WorldWideScience

Sample records for benzodiazepine receptor ligands

  1. High affinity ligands for 'diazepam-insensitive' benzodiazepine receptors.

    Science.gov (United States)

    Wong, G; Skolnick, P

    1992-01-14

    Structurally diverse compounds have been shown to possess high affinities for benzodiazepine receptors in their 'diazepam-sensitive' (DS) conformations. In contrast, only the imidazobenzodiazepinone Ro 15-4513 has been shown to exhibit a high affinity for the 'diazepam-insensitive' (DI) conformation of benzodiazepine receptors. We examined a series of 1,4-diazepines containing one or more annelated ring systems for their affinities at DI and DS benzodiazepine receptors, several 1,4-diazepinone carboxylates including Ro 19-4603, Ro 16-6028 and Ro 15-3505 were found to possess high affinities (Ki approximately 2.6-20 nM) for DI. Nonetheless, among the ligands examined, Ro 15-4513 was the only substance with a DI/DS potency ratio approximately 1; other substances had ratios ranging from 13 to greater than 1000. Ligands with high to moderate affinities at DI were previously classified as partial agonists, antagonists, or partial inverse agonists at DS benzodiazepine receptors, but behaved as 'GABA neutral' (antagonist) substances at DI. The identification of several additional high affinity ligands at DI benzodiazepine receptors may be helpful in elucidating the pharmacological and physiological importance of these sites.

  2. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yliniemelae, A.; Gynther, J. (Univ. of Kuopio (Finland)); Konschin, H.; Tylli, H. (Univ. of Helsinki (Finland)); Rouvinen, J. (Univ. of Joensuu (Finland))

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  3. Benzodiazepine receptor ligands: a patent review (2006 -- 2012)

    OpenAIRE

    2013-01-01

    Introduction: Ligands at the benzodiazepine site of the GABAA receptor (GABAA-R) act by modulating the effect of GABAA (g-aminobutyric acid). The selective modulator effects of such ligands are related to the a-subunits type (i.e., a1, a2, a3, and a5), being shown that the a1 subunit is associated with sedative, anticonvulsant and amnesic effects; whereas the a2 and a3 subunits mediate anxiolytic and myorelaxant effects. Recently it was shown the involvement of a5 subunit in...

  4. Fluorescent-labeled ligands for the benzodiazepine receptor - Part 1 : Synthesis and characterization of fluorescent-labeled benzodiazepines

    NARCIS (Netherlands)

    Janssen, MJ; Hulst, R; Kellogg, RM; Hendriks, MMWB; Ensing, K; De Zeeuw, RA

    2000-01-01

    Because radioactive labeled ligands in receptor assays have several disadvantages, we synthesized a number of fluorescent-labeled benzodiazepines. Several fluorophores were attached at different positions of 1,4-benzodiazepine molecules in order to assess the impact of the fluorophores and their cou

  5. Effects of peripheral-type benzodiazepine receptor ligands on Ehrlich tumor cell proliferation.

    Science.gov (United States)

    Sakai, Mônica; Fonseca, Evelise Souza Monteiro; Oloris, Silvia Catarina Salgado; Matsuzaki, Patrícia; Otake, Andréia Hanada; Leite, Kátia Ramos Moura; Massoco, Cristina Oliveira; Dagli, Maria Lúcia Zaidan; Palermo-Neto, João

    2006-11-21

    Peripheral-type benzodiazepine receptors have been found throughout the body, and particularly, in high numbers, in neoplastic tissues such as the ovary, liver, colon, breast, prostate and brain cancer. Peripheral-type benzodiazepine receptor expression has been associated with tumor malignity, and its subcellular localization is important to define its function in tumor cells. We investigated the presence of peripheral-type benzodiazepine receptors in Ehrlich tumor cells, and the in vitro effects of peripheral-type benzodiazepine receptors ligands on tumor cell proliferation. Our results demonstrate the presence of peripheral-type benzodiazepine receptor in the nucleus of Ehrlich tumor cells (85.53+/-12.60%). They also show that diazepam and Ro5-4864 (peripheral-type benzodiazepine receptor agonists) but not clonazepam (a molecule with low affinity for the peripheral-type benzodiazepine receptor) decreased the percentage of tumor cells in G0-G1 phases and increased that of cells in S-G2-M phases. The effects of those agonists were prevented by PK11195 (a peripheral-type benzodiazepine receptor antagonist) that did not produce effects by itself. Altogether, these data suggest that the presence of peripheral-type benzodiazepine receptor within the nucleus of Ehrlich tumor cells is associated with tumor malignity and proliferation capacity.

  6. The active analog approach applied to the pharmacophore identification of benzodiazepine receptor ligands

    Science.gov (United States)

    Tebib, Souhail; Bourguignon, Jean-Jacques; Wermuth, Camille-Georges

    1987-07-01

    Applied to seven potent benzodiazepine-receptor ligands belonging to chemically different classes, the active analog approach allowed the stepwise identification of the pharmacophoric pattern associated with the recognition by the benzodiazepine receptor. A unique pharmacophore model was derived which involves six critical zones: (a) a π-electron rich aromatic (PAR) zone; (b) two electron-rich zones δ1 and δ2 placed at 5.0 and 4.5 Å respectively from the reference centroid in the PAR zone; (c) a freely rotating aromatic ring (FRA) region; (d) an out-of-plane region (OPR), strongly associated with agonist properties; and (e) an additional hydrophobic region (AHR). The model accommodates all presently known ligands of the benzodiazepine receptor, identifies sensitivity to steric hindrance close to the δ1 zone, accounts for R and S differential affinities and distinguishes requirements for agonist versus non-agonist activity profiles.

  7. Triazoloquinazolinediones as novel high affinity ligands for the benzodiazepine site of GABA(A) receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Gidlöf, Ritha; Nielsen, Elsebet Østergaard

    2011-01-01

    Based on a pharmacophore model of the benzodiazepine-binding site of GABA(A) receptors, a series of 2-aryl-2,6-dihydro[1,2,4]triazolo[4,3-c]quinazoline-3,5-diones (structure type I) were designed, synthesized, and identified as high-affinity ligands of the binding site. For several compounds, K...

  8. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.

    1987-10-01

    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for (/sup 3/H)diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with (/sup 3/H)flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines.

  9. Allosteric modulation by benzodiazepine receptor ligands of the GABAA receptor channel expressed in Xenopus oocytes.

    Science.gov (United States)

    Sigel, E; Baur, R

    1988-01-01

    Chick brain mRNA was isolated and injected into Xenopus oocytes. This led to the expression in the surface membrane of functional GABA-activated channels with properties reminiscent of vertebrate GABAA channels. The GABA-induced current was analyzed quantitatively under voltage-clamp conditions. Picrotoxin inhibited this current in a concentration-dependent manner with IC50 = 0.6 microM. The allosteric modulation of GABA currents by a number of drugs acting at the benzodiazepine binding site was characterized quantitatively. In the presence of the benzodiazepine receptor ligands diazepam and clorazepate, GABA responses were enhanced, and in the presence of the convulsant beta-carboline compound methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), they were depressed. Maximal stimulation of the response elicited by 10 microM GABA was 160% with diazepam and 90% with clorazepate, and maximal inhibition was 42% with DMCM, 30% with methyl beta-carboline-3-carboxylate (beta-CCM), 15% with ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5a][1,4]benzodiazepine-3-carboxylate (Ro 15-1788), and 12% with ethyl beta-carboline-3-carboxylate (beta-CCE). Half-maximal stimulation was observed with 20 nM diazepam and 390 nM clorazepate, respectively, and half-maximal inhibition with 6 nM DMCM. beta-CCM had a similar effect to DMCM, whereas beta-CCE and Ro 15-1788 showed only small inhibition at low concentrations (less than 1 microM). All the tested carboline compounds and Ro 15-1788 showed a biphasic action and stimulated GABA current at concentrations higher than 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Study on measurement of free ligand concentration in blood and quantitative analysis of brain benzodiazepine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Goromaru, Tsuyoshi; Inoue, Osamu; Itoh, Takashi; Yamasaki, Toshiro.

    1988-11-01

    We developed the method to determine rapidly the free ligand concentration in the blood as an input function for the purpose of quantitative analysis of binding potential (B/sub max//K/sub d/) of brain benzodiazepine receptor in vivo. It was found that the unmetabolized radioligand in the blood after intravenous administration of /sup 3/H-Ro 15 - 1788 could be extracted by chloroform, whereas the radioactive metabolites could not be extracted. And the plasma protein binding of /sup 3/H-Ro 15 - 1788 was determined using an ultrafiltration method. The biodistribution of /sup 3/H-Ro 15 - 1788 in the cerebral cortex, cerebellum and pons-medulla after intravenous administration of the radiotracer in the control and forced-swimmed mice was examined. And the time course of the free ligand concentration in the blood was determined as described above. Further, the binding potential of benzodiazepine receptor in the mouse brain was analyzed using a simple mathematical model. It was suggested that the binding potential of benzodiazepine receptor in the mouse brain was significantly decreased by forced-swimming. In conclusion, it was found that these methods would be useful for quantitative analysis of clinical data in the human brain using /sup 11/C-Ro 15 - 1788 and positron emission tomography (PET).

  11. A fluorescent receptor assay for benzodiazepines using coumarin labeled desethylflumazenil as ligand

    NARCIS (Netherlands)

    Janssen, M.J; Ensing, K; de Zeeuw, R.A

    2001-01-01

    This article describes a novel nonisotopic receptor assay for benzodiazepines with fluorescence detection, As labeled ljgand (coumarin-labeled desethylflumazenil, CLDEF), a metabolite of the benzodiazepine antagonist flumazenil (desetheylflumazenil, Ro15-3890) has been coupled to a coumarin fluoroph

  12. Development of a unique 3D interaction model of endogenous and synthetic peripheral benzodiazepine receptor ligands

    Science.gov (United States)

    Cinone, Nunzia; Höltje, Hans-Dieter; Carotti, Angelo

    2000-11-01

    Different classes of Peripheral-type Benzodiazepine Receptor (PBR) ligands were examined and common structural elements were detected and used to develop a rational binding model based on energetically allowed ligand conformations. Two lipophilic regions and one electrostatic interaction site are essential features for high affinity ligand binding, while a further lipophilic region plays an important modulator role. A comparative molecular field analysis, performed over 130 PBR ligands by means of the GRID/GOLPE methodology, led to a PLS model with both high fitting and predictive values (r2 = 0.898, Q2 = 0.761). The outcome from the 3D QSAR model and the GRID interaction fields computed on the putative endogenous PBR ligands DBI (Diazepam Binding Inhibitor) and TTN (Tetracontatetraneuropeptide) was used to identify the amino acids most probably involved in PBR binding. Three amino acids, bearing lipophilic side chains, were detected in DBI (Phe49, Leu47 and Met46) and in TTN (Phe33, Leu31 and Met30) as likely residues underlying receptor binding. Moreover, a qualitative comparison of the molecular electrostatic potentials of DBI, TTN and selected synthetic ligands indicated also similar electronic properties. Convergent results from the modeling studies of synthetic and endogenous ligands suggest a common binding mode to PBRs. This may help the rational design of new high affinity PBR ligands.

  13. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Lee, D H; Kang, S K; Lee, R H; Ryu, J M; Park, H Y; Choi, H S; Bae, Y C; Suh, K T; Kim, Y K; Jung, Jin Sup

    2004-01-01

    The peripheral benzodiazepine receptor (PBR) has been known to have many functions such as a role in cell proliferation, cell differentiation, steroidogenesis, calcium flow, cellular respiration, cellular immunity, malignancy, and apoptosis. However, the presence of PBR has not been examined in mesenchymal stem cells. In this study, we demonstrated the expression of PBR in human bone marrow stromal cells (hBMSCs) and human adipose stromal cells (hATSCs) by RT-PCR and immunocytochemistry. To determine the roles of PBR in cellular functions of human mesenchymal stem cells (hMSCs), effects of diazepam, PK11195, and Ro5-4864 were examined. Adipose differentiation of hMSCs was decreased by high concentration of PBR ligands (50 microM), whereas it was increased by low concentrations of PBR ligands (<10 microM). PBR ligands showed a biphasic effect on glycerol-3-phosphate dehydrogenase (GPDH) activity. High concentration of PBR ligands (from 25 to 75 microM) inhibited proliferation of hMSCs. However, clonazepam, which does not have an affinity to PBR, did not affect adipose differentiation and proliferation of hMSCs. The PBR ligands did not induce cell death in hMSCs. PK11195 (50 microM) and Ro5-5864 (50 microM) induced cell cycle arrest in the G(2)/M phase. These results indicate that PBR ligands play roles in adipose differentiation and proliferation of hMSCs.

  14. Discriminative stimulus effects of benzodiazepine (BZ)(1) receptor-selective ligands in rhesus monkeys.

    Science.gov (United States)

    McMahon, Lance R; Gerak, Lisa R; Carter, Lawrence; Ma, Chunrong; Cook, James M; France, Charles P

    2002-02-01

    Drug discrimination was used to examine the effects of benzodiazepine (BZ)(1) receptor-selective ligands in rhesus monkeys. In diazepam-treated (5.6 mg/kg, p.o.) monkeys discriminating the nonselective BZ antagonist flumazenil (0.32 mg/kg, s.c.), the BZ(1)-selective antagonist beta-carboline-3-carboxylate-t-butyl ester (beta-CCt) substituted for flumazenil. The onset of action of beta-CCt was delayed with a dose of 5.6 mg/kg beta-CCt substituting for flumazenil 2 h after injection. In monkeys discriminating the nonselective BZ agonist midazolam (0.56 mg/kg, s.c.), the BZ(1)-selective agonists zaleplon (ED(50) = 0.78 mg/kg) and zolpidem (ED(50) = 1.73 mg/kg) substituted for midazolam. The discriminative stimulus effects of midazolam, zaleplon, and zolpidem were antagonized by beta-CCt (1.0-5.6 mg/kg, s.c.), and the effects of zaleplon and zolpidem were also antagonized by flumazenil (0.01-0.32 mg/kg, s.c.). Schild analyses supported the notion of a simple, competitive interaction between beta-CCt and midazolam (slope = -1.08; apparent pA(2) = 5.41) or zaleplon (slope = -1.57; apparent pA(2) = 5.49) and not between beta-CCt and zolpidem. Schild analyses also were consistent with a simple, competitive interaction between flumazenil and zaleplon (slope = -1.03; apparent pA(2) = 7.45) or zolpidem (slope = -1.11; apparent pA(2) = 7.63). These results suggest that the same BZ receptor subtype(s) mediate(s) the effects of midazolam, zolpidem, and zaleplon under these conditions and that selective binding of BZ ligands does not necessarily confer selective effects in vivo.

  15. Azaflavones compared to flavones as ligands to the benzodiazepine binding site of brain GABAA receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Nielsen, Elsebet Østergaard; Liljefors, Tommy

    2008-01-01

    A series of azaflavone derivatives and analogues were prepared and evaluated for their affinity to the benzodiazepine binding site of the GABA(A) receptor, and compared to their flavone counterparts. Three of the compounds, the azaflavones 9 and 12 as well as the new flavone 13, were also assayed...

  16. Effects of hippocampal injections of a novel ligand selective for the alpha 5 beta 2 gamma 2 subunits of the GABA/benzodiazepine receptor on Pavlovian conditioning.

    Science.gov (United States)

    Bailey, David J; Tetzlaff, Julie E; Cook, James M; He, Xiaohui; Helmstetter, Fred J

    2002-07-01

    Benzodiazepine pharmacology has led to greater insight into the neural mechanisms underlying learning and anxiety. The synthesis of new compounds capable of modulating responses produced by these receptors has been made possible by the development of an isoform model of the GABA(A)/benzodiazepine receptor complex. In the current experiment, rats were pretreated with several concentrations of the novel ligand RY024 (an alpha 5 beta 2 gamma 2 -selective benzodiazepine receptor inverse agonist) in the hippocampus and were trained in a Pavlovian fear conditioning paradigm. RY024 independently produced fear-related behavior prior to training and, at the highest concentration, decreased the strength of conditioning observed 24 h after training. These data provide further evidence for the involvement of hippocampal GABA(A)/benzodiazepine receptors in learning and anxiety.

  17. 3-Alkyl- and 3-amido-isothiazoloquinolin-4-ones as ligands for the benzodiazepine site of GABAA receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Nielsen, Elsebet Østergaard; Liljefors, Tommy

    2012-01-01

    Based on a pharmacophore model of the benzodiazepine binding site of the GABA(A) receptors, developed with synthetic flavones and potent 3-carbonylquinolin-4-ones, 3-alkyl- and 3-amido-6-methylisothiazoloquinolin-4-ones were designed, prepared and assayed. The suggestion that the interaction...... interaction with the lipophilic pockets of the pharmacophore model. The most potent 3-alkyl derivative, 3-pentyl-6-methylisothiazoloquinolin-4-one, has an affinity (K(i) value) for the benzodiazepine binding site of the GABA(A) receptors of 13nM. However, by replacing the 3-pentyl with a 3-butyramido group...

  18. The bovine peripheral-type benzodiazepine receptor: A receptor with low affinity for benzodiazepines

    Energy Technology Data Exchange (ETDEWEB)

    Parola, A.L.; Laird, H.E. II (Univ. of Arizona, Tucson (USA))

    1991-01-01

    The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit ({sup 3}H)PK 11195 binding was PK 11195 > protoporphyrin IX > benzodiazepines. ({sup 3}H)PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. ({sup 3}H)PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing and denaturing conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.

  19. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E. (Georgetown Univ. School of Medicine, Washington, DC (USA))

    1989-12-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4{prime}-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit {sup 3}H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations.

  20. New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds.

    Science.gov (United States)

    Anzini, Maurizio; Valenti, Salvatore; Braile, Carlo; Cappelli, Andrea; Vomero, Salvatore; Alcaro, Stefano; Ortuso, Francesco; Marinelli, Luciana; Limongelli, Vittorio; Novellino, Ettore; Betti, Laura; Giannaccini, Gino; Lucacchini, Antonio; Daniele, Simona; Martini, Claudia; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Giorgi, Gianluca; Mascia, Maria Paola; Biggio, Giovanni

    2011-08-25

    3-Substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds were synthesized as central benzodiazepine receptor (CBR) ligands. Most of the compounds showed high affinity for bovine and human CBR, their K(i) values spanning from the low nanomolar to the submicromolar range. In particular, imidazoester 5f was able to promote a massive flow of (36)Cl(-) in rat cerebrocortical synaptoneurosomes overlapping its efficacy profile with that of a typical full agonist. Compound 5f was then examined in mice for its pharmacological effects where it proved to be a safe anxiolytic agent devoid of the unpleasant myorelaxant and amnesic effects of the classical 1,4-benzodiazepines. Moreover, the selectivity of some selected compounds has been assessed in recombinant α(1)β(2)γ(2)L, α(2)β(1)γ(2)L, and α(5)β(2)γ(2)L human GABA(A) receptors. Finally, some compounds were submitted to molecular docking calculations along with molecular dynamics simulations in the Cromer's GABA(A) homology model.

  1. Structure-activity relationship of miltirone, an active central benzodiazepine receptor ligand isolated from Salvia miltiorrhiza Bunge (Danshen)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.M.; Chui, K.Y.; Tan, F.W.; Yang, Y.; Zhong, Z.P.; Lee, C.M.; Sham, H.L.; Wong, H.N. (Chinese Univ. of Hong Kong, Shatin (Hong Kong))

    1991-05-01

    Twenty one o-quinonoid-type compounds and one coumarin-type compound related to miltirone (1) have been synthesized with the aim to identify the key structural elements involved in miltirone's interaction with the central benzodiazepine receptor. On the basis of their inhibition of ({sup 3}H)flunitrazepam binding to bovine cerebral cortex membranes, it is apparent that ring A of miltirone is essential for affinity. Although increasing the size of ring A from six-membered to seven- and eight-membered is well-tolerated, the introduction of polar hydroxyl groups greatly reduces binding affinity. The presence of 1,1-dimethyl groups on ring A is, however, not essential. On the other hand, the isopropyl group on ring C appears to be critical for binding as its removal decreases affinity by more than 30-fold. It can, however, be replaced with a methyl group with minimal reduction in affinity. Finally, linking ring A and B with a -CH{sub 2}CH{sub 2}- bridge results in analogue 89, which is 6 times more potent than miltirone at the central benzodiazepine receptor (IC50 = 0.05 microM).

  2. Increased densities of binding sites for the peripheral-type benzodiazepine receptor ligand [3H]PK 11195 in congenital ornithine transcarbamylase-deficient sparse fur mouse.

    Science.gov (United States)

    Rao, V L; Qureshi, I A; Butterworth, R F

    1993-12-01

    Peripheral-type (mitochondrial) benzodiazepine receptors (PTBR) were studied in the brain and peripheral organs (kidney, liver, and testis) of normal male mice (CD-1/Y) and the congenitally hyperammonemic sparse fur (spf/Y) mouse. Radioligand binding assays were performed with [3H]PK 11195, a ligand with high selectivity and affinity for PTBR. Densities (maximal number of binding sites) of [3H]PK 11195 binding sites were greatest in kidney, followed by liver, testis, and brain. Densities of [3H]PK 11195 binding sites were significantly increased in all tissues of spf mice compared with control animals. In view of the localization of PTBR on the outer mitochondrial membrane, changes in PTBR in spf mouse tissues may modulate the altered mitochondrial function and oxidative metabolism, in brain and peripheral tissues, in congenital OTC deficiency. The positron emission tomography ligand 11C-PK 11195 could find an application in the assessment of end organ dysfunction in this disorder.

  3. The mouse defense test battery: evaluation of the effects of non-selective and BZ-1 (omega1) selective, benzodiazepine receptor ligands.

    Science.gov (United States)

    Griebel, G.; Sanger, D.J.; Perrault, G.

    1996-11-01

    The behavioral effects of several benzodiazepine (BZ) (omega) receptor ligands were compared using the Mouse Defense Test Battery which has been designed to assess defensive reactions of Swiss mice confronted with a natural threat (a rat) and situations associated with this threat. Primary measures taken before, during and after rat confrontation were escape attempts, flight, risk assessment and defensive threat and attack. The drugs used included non-selective BZ (omega) full (clonazepam, clorazepate, chlordiazepoxide and diazepam) and partial (bretazenil and imidazenil) agonists, and BZ-1 (omega1) selective (abecarnil, CL 218,872 and zolpidem) receptor ligands. With the exception of clonazepam, non-selective BZ (omega) receptor compounds only partially affected flight behaviors. The drugs reduced some but not all flight measures in response to the approaching rat, whereas clonazepam attenuated all flight reactions. In contrast to their mild and inconsistent actions on flight, the non-selective BZ (omega) receptor agonists displayed clear effects on risk assessment when subjects were chased by the rat. When contact was forced between the subject and the rat, the non-selective BZ (omega) receptor full agonists reduced defensive threat and attack reactions, while the partial agonists imidazenil and bretazenil only weakly attenuated defensive attack behavior. Similarly, after the rat had been removed from the test area, the non-selective BZ (omega) receptor full agonists displayed greater efficacy than the partial agonists in reducing escape attempts. Overall, results obtained with the selective BZ-1 (omega1) receptor ligands demonstrated either no clear effects or no specific action on defensive reactions. Taken together, these data demonstrate that: (1) non-selective BZ (omega) agonists displaying high intrinsic activity affect a wider range of defensive behaviors than non-selective BZ (omega) receptor partial agonists; (2) the defense system does not involve

  4. Further evidence for differences between non-selective and BZ-1 (omega 1) selective, benzodiazepine receptor ligands in murine models of "state" and "trait" anxiety.

