar Model Ices grains

    Science.gov (United States)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I.

    2016-11-01

    With a binary ice mixture of benzene (C6H6) and carbon dioxide (CO2) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta- and para-benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  12. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus

    Directory of Open Access Journals (Sweden)

    Noda Shuhei

    2012-04-01

    Full Text Available Abstract Background Benzoic acid is one of the most useful aromatic compounds. Despite its versatility and simple structure, benzoic acid production using microbes has not been reported previously. Streptomyces are aerobic, Gram-positive, mycelia-forming soil bacteria, and are known to produce various kinds of antibiotics composed of many aromatic residues. S. maritimus possess a complex amino acid modification pathway and can serve as a new platform microbe to produce aromatic building-block compounds. In this study, we carried out benzoate fermentation using S. maritimus. In order to enhance benzoate productivity using cellulose as the carbon source, we constructed endo-glucanase secreting S. maritimus. Results After 4 days of cultivation using glucose, cellobiose, or starch as a carbon source, the maximal level of benzoate reached 257, 337, and 460 mg/l, respectively. S. maritimus expressed β-glucosidase and high amylase-retaining activity compared to those of S. lividans and S. coelicolor. In addition, for effective benzoate production from cellulosic materials, we constructed endo-glucanase-secreting S. maritimus. This transformant efficiently degraded the phosphoric acid swollen cellulose (PASC and then produced 125 mg/l benzoate. Conclusions Wild-type S. maritimus produce benzoate via a plant-like β-oxidation pathway and can assimilate various carbon sources for benzoate production. In order to encourage cellulose degradation and improve benzoate productivity from cellulose, we constructed endo-glucanase-secreting S. maritimus. Using this transformant, we also demonstrated the direct fermentation of benzoate from cellulose. To achieve further benzoate productivity, the L-phenylalanine availability needs to be improved in future.

  13. Surviving environmental stress: the role of betaine aldehyde dehydrogenase in marine crustaceans

    Directory of Open Access Journals (Sweden)

    NA Stephens-Camacho

    2015-02-01

    Full Text Available Betaine aldehyde dehydrogenase (BADH belongs to the aldehyde dehydrogenases (ALDH family, an ancestral group of enzymes responsible for aldehyde detoxification in several organisms. The BADH enzyme catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB an important osmoptrotector and osmoregulator accumulated in response to cellular osmotic stress. The BADH enzymes have been extensively described in terrestrial organisms, but information in marine crustaceans remains scarce. Research on crustacean stress-adaptive capacity to environmental stressors relates GB accumulation in response to salinity variations. Although GB de novo synthesis is confirmed on crustaceans, its metabolic pathways and regulation mechanism are unexplored. In this work, the state of the knowledge of betaine aldehyde dehydrogenase enzymes in marine crustaceans is summarized, as a mechanism to overcome the deleterious effects of changes in temperature, salinity and dissolved oxygen concentration in seawater. The purpose of this review is to provide a more comprehensive overview to set the basis for exploring novel functions and properties of BADHs on the response of crustaceans to environmental stress.

  14. Aldehyde dehydrogenases in Arabidopsis thaliana: Biochemical requirements, metabolic pathways and functional analysis

    Directory of Open Access Journals (Sweden)

    Naim eStiti

    2011-10-01

    Full Text Available Aldehyde dehydrogenases (ALDHs are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  15. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  16. Monounsaturated Fatty Acids Are Substrates for Aldehyde Generation in Tellurite-Exposed Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gonzalo A. Pradenas

    2013-01-01

    Full Text Available Reactive oxygen species (ROS damage macromolecules and cellular components in nearly all kinds of cells and often generate toxic intracellular byproducts. In this work, aldehyde generation derived from the Escherichia coli membrane oxidation as well as membrane fatty acid profiles, protein oxidation, and bacterial resistance to oxidative stress elicitors was evaluated. Studies included wild-type cells as well as cells exhibiting a modulated monounsaturated fatty acid (MUFA ratio. The hydroxyaldehyde 4-hydroxy 2-nonenal was found to be most likely produced by E. coli, whose levels are dependent upon exposure to oxidative stress elicitors. Aldehyde amounts and markers of oxidative damage decreased upon exposure to E. coli containing low MUFA ratios, which was paralleled by a concomitant increase in resistance to ROS-generating compounds. MUFAs ratio, lipid peroxidation, and aldehyde generation were found to be directly related; that is, the lower the MUFAs ratio, the lower the peroxide and aldehyde generation levels. These results provide additional evidence about MUFAs being targets for membrane lipid oxidation and their relevance in aldehyde generation.

  17. Toxicity of polyunsaturated aldehydes of diatoms to Indo-Pacific bioindicator organism Echinometra mathaei.

    Science.gov (United States)

    Sartori, Davide; Gaion, Andrea

    2016-01-01

    Although it is well known suitability of early developmental stages of sea urchin as recommended model for pollutant toxicity testing, little is known about the sensitivity of Indo-Pacific species Echinometra mathaei to polyunsaturated aldehydes. In this study, the effect of three short chain aldehydes, 2,4-decadienal (DD), 2,4-octadienal (OD) and 2,4-heptadienal (HD), normally found in many diatoms, such as Skeletonema costatum, Skeletonema marinoi and Thalassiosira rotula, was evaluated on larval development of E. mathaei embryos. Aldehydes affected larval development in a dose-dependent manner, in particular HD>OD>DD; the results of this study highlighted the higher sensitivity of this species toward aldehydes compared with data registered for other sea urchin species. In comparison with studies reported in the literature, contrasting results were observed during our tests; therefore, an increasing toxic effect was registered with decreasing the chain length of aldehydes. This work could provide new insights in the development of new toxicological assays toward most sensitive species.

  18. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping.

    Science.gov (United States)

    Khlystov, Andrey; Samburova, Vera

    2016-12-06

    The growing popularity of electronic cigarettes (e-cigarettes) raises concerns about the possibility of adverse health effects to primary users and people exposed to e-cigarette vapors. E-Cigarettes offer a very wide variety of flavors, which is one of the main factors that attract new, especially young, users. How flavoring compounds in e-cigarette liquids affect the chemical composition and toxicity of e-cigarette vapors is practically unknown. Although e-cigarettes are marketed as safer alternatives to traditional cigarettes, several studies have demonstrated formation of toxic aldehydes in e-cigarette vapors during vaping. So far, aldehyde formation has been attributed to thermal decomposition of the main components of e-cigarette e-liquids (propylene glycol and glycerol), while the role of flavoring compounds has been ignored. In this study, we have measured several toxic aldehydes produced by three popular brands of e-cigarettes with flavored and unflavored e-liquids. We show that, within the tested e-cigarette brands, thermal decomposition of flavoring compounds dominates formation of aldehydes during vaping, producing levels that exceed occupational safety standards. Production of aldehydes was found to be exponentially dependent on concentration of flavoring compounds. These findings stress the need for a further, thorough investigation of the effect of flavoring compounds on the toxicity of e-cigarettes.

  19. Regulation of NF-B-Induced Inflammatory Signaling by Lipid Peroxidation-Derived Aldehydes

    Directory of Open Access Journals (Sweden)

    Umesh C. S. Yadav

    2013-01-01

    Full Text Available Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE, acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-B and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-B signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases.

  20. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    Science.gov (United States)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  1. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    Science.gov (United States)

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods.

  2. Aldehydes in Artic Snow at Barrow (AK) during the Barrow 2009 Field Campaign

    Science.gov (United States)

    Barret, Manuel; Houdier, Stephan; Gallet, Jean-Charles; Domine, Florent; Beine, Harry; Jacobi, Hans-Werner; Weibring, Petter; Walega, James; Fried, Alan; Richter, Dirk

    2010-05-01

    Aldehydes (RCHO) are key reactive intermediates in hydrocarbon oxidation and in OH cycling. They are also emitted and taken up by the snowpack and a combination of both physical and photochemical processes are likely involved. Since the photolysis of aldehydes is a source of HOx radicals, these exchanges can modify the oxidative capacity of the overlying air. Formaldehyde (HCHO), acetaldehyde (MeCHO), glyoxal (CHOCHO) and methylglyoxal (MeCOCHO) concentrations were measured in over 250 snow samples collected during the Barrow 2009 campaign between late February and mid April 2009. Both continental and marine snowpacks were studied as well as frost flowers on sea ice. We found that HCHO was the most abundant aldehyde (1 to 9 µg/L), but significant concentrations of dicarbonyls glyoxal and methylglyoxal were also measured for the first time in Arctic snow. Similar concentrations were measured for the continental and marine snowpacks but some frost flowers exhibited HCHO concentrations as high as 150 µg/L. Daily cycles in the surface snow were observed for HCHO and CH3CHO but also for the dicarbonyls and we concluded to a photochemical production of these species from organic precursors. Additional data such as gas phase concentrations for the measured aldehydes and snow physical properties (specific surface area, density …) will be used to discuss on the location of aldehydes in the snow. This is essential to identify and quantify the physical processes that occur during the exchange of trace gases between the snow and the atmosphere.

  3. Microwave Irradiated Reactions of N-Phenacylpyridinium Chloride with Aromatic Aldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Ping WU; Xi Mei CAI; Rong YAO; Chao Guo YAN

    2006-01-01

    In the system of ammonium acetate and acetic acid and under microwave irradiation,N-phenacylpyridinium chloride 1 reacted with chalcone 2 to give 2,4,6-triarylpyrididnes 3a-g in high yields. 3a-g can also be prepared from one-pot reaction of 1 with aromatic aldehydes 4 and substituted acetophenones 5. Under the same conditions 1 can also react with pyridinecar boxaldehyde 6a-c and acetophenone to yield bipyridine derivatives 7a-c. 1 reacted with aromatic aldehyde and cyclohexanone 6 to yield 2,4-diaryltetrahydroquinolines 8a-d. At last 1 reacted with aromatic aldehydes to give 2,4,6-triarylpyrimidine 9a-i. The structure of the products was characterized with 1H NMR and IR and mass spectroscopy.

  4. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    Science.gov (United States)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; Biener, Monika M.; Biener, Juergen; Friend, Cynthia M.; Madix, Robert J.

    2016-10-01

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. Here we report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates that block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. Significant improvements in yield can be achieved by operating at higher temperatures, which render the site-blocking acrylates unstable.

  5. Target-Specific Capture of Environmentally Relevant Gaseous Aldehydes and Carboxylic Acids with Functional Nanoparticles.

    Science.gov (United States)

    Campbell, McKenzie L; Guerra, Fernanda D; Dhulekar, Jhilmil; Alexis, Frank; Whitehead, Daniel C

    2015-10-12

    Aldehyde and carboxylic acid volatile organic compounds (VOCs) present significant environmental concern due to their prevalence in the atmosphere. We developed biodegradable functional nanoparticles comprised of poly(d,l-lactic acid)-poly(ethylene glycol)-poly(ethyleneimine) (PDLLA-PEG-PEI) block co-polymers that capture these VOCs by chemical reaction. Polymeric nanoparticles (NPs) preparation involved nanoprecipitation and surface functionalization with branched PEI. The PDLLA-PEG-PEI NPs were characterized by using TGA, IR, (1) H NMR, elemental analysis, and TEM. The materials feature 1°, 2°, and 3° amines on their surface, capable of capturing aldehydes and carboxylic acids from gaseous mixtures. Aldehydes were captured by a condensation reaction forming imines, whereas carboxylic acids were captured by acid/base reaction. These materials reacted selectively with target contaminants obviating off-target binding when challenged by other VOCs with orthogonal reactivity. The NPs outperformed conventional activated carbon sorbents.

  6. Evolution of volatile aldehydes in Iberian ham matured under different processing conditions.

    Science.gov (United States)

    Martín, L; Timón, M L; Petrón, M J; Ventanas, J; Antequera, T

    2000-04-01

    To evaluate the influence of the Iberian ham processing conditions in the evolution of volatile aldehydes, 35 hams were processed in two plants following different conditions of relative humidity and temperature. For this, free fatty acids, peroxide values and volatile aldehydes were quantified in the hams. The highest increases in free fatty acids were noted during the drying stage in both processing plants. The drying period also revealed the greatest increase in peroxide values, where the highest values were in those hams processed at higher temperatures. The temperature during post-salting and drying had a marked influence on the formation of volatile aldehydes, being responsible for the differences in volatile compounds of matured hams.

  7. Transition-metal-free coupling reaction of vinylcyclopropanes with aldehydes catalyzed by tin hydride.

    Science.gov (United States)

    Ieki, Ryosuke; Kani, Yuria; Tsunoi, Shinji; Shibata, Ikuya

    2015-04-13

    Donor-acceptor cyclopropanes are useful building blocks for catalytic cycloaddition reactions with a range of electrophiles to give various cyclic products. In contrast, relatively few methods are available for the synthesis of homoallylic alcohols through coupling of vinylcyclopropanes (VCPs) with aldehydes, even with transition-metal catalysts. Here, we report that the hydrostannation of vinylcyclopropanes (VCPs) was effectively promoted by dibutyliodotin hydride (Bu2 SnIH). The resultant allylic tin compounds reacted easily with aldehydes. Furthermore, the use of Bu2 SnIH was effectively catalytic in the presence of hydrosilane as a hydride source, which established a coupling reaction of VCPs with aldehydes for the synthesis of homoallylic alcohols without the use of transition-metal catalysts. In contrast to conventional catalytic reactions of VCPs, the presented method allowed the use of several VCPs in addition to conventional donor-acceptor cyclopropanes.

  8. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  9. Synthesis of Discodermolide Subunits by S(E)2' Addition of Nonracemic Allenylstannanes to Aldehydes.

    Science.gov (United States)

    Marshall, James A.; Lu, Zhi-Hui; Johns, Brian A.

    1998-02-01

    Three subunits, 15, 29, and 34, of the immunosuppressant discodermolide were prepared starting from (S)-3-[(tert-butyldimethylsilyl)oxy]-2-methylpropanal ((S)-1) and the enantioenriched allenylstannanes (P)-2a, (P)-2b, and (P)-31. The route to 15 involved BF(3)-promoted addition of stannane (P)-2a to aldehyde (S)-1 which afforded the syn,syn-homopropargylic alcohol adduct 3 in 97% yield. The derived p-methoxybenzylidene acetal 5 was treated with Red-Al to effect cleavage of the pivalate and reduction of the double bond leading to the (E)-allylic alcohol 6. Sharpless epoxidation and subsequent addition of Me(2)CuCNLi(2) yielded the syn,syn,syn,anti stereopentad, diol 8. Protection of the secondary alcohol and oxidation of the primary gave aldehyde 12, which was treated with the alpha-bromo allylsilane 13 and CrCl(2), followed by NaH to effect elimination to the diene 15. A similar sequence was employed to prepare aldehyde 29. In this case aldehyde (S)-1 was converted to the anti,syn-homopropargylic alcohol 20 by treatment with the allenyl indium reagent formed in situ from allenylstannane (P)-2b and InBr(3). Epoxy alcohol 24, prepared from alcohol 20 by the above-described sequence, was reduced with Red-Al to afford diol 25. Protection of the secondary alcohol and oxidation of the primary completed the synthesis of 29. The anti,syn-homopropargylic alcohol 32 was obtained through addition of the allenic indium reagent, from allenylstannane (P)-31, to aldehyde (S)-1. Protection of the derived diol 33 as the p-methoxybenzylidene acetal afforded the third subunit, acetylene 34. Addition of the lithio derivative of 34 to aldehyde 29 gave alcohol 35 with the carbinyl stereochemistry needed for C7 of discodermolide as the major product.

  10. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  11. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  12. Reductive amination of aldehydes and ketones using sodium borohydride in the presence of silica chloride under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Heshmatollah; Alinezhad; Mahmood; Tajbakhsh; Neda; Hamidi

    2010-01-01

    A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of aliphatic and aromatic aldehydes,ketones and amines when mixed with NaBH_4/silica chloride at room temperature,afforded excellent yield of the corresponding amines.

  13. Kinetics of forming aldehydes in frying oils and their distribution in French fries revealed by LC-MS-based chemometrics

    Science.gov (United States)

    Aldehydes are major secondary lipid oxidation products (LOPs) from heating vegetable oils and deep frying. The routes and reactions that generate aldehydes have been extensively investigated, but the sequences and kinetics of their formation in oils are poorly defined. In this study, a platform comb...

  14. On the role of long-chain aldehydes in the light reaction in Photobacterium phosphoreum enzyme preparations

    NARCIS (Netherlands)

    Terpstra, Willemke

    1960-01-01

    1. (1) Active luciferase-DPNH-oxidase preparations from Photobacterium phosphoreum generally contain some aldehyde-attacking enzyme, probably ADH. Under the experimental conditions applied this enzyme appears to attack decanal, but not palmital. 2. (2) The presence of long-chain aldehydes in the en

  15. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    Science.gov (United States)

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  16. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  17. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    Science.gov (United States)

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  18. Hydrogen bonding and liquid crystallinity of low molar mass and polymeric mesogens containing benzoic acids: a variable temperature Fourier transform infrared spectroscopic study

    Science.gov (United States)

    Martínez-Felipe, A.; Cook, A. G.; Wallage, M. J.; Imrie, C. T.

    2014-12-01

    The phase behaviour and mesomorphism of poly(4-(6-propenoyloxyhexyloxy)benzoic acid) (PPOHBA) and 4-pentyloxybenzoic acid (POBA) is studied using variable-temperature Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. PPHOBA exhibits a smectic C phase and POBA, a nematic phase. The temperature dependence of the Fermi resonance bands associated with the hydroxyl groups and of the carbonyl stretching region in the FTIR spectra indicates that there is a dynamic equilibrium between monomers and open and closed dimers formed by hydrogen bonding between benzoic acid moieties. The nematic phase observed for POBA is linked to the anisotropic cyclic dimer, while an abrupt increase in the concentration of monomer drives isotropisation. In PPOHBA, hydrogen-bonded supramesogens promote smectic behaviour, while hydrogen-bonded crosslinks stabilise the lamellae. The increased viscosity arising from this dynamic crosslinking is offset by the flexibility of the acrylate backbone and alkyl spacers.

  19. Stereodivergent Coupling of Aldehydes and Alkynes via Synergistic Catalysis Using Rh and Jacobsen's Amine.

    Science.gov (United States)

    Cruz, Faben A; Dong, Vy M

    2017-01-25

    We report an enantioselective coupling between α-branched aldehydes and alkynes to generate vicinal quaternary and tertiary carbon stereocenters. The choice of Rh and organocatalyst combination allows for access to all possible stereoisomers with high enantio-, diastereo-, and regioselectivity. Our study highlights the power of catalysis to activate two common functional groups and provide access to divergent stereoisomers and constitutional structures.

  20. Synthesis of Soai aldehydes for asymmetric autocatalysis by desulfurative cross-coupling.

    Science.gov (United States)

    Maltsev, Oleg V; Pöthig, Alexander; Hintermann, Lukas

    2014-03-07

    Palladium-catalyzed dehydrosulfurative Liebeskind-Srogl coupling of terminal alkynes with 2-mercapto-1,3-pyrimidine-5-carbaldehyde under base-free conditions provides 2-(alkynyl)-1,3-pyrimidine-5-carbaldehydes, which are substrates for autocatalytic amplification of chirality according to Soai et al. The mercapto aldehyde acceptor is obtained by condensation of Arnold's vinamidinium salt with thiourea.

  1. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain.

    Science.gov (United States)

    Zambelli, Vanessa O; Gross, Eric R; Chen, Che-Hong; Gutierrez, Vanessa P; Cury, Yara; Mochly-Rosen, Daria

    2014-08-27

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase-2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R(2) = 0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde- and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than in the wild-type mice. Finally, Alda-1 treatment was even beneficial when given after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic, cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians' apparent lower pain tolerance.

  2. A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes

    DEFF Research Database (Denmark)

    Kreis, Michael; Palmelund, Anders; Bunch, Lennart

    2006-01-01

    A practical protocol for the decarbonylation of a wide range of aldehydes has been developed by using commercially available RhCl3x3H2O and dppp in a diglyme solution. This method gives rise to decarbonylated products in good to high yield and is particularly useful because of its experimental si...

  3. The acid free asymmetric intermolecular α-alkylation of aldehydes in fluorinated alcohols.

    Science.gov (United States)

    Xiao, Jian; Zhao, Kai; Loh, Teck-Peng

    2012-04-11

    The acid free asymmetric intermolecular α-alkylation of aldehydes with alcohols has been discovered using trifluoroethanol as solvent. This unprecedented system affords the enantioenriched functionalized primary alcohols (after NaBH(4) reduction) in high yields and good to excellent enantioselectivities with wide substrate scope in the absence of any acid additive.

  4. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase.

    Science.gov (United States)

    Pirouzpanah, Saieed; Saieed, Pirouzpanah; Rashidi, Mohammad Reza; Reza, Rashidi Mohammad; Delazar, Abbas; Abbas, Delazar; Razavieh, Seyyed-Vali; Seyyedvali, Razavieh; Hamidi, Aliasghar; Aliasghar, Hamidi

    2006-01-01

    Ruta graveolens L. is a flavonoid-containing medicinal plant with various biological properties. In the present study, the effects of R. graveolens extract on aldehyde oxidase, a molybdenum hydroxylase, are investigated. Aldehyde oxidase was partially purified from liver homogenates of mature male guinea pigs by heat treatment and ammonium sulphate precipitation. The total extract was obtained by macerating the aerial parts of R. graveolens in MeOH 70% and the effect of this extract on the enzyme activity was assayed using phenanthridine, vanillin and benzaldehyde as substrates. Quercetin and its glycoside form, rutin were isolated, purified and identified from the extract and their inhibitory effects on the enzyme were investigated. R. graveolens extract exhibited a high inhibition on aldehyde oxidase activity (89-96%) at 100 microg/ml which was comparable with 10 microM of menadione, a specific potent inhibitor of aldehyde oxidase. The IC50 values for the inhibitory effect of extract against the oxidation of benzaldehyde, vanillin and phenanthridine were 10.4, 10.1, 43.2 microg/ml, respectively. Both quercetin and rutin at 10 microM caused 70-96% and 27-52% inhibition on the enzyme activity, respectively. Quercetin was more potent inhibitor than rutin, but both flavonols exerted their inhibitory effects mostly in a linear mixed-type.

  5. Mn(0)-mediated chemoselective reduction of aldehydes. Application to the synthesis of α-deuterioalcohols.

    Science.gov (United States)

    Jiménez, Tania; Barea, Elisa; Oltra, J Enrique; Cuerva, Juan M; Justicia, José

    2010-10-15

    A mild, simple, safe, chemoselective reduction of different kinds of aldehydes to the corresponding alcohols mediated by the Mn dust/water system is described. In addition to this, the use of D(2)O leads to the synthesis of α-deuterated alcohols and constitutes an efficient, inexpensive alternative for the preparation of these compounds.

  6. Pyridinium tribromide catalyzed condensation of indoles and aldehydes to form bisindolylalkanes

    Institute of Scientific and Technical Information of China (English)

    Qin Yang; Zheng Lan Yin; Ban Lai Ouyang; Yi Yuan Peng

    2011-01-01

    An efficient synthetic method for bis(indol-3-yl)alkane derivatives has been developed. In the presence of 5 mol% of pyridinium tribromide (PTB), the condensation of indoles and aldehydes proceeded smoothly under mild conditions, giving rise to the corresponding bis(indol-3-yl)alkanes in good to excellent yields.

  7. Phosphite Ligand Modified Supported Rhodium Catalyst for Hydroformylation of Internal Olefins to Linear Aldehydes

    Institute of Scientific and Technical Information of China (English)

    LI Xian-ming; DING Yun-jie; JIAO Gui-ping; LI Jing-wei; YAN Li; ZHU He-jun

    2009-01-01

    A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.

  8. New HPLC methods to quantitate terpenoid aldehydes in foliage of cotton (Gossypium)

    Science.gov (United States)

    The cotton plant (Gossypium) produces protective terpenoid aldehydes in lysigenous pigment glands. These terpenoids include hemigossypolone, hemigossypolone-6-methyl ether, gossypol, gossypol-6-methyl ether, gossypol-6,6'-dimethyl ether, heliocides H1, H2, H3 and H4, and heliocides B1, B2, B3 and B4...

  9. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    Science.gov (United States)

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  10. Separation and Purification of Betaine Aldehyde Dehydrogenase from Wild Suaeda liaotungensis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High active betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) is found in wild Suaeda liaotungensis. The enzyme is purified 206-fold with recovery of 1.5%. It have a specific activity of 2363 nmol/min*mg protein and the molecular mass of each subunit is 64.5 kDa as determined by SDS-PAGE.

  11. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie;

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  12. Directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes.

    Science.gov (United States)

    Zheng, Yong; Song, Wei-Bin; Xuan, Li-Jiang

    2015-11-28

    A directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes using TBHP as an oxidant was described. This methodology which showed the advantages of base, ligand free, short routes and functional group tolerance could be used as an alternative protocol for the classical esterification reactions.

  13. Analysis of endogenous aldehydes in human urine by static headspace gas chromatography-mass spectrometry.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2016-03-11

    Endogenous aldehydes (EAs) generated during oxidative stress and cell processes are associated with many pathogenic and toxicogenic processes. The aim of this research was to develop a solvent-free and automated analytical method for the determination of EAs in human urine using a static headspace generator sampler coupled with gas chromatography-mass spectrometry (HS-GC-MS). Twelve significant EAs used as markers of different biochemical and physiological processes, namely short- and medium-chain alkanals, α,β-unsaturated aldehydes and dicarbonyl aldehydes have been selected as target analytes. Human urine samples (no dilution is required) were derivatized with O-2,3,4,5,6-pentafluorobenzylhydroxylamine in alkaline medium (hydrogen carbonate-carbonate buffer, pH 10.3). The HS-GC-MS method developed renders an efficient tool for the sensitive and precise determination of EAs in human urine with limits of detection from 1 to 15ng/L and relative standard deviations, (RSDs) from 6.0 to 7.9%. Average recoveries by enriching urine samples ranged between 92 and 95%. Aldehydes were readily determined at 0.005-50μg/L levels in human urine from healthy subjects, smokers and diabetic adults.

  14. The First Catalytic Asymmetric Morita-Baylis-Hillman Reaction of Acrolein with Aromatic Aldehydes

    Institute of Scientific and Technical Information of China (English)

    曾兴平; 刘运林; 计从斌; 周剑

    2012-01-01

    We report the first example of catalytic asymmetric Morita-Baylis-Hillman reaction of acrolein with aromatic aldehydes. The use of 10 mol% of Hatakeyama's catalyst β-isocupreidine C4, in combination with 20 mol% of 2,6-dimethoxybenzoic acid, could catalyze the reaction to give the desired products in up to 81% ee.

  15. Reductive Amination of Aldehydes and Ketones with Primary Amines by Using Lithium Amidoborane as Reducing Reagent

    Institute of Scientific and Technical Information of China (English)

    徐维亮; 郑学丽; 吴国涛; 陈萍

    2012-01-01

    A variety of secondary amines were obtained in high isolated yields in the reductive amination of aldehydes and ketones by using lithium amidoborane as reducing agent. Compared to ammonia borane, lithium amidoborane has higher reducibility, and thus, exhibits faster reaction rate.

  16. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies...