    Science.gov (United States)

    Griebel, G; Sanger, D J; Perrault, G

    1996-01-01

    The behavioural effects of several BZ (omega) receptor ligands were compared in mice using the light/dark choice task, an animal model of "state" anxiety, and the free-exploration test, which has been proposed as an experimental model of "trait" anxiety. The drugs used included non-selective full (alprazolam, clorazepate, chlordiazepoxide and diazepam), partial agonists (bretazenil, imidazenil and Ro 19-8022) and BZ-1 (omega 1) selective receptor ligands (abecarnil, CL 218,872 and zolpidem). In the light/dark choice task, non-selective full agonists elicited clear anxiolytic-like effects increasing time spent in the lit box and simultaneously reducing attempts at entry into the illuminated cage followed by withdrawal responses, a measure of risk assessment. With the exception of abecarnil, both non-selective partial agonists and BZ-1 (omega 1) selective receptor ligands displayed reduced efficacy compared to the full agonists as they decreased risk assessment responses without altering time in the lit box. In addition, the weak anxiolytic-like actions displayed by selective BZ-1 (omega 1) agents were evident only at doses which reduced locomotor activity, indicating that this effect may be non-specific. In the free-exploration test, non-selective BZ (omega) receptor agonists markedly increased the percentage of time spent in the novel compartment and reduced the number of attempts to enter whereas selective BZ-1 (omega 1) receptor ligands displayed a weaker neophobia-reducing effect as they reduced risk assessment responses only. As was the case in the light/dark choice task, this latter effect was observed at locomotor depressant doses. These findings indicate that while both full and partial BZ (omega) receptor agonists are equally effective against "trait" anxiety, full agonists may be superior in reducing "state" anxiety. In addition, the lack of specific effects of selective BZ-1 (omega 1) receptor ligands in reducing both types of anxiety suggests that the BZ

  5. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  6. Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. I. Comparison of diazepam, clonazepam, clobazam and abecarnil.

    Science.gov (United States)

    Löscher, W; Rundfeldt, C; Hönack, D; Ebert, U

    1996-11-01

    We have reported recently that the seizure model and experimental protocol may markedly influence anticonvulsant tolerance and withdrawal characteristics of benzodiazepine (BDZ) receptor ligands so that predictions on tolerance and dependence liability of novel drugs should be based on a battery of chronic experiments. In the present study, we compared BDZ receptor ligands with different intrinsic efficacy and/or gamma-aminobutyric acidA/BDZ receptor subtype selectivity in two seizure models, by using different experimental approaches to assess the tolerance and dependence liability. In one approach, mice were chronically treated with either diazepam, clonazepam, clobazam or the novel anxiolytic and anticonvulsant beta-carboline derivative abecarnil for 4 weeks, at doses which were about equipotent to increase the threshold for myoclonic seizures induced by pentylenetetrazole. Anticonvulsant activity was determined several times during the period of chronic treatment as well as up to 2 weeks after termination of treatment in the same group of animals per drug. The threshold for electroshock-induced tonic seizures was used as a second seizure model in separate groups of mice. In another approach, drug treatment protocols were the same but the seizures were induced only twice during the 4-week period of treatment to reduce the number of trials which could lead to "learned" tolerance. In additional groups of mice, the seizure thresholds were only determined before and after the period of treatment to assess whether repeated seizure induction during the chronic treatment affects the development of dependence. All four drugs lost anticonvulsant activity during the chronic treatment in the different models and experimental approaches, without indication for a significant involvement of learned tolerance. However, marked protocol-related differences were seen with respect to withdrawal symptoms, i.e., measures of physical dependence-inducing properties of the different

  7. Enhancement of peripheral benzodiazepine receptor ligand-induced apoptosis and cell cycle arrest of esophageal cancer cells by simultaneous inhibition of MAPK/ERK kinase.

    Science.gov (United States)

    Sutter, Andreas P; Maaser, Kerstin; Gerst, Bastian; Krahn, Antje; Zeitz, Martin; Scherübl, Hans

    2004-05-01

    Specific ligands of the peripheral benzodiazepine receptor (PBR) activate pro-apoptotic and anti-proliferative signaling pathways. Previously, we found that PBR ligands activated the p38 mitogen-activated protein kinase (MAPK) pathway in esophageal cancer cells, and that the activation of p38MAPK contributed to tumor cell apoptosis and cell cycle arrest. Here, we report that PBR ligands also activate the pro-survival MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway in esophageal cancer cells, which might compromise the efficacy of PBR ligands. Hence, a combination treatment of PBR ligands and MEK inhibitors, which are emerging as promising anticancer agents, was pursued to determine whether this treatment could lead to enhanced apoptosis and cell cycle arrest. Using Western blotting we demonstrated a time- and dose-dependent phosphorylation of ERK1/2 in response to PBR ligands. Apoptosis was investigated by assessment of mitochondrial alterations and caspase-3 activity. Cell cycle arrest was measured by flow cytometric analysis of stained isolated nuclei. The inhibition of MEK/ERK with a pharmacologic inhibitor, 2'-amino-3'-methoxyflavone (PD 98059), resulted in a synergistic enhancement of PBR-ligand-induced growth inhibition, apoptosis and cell cycle arrest. Specifity of the pharmacologic inhibitor was confirmed by the use of 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U 0126), a second MEK/ERK inhibitor, and 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U 0124), a structural analogue of it which does not display any affinity to MEK. Enhanced pro-apoptotic and anti-proliferative effects were observed both in KYSE-140 esophageal squamous cancer and OE-33 adenocarcinoma cells, suggesting that this effect was not cell-type specific. In addition, the PBR-mediated overexpression of the stress response gene (growth arrest and DNA-damage-inducible gene gadd153) was synergistically enhanced by MEK inhibition. This is the

  8. Tissue-specific alterations of binding sites for peripheral-type benzodiazepine receptor ligand [3H]PK11195 in rats following portacaval anastomosis.

    Science.gov (United States)

    Rao, V L; Audet, R; Therrien, G; Butterworth, R F

    1994-05-01

    Kinetics of binding of [3H]PK11195, an antagonist ligand with high selectivity for the peripheral-type (mitochondrial) benzodiazepine receptor (PTBR), was studied in homogenates of cerebral cortex, kidney, heart, and testis of portacaval shunted rats and sham-operated controls. Portacaval anastomosis resulted in a significant two- to threefold increase in the number of [3H]PK11195 binding sites in cerebral cortex and kidney. A reduction in the number of [3H]PK11195 binding sites was observed in testis preparations, while the number of binding sites in the heart remained unaltered. These differences in the response of PTBRs to portacaval anastomosis, in different organs suggest that the physiological function of these receptors and the factors regulating them are modulated by distinct mechanisms. The finding of increased densities of [3H]PK11195 binding sites in brain and kidney following portacaval anastomosis parallels the cellular hypertrophy in these tissues and, together with previous observations of similar increases of these binding sites in brain and kidney in congenital hyperammonemia, suggest a pathophysiologic role for ammonia in these changes. In contrast, the significant loss of [3H]PK11195 binding sites in testicular preparations following portacaval anastomosis together with the known effects of steroid hormones on these sites suggests a role for PTBRs in the pathogenesis of testicular atrophy in chronic liver disease.

  9. Benzodiazepine receptor antagonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy....

  10. Imaging of peripheral-type benzodiazepine receptor in tumor: carbon ion irradiation reduced the uptake of a positron emission tomography ligand [11C]DAC in tumor.

    Science.gov (United States)

    Yamasaki, Tomoteru; Koike, Sachiko; Hatori, Akiko; Yanamoto, Kazuhiko; Kawamura, Kazunori; Yui, Joji; Kumata, Katsushi; Ando, Koichi; Zhang, Ming-Rong

    2010-01-01

    We aimed to determine the effect of carbon ion irradiation on the uptake of N-benzyl-N-11C-methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([(11)C]DAC), a positron emission tomography (PET) ligand for the peripheral-type benzodiazepine receptor (PBR), in tumor cells and tumor-bearing mice. Spontaneous murine fibrosarcoma (NFSa) cells were implanted into the right hind legs of syngeneic C3H male mice. Conditioning irradiation with 290 MeV/u carbon ions was delivered to the 7- to 8-mm tumors In vitro uptake of [(11)C]DAC was measured in single NFSa cells isolated from NFSa-bearing mice after irradiation. In vivo biodistribution of [(11)C]DAC in NFSa-bearing mice was determined by small animal PET scanning and dissection. In vitro autoradiography was performed using tumor sections prepared from mice after PET scanning. In vitro and in vivo uptake of [(11)C]DAC in single NFSa cells and NFSa-bearing mice was significantly reduced by carbon ion irradiation. The decrease in [(11)C]DAC uptake in the tumor sections was mainly due to the change in PBR expression. In conclusion, [(11)C]DAC PET responded to the change in PBR expression in tumors caused by carbon ion irradiation in this study. Thus, [(11)C]DAC is a promising predictor for evaluating the effect of carbon ion radiotherapy.

  11. HZ166, a novel GABAA receptor subtype-selective benzodiazepine site ligand, is antihyperalgesic in mouse models of inflammatory and neuropathic pain

    OpenAIRE

    2011-01-01

    Diminished GABAergic and glycinergic inhibition in the spinal dorsal horn contributes significantly to chronic pain of different origins. Accordingly, pharmacological facilitation of GABAergic inhibition by spinal benzodiazepines (BDZs) has been shown to reverse pathological pain in animals as well as in human patients. Previous studies in GABA(A) receptor point-mutated mice have demonstrated that the spinal anti-hyperalgesic effect of classical BDZs is mainly mediated by GABA(A) receptors co...

  12. Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Mattner, F.; Katsifis, A.; Ballantyne, P. [ANSTO, Radiopharmaceuticals Division, Lucas Heights (Australia); Staykova, M.; Willenborg, D.O. [Australian National University Medical School, The Canberra Hospital, Neurosciences Research Unit, Woden, Canberra (Australia)

    2005-04-01

    Peripheral benzodiazepine receptors (PBRs) are upregulated on macrophages and activated microglia, and radioligands for the PBRs can be used to detect in vivo neuroinflammatory changes in a variety of neurological insults, including multiple sclerosis. Substituted 2-phenyl imidazopyridine-3-acetamides with high affinity and selectivity for PBRs have been prepared that are suitable for radiolabelling with a number of positron emission tomography and single-photon emission computed tomography (SPECT) isotopes. In this investigation, the newly developed high-affinity PBR ligand 6-chloro-2-(4'-iodophenyl)-3-(N,N-diethyl)imidazo[1,2-a]pyridine-3-acetamide, or CLINDE, was radiolabelled with{sup 123}I and its biodistribution in the central nervous system (CNS) of rats with experimental autoimmune encephalomyelitis (EAE) evaluated. EAE was induced in male Lewis rats by injection of an emulsion of myelin basic protein and incomplete Freund's adjuvant containing Mycobacterium butyricum. Biodistribution studies with{sup 123}I-CLINDE were undertaken on EAE rats exhibiting different clinical disease severity and compared with results in controls. Disease severity was confirmed by histopathology in the spinal cord of rats. The relationship between inflammatory lesions and PBR ligand binding was investigated using ex vivo autoradiography and immunohistochemistry on rats with various clinical scores. {sup 123}I-CLINDE uptake was enhanced in the CNS of all rats exhibiting EAE when compared to controls. Binding reflected the ascending nature of EAE inflammation, with lumbar/sacral cord > thoracic cord > cervical cord > medulla. The amount of ligand binding also reflected the clinical severity of disease. Ex vivo autoradiography and immunohistochemistry revealed a good spatial correspondence between radioligand signal and foci of inflammation and in particular ED-1{sup +} cells representing macrophages and microglia. These results demonstrate the ability of {sup 123}I

  13. Autoradiographic localization of benzodiazepine receptor downregulation

    Energy Technology Data Exchange (ETDEWEB)

    Tietz, E.I.; Rosenberg, H.C.; Chiu, T.H.

    1986-01-01

    Regional differences in downregulation of brain benzodiazepine receptors were studied using a quantitative autoradiographic method. Rats were given a 4-week flurazepam treatment known to cause tolerance and receptor downregulation. A second group of rats was given a similar treatment, but for only 1 week. A third group was given a single acute dose of diazepam to produce a brain benzodiazepine-like activity equivalent to that found after the chronic treatment. Areas studied included hippocampal formation, cerebral cortex, superior colliculus, substantia nigra, dorsal geniculate nucleus, lateral amygdala and lateral hypothalamus. There was a regional variation in the degree of downregulation after 1 week of flurazepam treatment, ranging from 12% to 25%. Extending the flurazepam treatment to 4 weeks caused little further downregulation in those areas studied, except for the pars reticulata of the substantia nigra, which showed a 13% reduction in (/sup 3/H)flunitrazepam binding after 1 week and a 40% reduction after 4 weeks of treatment. In a few areas, such as the lateral hypothalamus, no significant change in binding was found after 4 weeks. Acute diazepam treatment caused no change in binding. This latter finding as well as results obtained during the development of the methodology show that downregulation was not an artifact due to residual drug content of brain slices. The regional variations in degree and rate of downregulation suggest areas that may be most important for benzodiazepine tolerance and dependence and may be related to the varying time courses for tolerance to different benzodiazepine actions.

  14. The benzodiazepine receptor in rat brain and its interaction with ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Martin, I.L.; Doble, A.

    1983-06-01

    (3H)Ethyl beta-carboline-3-carboxylate ((3H) beta-CCE) binds to a homogeneous population of recognition sites in rat whole brain membranes with high affinity. The (3H)beta-CCE binding is completely displaceable by low concentrations of a number of benzodiazepines with similar potencies found when using a 3H-benzodiazepine as the ligand. This suggests that the recognition sites for beta-CCE and the benzodiazepines are identical or that they are involved in a close interaction. The binding of (3H)beta-CCE does not obey simple mass-action kinetics. (3H)Flunitrazepam dissociation from its receptor population is biphasic, and different methods of initiation of this dissociation indicate that cooperative interactions take place within the receptor population. We conclude that the benzodiazepine receptor is a single entity that can exist in two conformations, the equilibrium between which may be controlled by some as yet unidentified factor.

  15. Improved synthesis of the peripheral benzodiazepine receptor ligand [{sup 11}C]DPA-713 using [{sup 11}C]methyl triflate

    Energy Technology Data Exchange (ETDEWEB)

    Thominiaux, C. [Service Hospitalier Frederic Joliot, Departement de Recherche Medicale, CEA/DSV, 4 place du General Leclerc, F-91401 Orsay (France); Dolle, F. [Service Hospitalier Frederic Joliot, Departement de Recherche Medicale, CEA/DSV, 4 place du General Leclerc, F-91401 Orsay (France); James, M.L. [Department of Pharmacology, University of Sydney, NSW 2006 (Australia)] (and others)

    2006-05-15

    Recently, the pyrazolopyrimidine, [{sup 11}C] N,N-Diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethylpyrazolo [1,5-a]pyrimidin-3-yl]acetamide (DPA-713) has been reported as a new promising marker for the study of peripheral benzodiazepine receptors with positron emission tomography. In the present study, DPA-713 has been labelled from the corresponding nor-analogue using [{sup 11}C]methyl triflate (CH{sub 3}OTf). Conditions for HPLC were also modified to include physiological saline (aq. 0.9% NaCl)/ethanol:60/40 as mobile phase making it suitable for injection. The total time of radiosynthesis, including HPLC purification, was 18-20 min. This reported synthesis of [{sup 11}C]DPA-713, using [{sup 11}C]CH{sub 3}OTf, resulted in an improved radiochemical yield (30-38%) compared to [{sup 11}C]methyl iodide (CH{sub 3}I) (9) with a simpler purification method. This ultimately enhances the potential of [{sup 11}C]DPA-713 for further pharmacological and clinical evaluation. These improvements make this radioligand more suitable for automated synthesis which is of benefit where multi-dose preparations and repeated syntheses of radioligand are required.

  16. Ethanol-related changes in benzodiazepine receptor ligand modulation of GABA[sub A] receptor-operated chloride channels: Relevance to ethanol tolerance and dependence

    Energy Technology Data Exchange (ETDEWEB)

    Buck, K.J.

    1990-01-01

    This study focuses on how ethanol exposure affects biochemical processes associated with the GABA[sub A] complex in the mammalian CNS, and examines the role of these changes in the development of alcohol tolerance and withdrawal. In vitro studies of control mice and those acutely or chronically exposed to alcohol were conducted. Radioligand binding using the low-affinity GABA[sub A] receptor-selective antagonist [[sup 3]H]SR95531 showed no changes in saturation binding analysis of receptor affinity or density. Muscimol-activated [sup 36]Cl[sup [minus

  17. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders.

    Science.gov (United States)

    Papadopoulos, V; Lecanu, L; Brown, R C; Han, Z; Yao, Z-X

    2006-01-01

    The peripheral-type benzodiazepine receptor is a mitochondrial protein expressed at high levels in steroid synthesizing tissues, including the glial cells of the brain. Peripheral-type benzodiazepine receptor binds cholesterol with high affinity and is a key element of the cholesterol mitochondrial import machinery responsible for supplying the substrate cholesterol to the first steroidogenic enzyme, thus initiating and maintaining neurosteroid biosynthesis. Neurosteroid formation and metabolism of steroid intermediates are critical components of normal brain function. Peripheral-type benzodiazepine receptor also binds with high affinity various classes of compounds. Upon ligand activation peripheral-type benzodiazepine receptor-dependent cholesterol transport into mitochondria is accelerated leading in increased formation of neuroactive steroids. These steroids, such as allopregnanolone, have been shown to be involved in various neurological disorders, such as anxiety and mood disorders. Thus, peripheral-type benzodiazepine receptor drug ligand-induced neuroactive steroid formation offers a means to regulate brain dysfunction. Peripheral-type benzodiazepine receptor basal expression is upregulated in a number of neuropathologies, including gliomas and neurodegenerative disorders, as well as in various forms of brain injury and inflammation. In Alzheimer's disease pathology neurosteroid biosynthesis is altered and a decrease in the intermediate 22R-hydroxycholesterol levels is observed. This steroid was found to exert neuroprotective properties against beta-amyloid neurotoxicity. Based on this observation, a stable spirostenol derivative showing to display neuroprotective properties was identified, suggesting that compounds developed based on critical intermediates of neurosteroid biosynthesis could offer novel means for neuroprotection. In conclusion, changes in peripheral-type benzodiazepine receptor and neurosteroid levels are part of the phenotype seen in

  18. Characterization of ( sup 3 H)alprazolam binding to central benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.T.; Mahan, D.R.; Smith, R.B.; Wamsley, J.K. (Neuropsychiatric Research Institute, Fargo, ND (USA))

    1990-10-01

    The binding of the triazolobenzodiazepine ({sup 3}H)alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat brain. Studies using nonequilibrium and equilibrium binding conditions for ({sup 3}H)alprazolam resulted in high specific to nonspecific (signal to noise) binding ratios. The binding of ({sup 3}H)alprazolam was saturable and specific with a low nanomolar affinity for benzodiazepine receptors in the rat brain. The Kd was 4.6 nM and the Bmax was 2.6 pmol/mg protein. GABA enhanced ({sup 3}H)alprazolam binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptor sites had a very weak or negligible effect on ({sup 3}H)alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other benzodiazepines in its class.

  19. Reduction of group II metabotropic glutamate receptors during development of benzodiazepine dependence.

    Science.gov (United States)

    Okamoto, Ritsuko; Itoh, Yoshinori; Murata, Yusuke; Kobayashi, Daisuke; Hosoi, Masako; Mine, Kazunori

    2013-01-01

    Prolonged use of benzodiazepines often leads to dependence and withdrawal syndrome. However, the cellular mechanisms underlying benzodiazepine dependence have not been fully clarified. Several investigators have shown an involvement of metabotropic glutamate receptors (mGluRs) in the pathophysiology of dependence or withdrawal. This study was performed to elucidate the role of mGluRs in benzodiazepine dependence. Withdrawal signs were precipitated in mice by flumazenil injection (25 mg/kg) after continuous subcutaneous infusion of benzodiazepines for 7 days, and the effects of several Gi-coupled receptor ligands on forskolin-stimulated cyclic AMP accumulation were examined in the cerebral cortex of mice. The mRNA expression for mGluRs was determined by RT-PCR. A single injection of flumazenil precipitated typical withdrawal signs such as tail elevation and tremor in mice treated with diazepam or alprazolam, but not quazepam. The inhibitory effect of nonselective mGluR ligands on adenylate cyclase activity was diminished in mice that showed signs of benzodiazepine withdrawal. The mRNA expression levels of mGluR2 and mGluR3 were lowered in the cerebral cortex of mice pretreated with diazepam or alprazolam. Our findings suggest that the reduction in the expression of group II mGluRs subunits may be involved in the development of benzodiazepine dependence.

  20. Affinity of 3-acyl substituted 4-quinolones at the benzodiazepine site of GABAA receptors

    DEFF Research Database (Denmark)

    Lager, Erik; Nilsson, Jakob; Nielsen, Elsebet Østergaard

    2008-01-01

    The finding that alkyl 1,4-dihydro-4-oxoquinoline-3-carboxylate and N-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxamide derivatives may be high-affinity ligands at the benzodiazepine binding site of the GABA(A) receptor, prompted a study of 3-acyl-1,4-dihydro-4-oxoquinoline (3-acyl-4-quinolones......). In general, the affinity of the 3-acyl derivatives was found to be comparable with the 3-carboxylate and the 3-carboxamide derivatives, and certain substituents (e.g., benzyl) in position 6 were again shown to be important. As it is believed that the benzodiazepine binding site is situated between an alpha...

  1. Benzodiazepine receptor antagonists for acute and chronic hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Kjaergard, L L; Gluud, C

    2001-01-01

    The pathogenesis of hepatic encephalopathy is unknown. It has been suggested that liver failure leads to the accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition which may progress to coma. Several trials have assessed benzodiazepine receptor...

  2. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  3. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea;

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA......-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar...... limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e...

  4. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  5. Flumazenil-sensitive dose-related physical dependence in planarians produced by two benzodiazepine and one non-benzodiazepine benzodiazepine-receptor agonists.

    Science.gov (United States)

    Raffa, Robert B; Cavallo, Federica; Capasso, Anna

    2007-06-14

    Two benzodiazepine (midazolam and clorazepate) and one non-benzodiazepine (zolpidem) benzodiazepine-receptor agonists produced dose-related physical dependence, as evidenced by abstinence-induced decrease in planarian locomotor velocity (pLMV) when drug-exposed planarians were placed into drug-free water, but not when they were placed into drug-containing water (i.e., an abstinence-induced withdrawal, since the effect was only obtained in the removal of drug and not in the continued presence of drug). We have previously shown that the decrease in pLMV is associated with specific and transient withdrawal signs. In the present study, the selective benzodiazepine-receptor antagonist flumazenil significantly antagonized (Pbenzodiazepine-receptor agonists, for two different chemical categories, produce dose-related physical dependence manifested as abstinence-induced withdrawal in this simple and convenient model, and (2) in the absence of cloning or radioligand binding literature, suggest a possible specific interaction site (receptor?) for these compounds in planarians.

  6. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A Benzodiazepine Receptor Model

    Directory of Open Access Journals (Sweden)

    Terry Clayton

    2015-01-01

    Full Text Available An updated model of the GABA(A benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1 which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM, SH-053-2′F-R-CH3 (2, has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A receptors.

  7. Benzodiazepine effect of {sup 125}I-iomazenil-benzodiazepine receptor binding and serum corticosterone level in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, Nobuyoshi [Proton Medical Research Center, University of Tsukuba, Ibaragi, 305-8575 (Japan)]. E-mail: gzl13162@nifty.ne.jp; Ogi, Shigeyuki [Department of Radiology, Jikei University School of Medicine, Tokyo, 105-8461 (Japan); Uchiyama, Mayuki [Department of Radiology, Jikei University School of Medicine, Tokyo, 105-8461 (Japan); Mori, Yutaka [Department of Radiology, Jikei University School of Medicine, Tokyo, 105-8461 (Japan)

    2005-01-01

    To test the change in free or unoccupied benzodiazepine receptor (BZR) density in response to diazepam, we investigated {sup 125}I-iomazenil ({sup 125}I-IMZ) binding and serum corticosterone levels in a rat model. Wistar male rats, which received psychological stress using a communication box for 5 days, were divided into two groups according to the amount of administered diazepam: no diazepam [D (0)] group and 10 mg/kg per day [D (10)] group of 12 rats each. The standardized uptake value (SUV) of {sup 125}I-IMZ of the D (10) group were significantly lower (P<.05) than those of the D (0) group in the frontal, parietal and temporal cortices, globus pallidus, hippocampus, amygdala and hypothalamus. The serum corticosterone level ratio in the D (10) group was significantly lower than that in the D (0) group (P<.05). From the change in serum corticosterone levels, diazepam attenuated the psychological stress produced by the physical stress to animals in adjacent compartments. From the reduced binding of {sup 125}I-IMZ, it is clear that diazepam competed with endogenous ligand for the free BZR sites, and the frontal, parietal and temporal cortices, globus pallidus, hippocampus, amygdala and hypothalamus are important areas in which {sup 125}I-IMZ binding is strongly affected by administration of diazepam.

  8. Central benzodiazepine receptor imaging and quantitation with single photon emission computerised tomography

    DEFF Research Database (Denmark)

    Okocha, C I; Kapczinski, F; Lassen, N

    1995-01-01

    This review discusses the current use of single photon emission computerised tomography (SPECT) for central benzodiazepine receptor imaging and quantitation. The general principles underlying SPECT imaging and receptor quantitation methods such as the kinetic, pseudo-equilibrium and steady...

  9. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  10. Abuse and dependence liability of benzodiazepine-type drugs: GABA(A) receptor modulation and beyond.

    Science.gov (United States)

    Licata, Stephanie C; Rowlett, James K

    2008-07-01

    Over the past several decades, benzodiazepines and the newer non-benzodiazepines have become the anxiolytic/hypnotics of choice over the more readily abused barbiturates. While all drugs from this class act at the GABA(A) receptor, benzodiazepine-type drugs offer the clear advantage of being safer and better tolerated. However, there is still potential for these drugs to be abused, and significant evidence exists to suggest that this is a growing problem. This review examines the behavioral determinants of the abuse and dependence liability of benzodiazepine-type drugs. Moreover, the pharmacological and putative biochemical basis of the abuse-related behavior is discussed.

  11. Effects of vitamin B-6 nutrition on benzodiazepine (BDZ) receptor binding in the developing rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Borek, J.P.; Guilarte, T.R. (Johns Hopkins Univ., Baltimore, MD (United States))

    1990-02-26

    A dietary deficiency of vitamin B-6 promotes seizure activity in neonatal animals and human infants. Previous studied have shown that neonatal vitamin B-6 deprivation results in reduced levels of brain gamma-aminobutyric acid (GABA) and increased binding at the GABA site of the GABA/BDZ receptor complex. Since the GABA and BDZ receptors are allosterically linked, this study was undertaken to determine if vitamin B-6 deprivation had an effect on BDZ receptor binding. Benzodiazepine receptor binding isotherms using {sup 3}H-flunitrazepam as ligand were performed in the presence and absence of 10 {mu}M GABA. The results indicate a significant increase in the binding affinity (Kd) in the presence of GABA in cerebellar membranes from deficient rat pups at 14 days of age with no effect on receptor number (Bmax). By 28 days of age, the increase in Kd was no longer present. No change in Kd or Bmax was observed in cortical tissue from deficient animals at 14 or 28 days of age. Preliminary studies of GABA-enhancement of {sup 3}H-flunitrazepam binding indicate that vitamin B-6 deficiency also induces alterations in the ability of GABA to enhance BZD receptor binding. In summary, these results indicate that the effects of vitamin B-6 deprivation on BDZ receptor binding are region specific and age related.

  12. GABA(A) receptor physiology and its relationship to the mechanism of action of the 1,5-benzodiazepine clobazam.

    Science.gov (United States)

    Sankar, Raman

    2012-03-01

    Clobazam was initially developed in the early 1970s as a nonsedative anxiolytic agent, and is currently available as adjunctive therapy for epilepsy and anxiety disorders in more than 100 countries. In October 2011, clobazam (Onfi™; Lundbeck Inc., Deerfield, IL, USA) was approved by the US FDA for use as adjunctive therapy for the treatment of seizures associated with Lennox-Gastaut syndrome in patients aged 2 years and older. It is a long-acting 1,5-benzodiazepine whose structure distinguishes it from the classic 1,4-benzodiazepines, such as diazepam, lorazepam and clonazepam. Clobazam is well absorbed, with peak concentrations occurring linearly 1-4 hours after administration. Both clobazam and its active metabolite, N-desmethylclobazam, are metabolized in the liver via the cytochrome P450 pathway. The mean half-life of N-desmethylclobazam (67.5 hours) is nearly double the mean half-life of clobazam (37.5 hours). Clobazam was synthesized with the anticipation that its distinct chemical structure would provide greater efficacy with fewer benzodiazepine-associated adverse effects. Frequently reported adverse effects of clobazam therapy include dizziness, sedation, drowsiness and ataxia. Evidence gathered from approximately 50 epilepsy clinical trials in adults and children indicated that the sedative effects observed with clobazam treatment were less severe than those reported with 1,4-benzodiazepines. In several studies of healthy volunteers and patients with anxiety, clobazam appeared to enhance participants' performance in cognitive tests, further distinguishing it from the 1,4-benzodiazepines. The anxiolytic and anticonvulsant effects of clobazam are associated with allosteric activation of the ligand-gated GABA(A) receptor. GABA(A) receptors are found extensively throughout the CNS, occurring synaptically and extrasynaptically. GABA(A) receptors are composed of five protein subunits, two copies of a single type of α subunit, two copies of one type of

  13. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f...

  14. Extraction and purification from Ceratonia siliqua of compounds acting on central and peripheral benzodiazepine receptors.

    Science.gov (United States)

    Avallone, R; Cosenza, F; Farina, F; Baraldi, C; Baraldi, M

    2002-08-01

    The presence of molecules with high affinity for central and peripheral benzodiazepine receptors was determined in the pod and leaves of Ceratonia siliqua (carob). The amount of the substances able to selectively bind the central benzodiazepine receptor recovered from carob pods and leaves was respectively 12.17 and 18.7 ng diazepam equivalent/g. The amount of compounds active on peripheral benzodiazepine receptor in both pods and leaves was higher in comparison with the central one, being 49.83 and 40.00 PK 11195 equivalent/g, respectively. In particular the compounds acting on peripheral benzodiazepine receptors were found to be extremely concentrated in the young leaves (2572.57 ng PK 11195 equivalent/g). The presence of substances with central benzodiazepine activity in carob extracts seems of great importance in view of the possibility to use carob extract as potential natural products with anxiolytic-sedative effects. Moreover, the prevalence in leaves of substances acting on peripheral benzodiazepine receptor suggests the possible utilisation of leave extracts as chemopreventive agents.

  15. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, L.; Pazdernik, T.L.; Cross, R.S.; Nelson, S.R.; Samson, F.E. (Univ. of Kansas Medical Center, Kansas City (USA))

    (3H)Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, (3H)flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors.

  16. Increased densities of peripheral-type benzodiazepine receptors in brain autopsy samples from cirrhotic patients with hepatic encephalopathy.

    Science.gov (United States)

    Lavoie, J; Layrargues, G P; Butterworth, R F

    1990-05-01

    Peripheral-type benzodiazepine receptors were evaluated using the specific ligand [3H]-PK 11195 in brain homogenates from nine cirrhotic patients who died in hepatic coma and from an equal number of age-matched control subjects. Histopathological studies showed evidence of severe Alzheimer type II astrocytosis in the brains of all cirrhotic patients. Saturation-binding assays revealed a single saturable binding site for [3H]-PK 11195 in brain, with affinities in the 2- to 3-nmol/L range. Diazepam was found to be a relatively potent inhibitor of 3H-PK 11195 binding (IC50 = 253 nmol/L), whereas the central benzodiazepine antagonist Ro 15-1788 displaced 3H-PK 11195 binding with low affinity (IC50 greater than 40 mumols/L). Densities of [3H]-PK 11195 binding sites were found to be increased by 48% (p less than 0.01) and 25% (p less than 0.05) in frontal cortex and caudate nuclei, respectively, from cirrhotic patients. Densities of [3H]-PK 11195 binding sites in frontal cortex from two nonencephalopathic cirrhotic patients were not significantly different from control values. No concomitant changes of affinities of these binding sites were observed. Because it has been suggested that peripheral-type benzodiazepine receptors may be localized on mitochondrial membranes and may therefore be involved in cerebral oxidative metabolism, the alterations observed in this study could be of pathophysiological significance in hepatic encephalopathy.

  17. Regulation of renal peripheral benzodiazepine receptors by anion transport inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Basile, A.S.; Lueddens, W.M.; Skolnick, P.

    1988-01-01

    The in vitro and in vivo regulation of (/sup 3/H)Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) by ion transport/exchange inhibitors was studied in the kidney. The potencies of 9-anthroic acid, furosemide, bumetanide, hydrochlorothiazide and SITS as inhibitors of (/sup 3/H)Ro 5-4864 binding to renal membranes were consistent with their actions as anion transport inhibitors (Ki approx. = 30 - 130 ..mu..M). In contrast, spironolactone, amiloride, acetazolamide, and ouabain were less potent (Ki=100-1000 ..mu..M). Administration of furosemide to rats for five days resulted in a profound diuresis accompanied by a significant increase in PBR density (43%) that was apparent by the fifth day of treatment. Administration of hydrochlorothiazide or Ro 5-4864 for five days also caused diuresis and increased renal PBR density. Both the diuresis and increased density of PBR produced by Ro 5-4864 were blocked by coadministration of PK 11195, which alone had no effect on either PBR density or urine volume. The equilibrium binding constants of (/sup 3/H)Ro 5-4864 to cardiac membranes were unaffected by administration of any of these drugs. These findings suggest that renal PBR may be selectively modulated in vivo and in vitro by administration of ion transport/exchange inhibitors. 36 references, 4 tables.

  18. Daily rhythms of benzodiazepine receptor numbers in frontal lobe and cerebellum of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, M.J.W.; Volicer, L.; Moore-Ede, M.C.; Borsook, D.

    1985-06-17

    Behavioral, biochemical and neurophysiological evidence suggests that gamma-aminobutyric acid (GABA) may play an important role in the neural control of circadian rhythms. Central receptors for benzodiazepines are functionally coupled to GABA receptors and appear to mediate behavioral effects of exogenous benzodiazepines. The binding of /sup 3/H-flunitrazepam to synaptic plasma membranes prepared from various regions of rat brain was examined at 6-hour intervals over a 36-hour period. Prominent daily rhythms in receptor number (Bmax) were observed in the frontal lobe and the cerebellum but not in the temporoparietal regions, hypothalamus or medulla/pons. Binding was highest during periods of sleep/low activity with a significant decrease occurring just prior to waking. These results suggest that daily fluctuations in benzodiazepine receptor numbers may be related to the temporal control of sleep/wake and muscle activity cycles. 23 references, 1 figure, 1 table.

  19. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise

    2013-01-01

    We present a full-length a1b2c2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate...

  20. Molecular size of benzodiazepine receptor in rat brain in situ: evidence for a functional dimer?

    Science.gov (United States)

    Doble, A.; Iversen, L. L.

    1982-02-01

    Benzodiazepine tranquillizers such as diazepam and chlordiazepoxide interact with high-affinity binding sites in nervous tissue1,2. The correlation between the affinities of various benzodiazepines for these sites with their clinical potencies and activity in behavioural and electrophysiological tests in animals suggests that the sites represent the functional `receptor' whereby benzodiazepines exert their effects3. The intimate involvement of benzodiazepines with γ-aminobutyric acid (GABA) and chloride channels raised the possibility that the benzodiazepine binding site (BDZ-R) may be a protein in the GABA receptor-effector complex4,5. GABA agonists enhance the affinity of BDZ-R for benzodiazepines6, although BDZ-R is distinct from the GABA receptor itself3. However, electrophysiological evidence suggests that the action of benzodiazepines is chloride channel, rather than receptor, directed7-10. Several attempts have been made to measure the molecular weight (Mr) of BDZ-R after solubilization from brain membranes: treatment with 1% Triton X-100 followed by assay of binding activity in solute fractions separated according to molecular weight suggested11 a value of ~200,000, photoaffinity labelling of BDZ-R with 3H-flunitrazepam (3H-FNZ) followed by more rigorous solubilization and gel chromatography indicated12,13 an apparent Mr of ~55,000 and a third approach14 a value of ~100,000. The measured molecular weight seems to depend critically on the solubilization procedure used. Chang et al.15 recently described the use of radiation inactivation to determine the size of BDZ-R in situ in calf brain membranes, and estimated a Mr, of 216,000. We have also used this approach; the results reported here indicate a Mr of between 90,000 and 100,000, but this is reduced to 60,000-63,000 in membranes pretreated with GABA, suggesting the disaggregation of a normally dimeric form.

  1. The "peripheral-type" benzodiazepine (omega 3) receptor in hyperammonemic disorders.

    Science.gov (United States)

    Desjardins, Paul; Butterworth, Roger F

    2002-01-01

    Increased levels of brain ammonia occur in both congenital and acquired hyperammonemic syndromes including hepatic encephalopathy, fulminant hepatic failure, Reye's syndrome and congenital urea cycle disorders. In addition to its effect on neurotransmission and energy metabolism, ammonia modulates the expression of various genes including the astrocytic "peripheral-type" benzodiazepine (or omega 3) receptor (PTBR). Increased expression of the isoquinoline carboxamide binding protein (IBP), one of the components of the PTBR complex, is observed in brain and peripheral tissues following chronic liver failure as well as in cultured astrocytes exposed to ammonia. Increased densities of binding sites for the PTBR ligand [3H]-PK11195 are also observed in these conditions as well as in brains of animals with acute liver failure, congenital urea cycle disorders and in patients who died in hepatic coma. The precise role of PTBR in brain function has not yet fully elucidated, but among other functions, PTBR mediates the transport of cholesterol across the mitochondrial membrane and thus plays a key role in the biosynthesis of neurosteroids some of which modulate major neurotransmitter systems such as the gamma-aminobutyric acid (GABA(A)) and glutamate (N-methyl-D-aspartate (NMDA)) receptors. Activation of PTBR in chronic and acute hyperammonemia results in increased synthesis of neurosteroids which could lead to an imbalance between excitatory and inhibitory neurotransmission in the CNS. Preliminary reports suggest that positron emission tomography (PET) studies using [11C]-PK11195 may be useful for the assessment of the neurological consequences of chronic liver failure.

  2. Peripheral benzodiazepine receptors and cerebral ischemia%外周型苯二氮革受体与脑缺血

    Institute of Scientific and Technical Information of China (English)

    程超; 陈春富

    2009-01-01

    1he increased peripheral benzodiazepine receptors are more significant than normal ones after cerebral ischemia. Its main reactions are the multiple pathological changes,including microglial activation, participating in neuroinflammation response, and regulation of mitochondrial function. Using radionuclide-laheled specific ligands of the peripheral benzodiaz-epine receptor (such as PK11195) for in vivo imaging contribute to the location and quantitative detection for brain injury and the study of the pathophysiological changes after cerebral ischemi-a. In addition, this receptor is promising to become a new target of neuroprotective treatment.This article reviews the recent progress in research on peripheral benzodiazepine receptors and cerebral ischemia.%脑缺血后,外周型苯二氮革受体较正常时有明显增加,主要反应为小胶质细胞的活化、参与神经炎症反应以及线粒体功能调节等多途径病理学变化.应用放射性核素标记的特异性外周型苯二氮革受体配体(如PK11195)进行体内成像,有助于对脑损伤进行定位和定量检测以及研究脑缺血后病理生理学改变.另外,该受体还有望成为神经保护治疗的新靶点.文章就外周型苯二氮革受体与脑缺血的研究进展做一综述.

  3. CB receptor ligands from plants.

    Science.gov (United States)

    Woelkart, Karin; Salo-Ahen, Outi M H; Bauer, Rudolf

    2008-01-01

    Advances in understanding the physiology and pharmacology of the endogenous cannabinoid system have potentiated the interest of cannabinoid receptors as potential therapeutic targets. Cannabinoids have been shown to modulate a variety of immune cell functions and have therapeutic implications on central nervous system (CNS) inflammation, chronic inflammatory conditions such as arthritis, and may be therapeutically useful in treating autoimmune conditions such as multiple sclerosis. Many of these drug effects occur through cannabinoid receptor signalling mechanisms and the modulation of cytokines and other gene products. Further, endocannabinoids have been found to have many physiological and patho-physiological functions, including mood alteration and analgesia, control of energy balance, gut motility, motor and co-ordination activities, as well as alleviation of neurological, psychiatric and eating disorders. Plants offer a wide range of chemical diversity and have been a growing domain in the search for effective cannabinoid ligands. Cannabis sativa L. with the known plant cannabinoid, Delta(9-)tetrahydrocannabinol (THC) and Echinacea species with the cannabinoid (CB) receptor-binding lipophilic alkamides are the best known herbal cannabimimetics. This review focuses on the state of the art in CB ligands from plants, as well their possible therapeutic and immunomodulatory effects.

  4. [Participation of GABA--benzodiazepine receptor complex in the anxiolytic effect of piracetam].

    Science.gov (United States)

    Moldavkin, G M; Voronina, T A; Neznamov, G G; Maletova, O K; Eliava, N V

    2006-01-01

    It is established that bicuculline, picrotoxin, and flumazenil (agents blocking different sites of GABA receptor) decrease the anxiolytic effect of piracetam as manifested in the conflict situation test. The most pronounced interaction was observed between piracetam and flumazenyl. On the background of antagonist action, piracetam inhibited the effects of flumazenil (but not those of bicuculline and picrotoxin). Based on these data, it is assumed that the anxiolytic effect of piracetam is mediated to some extent by benzodiazepine site of the GABA-benzodiazepine receptor complex.

  5. GABAA receptor γ2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines

    Directory of Open Access Journals (Sweden)

    De Blas Angel L

    2005-04-01

    Full Text Available Abstract Background Gamma-aminobutyric acid type A receptors (GABAA-Rs are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The γ2 subunit is highly expressed throughout the brain. Global γ2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous γ2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the γ2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated γ2 expression, i.e., γ2 knockdown mice. Results Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the γ2 gene. Knockdown mice, on average, showed a 65% reduction of γ2 subunit mRNA compared to controls; however γ2 gene expression was highly variable in these mice, ranging from 10–95% of normal. Immunohistochemical studies demonstrated that γ2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the γ2 knockdown mouse line can be used to create γ2 global knockout mice by crossing to a general deleter cre-expressing mouse line. Conclusion We conclude that: 1 insertion of a neomycin resistance gene into intron 8 of the γ2 gene variably

  6. Comparison of blood flow and distribution of benzodiazepine receptors in focal epilepsy: Preliminary results of a SPECT study. Vergleich von Blutfluss und Benzodiazepin-Rezeptorverteilung bei fokaler Epilepsie: Vorlaeufige Ergebnisse einer SPECT-Studie

    Energy Technology Data Exchange (ETDEWEB)

    Bartenstein, P.; Schober, O.; Lottes, G.; Boettger, I. (Muenster Univ. (Germany, F.R.). Klinik und Poliklinik fuer Nuklearmedizin); Ludolph, A. (Muenster Univ. (Germany, F.R.). Klinik und Poliklinik fuer Neurologie); Beer, H.F. (Paul Scherrer Inst., Wuerenlingen (Switzerland))

    1989-10-01

    {sup 99m}Tc-HMPAO-SPECT and SPECT with the {sup 123}I-labelled benzodiazepine (Bz) receptor ligand Ro 16-0154 were performed in 10 patients suffering from partial epilepsy, without cerebral lesion in MRT or CT.2 h p.i. of Ro 16-0154 the distribution of activity correlated with the known distribution of Bz-receptors in the human brain. Perfusion and receptor-binding were found decreased in 7 patients of each study in the suspicious brain-area. {sup 123}I-labelled Ro 16-0154 is suitable for Bz-receptor mapping by SPECT. The decrease of Bz-receptor binding in epileptic foci, as described in PET-studies, was also detected by SPECT in 7 of 10 patients. (orig.).

  7. GABA(A)-benzodiazepine receptor complex sensitivity in 5-HT(1A) receptor knockout mice on a 129/Sv background.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Oosting, R.S.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2002-01-01

    Previous studies in 5-HT(1A) receptor knockout (1AKO) mice on a mixed Swiss Websterx129/Sv (SWx129/Sv) and a pure 129/Sv genetic background suggest a differential gamma-aminobutyric acid (GABA(A))-benzodiazepine receptor complex sensitivity in both strains, independent from the anxious phenotype. To

  8. In Vivo Imaging of Peripheral Benzodiazepine Receptors in Mouse Lungs: A Biomarker of Inflammation

    Directory of Open Access Journals (Sweden)

    Matthew J. Hardwick

    2005-10-01

    Full Text Available The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-(R-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals (p < .05. These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-(R-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.