  17. Bifunctional Enantioselective Ligands of Chiral BINOL Derivatives for Asymmetric Addition of Alkynylzinc to Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-Wei; ZHENG Li-Fei; WU Ling-Lin; ZONG Li-Li; CHENG Yi-Xiang

    2008-01-01

    Four analogous binaphthyl compounds (R)-3a-3d containing (R)-3,3'-bis(2-pyridyl) groups were synthesized by the conjugation of (R)-2,2'-dimethoxy-1,1'-binaphthyl-3,3'-diboronic acid [(R)-2] with 2-bromopyridine,2-bromo-5-methylpyridine, 2-chloro-4-fluoropyridine and 2-chloro-3-(trifluoromethyl)pyridine via Pd-catalyzed Suzuki reactions, respectively.The application of the four chiral ligands in combination with Et2Zn and Ti(Oi-Pr)4 to the asymmetric addition of phenylacetylene to various aldehydes has been studied.The results show that (R)-3a and (R)-3b are not good catalysts for the alkynylzinc addition to aldehydes, (R)-3d shows good enantioselectivity only for the alkynylzinc addition to aliphatic aldehydes, and (R)-3c exhibits excellent enantioselectivity for phenylethynylzinc addition to both aromatic and aliphatic aldehydes.All the four chiral ligands produced the opposite configuration of the propargylic alcohols to that of the chiral ligands.

  18. Enantioselective Pinacol Coupling of Aromatic Aldehydes Induced by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    Qing Fang CHENG; Xing You XU; Ming Yan WANG; Jun CHEN; Wei Xing MA; Xu Jie YANG

    2006-01-01

    Asymmetric pinacol coupling of aromatic aldehydes with TiCl4-Zn in the presence of enantiopure squaric acid amidoalcohols afforded 1, 2-diols in excellent yields with high dldiastereoselectivities and enantioselectivities in the range of 46-89% ee. Some factors influencing dl-diastereoselectivity and enantioselectivity were discussed.

  19. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress.

    Science.gov (United States)

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan

    2016-04-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE.

  20. Fructose derived pyridyl alcohol ligands: synthesis and application in the asymmetric diethylzinc addition to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Yong-Gui; DAI, Li-Xin; HOU, Xue-Long

    2000-01-01

    Easily available chiral ketones were employed for the synthesis of optically active pyridyl alcohols, which were applied in the asymmetric diethylzinc addition to aldehydes, up to 89.4%e.e. was obtained using D-fructose-derived pyridyl alcohol.

  1. Palladium-catalyzed Substitution of Ketone or Aldehyde Bearing Aryl Triflates by Amines or Amides

    Institute of Scientific and Technical Information of China (English)

    TAO Xiaochun; DAI Chunya; CAO Xiongjie; CAI Lisheng; PIKE Victor W

    2009-01-01

    Various aryl triflates, bearing ketone or aldehyde groups, were evaluated for palladium-mediated introduction of an amino group at the triflate position in the presence of various phosphine ligands. BINAP was best for secondary amines, MOP-type ligand for primary or small secondary amines and Xantphos for primary or cyclic secondary amides. No ligand was found effective for acyclic secondary amides.

  2. Parallel Kinetic Resolution of Racemic Aldehydes by Use of Asymmetric Horner-Wadsworth-Emmons Reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Jensen, Jakob Feldthusen; Humble, Rikke Eva

    2000-01-01

    A racemic aldehyde can undergo parallel kinetic resolution (PKR) by simultaneous reaction with two different chiral phosphonates, differing either in the structure of the chiral auxiliary or in the structure of the phosphoryl group (i.e., one (E)- and one (Z)-selective reagent). This strategy all...

  3. The Condensation of Aromatic Aldehydes with Acidic Methylene Compounds in Water

    Institute of Scientific and Technical Information of China (English)

    Da Qing SHI; Jing CHEN; Qi Ya ZHUANG; Xiang Shan WANG; Hong Wen HU

    2003-01-01

    The condensation of aromatic aldehydes with acidic methylene compounds such as malononitrile, methyl cyanoacetate, cyanoacetamide, 5,5-dimethyl-1,3-cyclohexanedione, bartbituric acid and 2-thiobarbituric acid proceeded very efficiently in water in the presence of triethylbenzylammonium chloride (TEBA) and the products were isolated simply by filtration.

  4. Phenyl versus Ethyl Transfer in the Addition of Organozincs to Aldehydes: A Theoretical Study

    DEFF Research Database (Denmark)

    Rudolph, Jens; Rasmussen, Torben; Bolm, Carsten;

    2003-01-01

    The dramatic improvement in diphenylzinc addition to aldehydes that is obtained by adding diethylzinc was investigated by DFT methods. The strong preference for phenyl over ethyl transfer can be understood in terms of overlap with the phenyl 31 system in the transition state (see picture). Reason...

  5. Enantioselective α-Chlorination of Aldehydes with Recyclable Fluorous (S)-Pyrrolidine-Thiourea Bifunctional Organocatalyst.

    Science.gov (United States)

    Wang, Liang; Cai, Chun; Curran, Dennis P; Zhang, Wei

    2010-01-01

    A novel fluorous (S)-pyrrolidine-thiourea bifunctional organocatalyst is prepared. The catalyst shows good activity and enantioselectivity for direct α-chlorination of aldehydes using N-chlorosuccinimide (NCS) as the chlorine source. It can be recovered from the reaction mixture by fluorous solid-phase extraction with excellent purity for direct reuse.

  6. Microwave-Assisted Olefination Reaction of Alkylzinc with Aromatic Aldehyde Catalyzed by Nickel Complex

    Institute of Scientific and Technical Information of China (English)

    MEN Xiu-Qin; WANG Jin-Xian; SHI Xiao-Ning; WANG Ke-Hu

    2003-01-01

    @@ Carbon-carbon double bond-forming reactions have always been great importance in organic synthesis. Manymethods have been described for C =C bond formation. We[1] have reported the new method of C =C bond formation of nickel catalyzed organozinc with aromatic aldehydes in the presence of Me3SiC1.

  7. Fast determination of aldehyde preservatives by miniaturized capillary electrophoresis with amperometric detection.

    Science.gov (United States)

    Li, Ying; Chen, Fang; Ge, Jinyuan; Tong, Fanghong; Deng, Zhaoyue; Shen, Fengwu; Gu, Qianxia; Ye, Jiannong; Chu, Qingcui

    2014-02-01

    A novel miniaturized CE with amperometric detection (mini-CE-AD) method has been developed for fast determination of aliphatic aldehyde preservatives, namely formaldehyde and glyoxal, in commodities. After derivatization with an electroactive compound 2-thiobarbituric acid, these two nonelectroactive aldehydes were converted to electroactive adducts, therefore detectable by mini-CE-AD approach. Under the optimum conditions, two aldehydes can be well-separated with the coexisting interferents as well as their homologs (acetaldehyde and methyl-glyoxal), and the LODs (S/N = 3) were achieved at nanogram-per-milliliter level (1.64-2.80 ng/mL) based on the online enrichment method of transient moving chemical reaction boundary. The proposed method has been applied for the analyses of above aldehyde preservatives in different real commodity samples including skincare products, baby lotion, and toothpaste, and the average recoveries were in the range of 94-105%, which should find a wide range of analytical applications as an alternative to conventional and microchip CE approaches.

  8. Complexation of uranium(VI) with aromatic acids in aqueous solution. A comparison of hydroxamic acids and benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Glorius, M.; Moll, H.; Bernhard, G. [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. fuer Radiochemie

    2007-07-01

    The complex formation of uranium(VI) with salicylhydroxamic,benzohydroxamic, and benzoic acid in 0.1 M NaClO{sub 4} was studied by UV-vis spectroscopy at pH 3 and 4. Uranium(VI) species of the type M{sub p}L{sub q}H{sub r} were identified from the UV-vis spectra in all three systems. An increase in the absorption combined with a blue shift of the absorption maxima in comparison to the bands of the free uranyl ion of 22.5 {+-} 2 nm was observed in the uranium (VI)-salicylhydroxamic acid-system. Besides indications for a 1:2 complex, the formation of a 1:1 complex with a stability constant of log {beta}{sub 111} = 17.12 {+-} 0.10 could be demonstrated by its individual absorption spectrum and molar absorption coefficient. Also in the uranium(VI)-benzohydroxamic acid-system a blue shift of the absorption maxima in comparison to the bands of the free uranyl ion of 27 {+-} 1.4 nm indicate the complex formation. The stability constants are log {beta}{sub 110} = 7.96 {+-} 0.05 for UO{sub 2}[C{sub 6}H{sub 4}CONHO]{sup +} and log {beta}{sub 120} = 15.25 {+-} 0.11 for UO{sub 2}[C{sub 6}H{sub 4}CONHO]{sub 2}. In contrast to the hydroxamic acids, benzoic acid shows a red shift of the absorption maxima of 2.5 {+-} 2 nm. Only the 1:1 complex UO{sub 2}[C{sub 6}H{sub 4}COO]{sup +} with a stability constant of log {beta}{sub 110} = 3.37 {+-} 0.14 is existent. An estimate is made in order to discuss the dependencies observed in the absorption spectra in relation to possible coordination modes of uranium(VI). The strength of the complex formation between uranyl and the three aromatic acids is discussed. (orig.)

  9. Highly selective and effective solid phase microextraction of benzoic acid esters using ionic liquid functionalized multiwalled carbon nanotubes-doped polyaniline coating.

    Science.gov (United States)

    Ai, Youhong; Wu, Mian; Li, Lulu; Zhao, Faqiong; Zeng, Baizhao

    2016-03-11

    The present work reports the electrochemical fabrication of an ionic liquid functionalized multiwalled carbon nanotubes-polyaniline (MWCNT@IL/PANI) nanocomposite coating and its application in the headspace-solid phase microextraction (HS-SPME) and gas chromatography (GC) determination of benzoic acid esters (i.e., methyl benzoate, ethyl benzoate, propyl benzoate and butyl benzoate). The MWCNTs was firstly functionalized with amine-terminated IL (MWCNT@IL) through chemical reduction, and then was doped in PANI during the electropolymerization of aniline. The resulting coating was characterized by infrared spectroscopy, field emission scanning electron microscopy and thermo gravimetry. It showed net-like structure and had high thermal stability (up to 330°C). Furthermore, it presented high selectivity for the four benzoic acid esters and thus suited for their HS-SPME-GC determination. Results showed that under optimized extraction conditions, the detection limits were less than 6.1ngL(-1) (S/N=3) and the linear detection ranges were 0.012-50μgL(-1) (R≥0.9957) for these analytes. The relative standard deviations (RSDs) were lower than 6.4% for five successive measurements with one fiber, and the RSDs for fiber-to-fiber were 4.4-9.6% (n=5). The developed method was successfully applied to the determination of these benzoic acid esters in perfume samples.

  10. Role of aldehydes in the toxic and mutagenic effects of nitrosamines.

    Science.gov (United States)

    Peterson, Lisa A; Urban, Anna M; Vu, Choua C; Cummings, Meredith E; Brown, Lee C; Warmka, Janel K; Li, Li; Wattenberg, Elizabeth V; Patel, Yesha; Stram, Daniel O; Pegg, Anthony E

    2013-10-21

    α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activities of three model methylating agents were compared in Chinese hamster ovary cells expressing or not expressing human O⁶-alkylguanine DNA alkyltransferase (AGT). N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN), and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)-1-butanone (NNK-4-OAc) are all activated by ester hydrolysis to methanediazohydroxide. NMUr does not form an aldehyde, whereas AMMN generates formaldehyde, and NNK-4-OAc produces 4-oxo-1-(3-pyridyl)-1-butanone (OPB). Since these compounds were likely to alkylate DNA to different extents, the toxic and mutagenic activities of these compounds were normalized to the levels of the most cytotoxic and mutagenic DNA adduct, O⁶-mG, to assess if the aldehydes contributed to the toxicological properties of these methylating agents. Levels of 7-mG indicated that the differences in cytotoxic and mutagenic effects of these compounds resulted from differences in their ability to methylate DNA. When normalized against the levels of O⁶-mG, there was no difference between these three compounds in cells that lacked AGT. However, AMMN and NNK-4-OAc were more toxic than NMUr in cells expressing AGT when normalized against O⁶-mG levels. In addition, AMMN was more mutagenic than NNK-4-OAc and MNUr in these cells. These findings demonstrate that the aldehyde decomposition products of nitrosamines can contribute to the cytotoxic and/or mutagenic activity of methylating nitrosamines.

  11. Aldehyde modification and alum coadjuvancy enhance anti-TNF-α autovaccination and mitigate arthritis in rat.

    Science.gov (United States)

    Bavoso, Alfonso; Ostuni, Angela; De Vendel, Jolanda; Bracalello, Angelo; Shcheglova, Tatiana; Makker, Sudesh; Tramontano, Alfonso

    2015-05-01

    Experimental vaccination to induce antibodies (Abs) capable of cytokine antagonism shows promise as a novel immunotherapy for chronic inflammatory disease. We prepared a hybrid antigen consisting of residues 141-235 of rat TNF-α fused to the C-terminus of glutathione-S-transferase (GST), chemically modified to incorporate aldehyde residues, for development of an auto-vaccine eliciting anti-rTNF-α Abs. In rat immunization the soluble aldehyde-modified fusion protein did not generate observable Ab responses. By contrast, vaccination with the aldehyde-modified fusion protein adsorbed on alum induced anti-TNF-α autoAbs with high titer and neutralizing activity. Induction of adjuvant arthritis in rats pre-immunized with unmodified fusion protein or a control protein in alum resulted in severe inflammation and joint damage, whereas the disease induced in rats immunized with the aldehyde-bearing fusion protein in alum was markedly attenuated. Similar results were obtained in a collagen-induced rat arthritis model. Anti-collagen II IgG Ab titers did not deviate significantly in groups pre-immunized with modified fusion protein and control protein, suggesting that anti-TNF vaccination did not skew the immune response related to disease induction. This study demonstrates synergy between particulate alum and protein bound carbonyl residues for enhancement of protein immunogenicity. The antigen-specific co-adjuvant system could prove advantageous for breaking tolerance in emerging auto-vaccination therapies targeting inflammatory cytokines as well as for enhancing a broader category of subunit vaccines. Aldehyde adduction introduces a minimal modification which, together with the established use of alum as a safe adjuvant for human use, could be favorable for further vaccine development.

  12. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  13. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-04-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  14. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States); Totah, Rheem A., E-mail: rtotah@u.washington.edu [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  15. New Polyketides and New Benzoic Acid Derivatives from the Marine Sponge-Associated Fungus Neosartorya quadricincta KUFA 0081

    Directory of Open Access Journals (Sweden)

    Chadaporn Prompanya

    2016-07-01

    Full Text Available Two new pentaketides, including a new benzofuran-1-one derivative (1 and a new isochromen-1-one (5, and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b, a new benzoxepine derivative (3, two new chromen-4-one derivatives (4b, 7 and two new benzofuran derivatives (6a, b, were isolated, together with the previously reported 2,3-dihydro-6-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one (4a, from the culture of the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compounds 1, 2a, 4b, 5, 6a and 7, the absolute configurations of their stereogenic carbons were determined by an X-ray crystallographic analysis. None of the isolated compounds were active in the tests for antibacterial activity against Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates from the environment (MIC > 256 μg/mL, antifungal activity against yeast (Candida albicans ATTC 10231, filamentous fungus (Aspergillus fumigatus ATTC 46645 and dermatophyte (Trichophyton rubrum FF5 (MIC > 512 µg/mL and in vitro growth inhibitory activity against the MCF-7 (breast adenocarcinoma, NCI-H460 (non-small cell lung cancer and A375-C5 (melanoma cell lines (GI50 > 150 µM by the protein binding dye SRB method.

  16. Identification of robust synthon in the molecular salts of 2-aminothiazole with substituted benzoic acids: A case stu

    Indian Academy of Sciences (India)

    Madhavi Oruganti; Raghavaiah Pallepogu; Darshak R Trivedi

    2014-09-01

    Six new salts of an API intermediate 2-aminothiazole with different carboxylic acid coformers were synthesized and characterized by IR (Infrared spectroscopy), 1H-NMR, DSC (Differential scanning calorimetry), XRPD (X-ray powder diffraction) and single crystal XRD. The crystal structure of the salts with benzoic acid, 2,3-, 2,4-, 2,5-, 2,6- dihydroxybenzoic acids and 2,4-dinitrobenzoic acid were determined. The thiazole moiety exhibited solvent (polarity) assisted tautomerism in all reported salts and proton transfer was noticed to the ring N of thiazole due to which two point supramolecular synthon N+−H(thiazole)…O−(acid), N−H(amine)…O−(acid) was observed. The crystal structures were studied with respect to the positional effect of the competing functional groups like hydroxyl (−OH) and nitro (−NO2) as well as their donor and acceptor abilities for hydrogen bonding. The presence of the non-conventional hydrogen bond (C−H…O) has been found to play a critical role in the formation of secondary supramolecular architectures.

  17. Iron Oxide Surface Chemistry: The Effect of Chemical Structure on Binding in Benzoic Acid and Catechol Derivatives.

    Science.gov (United States)

    Korpany, Katalin V; Majewski, Dorothy D; Chiu, Cindy T; Cross, Shoronia N; Blum, Amy Szuchmacher

    2017-02-18

    Excellent performance of functionalized iron oxide nanoparticles in nanomaterial and biomedical applications often relies on achieving attachment of ligands to the iron oxide surface both in sufficient number and with proper orientation. Towards this end, we determine relationships between ligand chemical structure and surface binding on magnetic iron oxide nanoparticles for a series of related benzoic acid and catechol derivatives. Ligand exchange was used to introduce the model ligands, and the resulting nanoparticles were characterized by FTIR-ATR, transmission electron microscopy (TEM), and nanoparticle solubility behavior. An in-depth analysis of ligand electronic effects and reaction conditions reveals that the nature of ligand binding does not solely depend on the presence of functional groups known to bind to iron oxide nanoparticles. The structure of the resulting ligand-surface complex was primarily influenced by the relative positioning of hydroxyl and carboxylic acid groups within the ligand as well as whether or not HCl(aq) was added to the ligand exchange reaction. Overall, this study will help guide future ligand design and ligand exchange strategies towards realizing truly custom-built iron oxide nanoparticles.

  18. Growth, thermal, dielectric and mechanical properties of L-phenylalanine-benzoic acid: A nonlinear optical single crystal

    Science.gov (United States)

    Tamilselvan, S.; Vimalan, M.; Vetha Potheher, I.; Rajasekar, S.; Jeyasekaran, R.; Antony Arockiaraj, M.; Madhavan, J.

    2013-10-01

    An efficient amino acid family nonlinear optical single crystal L-phenylalanine-benzoic acid (LPB) was conveniently grown by slow evaporation technique at room temperature. The crystal system and the lattice parameters were analyzed by single crystal X-ray diffraction studies. The grown crystal has excellent transmission in the entire visible region and its lower cut-off wavelength was found to be 248 nm. The SHG efficiency of the grown crystal was found to be 1.6 times higher than that of KDP crystal. The Laser damage threshold value of LPB has been found to be 6.5 GW/cm2. The sample was thermally stable up to 134 °C. Microhardness, dielectric and AC/DC conductivity measurements were made along (0 0 1) plane and reported for the first time. Microhardness studies revealed that the sample belongs to hard nature. Frequency dependent dielectric constant was measured for different temperatures and found maximum dielectric constant of 14 for 363 K. Photoconductivity studies of LPB divulged its negative photoconducting nature.

  19. New Polyketides and New Benzoic Acid Derivatives from the Marine Sponge-Associated Fungus Neosartorya quadricincta KUFA 0081

    Science.gov (United States)

    Prompanya, Chadaporn; Dethoup, Tida; Gales, Luís; Lee, Michael; Pereira, José A. C.; Silva, Artur M. S.; Pinto, Madalena M. M.; Kijjoa, Anake

    2016-01-01

    Two new pentaketides, including a new benzofuran-1-one derivative (1) and a new isochromen-1-one (5), and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b), a new benzoxepine derivative (3), two new chromen-4-one derivatives (4b, 7) and two new benzofuran derivatives (6a, b), were isolated, together with the previously reported 2,3-dihydro-6-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one (4a), from the culture of the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compounds 1, 2a, 4b, 5, 6a and 7, the absolute configurations of their stereogenic carbons were determined by an X-ray crystallographic analysis. None of the isolated compounds were active in the tests for antibacterial activity against Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates from the environment (MIC > 256 μg/mL), antifungal activity against yeast (Candida albicans ATTC 10231), filamentous fungus (Aspergillus fumigatus ATTC 46645) and dermatophyte (Trichophyton rubrum FF5) (MIC > 512 µg/mL) and in vitro growth inhibitory activity against the MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (melanoma) cell lines (GI50 > 150 µM) by the protein binding dye SRB method. PMID:27438842

  20. Ferrous methanesulfonate as an efficient and recyclable catalyst for chemoselective synthesis of 1,1-diacetate from aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Gui Fu Tian; Zhi Guo Song; Heng Jiang

    2009-01-01

    Ferrous methanesulfonate catalysing the conversion of aromatic,heteroaromatic,unsaturated,and aliphatic aldehydes to 1,1-diacetates at room temperature under solvent-free condition has been developed.The catalytic activity of seventeen metal methanesulfonates was compared under the same condition,ferrous methanesufonate proved to be the best.It can be easily recovered and reused for several times without distinct deterioration in catalytic activity.During the competitive protection between a ketone and an aldehyde group with Ac2O,1,1-diacetate formed exclusively with the aldehyde group.

  1. A reactive and sensitive diffusion sampler for the determination of aldehydes and ketones in ambient air

    Science.gov (United States)

    Uchiyama, Shigehisa; Hasegawa, Shuji

    We developed a diffusive sampling device (DSD-carbonyl) for organic carbonyl compounds (aldehydes and ketones) which is suitable for collection and analysis of low concentration levels. This sampling device is composed of three parts, an exposure part made of a porous polytetrafluoroethylene (PPTFE) tube, an analysis part made of polypropylene (PP) tubing and an absorbent part made of 2,4-dinitrophenylhydrazine (DNPH) coated silica gel (DNPH-silica). Aldehydes and ketones diffuse to the DSD-carbonyl through PPTFE-tube by the mechanism of molecular diffusion and react specifically with DNPH to form a stable DNPH-derivatives. Collection is controlled by moving the absorbent from the exposure part to the analysis part by changing the posture of the DSD-carbonyl. DNPH-derivatives were eluted from an analysis part of DSD-carbonyl with acetonitrile directly and analyzed by high performance liquid chromatography (HPLC). The advantages of the DSD-carbonyl are the following: (1) The DSD-carbonyl can be used in a wide range of concentration of aldehydes and ketones in atmosphere, as the DSD-carbonyl exposure part has a variable diffusion area, (2) DNPH-derivatives are eluted from DNPH-silica without contamination of air. (3) The sampler can be applied to active sampling by connecting it with a pump. The limit of detection (LOD) for concentrations of major aldehydes and ketones ranged from 0.072 to 0.13 ppb, and the limit of quantitation (LOQ) ranged from 0.24 to 0.42 ppb. The coefficient variation (CV) for concentrations of major aldehydes and ketones ranged from 2.5 to 3.0% in laboratory air. The DSD-carbonyl method and active sampling method (US EPA method IP-6A) showed a good correlation (formaldehyde, r2=0.995). The uptake rates for formaldehyde, acetaldehyde, and acetone were estimated as 0.078, 0.062 and 0.079 nmol ppb -1 h -1, respectively. It is possible to estimate atmospheric aldehydes and ketones at parts per billion (ppb), with high sensitivity and precision, by

  2. Knoevenagel condensation of aromatic aldehydes with ethyl 4-chloro-3-oxobutanoate in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Bruno R.S. de; Zampieri, Davila S.; Rodrigues, Jose Augusto R.; Moran, Paulo J.S., E-mail: moran@iqm.unicamp.br [Institute of Chemistry, University of Campinas, Campinas-SP (Brazil); Zukerman-Schpector, Julio [Department of Chemistry, Federal University of Sao Carlos, SP (Brazil); Tiekink, Edward R.T. [Department of Chemistry, University of Malaya, Kuala Lampur (Malaysia)

    2012-05-15

    Knoevenagel condensations of aromatic aldehydes with ethyl 4-chloro-3-oxobutanoate catalyzed by morpholine/acetic acid were carried out in ionic liquids to give ethyl 2-chloroacetyl-3-arylpropenoates in 44-84% yield after 0.5 to 2 h at room temperature (25-28 deg C). These conditions represent a greener protocol for the Knoevenagel condensation than those using refluxing benzene or toluene as solvent. Aromatic aldehydes having aryl groups 4-chlorophenyl, 4-methoxyphenyl, 2-thiofuranyl, 2-furanyl, phenyl and 3,4-methylenedioxyphenyl gave (E)/(Z) diastereomeric ratios of products from 56/44 to 85/15. The two isomers of each compound were separately isolated and characterized. The structure of the (E)-isomer of ethyl 2-chloroacetyl-3-(3',4'methylenedioxyphenyl) propenoate was determined by X-ray crystallography and an unequivocal methodology of (E)/(Z)-structural analysis by {sup 13}C NMR (nuclear magnetic resonance) is presented. (author)

  3. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  4. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    Science.gov (United States)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  5. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    Science.gov (United States)

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-03

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes.

  6. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner.

  7. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.

    Science.gov (United States)

    Huynh-Ba, Tuong; Matthey-Doret, Walter; Fay, Laurent B; Bel Rhlid, Rachid

    2003-06-01

    Baker's yeast was shown to catalyze the transformation of cysteine-furfural conjugate into 2-furfurylthiol. The biotransformation's yield and kinetics were influenced by the reaction parameters such as pH, incubation mode (aerobic and anaerobic), and substrate concentration. 2-Furfurylthiol was obtained in an optimal 37% yield when cysteine-furfural conjugate at a 20 mM concentration was anaerobically incubated with whole cell baker's yeast at pH 8.0 and 30 degrees C. Similarly to 2-furfurylthiol, 5-methyl-2-furfurylthiol (11%), benzylthiol (8%), 2-thiophenemethanethiol (22%), 3-methyl-2-thiophenemethanethiol (3%), and 2-pyrrolemethanethiol (6%) were obtained from the corresponding cysteine-aldehyde conjugates by incubation with baker's yeast. This work indicates the versatile bioconversion capacity of baker's yeast for the generation of thiols from cysteine-aldehyde conjugates. Thanks to its food-grade character, baker's yeast provides a biochemical tool to produce thiols, which can be used as flavorings in foods and beverages.

  8. Urease Inhibitors of Agricultural Interest Inspired by Structures of Plant Phenolic Aldehydes

    OpenAIRE

    Lívia P. Horta; Mota,Yane C. C.; Barbosa,Gisele Maria; Taniris C. Braga; Marriel,Ivanildo E.; Fátima,Ângelo de; Modolo, Luzia V.

    2016-01-01

    The plant phenolic natural products (PNPs) protocatechuic aldehyde, syringaldehyde and vanillin were used as platforms for obtaining four urease inhibitors. Urea (urease substrate) or thiourea (urease inhibitor) core was added to the structure of newly synthesized compounds to provide inhibitors up to 230-fold more active than the PNPs they originated from. The PNP derivatives are mixed inhibitors with higher affinity to urease active site. Two compounds were as efficient as N-(butyl)thiophos...

  9. Small Peptides Catalyzed Direct Aldol Reactions of Aldehydes with Hydroxyacetone with Regiocontrol in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    TANG,Zhuo; YANG,Zhi-Hua; CUN,Lin-Feng; GONG,Liu-Zhu; MI,Ai-Qiao; JIANG,Yao-Zhong

    2004-01-01

    @@ Very recently, we[1] found that L-proline amides and dipeptides acted as efficient catalysts for the asymmetric direct aldol reaction. We report here that L-proline-based peptides 1~5 can catalyze the aldol reactions of hydroxyacetone with aldehydes 6 in aqueous media, to give 1,4-diols (7), the disfavored products with either aldolase or L-proline. Both peptides 3 and 4 give good results.

  10. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  11. Aldehydes in relation to air pollution sources: A case study around the Beijing Olympics

    Science.gov (United States)

    Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Ohman-Strickland, Pamela; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng

    2015-05-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3 ± 15.1 μg/m3, 27.1 ± 15.7 μg/m3 and 2.3 ± 1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants.

  12. Three-Component Halo Aldol Condensation of Thioacrylates with Aldehydes Mediated by Titanium (IV Halide

    Directory of Open Access Journals (Sweden)

    Guigen Li

    2002-01-01

    Full Text Available a,b-Ethyl thioacrylate was difuctionalized by a tandem X-C/C=C bond formation reaction. The new system uses Ti (IV halide as both the Lewis acidic promoter and the halogen source for the Michael-type addition onto the thioacrylate. The titanium enolate species resulting from Michael-type addition react with aldehydes followed by dehydration to afford trisubstituted olefin products. Complete geometric selectivity (>95% and up to 72% yield have been obtained for 7 examples.

  13. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.

    Science.gov (United States)

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2014-11-28

    In the n-alkane assimilating yeast Yarrowia lipolytica, n-alkanes are oxidized to fatty acids via fatty alcohols and fatty aldehydes, after which they are utilized as carbon sources. Here, we show that four genes (HFD1-HFD4) encoding fatty aldehyde dehydrogenases (FALDHs) are involved in the metabolism of n-alkanes in Y. lipolytica. A mutant, in which all of four HFD genes are deleted (Δhfd1-4 strain), could not grow on n-alkanes of 12-18 carbons; however, the expression of one of those HFD genes restored its growth on n-alkanes. Production of Hfd2Ap or Hfd2Bp, translation products of transcript variants generated from HFD2 by the absence or presence of splicing, also supported the growth of the Δhfd1-4 strain on n-alkanes. The FALDH activity in the extract of the wild-type strain was increased when cells were incubated in the presence of n-decane, whereas this elevation in FALDH activity by n-decane was not observed in Δhfd1-4 strain extract. Substantial FALDH activities were detected in the extracts of Escherichia coli cells expressing the HFD genes. Fluorescent microscopic observation suggests that Hfd3p and Hfd2Bp are localized predominantly in the peroxisome, whereas Hfd1p and Hfd2Ap are localized in both the endoplasmic reticulum and the peroxisome. These results suggest that the HFD multigene family is responsible for the oxidation of fatty aldehydes to fatty acids in the metabolism of n-alkanes, and raise the possibility that Hfd proteins have diversified by gene multiplication and RNA splicing to efficiently assimilate or detoxify fatty aldehydes in Y. lipolytica.

  14. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  15. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Directory of Open Access Journals (Sweden)

    J. C. Gong

    2010-08-01

    Full Text Available Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein in a central Beijing site in the summer and early fall of 2008 (from June to October. Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions. In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5. These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  16. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient cond...... conditions; the reactions can be performed in an open flask and at room temperature. Benzaldehyde is even oxidised at a reasonable rate below -70 degrees C. Acrolein is oxidised to methyl acrylate in high yield using the same protocol....

  17. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters

    OpenAIRE

    Keung, Wing Ming; Klyosov, Anatole A; Vallee, Bert L.

    1997-01-01

    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation betwe...

  18. Stimulation of tarsal receptors of the blowfly by aliphatic aldehydes and ketones.

    Science.gov (United States)

    CHADWICK, L E; DETHIER, V G

    1949-03-20

    Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 3-pentanol has been studied in the blowfly Phormia regina Meigen. The data agree with results previously reported for normal alcohols and several series of glycols in showing a logarithmic increase in stimulating effect with increasing chain length. The order of increasing effectiveness among the different species of compounds thus far investigated is the following: polyglycols, diols, secondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal aldehydes. Curves relating the logarithms of threshold concentration to the logarithms of chain length for diols, alcohols, aldehydes, and ketones show inflections in the 3 to 6 carbon range. Above and below the region of inflection the curves are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are of the order of -2; for the lower limbs, about -10. Comparisons of the threshold data with numerical values for molecular weights, molecular areas and volumes, oil-water distribution coefficients, activity coefficients, standard free energies, vapor pressures, boiling points, melting points, dipole moments, dielectric constants, and degree of association are discussed briefly, and it is concluded that none of the comparisons serves to bring the data from the several series and from the two portions of each series into a single homogeneous system. A qualitative comparison with water solubilities shows fewer discrepancies. It is suggested that the existence of a combination of aqueous and lipoid phases at the receptor surface would fit best with what is presently known about the relationship between chemical structure and stimulating effect in contact chemoreception. In this hypothesis the smaller and more highly water-soluble compounds are envisaged as gaining access to the receptors partly through the aqueous phase, the larger molecules predominantly through the lipoid phase.

  19. Effects of aliphatic aldehydes on the growth and patulin production of Penicillium expansum in apple juice.

    Science.gov (United States)

    Taguchi, Tomoyasu; Kozutsumi, Daisuke; Nakamura, Ruka; Sato, Yoshio; Ishihara, Atsushi; Nakajima, Hiromitsu

    2013-01-01

    The effects of 16 aliphatic aldehydes with 3-10 carbons on the growth and patulin production of Penicillium expansum were examined. When P. expansum spores were inoculated into apple juice broth, some alkenals, including 2-propenal, (E)-2-butenal, (E)-2-pentenal, and (E)-2-hexenal, inhibited fungal growth and patulin production. Their minimal inhibitory concentrations were 5, 50, 80, and 80 µg/mL respectively. Vital staining indicated that these alkenals killed mycelia within 4 h. Treatment of the spores with these aldehydes also resulted in rapid loss of germination ability, within 0.5-2 d. On the other hand, aliphatic aldehydes with 8-10 carbons significantly enhanced patulin production without affecting fungal growth: 300 µg/mL of octanal and 100 µg/mL of (E)-2-octenal increased the patulin concentrations in the culture broth by as much as 8.6- and 7.8-fold as compared to that of the control culture respectively. The expression of the genes involved in patulin biosynthesis in P. expansum was investigated in mycelia cultured in apple juice broth containing 300 µg/mL of octanal for 3.5, 5, and 7 d. Transcription of the msas gene, encoding 6-methylsalicylic acid synthase, which catalyzed the first step in the patulin biosynthetic pathway was remarkably high in the 3.5-d and 5-d-old cultures as compared with the control. However, octanal did not any increase the transcription of the msas in the 7-d-old culture or that of the other two genes, IDH and the peab1, in culture. Thus the enhanced patulin accumulation with supplementation with these aldehydes is attributable to the increased amount of the msas transcript.

  20. Quantification of tetrabromo benzoic acid and tetrabromo phthalic acid in rats exposed to the flame retardant Uniplex FPR-45.

    Science.gov (United States)

    Silva, Manori J; Hilton, Donald; Furr, Johnathan; Gray, L Earl; Preau, James L; Calafat, Antonia M; Ye, Xiaoyun

    2016-03-01

    The first withdrawal of certain polybrominated diphenyl ethers flame retardants from the US market occurred in 2004. Since then, use of brominated non-PBDE compounds such as bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) in commercial formulations has increased. Assessing human exposure to these chemicals requires identifying metabolites that can potentially serve as their biomarkers of exposure. We administered by gavage a dose of 500 mg/Kg bw of Uniplex FRP-45 (>95 % BEH-TEBP) to nine adult female Sprague-Dawley rats. Using authentic standards and mass spectrometry, we positively identified and quantified 2,3,4,5-tetrabromo benzoic acid (TBBA) and 2,3,4,5-tetrabromo phthalic acid (TBPA) in 24-h urine samples collected 1 day after dosing the rats and in serum at necropsy, 2 days post-exposure. Interestingly, TBBA and TBPA concentrations correlated well (R (2) = 0.92). The levels of TBBA, a known metabolite of EH-TBB, were much higher than the levels of TBPA both in urine and serum. Because Uniplex FRP-45 was technical grade and EH-TBB was present in the formulation, TBBA likely resulted from the metabolism of EH-TBB. Taken together, our data suggest that TBBA and TBPA may serve as biomarkers of exposure to non-PBDE brominated flame retardant mixtures. Additional research can provide useful information to better understand the composition and in vivo toxicokinetics of these commercial mixtures.

  1. 2-{[1-(3,4-Dihydroxyphenyl)methylidene]amino}benzoic acid immobilized Amberlite XAD-16 as metal extractant.

    Science.gov (United States)

    Venkatesh, Gopalan; Singh, Ajai K

    2005-07-15

    2-{[1-(3,4-Dihydroxyphenyl)methylidene]amino}benzoic acid (DMABA) was loaded on Amberlite XAD-16 (AXAD-16) via azo linker and the resulting resin AXAD-16-DMABA explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II). The optimum pH values for extraction are 6.5-7.0, 5.0-6.0, 5.5-7.5, 5.0-6.5, 6.5-8.0, 5.5-7.0, 4.0-5.0 and 6.0-7.0, respectively. The sorption capacity was found between 97 and 515mumolg(-1) and the preconcentration factors from 100 to 450. Tolerance limits for foreign species are reported. The kinetics of sorption is fast as t(1/2) is

  2. Synthesis of chiral N-ferrocenylmethylaminoalcohols and their applica-tion in enantioselective addition of diethylzinc to aldehydes

    Institute of Scientific and Technical Information of China (English)

    Jian Feng GE; Zong Xuan SHEN; Ya Wen ZHANG

    2004-01-01

    Three chiral N-ferrocenylmethylaminoalcohols were synthesized from readily available natural L-valine, leucine and phenylanine, and used as chiral ligands in the enantioselective addition of diethylzinc to aldehydes.

  3. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    Science.gov (United States)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-02-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (uc(d)-allose and uc(d)-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars uc(d)-allose and uc(d)-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  4. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.

    Science.gov (United States)

    Small, Meagan C; Aytenfisu, Asaminew H; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D

    2017-02-11

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  5. Immobilization of penicillin G acylase on paramagnetic aldehyde-functionalized mesostructured cellular foams.

    Science.gov (United States)

    Yang, Ling; Gao, Zhenyuan; Guo, Yanglong; Zhan, Wangcheng; Guo, Yun; Wang, Yunsong; Lu, Guanzhong

    2014-06-10

    Paramagnetic aldehyde-functionalized mesostructured cellular foams (PAMCFs), synthesized by grafting 3-aminopropyltriethoxysilane modified Fe3O4 (NH2-Fe3O4) nanoparticles with larger particle size than the window pore size of MCFs on the outer surface of aldehyde-functionalized mesostructured cellular foams (AMCFs), were investigated as efficient supports for immobilization of penicillin G acylase (PGA). The results show that NH2-Fe3O4 nanoparticles were successfully grafted on the outer surface of AMCFs and PGA molecules were mainly immobilized covalently on the inner surface of PAMCFs, which was because amino groups of NH2-Fe3O4 nanoparticles or PGA molecules reacted with aldehyde groups of AMCFs or PAMCFs to form imine bonds. PGA/PAMCFs-15 showed a rather high initial activity of 9563Ug(-1) and retained 89.1% of its initial activity after recycled for 10 times. PGA/PAMCFs are easily recycled by magnetic field in order to replace tedious separation of high-speed centrifugation for mesoporous materials.

  6. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    Science.gov (United States)

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects.

  7. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  8. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  9. Safety and determination benzoic acid and sodium benzoate%苯甲酸和苯甲酸钠安全性与检测方法研究进展

    Institute of Scientific and Technical Information of China (English)

    李菊; 刘淑君; 黄雪琳

    2012-01-01

      As one of the acidic preservative,the abuse of benzoic acid and sodium benzoate is very dangerous. Because the residue of benzoic acid and sodium benzoate would do great harm to the human health even cause cancer after they were taken through the food and medicament. The researchers have dedicated many efforts to research for residue determination of benzoic acid and Sodium Benzoate. The security and methods for benzoic acid and sodium benzoate detection were summarized. this study was useful for the detecting technology of benzoic acid and sodium benzoate residues.%  苯甲酸和苯甲酸钠是一种酸性防腐剂,过量滥用很危险;因苯甲酸和苯甲酸钠被人体过量摄入后,会对人体健康造成极大危害,甚至致癌。该文对苯甲酸和苯甲酸钠残留安全性及检测方法进行综述,以期为苯甲酸和苯甲酸钠残留检测方法研究提供参考。

  10. Identification and Quantification of Aldehydes in Mezcal by Solid Phase Microextraction with On-fiber Derivatization - Gas Cromatography

    OpenAIRE

    Guadalupe Medina Valtierra; Rocío Juárez Ciprés; Araceli Peña Álvarez

    2011-01-01

    A headspace solid phase microextraction with on fiber derivatization procedure followed by gas chromatography and flame ionization detection was applied for the determination of aldehydes in mezcal. A derivatization agent o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed onto a Polydimethylsiloxane/ divinyl benzene (PDMS/DVB, 65 ¿m) fiber and exposed to the headspace of a vial with a mezcal sample. The aldehydes selectively reacted with PFBHA, and the oximes were desorbed int...

  11. A unified approach for the synthesis of symmetrical and unsymmetrical dibenzyl ethers from aryl aldehydes through reductive etherification

    Directory of Open Access Journals (Sweden)

    J. Sembian Ruso

    2016-05-01

    Full Text Available In this paper, we describe a simple and convenient conversion of aryl aldehydes to symmetrical dibenzyl ethers through reductive etherification. Similarly, unsymmetrical dibenzyl ether was obtained from aryl aldehyde and TES-protected benzyl alcohol. Triethyl silane with catalytic amount of InCl3 was found to be an efficient condition for the reductive etherification. Moreover, it exhibits remarkable functional group compatibility with yield ranging from good to excellent.

  12. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    Science.gov (United States)

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods.

  13. DNA-support coupling for transcription factor purification. Comparison of aldehyde, cyanogen bromide and N-hydroxysuccinimide chemistries.

    Science.gov (United States)

    Chockalingam, Priya Sethu; Gadgil, Himanshu; Jarrett, Harry W

    2002-01-04

    Purification of transcription factor IIIA on internal control region DNA coupled to aldehyde-silica is described and compared with purification on cyanogen bromide-activated Sepharose and Bio-Rad Affi-Gel-10. The Affi-Gel support results in mixed-mode chromatography; both ion-exchange and affinity modes contribute. Coupling DNA to aldehyde-silica is advantageous in that it has no ion-exchange properties and performs as well as DNA coupled to CNBr-activated Sepharose. Purification of lac repressor on aldehyde-silica, and CAAT enhancer binding protein on Affi-Gel also shows the advantages of a neutral support and the disadvantages of mixed-mode chromatography for transcription factor purification. Aldehyde-silica couples to alkylamines and to the amines of adenine, guanine, and cytosine nucleoside bases. Reaction occurs with either single- or double-stranded DNA, although it is less efficient with the latter. Overall, the results demonstrate that predominantly neutral coupling chemistries, such as aldehyde or CNBr-mediated coupling, have distinct advantages for transcription factor purification. Since the CNBr chemistry has not yet been applied to silica supports, aldehyde-silica coupling is currently the most attractive method for DNA affinity HPLC.

  14. Distinct roles of jasmonates and aldehydes in plant-defense responses.

    Directory of Open Access Journals (Sweden)

    E Wassim Chehab

    Full Text Available BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs, C(6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS and hydroperoxide lyase (HPL branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae, an insect herbivore (leafminers: Liriomyza trifolii, and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola. We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani, a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic

  15. Adsorption Behaviour of Benzoic Acid in Water on Modified Bentonite%改性膨润土对水中苯甲酸的吸附

    Institute of Scientific and Technical Information of China (English)

    杨健; 辛晓东; 魏琴; 杜斌

    2012-01-01

    采用氯化钠对膨润土进行钠化,与聚二甲基二烯丙基氯化铵(PDMDAAC)作用制得PDMDAAC-膨润土.经FTIR 分析,研究PDMDAAC-膨润土对水中苯甲酸的最佳吸附条件、吸附动力学及等温线拟合.结果表明:当选取吸附剂用量为0.5g,吸附时间为1h,吸附酸度为pH =4时,PDMDAAC-膨润土可吸附0.5 mmol/L的苯甲酸,其最大吸附效率可达86.57%.PDMDAAC -膨润土对苯甲酸的吸附符合拟二级动力学方程及Langmuir型等温曲线.%Using sodium modified bentonite and polydimethydiallylammonium chloride, we prepared polydimethydiallylammonium chloride-bentonite ( PDMDAAC-bentonite) via exchange reaction and analyzed it by FTTR. The adsorption behavior of benzoic acid by PDMDAAC-bentonite was studied,and the best experimental conditions were investigated. Experimental results show that PDMDAAC-bentonite can adsorb 0.5 mmol/L benzoic acid with the maximal removal efficiency of 86. 57% under the optimial conditons of 0. 5 g sorbent,1 h adsorption time and pH =4. The adsorption kinetic data of benzoic acid by PDMDAAC-bentonite fitts the pseudo-second-order model well, and its adsorption isotherm meets with Langmuir adsorption model.

  16. Isolation of animal cell mutants defective in long-chain fatty aldehyde dehydrogenase. Sensitivity to fatty aldehydes and Schiff's base modification of phospholipids: implications for Sj-ogren-Larsson syndrome.

    Science.gov (United States)

    James, P F; Zoeller, R A

    1997-09-19

    Using tritium suicide, we have isolated a variant of the Chinese hamster ovary cell line, CHO-K1, that is deficient in long-chain fatty alcohol:NAD+ oxidoreductase (FAO; EC 1.1.1.192). Specifically, it was the fatty aldehyde dehydrogenase component that was affected. The enzymatic deficiency found in this mutant strain, designated FAA. K1A, was similar to that displayed by fibroblasts from patients with Sjögren-Larsson syndrome (SLS), an inheritable neurocutaneous disorder. Complementation analyses suggested that the deficiency in fatty alcohol oxidation in the FAA.K1A cells and the SLS fibroblasts is a result of lesions in homologous genes. The FAA.K1A cells were unable to convert long chain fatty aldehydes to the corresponding fatty acids. This resulted in a hypersensitivity of the FAA.K1A cells to the cytotoxic effects of long chain fatty aldehydes. The difference between the mutant and wild-type cells was most obvious when using fatty aldehydes between 14 and 20 carbons, with the greatest difference between wild-type and mutant cells found when using octadecanal. Fibroblasts from a patient with SLS also displayed the hypersensitivity phenotype when compared with FAldDH+ human fibroblasts. In both CHO and human FAldDH- cell lines, addition of long chain fatty aldehydes to the medium caused a dramatic increase in aldehyde-modified phosphatidylethanolamine, presumably through Schiff's base addition to the primary amine of the ethanolamine head group. When 25 microM hexadecanal was added to the growth medium, approximately 10% of the phosphatidylethanolamine was found in the fatty aldehyde-modified form in FAA.K1A, although this was not observed in wild-type cells. Modified phosphatidylethanolamine could be detected in FAldDH- cells even when exogenous fatty aldehydes were not added to the medium. We propose a possible role for fatty aldehydes, or other aldehydic species, in mediating some of the symptoms associated with Sjögren-Larsson syndrome.

  17. Synthesis of Isocoumarins from Cyclic 2-Diazo-1,3-diketones and Benzoic Acids via Rh(III)-Catalyzed C-H Activation and Esterification.

    Science.gov (United States)

    Yang, Cheng; He, Xinwei; Zhang, Lanlan; Han, Guang; Zuo, Youpeng; Shang, Yongjia

    2017-02-17

    A mild and efficient Rh(III)-catalyzed C-H activation/esterification reaction for the synthesis of isocoumarins has been developed. This procedure uses readily available benzoic acids and cyclic diazo-1,3-diketones as starting materials and involves domino intermolecular C-H activation in combination with intramolecular esterification to give the corresponding isocoumarins in moderate to excellent yields. This process provides a facile approach for the construction of isocoumarins containing various functional groups that does not require any additives.

  18. 布洛芬混悬液中苯甲酸测定方法的建立%Establishment of Determination Method for Benzoic in Ibuprofen Suspension

    Institute of Scientific and Technical Information of China (English)

    杨武军; 刘雪峰

    2016-01-01

    目的::建立布洛芬混悬液中苯甲酸的HPLC检测方法。方法:采用Kromasil C18色谱柱(250 mm ×4.6 mm,5μm),以0.05 mol·L-1磷酸二氢钾-乙腈(72∶28)为流动相,检测波长为235 nm,柱温为30℃,进样量为10μl。结果:苯甲酸检出限为3.57 ng,在12.5~200.0μg·ml-1浓度范围内线性关系良好(r=0.9999),供试品溶液在24 h内稳定,平均回收率为98.42%, RSD为0.98%(n=9)。结论:该方法操作简便,重复性好,检测结果准确,能更好地检测布洛芬混悬液中防腐剂的含量。%Objective:To establish a method to determine benzoic in ibuprofen suspension. Methods:The determination of ben-zoic was performed on a Kromasil C18 (250 mm × 4. 6 mm, 5 μm) column with the mobile phase consisting of 0. 05 mol·L-1 monopo-tassium phosphate and acetonitrile (72 ∶28). The detection wavelength was 235 nm and the column temperature was 30℃. The injec-tion volume was 10μl. Results:The limit of detection was 3. 57 ng and benzoic had a good linear relationship within the range of 12. 5-200. 0 μg·ml-1(r=0. 999 9). The solution was stable in 24 hours. The average recovery was 98. 42% and RSD was 0. 98% (n=9) . Conclusion:The method is simple, repeatable and accurate, and can be used for the determination of benzoic in ibuprofen sus-pension.

  19. Synthesis and Protective Effect of New Ligustrazine-Benzoic Acid Derivatives against CoCl2-Induced Neurotoxicity in Differentiated PC12 Cells

    Directory of Open Access Journals (Sweden)

    Haimin Lei

    2013-10-01

    Full Text Available A series of novel ligustrazine-benzoic acid derivatives were synthesized and evaluated for their protective effect against cobalt chloride-induced neurotoxicity in differentiated PC12 cells. Combining hematoxylin and eosin staining, we found compound that (3,5,6-trimethylpyrazin-2-ylmethyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-ylmethoxy]benzoate (4a displayed promising protective effect on the proliferation of the injured PC12 cells (EC50 = 4.249 µM. Structure-activity relationships are briefly discussed.

  20. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Rebecca L. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: r.l.taylor@ncl.ac.uk; Caldwell, Gary S. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Bentley, Matthew G. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD{sub 50} values of 7 and 20 {mu}M for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 {mu}M of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD{sub 50} of decadienal by approximately a third for both species. 1 {mu}M of copper chloride in solutions of decadienal reduced the 24 h LD{sub 50} of decadienal to A. salina nauplii by approximately 11% and 1 {mu}M zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 {mu}M copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  1. Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus.

    Science.gov (United States)

    Chen, Chao; Joo, Jeong Chan; Brown, Greg; Stolnikova, Ekaterina; Halavaty, Andrei S; Savchenko, Alexei; Anderson, Wayne F; Yakunin, Alexander F

    2014-07-01

    Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD(+) binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.

  2. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production.

  3. Toxicity of algal-derived aldehydes to two invertebrate species: do heavy metal pollutants have a synergistic effect?

    Science.gov (United States)

    Taylor, Rebecca L; Caldwell, Gary S; Bentley, Matthew G

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24h LD(50) values of 7 and 20 microM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 microM of copper sulphate in solutions of decadienal resulted in the reduction of the 24h LD(50) of decadienal by approximately a third for both species. 1 microM of copper chloride in solutions of decadienal reduced the 24h LD(50) of decadienal to A. salina nauplii by approximately 11% and 1 microM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 microM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  4. 苯甲酸溶解度的测定及关联%Measurement and Correlation of Solubilities of Benzoic Acid in Different Solvents

    Institute of Scientific and Technical Information of China (English)

    刘江刍鸟; 李殿卿; 刘大壮; 陈忠民; 田洪河

    2001-01-01

    Using a laser monitoring observation technique,the solubilities of benzoic acid in trichloromethane,N,N-dimethylformamide,N,N-dimethylacetamide and N-Methyl-2-pyrrolidonewere,which has never been seen in literatures before,are determined by the synthetic method.To verify the reliability of the experimental method,the solubility of benzoic acid in water was measured before the experiments,which shows excellent consistency with the literature data.By means of Apelblat's solubility model to correlate the experimental results,the calculated solubilities show good agreement with the experimental values.%为了回收、提纯PTA氧化残渣中的苯甲酸,采用激光监视技术由合成法测定了鲜见文献报道的苯甲酸在氯仿、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮中的溶解度.为了验证测定方法的可靠性,事先测定了苯甲酸在水、醋酸中的溶解度,与已有文献数据相比,一致性较好.用Apelblat等人提出的溶解度模型对实验数据进行关联,计算的溶解度与实验值符合良好.

  5. Effect of manganese and potassium addition on CeO2-Al2O3 catalyst for hydrogenation of benzoic acid to benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dangguo; HOU; Chunyang; CHEN; Fengqiu; ZHAN; Xiaol

    2009-01-01

    A series of Mn/CeO2-Al2O3 and K/CeO2-Al2O3 catalysts for hydrogenation of benzoic acid to benzaldehyde were prepared to in-vestigate the effect of Mn, K addition on CeO2-Al2O3 catalyst. X-ray diffraction (XRD) and H2-temperature-programmed reduction (H2-TPR) results suggested that the interaction between CeO2 and MnOx enhanced the reducibility of catalysts and therefore benzoic acid conversion.The addition of K increased the number of basic number on the catalyst which leads to a high selectivity to benzaldehyde, but excessive addition imposed negative effects on the catalyst performance. A Mn-K/CeO2Al2O3 catalyst was developed and investigated in the reaction. The simul-taneous addition of Mn and K enhanced not only the catalytic activity but also the capacity to resist the coke formation over catalyst.

  6. Investigation of the formation of benzoyl peroxide, benzoic anhydride, and other potential aerosol products from gas-phase reactions of benzoylperoxy radicals

    Science.gov (United States)

    Strollo, Christen M.; Ziemann, Paul J.