  9. Blood flow dependence of the intratumoral distribution of peripheral benzodiazepine receptor binding in intact mouse fibrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Amitani, Misato [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan) and Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan)]. E-mail: amitani@sahs.med.osaka-u.ac.jp; Zhang, Ming-Rong [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Noguchi, Junko [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); SHI Accelerator Service, Shinagawa-ku, Tokyo 141-8686 (Japan); Kumata, Katsushi [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Ito, Takehito [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); SHI Accelerator Service, Shinagawa-ku, Tokyo 141-8686 (Japan); Takai, Nobuhiko [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Suzuki, Kazutoshi [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Hosoi, Rie [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan); Inoue, Osamu [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan)

    2006-11-15

    The intratumoral distribution of [{sup 11}C]AC-5216 binding, a novel peripheral benzodiazepine receptor (PBR) ligand, was examined by autoradiography both in vitro and in vivo using a murine fibrosarcoma model. The regional distribution of [{sup 11}C]AC-5216 in a tumor in vivo was significantly heterogeneous; the uptake of [{sup 11}C]AC-5216 was comparatively higher in the outer rim of the tumor and was lower in the central area. In contrast, the images obtained following the injection of [{sup 11}C]AC-5216 with a large amount of nonlabeled PK11195 showed a relatively homogeneous distribution, suggesting that [{sup 11}C]AC-5216 uptake represented specific binding to PBRs. In vitro autoradiograms of [{sup 11}C]AC-5216 binding were also obtained using the section of the fibrosarcoma that was the same as that used to examine in vivo binding. In vitro autoradiographic binding images showed homogeneous distribution, and significant discrepancies of the intratumoral distribution of [{sup 11}C]AC-5216 were observed between in vivo and in vitro images. The in vivo images of [{sup 11}C]AC-5216 uptake, compared with those of [{sup 14}C]iodoantipyrine uptake, obtained by dual autoradiography to evaluate the influence of blood flow revealed the similar intratumoral distributions of both tracers. These results indicate that the delivery process from the plasma to the tumor might be the rate-limiting step for the intratumoral distribution of PBR binding in vivo in a fibrosarcoma model.

  10. Peripheral-type benzodiazepine receptors in bronchoalveolar lavage cells of patients with interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Branley, Howard M. [Imperial College London, Hammersmith Campus, W12 OHS London (United Kingdom)]. E-mail: howard.branley@whittington.nhs.uk; Bois, Roland M. du [Royal Brompton Hospital, SW3 6NP London (United Kingdom); Wells, Athol U. [Royal Brompton Hospital, SW3 6NP London (United Kingdom); Jones, Hazel A. [Imperial College London, Hammersmith Campus, W12 OHS London (United Kingdom)

    2007-07-15

    Introduction: PK11195 is a ligand with high affinity for peripheral benzodiazepine receptors (PBRs), which are present in large numbers in macrophages. PBRs play a role in antioxidant pathways and apoptosis, key factors in control of lung health. Intrapulmonary PBRs, assessed in vivo by positron emission tomography (PET), are decreased in interstitial lung disease (ILD) despite increased macrophage numbers. We wished to ascertain whether the observed decrease in in vivo expression of PBRs in the PET scans could be accounted for by a reduction in PBRs per cell by saturation-binding assays of R-PK11195 in cells obtained by bronchoalveolar lavage (BAL). Methods: We performed receptor saturation-binding assays with [{sup 3}H]-R-PK11195 on a mixed population of cells recovered by BAL to quantify the number of R-PK11195 binding sites per macrophage in 10 subjects with ILD and 10 normal subjects. Results: Receptor affinity [dissociation constant (Kd)] was similar in ILD patients and controls. However, R-PK11195 binding sites per cell [(maximal binding sites available (B {sub max})] were decreased in macrophages obtained by BAL from subjects with ILD compared to normal (P<.0005). Microautoradiography confirmed localization of R-PK11195 to macrophages in a mixed inflammatory cell population obtained by BAL. Conclusion: These results demonstrate that in vitro PBR expression per cell on macrophages obtained by BAL is reduced in patients with ILD indicating a potentially functionally different macrophage phenotype. As PBRs are involved in the orchestration of lung inflammatory responses, this finding offers further insight into the role of macrophages in the pathogenesis of ILDs and offers a potential avenue for pharmacological strategy.

  11. Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET

    DEFF Research Database (Denmark)

    Lassen, N A; Bartenstein, P A; Lammertsma, A A

    1995-01-01

    Carbon-11-labeled flumazenil combined with positron emission tomography (PET) was used to measure the concentration (Bmax) of the benzodiazepine (Bz) receptor in the brain and its equilibrium dissociation constant (KD) for flumazenil in five normal subjects. The steady-state approach was used inj...

  12. Behavioural effects of the benzodiazepine receptor partial agonist RO 16-6028 in mice.

    Science.gov (United States)

    Belzung, C; Misslin, R; Vogel, E

    1989-01-01

    The imidazo-diazepinone RO 16-6028 is a benzodiazepine receptor partial agonist which exhibits some anti-conflict effects in the two-chambered light/dark test without significantly affecting the behaviour of mice confronted with the staircase test. In addition, this drug slightly reduced locomotion and more markedly rearing in a free exploration procedure. These results indicate that RO 16-6028 appears to produce some anxiolytic and sedative properties like full agonists, but with weaker magnitude. This could be related to the benzodiazepine partial agonistic profile of the compound.

  13. A rapid solid-phase extraction method for measurement of non-metabolised peripheral benzodiazepine receptor ligands, [{sup 18}F]PBR102 and [{sup 18}F]PBR111, in rat and primate plasma

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, Andrew, E-mail: andrew.katsifis@ansto.gov.a [ANSTO LifeSciences, Sydney, 2234 (Australia); Loc' h, Christian [ANSTO LifeSciences, Sydney, 2234 (Australia); Henderson, David [Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Sydney, 2050 (Australia); Bourdier, Thomas; Pham, Tien; Greguric, Ivan [ANSTO LifeSciences, Sydney, 2234 (Australia); Lam, Peter [Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Sydney, 2050 (Australia); Callaghan, Paul; Mattner, Filomena [ANSTO LifeSciences, Sydney, 2234 (Australia); Eberl, Stefan [Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Sydney, 2050 (Australia); School of Information Technology, University of Sydney, Sydney, 2006 (Australia); Fulham, Michael [Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Sydney, 2050 (Australia); School of Information Technology, University of Sydney, Sydney, 2006 (Australia); Sydney Medical School, University of Sydney, Sydney, 2006 (Australia)

    2011-01-15

    Objectives: To develop a rapid and reliable method for estimating non-metabolised PBR ligands fluoroethoxy ([{sup 18}F]PBR102)- and fluoropropoxy ([{sup 18}F]PBR111)-substituted 2-(6-chloro-2-phenyl)imidazo[1,2-a]pyridine-3-yl)-N,N-diethylacetamides in plasma. Methods: Rats and baboons were imaged with PET up to 2 h postinjection of [{sup 18}F]PBR102 and [{sup 18}F]PBR111 under baseline conditions, after pre-blocking or displacement with PK11195. Arterial plasma samples were directly analysed by reverse-phase solid-phase extraction (RP-SPE) and RP-HPLC and by normal-phase TLC. SPE cartridges were successively washed with acetonitrile/water mixtures. SPE eluant radioactivity was measured in a {gamma}-counter to determine the parent compound fraction and then analysed by HPLC and TLC for validation. Results: In SPE, hydrophilic and lipophilic radiolabelled metabolites were eluted in water and 20% acetonitrile/water. All non-metabolised [{sup 18}F]PBR102 and [{sup 18}F]PBR111 were in SPE acetonitrile fraction as confirmed by HPLC and TLC analysis. Unchanged (%) [{sup 18}F]PBR102 and [{sup 18}F]PBR111 from SPE analysis in rat and baboon plasma agreed with those from HPLC and TLC analysis. In rats and baboons, the fraction of unchanged tracer followed a bi-exponential decrease, with half-lives of 7 to 10 min for the fast component and >80 min for the slow component for both tracers. Conclusions: Direct plasma SPE analysis of [{sup 18}F]PBR102 and [{sup 18}F]PBR111 can reliably estimate parent compound fraction. SPE was superior to HPLC for samples with low activity; it allows rapid and accurate metabolite analysis of a large number of plasma samples for improved estimation of metabolite-corrected input function during quantitative PET imaging studies.

  14. Interactions between modulators of the GABA(A) receptor: Stiripentol and benzodiazepines.

    Science.gov (United States)

    Fisher, Janet L

    2011-03-05

    Many patients with refractory epilepsy are treated with polytherapy, and nearly 15% of epilepsy patients receive two or more anti-convulsant agents. The anti-convulsant stiripentol is used as an add-on treatment for the childhood epilepsy syndrome known as severe myoclonic epilepsy in infancy (Dravet syndrome). Stiripentol has multiple mechanisms of action, both enhancing GABA(A) receptors and reducing activity of metabolic enzymes that break down other drugs. Stiripentol is typically co-administered with other anti-convulsants such as benzodiazepines which also act through GABA(A) receptor modulation. Stiripentol slows the metabolism of some of these drugs through inhibition of a variety of cytochrome P450 enzymes, but could also influence their effects on GABAergic neurotransmission. Is it rational to co-administer drugs which can act through the same target? To examine the potential interaction between these modulators, we transiently transfected HEK-293T cells to produce α3β3γ2L or α3β3δ recombinant GABA(A) receptors. Using whole-cell patch clamp recordings, we measured the response to each benzodiazepine alone and in combination with a maximally effective concentration of stiripentol. We compared the responses to four different benzodiazepines: diazepam, clonazepam, clobazam and norclobazam. In all cases we found that these modulators were equally effective in the presence and absence of stiripentol. The δ-containing receptors were insensitive to modulation by the benzodiazepines, which did not affect potentiation by stiripentol. These data suggest that stiripentol and the benzodiazepines act independently at GABA(A) receptors and that polytherapy could be expected to increase the maximum effect beyond either drug alone, even without consideration of changes in metabolism.

  15. Protracted treatment with diazepam increases the turnover of putative endogenous ligands for the benzodiazepine/. beta. -carboline recognition site

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, M.; Mocchetti, I.; Ferrarese, C.; Guidotti, A.; Costa, E.

    1987-03-01

    DBI (diazepam-binding inhibitor) is a putative neuromodulatory peptide isolated from rat brain that acts on ..gamma..-aminobutyric acid-benzodiazepine-Cl/sup -/ ionosphore receptor complex inducing ..beta..-carboline-like effects. The authors used a cDNA probe complementary to DBI mRNA and a specific antibody for rat DBI to study in rat brain how the dynamic state of DBI can be affected after protected (three times a day for 10 days) treatment with diazepam and chlordiazepoxide by oral gavage. Both the content of DBI and DBI mRNA increased in the cerebellum and cerebral cortex but failed to change in the hippocampus and striatum of rats receiving this protracted benzodiazepine treatment. Acute treatment with diazepam did not affect the dynamic state of brain DBI. An antibody was raised against a biologically active octadecaneuropeptide derived from the tryptic digestion of DBI. The combined HPLC/RIA analysis of rat cerebellar extracts carried out with this antibody showed that multiple molecular forms of the octadecaneuropeptide-like reactivity are present and all of them are increased in rats receiving repeated daily injections of diazepam. It is inferred that tolerance to benzodiazepines in associated with an increase in the turnover rate of DBI, which may be responsible for the ..gamma..-aminobutyric acid receptor desensitization that occurs after protracted benzodiazepine administration.

  16. THIP and isoguvacine are partial agonists of GABA-stimulated benzodiazepine receptor binding.

    Science.gov (United States)

    Karobath, M; Lippitsch, M

    1979-10-15

    The effects of THIP and isoguvacine on 3H-flunitrazepam binding to washed membranes prepared from the cerebral cortex of adult rats have been examined. THIP, which has only minimal stimulatory effects on benzodiazepine (BZ) receptor binding, has been found to inhibit the stimulation induced by small concentrations (2 microM) of exogenous GABA. While isoguvacine stimulates BZ receptor binding, although to a smaller extent than GABA, it also antagonizes the stimulation of BZ receptor binding induced by GABA. Thus THIP and isoguvacine exhibit the properties of a partial agonist of GABA-stimulated BZ receptor binding.

  17. Benzodiazepine receptor-mediated behavioral effects of nitrous oxide in the rat social interaction test.

    Science.gov (United States)

    Quock, R M; Wetzel, P J; Maillefer, R H; Hodges, B L; Curtis, B A; Czech, D A

    1993-09-01

    The present study was conducted to ascertain whether an anxiolytic effect of nitrous oxide was demonstrable in rats using the social interaction test and whether this drug effect might be mediated by benzodiazepine receptors. Compared to behavior of vehicle-pretreated, room air-exposed rats, rat pairs exposed to nitrous oxide showed a generally inverted U-shaped dose-response curve with the maximum increase in social interaction encounters occurring at 25% and significant increase in time of active social interaction at 15-35%; higher concentrations produced a sedative effect that reduced social interaction. Treatment with 5.0 mg/kg of the anxiolytic benzodiazepine chlordiazepoxide also increased social interaction. Pretreatment with 10 mg/kg of the benzodiazepine receptor blocker flumazenil, which alone had no effect, significantly antagonized the social interaction-increasing effects of both nitrous oxide and chlordiazepoxide. In summary, these findings suggest that nitrous oxide produces a flumazenil-sensitive effect comparable to that of chlordiazepoxide and implicate central benzodiazepine mechanisms in mediation of the anxiolytic effect of nitrous oxide.

  18. Imaging benzodiazepine receptors in man with C-11-suriclone and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Links, J.M.; Trifiletti, R.; Snyder, S.H.; Wagner, H.N. Jr.

    1985-05-01

    Suriclone is a potent cyclopyrrolone, anti-anxiety drug which binds to the benzodiazepine receptor complex (BZR) with high affinity. Suriclone binds to a site on the BZR distinct from the site where benzodiazepines bind. The K/sub D/ of suriclone at 37oC is 0.03 nM. C-11-suriclone (SUR) was synthesized by reacting C-CH3I with the appropriate amine precursor. SUR (1 ..mu..g/kg) was injected IV into a baboon alone or with 1 mg/kg of Ro-151788, a benzodiazepine antagonist, and serial PET scans of the brain were obtained. High radioactivity concentrations were observed in the cerebral cortex and cerebellum which contain high densities of BZR, intermediate concentrations in thalamus and low concentrations in the striatum. When Ro-151788 was given a uniform distribution of radioactivity was observed; the radioactivity was reduced to ca. 25% of control values in the brain which was contained within the PET slice. SUR (0.2 ..mu..g/kg) was next administered to a human subject. From 30-60 minutes after injection high radioactivity concentrations were observed in the cerebral cortex and cerebellum, intermediate concentrations in the thalamus and a low concentration in the caudate. Radioactivity in the cerebral cortex and cerebellum decreased slowly with time, implying that binding of SUR to a high affinity site had occurred. These results demonstrate utility of SUR for measuring binding to the benzodiazepine receptor complex non-invasively in man.

  19. Abnormal benzodiazepine and zinc modulation of GABAA receptors in an acquired absence epilepsy model.

    Science.gov (United States)

    Wu, Jie; Ellsworth, Kevin; Ellsworth, Marc; Schroeder, Katherine M; Smith, Kris; Fisher, Robert S

    2004-07-01

    Brain cholesterol synthesis inhibition (CSI) at a young age in rats has been shown to be a faithful model of acquired absence epilepsy, a devastating condition for which few therapies or models exist. We employed the CSI model to study cellular mechanisms of acquired absence epilepsy in Long-Evans Hooded rats. Patch-clamp, whole-cell recordings were compared from neurons acutely dissociated from the nucleus reticularis of thalamus (nRt) treated and untreated with a cholesterol synthesis inhibitor, U18666A. In U18666A-treated animals, 91% of rats developed EEG spike-waves (SWs). Patchclamp results revealed that although there was no remarkable change in GABAA receptor affinity, both a loss of ability of benzodiazepines to enhance GABAA-receptor responses and an increase of Zn2+ inhibition of GABAA-receptor responses of nRt neurons occurred in Long-Evans Hooded rats previously administered U18666A. This change was specific, since no significant changes were found in neurons exposed to the GABA allosteric modulator, pentobarbital. Taken collectively, these findings provide evidence for abnormalities in benzodiazepine and Zn2+ modulation of GABAA receptors in the CSI model, and suggest that decreased gamma2 subunit expression may underlie important aspects of generation of thalamocortical SWs in atypical absence seizures. The present results are also consistent with recent findings that mutation of the gamma2 subunit of the GABAA receptor changes benzodiazepine modulation in families with generalized epilepsy syndromes.

  20. Bromine-76 and carbon-11 labelled NNC 13-8199, metabolically stable benzodiazepine receptor agonists as radioligands for positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Foged, C. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Stockholm (Sweden)]|[Novo Nordisk A/S, Health Care Discovery and Development, Maaloev (Denmark); Halldin, C.; Pauli, S.; Suhara, T.; Swahn, C.G.; Karlsson, P.; Farde, L. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Stockholm (Sweden); Loc`h, C.; Maziere, B.; Maziere, M. [Service Hospitalier Frederic Joliot, CEA, Orsay (France); Hansen, H.C. [Novo Nordisk A/S, Health Care Discovery and Development, Maaloev (Denmark)

    1997-10-01

    NNC 13-8241 has recently been labelled with iodine-123 and developed as a metabolically stable benzodiazepine receptor ligand for single-photon emission computed tomography (SPECT) in monkeys and man. NNC 13-8199 is a bromo-analogue of NNC 13-8241. This partial agonist binds selectively and with subnanomolar affinity to the benzodiazepine receptors. We prepared {sup 76}Br labelled NNC 13-8199 from the trimethyltin precursor by the chloramine-T method. Carbon-11 labelled NNC 13-8199 was synthesised by N-alkylation of the nitrogen of the amide group with [{sup 11}C]methyl iodide. Positron emission tomography (PET) examination with the two radioligands in monkeys demonstrated a high uptake of radioactivity in the occipital, temporal and frontal cortex. In the study with [{sup 76}Br]NNC 13-8199, the monkey brain uptake continued to increase until the time of displacement with flumazenil at 215 min after injection. For both radioligands the radioactivity in the cortical brain regions was markedly reduced after displacement with flumazenil. More than 98% of the radioactivity in monkey plasma represented unchanged radioligand 40 min after injection. The low degree of metabolism indicates that NNC 13-8199 is metabolically much more stable than hitherto developed PET radioligands for imaging of benzodiazepine receptors in the primate brain. [{sup 76}Br]NNC 13-8199 has potential as a radioligand in human PET studies using models where a slow metabolism is an advantage. (orig.) With 8 figs., 28 refs.

  1. Benzodiazepine/GABA receptor complex during severe ethanol intoxication and withdrawal in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Hemmingsen, R.; Braestrup, C.; Nielsen, M.; Barry, D.I. (Dept. of Psychiatry, Rigshospitalet, Copenhagen, St. Hans Mental Hospital, Roskilde, and Ferrosan Research Laboratory, Soeborg, Denmark)

    1982-01-01

    The benzodiazepine/GABA (gammaaminobutyric acid) receptor complex was investigated during severe ethanol intoxication and withdrawal in the rat. The intragastric intubation technique was used to establish physical ethanol dependence in the animals. Cerebral cortex from male Wistar rats was studied 1) after 31/2 days of severe ethanol intoxication, 2) during the ethanol withdrawal reaction and 3) in a control group. The effect of GABA-ergic activation by muscimol and THIP (4,5,6,7-tetrahydroisoxazole(5,4-c)pyridin-3-01) on /sup 3/H-diazepam binding was unchanged during ethanol intoxication and withdrawal, as was the affinity constant (Ksub(D)) and the maximal number of binding sites (Bsub(max)) for /sup 3/H-flunitrazepam. In conclusion, the benzodiazepine/GABA receptor complex is unlikely to play any causual part in physical ethanol dependence.

  2. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    Marley, R.J.

    1987-01-01

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for /sup 3/H-GABA binding sites is greater in SS cerebellar tissue and /sup 3/H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of /sup 3/H-flunitrazepma binding is greater in SS mice. Ethanol also enhances /sup 3/H-flunitrazepam binding and increases the levels of /sup 3/H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures.

  3. Altered response to benzodiazepine anxiolytics in mice lacking GABA B(1) receptors.

    Science.gov (United States)

    Mombereau, Cedric; Kaupmann, Klemens; van der Putten, Herman; Cryan, John F

    2004-08-16

    Recently, we demonstrated that mice lacking the GABA(B(1)) subunit were more anxious than wild-type animals in several behavioural paradigms, most notably in the light-dark test. In an attempt to assess the effects of classical benzodiazepine anxiolytics on anxiety-like behaviour observed in these mice, animals were administered either chlordiazepoxide (10 mg/kg, p.o.) or diazepam (7.5 mg/kg, p.o.) prior to testing in the light-dark box. Surprisingly, in contrast with the wild-type mice, neither benzodiazepines decreased anxiety-like behaviour in GABA(B(1))(-/-) mice. These data suggest that targeted deletion of GABA(B(1)) subunit alters GABA(A) receptor function in vivo.

  4. Fibrous and protoplasmic astrocytes express GABAA receptors that differ in benzodiazepine pharmacology.

    Science.gov (United States)

    Rosewater, K; Sontheimer, H

    1994-02-04

    Astrocytes cultured from spinal cord contain two morphologically distinguishable types of astrocytes: fibrous and protoplasmic cells. Both astrocyte subtypes, in culture, are able to express GABAA receptors, and their activation results in inward currents at the resting potential. Using patch-clamp electrophysiology we characterized their basic receptor pharmacology and compared it to spinal cord neurons that were also present in small numbers in these cultures. As in neuronal GABAA receptors, the local anesthetic pentobarbital effectively potentiated GABA-induced currents in both astrocyte subtypes. Similarly, the benzodiazepine diazepam, on average doubled GABA-induced currents in both astrocytes subtypes. In contrast to these effects that were similar in both astrocytes types and similar to spinal cord neurons, the response to the convulsant methyl-4-ethyl-6,7-dimethoxy-beta-carboline-3-carboxylate (DMCM), which is an inverse benzodiazepine agonist differs between astrocyte subtypes. DMCM reduced GABA-induced currents by about 50% in fibrous astrocytes as we also observed with spinal cord neurons. In contrast, DMCM increased GABA currents in protoplasmic astrocytes by up to 150%, an effect never observed in neurons. DMCM potentiations of GABA currents have recently been attributed to differences in receptor subunit composition. Our results thus indicate that subtypes of astrocytes express GABAA receptors that differ pharmacologically and likely differ also in subunit composition.

  5. Interactions between modulators of the GABAA receptor: Stiripentol and benzodiazepines

    OpenAIRE

    Fisher, Janet L.

    2011-01-01

    Many patients with refractory epilepsy are treated with polytherapy, and nearly 15% of epilepsy patients receive two or more anti-convulsant agents. The anti-convulsant stiripentol is used as an add-on treatment for the childhood epilepsy syndrome known as severe myoclonic epilepsy in infancy (Dravet Syndrome). Stiripentol has multiple mechanisms of action, both enhancing GABAA receptors and reducing activity of metabolic enzymes that break down other drugs. Stiripentol is typically co-admini...

  6. Peripheral benzodiazepine receptors in the brain of cirrhosis patients with manifest hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Peter; Bender, Dirk; Munk, Ole L.; Cumming, Paul [Aarhus University Hospital, PET Centre, Aarhus (Denmark); Aagaard Hansen, Dorthe; Keiding, Susanne [Aarhus University Hospital, PET Centre, Aarhus (Denmark); Aarhus University Hospital, Department of Medicine V (Hepatology), Aarhus (Denmark); Rodell, Anders [Aarhus University Hospital, Centre of Functionally Integrative Neuroscience (CFIN), Aarhus (Denmark)

    2006-07-15

    It has been suggested that ammonia-induced enhancement of peripheral benzodiazepine receptors (PBRs) in the brain is involved in the development of hepatic encephalopathy (HE). This hypothesis is based on animal experiments and studies of post-mortem human brains using radiolabelled PK11195, a specific ligand for PBR, but to our knowledge has not been tested in living patients. The aim of the present study was to test this hypothesis by measuring the number of cerebral PBRs in specific brain regions in cirrhotic patients with an acute episode of clinically manifest HE and healthy subjects using dynamic {sup 11}C-PK11195 brain PET. Eight cirrhotic patients with an acute episode of clinically manifest HE (mean arterial ammonia 81 {mu}mol/l) and five healthy subjects (22 {mu}mol/l) underwent dynamic {sup 11}C-PK11195 and {sup 15}O-H{sub 2}O PET, co-registered with MR images. Brain regions (putamen, cerebellum, cortex and thalamus) were delineated on co-registered {sup 15}O-H{sub 2} {sup 15}O and MR images and copied to the dynamic {sup 15}O-H{sub 2}O and {sup 11}C-PK11195 images. Regional cerebral blood flow (CBF) ({sup 15}O-H{sub 2}O scan) and the volume of distribution of PK11195 ({sup 11}C-PK11195 scan) were calculated by kinetic analysis. There were regional differences in the CBF, with lowest values in the cortex and highest values in the putamen in both groups of subjects (p<0.05), but no significant differences between the groups. There were no significant differences in the volume of distribution of PK11195 (V{sub d}) between regions or between the two groups of subjects. Mean values of V{sub d} ranged from 1.0 to 1.1 in both groups of subjects. The results do not confirm the hypothesis of an increased number of PBRs in patients with HE. (orig.)

  7. [Functional selectivity of opioid receptors ligands].

    Science.gov (United States)

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  8. Receptor Binding Ligands to Image Infection

    NARCIS (Netherlands)

    Chianelli, M.; Boerman, O. C.; Malviya, G.; Galli, F.; Oyen, W. J. G.; Signore, A.

    2008-01-01

    The current gold standard for imaging infection is radiolabeled white blood cells. For reasons of safety, simplicity and cost, it would be desirable to have a receptor-specific ligand that could be used for imaging infection and that would allow a differential diagnosis between sterile and septic in

  9. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lummis, S.C.R.; Johnston, G.A.R. (Univ. of Sydney, New South Wales (Australia)); Nicoletti, G. (Royal Melbourne Inst. of Tech. (Australia)); Holan, G. (CSIRO, Melbourne (Australia))

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.

  10. GABA(A) receptors implicated in REM sleep control express a benzodiazepine binding site.

    Science.gov (United States)

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A

    2013-08-21

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consistent with GABAA receptor antagonists disinhibiting acetylcholine release in the PnO to result in an acetylcholine-mediated REM sleep induction. Direct evidence has been lacking for localization in the PnO of the specific GABAA receptor-subtypes mediating the REM sleep effects. Here, we demonstrated a dose-related, long-lasting increase in REM sleep following injection (60 nl) in the PnO of the inverse benzodiazepine agonist, methyl-6,7-dimethoxy-4-ethyl-β-carboline (DMCM, 10(-2)M). REM sleep increases were greater and more consistently produced than with the non-selective antagonist gabazine, and both were blocked by atropine. Fluorescence immunohistochemistry and laser scanning confocal microscopy, colocalized in PnO vesicular acetylcholine transporter, a presynaptic marker of cholinergic boutons, with the γ2 subunit of the GABAA receptor. These data provide support for the direct action of GABA on mechanisms of acetylcholine release in the PnO. The presence of the γ2 subunit at this locus and the REM sleep induction by DMCM are consistent with binding of benzodiazepines by a GABAA receptor-subtype in control of REM sleep.

  11. Nitrosamines as nicotinic receptor ligands

    OpenAIRE

    Schuller, Hildegard M

    2007-01-01

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (α7nAChR) whereas NNN bound with high affinity to epibatidine-sensi...

  12. Anticonvulsive Activity in Audiogenic DBA/2 Mice of 1,4-Benzodiazepines and 1,5-Benzodiazepines with Different Activities at Cerebellar Granule Cell GABAA Receptors.

    Science.gov (United States)

    Gatta, Elena; Cupello, Aroldo; Di Braccio, Mario; Grossi, Giancarlo; Robello, Mauro; Scicchitano, Francesca; Russo, Emilio; De Sarro, Giovambattista

    2016-12-01

    Herein, we tested in a model of generalized reflex epilepsy in mice different 1,4-benzodiazepines and 1,5-benzodiazepines with agonistic activity at the GABAA receptor population contributing to the peak component of the chloride current elicited by GABA in cerebellar granule cells (CGCs) in culture. The substances have all higher lipophilia than clobazam, an antiepileptic drug well known and used in human therapy. This ensures that they all can pass relatively easily the blood-brain barrier (BBB). The benzodiazepines were administered intraperitoneally (i.p.) and tested for their activity against sound-induced tonic and clonic seizures in a genetic model of experimental epilepsy, the DBA/2 mouse. Our data demonstrates an interesting inverse correlation between the ED50s and the efficacy (E %) of the drugs in increasing the peak chloride current elicited by GABA in cerebellar granule cells in culture. There is indication of the existence of a threshold of E % above which the increase of ED50 with increasing E % becomes linear. This is statistically significant for the clonic phase, whereas it is at the limit of significance for the tonic one. A possible interpretation of these results is that in this epilepsy model, projections from the cerebellum exert a convulsion prevention activity.

  13. Comparison of anticonvulsant tolerance, crosstolerance, and benzodiazepine receptor binding following chronic treatment with diazepam or midazolam.

    Science.gov (United States)

    Ramsey-Williams, V A; Wu, Y; Rosenberg, H C

    1994-07-01

    In a previous study, rats treated chronically with flurazepam were tolerant to the anticonvulsant action of some benzodiazepines (BZs), but not others (34). To determine if this differential crosstolerance was unique to flurazepam, rats were treated chronically with diazepam or midazolam, and tested for tolerance to the anticonvulsant actions of diazepam, midazolam, clonazepam, and clobazam. Regional benzodiazepine receptor binding in brain was also studied. In contrast to previous findings with flurazepam, 1 week treatment with diazepam or with midazolam did not cause tolerance. Rats treated with diazepam for 3 weeks were tolerant to diazepam, clonazepam, clobazam, and midazolam. In contrast, rats treated 3 weeks with midazolam were tolerant to diazepam and midazolam, but not clobazam or clonazepam. Neither diazepam nor midazolam treatment for 3 weeks altered BZ binding in cerebral cortex, cerebellum, or hippocampus. The effects of chronic BZ treatment depended not only on the BZ given chronically, but also on the BZ used to evaluate these effects, suggesting drug-specific interactions of different BZs with their receptors.

  14. Imidazo-thiazine, -diazinone and -diazepinone derivatives. Synthesis, structure and benzodiazepine receptor binding.

    Science.gov (United States)

    Kieć-Kononowicz, K; Karolak-Wojciechowska, J; Müller, C E; Schumacher, B; Pekala, E; Szymańska, E

    2001-05-01

    In our search for new compounds acting on benzodiazepine receptors among the fused 2-thiohydantoin derivatives, a series of arylidene imidazo[2,1-b]thiazines was synthesized. The 1,2- and 2,3- cyclized derivatives of mono- and di-substituted Z-5-arylidene-2-thiohydantoins were examined (the X-ray crystal structure of Z-2-cinnamylidene-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazin-3(2H)-one was determined) and compared with the diphenyl derivatives. To investigate the influence of the type of annelated ring on the biological activity, imidazo[2,1-b]pyrimidinone and imidazo[2,1-b]diazepinone derivatives were obtained. The method used in annelation (1,2- and 2,3-cyclized isomers with the exception of fused arylidene imidazothiazines), the substitution pattern (arylidene towards diphenyl) as well as the character of the annelated ring had minor influence on the benzodiazepine receptor affinity of the investigated compounds. It appears that the greatest influence on the biological activity has the character and position of the substituents on the arylidene ring.

  15. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  16. Differential expression of the peripheral benzodiazepine receptor and gremlin during adipogenesis.

    Science.gov (United States)

    Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W

    2005-05-01

    This study used the mRNA differential display technique to identify differentially expressed genes during the process of adipogenesis in the preadipocyte cell line, 3T3-L1. 3T3-L1 cells were treated with dexamethasone, isobutyl-1-methylxanthine, and insulin to induce differentiation into mature adipocytes. Cells were collected at three time-points during differentiation: Day 0 (d0), or nondifferentiated; Day 3 (d3), during differentiation; and Day 10 (d10), >90% of the cells had differentiated into mature adipocytes. Initial studies yielded 18 potentially differentially regulated cDNA candidates (8 down-regulated and 10 up-regulated). Reverse Northern and Northern blots confirmed differential expression of six of the candidates. Four of the candidates up-regulated on d3 and d10 were identified by sequence analysis to be lipoprotein lipase, a well-known marker of adipocyte differentiation. A fifth candidate that was expressed in d0, but not d3 or d10, was identified as DRM/gremlin, a bone morphogenetic protein antagonist. Finally, a sixth candidate that was increased at d3 and d10 was identified as the peripheral benzodiazepine receptor, which has been implicated in proliferation, differentiation, and cholesterol transport in cells. This study is the first to show that peripheral benzodiazepine receptor and DRM/gremlin are expressed in preadipocyte cell lines and that they are differentially regulated during adipogenesis.

  17. Nitrosamines as nicotinic receptor ligands.

    Science.gov (United States)

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention.

  18. Relation of cell proliferation to expression of peripheral benzodiazepine receptors in human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    2000-08-01

    Peripheral benzodiazepine receptor (PBR) agonist [(3)H]Ro5-4864 has been shown to bind with high affinity to the human breast cancer cell line BT-20. Therefore, we investigated different human breast cancer cell lines with regard to binding to [(3)H]Ro5-4864 and staining with the PBR-specific monoclonal antibody 8D7. Results were correlated with cell proliferation characteristics. In flow cytometric analysis, the estrogen receptor (ER)-negative breast cancer cell lines BT-20, MDA-MB-435-S, and SK-BR-3 showed significantly higher PBR expression (relative fluorescence intensity) than the ER-positive cells T47-D, MCF-7 and BT-474 (Pdiazepam-binding inhibitor are possibly involved in the regulation of cell proliferation of human breast cancer cell lines.

  19. [{sup 11}C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Mingrong E-mail: zhang@nirs.go.jp; Kida, Takayo; Noguchi, Junko; Furutsuka, Kenji; Maeda, Jun; Suhara, Tetsuya; Suzuki, Kazutoshi

    2003-05-01

    DAA1106 (N-(2,5-Dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide), is a potent and selective ligand for peripheral benzodiazepine receptors (PBR) in mitochondrial fractions of rat (K{sub i}=0.043 nM) and monkey (K{sub i}=0.188 nM) brains. This compound was labeled by [{sup 11}C]methylation of a corresponding desmethyl precursor (DAA1123) with [{sup 11}C]CH{sub 3}I in the presence of NaH, with a 72{+-}16% (corrected for decay) incorporation yield of radioactivity. After HPLC purification, [{sup 11}C]DAA1106 was obtained with {>=}98% radiochemical purity and specific activity of 90-156 GBq/{mu}mol at the end of synthesis. After iv injection of [{sup 11}C]DAA1106 into mice, high accumulations of radioactivity were found in the olfactory bulb and cerebellum, the high PBR density regions in the brain. Coinjection of [{sup 11}C]DAA1106 with unlabeled DAA1106 and PBR-selective PK11195 displayed a significant reduction of radioactivity, suggesting a high specific binding of [{sup 11}C]DAA1106 to PBR. Although this tracer was rapidly metabolized in the plasma, only [{sup 11}C]DAA1106 was detected in the brain tissues, suggesting the specific binding in the brain due to the tracer itself. These findings revealed that [{sup 11}C]DAA1106 is a potential and selective positron emitting radioligand for PBR.

  20. Souroubea sympetala (Marcgraviaceae): a medicinal plant that exerts anxiolysis through interaction with the GABAA benzodiazepine receptor.

    Science.gov (United States)

    Mullally, Martha; Cayer, Christian; Kramp, Kari; Otárola Rojas, Marco; Sanchez Vindas, Pablo; Garcia, Mario; Poveda Alvarez, Luis; Durst, Tony; Merali, Zul; Trudeau, Vance L; Arnason, John T

    2014-09-01

    The mode of action of the anxiolytic medicinal plant Souroubea sympetala was investigated to test the hypothesis that extracts and the active principle act at the pharmacologically important GABAA-benzodiazepine (GABAA-BZD) receptor. Leaf extracts prepared by ethyl acetate extraction or supercritical extraction, previously determined to have 5.54 mg/g and 6.78 mg/g of the active principle, betulinic acid, respectively, reduced behavioural parameters associated with anxiety in a rat model. When animals were pretreated with the GABAA-BZD receptor antagonist flumazenil, followed by the plant extracts, or a more soluble derivative of the active principle, the methyl ester of betulinic acid (MeBA), flumazenil eliminated the anxiety-reducing effect of plant extracts and MeBA, demonstrating that S. sympetala acts via an agonist action on the GABAA-BZD receptor. An in vitro GABAA-BZD competitive receptor binding assay also demonstrated that S. sympetala extracts have an affinity for the GABAA-BZD receptor, with an EC50 value of 123 μg/mL (EtOAc leaf extract) and 154 μg/mL (supercritical CO2 extract). These experiments indicate that S. sympetala acts at the GABAA-BZD receptor to elicit anxiolysis.

  1. Glycomimetic ligands for the human asialoglycoprotein receptor.

    Science.gov (United States)

    Mamidyala, Sreeman K; Dutta, Sanjay; Chrunyk, Boris A; Préville, Cathy; Wang, Hong; Withka, Jane M; McColl, Alexander; Subashi, Timothy A; Hawrylik, Steven J; Griffor, Matthew C; Kim, Sung; Pfefferkorn, Jeffrey A; Price, David A; Menhaji-Klotz, Elnaz; Mascitti, Vincent; Finn, M G

    2012-02-01

    The asialoglycoprotein receptor (ASGPR) is a high-capacity galactose-binding receptor expressed on hepatocytes that binds its native substrates with low affinity. More potent ligands are of interest for hepatic delivery of therapeutic agents. We report several classes of galactosyl analogues with varied substitution at the anomeric, C2-, C5-, and C6-positions. Significant increases in binding affinity were noted for several trifluoromethylacetamide derivatives without covalent attachment to the protein. A variety of new ligands were obtained with affinity for ASGPR as good as or better than that of the parent N-acetylgalactosamine, showing that modification on either side of the key C3,C4-diol moiety is well tolerated, consistent with previous models of a shallow binding pocket. The galactosyl pyranose motif therefore offers many opportunities for the attachment of other functional units or payloads while retaining low-micromolar or better affinity for the ASGPR.

  2. Effects of PhD examination stress on allopregnanolone and cortisol plasma levels and peripheral benzodiazepine receptor density.

    NARCIS (Netherlands)

    Droogleever Fortuyn, H.A.; Broekhoven, F. van; Span, P.N.; Backstrom, T.; Zitman, F.G.; Verkes, R.J.

    2004-01-01

    Peripheral benzodiazepine receptor (PBR) density in blood platelets and plasma allopregnanolone concentration in humans were determined following acute stress as represented by PhD examination. Fifteen healthy PhD students participated. Heart rate, blood pressure, plasma allopregnanolone, plasma cor

  3. Single dose efficacy evaluation of two partial benzodiazepine receptor agonists in photosensitive epilepsy patients : A placebo-controlled pilot study

    NARCIS (Netherlands)

    Kasteleijn-Nolst Trenite, Dorothée G A; Groenwold, Rolf H H; Schmidt, Bernd; Löscher, Wolfgang

    2016-01-01

    Benzodiazepines (BZDs) are highly effective to suppress various types of seizures; however, their clinical use is limited due to adverse effects and tolerance and dependence liability. Drugs that act only as partial agonists at the BZD recognition site (initially termed "BZD receptor") of the GABAA

  4. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    Science.gov (United States)

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  5. Binding of (/sup 3/H)ethyl-. beta. -carboline-3-carboxylate to brain benzodiazepine receptors. Effect of drugs and anions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, E.F.; Paul, S.M.; Rice, K.C.; Skolnick, P. (National Institutes of Health, Bethesda, MD (USA)); Cain, M. (Wisconsin Univ., Milwaukee (USA). Dept. of Chemistry)

    1981-09-28

    It is reported that in contrast to the changes in affinity of (/sup 3/H)benzodiazepines elicited by halide ions, barbiturates, and pyrazolopyridines, the apparent affinity of ..beta..-(/sup 3/H)CCE (ethyl-..beta..-carboline-3-carboxylate) is unaffected by these agents. Furthermore, Scatchard analysis of ..beta..-(/sup 3/H)CCE binding to cerebral cortical and cerebellar membranes revealed a significantly greater number of binding sites than was observed with either (/sup 3/H)diazepam or (/sup 3/H)flunitazepam, suggesting that at low concentrations benzodiazepines selectively label a subpopulation of the receptors labelled with ..beta..-(/sup 3/H)CCE. Alternatively, ..beta..-(/sup 3/H)CCE may bind to sites that are distinct from those labelled with (/sup 3/H)-benzodiazepines.

  6. Radioreceptor assay to study the affinity of benzodiazepines and their receptor binding activity in human plasma including their active metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Dorow, R.G.; Seidler, J.; Schneider, H.H. (Schering A.G., Berlin (Germany, F.R.))

    1982-04-01

    A radioreceptor assay has been established to measure the receptor affinities of numerous benzodiazepines in clinical use. The time course of receptor binding activity was studied by this method in the plasma of eight healthy subjects randomly treated with 1mg lormetazepam (Noctamid(R)), 2mg flunitrazepam (Rohypnol(R)), and 10mg diazepam (Valium(R)), and placebo on a cross-over basis. Blood samples were collected up to 154h after treatment. Receptor affinities of numerous benzodiazepines in vitro show good correlation with therapeutic human doses (r=0.96) and may be predictive of drug potency in man. Mean peak plasma levels of lormetazepam binding equivalents were 4.8+-1 ng/ml at 2h after lormetazepam, 7.2+-1.8 ng/ml at 8h after flunitrazepam, and 17.9+-2.7 ng/ml at 15h after diazepam. Plasma elimination halflives of benzodiazepine binding equivalents were 9.3, 23 and 63h, respectively. Slow elimination of benzodiazepine binding equivalents following flunitrazepam and diazepam may be due to persistent active metabolites.

  7. Methodology for benzodiazepine receptor binding assays at physiological temperature. Rapid change in equilibrium with falling temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R.M.

    1986-12-01

    Benzodiazepine receptors of rat cerebellum were assayed with (/sup 3/H)-labeled flunitrazepam at 37/sup 0/C, and assays were terminated by filtration in a cold room according to one of three protocols: keeping each sample at 37 degrees C until ready for filtration, taking the batch of samples (30) into the cold room and filtering sequentially in the order 1-30, and taking the batch of 30 samples into the cold room and filtering sequentially in the order 30-1. the results for each protocol were substantially different from each other, indicating that rapid disruption of equilibrium occurred as the samples cooled in the cold room while waiting to be filtered. Positive or negative cooperativity of binding was apparent, and misleading effects of gamma-aminobutyric acid on the affinity of diazepam were observed, unless each sample was kept at 37/sup 0/C until just prior to filtration.

  8. Systematic review of modulators of benzodiazepine receptors in irritable bowel syndrome:Is there hope?

    Institute of Scientific and Technical Information of China (English)

    Pooneh Salari; Mohammad Abdollahi

    2011-01-01

    Several drugs are used in the treatment of irritable bowel syndrome (IBS) but all have side effects and variable efficacy.Considering the role of the gut-brain axis,immune,neural,and endocrine pathways in the patho-genesis of IBS and possible beneficial effects of ben-zodiazepines (BZD) in this axis,the present systematic review focuses on the efficacy of BZD receptor modulators in human IBS.For the years 1966 to February 2011,all literature was searched for any articles on the use of BZD receptor modulators and IBS.After thorough evaluation and omission of duplicate data,10 out of 69 articles were included.BZD receptor modulators can be helpful,especially in the diarrhea-dominant form of IBS,by affecting the inflammatory,neural,and psychologic pathways,however,controversies still exist.Recently,a new BZD receptor modulator,dextofisopam was synthesized and studied in human subjects,but the studies are limited to phase II b clinical trials.None of the existing trials considered the neuroimmunomodulatory effectof BZDs in IBS,but bearing in mind the concentration-dependent effect of BZDs on cytokines and cell proliferation,future studies using pharmacodynamic and pharmacokinetic approaches are highly recommended.