    2016-04-01

    The secondary organic aerosol (SOA) products of the reaction of benzaldehyde with Cl atoms and with OH radicals in air in the absence of NOx were investigated in an environmental chamber in order to better understand the possible role of organic peroxy radical self-reactions in SOA formation. SOA products and authentic standards were analyzed using mass spectrometry and liquid chromatography, and results show that the yields of benzoyl peroxide (C6H5C(O)OO(O)CC6H5) and benzoic anhydride (C6H5C(O)O(O)CC6H5), two potential products from the gas-phase self-reaction of benzoylperoxy radicals (C6H5C(O)OO·), were less than 0.1%. This is in contrast to results of recent studies that have shown that the gas-phase self-reactions of β-nitrooxyperoxy radicals formed from reactions of isoprene with NO3 radicals form dialkyl peroxides that contribute significantly to gas-phase and SOA products. Such reactions have also been proposed to explain the gas-phase formation of extremely low volatility dimers from autooxidation of terpenes. The results obtained here indicate that, at least for benzoylperoxy radicals, the self-reactions form only benzoyloxy radicals. Analyses of SOA composition and volatility were inconclusive, but it appears that the SOA may consist primarily of oligomers formed through heterogeneous/multiphase reactions possibly involving some combination of phenol, benzaldehyde, benzoic acid, and peroxybenzoic acid.

  7. Mono(imidazolin-2-iminato) actinide complexes: synthesis and application in the catalytic dimerization of aldehydes.

    Science.gov (United States)

    Karmel, Isabell S R; Fridman, Natalia; Tamm, Matthias; Eisen, Moris S

    2014-12-10

    The synthesis of the mono(imidazolin-2-iminato) actinide(IV) complexes [(Im(R)N)An(N{SiMe3)2}3] (3-8) was accomplished by the protonolysis reaction between the respective imidazolin-2-imine (Im(R)NH, R = tBu, Mes, Dipp) and the actinide metallacycles [{(Me3Si)N}2An{κ(2)C,N-CH2SiMe2N(SiMe3)}] (1, An = U; 2, M = Th). The thorium and uranium complexes were obtained in high yields, and their structures were established by single-crystal X-ray diffraction analysis. The mono(imidazolin-2-iminato) actinide complexes 3-8 display short An-N bonds together with large An-N-C angles, indicating strong electron donation from the imidazolin-2-iminato moiety to the metal, corroborating a substantial π-character to the An-N bond. The reactivity of complexes 3-8 toward benzaldehyde was studied in the catalytic dimerization of aldehydes (Tishchenko reaction), displaying low to moderate catalytic activities for the uranium complexes 3-5 and moderate to high catalytic activities for the thorium analogues 6-8, among which 8 exhibited the highest catalytic activity. In addition, actinide coordination compounds showed unprecedented reactivity toward cyclic and branched aliphatic aldehydes in the catalytic Tishchenko reaction mediated by the thorium complex [(Im(Dipp)N)Th{N(SiMe3)2}3] (8), exhibiting high activity even at room temperature. Moreover, complex 8 was successfully applied in the crossed Tishchenko reaction between an aromatic or polyaromatic and an aliphatic cyclic and branched aldehyde, yielding selectively the asymmetrically substituted ester in high yields (80-100%).

  8. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR DETERMINATION OF AROMATIC ALDEHYDES IN WINE DISTILLATES

    Directory of Open Access Journals (Sweden)

    Elena Nezalzova

    2011-06-01

    Full Text Available Quality control of alcoholic beverages, coming into the market, is a defining element in preventing the production and supplying of defective products. One of the main criteria for quality control of wine distillates is to estimate their age, and more precisely the period of maturation as the dominant factor in determining the quality of cognacs and, consequently, their market price. On the opinion of majority scientists, one of the main factors, which determines the age of wine distillates, is the content of aromatic aldehydes, mostly vanillin, and their ratio.

  9. Facile Aldol Reaction Between Unmodified Aldehydes and Ketones in Bronsted Acid Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-you; ZHAO Di-shun; XU Dan-qian; XU Zhen-yuan

    2007-01-01

    A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α ,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs) was explored. 1-Butyl-3-methylimidazolium hydrogen sulphate( BMImHSO4 ) acting as an effective media and catalyst in aldol reactions was compared with other BAILs, with the advantages of high conversion and selectivity. The product was easily isolated andthe left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency. The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated.

  10. Purification, characterization, and properties of an aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646.

    OpenAIRE

    Li, T.; Rosazza, J P

    1997-01-01

    An aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646 was purified 196-fold by a combination of Mono-Q, Reactive Green 19 agarose affinity, and hydroxyapatite chromatographies. The purified enzyme runs as a single band of 140 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass was estimated to be 163 +/- 3.8 kDa by gel filtration, indicating that this enzyme is a monomeric protein. The binding of the enzyme to Reactive Green 19 agarose was Mg2+ de...

  11. The first catalytic asymmetric addition of diethylzinc to aldehyde promoted by chiral thiourea

    Institute of Scientific and Technical Information of China (English)

    Zhi Guo Qiao; Tian Hua Shen; Zhen Fang Fu; Jun Qi Li; Hong Wang; Qing Bao Song

    2011-01-01

    A series of C2-symmetric and asymmetric chiral thiourea derivatives were synthesized from commercial L-phenylalanine. All of the new compounds have been fully characterized by IR, 1H NMR, 13C NMR, MS spectra and elemental analyses. The chiral thioureas were used as chiral ligands in the catalytic enantioselective ethylation of aldehydes with diethylzinc, the corresponding sec-alcohols were gained with excellent enantioselectivities (up to 87.1 % ee) and high yields (up to 76.7%) after the conditions were optimized.

  12. Peptide Deravatives as New Chiral Ligands for Enantioselective Phenylacetylene Addition to Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Yi-Feng; GAO,Yan-Feng; KANG,Yong-Feng; HAN,Zhi-Jian; YAN,Wen-Jin; NI,Ming; WANG,Rui

    2004-01-01

    @@ The asymmetric addition of alkynylzinc to aldehydes is an important method of synthesizing chiral propargyl alcohols, which are important precursors to many chiral organic compounds. Recently, many significant chiral ligands in this area have been disclosed.[1] Use of a short peptide as a catalyst would allow expansion beyond the (still uncharted) repertoire of single amino acids, while conserving the advantages of a small molecule catalyst. To the best of our knowledge,no results of peptide derivatives as chiral ligands in this reaction has been disclosed to date.[2] Herein, we report the initial results of peptide derivatives, which have been used directly as a chiral ligand in this reaction (Scheme 1).

  13. Reactions of CH-acids with α,β-unsaturated aldehydes in ionic liquids

    DEFF Research Database (Denmark)

    Kryshtal, G. V.; Zhdankina, G. M.; Astakhova, Irina Kira

    2004-01-01

    Metal carbonate-catalyzed reactions of CH-acids (diethyl malonate, ethyl acetoacetate, ethyl cyanoacetate, and ethyl 2-acetyl- and 2-ethoxycarbonyl-5,9- dimethyldeca-4,8-dienoates) with α,β-unsaturated aldehydes (acrolein, crotonaldehyde, citral) were studied in an ionic liquid, 1-butyl-3......- methylimidazolium hexafluorophosphate [bmim][PF 6], and in a 1-butyl-3-methylimidazolium bromide ([bmim][Br]) - benzene system. The reactions with acrolein and crotonaldehyde afforded Michael addition products, those with citral resulted in Knoevenagel addition products. Sonication increased the yields...

  14. A C-terminal Aldehyde Analog of the Insect Kinins Inhibits Diuresis in the Housefly

    Science.gov (United States)

    2006-09-21

    p e p t i d e s 2 8 ( 2 0 0 7 ) 1 4 6 – 1 5 2A C-terminal aldehyde analog of the insect kinins inhibits diuresis in the housefly Ronald J. Nachman a...secretion in crickets, but shows inhibition of both in vitro and in vivo diuresis in the housefly. R-LK-CHO reduced the total amount of urine voided over 3 h...to stimulate Malpighian tubule fluid secretion [2,25]. In the housefly, muscakinin has been implicated in the control of diuresis in response to

  15. Revisiting the Reaction Between Diaminomaleonitrile and Aromatic Aldehydes: a Green Chemistry Approach

    Directory of Open Access Journals (Sweden)

    Francisco León

    2006-11-01

    Full Text Available The reaction between diaminomaleonitrile (DAMN and aldehydes and the resulting monoimines are well known. Since the standard reaction conditions involve the use of toxic solvents (typically methanol, we have sought to apply green chemistry principles to this reaction by either using water as the solvent without any catalysts or employing “solvent-free” conditions. The monoimines derived from DAMN are of interest as precursors for obtaining different heterocyclic systems and linear polymers. The methodologies used have significant advantages with regards to cost and environmental considerations.

  16. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  17. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  18. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  19. Quantification of Dissolved and Particulate Polyunsaturated Aldehydes in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Raffaella Casotti

    2011-03-01

    Full Text Available Polyunsaturated aldehydes (PUA are supposed to play critical roles in chemically-mediated plankton interactions. Laboratory studies suggest that they act as mediators of chemical defense and chemical communication. PUA are oxylipins containing an α,β,γ,δ-unsaturated aldehyde structure element and are mainly found in diatoms. We present here a detailed surface mapping of PUA during a spring bloom of the diatom Skeletonema marinoi in the Adriatic Sea. We monitored dissolved PUA, as well as particulate PUA, which are produced by phytoplankton after cell disintegration. Our survey revealed a patchy distribution of PUA and shows that at most stations S. marinoi is the major contributor to the overall PUA. Our data also suggest that lysis of a diatom bloom can contribute significantly to the dissolved PUA concentrations and that other producers, which are smaller in cell size compared to diatoms, have to be taken into account as well if the total PUA content of marine samples is considered. The analyses of samples collected in deeper water suggests that diatom contribution to PUA decreases with depth, while smaller-sized unidentified organisms take place as dominant contributors to the PUA concentrations.

  20. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities.

    Science.gov (United States)

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-06-15

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  1. Structure and mechanism of action of the hydroxy aryl aldehyde class of IRE1 endoribonuclease inhibitors

    Science.gov (United States)

    Sanches, Mario; Duffy, Nicole M.; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D.; Lee, Kenneth; Kurinov, Igor; Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian; Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L.; Vuga, Danka; Lehmann, Lynn; Durocher, Daniel; Zeng, Qingping; Patterson, John B.; Sicheri, Frank

    2014-01-01

    Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy aryl aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a H-bond with Tyr892. Structure activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design. PMID:25164867

  2. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    Science.gov (United States)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  3. Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata.

    Science.gov (United States)

    Wang, F W; Wang, M L; Guo, C; Wang, N; Li, X W; Chen, H; Dong, Y Y; Chen, X F; Wang, Z M; Li, H Y

    2016-06-20

    Glycine betaine is an important quaternary ammonium compound that is produced in response to several abiotic stresses in many organisms. The synthesis of glycine betaine requires the catalysis of betaine aldehyde dehydrogenase (BADH), which can convert betaine aldehyde into glycine betaine in plants, especially in halotolerant plants. In this study, we isolated the full-length cDNA of BADH from Suaeda corniculata (ScBADH) using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends. Next, we analyzed the expression profile of ScBADH using real-time PCR. The results showed that ScBADH expression was induced in the roots, stems, and leaves of S. corniculata seedlings under salt and drought stress. Next, ScBADH was overexpressed in Arabidopsis, resulting in the transgenic plants exhibiting enhanced tolerance over wild-type plants under salt and drought stress. We then analyzed the levels of glycine betaine and proline, as well as superoxide dismutase (SOD) activity, during salt stress in WT and transgenic Arabidopsis. The results indicated that overexpression of ScBADH produced more glycine betaine and proline, and increased SOD activity under NaCl treatment. Our results suggest that ScBADH might be a positive regulator in plants during the response to NaCl.

  4. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  5. NMR analysis of aldehydes in Sicilian extra-virgin olive oils by DPFGSE techniques

    Directory of Open Access Journals (Sweden)

    Enrico Rotondo

    2011-03-01

    Full Text Available The DPFGSE NMR sequences open new perspectives in the volatile compounds analysis of food matrices. Many fresh extra-virgin Sicilian olive oils, analyzed by this technique, show two main resonances in the aldehydic spectral region (9–10 ppm, at 9.18 and 9.58 ppm. The former was never reported so far, the latter was sometime highlighted as a minor aldehydic component signal of spectra showing stronger resonances at 9.45 and 9.70 ppm. Thermal treatment at 220°C of extra virgin olive oil samples lead to the complete transformation of the resonances at 9.18 and 9.58 ppm into those at 9.45 and 9.70 ppm in 50 minutes. Analogous transformation takes place place in CDCl3 at rt in several weeks. These results suggest the transformation of relatively unstable compounds into thermodynamically more stable products whose resonances are commonly reported in the literature. Even though these chemical changes involve minimal amount of product, they are of crucial importance to define: i organoleptic extra virgin olive oil properties; ii fraudulent chemical or thermal treatment detection; iii extra virgin oil ageing.

  6. Potential polyunsaturated aldehydes in the Strait of Gibraltar under two tidal regimes.

    Science.gov (United States)

    Morillo-García, Soledad; Valcárcel-Pérez, Nerea; Cózar, Andrés; Ortega, María J; Macías, Diego; Ramírez-Romero, Eduardo; García, Carlos M; Echevarría, Fidel; Bartual, Ana

    2014-03-13

    Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA). These organisms are dominant in the large phytoplankton fraction (>10 µm) in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides), diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA) ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell⁻¹. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability.

  7. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Vincenzo Marrone

    Full Text Available Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30 were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  8. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Marrone, Vincenzo; Piscopo, Marina; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna; Costantini, Maria

    2012-01-01

    Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  9. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes.

    Science.gov (United States)

    Vardi, Assaf; Bidle, Kay D; Kwityn, Clifford; Hirsh, Donald J; Thompson, Stephanie M; Callow, James A; Falkowski, Paul; Bowler, Chris

    2008-06-24

    Diatoms are unicellular phytoplankton accounting for approximately 40% of global marine primary productivity [1], yet the molecular mechanisms underlying their ecological success are largely unexplored. We use a functional-genomics approach in the marine diatom Phaeodactylum tricornutum to characterize a novel protein belonging to the widely conserved YqeH subfamily [2] of GTP-binding proteins thought to play a role in ribosome biogenesis [3], sporulation [4], and nitric oxide (NO) generation [5]. Transgenic diatoms overexpressing this gene, designated PtNOA, displayed higher NO production, reduced growth, impaired photosynthetic efficiency, and a reduced ability to adhere to surfaces. A fused YFP-PtNOA protein was plastid localized, distinguishing it from a mitochondria-localized plant ortholog. PtNOA was upregulated in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), a molecule previously shown to regulate intercellular signaling, stress surveillance [6], and defense against grazers [7]. Overexpressing cell lines were hypersensitive to sublethal levels of this aldehyde, manifested by altered expression of superoxide dismutase and metacaspases, key components of stress and death pathways [8, 9]. NOA-like sequences were found in diverse oceanic regions, suggesting that a novel NO-based system operates in diatoms and may be widespread in phytoplankton, providing a biological context for NO in the upper ocean [10].

  10. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova

    2016-01-01

    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  11. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura F.

    Science.gov (United States)

    Morimoto, Masanori; Tanimoto, Kumiko; Sakatani, Akiko; Komai, Koichiro

    2002-05-01

    The insect antifeedant anthraquinone aldehyde nordamnacanthal (1,3-dihydroxy-anthraquinone-2-al) was identified in Galium aparine L., and isolated from the root powder of akane (Rubia akane), a member of the Rubiaceae. Structure-activity relationship (SAR) studies using a series of anthraquinone analogues suggested that the aldehyde group on the anthraquinone was more important than the quinone moiety for antifeedant activity against the common cutworm (Spodoptera litura). High levels of nordamnacanthal were found in the seed leaf stage and in callus tissue induced from seedlings of G. aparine, but its concentration decreased with plant development. Since these compounds are natural pigments for dying textiles, we also evaluated the antifeedant activity against the carpet beetle (Attagenus japonicus ), a textile pest was also evaluated. While nordamnacanthal had strong antifeedant activity against the common cutworm, it did not show any antifeedant activity against the carpet beetle. The most effective antifeedant against the carpet beetle was the major constituent in the extract of R. trictorum, lucidin-3-O-primeveroside, a food pigment.

  12. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice.

    Science.gov (United States)

    Choi, Hyehun; Tostes, Rita C; Webb, R Clinton

    2011-01-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme that detoxifies aldehydes to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress, which is the imbalance between reactive oxygen species (ROS) generation and antioxidant defense activity. Increased ROS contribute to vascular dysfunction and structural remodeling in hypertension. We hypothesized that ALDH2 plays a protective role to reduce vascular contraction in angiotensin-II (AngII) hypertensive mice. Endothelium-denuded aortic rings from C57BL6 mice, treated with AngII (3.6 μg/kg/min, 14 days), were used to measure isometric force development. Rings treated with daidzin (10 μmol/L), an ALDH2 inhibitor, potentiated contractile responses to phenylephrine (PE) in AngII mice. Tempol (1 mmol/L) and catalase (600 U/mL) attenuated the augmented contractile effect of daidzin. In normotensive mice, contraction to PE in the presence of the daidzin was not different from control, untreated values. AngII aortic rings transfected with ALDH2 recombinant protein decreased contractile responses to PE compared with control. These data suggest that ALDH2 reduces vascular contraction in AngII hypertensive mice. Because tempol and catalase blocked the contractile response of the ALDH2 inhibitor, ROS generation by AngII may be decreased by ALDH2, thereby preventing ROS-induced contraction.

  13. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  14. Observations of total peroxy nitrates and aldehydes: measurement interpretation and inference of OH radical concentrations

    Directory of Open Access Journals (Sweden)

    P. A. Cleary

    2007-01-01

    Full Text Available We describe measurements of total peroxy nitrates (ΣPNs, NO2, O3 and several aldehydes at Granite Bay, California, during the Chemistry and Transport of the Sacramento Urban Plume-2001 (CATSUP 2001 campaign, from 19 July–16 September 2001. We observed a strong photochemically driven variation of ΣPNs during the day with the median of 1.2 ppb at noon. Acetaldehyde, pentanal, hexanal and methacrolein had median abundances in the daytime of 1.2 ppb, 0.093 ppb, 0.14 ppb, and 0.27 ppb, respectively. We compare steady state and time dependent calculations of the dependence of ΣPNs on aldehydes, OH, NO and NO2 showing that the steady state calculations are accurate to ±30% between 10:00 and 18:00 h. We use the steady state calculation to investigate the composition of ΣPNs and the concentration of OH at Granite Bay. We find that PN molecules that have never been observed before make up an unreasonably large fraction of the ΣPNs unless we assume that there exists a PAN source that is much larger than the acetaldehyde source. We calculate that OH at the site varied between 2 and 7×106 molecule cm−3 at noon during the 8 weeks of the experiment.

  15. Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease.

    Science.gov (United States)

    Antoniak, Derrick T; Duryee, Michael J; Mikuls, Ted R; Thiele, Geoffrey M; Anderson, Daniel R

    2015-12-01

    Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde-acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.

  16. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    Science.gov (United States)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  17. Practical synthesis of enantiomerically pure beta2-amino acids via proline-catalyzed diastereoselective aminomethylation of aldehydes.

    Science.gov (United States)

    Chi, Yonggui; English, Emily P; Pomerantz, William C; Horne, W Seth; Joyce, Leo A; Alexander, Lane R; Fleming, William S; Hopkins, Elizabeth A; Gellman, Samuel H

    2007-05-01

    Proline-catalyzed diastereoselective aminomethylation of aldehydes using a chiral iminium ion, generated from a readily prepared precursor, provides alpha-substituted-beta-amino aldehydes with 85:15 to 90:10 dr. The alpha-substituted-beta-amino aldehydes can be reduced to beta-substituted-gamma-amino alcohols, the major diastereomer of which can be isolated via crystallization or column chromatography. The amino alcohols are efficiently transformed to protected beta2-amino acids, which are valuable building blocks for beta-peptides, natural products, and other interesting molecules. Because conditions for the aminomethylation and subsequent reactions are mild, beta2-amino acid derivatives with protected functional groups in the side chain, such as beta2-homoglutamic acid, beta2-homotyrosine, and beta2-homolysine, can be prepared in this way. The synthetic route is short, and purifications are simple; therefore, this method enables the preparation of protected beta2-amino acids in useful quantities.

  18. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  19. Two di-alkyl-ammonium salts of 2-amino-4-nitro-benzoic acid: crystal structures and Hirshfeld surface analysis.

    Science.gov (United States)

    Wardell, James L; Jotani, Mukesh M; Tiekink, Edward R T

    2016-12-01

    The crystal structures of two ammonium salts of 2-amino-4-nitro-benzoic acid are described, namely di-methyl-aza-nium 2-amino-4-nitro-benzoate, C2H8N(+)·C7H5N2O4(-), (I), and di-butyl-aza-nium 2-amino-4-nitro-benzoate, C8H20N(+)·C7H5N2O4(-), (II). The asymmetric unit of (I) comprises a single cation and a single anion. In the anion, small twists are noted for the carboxyl-ate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13) and 3.71 (15)°, respectively; the dihedral angle between the substituents is 7.9 (2)°. The asymmetric unit of (II) comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+)-anti-periplanar] conformation, while one has a distinctive kink resulting in a (+)-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxyl-ate and nitro groups and the ring being 12.73 (6) and 4.30 (10)°, respectively, for the first anion and 8.1 (4) and 12.6 (3)°, respectively, for the second. The difference between anions in (I) and (II) is that in the anions of (II), the terminal groups are conrotatory, forming dihedral angles of 17.02 (8) and 19.0 (5)°, respectively. In each independent anion of (I) and (II), an intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is formed. In the crystal of (I), anions are linked into a jagged supra-molecular chain by charge-assisted amine-N-H⋯O(carboxyl-ate) hydrogen bonds and these are connected into layers via charge-assisted ammonium-N-H⋯O(carboxyl-ate) hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N-O⋯π(arene) and methyl-C-H⋯O(nitro) inter-actions. In the crystal of (II), the anions are connected into four-ion aggregates by charge-assisted amino-N-H⋯O(carboxyl-ate) hydrogen bonding. The formation of ammonium

  20. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor.

    Science.gov (United States)

    Wang, Shujiang; Oommen, Oommen P; Yan, Hongji; Varghese, Oommen P

    2013-07-01

    Aldehydes have been used as an important bioorthogonal chemical reporter for conjugation of large polymers and bioactive substances. However, generating aldehyde functionality on carbohydrate-based biopolymers without changing its native chemical structure has always persisted as a challenging task. The common methods employed to achieve this require harsh reaction conditions, which often compromise the structural integrity and biological function of these sensitive molecules. Here we report a mild and simple method to graft aldehydes groups on glycosaminoglycans (GAGs) in a site-selective manner without compromising the structural integrity of the biopolymer. This regio-selective modification was achieved by conjugating the amino-glycerol moiety on the carboxylate residue of the polymer, which allowed selective cleavage of pendent diol groups without interfering with the C2-C3 diol groups of the native glucopyranose residue. Kinetic evaluation of this reaction demonstrated significant differences in second-order reaction rate for periodate oxidation (by four-orders of magnitude) between the two types of vicinal diols. We employed this chemistry to develop aldehyde modifications of sulfated and nonsulfated GAGs such as hyaluronic acid (HA), heparin (HP), and chondroitin sulfate (CS). We further utilized these aldehyde grafted GAGs to tailor extracellular matrix mimetic injectable hydrogels and evaluated its rheological properties. The composition of the hydrogels was also found to modulate release of therapeutic protein such as FGF-2, demonstrating controlled release (60%) for over 14 days. In short, our result clearly demonstrates a versatile strategy to graft aldehyde groups on sensitive biopolymers under mild conditions that could be applied for various bioconjugation and biomedical applications such as drug delivery and regenerative medicine.

  1. Crystal structures of four co-crystals of (E)-1,2-di(pyridin-4-yl)ethene with 4-alk-oxy-benzoic acids: 4-meth-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-eth-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-n-propoxybenzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1) and 4-n-but-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1).

    Science.gov (United States)

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-11-01

    The crystal structures of four hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), namely, 2C8H8O3·C12H10N2, (I), 2C9H10O3·C12H10N2, (II), 2C10H12O3·C12H10N2, (III) and 2C11H14O3·C12H10N2, (IV), have been determined at 93 K. In compounds (I) and (IV), the asymmetric units are each composed of one 4-alk-oxy-benzoic acid mol-ecule and one half-mol-ecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The asymmetric unit of (II) consists of two crystallographically independent 4-eth-oxy-benzoic acid mol-ecules and one 1,2-di(pyridin-4-yl)ethene mol-ecule. Compound (III) crystallizes in a non-centrosymmetric space group (Pc) and the asymmetric unit comprises four 4-n-propoxybenzoic acid mol-ecules and two (E)-1,2-di(pyridin-4-yl)ethane mol-ecules. In each crystal, the acid and base components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. In (I), (II) and (III), inter-molecular C-H⋯O inter-actions are observed. The 2:1 units of (I) and (II) are linked via C-H⋯O hydrogen bonds, forming tape structures. In (III), the C-H⋯O hydrogen bonds, except for those formed in the units, link the two crystallographically independent 2:1 units. In (IV), no C-H⋯O inter-actions are observed, but π-π and C-H⋯π inter-actions link the units into a column structure.

  2. Fluorescein aldehyde with disulfide functionality as a fluorescence turn-on probe for cysteine and homocysteine in HEPES buffer.

    Science.gov (United States)

    Lee, Heejin; Kim, Hae-Jo

    2013-08-14

    We developed a fluorescein aldehyde probe with disulfide functionality for the fluorescence detection of biologically important thiols. The probe displayed highly selective responses to cysteine (Cys) and homocysteine (Hcy) over glutathione (GSH) due to the rapid ring formation reaction of Cys and Hcy with the aldehyde group of the probe and the concomitant cleavage of the disulfide group followed by subsequent intramolecular cyclization. The fluorescent probe also exhibited a highly sensitive fluorescence turn-on response to Hcy with a detection limit of 2.4 μM Hcy in HEPES buffer.

  3. Fluoride-assisted activation of calcium carbide: a simple method for the ethynylation of aldehydes and ketones.

    Science.gov (United States)

    Hosseini, Abolfazl; Seidel, Daniel; Miska, Andreas; Schreiner, Peter R

    2015-06-01

    The fluoride-assisted ethynylation of ketones and aldehydes is described using commercially available calcium carbide with typically 5 mol % of TBAF·3H2O as the catalyst in DMSO. Activation of calcium carbide by fluoride is thought to generate an acetylide "ate"-complex that readily adds to carbonyl groups. Aliphatic aldehydes and ketones generally provide high yields, whereas aromatic carbonyls afford propargylic alcohols with moderate to good yields. The use of calcium carbide as a safe acetylide ion source along with economic amounts of TBAF·3H2O make this procedure a cheap and operationally simple method for the preparation of propargylic alcohols.