  9. Biological properties of 2'-[18F]fluoroflumazenil for central benzodiazepine receptor imaging.

    Science.gov (United States)

    Chang, Young Soo; Jeong, Jae Min; Yoon, Young Hyun; Kang, Won Jun; Lee, Seung Jin; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2005-04-01

    A novel positron emitting agent, 2'-[18F]fluoroflumazenil (fluoroethyl 8-fluoro-5-methyl-6-oxo-5,6-dihydro-4H-benzo-[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate, FFMZ), has been reported for benzodiazepine imaging. In the present study, biological properties of [18F]FFMZ were investigated. Stability tests of [18F]FFMZ in human and rat sera were performed. Biodistribution was investigated in mice and phosphorimages of brains were obtained from rats. A receptor binding assay was performed using rat brain (mixture of cortex and cerebellum) homogenate. A static positron emission tomography (PET) image was obtained from a normal human volunteer. Although [18F]FFMZ was stable in human serum, it was rapidly hydrolyzed in rat serum. The hydrolysis was 39%, 63% and 92% at 10, 30 and 60 min, respectively. According to the biodistribution study in mice, somewhat even distribution (between 2 approximately 3% ID/g) was observed in most organs. Intestinal uptake increased up to 6% ID/g at 1 h due to biliary excretion. Bone uptake slowly increased from 1.5% to 3.5% ID/g at 1 h. High uptakes in the cortex, thalamus and cerebellum, which could be completely blocked by coinjection of cold FMZ, were observed by phosphorimaging study using rats. Determination of Kd value and Bmax using rat brain tissue was performed by Scatchard plotting and found 1.45+/-0.26 nM and 1.08+/-0.03 pmol/mg protein, respectively. The PET image of the normal human volunteer showed high uptake in the following decreasing order: frontal cortex, temporal cortex, occipital cortex, cerebellum, parietal cortex and thalamus. In conclusion, the new FMZ derivative, [18F]FFMZ appears to be a promising PET agent for central benzodiazepine receptor imaging with a convenient labeling procedure and a specific binding property.

  10. Integrin receptors and ligand-gated channels.

    Science.gov (United States)

    Morini, Raffaella; Becchetti, Andrea

    2010-01-01

    Plastic expression of different integrin subunits controls the different stages of neural development, whereas in the adult integrins regulate synaptic stability. Evidence of integrin-channel crosstalk exists for ionotropic glutamate receptors. As is often the case in other tissues, integrin engagement regulates channel activity through complex signaling pathways that often include tyrosine phosphorylation cascades. The specific pathways recruited by integrin activation depend on cerebral region and cell type. In turn, ion channels control integrin expression onto the plasma membrane and their ligand binding affinity. The most extensive studies concern the hippocampus and suggest implications for neuronal circuit plasticity. The physiological relevance of these findings depends on whether adhesion molecules, aside from determining tissue stability, contribute to synaptogenesis and the responsiveness of mature synapses, thus contributing to long-term circuit consolidation. Little evidence is available for other ligand-gated channels, with the exception of nicotinic receptors. These exert a variety of functions in neurons and non neural tissue, both in development and in the adult, by regulating cell cycle, synaptogenesis and synaptic circuit refinement. Detailed studies in epidermal keratinocytes have shed some light on the possible mechanisms through which ACh can regulate cell motility, which may be of general relevance for morphogenetic processes. As to the control of mature synapses, most results concern the integrinic control of nicotinic receptors in the neuromuscular junction. Following this lead, a few studies have addressed similar topics in adult cerebral synapses. However, pursuing and interpreting these results in the brain is especially difficult because of the complexity of the nicotinic roles and the widespread contribution of nonsynaptic, paracrine transmission. From a pathological point of view, considering the well-known contribution of both

  11. Synthesis of [{sup 123}I]iodine labelled imidazo[1,2-b] pyridazines as potential probes for the study of peripheral benzodiazepine receptors using SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A.; Mattner, F.; Dikic, B. [Radiopharmaceuticals Div. ANSTO, Menai, NSW (Australia); Barlin, G. [Div. of Neurosciences, John Curtin School of Medical Research, Australian National Univ., Canberra (Australia)

    2004-07-01

    The pyridazines 3-acetamidomethyl-6-chloro-2-(4'-iodophenyl)imidazo[1,2-b]pyridazine 1 (IC{sub 50} = 1.6 nM) and 3-benzamidomethyl-6-iodo-2-(4'-t-butylphenyl)imidazo[1,2-b] pyridazine 2 (IC{sub 50} = 4.2 nM), are high affinity and selective ligands for the peripheral benzodiazepine receptors (PBR) compared to the central benzodiazepine counterparts. The [{sup 123}I]1 and [{sup 123}I]2 labelled analogues of these compounds were subsequently synthesised for the potential study of the PBR in vivo using SPECT. Radioiodination of [{sup 123}I]1 was achieved by iododestannylation of the corresponding tributyl tin precursor with Na[{sup 123}I] in the presence of peracetic acid or chloramine-T and the product isolated by C-18 RP HPLC. Radioiodination of [{sup 123}I]2 was achieved by copper assisted bromine [{sup 123}I]iodine exchange of the corresponding bromo precursor in the presence of acetic acid and sodium bisulfate as reducing agent at 200 C. Purification of the crude products were achieved by semi-preparative C-18 RP HPLC to give the products in radiochemical yields > 90%. The products were obtained in > 97% chemical and radiochemical purity and with specific activities > 180 GBq/{mu}mol. (orig.)

  12. Quantifying Rosette Formation Mediated by Receptor-ligand Interactions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionRosetting is a simple assay for specific cell-cell adhesion, in which receptor- (or ligand-) coated RBCs form the rosettes with ligand- (or receptor-) expressed nucleated cells~([1]). Although routinely used by immunologists to examine the functionality of the interacting receptors and ligands, however, it has not been regarded as a quantitative method, as the measured rosette fraction has not been quantitatively related to the underlying molecular properties.Recently, we have solved probabili...

  13. Subchronic treatment with antiepileptic drugs modifies pentylenetetrazol-induced seizures in mice: Its correlation with benzodiazepine receptor binding

    Directory of Open Access Journals (Sweden)

    Luisa Rocha

    2008-06-01

    Full Text Available Luisa RochaPharmacobiology Department, Center for Research and Advanced Studies, Calz, Tenorios, MéxicoAbstract: Experiments using male CD1 mice were carried out to investigate the effects of subchronic (daily administration for 8 days pretreatments with drugs enhancing GABAergic transmission (diazepam, 10 mg/kg, ip; gabapentin, 100 mg/kg, po; or vigabatrin, 500 mg/kg, po on pentylenetetrazol (PTZ-induced seizures, 24 h after the last injection. Subchronic administration of diazepam reduced latencies to clonus, tonic extension and death induced by PTZ. Subchronic vigabatrin produced enhanced latency to the first clonus but faster occurrence of tonic extension and death induced by PTZ. Subchronic gabapentin did not modify PTZ-induced seizures. Autoradiography experiments revealed reduced benzodiazepine receptor binding in several brain areas after subchronic treatment with diazepam or gabapentin, whereas subchronic vigabatrin did not induce significant receptor changes. The present results indicate differential effects induced by the subchronic administration of diazepam, vigabatrin, and gabapentin on the susceptibility to PTZ-induced seizures, benzodiazepine receptor binding, or both.Keywords: diazepam, gabapentin, vigabatrin, pentylenetetrazol, benzodiazepine receptors

  14. In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain.

    Science.gov (United States)

    Hoekzema, Elseline; Rojas, Santiago; Herance, Raúl; Pareto, Deborah; Abad, Sergio; Jiménez, Xavier; Figueiras, Francisca P; Popota, Foteini; Ruiz, Alba; Flotats, Núria; Fernández, Francisco J; Rocha, Milagros; Rovira, Mariana; Víctor, Víctor M; Gispert, Juan D

    2012-07-01

    The GABA-ergic system, known to regulate neural tissue genesis during cortical development, has been postulated to play a role in cerebral aging processes. Using in vivo molecular imaging and voxel-wise quantification, we aimed to assess the effects of aging on the benzodiazepine (BDZ) recognition site of the GABA(A) receptor. To visualize BDZ site availability, [(11)C]-flumazenil microPET acquisitions were conducted in young and old rats. The data were analyzed and region of interest analyses were applied to validate the voxel-wise approach. We observed decreased [(11)C]-flumazenil binding in the aged rat brains in comparison with the young control group. More specifically, clusters of reduced radioligand uptake were detected in the bilateral hippocampus, cerebellum, midbrain, and bilateral frontal and parieto-occipital cortex. Our results support the pertinence of voxel-wise quantification in the analysis of microPET data. Moreover, these findings indicate that the aging process involves declines in neural BDZ recognition site availability, proposed to reflect alterations in GABA(A) receptor subunit polypeptide expression.

  15. Decreased benzodiazepine receptor binding in epileptic El mice: A quantitative autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Shirasaka, Y.; Ito, M.; Tsuda, H.; Shiraishi, H.; Oguro, K.; Mutoh, K.; Mikawa, H. (Kyoto Univ. (Japan))

    1990-09-01

    Benzodiazepine receptors and subtypes were examined in El mice and normal ddY mice with a quantitative autoradiographic technique. Specific (3H)flunitrazepam binding in stimulated El mice, which had experienced repeated convulsions, was significantly lower in the cortex and hippocampus than in ddY mice and unstimulated El mice. In the amygdala, specific ({sup 3}H)flunitrazepam binding in stimulated El mice was lower than in ddY mice. There was a tendency for the ({sup 3}H)flunitrazepam binding in these regions in unstimulated El mice to be intermediate between that in stimulated El mice and that in ddY mice, but there was no significant difference between unstimulated El mice and ddY mice. ({sup 3}H)Flunitrazepam binding displaced by CL218,872 was significantly lower in the cortex of stimulated El mice than in that of the other two groups, and in the hippocampus of stimulated than of unstimulated El mice. These data suggest that the decrease in ({sup 3}H)flunitrazepam binding in stimulated El mice may be due mainly to that of type 1 receptor and may be the result of repeated convulsions.

  16. Increased accuracy of ligand sensing by receptor internalization

    CERN Document Server

    Aquino, Gerardo

    2010-01-01

    Many types of cells can sense external ligand concentrations with cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound receptors are often internalized, a process also known as receptor-mediated endocytosis. While internalization is involved in a vast number of important functions for the life of a cell, it was recently also suggested to increase the accuracy of sensing ligand as the overcounting of the same ligand molecules is reduced. Here we show, by extending simple ligand-receptor models to out-of-equilibrium thermodynamics, that internalization increases the accuracy with which cells can measure ligand concentrations in the external environment. Comparison with experimental rates of real receptors demonstrates that our model has indeed biological significance.

  17. Central and peripheral benzodiazepine receptors in rat brain and platelets: effects of treatment with diazepam and clobazam.

    Science.gov (United States)

    Larkin, J G; Thompson, G G; Scobie, G; Brodie, M J

    1992-09-01

    Tolerance to the effects of benzodiazepines (BZ) may be mediated by changes in benzodiazepine receptors (BZRs). Peripheral BZRs (in brain and platelets) and central BZRs (in brain) were measured in rats following intraperitoneal administration of diazepam and clobazam each for 4 and 12 days. BZRs were measured by binding assays using [3H] PK 11195 (peripheral) and [3H] flunitrazepam (central) as radioligands. Diazepam, but not clobazam, increased peripheral BZR numbers in platelets (both P < 0.005), but not in brain, after 4 and 12 days' treatment compared with appropriate controls. Neither drug altered central BZR affinities or numbers in rat brain. BZ effects on peripheral BZRs in platelets cannot be extrapolated to predict changes in brain receptors, either peripheral or central.

  18. Synthesis and in vivo evaluation of [{sup 11}C]zolpidem, an imidazopyridine with agonist properties at central benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, Filip; Waterhouse, Rikki N. E-mail: rnw7@columbia.edu; Montoya, Julie A.; Mattner, Filomena; Katsifis, Andrew; Kegeles, Lawrence S.; Laruelle, Marc

    2003-05-01

    The synthesis and evaluation of [{sup 11}C]zolpidem, an imidazopyridine with agonist properties at central benzodiazepine receptors, is reported herein. The reaction of desmethylzolpidem with [{sup 11}C] methyl iodide afforded the title compound [{sup 11}C]zolpidem in a yield of 19.19 {+-} 3.23% in 41 {+-} 2 min in specific activities of 0.995-1.19 Ci/{mu}mol (1.115 {+-} 0.105 Ci/{mu}mol) (n = 3; decay corrected, EOB). The amount of radioactivity in the brain after tail vein injection in male Wistar rats was low, and the regional distribution was homogeneous and not consistent with the known distribution of the central benzodiazepine receptors. The frontal cortex/cerebellum ratio was not significantly greater than one (1.007 {+-} 0.266 at 5 min) and did not increase from 5 to 40 min post-injection. A PET brain imaging study in one baboon confirmed the results obtained in rats. Therefore, it can be concluded that [{sup 11}C]zolpidem is not a suitable tracer for in vivo visualization of central benzodiazepine receptors.

  19. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    Science.gov (United States)

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  20. Structural basis for ligand recognition of incretin receptors

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Parthier, Christoph; Reedtz-Runge, Steffen

    2010-01-01

    been solved recently by X-ray crystallography. The crystal structures reveal a similar fold of the ECD and a similar mechanism of ligand binding, where the ligand adopts an α-helical conformation. Residues in the C-terminal part of the ligand interact directly with the ECD and hydrophobic interactions...... appear to be the main driving force for ligand binding to the ECD of incretin receptors. Obviously, the-still missing-structures of full-length incretin receptors are required to construct a complete picture of receptor function at the molecular level. However, the progress made recently in structural...

  1. Death receptors and ligands in cervical carcinogenesis : an immunohistochemical study

    NARCIS (Netherlands)

    Reesink-Peters, N; Hougardy, B M T; van den Heuvel, F A J; Ten Hoor, K A; Hollema, H; Boezen, H M; de Vries, E G E; de Jong, S; van der Zee, A G J

    2005-01-01

    OBJECTIVE: Increasing imbalance between proliferation and apoptosis is important in cervical carcinogenesis. The death ligands FasL and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induce apoptosis by binding to their cognate cell-surface death receptors Fas or death receptor (DR)

  2. High density of benzodiazepine binding sites in the substantia innominata of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Sarter, M.; Schneider, H.H.

    1988-07-01

    In order to study the neuronal basis of the pharmacological interactions between benzodiazepine receptor ligands and cortical cholinergic turnover, we examined the regional distribution of specific benzodiazepine binding sites using in vitro autoradiography. In the basal forebrain, the substantia innominata contained a high density of (/sup 3/H)lormetazepam (LMZ) binding sites (Bmax = 277 fmol/mg tissue; Kd = 0.55 nM). The label could be displaced by diazepam (IC50 = 100 nM), the benzodiazepine receptor antagonist beta-carboline ZK 93426 (45 nM) and the partial inverse agonist beta-carboline FG 7142 (540 nM). It is hypothesized that the amnesic effects of benzodiazepine receptor agonists are exerted through benzodiazepine receptors which are situated on cholinergic neurons in the substantia innominata and are involved in a tonic inhibition of cortical acetylcholine release. The benzodiazepine receptor antagonist ZK 93426 may exert its nootropic effects via benzodiazepine receptors in the substantia innominata and, consequently, by disinhibiting cortical acetylcholine release.

  3. Maternal Characteristics of Women Exposed to Hypnotic Benzodiazepine Receptor Agonist during Pregnancy

    Directory of Open Access Journals (Sweden)

    Bjarke Askaa

    2014-01-01

    Full Text Available Background. There is little knowledge regarding the characteristics of women treated with hypnotic benzodiazepine receptor agonists (HBRAs during pregnancy. In this large Danish cohort study, we characterize women exposed to HBRA during pregnancy. We determined changes in prevalence of HBRA use from 1997 to 2010 and exposure to HBRAs in relation to pregnancy. Methods. We performed a retrospective cohort study including 911,017 pregnant women in the period from 1997 to 2010. Information was retrieved from The Danish Birth Registry and The Registry of Medicinal Product Statistics to identify pregnant women redeeming a prescription of HBRAs. Results. We identified 2,552 women exposed to HBRAs during pregnancy, increasing from 0.18% in 1997 to 0.23% in 2010. Compared to unexposed women, exposed women were characterized by being older, with higher BMI, in their third or fourth parity, of lower income and education level, more frequently smokers, and more likely to be comedicated with antipsychotic, anxiolytic, or antidepressant drugs (P<0.0001. Conclusion. Women using HBRAs during their pregnancy differ from unexposed women in socioeconomic factors and were more likely to receive comedication. The consumption of HBRAs was reduced during pregnancy compared to before conception.

  4. Benzodiazepine receptor imaging with iomazenil SPECT in aphasic patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Ohyama, Masashi [Nippon Medical School, Tokyo (Japan)] (and others)

    1999-08-01

    To investigate the relationship between prognosis of aphasia and neuronal damage in the cerebral cortex, we evaluated the distribution of central-type benzodiazepine receptor (BZR) binding in post-stroke aphasics with [{sup 123}I]iomazenil and SPECT. We performed iomazenil SPECT in six aphasic patients (aged from 45 to 75 years; all right-handed) with unilateral left cerebral infarction. Three patients showed signs of Broca's aphasia and the other three Wernicke's aphasia. Cerebral blood flow (CBF) imaging was performed with [{sup 123}I]iodoamphetamine (IMP). The regions of interest (ROIs) on both images were set in the cerebral cortex, cerebellar cortex and language relevant area in both hemispheres. Three patients were classified in the mild prognosis group and the other three in the moderate prognosis group. The left language-relevant area was more closely concerned with the difference in aphasic symptoms than the right one in both BZR and CBF distribution, but the ipsilateral to the contralateral ratio (I/C ratio) in the language-relevant areas in the BZR distribution was significantly lower in the moderate prognosis group than in the mild prognosis group, although no difference was seen for these values between the two groups in the CBF distribution. These results suggest that BZR imaging, which makes possible an increase in neuronal cell viability in the cerebral cortex, is useful not only for clarifying the aphasic symptoms but also for evaluating the prognosis of aphasia in patients with cerebral infarction. (author)

  5. Interactions of pyrethroid insecticides with GABA sub A and peripheral-type benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, L.L.

    1988-01-01

    Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1R{alpha}S, cis cypermethrin having an ED{sub 50} value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of ({sup 3}H)Ro5-4864 to rat brain membranes with a significant correlation between the log EC{sub 50} values for their activities as proconvulsants and the log IC{sub 50} values for their inhibition of ({sup 3}H)Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific ({sup 35}S)TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of ({sup 35}S)TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated {sup 36}Chloride influx. Moreover, the Type II pyrethroids elicited an increase in {sup 36}chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin.

  6. Pharmacological properties of AC-3933, a novel benzodiazepine receptor partial inverse agonist.

    Science.gov (United States)

    Hashimoto, T; Kiyoshi, T; Kohayakawa, H; Iwamura, Y; Yoshida, N

    2014-01-01

    We investigated in this study the pharmacological properties of AC-3933 (5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one), a novel benzodiazepine receptor (BzR) partial inverse agonist. AC-3933 potently inhibited [3H]-flumazenil binding to rat whole brain membrane with a Ki value of 5.15 ± 0.39 nM and a GABA ratio of 0.84 ± 0.03. AC-3933 exhibited almost no affinity for the other receptors, transporters and ion channels used in this study. In addition, AC-3933, in the presence of GABA (1 μM), gradually but significantly increased [³⁵S] tert-butylbicyclophosphorothionate binding to rat cortical membrane to 117.1% of the control (maximum increase ratio) at 3000 nM. However, this increase reached a plateau at 30 nM with hardly any change at a concentration range of 100-3000 nM (from 115.2% to 117.1%). AC-3933 (0.1-10 μM) significantly enhanced KCl-evoked acetylcholine (ACh) release from rat hippocampal slices in a concentration-dependent manner. Moreover, in vivo brain microdialysis showed that intragastric administration of AC-3933 at the dose of 10 mg/kg significantly increased extracellular ACh levels in the hippocampus of freely moving rats (area under the curve (AUC₀₋₂ h) of ACh level; 288.3% of baseline). These results indicate that AC-3933, a potent and selective BzR inverse agonist with low intrinsic activity, might be useful in the treatment of cognitive disorders associated with degeneration of the cholinergic system.

  7. Decrease in benzodiazepine receptor binding in a patient with Angelman syndrome detected by iodine-123 iomazenil and single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Odano, Ikuo [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Anezaki, Toshiharu [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan); Ohkubo, Masaki [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Yonekura, Yoshiharu [Nihon Medi-Physics Co. Ltd., Hyogo (Japan); Onishi, Yoshihiro [Biomedical Imaging Research Center, Fukui Medical School, Fukui (Japan); Inuzuka, Takashi [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan); Takahashi, Makoto [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Tsuji, Shoji [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan)

    1996-05-01

    A receptor mapping technique using iodine-123 iomazenil and single-photon emission tomography (SPET) was employed to examine benzodiazepine receptor binding in a patient with Angelman syndrome (AS). AS is characterized by developmental delay, seizures, inappropriate laughter and ataxic movement. In this entity there is a cytogenic deletion of the proximal long arm of chromosome 15q11-q13, where the gene encoding the GABA{sub A} receptor {beta}3 subunit (GABRB3) is located. Since the benzodiazepine receptor is constructed as a receptor-ionophore complex that contains the GABA{sub A} receptor, it is a suitable marker for GABA-ergic synapsis. To determine whether benzodiazepine receptor density, which indirectly indicates changes in GABA{sub A} receptor density, is altered in the brain in patients with AS, we investigated a 27-year-old woman with AS using {sup 123}I-iomazenil and SPET. Receptor density was quantitatively assessed by measuring the binding potential using a simplified method. Regional cerebral blood flow was also measured with N-isopropyl-p-[{sup 123}]iodoamphetamine. We demonstrated that benzodiazepine receptor density is severely decreased in the cerebellum, and mildly decreased in the frontal and temporal cortices and basal ganglia, a result which is considered to indicate decreased GABA{sub A} receptor density in these regions. Although the deletion of GABRB3 was not observed in the present study, we indirectly demonstrated the disturbance of inhibitory neurotransmission mediated by the GABA{sub A} receptor in the investigated patient. {sup 123}I-iomazenil with SPET was useful to map benzodiazepine receptors, which indicate GABA{sub A} receptor distribution and their density. (orig.)

  8. Chemometric analysis of ligand receptor complementarity: identifying Complementary Ligands Based on Receptor Information (CoLiBRI).

    Science.gov (United States)

    Oloff, Scott; Zhang, Shuxing; Sukumar, Nagamani; Breneman, Curt; Tropsha, Alexander

    2006-01-01

    We have developed a novel structure-based chemoinformatics approach to search for Complimentary Ligands Based on Receptor Information (CoLiBRI). CoLiBRI is based on the representation of both receptor binding sites and their respective ligands in a space of universal chemical descriptors. The binding site atoms involved in the interaction with ligands are identified by the means of a computational geometry technique known as Delaunay tessellation as applied to X-ray characterized ligand-receptor complexes. TAE/RECON multiple chemical descriptors are calculated independently for each ligand as well as for its active site atoms. The representation of both ligands and active sites using chemical descriptors allows the application of well-known chemometric techniques in order to correlate chemical similarities between active sites and their respective ligands. We have established a protocol to map patterns of nearest neighbor active site vectors in a multidimensional TAE/RECON space onto those of their complementary ligands and vice versa. This protocol affords the prediction of a virtual complementary ligand vector in the ligand chemical space from the position of a known active site vector. This prediction is followed by chemical similarity calculations between this virtual ligand vector and those calculated for molecules in a chemical database to identify real compounds most similar to the virtual ligand. Consequently, the knowledge of the receptor active site structure affords straightforward and efficient identification of its complementary ligands in large databases of chemical compounds using rapid chemical similarity searches. Conversely, starting from the ligand chemical structure, one may identify possible complementary receptor cavities as well. We have applied the CoLiBRI approach to a data set of 800 X-ray characterized ligand-receptor complexes in the PDBbind database. Using a k nearest neighbor (kNN) pattern recognition approach and variable selection

  9. Radiosynthesis and in vivo evaluation of N-[{sup 11}C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimata, Katsuhiko [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan); Hatano, Kentaro [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan)], E-mail: hatanok@nils.go.jp; Ogawa, Mikako [Photon Medical Research Center, Hamamatsu University School of Medicine, Shizuoka 431-3192 Japan (Japan); Abe, Junichiro [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan); Magata, Yasuhiro [Photon Medical Research Center, Hamamatsu University School of Medicine, Shizuoka 431-3192 Japan (Japan); Biggio, Giovanni; Serra, Mariangela [Department of Experimental Biology, University of Cagliari, Cagliari 09100 (Italy); Laquintana, Valentino; Denora, Nunzio; Latrofa, Andrea; Trapani, Giuseppe; Liso, Gaetano [Pharmaco-Chemistry Department, University of Bari, Bari 70125 (Italy); Ito, Kengo [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan)

    2008-04-15

    Imidazopyridineacetoamide 5-8, a series of novel and potentially selective peripheral benzodiazepine receptor (PBR) ligands with affinities comparable to those of known PBR ligands, was investigated. Radiosyntheses of [{sup 11}C]5, 6, 7 or 8 was accomplished by N-methylation of the corresponding desmethyl precursors with [{sup 11}C]methyl iodide in the presence of NaH in dimethylformamide (DMF), resulting in 25% to 77% radiochemical yield and specific activitiy of 20 to 150 MBq/nmol. Each of the labeled compounds was injected in ddY mice, and the radioactivity and weight of dissected peripheral organs and brain regions were measured. Organ distribution of [{sup 11}C]7 was consistent with the known PBR distribution. Moreover, [{sup 11}C]7 showed the best combination of brain uptake and PBR binding, leading to its high retention in the olfactory bulb and cerebellum, areas where PBR density is high in mouse brain. Coinjection of PK11195 or unlabeled 7 significantly reduced the brain uptake of [{sup 11}C]7. These results suggest that [{sup 11}C]7 could be a useful radioligand for positron emission tomography imaging of PBRs.

  10. Fluorescent ligand for human progesterone receptor imaging in live cells.

    Science.gov (United States)

    Weinstain, Roy; Kanter, Joan; Friedman, Beth; Ellies, Lesley G; Baker, Michael E; Tsien, Roger Y

    2013-05-15

    We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core.

  11. EGF receptor ligands: recent advances [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Bhuminder Singh

    2016-09-01

    Full Text Available Seven ligands bind to and activate the mammalian epidermal growth factor (EGF receptor (EGFR/ERBB1/HER1: EGF, transforming growth factor-alpha (TGFA, heparin-binding EGF-like growth factor (HBEGF, betacellulin (BTC, amphiregulin (AREG, epiregulin (EREG, and epigen (EPGN. Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.

  12. Delayed image of iodine-123 iomazenil as a relative map of benzodiazepine receptor binding: the optimal scan time

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yoshihiro [Nihon Medi-Physics Co. Ltd., Nishinomiya (Japan); Yonekura, Yoshiharu [Fukui Medical School, Fukui (Japan); Tanaka, Fumiko [Kyoto University School of Medicine, Kyoto (Japan); Nishizawa, Sadahiko [Kyoto University School of Medicine, Kyoto (Japan); Okazawa, Hidehiko [Kyoto University School of Medicine, Kyoto (Japan); Ishizu, Koichi [Kyoto University School of Medicine, Kyoto (Japan); Fujita, Toru [Kyoto University School of Medicine, Kyoto (Japan); Konishi, Junji [Kyoto University School of Medicine, Kyoto (Japan); Mukai, Takao [Kyoto College of Medical Technology, Kyoto (Japan)

    1996-11-01

    ``Delayed`` single-photon emission tomograpic (SPET) images after an intravenous bolus injection of iodine-123 iomazenil have been used as a relative map of benzodiazepine receptor binding. We determined the optimal scan time for obtaining such a map and assessed the errors of the map. SPET and blood data from six healthy volunteers and five patients were used. A three-compartment kinetic model was employed in simulation studies and analyses of actual data. The simulation studies suggested that, in the normal brain, the scan time at which a single SPET image best represented the relative receptor binding was 3.0-3.5 h post-injection. This finding was supported by actual data from the volunteers. The simulation studies also suggested that the optimal scan time was not greatly changed by the variability of the input functions, and that the error in the SPET image contrast in the vicinity of the optimal scan time was not increased by changes in the tracer kinetics in the entire brain. The SPET image contrast in the patients at 3.0 h post-injection agreed well with the reference receptor binding estimated by kinetic analysis, with a mean error of 3.6%. These findings support the use of a single SPET image after bolus injection of [{sup 123}I]iomazenil as a relative map of benzodiazepine receptor binding. For this purpose, a SPET scan time of 3.0-3.5 h post-injection is recommended. (orig.). With 5 figs., 1 tab.

  13. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design

    Science.gov (United States)

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-09-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  14. Benzodiazepine receptor equilibrium constants for flumazenil and midazolam determined in humans with the single photon emission computer tomography tracer [123I]iomazenil

    DEFF Research Database (Denmark)

    Videbaek, C; Friberg, L; Holm, S

    1993-01-01

    twice, once without receptor blockade and once with a constant degree of partial blockade of the benzodiazepine receptors by infusion of nonradioactive flumazenil (Lanexat) or midazolam (Dormicum). Single photon emission computer tomography and blood sampling were performed intermittently for 6 h after...

  15. Formyl peptide receptor chimeras define domains involved in ligand binding.

    Science.gov (United States)

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  16. A simple method for the quantification of benzodiazepine receptors using iodine-123 iomazenil and single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Goto, Ryoui [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Koyama, Masamichi [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Kawashima, Ryuta [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Ono, Shuichi [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Sato, Kazunori [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Fukuda, Hiroshi [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan)

    1996-07-01

    Iodine-123 iomazenil (Iomazenil) is a ligand for central type benzodiazepine receptors that is suitable for single-photon emission tomography (SPET). The purpose of this study was to develop a simple method for the quantification of its binding potential (BP). The method is based on a two-compartment model (K{sub 1}, influx rate constant; k{sub 2}`, efflux rate constant; V{sub T}`(=K{sub 1}/k{sub 2}`), the total distribution volumes relative to the total arterial tracer concentration), and requires two SPET scans and one blood sampling. For a given input function, the radioactivity ratio of the early to delayed scans can be considered to tabulate as a function of k{sub 2}`, and a table lookup procedure provides the corresponding k{sub 2}` value, from which K{sub 1} and V{sub t}` values are then calculated. The arterial input function is obtained by calibration of the standard input function by the single blood sampling. SPET studies were performed on 14 patients with cerebrovascular diseases, dementia or brain tumours (mean age {+-}SD, 56.0{+-}12.2). None of the patients had any heart, renal or liver disease. A dynamic SPET scan was performed following intravenous bolus injection of Iomazenil. A static SPET scan was performed at 180 min after injection. Frequent blood sampling from the brachial artery was performed on all subjects for determination of the arterial input function. Two-compartment model analysis was validated for calculation of the V{sub T}` value of Iomazenil. Good correlations were observed between V{sub T}` values calculated by three-compartment model analysis and those calculated by the present method, in which the scan time combinations (early scan/delayed scan) used were 15/180 min, 30/180 min or 45/180 min (all combinations: r=0.92), supporting the validity of this method. The present method is simple and applicable for clinical use. (orig.)

  17. Observations on the ligand selectivity of the melanocortin 2 receptor.

    Science.gov (United States)

    Veo, Kristopher; Reinick, Christina; Liang, Liang; Moser, Emily; Angleson, Joseph K; Dores, Robert M

    2011-05-15

    The melanocortin 2 receptor (MC2R) is unique in terms of ligand selectivity and in vitro expression in mammalian cell lines as compared to the other four mammalian MCRs. It is well established that ACTH is the only melanocortin ligand that can activate the ACTH receptor (i.e., melanocortin 2 receptor). Recent studies have provided new insights into the presence of a common binding site for the HFRW motif common to all melanocortin ligands. However, the activation of the melanocortin 2 receptor requires an additional amino acid motif that is only found in the sequence of ACTH. This mini-review will focus on these two topics and provide a phylogenetic perspective on the evolution of MC2R ligand selectivity.

  18. CLiBE: a database of computed ligand binding energy for ligand-receptor complexes.

    Science.gov (United States)

    Chen, X; Ji, Z L; Zhi, D G; Chen, Y Z

    2002-11-01

    Consideration of binding competitiveness of a drug candidate against natural ligands and other drugs that bind to the same receptor site may facilitate the rational development of a candidate into a potent drug. A strategy that can be applied to computer-aided drug design is to evaluate ligand-receptor interaction energy or other scoring functions of a designed drug with that of the relevant ligands known to bind to the same binding site. As a tool to facilitate such a strategy, a database of ligand-receptor interaction energy is developed from known ligand-receptor 3D structural entries in the Protein Databank (PDB). The Energy is computed based on a molecular mechanics force field that has been used in the prediction of therapeutic and toxicity targets of drugs. This database also contains information about ligand function and other properties and it can be accessed at http://xin.cz3.nus.edu.sg/group/CLiBE.asp. The computed energy components may facilitate the probing of the mode of action and other profiles of binding. A number of computed energies of some PDB ligand-receptor complexes in this database are studied and compared to experimental binding affinity. A certain degree of correlation between the computed energy and experimental binding affinity is found, which suggests that the computed energy may be useful in facilitating a qualitative analysis of drug binding competitiveness.

  19. Antiplasmodial and GABA(A)-benzodiazepine receptor binding activities of five plants used in traditional medicine in Mali, West Africa.

    Science.gov (United States)

    Bah, Sekou; Jäger, Anna K; Adsersen, Anne; Diallo, Drissa; Paulsen, Berit Smestad

    2007-04-04

    Extracts of five medicinal plants: Boscia angustifolia, Cissus quadrangularis, Securidaca longipedunculata, Stylosanthes erecta and Trichilia emetica, used traditionally in Malian traditional medicine were screened for in vitro antiplasmodial activity and GABA(A)-benzodiazepine receptor binding activity. Four extracts showed significant antiplasmodial activities, with the dichloromethane extract of leaf of Securidaca longipedunculata being the most active (IC(50) of 7 microg/ml [95% CI: 5-9]). The dichloromethane extract of leaf of Trichilia emetica, in addition to its antiplasmodial activity (IC(50): 12 microg/ml [95% CI: 12-14]), exhibited a good binding activity to the GABA(A)-benzodiazepine receptor, while water and methanol extracts of the same plant did not show any activity. A strong GABA(A)-receptor complex binding activity was observed in the methanol extract of aerial part of Stylosanthes erecta. The results in this study justify some of the traditional indications of the plants investigated and may thus be candidates for Improved Traditional Medicines in Mali.

  20. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    Directory of Open Access Journals (Sweden)

    Xavier Charest-Morin

    Full Text Available The bradykinin (BK B1 receptor (B1R is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP (enhanced green FP [EGFP] or mCherry prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively. The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy. Both assays indicated that the best design was FP-(Asn-Glyn-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology.

  1. Competitive antagonism of AMPA receptors by ligands of different classes

    DEFF Research Database (Denmark)

    Hogner, Anders; Greenwood, Jeremy R; Liljefors, Tommy;

    2003-01-01

    that ATPO and DNQX stabilize an open form of the ligand-binding core by different sets of interactions. Computational techniques are used to quantify the differences between these two ligands and to map the binding site. The isoxazole moiety of ATPO acts primarily as a spacer, and other scaffolds could......-(phosphonomethoxy)-4-isoxazolyl]propionic acid (ATPO) in complex with the ligand-binding core of the receptor. Comparison with the only previous structure of the ligand-binding core in complex with an antagonist, 6,7-dinitro-2,3-quinoxalinedione (DNQX) (Armstrong, N.; Gouaux, E. Neuron 2000, 28, 165-181), reveals...

  2. GABAA-benzodiazepine receptor availability in smokers and nonsmokers: relationship to subsyndromal anxiety and depression.

    Science.gov (United States)

    Esterlis, Irina; Cosgrove, Kelly P; Batis, Jeffery C; Bois, Frederic; Kloczynski, Tracy A; Stiklus, Stephanie M; Perry, Edward; Tamagnan, Gilles D; Seibyl, John P; Makuch, Robert; Krishnan-Sarin, Suchitra; O'Malley, Stephanie; Staley, Julie K

    2009-12-01

    Many smokers experience subsyndromal anxiety symptoms while smoking and during acute abstinence, which may contribute to relapse. We hypothesized that cortical gamma aminobutyric acid(A)-benzodiazepine receptor (GABA(A)-BZR) availability in smokers and nonsmokers might be related to the expression of subsyndromal anxiety, depressive, and pain symptoms. Cortical GABA(A)-BZRs were imaged in 15 smokers (8 men and 7 women), and 15 healthy age and sex-matched nonsmokers, and 4 abstinent tobacco smokers (3 men; 1 woman) using [(123)I]iomazenil and single photon emission computed tomography (SPECT). Anxiety and depressive symptoms were measured using the Spielberger's State-Trait Anxiety Index (STAI) and the Center for Epidemiology Scale for Depressive Symptoms (CES-D). The cold pressor task was administered to assess pain tolerance and sensitivity. The relationship between cortical GABA(A)-BZR availability, smoking status, and subsyndromal depression and anxiety symptoms, as well as pain tolerance and sensitivity, were evaluated. Surprisingly, there were no statistically significant differences in overall GABA(A)-BZR availability between smokers and nonsmokers or between active and abstinent smokers; however, cortical GABA(A)-BZR availability negatively correlated with subsyndromal state anxiety symptoms in nonsmokers but not in smokers. In nonsmokers, the correlation was seen across many brain areas with state anxiety [parietal (r = -0.47, P = 0.03), frontal (r = -0.46, P = 0.03), anterior cingulate (r = -0.47, P = 0.04), temporal (r = -0.47, P = 0.03), occipital (r = -0.43, P = 0.05) cortices, and cerebellum (r = -0.46, P = 0.04)], trait anxiety [parietal (r = -0.72, P = 0.02), frontal (r = -0.72, P = 0.02), and occipital (r = -0.65, P = 0.04) cortices] and depressive symptoms [parietal (r = -0.68; P = 0.02), frontal (r = -0.65; P = 0.03), anterior cingulate (r = -0.61; P = 0.04), and temporal (r = -0.66; P = 0.02) cortices]. The finding that a similar relationship

  3. Orphan receptor ligand discovery by pickpocketing pharmacological neighbors.

    Science.gov (United States)

    Ngo, Tony; Ilatovskiy, Andrey V; Stewart, Alastair G; Coleman, James L J; McRobb, Fiona M; Riek, R Peter; Graham, Robert M; Abagyan, Ruben; Kufareva, Irina; Smith, Nicola J

    2017-02-01

    Understanding the pharmacological similarity of G protein-coupled receptors (GPCRs) is paramount for predicting ligand off-target effects, drug repurposing, and ligand discovery for orphan receptors. Phylogenetic relationships do not always correctly capture pharmacological similarity. Previous family-wide attempts to define pharmacological relationships were based on three-dimensional structures and/or known receptor-ligand pairings, both unavailable for orphan GPCRs. Here, we present GPCR-CoINPocket, a novel contact-informed neighboring pocket metric of GPCR binding-site similarity that is informed by patterns of ligand-residue interactions observed in crystallographically characterized GPCRs. GPCR-CoINPocket is applicable to receptors with unknown structure or ligands and accurately captures known pharmacological relationships between GPCRs, even those undetected by phylogeny. When applied to orphan receptor GPR37L1, GPCR-CoINPocket identified its pharmacological neighbors, and transfer of their pharmacology aided in discovery of the first surrogate ligands for this orphan with a 30% success rate. Although primarily designed for GPCRs, the method is easily transferable to other protein families.

  4. {sup 125}I-iomazenil - benzodiazepine receptor binding and serum corticosterone level during psychological stress in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, Nobuyoshi E-mail: GZL13162@nifty.ne.jp; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2004-02-01

    To test the hypothesis that benzodiazepine receptor density decreases in response to stress, we correlated {sup 125}I-iomazenil ({sup 125}I-IMZ) binding with serum corticosterone levels in a rat model. Wistar male rats were divided into four groups; control group (CON, 10 rats), no physical or psychological stress; and one-, three-, and five-day stress groups of 12 rats each (1-DAY, 3-DAY, and 5-DAY, respectively), receiving psychological stress for the given number of days. Psychological stress were given to rats with a communication box. The standardized uptake value (SUV) of {sup 125}I-iomazenil of the 3-DAY and 5-DAY showed that {sup 125}I-iomazenil - benzodiazepine receptor binding was significantly reduced in the cortices, accumbens nuclei, amygdala and caudate putamen (p<0.05). Serum corticosterone level ratio appeared to be slightly elevated in 3-DAY and 5-DAY, although this elevation was not significant. These data suggest that {sup 125}I-IMZ is a useful radioligand to reflect received stress and its binding in the cortices, accumbens nuclei, amygdala and caudate putamen is strongly affected by psychological stress.

  5. The imidazoline receptors and ligands in pain modulation

    Directory of Open Access Journals (Sweden)

    Nurcan Bektas

    2015-01-01

    Full Text Available Pain is an unpleasant experience and effects daily routine negatively. Although there are various drugs, many of them are not entirely successful in relieving pain, since pain modulation is a complex process involving numerous mediators and receptors. Therefore, it is a rational approach to identify the factors involved in the complex process and develop new agents that act on these pain producing mechanisms. In this respect, the involvement of the imidazoline receptors in pain modulation has drawn attention in recent years. In this review, it is aimed to focus on the imidazoline receptors and their ligands which contribute to the pain modulation. It is demonstrated that imidazoline-2 (I2 receptors are steady new drug targets for analgesics. Even if the mechanism of I2receptor is not well known in the modulation of pain, it is known that it plays a role in tonic and chronic pain but not in acute phasic pain. Moreover, the I2receptor ligands increase the analgesic effects of opioids in both acute and chronic pain and prevent the development of opioid tolerance. So, they are valuable for the chronic pain treatment and also therapeutic coadjuvants in the management of chronic pain with opiate drugs due to the attenuation of opioid tolerance and addiction. Thus, the use of the ligands which bind to the imidazoline receptors is an effective strategy for relieving pain. This educational forum exhibits the role of imidazoline receptors and ligands in pain process by utilizing experimental studies.

  6. Ligands of Therapeutic Utility for the Liver X Receptors

    Directory of Open Access Journals (Sweden)

    Rajesh Komati

    2017-01-01

    Full Text Available Liver X receptors (LXRs have been increasingly recognized as a potential therapeutic target to treat pathological conditions ranging from vascular and metabolic diseases, neurological degeneration, to cancers that are driven by lipid metabolism. Amidst intensifying efforts to discover ligands that act through LXRs to achieve the sought-after pharmacological outcomes, several lead compounds are already being tested in clinical trials for a variety of disease interventions. While more potent and selective LXR ligands continue to emerge from screening of small molecule libraries, rational design, and empirical medicinal chemistry approaches, challenges remain in minimizing undesirable effects of LXR activation on lipid metabolism. This review provides a summary of known endogenous, naturally occurring, and synthetic ligands. The review also offers considerations from a molecular modeling perspective with which to design more specific LXRβ ligands based on the interaction energies of ligands and the important amino acid residues in the LXRβ ligand binding domain.

  7. Quantitative autoradiographic determination of binding sites for a peripheral benzodiazepine ligand ((/sup 3/H)PK 11195) in human iris

    Energy Technology Data Exchange (ETDEWEB)

    Valtier, D.; Malgouris, C.; Uzan, A.

    1987-01-01

    Specific binding sites of peripheral-type benzodiazepines were investigated in human iris/ciliary body (8 eyes). Examination of color-coded prints and densitometric quantification of autoradiograms were performed on slides (20 ..mu..m) labelled with (/sup 3/H)PK 11195 (1 nM) at 25 deg C. Nonspecific binding was determined with PK 11211 (5 ..mu..M) or Ro 5-4864 (5 ..mu..M). Binding sites were present on all the slides, with equivalent density in the 3 regions of the preparation (ciliary body, iris and pupil margin). The numbers of binding sites in ciliary body, iris, and pupil margin, respectively were: 42.7 +- 0.2, 30.1 +- 0.5 and 37.4 +- 0.4 femtomol/mg protein. Labelling on the pupil margin seemed to coincide with the iris sphincter muscle. The presence of peripheral benzodiazepine binding sites in iris muscular tissue, and particularly in the pupil margin, suggests that the iris preparation may be a valuable tool to detect putative physiological effects of peripheral benzodiazepines on muscular motility.

  8. Influences of housing conditions and ethanol intake on binding characteristics of D2, 5-HT1A, and benzodiazepine receptors of rats.

    Science.gov (United States)

    Rilke, O; May, T; Oehler, J; Wolffgramm, J

    1995-09-01

    The effects of different housing conditions and ethanol treatment (6 vol % in the drinking water) on the in vitro binding characteristics of striatal dopaminergic D2 ([3H]spiperone), hippocampal serotonergic 5-HT1A ([3H]8-OH-DPAT), and cortical benzodiazepine ([3H]flunitrazepam) receptors have been examined. Social deprivation due to contact caging, short- (1 day) and long-term isolation (5 weeks) yielded a significant decrease of striatal D2 receptor density with the greatest decrease after long-term isolation (-21% Bmax) without changes of Kd in comparison to group animals. The effect of ethanol on striatal D2 receptor density depended on the housing conditions. Whereas ethanol treatment reduced receptor density of group animals (down to 88%), chronic exposure to ethanol under long-term isolation elicited no significant alteration of D2 receptor density compared with group animals. Different housing and ethanol treatment had no effect on 5-HT1A receptor affinity and density. Alterations of benzodiazepine receptor density were not found, but social deprivation as well as ethanol treatment of group animals caused an increased affinity of [3H]flunitrazepam (reduced Kd value). These results indicate that different housing conditions of adult rats evoked significant alterations in D2 and benzodiazepine receptor binding assays, which were modified by ethanol treatment in the case of striatal D2 receptor density.

  9. [Benzodiazepine and nonbenzodiazepine hypnotics].