  4. 肉桂等3种挥发油对苯甲酸透皮吸收的影响%The influence of Cinnamon oil and other volatile oils on percutaneous absorption of benzoic acid

    Institute of Scientific and Technical Information of China (English)

    沈琦; 胡晋红; 徐莲英

    2001-01-01

    OBJECTIVE To study the effect of Cinnamon oil, Eugenia oil andGalangal oil on the percutaneous penetration of benzoic acid. METHODS In order to compare the effect of the volatile oils and in combination with ethanol and propylene glycol on percutaneous penetration, the cumulative amount of benzoic acid penetrated through the skin was determined in vitro with Valia-Chien horizontal diffusion cell and HPLC.RESULTS All of the volatile oils enhanced remarkably the skin penetration of benzoic acid,and these volatile oils in combination with ethanol and propylene glycol increased the cummulative amount of benzoic acid,but decreased permeability coefficients.CONCLUSIONS Cinnamon oil, Eugenia oil and Galangal oil can be used to enhance the percutaneous absorption of benzoic acid.%目的:研究肉桂油、高良姜油、丁香油对苯甲酸透皮吸收的影响。方法:采用体外透皮双室扩散池和HPLC法,测定模型药物苯甲酸的累积渗透量,以考察不同浓度的肉桂油、高良姜油、丁香油对苯甲酸的促渗效果及挥发油与乙醇、丙二醇合用后的情况。结果:肉桂油、丁香油、丁香酚、高良姜油对苯甲酸均具有一定的促渗作用,挥发油与乙醇、丙二醇合用,使苯甲酸的累积渗透量增大,但渗透系数减小。结论:肉桂油、高良姜油、丁香油等能促进苯甲酸的透皮吸收。

  5. Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester: A fluorescence study in condensedphase and jet-cooled molecular beams

    Indian Academy of Sciences (India)

    Amrita Chakraborty; Samiran Kar; D N Nath; Nikhil Guchhait

    2007-03-01

    Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester (AMBME) have been investigated spectroscopically. AMBME, with its weak charge donor primary amino group, shows dual emission in polar solvents. Absorption and emission measurements in the condensed phase support the premise that the short wavelength emission band corresponds to local emission and the long wavelength emission band to the charge transfer emission. Laser-induced fluorescence excitation spectra show the presence of two low-energy conformers in jet-cooled molecular beams. Theoretical calculations using density functional theory help to determine structure, vibrational modes, potential energy surface, transition energy and oscillator strength for correlating experimental findings with theoretical results.

  6. A neutron diffraction study from 6 to 293 K and a macroscopic-scale quantum theory of the hydrogen bonded dimers in the crystal of benzoic acid

    CERN Document Server

    Fillaux, François

    2011-01-01

    The crystal of benzoic acid is comprised of tautomeric centrosymmetric dimers linked through bistable hydrogen bonds. Statistical disorder of the bonding protons is excluded by neutron diffraction from 6 K to 293 K. In addition to diffraction data, vibrational spectra and relaxation rates measured with solid-state-NMR and quasi-elastic neutron scattering are consistent with wave-like, rather than particle-like protons. We present a macroscopic-scale quantum theory for the bonding protons represented by a periodic lattice of fermions. The adiabatic separation, the exclusion principle, and the antisymmetry postulate yield a static lattice-state immune to decoherence. According to the theory of quantum measurements, vibrational spectroscopy and relaxometry involve realizations of decoherence-free Bloch states for nonlocal symmetry species that did not exist before the measurement. The eigen states are fully determined by three temperature-independent parameters which are effectively measured: the energy differen...

  7. Lead(II) coordination polymers based on rigid-flexible 3,5-bis-oxyacetate-benzoic acid: Structural transition driven by temperature control

    Science.gov (United States)

    Chen, Yong-Qiang; Tian, Yuan

    2017-03-01

    Three Pb(II) complexes {[Pb3(BOABA)2(H2O)]·H2O}n (1), {[Pb4(BOABA)2(μ4-O)(H2O)2]·H2O}n (2), and [Pb3(BOABA)2(H2O)]n (3) (H3BOABA=3,5-bis-oxyacetate-benzoic acid) were obtained under the same reaction systems with different temperatures. Complexes 1 and 2 are two dimensional (2D) networks based on Pb-BOABA chains and Pb4(μ4-O)(COO)6 SBUs, respectively. Complex 3 presents an interesting three dimensional (3D) framework, was obtained by increasing the reaction temperature. Structural transition of the crystallization products is largely dependent on the reaction temperature. Moreover, the fluorescence properties of complexes 1-3 have been investigated.

  8. Aqueous solubility study of salts of benzylamine derivatives and p-substituted benzoic acid derivatives using X-ray crystallographic analysis

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla Andrea; Liljefors, Tommy;

    2004-01-01

    than those reported for the corresponding salts of benzylamine (I). Thermal analysis indicated that the increased solubility was caused by reduced crystal lattice energy, which was most likely due to the reduced number of strong hydrogen bonds of the salt of (II) and (III). X-ray crystallographic...... analysis of p-hydroxybenzoic acid salt of (I), (II) and (III) suggested that the reduced number of hydrogen bonds caused the apparent higher solubility. Further analyses of seven salts of (I) were performed. It was not possible to identify any relationship between the number of hydrogen bonds......Twenty two p-substituted benzoic acid derivates were used to prepare salts of N-methylbenzylamine (II) and N,N-dimethylbenzylamine (III), respectively. Only five salts of (II) and two salts of (III) were obtained in a crystalline state. The solubility of these salts was orders of magnitude higher...

  9. [Selenazoles. XII. (1) Reaction of 4-(p-tolyl)-selenosemi-carbazides of acetic, benzoic, isonicotinic, nicotinic and picolinic acid with omega-acetophenone].

    Science.gov (United States)

    Biliński, S; Bielak, L; Chmielewski, J; Marcewicz-Rojewska, B; Musik, I

    1989-01-01

    The cyclization of 4-(p-tolyl)-selenosemicarbazides of acetic, benzoic, isonicotinic, nicotinic and picolinic acids (Ia-e) with omega-bromoacetophenone was investigated in the medium of methanol (Method A) or in methanol in the presence of anhydrous sodium acetate (Method B). Acid hydrolysis of compounds IIf-i and IVa-c, e was studied. Results of UV and IR spectrometric measurements and of the in vitro microbiological studies are presented. In contradistinction to corresponding thiosemicarbazides, the change in N4 nitrogen atom basicity of the parent selenosemicarbazide I (pKa of p-toluidine = 5.1), in comparison to that of 4-phenyl-selenosemicarbazide (pKa of aniline = 4.63), proved to influence the equilibrium of the reaction with omega-bromoacetophenone only in the methanol medium without addition of anhydrous sodium acetate (Method A).

  10. Synthesis, biological evaluation, and structure-activity relationships of 2-[2-(benzoylamino)benzoylamino]benzoic acid analogues as inhibitors of adenovirus replication.

    Science.gov (United States)

    Öberg, Christopher T; Strand, Mårten; Andersson, Emma K; Edlund, Karin; Tran, Nam Phuong Nguyen; Mei, Ya-Fang; Wadell, Göran; Elofsson, Mikael

    2012-04-12

    2-[2-Benzoylamino)benzoylamino]benzoic acid (1) was previously identified as a potent and nontoxic antiadenoviral compound (Antimicrob. Agents Chemother. 2010, 54, 3871). Here, the potency of 1 was improved over three generations of compounds. We found that the ortho, ortho substituent pattern and the presence of the carboxylic acid of 1 are favorable for this class of compounds and that the direction of the amide bonds (as in 1) is obligatory. Some variability in the N-terminal moiety was tolerated, but benzamides appear to be preferred. The substituents on the middle and C-terminal rings were varied, resulting in two potent inhibitors, 35g and 35j, with EC(50) = 0.6 μM and low cell toxicity.

  11. 4-[3,5-Bis(2-hydroxyphenyl-1H-1,2,4-triazol-1-yl]benzoic acid dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    H. S. Yathirajan

    2012-03-01

    Full Text Available In the molecule of deferasirox dimethylformamide solvate, C21H15N3O4·C3H7NO, the central 1,2,4-triazole ring is tilted with respect to the benzoic acid and one of the 2-hydroxyphenyl units but coplanar with the other 2-hydroxyphenyl group, as indicated by the dihedral angles of 33.69 (9, 72.57 (8 and 5.18 (9°, respectively. Intramolecular O—H...N hydrogen bonds generate an S(6 ring motif. In the crystal, deferasirox molecules are linked by O—H...N hydrogen bonds and weak C—H...O interactions into chains along the c axis. The dimethylformamide solvent molecules are located between the deferasirox chains and are linked to the deferasirox molecules by O—H...O hydrogen bonds and weak C—H...O interactions.

  12. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne a,ß-unsaturated aldehydes.

    NARCIS (Netherlands)

    Kiwamoto, R.; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic a,ß-unsaturated aldehydes present in food raise a concern because the a,ß-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present s

  13. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS.

    Science.gov (United States)

    Poli, Diana; Goldoni, Matteo; Corradi, Massimo; Acampa, Olga; Carbognani, Paolo; Internullo, Eveline; Casalini, Angelo; Mutti, Antonio

    2010-10-01

    A number of volatile organic compounds (VOCs) have been identified and used in preliminary clinical studies of the early diagnosis of lung cancer. The aim of this study was to evaluate the potential of aldehydes (known biomarkers of oxidative stress) in the diagnosis of patients with non-small cell lung cancer (NSCLC). We used an on-fiber-derivatisation SPME sampling technique coupled with GC/MS analysis to measure straight aldehydes C3-C9 in exhaled breath. Linearity was established over two orders of magnitude (range: 3.3-333.3×10(-12) M); the LOD and LOQ of all the aldehydes were respectively 1×10(-12) M and 3×10(-12) M. Accuracy was within 93% and precision calculated as % RSD was 7.2-15.1%. Aldehyde stability in a Bio-VOC(®) tube stored at +4°C was 10-17 h, but this became >10 days using a specific fiber storage device. Finally, exhaled aldehydes were measured in 38 asymptomatic non-smokers (controls) and 40 NSCLC patients. The levels of all of the aldehydes were increased in the NSCLC patients without any significant effect of smoking habits and little effect of age. The good discriminant power of the aldehyde pattern (90%) was confirmed by multivariate analysis. These results show that straight aldehydes may be promising biomarkers associated with NSCLC, and increase the sensitivity and specificity of previously identified VOC patterns.

  14. Theoretical structural study on the adsorption properties of aliphatic aldehydes on ZnO nanoclusters and graphene-like nanosheets systems

    Science.gov (United States)

    Tayebee, R.; Zamand, N.; Hosseini-nasr, A.; Kargar Razi, M.

    2014-05-01

    The structure optimizations for some aliphatic aldehydes adsorbed on ZnO nanoclusters, and graphene-like nanosheets were carried out using the B3LYP/LanL2DZ calculations and the adsorption energies were calculated. It was considered that adsorption of the examined aldehydes on the ZnO nanoclusters and graphene-like nanosheets occurred through carbonyl oxygens of aldehyde molecules with the surface Zn2+ ions of the central ring. Aldehydes with the general formula of R-COH (R denotes a branched or linear aliphatic chain with maximum of three carbon atoms) were considered. Also, Effects of chain length were investigated on the orientation of the aldehyde molecules with respect to the nanosheet and nanocluster surfaces. Findings revealed that the adsorption energy was decreased with enhancing chain length. However, the most negative adsorption energy was obtained for iso-butyraldehyde, as a branched aldehyde. Interaction of the aldehyde molecules with the surfaces of nanosheets were analyzed by means of DOS analysis and Bader's method. We hope the obtained results be helpful in identifying the mechanism of cyclotrimerization of aliphatic aldehydes on the surface of zinc oxide nanoparticles.

  15. Chemoselective Preparation of 1,1-Diacetates from Aldehydes, Mediated by a Keggin Heteropolyacid Under Solvent Free Conditions at Room Temperature

    Directory of Open Access Journals (Sweden)

    G. Romanelli

    2007-01-01

    Full Text Available A simple, general and efficient method has been developed for the conversion of aldehydes to 1,1-diacetates using acetic anhydride, a catalytic amount of non commercial Keggin heteropolyacid (H6 PalMo11O40 (1% mol in solvent free conditions at room temperature. Aromatic and aliphatic, simple and conjugated aldehydes were protected with excellent yields.

  16. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes.

    Science.gov (United States)

    Ribalet, François; Berges, John A; Ianora, Adrianna; Casotti, Raffaella

    2007-12-15

    Several marine diatoms produce polyunsaturated aldehydes (PUAs) that have been shown to be toxic to a wide variety of model organisms, from bacteria to invertebrates. However, very little information is available on their effect on phytoplankton. Here, we expand previous studies to six species of marine phytoplankton, belonging to different taxonomic groups that are well represented in marine plankton. The effect of three PUAs, 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, was assessed on growth, cell membrane permeability, flow cytometric properties and morphology. A concentration-dependent reduction in the growth rate was observed for all cultures exposed to PUAs with longer-chained aldehydes having stronger effects on growth than shorter-chained aldehydes. Clear differences were observed among the different species. The prymnesiophyte Isochrysis galbana was the most sensitive species to PUA exposure with a lower threshold for an observed effect triggered by mean concentrations of 0.10 micromol L(-1) for 2E,4E-decadienal, 1.86 micromol L(-1) for 2E,4E-octadienal and 3.06 micromol L(-1) for 2E,4E-heptadienal, and a 50% growth inhibition (EC(50)) with respect to the control at 0.99, 2.25 and 5.90 micromol L(-1) for the three PUAs, respectively. Alternatively, the chlorophyte Tetraselmis suecica and the diatom Skeletonema marinoi (formerly S. costatum) were the most resistant species with 50% growth inhibition occurring at concentrations at least two to three times higher than I. galbana. In all species, the three PUAs caused changes in flow cytometric measures of cell size and cell granulosity and increased membrane permeability, assessed using the viability stain SYTOX Green. For example, after 48 h 51.6+/-2.6% of I. galbana cells and 15.0+/-1.8% of S. marinoi cells were not viable. Chromatin fragmentation was observed in the dinoflagellate Amphidinium carterae while clear DNA degradation was observed in the chlorophyte Dunaliella tertiolecta

  17. The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of daidzin.

    Science.gov (United States)

    Rooke, N; Li, D J; Li, J; Keung, W M

    2000-11-02

    Recent studies showed that daidzin suppresses ethanol intake in ethanol-preferring laboratory animals. In vitro, it potently and selectively inhibits the mitochondrial aldehyde dehydrogenase (ALDH-2). Further, it inhibits the conversion of monoamines such as serotonin (5-HT) and dopamine (DA) into their respective acid metabolites, 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in isolated hamster or rat liver mitochondria. Studies on the suppression of ethanol intake and inhibition of 5-HIAA (or DOPAC) formation by six structural analogues of daidzin suggested a potential link between these two activities. This, together with the finding that daidzin does not affect the rates of mitochondria-catalyzed oxidative deamination of these monoamines, raised the possibility that the ethanol intake-suppressive (antidipsotropic) action of daidzin is not mediated by the monoamines but rather by their reactive biogenic aldehyde intermediates such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or 3,4-dihydroxyphenylacetaldehyde (DOPAL) which accumulate in the presence of daidzin. To further evaluate this possibility, we synthesized more structural analogues of daidzin and tested and compared their antidipsotropic activities in Syrian golden hamsters with their effects on monoamine metabolism in isolated hamster liver mitochondria using 5-HT as the substrate. Effects of daidzin and its structural analogues on the activities of monoamine oxidase (MAO) and ALDH-2, the key enzymes involved in 5-HT metabolism in the mitochondria, were also examined. Results from these studies reveal a positive correlation between the antidipsotropic activities of these analogues and their abilities to increase 5-HIAL accumulation during 5-HT metabolism in isolated hamster liver mitochondria. Daidzin analogues that potently inhibit ALDH-2 but have no or little effect on MAO are most antidipsotropic, whereas those that also potently inhibit MAO exhibit little, if

  18. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Pingping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Li, Jie [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Bu, Huaiyu, E-mail: 7213792@qq.com [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Wei, Qing [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Zhang, Ruolin [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Chen, Sanping, E-mail: sanpingchen@126.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China)

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.

  19. Development and validation of an HPLC-DAD method for simultaneous determination of cocaine, benzoic acid, benzoylecgonine and the main adulterants found in products based on cocaine.

    Science.gov (United States)

    Floriani, Gisele; Gasparetto, João Cleverson; Pontarolo, Roberto; Gonçalves, Alan Guilherme

    2014-02-01

    Here, an HPLC-DAD method was developed and validated for simultaneous determination of cocaine, two cocaine degradation products (benzoylecgonine and benzoic acid), and the main adulterants found in products based on cocaine (caffeine, lidocaine, phenacetin, benzocaine and diltiazem). The new method was developed and validated using an XBridge C18 4.6mm×250mm, 5μm particle size column maintained at 60°C. The mobile phase consisted of a gradient of acetonitrile and ammonium formate 0.05M - pH 3.1, eluted at 1.0mL/min. The volume of injection was 10μL and the DAD detector was set at 274nm. Method validation assays demonstrated suitable sensitivity, selectivity, linearity, precision and accuracy. For selectivity assay, a MS detection system could be directly adapted to the method without the need of any change in the chromatographic conditions. The robustness study indicated that the flow rate, temperature and pH of the mobile phase are critical parameters and should not be changed considering the conditions herein determined. The new method was then successfully applied for determining cocaine, benzoylecgonine, benzoic acid, caffeine, lidocaine, phenacetin, benzocaine and diltiazem in 115 samples, seized in Brazil (2007-2012), which consisted of cocaine paste, cocaine base and salt cocaine samples. This study revealed cocaine contents that ranged from undetectable to 97.2%, with 97 samples presenting at least one of the degradation products or adulterants here evaluated. All of the studied degradation products and adulterants were observed among the seized samples, justifying the application of the method, which can be used as a screening and quantification tool in forensic analysis.

  20. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    Science.gov (United States)

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system.

  1. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    Science.gov (United States)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  2. Characterization of zinc–nickel alloy electrodeposits obtained from sulphamate bath containing substituted aldehydes

    Indian Academy of Sciences (India)

    Visalakshi Ravindran; V S Muralidharan

    2006-06-01

    Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical characterization of zinc-nickel electrodeposits obtained from sulphamate bath containing substituted aldehydes was carried out using hardness testing, X-ray diffraction, and corrosion resistance measurements. The corrosion behaviour of these samples in a 3.5% NaCl solution was examined. The decrease in corr and high charge transfer resistance indicated the improved corrosion resistance of these deposits.

  3. Expression of betaine aldehyde dehydrogenase gene and salinity tolerance in rice transgenic plants

    Institute of Scientific and Technical Information of China (English)

    郭岩; 张莉; 肖岗; 曹守云; 谷冬梅; 田文忠; 陈受宜

    1997-01-01

    Betaine as one of osmolytes plays an important role in osmoregulation of most high plants. Betaine aldehyde dehydrogenase C BADH) is the second enzyme involved in betaine biosynthesis. The BADH gene from a halophite, Atriplex hortensis, was transformed into rice cultivars by bombarment method. Totally 192 transgenic rice plants were obtained and most of them had higher salt tolerance than controls. Among transgenic plants transplanted in the saline pool containing 0.5% NaCl in a greenhouse, 22 survived, 13 of which set seeds, and the frequency of seed setting was very low, only 10% . But the controls could not grow under the same condition. The results of BADH ac-tivity assay and Northern blot showed that the BADH gene was integrated into chromosomes of transgenic plants and expressed.

  4. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    Science.gov (United States)

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  5. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    Science.gov (United States)

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  6. Two-Step biocatalytic conversion of an ester to an aldehyde in reverse micelles.

    Science.gov (United States)

    Yang, F; Russell, A J

    1994-02-01

    Lipases from Candida cyclindracea (L-1754) and wheat germ (L-3001) have been used to hydrolyze esters to their corresponding alcohols and acids in reverse micelles. Alcohol dehydrogenase from baker's yeast (YADH) was subsequently used to reduce the alcohol products to aldehydes. Cofactor recycling in the redox reaction was achieved using a sacrificial cosubstrate, as described previously. Four surfactants (sodium dioctylsulfosuccinate, Nonidet P-40 with Triton X-35, polyoxyethylene, 10-cetyl-ether, polyoxyethylene sorbitan trioleate) were employed to determine the effect of amphiphile on ester hydrolysis and redox reaction rates separately. The effect of type of organic solvent, W(0) [(water]/[surfactant)], and substrate concentration on separte enzyme activity were also investigated. A brief investigation of a single phase, two-step reaction catalyzed by the combination of lipase and YADH in reverse micelles is also reported. The activities of the enzymes are significantly different when used together instead of independently. (c) 1994 John Wiley & Sons, Inc.

  7. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  8. New Tailor-Made Alkyl-Aldehyde Bifunctional Supports for Lipase Immobilization

    Directory of Open Access Journals (Sweden)

    Robson Carlos Alnoch

    2016-11-01

    Full Text Available Immobilized and stabilized lipases are important biocatalytic tools. In this paper, different tailor-made bifunctional supports were prepared for the immobilization of a new metagenomic lipase (LipC12. The new supports contained hydrophobic groups (different alkyl groups to promote interfacial adsorption of the lipase and aldehyde groups to react covalently with the amino groups of side chains of the adsorbed lipase. The best catalyst was 3.5-fold more active and 5000-fold more stable than the soluble enzyme. It was successfully used in the regioselective deacetylation of peracetylated d-glucal. The PEGylated immobilized lipase showed high regioselectivity, producing high yields of the C-3 monodeacetylated product at pH 5.0 and 4 °C.

  9. Molecular mechanism of null expression of aldehyde dehydrogenase-1 in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Yoshida, Akira [Institute of the City of Hope, Duarte, CA (United States); Yanagawa, Yuchio [Tokohu Univ., Sendai (Japan)

    1996-04-01

    In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5{prime}-promoter region of human, marmoset, and mouse ALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5{prime} promoter region of the human ALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver. 16 refs., 3 figs.

  10. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2.

    Science.gov (United States)

    Song, Kibbeum; Kim, Sokho; Na, Ji-Young; Park, Jong-Heum; Kim, Jae-Kyung; Kim, Jae-Hun; Kwon, Jungkee

    2014-10-01

    Rutin is derived from buckwheat, apples, and black tea. It has been shown to have beneficial anti-inflammatory and antioxidant effects. Ethanol is a central nervous system depressant and neurotoxin. Its metabolite, acetaldehyde, is critically toxic. Aldehyde dehydrogenase 2 (ALDH2) metabolizes acetaldehyde into nontoxic acetate. This study examined rutin's effects on ALDH2 activity in hippocampal neuronal cells (HT22 cells). Rutin's protective effects against acetaldehyde-based ethanol neurotoxicity were confirmed. Daidzin, an ALDH2 inhibitor, was used to clarify the mechanisms of rutin's protective effects. Cell viability was significantly increased after rutin treatment. Rutin significantly reversed ethanol-increased Bax, cytochrome c expression and caspase 3 activity, and decreased Bcl-2 and Bcl-xL protein expression in HT22 cells. Interestingly, rutin increased ALDH2 expression, while daidzin reversed this beneficial effect. Thus, this study demonstrates rutin protects HT22 cells against ethanol-induced neurotoxicity by increasing ALDH2 activity.

  11. Ru/Me-BIPAM-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes and α-Ketoesters

    Directory of Open Access Journals (Sweden)

    Momoko Watanabe

    2011-06-01

    Full Text Available A ruthenium-catalyzed asymmetric arylation of aliphatic aldehydes and α-ketoesters with arylboronic acids has been developed, giving chiral alkyl(arylmethanols and α-hydroxy esters in good yields. The use of a chiral bidentate phosphoramidite ligand (Me-BIPAM achieved excellent enantioselectivities.

  12. Antifungal agents. 5. Chemical modification of antibiotics from Polyangium cellulosum var. fulvum. Alcohol, ketone, aldehyde, and oxime analogues of ambruticin.

    Science.gov (United States)

    Connor, D T; von Strandtmann, M

    1979-09-01

    Alcohol, ketone, aldehyde, and oxime analogues of ambruticin (1) were prepared. The analogues were tested against Histoplasma capsulatum, Microsporum fulvum, Candida albicans, and Streptococcus pyogenes. Structure-activity relationships are described. Increasing the bulk of substituent at C1 and C5 reduces antifungal activity.

  13. Oxidation of N-alkyl and N-aryl azaheterocycles by free and immobilized rabbit liver aldehyde oxidase

    NARCIS (Netherlands)

    Angelino, S.A.G.F.

    1984-01-01

    Aldehyde oxidase isolated from rabbit liver is studied in this thesis with regard to its application in organic synthesis. The enzyme has a broad substrate specificity towards azaheterocycles and therefore offers great potential for profitable use.The oxidation of 1-alkyl(aryl)-3-aminocarbonylpyridi

  14. Ionic liquids as recyclable and separable reaction media in Rh-catalyzed decarbonylation of aromatic and aliphatic aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    Ionic liquids (ILs) have been applied as recyclable reaction media in the decarbonylation of aldehydes in the presence of a rhodium-phosphine complex catalyst. The performance of several new catalytic systems based on imidazolium-based ILs and [Rh(dppp)2]Cl (dppp: 1,3-diphenylphosphinopropane) were...

  15. Removal of Low-Molecular Weight Aldehydes by Selected Houseplants under Different Light Intensities and CO2 Concentrations

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-11-01

    Full Text Available The removal of five low-molecular weight aldehydes by two houseplants (Schefflera octophylla (Lour. Harms and Chamaedorea elegans were investigated in a laboratory simulation environment with short-term exposure to different low light intensities and CO2 concentrations. Under normal circumstances, the C1–C5 aldehyde removal rates of Schefflera octophylla (Lour. Harms and Chamaedorea elegans (Lour. Harms ranged from 0.311 μmol/m2/h for valeraldehyde to 0.677 μmol/m2/h for formaldehyde, and 0.526 μmol/m2/h for propionaldehyde to 1.440 μmol/m2/h for formaldehyde, respectively. However, when the light intensities varied from 0 to 600 lx, a significant correlation between the aldehyde removal rate and the light intensity was found. Moreover, the CO2 experiments showed that the total aldehyde removal rates of Schefflera octophylla (Lour. Harms and Chamaedorea elegans (Lour. Harms decreased 32.0% and 43.2%, respectively, with increasing CO2 concentrations from 350 ppmv to 1400 ppmv. This might be explained by the fact that the excessive CO2 concentration decreased the stomatal conductance which limited the carbonyl uptake from the stomata.

  16. Enantioselective addition of diethylzinc to aryl aldehydes catalyzed by 1,2,3,4-tetrahydroisoquinoline β-amino alcohol

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly effective,new chiral 1,2,3,4-tetrahydroisoquinoline catalyst 1 for the diethylzinc addition to aryl aldehydes has been investigated.Using 10 mol%of this chiral catalyst,secondary alcohols can be obtained in up to 87%yield and 99.5%ee under mild conditions.

  17. Regioselective Propargylation of Aldehydes with Propargyl Bromide Mediated by Sn-In in Aqueous Media under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Cheng Zhi GU; Qian Rong LI; Hao YIN

    2005-01-01

    Tin-indium were employed in the propargylations of various aldehydes with propargyl bromide in the presence of SnCl2 and C6 H5(CH3)3NBr under microwave irradiation to afford the corresponding homopropargyl alcohols exclusively in high yields. All the reactions were completed smoothly in predominantly aqueous media in 200 seconds only.

  18. Comparative studies of the static and dynamic headspace extraction of saturated short chain aldehydes from cellulose-based packaging materials.

    Science.gov (United States)

    Wenzl, T; Lankmayr, E P

    2002-03-01

    Aldehydes in cellulose-based materials such as cardboard are derived from lipid degradation. Depending on the production- and storage conditions of the cardboard, the aldehyde content changes. Owing to their sensorial properties, accurate control of their content is obligatory. The cardboard usually exhibits strong and even varying matrix effects and considerable inhomogeneity. The comparability of results of analysis after static and dynamic headspace extraction of short chained saturated aldehydes from cellulose-based matrices was studied. In the case of the static extraction technique, special attention was given to the establishment of the headspace equilibrium, which could be reached by the addition of water as a displacer. For dynamic headspace extraction, the volatiles were purged from the matrix by an inert gas and enriched on an adsorbent trap. In theory, the extraction yield should be 100%. Since there are no certified reference materials for verification of the extraction efficiency available, confirmation was achieved by determining the total amount of analytes in the sample by means of multiple headspace extraction.In comparison to the static operation mode, the major drawbacks of the dynamic technique were found to be based on a more complex parameter string and on limitations to the extractable sample quantities, which may result in enhanced uncertainty of the measurements. Nevertheless, the results of analysis pointed out that both headspace extraction techniques are suitable for the determination of volatile aldehydes from cellulose-based materials.

  19. A note on the Noyori model for chiral amplification in the aminoalcohol-catalyzed reaction of aldehydes with dialkylzinc

    Directory of Open Access Journals (Sweden)

    IVAN GUTMAN

    1999-11-01

    Full Text Available The Noyori model of chiral amplification in the alkylation of aldehydes by means of dialkylzinc, catalyzed by chiral aminoalcohols, is further elaborated. A direct, but approximate, relation is obtained between the enantiomeric excess of the catalyst added and the enantiomeric excess of the product.

  20. The health- and addictive effectes due to exposure to aldehydes of cigarette smoke. Part 1; Acetaldehyde, Formaldehyde, Acrolein and Propionaldehyde

    NARCIS (Netherlands)

    Andel I van; Schenk E; Rambali B; Wolterink G; Werken G van de; Stevenson H; Aerts LAGJM van; Vleeming W; LEO; LGM; LOC; CRV

    2003-01-01

    In the desk study presented here, health effects and possible addictive effects of aldehyde exposure due to cigarette smoking are discussed. In the light of currently available literature the health effects of exposure to acetaldehyde, formaldehyde, acrolein and propionaldehyde were assessed. All al

  1. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  2. QSTR with extended topochemical atom (ETA) indices. 14. QSAR modeling of toxicity of aromatic aldehydes to Tetrahymena pyriformis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India); Das, Rudra Narayan [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India)

    2010-11-15

    Aldehydes are a toxic class of chemicals causing severe health hazards. In this background, quantitative structure-toxicity relationship (QSTR) models have been developed in the present study using Extended Topochemical Atom (ETA) indices for a large group of 77 aromatic aldehydes for their acute toxicity against the protozoan ciliate Tetrahymena pyriformis. The ETA models have been compared with those developed using various non-ETA topological indices. Attempt was also made to include the n-octanol/water partition coefficient (log K{sub o/w}) as an additional descriptor considering the importance of hydrophobicity in toxicity prediction. Thirty different models were developed using different chemometric tools. All the models have been validated using internal validation and external validation techniques. The statistical quality of the ETA models was found to be comparable to that of the non-ETA models. The ETA models have shown the important effects of steric bulk, lipophilicity, presence of electronegative atom containing substituents and functionality of the aldehydic oxygen to the toxicity of the aldehydes. The best ETA model (without using log K{sub o/w}) shows encouraging statistical quality (Q{sub int}{sup 2}=0.709,Q{sub ext}{sup 2}=0.744). It is interesting to note that some of the topological models reported here are better in statistical quality than previously reported models using quantum chemical descriptors.

  3. Ru/Me-BIPAM-catalyzed asymmetric addition of arylboronic acids to aliphatic aldehydes and α-ketoesters.

    Science.gov (United States)

    Yamamoto, Yasunori; Shirai, Tomohiko; Watanabe, Momoko; Kurihara, Kazunori; Miyaura, Norio

    2011-06-17

    A ruthenium-catalyzed asymmetric arylation of aliphatic aldehydes and α-ketoesters with arylboronic acids has been developed, giving chiral alkyl(aryl)methanols and α-hydroxy esters in good yields. The use of a chiral bidentate phosphoramidite ligand (Me-BIPAM) achieved excellent enantioselectivities.

  4. An aldehyde group-based P-acid probe for selective fluorescence turn-on sensing of cysteine and homocysteine.

    Science.gov (United States)

    Yang, Chunlei; Wang, Xiu; Shen, Lei; Deng, Wenping; Liu, Haiyun; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2016-06-15

    A highly sensitive and selective turn on fluorescent probe P-acid-aldehyde (P-CHO) is developed for the determination of cysteine (Cys) and homocysteine (Hcy). The probe is designed and synthesized by incorporating the specific functional group aldehyde group for thiols into a stable π-conjugated material 4,4'-(2,5-dimethoxy-1,4-phenylene) bis(ethyne-2,1-diyl) dibenzoic acid (P-acid). The probe fluorescence is quenched through donor photoinduced electron transfer (d-PET) between the fluorophore (P-acid) and the recognition group (aldehyde group). In the presence of thiols, Cys and Hcy can selectively react with aldehyde group of the probe because the inhibition of d-PET between fluorophore and recognition group. Therefore, a turn-on fluorescent sensor was established for the fluorescence recovery. Under the optimized conditions, the fluorescence response of probe is directly proportional to the concentration of Cys in the range of 4-95 NM L(-1), with a detection limit 3.0 nM. In addition, the sensing system exhibits good selectively toward Cys and Hcy in the presence of other amino acids. It has been successfully applied for bioimaging of Cys and Hcy in living cells with low cell toxicity.

  5. InCl3.4H2O Catalyzed Aldol Condensation of Cycloalkanones with Aromatic Aldehydes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    InCl3·4H2O catalyzes the cross-aldol condensation of cycloalkanones with aromatic aldehydes in sealed tube under solvent free condition to afford an efficient method for the synthesis of α, α-bis(substituted)benzylidenecycloalkanones.

  6. YqhD. A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Laura R. [Iowa State Univ., Ames, IA (United States). Dept. of Chemical and Biological Engineering

    2011-01-15

    The Escherichia coli NADPH-dependent aldehyde reductase YqhD has contributed to a variety of metabolic engineering projects for production of biorenewable fuels and chemicals. As a scavenger of toxic aldehydes produced by lipid peroxidation, YqhD has reductase activity for a broad range of short-chain aldehydes, including butyraldehyde, glyceraldehyde, malondialdehyde, isobutyraldehyde, methylglyoxal, propanealdehyde, acrolein, furfural, glyoxal, 3-hydroxypropionaldehyde, glycolaldehyde, acetaldehyde, and acetol. This reductase activity has proven useful for the production of biorenewable fuels and chemicals, such as isobutanol and 1,3- and 1,2-propanediol; additional capability exists for production of 1-butanol, 1-propanol, and allyl alcohol. A drawback of this reductase activity is the diversion of valuable NADPH away from biosynthesis. This YqhD-mediated NADPH depletion provides sufficient burden to contribute to growth inhibition by furfural and 5-hydroxymethyl furfural, inhibitory contaminants of biomass hydrolysate. The structure of YqhD has been characterized, with identification of a Zn atom in the active site. Directed engineering efforts have improved utilization of 3-hydroxypropionaldehyde and NADPH. Most recently, two independent projects have demonstrated regulation of yqhD by YqhC, where YqhC appears to function as an aldehyde sensor. (orig.)

  7. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes

    Science.gov (United States)

    Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens

    2016-01-01

    Summary A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  8. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  9. Potential Polyunsaturated Aldehydes in the Strait of Gibraltar under Two Tidal Regimes

    Directory of Open Access Journals (Sweden)

    Soledad Morillo-García

    2014-03-01

    Full Text Available Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA. These organisms are dominant in the large phytoplankton fraction (>10 µm in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides, diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell−1. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability.

  10. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Ikeda

    Full Text Available Hypoglycemic encephalopathy (HE is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE, a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl-2,6-dichlorobenzamide (Alda-1, a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg or vehicle (dimethyl sulfoxide; DMSO was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020. Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.

  11. Aldehyded Dextran and ε-Poly(L-lysine Hydrogel as Nonviral Gene Carrier

    Directory of Open Access Journals (Sweden)

    Yumiko Togo

    2013-01-01

    Full Text Available Background. The expression term of the gene transfected in cells needs to belong enough inorder to make a gene therapy clinically effective. The controlled release of the transfected gene can be utilized. The new biodegradable hydrogel material created by 20 w/w% aldehyded dextran and 10 w/w% ε-poly(L-lysine (ald-dex/PLL was developed. We examined whether it could be as a nonviral carrier of the gene transfer. Methods. A plasmid (Lac-Z was mixed with ald-dex/PLL. An in vitro study was performed to assess the expression of Lac-Z with X-gal stain after gene transfer into the cultured 293 cells and bone marrow cells. As a control group, PLL was used as a cationic polymer. Results. We confirmed that the transfection efficiency of the ald-dex/PLL had a higher transfection efficiency than PLL in 293 cells (plasmid of 2 μg: ald-dex/PLL 1.1%, PLL 0.23%, plasmid of 16 μg: ald-dex/PLL 1.23%, PLL 0.48%. In bone marrow cells, we confirmed the expression of Lac-Z by changing the quantity of aldehyded dextran. In the groups using ald-dextran of the quantity of 1/4 and 1/12 of PLL, their transfection efficiency was 0.43% and 0.41%, respectively. Conclusions. This study suggested a potential of using ald-dex/PLL as a non-carrier for gene transfer.

  12. Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation.

    Science.gov (United States)

    Wenzl, M Verena; Beretta, Matteo; Griesberger, Martina; Russwurm, Michael; Koesling, Doris; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2011-08-01

    To elucidate the mechanism underlying reduction of nitroglycerin (GTN) to nitric oxide (NO) by mitochondrial aldehyde dehydrogenase (ALDH2), we generated mutants of the enzyme lacking the cysteines adjacent to reactive Cys302 (C301S and C303S), the glutamate that participates as a general base in aldehyde oxidation (E268Q) or combinations of these residues. The mutants were characterized regarding acetaldehyde dehydrogenation, GTN-triggered enzyme inactivation, GTN denitration, NO formation, and soluble guanylate cyclase activation. Lack of the cysteines did not affect dehydrogenase activity but impeded GTN denitration, aggravated GTN-induced enzyme inactivation, and increased NO formation. A triple mutant lacking the cysteines and Glu268 catalyzed sustained formation of superstoichiometric amounts of NO and exhibited slower rates of inactivation. These results suggest three alternative pathways for the reaction of ALDH2 with GTN, all involving formation of a thionitrate/sulfenyl nitrite intermediate at Cys302 as the initial step. In the first pathway, which predominates in the wild-type enzyme and reflects clearance-based GTN denitration, the thionitrate apparently reacts with one of the adjacent cysteine residues to yield nitrite and a protein disulfide. The predominant reaction catalyzed by the single and double cysteine mutants requires Glu268 and results in irreversible enzyme inactivation. Finally, combined lack of the cysteines and Glu268 shifts the reaction toward formation of the free NO radical, presumably through homolytic cleavage of the sulfenyl nitrite intermediate. Although the latter reaction accounts for less than 10% of total turnover of GTN metabolism catalyzed by wild-type ALDH2, it is most likely essential for vascular GTN bioactivation.

  13. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α

    Science.gov (United States)

    Hu, Nan; Ren, Jun; Zhang, Yingmei

    2016-01-01

    Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation. PMID:27634872

  14. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  15. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity.

    Directory of Open Access Journals (Sweden)

    Martin Mahro

    Full Text Available In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3. The sequence alignment of different aldehyde oxidase (AOX isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR. Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.

  16. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.

    Science.gov (United States)

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure-activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment.

  17. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    Science.gov (United States)

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft.

  18. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds

  19. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

    2010-09-20

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed

  20. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    Science.gov (United States)

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    polyol dehydrogenases are encountered. The two isozymes of human aldehyde dehydrogenase also exhibit considerable differences, with only 68% structural identity. The results show an early divergence into isozymes before the man/horse species radiation. Cys-302 is a functionally important residue and is located in one of the regions with conserved hydrophobic properties. Other regions with large differences in hydropathic properties may explain the absence of cross-hybridizing isozyme forms of human liver aldehyde dehydrogenase.

  1. 高效液相色谱测定糌粑中的苯甲酸、山梨酸、糖精钠%Determination of benzoic acid,sorbic acid, saccharin sodium in tsampa by High performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    黄利英

    2015-01-01

    本文建立了糌粑中苯甲酸、山梨酸、糖精钠高效液相色谱检测方法。样品经水溶解,超声波辅助提取后,样液经高速离心,上清液经滤膜过滤后,采用高效液相色谱法测定样品中的苯甲酸、山梨酸、糖精钠。结果表明:该方法测定糌粑中苯甲酸、山梨酸、糖精钠的回收率分别达到94.1%~102.3%、96.2%~107.8%、94.0%~106.3%,相对标准偏差均小于5%。该方法适用于糌粑中苯甲酸、山梨酸、糖精钠的测定。%This paper has established the benzoic acid,sorbic acid,saccharin sodium in Tsam-pa high performance liquid chromatography (HPLC)method.Samples dissolved by water,after ultrasonic assisted extraction,liquid samples by high-speed centrifugal supernatant after filtra-tion membrane filtration,by high performance liquid chromatography determination of benzoic acid,sorbic acid,saccharin sodium in the samples.Results showed that the method of determina-tion of benzoic acid,sorbic acid,saccharin sodium in Tsampa recovery reached 94.1% ~ 102. 3%,96.2% ~ 107.8% and 102.3% ~ 96.2%,relative standard deviation less than 5%.The method is suitable for the determination of benzoic acid,sorbic acid,saccharin sodium in Tsam-pa.

  2. Study of Effect of Variation of Ionic Strength of the Medium on Velocity Constant of Ru(Iii Catalyzed Oxidation of Hydroxy Benzoic Acids by Chloramine-T in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Dr. Parmod Kumar

    2014-01-01

    Full Text Available In the present study the effect of variation of ionic strength of the medium on rate of oxidation of hydroxy benzoic acids as its effect provides some clues regarding the nature of reactive species involved in the rate determining step. In order to realize the above aim the experiments has been carried out which ultimately concluded that ionic strength variation does not change the reaction velocity constant significantly.

  3. 原料乳中苯甲酸质量分数控制措施的研究进展%Research advance in the control measures of the content of benzoic acid in raw milk

    Institute of Scientific and Technical Information of China (English)

    李晰晖; 任国谱

    2013-01-01

    对苯甲酸对人体的危害、在原料乳中的主要来源以及原料乳的卫生质量、马尿酸的质量分数和人为添加等因素对原料乳中苯甲酸质量分数的影响进行了综述,对提高原料乳的卫生质量、安全无毒的防腐措施和快速高效的检测手段等控制原料乳中苯甲酸质量分数的方法进行了讨论..%The research advance in the harm of benzoic acid to the body ,the source of it in raw milk and in factors influencing the content of benzoic acid such as hygienic quality of raw milk.the content of hippuric acid,anthropic addition were summarized in the paper.In addition,this paper discussed the methods how to cntrol the content of benzoic acid in raw milk including improving the hygienic quality of raw milk,se-cure and nontoxic antiseptic measures, fast and effective detecting methods.

  4. Trends in bond dissociation energies of alcohols and aldehydes computed with multireference averaged coupled-pair functional theory.

    Science.gov (United States)

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-05-01

    As part of our ongoing investigation of the combustion chemistry of oxygenated molecules using multireference correlated wave function methods, we report bond dissociation energies (BDEs) in C1-C4 alcohols (from methanol to the four isomers of butanol) and C1-C4 aldehydes (from methanal to butanal). The BDEs are calculated with a multireference averaged coupled-pair functional-based scheme. We compare these multireference BDEs with those derived from experiment and single-reference methods. Trends in BDEs for the alcohols and aldehydes are rationalized by considering geometry relaxations of dissociated radical fragments, resonance stabilization, and hyperconjugation. Lastly, we discuss the conjectured association between bond strengths and rates of hydrogen abstraction by hydroxyl radicals. In general, abstraction reaction rates are higher at sites where the C-H bond energies are lower (and vice versa). However, comparison with available rate data shows this inverse relationship between bond strengths and abstraction rates does not hold at all temperatures.

  5. SnAP reagents for the one-step synthesis of medium-ring saturated N-heterocycles from aldehydes.

    Science.gov (United States)

    Vo, Cam-Van T; Luescher, Michael U; Bode, Jeffrey W

    2014-04-01

    Interest in saturated N-heterocycles as scaffolds for the synthesis of bioactive molecules is increasing. Reliable and predictable synthetic methods for the preparation of these compounds, especially medium-sized rings, are limited. We describe the development of SnAP (Sn amino protocol) reagents for the transformation of aldehydes into seven-, eight- and nine-membered saturated N-heterocycles. This process occurs under mild, room-temperature conditions and offers exceptional substrate scope and functional-group tolerance. Air- and moisture-stable SnAP reagents are prepared on a multigram scale from inexpensive starting materials by simple reaction sequences. These new reagents and processes allow widely available aryl, heteroaryl and aliphatic aldehydes to be converted into diverse N-heterocycles, including diazepanes, oxazepanes, diazocanes, oxazocanes and hexahydrobenzoxazonines, by a single synthetic operation.

  6. L-Proline catalyzed aldol reactions between acetone and aldehydes in supercritical fluids:An environmentally friendly reaction procedure

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The direct asymmetric aldol reaction between various aldehydes and acetone catalyzed by L-proline catalyst was successfully carried out in supercritical CO2 (scCO2) and 1,1,1,2-tetrafluoroethane (R-134a) fluids.The enantioselectivity of 84% ee to the targeted product was achieved under 20 MPa,40 °C,and 15 mol% of the catalyst in supercritical CO2 (scCO2) fluid.The effects of reaction parameters,such as temperature,pressure,catalyst loading and different substituted aldehydes on both enantioselectivity and aldol yield were discussed.The titled reaction was also performed in 1,1,1,2-tetrafluoroethane,and the obtained results were compared with those in scCO2.This new reaction procedure provides an environmental asymmetric aldol reaction system as compared with that in organic solvents.

  7. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  8. Class 2 aldehyde dehydrogenase. Characterization of the hamster enzyme, sensitive to daidzin and conserved within the family of multiple forms.

    Science.gov (United States)

    Hjelmqvist, L; Lundgren, R; Norin, A; Jörnvall, H; Vallee, B; Klyosov, A; Keung, W M

    1997-10-13

    Mitochondrial (class 2) hamster aldehyde dehydrogenase has been purified and characterized. Its primary structure has been determined and correlated with the tertiary structure recently established for this class from another species. The protein is found to represent a constant class within a complex family of multiple forms. Variable segments that occur in different species correlate with non-functional segments, in the same manner as in the case of the constant class of alcohol dehydrogenases (class III type) of another protein family, but distinct from the pattern of the corresponding variable enzymes. Hence, in both these protein families, overall variability and segment architectures behave similarly, with at least one 'constant' form in each case, class III in the case of alcohol dehydrogenases, and at least class 2 in the case of aldehyde dehydrogenases.

  9. Leaf uptake of methyl ethyl ketone and croton aldehyde by Castanopsis sieboldii and Viburnum odoratissimum saplings

    Science.gov (United States)

    Tani, Akira; Tobe, Seita; Shimizu, Sachie

    2013-05-01

    Methyl ethyl ketone (MEK) is an abundant ketone in the urban atmosphere and croton aldehyde (CA) is a strong irritant to eye, nose, and throat. The use of plants able to absorb these compounds is one suggested mitigation method. In order to investigate this method, we determined the uptake rate of these compounds by leaves of two tree species, Castanopsis sieboldii and Viburnum odoratissimum var. awabuki. Using a flow-through chamber method, we found that these species were capable of absorbing both compounds. We also confirmed that the uptake rate of these compounds normalized to the fumigated concentration (AN) was higher at higher light intensities and that there was a linear relationship between AN and stomatal conductance (gS) for both tree species. In concentration-varying experiments, the uptake of MEK and CA seemed to be restricted by partitioning of MEK between leaf water and air. The ratio of the intercellular VOC concentration (Ci) to the fumigated concentration (Ca) for CA was zero, and the ratio ranged from 0.63 to 0.76 for MEK. The more efficient CA uptake ability may be the result of higher partitioning of CA into leaf water. Our present and previous results also suggest that plant MEK uptake ability was different across plant species, depending on the VOC conversion speed inside leaves.

  10. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  11. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.

    Science.gov (United States)

    Zhao, Di; Mo, Yan; Li, Meng-Tian; Zou, Shao-Wu; Cheng, Zhou-Li; Sun, Yi-Ping; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2014-12-01

    High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

  12. Identification of Tumor Endothelial Cells with High Aldehyde Dehydrogenase Activity and a Highly Angiogenic Phenotype

    Science.gov (United States)

    Maishi, Nako; Ohga, Noritaka; Hida, Yasuhiro; Kawamoto, Taisuke; Iida, Junichiro; Shindoh, Masanobu; Tsuchiya, Kunihiko; Shinohara, Nobuo; Hida, Kyoko

    2014-01-01

    Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs) exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs). TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH) in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis. PMID:25437864

  13. Identification of tumor endothelial cells with high aldehyde dehydrogenase activity and a highly angiogenic phenotype.

    Directory of Open Access Journals (Sweden)

    Hitomi Ohmura-Kakutani

    Full Text Available Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs. TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2. Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis.

  14. Vasodilatory effect of nitroglycerin in Japanese subjects with different aldehyde dehydrogenase 2 (ALDH2) genotypes.

    Science.gov (United States)

    Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; Yonezawa, Kazuya

    2017-03-23

    The functional genetic polymorphism of aldehyde dehydrogenase 2 (ALDH2) influences the enzymatic activities of its wild type (Glu504 encoded by ALDH2*1) and mutant type (Lys504 encoded by ALDH2*2) proteins. The enzymatic activities of mutant-type ALDH2 are limited compared with those of the wild type. ALDH2 has been suggested as a critical factor for nitroglycerin-mediated vasodilation by some human studies and in vitro studies. Currently, there is no research on direct observations of the vasodilatory effect of nitroglycerin sublingual tablets, which is the generally used dosage form. In the present study, the contribution of ALDH2 to the vasodilatory effect of nitroglycerin sublingual tablets was investigated among three genotype groups (ALDH2*1/*1, ALDH2*1/*2, and ALDH2*2/*2) in Japanese. The results by direct assessments of in vivo nitroglycerin-mediated dilation showed no apparent difference in vasodilation among all genotypes of ALDH2. Furthermore, to analyze the effect of other factors (age and flow-mediated dilation), multiple regression analysis and Pearson's correlation coefficient analysis were carried out. These analyses also indicated that the genotypes of ALDH2 were not related to the degree of vasodilation. These results suggest the existence of other predominant pathway(s) for nitroglycerin biotransformation, at least with regard to clinical nitroglycerin (e.g., a sublingual tablet) in Japanese subjects.

  15. Solvent isotope effects on alkane formation by cyanobacterial aldehyde deformylating oxygenase and their mechanistic implications.

    Science.gov (United States)

    Waugh, Matthew W; Marsh, E Neil G

    2014-09-02

    The reaction catalyzed by cyanobacterial aldehyde deformylating oxygenase is of interest both because of its potential application to the production of biofuels and because of the highly unusual nature of the deformylation reaction it catalyzes. Whereas the proton in the product alkane derives ultimately from the solvent, the identity of the proton donor in the active site remains unclear. To investigate the proton transfer step, solvent isotope effect (SIE) studies were undertaken. The rate of alkane formation was found to be maximal at pH 6.8 and to be the same in D2O or H2O within experimental error, implying that proton transfer is not a kinetically significant step. However, when the ratio of protium to deuterium in the product alkane was measured as a function of the mole fraction of D2O, a (D2O)SIEobs of 2.19 ± 0.02 was observed. The SIE was invariant with the mole fraction of D2O, indicating the involvement of a single protic site in the reaction. We interpret this SIE as most likely arising from a reactant state equilibrium isotope effect on a proton donor with an inverse fractionation factor, for which Φ = 0.45. These observations are consistent with an iron-bound water molecule being the proton donor to the alkane in the reaction.

  16. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line.

    Science.gov (United States)

    Wang, Yi; Jiang, Yang; Ikeda, Jun-Ichiro; Tian, Tian; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-10-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine.

  17. Molecular Response to Toxic Diatom-Derived Aldehydes in the Sea Urchin Paracentrotus lividus

    Directory of Open Access Journals (Sweden)

    Stefano Varrella

    2014-04-01

    Full Text Available Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs, which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations, as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes.

  18. Molecular Response to Toxic Diatom-Derived Aldehydes in the Sea Urchin Paracentrotus lividus

    Science.gov (United States)

    Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G.; Ruocco, Nadia; Costantini, Maria

    2014-01-01

    Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes) in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes. PMID:24714125

  19. Palladium complexes of pyrrole-2-aldehyde thiosemicarbazone: Synthesis, structure and spectral properties

    Indian Academy of Sciences (India)

    Piyali Paul; Samaresh Bhattacharya

    2014-09-01

    Reaction of pyrrole-2-aldehyde thiosemicarbazone (abbreviated as H2L, where H2 stands for the two potentially dissociable protons) with [Pd(PPh3)2Cl2] in ethanol in the presence of NEt3 afforded two complexes, [Pd(PPh3)(HLNS)Cl] and [Pd(PPh3)(LNNS)], where the thiosemicarbazone ligand is coordinated to the metal centre respectively as monoanionic N,S-donor (depicted by HLNS) and dianionic N,N,S-donor (depicted by LNNS). Similar reaction with Na2[PdCl4] afforded a bis-complex, [Pd(HLNS)2]. Crystal structures of all the three complexes have been determined.With reference to the structure of the uncoordinated thiosemicarbazone (H2L), the N,S-coordinationmode observed in [Pd(PPh3)(HLNS)Cl] and [Pd(HLNS)2] is associated with a geometrical change around the imine bond.While the N,N,S-mode of binding observed in [Pd(PPh3)(LNNS)] takes place without any such geometrical change. All three complexes display intense absorptions in the visible and ultraviolet regions, which have been analyzed by TDDFT method.

  20. Increment of antioxidase activity of transgenic tobacco with betaine aldehyde dehydrogenase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Superoxide dismutase (SOD) activity in the leaves of transgenic tobacco plants with betaine aldehyde dehydrogenase (BADH) gene was about 36% higher than that in the control plants (parent plants),activities of peroxi-dase (POD) and catalase (Cat) increased by about 62% and 88% respectively. Activities of ascorbate peroxidase (AsSPOD),dehydroascorbate redutase (DAsAR) and gluta-thione reductase (GR) in ascorbate-glutothion pathway lo-cated at chloroplasts increased by 67.7%,47.9% and 38.8% respectively. These results indicated that the H2O2 produced by SOD catalyzing superoxide anion radicals (O2- ) could be fully decomposed,and could not derive to form the strongest toxicant radicals ·OH. This is the first report to elucidate quantitatively that the activities of two kinds of antioxidative enzymes decomposed radicals and active oxygen were matched. Photoinhibition tolerant capacity of the transgenic tobacco plants was 35% higher than that in the parent plants. Increment of photoinhibition tolerant capacity in the trans-genic tobacco plants might be due to increment of antioxida-tive enzymes activities,in turn being able to more effectively scavenge active oxygen and radicals,protect organization and function of chloroplasts. These results showed that the increment of antioxidative enzymes activities in the trans-genic tobacco might be one of the reasons for the increment of resistance in the transgenic tobacco.

  1. Research on Odor Interaction between Aldehyde Compounds via a Partial Differential Equation (PDE Model

    Directory of Open Access Journals (Sweden)

    LuchunYan

    2015-01-01

    Full Text Available In order to explore the odor interaction of binary odor mixtures, a series of odor intensity evaluation tests were performed using both individual components and binary mixtures of aldehydes. Based on the linear relation between the logarithm of odor activity value and odor intensity of individual substances, the relationship between concentrations of individual constituents and their joint odor intensity was investigated by employing a partial differential equation (PDE model. The obtained results showed that the binary odor interaction was mainly influenced by the mixing ratio of two constituents, but not the concentration level of an odor sample. Besides, an extended PDE model was also proposed on the basis of the above experiments. Through a series of odor intensity matching tests for several different binary odor mixtures, the extended PDE model was proved effective at odor intensity prediction. Furthermore, odorants of the same chemical group and similar odor type exhibited similar characteristics in the binary odor interaction. The overall results suggested that the PDE model is a more interpretable way of demonstrating the odor interactions of binary odor mixtures.

  2. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters.

    Science.gov (United States)

    Keung, W M; Klyosov, A A; Vallee, B L

    1997-03-04

    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation between ALDH-2 inhibition and ethanol intake suppression and raise the possibility that daidzin may, in fact, suppress ethanol intake of golden hamsters by inhibiting ALDH-2. Hamster liver contains not only mitochondrial ALDH-2 but also high concentrations of a cytosolic form, ALDH-1, which is a very efficient catalyst of acetaldehyde oxidation. Further, the cytosolic isozyme is completely resistant to daidzin inhibition. This unusual property of the hamster ALDH-1 isozyme accounts for the fact we previously observed that daidzin can suppress ethanol intake of this species without blocking acetaldehyde metabolism. Thus, the mechanism by which daidzin suppresses ethanol intake in golden hamsters clearly differs from that proposed for the classic ALDH inhibitor disulfiram. We postulate that a physiological pathway catalyzed by ALDH-2, so far undefined, controls ethanol intake of golden hamsters and mediates the antidipsotropic effect of daidzin.

  3. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural.

    Science.gov (United States)

    Seo, Hyung-Min; Jeon, Jong-Min; Lee, Ju Hee; Song, Hun-Suk; Joo, Han-Byul; Park, Sung-Hee; Choi, Kwon-Young; Kim, Yong Hyun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2016-01-01

    Furfural is a toxic by-product formulated from pretreatment processes of lignocellulosic biomass. In order to utilize the lignocellulosic biomass on isobutanol production, inhibitory effect of the furfural on isobutanol production was investigated and combinatorial application of two oxidoreductases, FucO and YqhD, was suggested as an alternative strategy. Furfural decreased cell growth and isobutanol production when only YqhD or FucO was employed as an isobutyraldehyde oxidoreductase. However, combinatorial overexpression of FucO and YqhD could overcome the inhibitory effect of furfural giving higher isobutanol production by 110% compared with overexpression of YqhD. The combinatorial oxidoreductases increased furfural detoxification rate 2.1-fold and also accelerated glucose consumption 1.4-fold. When it compares to another known system increasing furfural tolerance, membrane-bound transhydrogenase (pntAB), the combinatorial aldehyde oxidoreductases were better on cell growth and production. Thus, to control oxidoreductases is important to produce isobutanol using furfural-containing biomass and the combinatorial overexpression of FucO and YqhD can be an alternative strategy.

  4. Synthesis of New Chiral Benzimidazolylidene–Rh Complexes and Their Application in Asymmetric Addition Reactions of Organoboronic Acids to Aldehydes

    Directory of Open Access Journals (Sweden)

    Weiping He

    2016-09-01

    Full Text Available A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC–Rh based on benzimidazole have been prepared, and all of the NHC–Rh complexes were fully characterized by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric 1,2-addition of organoboronic acids to aldehydes, affording chiral diarylmethanols with high yields and moderate enantioselectivities.

  5. A Convenient and Environmentally Benign Method of Reducing Aryl Ketones or Aldehydes by Zinc Powder in an Aqueous Alkaline Solution

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Chao-Zhi; YANG,Hui; WU,De-Lin; LU,Guo-Yuan

    2007-01-01

    A convenient and environmentally benign method for reducing the carbonyl group in hydroxy- and amino-9,10-anthracenediones, ortho (or para) acyl phenols and acyl anilines to a methylene group by zinc powder in an aqueous sodium hydroxide solution was reported. Based on theoretical calculations using the density functional theory (DFT), the mechanism of these reduction reactions was postulated. This mechanism can be applied to help predicting the reduced products of aryl ketones (or aldehydes) in an alkaline solution.

  6. Catalytic Enantioselective Aryl Transfer to Aldehydes Using Chiral 2,2’-Bispyrrolidine-Based Salan Ligands

    Directory of Open Access Journals (Sweden)

    Yixiang Cheng

    2011-04-01

    Full Text Available Chiral C2-symmetric diamines have emerged as versatile auxiliaries or ligands in numerous asymmetric transformations. Chiral 2,2’-bispyrrolidine-based salan ligands were prepared and applied to the asymmetric aryl transfer to aldehydes with arylboronic acids as the source of transferable aryl groups. The corresponding diarylmethanols were obtained in high yields with moderate to good enantioselectivitives of up to 83% ee.

  7. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eun Ju [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Choi, Inho, E-mail: inhochoi@ynu.ac.kr [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  8. Stereoretentive Addition of N-tert-Butylsulfonyl-α-Amido Silanes to Aldehydes, Ketones, α,β-Unsaturated Esters, and Imines.

    Science.gov (United States)

    Mita, Tsuyoshi; Saito, Keisuke; Sugawara, Masumi; Sato, Yoshihiro

    2016-05-20

    Enantioenriched N-tert-butylsulfonyl-α-amido silanes were successfully reacted with aldehydes, ketones, imines, and α,β-unsaturated esters in the presence of a sub-stoichiometric amount of CsF (0.5 equiv) in 1,2-dimethoxyethane (DME) at -20 °C to afford the corresponding coupling products with up to 89 % enantiospecificity in a retentive manner.

  9. [Amino acid and peptide derivatives of the tylosin family of macrolide antibiotics modified at the aldehyde group].

    Science.gov (United States)

    Sumbatian, N V; Kuznetsova, I V; Karpenko, V V; Fedorova, N V; Chertkov, V A; Korshunova, G A; Bogdanov, A A

    2010-01-01

    Fourteen new functionally active amino acid and peptide derivatives of the antibiotics tylosin, desmycosin, and 5-O-mycaminosyltylonolide were synthesized in order to study the interaction of the growing polypeptide chain with the ribosomal tunnel. The conjugation of various amino acids and peptides with a macrolide aldehyde group was carried out by two methods: direct reductive amination with the isolation of the intermediate Schiff bases or through binding via oxime using the preliminarily obtained derivatives of 2-aminooxyacetic acid.

  10. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Directory of Open Access Journals (Sweden)

    Medina-Navarro Rafael

    2011-11-01

    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  11. Dynamics of Dissolved and Particulate Polyunsaturated Aldehydes in Mesocosms Inoculated with Different Densities of the Diatom Skeletonema marinoi

    OpenAIRE

    Georg Pohnert; Charles Vidoudez; Jens Christian Nejstgaard; Hans Henrik Jakobsen

    2011-01-01

    A survey of the production of polyunsaturated aldehydes (PUA) of manipulated plankton communities is presented here. PUA are phytoplankton-derived metabolites that are proposed to play an important role in chemically mediated plankton interactions. Blooms of different intensities of the diatom Skeletonema marinoi were generated in eight mesocosms filled with water from the surrounding fjord by adding different amounts of a starting culture and nutrients. This set-up allowed us to follow PUA p...

  12. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid oxidation-derived aldehydes, and glucose

    OpenAIRE

    Adams, An; Kitrytė, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-01-01

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model...

  13. Acrolein—an α,ß-Unsaturated Aldehyde: A Review of Oral Cavity Exposure and Oral Pathology Effects

    OpenAIRE

    Dror Aizenbud; Itay Aizenbud; Abraham Z. Reznick; Katia Avezov

    2016-01-01

    Acrolein is a highly reactive unsaturated aldehyde widely present in the environment, particularly as a product of tobacco smoke. Our previous studies indicated the adverse consequences of even short-term acrolein exposure and proposed a molecular mechanism of its potential harmful effect on oral cavity keratinocytic cells. In this paper we chose to review the broad spectrum of acrolein sources such as pollution, food, and smoking. Consequently, in this paper we consider a high level of oral ...

  14. Direct Conversion of Aldehydes and Ketones to Allylic Halides by a NbX(5-)[3,3] Rearrangement.

    Science.gov (United States)

    Fleming, Fraser F; Ravikumar, P C; Yao, Lihua

    2009-01-01

    Sequential addition of vinylmagnesium bromide and NbCl(5), or NbBr(5), to a series of aldehydes and ketones directly provides homologated, allylic halides. Transposition of the intermediate vinyl alkoxide is envisaged through a metalla-halo-[3,3] rearrangement with concomitant delivery of the halogen to the terminal carbon. The [3,3] rearrangement is equally effective for the conversion of a propargyllic alcohol to the corresponding allenyl bromide.

  15. Direct Conversion of Aldehydes and Ketones to Allylic Halides by a NbX5-[3,3] Rearrangement

    Science.gov (United States)

    Fleming, Fraser F.; Ravikumar, P. C.; Yao, Lihua

    2009-01-01

    Sequential addition of vinylmagnesium bromide and NbCl5, or NbBr5, to a series of aldehydes and ketones directly provides homologated, allylic halides. Transposition of the intermediate vinyl alkoxide is envisaged through a metalla-halo-[3,3] rearrangement with concomitant delivery of the halogen to the terminal carbon. The [3,3] rearrangement is equally effective for the conversion of a propargyllic alcohol to the corresponding allenyl bromide. PMID:20046989

  16. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    Data.gov (United States)

    U.S. Environmental Protection Agency — We show in the present study that the unsaturated aldehydes, 2-E-pentenal, 2-E-hexenal and 3-Z-hexenal, are biogenic volatile organic compound (BVOC) precursors for...

  17. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS).

    Science.gov (United States)

    Huang, Juzheng; Kumar, Sacheen; Hanna, George B

    2014-09-01

    Aldehydes have attracted great scientific and clinical interest as potential disease biomarkers. We have investigated selected ion flow tube-mass spectrometry (SIFT-MS) in detecting and quantifying C3 to C10 saturated aldehydes (propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal and decanal) from the exhaled breath of 26 healthy human volunteers. To assess the reliability of the Nalophan® bag sampling method employed, the water level in the breath sample was measured up to 4 h after collection and showed no significant degradation. Propanal was found to be the most abundant aldehyde in the exhaled breath of healthy volunteers. For the C4-C10 aldehydes, their median concentrations were all less than 3 ppbv, demonstrating only trace quantities are present in the exhaled breath of the 26 healthy volunteers.

  18. Bioactivation to an aldehyde metabolite--possible role in the onset of toxicity induced by the anti-HIV drug abacavir.

    Science.gov (United States)

    Grilo, Nádia M; Charneira, Catarina; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2014-01-30

    Aldehydes are highly reactive molecules, which can be generated during numerous physiological processes, including the biotransformation of drugs. Several non-P450 enzymes participate in their metabolism albeit alcohol dehydrogenase and aldehyde dehydrogenase are the ones most frequently involved in this process. Endogenous and exogenous aldehydes have been strongly implicated in multiple human pathologies. Their ability to react with biomacromolecules (e.g. proteins) yielding covalent adducts is suggested to be the common primary mechanism underlying the toxicity of these reactive species. Abacavir is one of the options for combined anti-HIV therapy. Although individual susceptibilities to adverse effects differ among patients, abacavir is associated with idiosyncratic hypersensitivity drug reactions and an increased risk of cardiac dysfunction. This review highlights the current knowledge on abacavir metabolism and discusses the potential role of bioactivation to an aldehyde metabolite, capable of forming protein adducts, in the onset of abacavir-induced toxic outcomes.

  19. [Determination of low-carbon alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis by gas chromatography].

    Science.gov (United States)

    Gai, Qingqing; Wu, Peng; Shi, Yulin; Bai, Yu; Long, Yinhua

    2015-01-01

    A method for the determination of low-carbon (C1-C8) alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis was developed by gas chromatography. It included the optimization of separation conditions, the precision and accuracy of determination, and the use of correction factors of the analytes to ethanol for quantification. The aqueous products showed that the correlation coefficients for ethanol in different content ranges were above 0.99, which means it had good linear correlations. The spiked recoveries in the aqueous samples of Fischer-Tropsch synthesis were from 93.4% to 109.6%. The accuracy of the method can satisfy the requirement for the analysis of the aqueous samples of Fischer-Tropsch synthesis. The results showed that the total mass fractions of the major low-carbon alcohols, aldehydes, ketones in aqueous products of Fischer-Tropsch synthesis were about 3%-12%, and the contents of ethanol were the highest (about 1.7%-7.3%). The largest share of the total proportion was n-alcohols, followed by isomeric alcohols, aldehydes and ketones were the lowest. This method is simple, fast, and has great significance for the analysis of important components in aqueous products of Fischer-Tropsch synthesis.

  20. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1.

    Directory of Open Access Journals (Sweden)

    Silvia Schumann

    Full Text Available Mouse aldehyde oxidase (mAOX1 forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Escherichia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.

  1. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress.

    Science.gov (United States)

    Altemose, Brent; Robson, Mark G; Kipen, Howard M; Ohman Strickland, Pamela; Meng, Qingyu; Gong, Jicheng; Huang, Wei; Wang, Guangfa; Rich, David Q; Zhu, Tong; Zhang, Junfeng

    2016-07-20

    Using data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.Journal of Exposure Science and Environmental Epidemiology advance online publication, 20 July 2016; doi:10.1038/jes.2016.38.

  2. Prevalence and mechanism of polyunsaturated aldehydes production in the green tide forming macroalgal genus Ulva (Ulvales, Chlorophyta).

    Science.gov (United States)

    Alsufyani, Taghreed; Engelen, Aschwin H; Diekmann, Onno E; Kuegler, Stefan; Wichard, Thomas

    2014-10-01

    Lipoxygenase/hydroperoxide lyase mediated transformations convert polyunsaturated fatty acids into various oxylipins. First, lipoxygenases catalyze fatty acid oxidation to fatty acid hydroperoxides. Subsequently, breakdown reactions result in a wide array of metabolites with multiple physiological and ecological functions. These fatty acid transformations are highly diverse in marine algae and play a crucial rule in e.g., signaling, chemical defense, and stress response often mediated through polyunsaturated aldehydes (PUAs). In this study, green tide-forming macroalgae of the genius Ulva (Chlorophyta) were collected at various sampling sites in the lagoon of the Ria Formosa (Portugal) and were surveyed for PUAs. We demonstrated that sea-lettuce like but not tube-like morphotypes produce elevated amounts of volatile C10-polyunsaturated aldehydes (2,4,7-decatrienal and 2,4-decadienal) upon tissue damage. Moreover, morphogenetic and phylogenetic analyses of the collected Ulva species revealed chemotaxonomic significance of the perspective biosynthetic pathways. The aldehydes are derived from omega-3 and omega-6 polyunsaturated fatty acids (PUFA) with 20 or 18 carbon atoms including eicosapentaenoic acid (C20:5 n-3), arachidonic acid (C20:4 n-6), stearidonic acid (C18:4 n-3), and γ-linolenic acid (C18:3 n-6). We present first evidences that lipoxygenase-mediated (11-LOX and 9-LOX) eicosanoid and octadecanoid pathways catalyze the transformation of C20- and C18-polyunsaturated fatty acids into PUAs and concomitantly into short chain hydroxylated fatty acids.

  3. A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram

    Full Text Available Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways.

  4. A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Wolfram, Stefanie; Wielsch, Natalie; Hupfer, Yvonne; Mönch, Bettina; Lu-Walther, Hui-Wen; Heintzmann, Rainer; Werz, Oliver; Svatoš, Aleš; Pohnert, Georg

    2015-01-01

    Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs) that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways.

  5. Crystal structures of hydrogen-bonded co-crystals as liquid crystal precursors: 4-(n-pent-yloxy)benzoic acid-(E)-1,2-bis-(pyridin-4-yl)ethene (2/1) and 4-(n-hex-yloxy)benzoic acid-(E)-1,2-bis-(pyridin-4-yl)ethene (2/1).

    Science.gov (United States)

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-12-01

    The crystal structures of title hydrogen-bonded co-crystals, 2C12H16O3·C12H10N2, (I), and 2C13H18O3·C12H10N2, (II), have been determined at 93 K. In (I), the asymmetric unit consists of one 4-(n-pent-yloxy)benzoic acid mol-ecule and one half-mol-ecule of (E)-1,2-bis-(pyridin-4-yl)ethene, which lies about an inversion centre. The asymmetric unit of (II) comprises two crystallographically independent 4-(n-hex-yloxy)benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethene mol-ecule. In each crystal, the acid and base components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 units are linked via C-H⋯π and π-π inter-actions [centroid-centroid distances of 3.661 (2) and 3.909 (2) Å for (I), and 3.546 (2)-3.725 (4) Å for (II)], forming column structures. In (II), the base mol-ecule is orientationally disordered over two sets of sites approximately around the N⋯N mol-ecular axis, with an occupancy ratio of 0.647 (4):0.353 (4), and the average structure of the 2:1 unit adopts nearly pseudo-C2 symmetry. Both compounds show liquid-crystal behaviour.

  6. Establishing the ellipsoidal geometry of a benzoic acid-based amphiphile via dimer switching: insights from intramolecular rotation and facial H-bond torsion.

    Science.gov (United States)

    Ramesh, Nivarthi; Sarangi, Nirod Kumar; Patnaik, Archita

    2013-05-01

    Soft molecular ellipsoids conceived from 3,4-di(dodecyloxy)benzoic acid (DDBA) amphiphile draw attention to monomer structure design, intramolecular -COOH headgroup twist (ϕ°) and cyclic-acyclic dimer switching through facial H-bond torsion (ψ°). Generically, precipitation in hydrogen bonded systems has been the prime phenomenon once the critical aggregation concentrations were reached in the bulk solution. DDBA was no exception to this generalization. It formed precipitates in chloroform and methanol with no specific geometry but with cyclic dimer motifs in them. On the contrary, surface pressure modulated interfacial aggregation with ellipsoidal geometry followed acyclic dimerization (catemer motif) with various levels of headgroup torsion, established through real-time polarization modulated infrared reflection-absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations, that estimated the energy costs for these unexplored pathways. The reaction coordinates ϕ° and ψ° in consonance with 2D surface pressure modulation thus directed the shape anisotropy during the dynamic self-assembly of DDBA. Changes in subphase pH and metal ionic environment had a derogatory effect on the ellipsoid formation, the structural requirement for which strictly followed a stringent need for twin alkyl chains in an asymmetric unit cell, as 4-dodecyloxybenzoic acid (MABA) with a single alkyl chain formed exclusively spherical assemblies with no dimer modulation. The investigation thus reports unexplored energy pathways toward ellipsoidal geometry of the amphiphile in the course of its interfacial aggregation.

  7. De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine

    Directory of Open Access Journals (Sweden)

    Zhang Guang Hui

    2016-08-01

    Full Text Available Background: The medicinal herb, Pinellia ternate, is purported to be an anti-emetic with analgesic and sedative effects. Alkaloids are the main biologically active compounds in P. ternata, especially ephedrine that is a phenylpropylamino alkaloid specifically produced by Ephedra and Catha edulis. However, how ephedrine is synthesized in plants is uncertain. Only the phenylalanine ammonia lyase (PAL and relevant genes in this pathway have been characterized. Genomic information of P. ternata is also unavailable. Results: We analyzed the transcriptome of the tuber of P. ternata with the Illumina HiSeqTM 2000 sequencing platform. 66,813,052 high-quality reads were generated, and these reads were assembled de novo into 89,068 unigenes. Most known genes involved in benzoic acid biosynthesis were identified in the unigene dataset of P. ternate, and the expression patterns of some ephedrine biosynthesis-related genes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR. Also, 14,468 simple sequence repeats (SSRs were identified from 12,000 unigenes. Twenty primer pairs for SSRs were randomly selected for the validation of their amplification effect. Conclusion: RNA-seq data was firstly used to provide a comprehensive gene information on P. ternata at the transcriptional level. These data will advance molecular genetics in this valuable medicinal plant.

  8. Synthesis, Biological, and Quantum Chemical Studies of Zn(II and Ni(II Mixed-Ligand Complexes Derived from N,N-Disubstituted Dithiocarbamate and Benzoic Acid

    Directory of Open Access Journals (Sweden)

    Anthony C. Ekennia

    2016-01-01

    Full Text Available Some mixed-ligand complexes of Zn(II and Ni(II derived from the sodium salt of N-alkyl-N-phenyl dithiocarbamate and benzoic acid have been prepared. The complexes are represented as ZnMDBz, ZnEDBz, NiMDBz, and NiEDBz (MD: N-methyl-N-phenyl dithiocarbamate, ED: N-ethyl-N-phenyl dithiocarbamate, and Bz: benzoate; and their coordination behavior was characterized on the basis of elemental analyses, IR, electronic spectra, magnetic and conductivity measurements, and quantum chemical calculations. The magnetic moment measurement and electronic spectra were in agreement with the four proposed coordinate geometries for nickel and zinc complexes and were corroborated by the theoretical quantum chemical calculations. The quantum chemically derived thermodynamics parameters revealed that the formation of N-methyl-N-phenyl dithiocarbamate complexes is more thermodynamically favourable than that of the N-ethyl-N-phenyl dithiocarbamate complexes. The bioefficacy of the mixed-ligand complexes examined against different microbes showed moderate to high activity against the test microbes. The anti-inflammatory and antioxidant studies of the metal complexes showed that the ethyl substituted dithiocarbamate complexes exhibited better anti-inflammatory and antioxidant properties than the methyl substituted dithiocarbamate complexes.

  9. EFFECT OF SUBSTITUTION POSITION OF HYDROXY GROUP AT BENZOIC ACID ON THE LUMINESCENT AND DEGRADATION PROPERTIES OF POLY[DI(CARBOXYPHENYL) SUCCINATE-co-SEBACIC ANHYDRIDE]S

    Institute of Scientific and Technical Information of China (English)

    Jun Fan; Hong-liang Jiang; Kang-jie Zhu

    2007-01-01

    In this work, two new diacids, di(m-carboxyphenyl) succinate (m-dCPS) and di(o-carboxyphenyl) succinate (o-dCPS), were synthesized by reaction of m-, o-hydroxy benzoic acid with succinic chloride, respectively. Their corresponding copolymers with sebacic acid (SA), P(m-dCPS:SA) and P(o-dCPS:SA), were prepared by melt copolycondensation and characterized by NMR, UV and DSC methods. Compared with inherently fluorescent poly[di(p-carboxyphenyl) succinateco-sebacic anhydride] (P(p-dCPS:SA)), P(m-dCPS:SA) and P(o-dCPS:SA) displayed different luminescent properties. P(m-dCPS:SA) could emit fluorescence under the excitation of both visible and UV light, while P(o-dCPS:SA) could only emit fluorescence when excited with UV light. Degradation rate of the two new copolyanhydrides increased with the increase of SA fraction in the copolymers. In addition, P(o-dCPS:SA) degraded more rapidly than P(m-dCPS:SA) with the same composition. Typical surface-degradation characteristics of these copolyanhydrides were observed.

  10. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid

    Science.gov (United States)

    Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S.

    2016-09-01

    In this study, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of 3,5 di tert butyl 4 hydroxy benzoic acid. The properties of title compound have been evaluated by quantum chemical calculation (DFT) using B3LYP functional and 6-31 + G (d, p) as basis set. IR Spectra has been recorded using Fourier transform infrared spectroscopy (FT-IR) in the region 4000-400 cm-1. The vibrational assignment of the calculated normal modes has been made on the basis set. The isotropic chemical shifts computed by 13C and 1H NMR (Nuclear Magnetic Resonance) analyses also show good agreement with experimental observations. The theoretical UV-Vis spectrum of the compound are used to study the visible absorption maxima (λ max). The structure activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug receptor interactions. The Mullikan charges, HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) energy are analyzed. HOMO-LUMO energy gap and other related molecular properties are also calculated. The Natural Bond Orbital (NBO) analysis is carried out to investigate the various intra and inter molecular interactions of molecular system. The Non-linear optical properties such as dipole moment (μ), polarizability (αtot) and molecular first order hyperpolarizability (β) of the title compound are computed with B3LYP/6-31 + G (d,p) level of theory.

  11. Synthesis and spectroscopic characterization on 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid: A DFT approach.

    Science.gov (United States)

    Kurt, M; Sas, E Babur; Can, M; Okur, S; Icli, S; Demic, S; Karabacak, M; Jayavarthanan, T; Sundaraganesan, N

    2016-01-05

    A complete structural and vibrational analysis of the 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid (TPBA), was carried out by ab initio calculations, at the density functional theory (DFT) method. Molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO) (13)C NMR and (1)H NMR chemical shift values of (TPBA), in the ground state have been calculated by using ab initio density functional theory (DFT/B3LYP) method with 6-311G(d,p) as basis set for the first time. Comparison of the observed fundamental vibrational modes of (TPBA) and calculated results by DFT/B3LYP method indicates that B3LYP level of theory giving yield good results for quantum chemical studies. Vibrational wavenumbers obtained by the DFT/B3LYP method are in good agreement with the experimental data. The study was complemented with a natural bond orbital (NBO) analysis, to evaluate the significance of hyperconjugative interactions and electrostatic effects on such molecular structure. By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals analysis and thermodynamic properties of TPBA were investigated using theoretical calculations.

  12. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    Science.gov (United States)

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.

  13. The use of anhydrous CeCl{sub 3} as a recyclable and selective catalyst for the acetalization of aldehydes and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Claudio C.; Mendes, Samuel R.; Ziembowicz, Francieli I. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica; Lenardao, Eder J.; Perin, Gelson [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias

    2010-07-01

    An efficient, clean, chemoselective and solvent-free method for the synthesis of ketone and aldehyde dimethyl acetals was developed using trimethyl orthoformate and commercially available anhydrous CeCl{sub 3} as a recyclable catalyst. The method is general and affords the protected carbonyl compounds in good yields and under mild conditions, including aryl and alkyl ketones and activated aldehydes. The catalyst could be utilised directly for 3 cycles, without significant loss of activity. (author)

  14. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    Science.gov (United States)

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde).

  15. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie

    2012-01-01

    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  16. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  17. Selective and Efficient Oxidation of Aldehydes to Their Corresponding Carboxylic Acids Using H2O2/HC1 in the Presence of Hydroxylamine Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    BAHRAMI,Kiumars; KHODAEI,Mohammad Mehdi; KAMALI,Shahab

    2008-01-01

    A wide variety of aldehydes were efficiently converted to their corresponding carboxylic acids in high yields using H2O2/HC1 in the presence of hydroxylamine hydrochloride.In addition,selective oxidation of aldehydes in the presence of other functional groups such as hydroxyl group,carbon-carbon double bond and other heteroatoms can be considered a noteworthy advantage of this method.

  18. NaHSO4-SiO2 as an efficient and chemoselective catalyst, for the synthesis of acylal from aldehydes under, solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Kannasani Ravi Kumar

    2012-11-01

    Full Text Available Abstract Background Structurally diverse aldehydes are successfully converted into acylals (1,1-diacetates with acetic anhydride using NaHSO4-SiO2 as a mild, convenient and inexpensive catalyst under solvent-free conditions. The noteworthy features of the present system are shorter reaction times, and mild and solvent-free conditions. Furthermore, it offers chemoselective protection of aldehydes. Results Both aromatic and aliphatic aldehydes reacts smoothly with acetic anhydride in presence of silica supported sodium hydrogen sulphate to afford the corresponding 1,1-diacetates in good to excellent yields. We studied competitive reactions for the acylation of aldehydes in the presence of ketones using silica supported sodium hydrogen sulphate as a catalyst. Using this catalytic system, the highly selective conversion of an aldehyde in the presence of ketone was observed. Conclusions NaHSO4-SiO2 is a chemoselective and highly efficient catalyst for acylal formation from aldehydes. The advantages of this methodology over the reported methods is the availability of the starting materials, simplicity of acylation procedure, a clean work-up, a short reaction time, high yields and reusability.

  19. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl{sub 2}(PPh{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Li, W.; Lu, Q.; Zhu, X. [Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei (China)

    2010-12-15

    A homogeneous RuCl{sub 2}(PPh{sub 3}){sub 3} catalyst was prepared for the hydrogenation of bio-oil to improve its stability and fuel quality. Experiments were first performed on three model aldehydes of acetaldehyde, furfural and vanillin selected to represent the linear aldehydes, oxygen heterocyclic aldehydes and aromatic aldehydes in bio-oil. The results demonstrated the high hydrogenation capability of this homogeneous catalyst under mild conditions (55-90 C, 1.3-3.3 MPa). The highest conversion of the three model aldehydes was over 90 %. Furfural and acetaldehyde were singly converted to furfuryl alcohol and ethanol after hydrogenation, while vanillin was mainly converted to vanillin alcohol, together with a small amount of 2-methoxy-4-methylphenol and 2-methoxyphenol. Further experiments were conducted on a bio-oil fraction extracted by ethyl acetate and on the whole bio-oil at 70 C and 3.3 MPa. Most of the aldehydes were transformed to the corresponding alcohols, and some ketones and compounds with C-C double bond were converted to more stable compounds. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Tarsi of Male Heliothine Moths Contain Aldehydes and Butyrate Esters as Potential Pheromone Components.

    Science.gov (United States)

    Choi, Man-Yeon; Ahn, Seung-Joon; Park, Kye-Chung; Meer, Robert Vander; Cardé, Ring T; Jurenka, Russell

    2016-05-01

    The Noctuidae are one of the most speciose moth families and include the genera Helicoverpa and Heliothis. Females use (Z)-11-hexadecenal as the major component of their sex pheromones except for Helicoverpa assulta and Helicoverpa gelotopoeon, both of which utilize (Z)-9-hexadecenal. The minor compounds found in heliothine sex pheromone glands vary with species, but hexadecanal has been found in the pheromone gland of almost all heliothine females so far investigated. In this study, we found a large amount (0.5-1.5 μg) of hexadecanal and octadecanal on the legs of males of four heliothine species, Helicoverpa zea, Helicoverpa armigera, H. assulta, and Heliothis virescens. The hexadecanal was found on and released from the tarsi, and was in much lower levels or not detected on the remaining parts of the leg (tibia, femur, trochanter, and coxa). Lower amounts (0.05-0.5 μg) of hexadecanal were found on female tarsi. This is the first known sex pheromone compound to be identified from the legs of nocturnal moths. Large amounts of butyrate esters (about 16 μg) also were found on tarsi of males with lower amounts on female tarsi. Males deposited the butyrate esters while walking on a glass surface. Decapitation did not reduce the levels of hexadecanal on the tarsi of H. zea males, indicating that hexadecanal production is not under the same neuroendocrine regulation system as the production of female sex pheromone. Based on electroantennogram studies, female antennae had a relatively high response to hexadecanal compared to male antennae. We consider the possible role of aldehydes and butyrate esters as courtship signals in heliothine moths.

  1. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  2. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population.

    Directory of Open Access Journals (Sweden)

    Kazuyo Yasuda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiaiting cells (CICs are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDH(Br cells from ovarian cancer cells. Both SP cells and ALDH(Br cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2, than those of main population (MP cells and ALDH(Low cells, respectively. We analyzed an SP and ALDH(Br overlapping population (SP/ALDH(Br, and the SP/ALDH(Br population exhibited higher tumor-initiating ability than that of SP cells or ALDH(Br cells, enabling initiation of tumor with as few as 10(2 cells. Furthermore, SP/ADLH(Br population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDH(Low, MP/ALDH(Br and MP/ALDH(Low cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDH(Br population was detected in several gynecological cancer cells with ratios of 0.1% for HEC-1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDH(Br overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.

  3. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling.

    Science.gov (United States)

    Sullivan, James P; Spinola, Monica; Dodge, Michael; Raso, Maria G; Behrens, Carmen; Gao, Boning; Schuster, Katja; Shao, Chunli; Larsen, Jill E; Sullivan, Laura A; Honorio, Sofia; Xie, Yang; Scaglioni, Pier P; DiMaio, J Michael; Gazdar, Adi F; Shay, Jerry W; Wistuba, Ignacio I; Minna, John D

    2010-12-01

    Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH(+) lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH(-) counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH(+) cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH(+) lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH(+) component, implicating Notch signaling in lung cancer stem cell maintenance.

  4. Aldehyde Dehydrogenase 1A1: Friend or Foe to Female Metabolism?

    Directory of Open Access Journals (Sweden)

    Jennifer M. Petrosino

    2014-03-01

    Full Text Available In this review, we summarize recent advances in understanding vitamin A-dependent regulation of sex-specific differences in metabolic diseases, inflammation, and certain cancers. We focus on the characterization of the aldehyde dehydrogenase-1 family of enzymes (ALDH1A1, ALDH1A2, ALDH1A3 that catalyze conversion of retinaldehyde to retinoic acid. Additionally, we propose a “horizontal transfer of signaling” from estrogen to retinoids through the action of ALDH1A1. Although estrogen does not directly influence expression of Aldh1a1, it has the ability to suppress Aldh1a2 and Aldh1a3, thereby establishing a female-specific mechanism for retinoic acid generation in target tissues. ALDH1A1 regulates adipogenesis, abdominal fat formation, glucose tolerance, and suppression of thermogenesis in adipocytes; in B cells, ALDH1A1 plays a protective role by inducing oncogene suppressors Rara and Pparg. Considering the conflicting responses of Aldh1a1 in a multitude of physiological processes, only tissue-specific regulation of Aldh1a1 can result in therapeutic effects. We have shown through successful implantation of tissue-specific Aldh1a1−/− preadipocytes that thermogenesis can be induced in wild-type adipose tissues to resolve diet-induced visceral obesity in females. We will briefly discuss the emerging role of ALDH1A1 in multiple myeloma, the regulation of reproduction, and immune responses, and conclude by discussing the role of ALDH1A1 in future therapeutic applications.

  5. Significance of Lipid-Derived Reactive Aldehyde-Specific Immune Complexes in Systemic Lupus Erythematosus

    Science.gov (United States)

    Wang, Gangduo; Pierangeli, Silvia S.; Willis, Rohan; Gonzalez, Emilio B.; Petri, Michelle; Khan, M. Firoze

    2016-01-01

    Even though systemic lupus erythematosus (SLE) is associated with high morbidity and mortality rates among young and middle-aged women, the molecular mechanisms of disease pathogenesis are not fully understood. Previous studies from our laboratory suggested an association between oxidative stress and SLE disease activity (SLEDAI). To further assess the role of reactive oxygen species (ROS) in SLE, we examined the contribution of lipid-derived reactive aldehydes (LDRAs)-specific immune complexes in SLE. Sera from 60 SLE patients with varying SLEDAI and 32 age- and gender- matched healthy controls were analyzed for oxidative stress and related markers. Patients were divided into two groups based on their SLEDAI scores (<6 and ≥ 6). Both SLEDAI groups showed higher serum 4-hydroxynonenal (HNE)-/malondialdehyde (MDA)-protein adducts and their specific immune complexes (HNE-/MDA-specific ICs) together with IL-17 than the controls, but the levels were significantly greater in the high SLEDAI (≥ 6) group. Moreover, the serum levels of anti-oxidant enzymes Cu/Zn superoxide dismutase (SOD) and catalase (CAT) were significantly reduced in both patient groups compared to controls. Remarkably, for the first time, our data show that increased HNE-/MDA-specific ICs are positively associated with SLEDAI and elevated circulating immune complexes (CICs), suggesting a possible causal relationship among oxidative stress, LDRA-specific ICs and the development of SLE. Our findings, apart from providing firm support to an association between oxidative stress and SLE, also suggest that these oxidative stress markers, especially the HNE-/MDA-specific ICs, may be useful in evaluating the prognosis of SLE as well as in elucidating the mechanisms of disease pathogenesis. PMID:27749917

  6. Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo.

    Science.gov (United States)

    Votta, B J; Levy, M A; Badger, A; Bradbeer, J; Dodds, R A; James, I E; Thompson, S; Bossard, M J; Carr, T; Connor, J R; Tomaszek, T A; Szewczuk, L; Drake, F H; Veber, D F; Gowen, M

    1997-09-01

    We have shown previously that cathepsin K, a recently identified member of the papain superfamily of cysteine proteases, is expressed selectively in osteoclasts and is the predominant cysteine protease in these cells. Based upon its abundant cell type-selective expression, potent endoprotease activity at low pH and cellular localization at the bone interface, cathepsin K has been proposed to play a specialized role in osteoclast-mediated bone resorption. In this study, we evaluated a series of peptide aldehydes and demonstrated that they are potent cathepsin K inhibitors. These compounds inhibited osteoclast-mediated bone resorption in fetal rat long bone (FRLB) organ cultures in vitro in a concentration-dependent manner. Selected compounds were also shown to inhibit bone resorption in a human osteoclast-mediated assay in vitro. Chz-Leu-Leu-Leu-H (in vitro enzyme inhibition Ki,app = 1.4 nM) inhibited parathyroid hormone (PTH)-stimulated resorption in the FRLB assay with an IC-50 of 20 nM and inhibited resorption by isolated human osteoclasts cultured on bovine cortical bone slices with an IC-50 of 100 nM. In the adjuvant-arthritic (AA) rat model, in situ hybridization studies demonstrated high levels of cathepsin K expression in osteoclasts at sites of extensive bone loss in the distal tibia. Cbz-Leu-Leu-Leu-H (30 mg/kg, intraperitoneally) significantly reduced this bone loss, as well as the associated hind paw edema. In the thyroparathyriodectomized rat model, Cbz-Leu-Leu-Leu-H inhibited the increase in blood ionized calcium induced by a 6 h infusion of PTH. These data indicate that inhibitors of cathepsin K are effective at reducing osteoclast-mediated bone resorption and may have therapeutic potential in diseases of excessive bone resorption such as rheumatoid arthritis or osteoporosis.

  7. Compression-induced transformation of aldehydes into polyethers: a first-principles molecular dynamics study.

    Science.gov (United States)

    Mosey, Nicholas J

    2010-04-07

    First-principles molecular dynamics simulations are used to investigate the behavior of bulk acetaldehyde (MeCHO) under conditions of increasing pressure. The results demonstrate that increasing pressure causes the aldehydes to polymerize, yielding polyethers through a process involving the rapid formation of C-O bonds between multiple neighboring MeCHO molecules. Attempts to induce polyether formation at different densities through the application of geometric constraints show that polymerization occurs only once a critical density of approximately 1.7 g/cm(3) has been reached. The results of simulations performed at several different temperatures are also consistent with a process that is induced by reaching a critical density. The origins of this effect are rationalized in terms of the structural requirements for the formation of C-O bonds between multiple MeCHO molecules in rapid succession. Specifically, the collective formation of C-O bonds requires the typical distance between the sp(2) carbon atoms and oxygen atoms in neighboring MeCHO molecules to reach a value of approximately 2.5 A. Radial distribution functions calculated at different densities show that this structural requirement is reached when the density is near the observed threshold. The observed reaction may be useful in the context of lubrication, with polyethers being effective lubricants and the extreme conditions experienced in sliding contacts providing the ability to reach the high densities needed to induce the reaction. In this context, the calculations indicate that polyether formation is associated with significant energy dissipation, while energy dissipation is minimal once the polyethers are formed. Furthermore, the polyethers are stable with respect to multiple compression/decompression cycles and pressures of at least 60 GPa.

  8. Mechanisms of aldehyde-induced bronchial reactivity: role of airway epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D. (Department of Environmental Health, University of Cincinnati Medical Center, OH (United States))

    1992-02-01

    To investigate the relative irritant potencies of inhaled aldehydes, guinea pigs were exposed to formaldehyde or acrolein and specific total pulmonary resistance and bronchial reactivity to intravenous acetylcholine were assessed. The mechanisms associated with these responses were investigated by analyzing morphologic and biochemical changes in airway epithelial cells after in vivo and in vitro exposures. Immediately after exposure to formaldehyde or acrolein, specific resistance increased transiently and returned to control values within 30 to 60 minutes. Bronchial hyperreactivity, assessed by the acetylcholine dose necessary to double resistance, increased and became maximal two to six hours after exposure to at least 9 parts per million2 (ppm) formaldehyde or at least 1 ppm acrolein for two hours. The effect of exposure to 3 ppm formaldehyde for two hours was less than the effect of exposure to 1 ppm formaldehyde for eight hours; thus, extended exposures produced a disproportionate heightening of bronchial reactivity. Bronchial hyperreactivity often persisted for longer than 24 hours. Increases in three bronchoconstrictive eicosanoids, prostaglandin F2 alpha, thromboxane B2, and leukotriene C4, occurred immediately after exposure, whereas an influx of neutrophils into lavage fluid occurred 24 hours later. Histological examination of the tracheal epithelium and lamina propria also demonstrated a lack of inflammatory cell infiltration. Treatment with leukotriene synthesis inhibitors and receptor antagonists inhibited acrolein-induced hyperreactivity, supporting a causal role for these compounds in this response. Acrolein also stimulated eicosanoid release from bovine epithelial cells in culture. However, the profile of metabolites formed differed from that found in lavage fluid after in vivo exposure.

  9. Simulated restaurant cook exposure to emissions of PAHs, mutagenic aldehydes, and particles from frying bacon.

    Science.gov (United States)

    Jørgensen, Rikke Bramming; Strandberg, Bo; Sjaastad, Ann Kristin; Johansen, Arve; Svendsen, Kristin

    2013-01-01

    This study investigated the exposure of cooks to polycyclic aromatic hydrocarbons (PAHs), higher mutagenic aldehydes, total particles, and ultrafine particles during cooking. Experiments were performed by pan frying fresh and smoked bacon on both electric and gas stoves, and with the gas alone. Detailed analyses of PAHs were performed, with analyses of the levels of 32 different PAHs. A TSI-3939 scanning mobility particle sizer system was used to measure the ultrafine particles. The results showed that total PAHs were in the range of 270-300 ng/m(3) air. However, the smoked bacon experiment showed a somewhat different PAH pattern, whereby retene constituted about 10% of the total PAHs, which is a level similar to that of the abundant gas phase constituent phenanthrene. The reason for the elevated retene emissions is unknown. The total cancer risk, expressed as toxic equivalency factors, showed a somewhat higher risk on the electric stove (p decadienal were between 34 and 54 μg/m(3) air. The level of total particles was between 2.2 and 4.2 mg/m(3). Frying on a gas stove caused a statistically significant higher amount of ultrafine particles compared with frying on an electric stove. Large variations in the mobility diameter at peak particle concentration were found (74.4 nm-153.5 nm). The highest mobility diameter was found for frying on an electric stove. The gas flame itself showed a maximum production of 19.5-nm-sized particles and could not be the explanation for the difference between frying on the gas stove and frying on the electric stove. No single indicator for the exposure to cooking fume could be selected. Each compound should be measured independently to provide a comprehensive characterization of the cooking exposure.

  10. [Health effect of volatile aldehyde compounds in photocatalytic oxidation of aromatics compounds].

    Science.gov (United States)

    Zhao, Wei-rong; Liao, Qiu-wen; Yang, Ya-nan; Dai, Jiu-song

    2013-05-01

    Photocatalytic oxidation (PCO) of toluene and benzaldehyde in indoor air by N doped TiO2 (N-TiO2) was conducted under UV irradiation of 254 nm. The intermediates were identified and monitored on real-time by proton transfer reaction-mass spectrometry. The health risks of PCO of toluene and benzaldehyde were assessed based on health risk influence index (eta). Results indicated that both the conversion rate and mineralization rate of toluene and benzaldehyde were relatively high, however, the volatile aldehyde compounds (VAs), including acetaldehyde and formaldehyde generated from ring-opening, significantly influenced the health risks of PCO of toluene and benzaldehyde. Acetaldehyde played a crucial role on health risks, which was inclined to desorb from the surface of catalysts, accumulate in gas-phase, and increase the health risks of PCO of the aromatic compounds. The concentration of formaldehyde kept stable at a relatively low level, however its impact cannot be neglected. In the PCO process of toluene and benzaldehyde, eta reached the maximum values of 8 499.68 and 21.43, with the eta(VAs), contribution of VAs to the health risk influence index of outlet, reaching 99.3% and 98.3%, respectively. The average values of eta in the PCO process of 30 min were 932.86 and 8.52, and for which eta(VAs), reached 98.5% and 98.0%, respectively. When PCO of toluene and benzaldehyde reached steady state, eta were 236.09 and 2.30, and eta(VAs) reached 97.9% and 97.8%, respectively. Hence, eta(VAs), can be taken as a characteristic parameter in assessment of health risks of PCO of aromatic compounds.

  11. Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation.

    Science.gov (United States)

    Neubauer, Regina; Neubauer, Andrea; Wölkart, Gerald; Schwarzenegger, Christine; Lang, Barbara; Schmidt, Kurt; Russwurm, Michael; Koesling, Doris; Gorren, Antonius C F; Schrammel, Astrid; Mayer, Bernd

    2013-09-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.

  12. Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels.

    Science.gov (United States)

    Neubauer, Regina; Wölkart, Gerald; Opelt, Marissa; Schwarzenegger, Christine; Hofinger, Marielies; Neubauer, Andrea; Kollau, Alexander; Schmidt, Kurt; Schrammel, Astrid; Mayer, Bernd

    2015-02-15

    The vascular bioactivation of the antianginal drug nitroglycerin (GTN), yielding 1,2-glycerol dinitrate and nitric oxide or a related activator of soluble guanylate cyclase, is catalyzed by aldehyde dehydrogenase-2 (ALDH2) in rodent and human blood vessels. The essential role of ALDH2 has been confirmed in many studies and is considered as general principle of GTN-induced vasodilation in mammals. However, this view is challenged by an early report showing that diphenyleneiodonium, which we recently characterized as potent ALDH2 inhibitor, has no effect on GTN-induced relaxation of bovine coronary arteries (De La Lande et al., 1996). We investigated this issue and found that inhibition of ALDH2 attenuates GTN-induced coronary vasodilation in isolated perfused rat hearts but has no effect on relaxation to GTN of bovine and porcine coronary arteries. This observation is explained by low levels of ALDH2 protein expression in bovine coronary arteries and several types of porcine blood vessels. ALDH2 mRNA expression and the rates of GTN denitration were similarly low, excluding a significant contribution of ALDH2 to the bioactivation of GTN in these vessels. Attempts to identify the responsible pathway with enzyme inhibitors did not provide conclusive evidence for the involvement of ALDH3A1, cytochrome P450, or GSH-S-transferase. Thus, the present manuscript describes a hitherto unrecognized pathway of GTN bioactivation in bovine and porcine blood vessels. If present in the human vasculature, this pathway might contribute to the therapeutic effects of organic nitrates that are not metabolized by ALDH2.

  13. Aldehyde oxidase importance in vivo in xenobiotic metabolism: imidacloprid nitroreduction in mice.

    Science.gov (United States)

    Swenson, Tami L; Casida, John E

    2013-05-01

    Aldehyde oxidase (AOX) metabolizes many xenobiotics in vitro, but its importance in vivo is usually unknown relative to cytochrome P450s (CYPs) and other detoxification systems. Currently, the most important insecticides are neonicotinoids, which are metabolized in vitro by AOX on reduction of the nitroimino group and by CYPs via oxidation reactions. The goal of this study was to establish the relative importance of AOX and CYPs in vivo using the mouse model. The procedure was to reduce liver AOX activity by providing tungsten or hydralazine in the drinking water or to use the AOX-deficient DBA/2 mouse strain. None of these approaches reduced CYP activity measured in vitro with an isozyme nonspecific substrate. Liver AOX activity was reduced by 45% with tungsten and 61% with hydralazine and 81% in AOX-deficient mice relative to controls. When mice were treated ip with the major neonicotinoid imidacloprid (IMI), metabolism by CYP oxidation reactions was not appreciably affected, whereas the AOX-generated nitrosoguanidine metabolite was decreased by 30% with tungsten and 56% with hydralazine and 86% in the AOX-deficient mice. The other IMI nitroreduction metabolite, desnitro-IMI, was decreased by 55%, 65%, and 81% with tungsten, hydralazine, and in the AOX-deficient mice, respectively. Thus, decreasing liver AOX activity by three quite different procedures gave a corresponding decrease for in vivo reductive metabolites in the liver of IMI-treated mice. Possible AOX involvement in IMI metabolism in insects was evaluated using AOX-expressing and AOX-deficient Drosophila, but no differences were found in IMI nitroreduction or sensitivity between the two strains. This is the first study to establish the in vivo relevance of AOX in neonicotinoid metabolism in mammals and one of the first for xenobiotics in general.

  14. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang, E-mail: countryspring@sina.com; Ji, Yunxia, E-mail: 413499057@qq.com; Kang, Zechun, E-mail: davidjiangwl@163.com; Lv, Changjun, E-mail: Lucky_lcj@sina.com; Jiang, Wanglin, E-mail: jwl518@163.com

    2015-02-15

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  15. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado.

    Science.gov (United States)

    Taylor, Nicky J; Cowan, A Keith

    2004-04-01

    The contribution of xanthine dehydrogenase (XDH, EC 1.1.1.204) to fruit size was investigated using the normal and small-fruit variants of Persea americana Mill. cv. 'Hass'. Inhibition of XDH by treatment of normal fruit, in the linear phase of growth (phase II), with allopurinol (Allo) arrested fruit growth. Adenine (Ade), a less effective inhibitor of this enzyme, also arrested fruit growth when applied in phase II and slowed fruit growth when applied in phase III. A time-course study on the activity of XDH in mesocarp tissue from normal and small fruit showed that maximum activity occurred late in phase II and that the peak in activity was absent in mesocarp of the small fruit. Feeding Ade to growing fruit in phase III caused a transient decline in fruit growth (measured as change in fruit length). Thereafter, growth resumed although fruit size was irreversibly affected. Treatment of fruit with Ade and Ade-containing cytokinins altered activity of another molybdenum enzyme, aldehyde oxidase (EC 1.2.3.1). Cytokinin oxidase was induced by cytokinin and auxin. Purine catabolism via hypoxanthine/xanthine was operative in normal fruit and in mesocarp from the small-fruit variant and as expected, Allo treatment caused accumulation of xanthine and adenine. In the absence of an increase in XDH during growth of the small-fruit phenotype, low levels of Ade were interpreted as resulting from respiration-enhanced adenylate depletion. Stress and/or pathogen induction of the alternative oxidase pathway is proposed as a possible cause.

  16. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    Science.gov (United States)

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  17. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    Science.gov (United States)

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  18. Car indoor air pollution by volatile organic compounds and aldehydes in Japan

    Directory of Open Access Journals (Sweden)

    Kouichi Tatsu

    2016-06-01

    Full Text Available Fifty-five organic substances including volatile organic compounds (VOCs and aldehydes present in indoor air were measured from 24 car cabins in Japan. A screening-level risk assessment was also performed. Acetaldehyde (3.81–36.0 μg/m3, formaldehyde (3.26–26.7 μg/m3, n-tetradecane (below the method quantification limit (

  19. Synthesis, electrochemical, structural, spectroscopic and biological activities of mixed ligand copper (II) complexes with 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid and nitrogenous bases

    Science.gov (United States)

    Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.

    2014-02-01

    Three new copper (II) complexes viz. [Cu(L1)(bipy)]ṡ2H2O 1, [Cu(L1)(dmp)]ṡCH3CN 2, [Cu(L1)(phen)] 3 where L1H2 = 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid, bipy = 2,2‧-bipyridine; dmp = 2,9-dimethyl 1,10-phenanthroline, phen = 1,10-phenanthroline have been synthesized and characterized by physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography, which revealed distorted square pyramidal geometry. In solid-state structure, 1 is self-assembled via intermolecular π…π stacking and the distances between centroids of aromatic ring is 3.525 Å. L1H2 is a diprotic tridentate Schiff base ligand having ONO donor site. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The EPR spectra of these complexes in frozen DMSO solutions showed a single at g ca. 2. The trend in g-value (g|| > g⊥ > 2.0023) suggests that the unpaired electron on copper (II) has d character. Copper (II) complexes 1-3 yielded an irreversible couple corresponding to the Cu (II)/Cu (I) redox process. Superoxide dismutase activity of all these complexes has been revealed to catalyze the dismutation of superoxide (O2-) and IC50 values were evaluated and discussed. Antimicrobial and antifungal activities of these complexes were also investigated.

  20. A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks.

    Science.gov (United States)

    van Duuren, J B J H; Brehmer, B; Mars, A E; Eggink, G; Dos Santos, V A P Martins; Sanders, J P M

    2011-06-01

    A limited life cycle assessment (LCA) was performed on a combined biological and chemical process for the production of adipic acid, which was compared to the traditional petrochemical process. The LCA comprises the biological conversion of the aromatic feedstocks benzoic acid, impure aromatics, toluene, or phenol from lignin to cis, cis-muconic acid, which is subsequently converted to adipic acid through hydrogenation. Apart from the impact of usage of petrochemical and biomass-based feedstocks, the environmental impact of the final concentration of cis, cis-muconic acid in the fermentation broth was studied using 1.85% and 4.26% cis, cis-muconic acid. The LCA focused on the cumulative energy demand (CED), cumulative exergy demand (CExD), and the CO(2) equivalent (CO(2) eq) emission, with CO(2) and N(2) O measured separately. The highest calculated reduction potential of CED and CExD were achieved using phenol, which reduced the CED by 29% and 57% with 1.85% and 4.26% cis, cis-muconic acid, respectively. A decrease in the CO(2) eq emission was especially achieved when the N(2) O emission in the combined biological and chemical process was restricted. At 4.26% cis, cis-muconic acid, the different carbon backbone feedstocks contributed to an optimized reduction of CO(2) eq emissions ranging from 14.0 to 17.4 ton CO(2) eq/ton adipic acid. The bulk of the bioprocessing energy intensity is attributed to the hydrogenation reactor, which has a high environmental impact and a direct relationship with the product concentration in the broth.