    Science.gov (United States)

    Nakamura, Masaki; Inoue, Yuichi

    2015-06-01

    The prevalence of insomnia shows an age-associated increase. Especially, persons with age over 60 years frequently suffer from arousal during sleep and early-morning awakening. The reason of this phenomenon can be explained by age-related change in sleepwake regulation, comorbid diseases and psycho-social status. Benzodiazepine derivatives and benzodiazepine agonists have been widely used for treatment of insomnia. These GABA-A receptor agonist hypnotics have sedative effect, possibly causing various adverse events, i.e. falls and hip fracture, anterograde amnesia, next morning hangover especially in the elderly. When making a choice of treatment drugs for the elderly, low dose benzodiazepine hypnotics with relatively high Ω1-selectivity, and newer hypnotics including melatonic receptor agonist or orexin receptor antagonist can become important candidates considering their comorbid diseases or drug interaction with other medications.

  10. Human studies on the benzodiazepine receptor antagonist beta-carboline ZK 93 426: antagonism of lormetazepam's psychotropic effects.

    Science.gov (United States)

    Duka, T; Goerke, D; Dorow, R; Höller, L; Fichte, K

    1988-01-01

    The effects of lormetazepam (0.03 mg/kg IV) a benzodiazepine (BZ) derivative in combination with ZK 93 426 (0.04 mg/kg IV) a beta-carboline, benzodiazepine receptor antagonist were evaluated in humans. Independently, the effects of ZK 93 426 on its own were investigated. A psychometric test battery to evaluate sedation (visual analog scales (VAS), anxiolysis (state-trait-anxiety inventory scale (STAIG X1) and cognitive functions [logical reasoning test (LR), letter detection test (LD)] was applied before and several hours after initiation of treatment. Multiple sleep latency test (MSLT), which measures day time sleepiness, was also applied. Vigilosomnograms analysed from standard EEG recordings were evaluated shortly before and for 1 h after treatment. Treatment started with an intravenous injection of either lormetazepam (LMZ) or placebo (PLA), which was followed 30 min later by administration of either ZK 93 426 or placebo; thus four treatment groups were created (PLA + PLA, LMZ + PLA, LMZ + ZK 93 426 and PLA + ZK 93 426). ZK 93 426 antagonized the sedative and hypnotic effect of LMZ as estimated by MSLT and vigilosomnograms, respectively. Impairment of cognitive functions (LR and LD) induced by LMZ was also antagonized by ZK 93 426. ZK 93 426 had no effect on the changes in the time estimation seen in the LMZ group. Furthermore, ZK 93 426 on its own increased vigilance (alertness) as measured by the vigilosomnogram. A competitive antagonism at the benzodiazepine binding site between ZK 93 426 and LMZ is suggested by their combination effects; the intrinsic activity of ZK 93 426 seems to be due to its weak partial inverse agonist component.

  11. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [¹¹C]DAA1106.

    Science.gov (United States)

    Yasuno, Fumihiko; Kosaka, Jun; Ota, Miho; Higuchi, Makoto; Ito, Hiroshi; Fujimura, Yota; Nozaki, Shoko; Takahashi, Sho; Mizukami, Katsuyoshi; Asada, Takashi; Suhara, Tetsuya

    2012-07-30

    Subjects with mild cognitive impairment (MCI) have "prodromal or incipient" dementia with neuropathological changes. Peripheral benzodiazepine receptor (PBR) binding was shown to reflect activated microglia, one of the predictive biomarkers of conversion to dementia. We sought to evaluate PBR binding in MCI subjects using positron emission tomography (PET). PET scans with [¹¹C]DAA1106, a potent and selective ligand for PBR, were performed on seven MCI subjects, 10 patients with Alzheimer's disease (AD) and 10 age-matched control subjects. PBR binding in the regions of interest was quantified by binding potential (BP). Five MCI subjects were clinically followed for 5 years after their initial PET scans. [¹¹C]DAA1106 binding to PBR was significantly increased in widespread areas in MCI subjects when compared to healthy controls. We found no significant difference in BP between MCI and AD patients. MCI subjects with [¹¹C]DAA1106 binding values higher than the control mean +0.5 standard deviation (S.D.) developed dementia within 5 years. Our finding of higher DAA binding in MCI subjects indicated that microglial activation may occur before the onset of dementia. In vivo detection of microglial activation may provide useful prognostic information with respect to stratifying MCI subjects at increased risk of dementia.

  12. Kinetics of Receptor-Ligand Interactions in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Mian Long; Shouqin Lü; Ganyun Sun

    2006-01-01

    Receptor-ligand interactions in blood flow are crucial to initiate the biological processes as inflammatory cascade,platelet thrombosis, as well as tumor metastasis. To mediate cell adhesions, the interacting receptors and ligands must be anchored onto two apposing surfaces of two cells or a cell and a substratum, i.e., the two-dimensional (2D) binding, which is different from the binding of a soluble ligand in fluid phase to a receptor, i.e., three-dimensional (3D) binding. While numerous works have been focused on 3D kinetics of receptor-ligand interactions in immune systems, 2D kinetics and its regulations have less been understood, since no theoretical framework and experimental assays have been established until 1993. Not only does the molecular structure dominate 2D binding kinetics, but the shear force in blood flow also regulates cell adhesions mediated by interacting receptors and ligands. Here we provided the overview of current progresses in 2D bindings and regulations. Relevant issues of theoretical frameworks, experimental measurements, kinetic rates and binding affinities, and force regulations,were discussed.

  13. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Vowinckel, E; Reutens, D; Becher, B

    1997-01-01

    Activated glial cells are implicated in regulating and effecting the immune response that occurs within the CNS as part of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). The peripheral benzodiazepine receptor (PBR) is expressed in glial cells. We...

  14. Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-12-1-0288 TITLE: Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

  15. Structure-activity relationship of benzodiazepine derivatives as LXXLL peptide mimetics that inhibit the interaction of vitamin D receptor with coactivators.

    Science.gov (United States)

    Mita, Yusuke; Dodo, Kosuke; Noguchi-Yachide, Tomomi; Hashimoto, Yuichi; Ishikawa, Minoru

    2013-02-15

    Suppression of vitamin D receptor (VDR)-mediated transcription is expected to be of therapeutic value in Paget's disease of bone. It is known that interaction between VDR and coactivators is necessary for VDR transactivation, and the interaction occurs when VDR recognizes an LXXLL peptide motif of coactivators. We previously reported that benzodiazepine derivatives designed as LXXLL peptide mimetics inhibited the interaction of VDR and coactivators, and reduced VDR transcription. Here, we investigated the structure-activity relationship of 7- and 8-substituted benzodiazepine derivatives, and established that the amino group at the 8-position is critical for the inhibitory activity.

  16. Midazolam ameliorates the behavior deficits of a rat posttraumatic stress disorder model through dual 18 kDa translocator protein and central benzodiazepine receptor and neurosteroidogenesis.

    Directory of Open Access Journals (Sweden)

    Yu-Liang Miao

    Full Text Available Post-traumatic stress disorder (PTSD is a debilitating anxiety disorder that may develop after an individual has experienced or witnessed a severe traumatic event. It has been shown that the 18 kDa translocator protein (TSPO may be correlated with PTSD and that the TSPO ligand improved the behavioral deficits in a mouse model of PTSD. Midazolam, a ligand for TSPO and central benzodiazepine receptor (CBR, induces anxiolytic- and anti-depressant-like effects in animal models. The present study aimed to determine whether midazolam ameliorates PTSD behavior in rats as assessed by the single prolonged stress (SPS model. The SPS rats received daily Sertraline (Ser (15 mg/kg, i.p. [corrected] and midazolam (0.125, 0.25, 0.5, and 1 mg/kg, i.p. [corrected] during the exposure to SPS and behavioral assessments, which included the open field (OF test, the contextual fear paradigm (CFP, and the elevated plus-maze (EPM. The results showed that, like Ser (15 mg/kg, i.p. [corrected], midazolam (0.25 and 0.5 mg/kg, i.p. [corrected] significantly reversed the behavioral deficiencies of the SPS rats, including PTSD-associated freezing and anxiety-like behavior but not the effects on spontaneous locomotor activity. In addition, the anti-PTSD effects of midazolam (0.5 mg/kg, i.p. [corrected] were antagonized by the TSPO antagonist PK11195 (3 mg/kg, i.p., the CBR antagonist flumazenil (15 mg/kg, i.p. [corrected] and the inhibitor of steroidogenic enzymes finasteride (30 mg/kg, i.p. [corrected], which by themselves had no effect on PTSD-associated freezing and anxiety-like behavior. In summary, this study demonstrated that midazolam improves the behavioral deficits in the SPS model through dual TSPO and CBR and neurosteroidogenesis.

  17. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    Beaudet A.

    1998-01-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  18. Expression of peripheral benzodiazepine receptor (PBR) in human tumors: relationship to breast, colorectal, and prostate tumor progression.

    Science.gov (United States)

    Han, Zeqiu; Slack, Rebecca S; Li, Wenping; Papadopoulos, Vassilios

    2003-01-01

    High levels of peripheral-type benzodiazepine receptor (PBR), the alternative-binding site for diazepam, are part of the aggressive human breast cancer cell phenotype in vitro. We examined PBR levels and distribution in normal tissue and tumors from multiple cancer types by immunohistochemistry. Among normal breast tissues, fibroadenomas, primary and metastatic adenocarcinomas, there is a progressive increase in PBR levels parallel to the invasive and metastatic ability of the tumor (p cancers, such as those of breast, colon-rectum and prostate tissues, where elevated PBR expression is associated with tumor progression. Thus, we propose that PBR overexpression could serve as a novel prognostic indicator of an aggressive phenotype in breast, colorectal and prostate cancers.

  19. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    Institute of Scientific and Technical Information of China (English)

    Joseph J BABCOCK; Min LI

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments.However,these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone.Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell.These additional modes of interaction have been reported for functionally diverse ligands of GPCRs,ion channels,and transporters.Such intracellular drug-target engagements affect cell surface expression.Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation.Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites,and the potential therapeutic opportunities presented by this phenomenon.

  20. Transcranial Random Noise Stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-04-01

    Full Text Available Background: Application of transcranial random noise stimulation (tRNS between 0.1 and 640 Hz of the primary motor cortex (M1 for 10 minutes induces a persistent excitability increase lasting for at least 60 minutes. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1mA for 10mins stimulation duration and a pharmacological agent (or sham on 8 healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency towards inhibiting MEPs 5-60 mins poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0-20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS.Conclusions: In contrast to transcranial direct current stimulation (tDCS, aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms.

  1. Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members.

    Science.gov (United States)

    Schneider, Pascal; Willen, Laure; Smulski, Cristian R

    2014-01-01

    Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.

  2. The 18 kDa translocator protein (peripheral benzodiazepine receptor) expression in the bone of normal, osteoprotegerin or low calcium diet treated mice.

    Science.gov (United States)

    Kam, Winnie Wai-Ying; Meikle, Steven R; Zhou, Hong; Zheng, Yu; Blair, Julie M; Seibel, Marcus; Dunstan, Colin R; Banati, Richard B

    2012-01-01

    The presence of the translocator protein (TSPO), previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195.In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells.In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [(3)H]PK11195 binding in the spongiosa (320±128 Bq x mg(-1), 499±106 Bq x mg(-1) in saline-treated controls). In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [(3)H]PK11195 binding in the spongiosa (615±90 Bq x mg(-1)). Further, our study includes technical feasibility data on [(18)F]fluoride microPET imaging of rodent bone with altered turnover. Despite [(18)F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [(18)F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.

  3. The 18 kDa translocator protein (peripheral benzodiazepine receptor expression in the bone of normal, osteoprotegerin or low calcium diet treated mice.

    Directory of Open Access Journals (Sweden)

    Winnie Wai-Ying Kam

    Full Text Available The presence of the translocator protein (TSPO, previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195.In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells.In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [(3H]PK11195 binding in the spongiosa (320±128 Bq x mg(-1, 499±106 Bq x mg(-1 in saline-treated controls. In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [(3H]PK11195 binding in the spongiosa (615±90 Bq x mg(-1. Further, our study includes technical feasibility data on [(18F]fluoride microPET imaging of rodent bone with altered turnover. Despite [(18F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [(18F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.

  4. [Endorphines--the endogenous ligands of opiate receptors (author's transl)].

    Science.gov (United States)

    Teschemacher, H

    1978-01-01

    The demonstration of opiate receptors in the nervous tissue of vertebrates in 1973 was the starting point of an intensive search for the endogenous ligands of these receptors. During the following years, several of such "edogenous opiates", called "endorphines", were isolated from various tissues of the mammalian organism. These are peptides which are able to elicit the same effects as do opiates. Possibly, they play a role in the reaction of the organism to stress.

  5. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  6. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice.

    Science.gov (United States)

    Smith, Kiersten S; Engin, Elif; Meloni, Edward G; Rudolph, Uwe

    2012-08-01

    GABA(A) receptor modulating drugs such as benzodiazepines (BZs) have been used to treat anxiety disorders for over five decades. In order to determine whether the same or different GABA(A) receptor subtypes are necessary for the anxiolytic-like action of BZs in unconditioned anxiety and conditioned fear models, we investigated the role of different GABA(A) receptor subtypes by challenging wild type, α1(H101R), α2(H101R) and α3(H126R) mice bred on the C57BL/6J background with diazepam or chlordiazepoxide in the elevated plus maze and the fear-potentiated startle paradigms. Both drugs significantly increased open arm exploration in the elevated plus maze in wild type, α1(H101R) and α3(H126R), but this effect was abolished in α2(H101R) mice; these were expected results based on previous published results. In contrast, while administration of diazepam and chlordiazepoxide significantly attenuated fear-potentiated startle (FPS) in wild type mice and α3(H126R) mice, the fear-reducing effects of these drugs were absent in both α1(H101R) and α2(H101R) point mutants, indicating that both α1- and α2-containing GABA(A) receptors are necessary for BZs to exert their effects on conditioned fear responses. Our findings illustrate both an overlap and a divergence between the GABA(A) receptor subtype requirements for the impact of BZs, specifically that both α1- and α2-containing GABA(A) receptors are necessary for BZs to reduce conditioned fear whereas only α2-containing GABA(A) receptors are needed for BZ-induced anxiolysis in unconditioned tests of anxiety. This raises the possibility that GABAergic pharmacological interventions for specific anxiety disorders can be differentially tailored.

  7. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...

  8. Central nicotinic receptors: structure, function, ligands, and therapeutic potential.

    Science.gov (United States)

    Romanelli, M Novella; Gratteri, Paola; Guandalini, Luca; Martini, Elisabetta; Bonaccini, Claudia; Gualtieri, Fulvio

    2007-06-01

    The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.

  9. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABA(A) receptors expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Hammer, Harriet; Ebert, Bjarke; Jensen, Henrik Sindal; Jensen, Anders A

    2015-01-01

    The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABA(A)R) subtypes α1β2γ(2S), α2β2γ(2S), α3β2γ(2S), α5β2γ(2S) and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α(1,2,3,5)β2γ(2S) GABA(A)Rs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold) as positive allosteric modulators at the α6β2δ GABA(A)R than at the α(1,2,3,5)β2γ(2S) receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non-selective modulation

  10. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABA(A receptors expressed in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Harriet Hammer

    Full Text Available The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABA(AR subtypes α1β2γ(2S, α2β2γ(2S, α3β2γ(2S, α5β2γ(2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α(1,2,3,5β2γ(2S GABA(ARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold as positive allosteric modulators at the α6β2δ GABA(AR than at the α(1,2,3,5β2γ(2S receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non

  11. SPECT imaging of GABA{sub A}/benzodiazepine receptors and cerebral perfusion in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Pappata, Sabina; Varrone, Andrea; Vicidomini, Caterina; Sansone, Valeria; Comerci, Marco; Panico, Maria Rosaria; Quarantelli, Mario [CNR, Institute of Biostructure and Bioimaging, Naples (Italy); Milan, Graziella; De Falco, Caterina; Lore, Elisa; Postiglione, Alfredo [University ' ' Federico II' ' , Department of Clinical and Experimental Medicine, Naples (Italy); Iavarone, Alessandro [Neurologic and Stroke Unit, CTO Hospital, Naples (Italy); Salvatore, Marco [CNR, Institute of Biostructure and Bioimaging, Naples (Italy); University ' ' Federico II' ' , Department of Biomorphological and Functional Sciences, Naples (Italy)

    2010-06-15

    The involvement of neocortical and limbic GABA{sub A}/benzodiazepine (BZD) receptors in Alzheimer's disease (AD) is controversial and mainly reported in advanced stages. The status of these receptors in the very early stages of AD is unclear and has not been explored in vivo. Our aims were to investigate in vivo the integrity of cerebral cortical GABA{sub A}/BZD receptors in subjects with amnestic mild cognitive impairment (MCI) and to compare possible receptor changes to those in cerebral perfusion. [{sup 123}I]Iomazenil and [{sup 99m}Tc]HMPAO SPECT images were acquired in 16 patients with amnestic MCI and in 14 normal elderly control subjects (only [{sup 123}I]iomazenil imaging in 5, only [{sup 99m}Tc]HMPAO imaging in 4, and both [{sup 123}I]iomazenil and [{sup 99m}Tc]HMPAO imaging in 5). Region of interest (ROI) analysis and voxel-based analysis were performed with cerebellar normalization. Neither ROI analysis nor voxel-based analysis showed significant [{sup 123}I]iomazenil binding changes in MCI patients compared to control subjects, either as a whole group or when considering only those patients with MCI that converted to AD within 2 years of clinical follow-up. In contrast, the ROI analysis revealed significant hypoperfusion of the precuneus and posterior cingulate cortex in the whole group of MCI patients and in MCI converters as compared to control subjects. Voxel-based analysis showed similar results. These results indicate that in the very early stages of AD, neocortical and limbic neurons/synapses expressing GABA{sub A}/BZD receptors are essentially preserved. They suggest that in MCI patients functional changes precede neuronal/synaptic loss in neocortical posterior regions and that [{sup 99m}Tc]HMPAO rCBF imaging is more sensitive than [{sup 123}I]iomazenil GABA{sub A}/BZD receptor imaging in detecting prodromal AD. (orig.)

  12. Evolution of ligand specificity in vertebrate corticosteroid receptors

    Directory of Open Access Journals (Sweden)

    Deitcher David L

    2011-01-01

    Full Text Available Abstract Background Corticosteroid receptors include mineralocorticoid (MR and glucocorticoid (GR receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. Results We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC] to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (Mus musculus and the midshipman fish (Porichthys notatus, a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (Neolamprologus pulcher, another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences. Conclusion The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.

  13. Synthesis and PET imaging of the benzodiazepine receptor tracer [N-methyl-{sup 11}C]iomazenil

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Ronald M.; Horti, Andrew G.; Bremner, J. Douglas; Stratton, Morgan D.; Dannals, Robert F.; Ravert, Hayden T.; Zea-Ponce, Yolanda; Ng, Chin K.; Dey, Holley M.; Soufer, Robert; Charney, Dennis S.; Mazza, Samuel M.; Sparks, Richard B.; Stubbs, James B.; Innis, Robert B

    1995-07-01

    The central benzodiazepine receptor tracer [N-methyl-{sup 11}C]iomazenil (Ro 16-0154) was synthesized by alkylation of the desmethyl precursor noriomazenil with [{sup 11}C]methyl iodide. The [{sup 11}C]CH{sub 3}I (prepared by reduction of [{sup 11}C]CO{sub 2} with LiAlH{sub 4} followed by reaction with HI) was reacted with noriomazenil inN,N -dimethylformamide and Bu{sub 4}N{sup +}OH{sup -} for 1 min at 80 deg. C and purified by HPLC (C{sub 18}, 34% CH{sub 3}CN/H{sub 2}O, 7 mL/min). The product was obtained with synthesis time 35 {+-} 5 min (mean {+-} SD, n = 7), radiochemical yield (EOB) 36 {+-} 16%, radiochemical purity 99 {+-} 1%, and specific activity 5100 {+-} 2800 mCi/{mu}mol. Absorbed radiation doses were calculated from previously acquired human biodistribution data. The urinary bladder wall received the highest dose (0.099 mGy/MBq) for 4.8 h voiding interval and the effective dose equivalent was 0.015 mSv/MBq. After i.v. injection of [{sup 11}C]iomazenil in an adult baboon or healthy human volunteer, radioactivity accumulated in the cortex with time-activity curves in agreement with results obtained with [{sup 11}C]flumazenil PET and [{sup 123}I]iomazenil SPECT studies. The count rate was sufficient to obtain quantitative images up to 2 h post-injection with a 14 mCi injection. These results suggest that [{sup 11}C]iomazenil will be a useful agent for measuring benzodiazepine receptorsin vivo by positron emission tomography.

  14. Regulation of Estrogen Receptor Nuclear Export by Ligand-Induced and p38-Mediated Receptor Phosphorylation

    OpenAIRE

    Lee, Heehyoung; Bai, Wenlong

    2002-01-01

    Estrogen receptors are phosphoproteins which can be activated by ligands, kinase activators, or phosphatase inhibitors. Our previous study showed that p38 mitogen-activated protein kinase was involved in estrogen receptor activation by estrogens and MEKK1. Here, we report estrogen receptor-dependent p38 activation by estrogens in endometrial adenocarcinoma cells and in vitro and in vivo phosphorylation of the estrogen receptor α mediated through p38. The phosphorylation site was identified as...

  15. Quantification of human brain benzodiazepine receptors using [{sup 18}F]fluoroethylflumazenil: a first report in volunteers and epileptic patients

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, Philippe [Unite de Tomographie par Positrons, Universite Catholique de Louvain, Louvain-la-Neuve (Belgium); Unite de Chimie Pharmaceutique et de Radiopharmacie, CMFA/REMA, Universite Catholique de Louvain, 73-40 Avenue Mounier, 1200, Bruxelles (Belgium); Sanabria-Bohorquez, Sandra [Imaging Research, Merck Research Laboratories, West Point, Philadelphia (United States); Bol, Anne; Volder, Anne de; Labar, Daniel [Unite de Tomographie par Positrons, Universite Catholique de Louvain, Louvain-la-Neuve (Belgium); Rijckevorsel, K. van [Service de Neurologie, Cliniques Universitaires Saint-Luc, Bruxelles (Belgium); Gallez, Bernard [Unite de Chimie Pharmaceutique et de Radiopharmacie, CMFA/REMA, Universite Catholique de Louvain, 73-40 Avenue Mounier, 1200, Bruxelles (Belgium); Unite de Resonance Magnetique Biomedicale, Universite Catholique de Louvain, Bruxelles (Belgium)

    2003-12-01

    Fluorine-18 fluoroethylflumazenil ([{sup 18}F]FEF) is a tracer for central benzodiazepine (BZ) receptors which is proposed as an alternative to carbon-11 flumazenil for in vivo imaging using positron emission tomography (PET) in humans. In this study, [{sup 18}F]FEF kinetic data were acquired using a 60-min two-injection protocol on three normal subjects and two patients suffering from mesiotemporal epilepsy as demonstrated by abnormal magnetic resonance imaging and [{sup 18}F]fluorodeoxyglucose positron emission tomography. First, a tracer bolus injection was performed and [{sup 18}F]FEF rapidly distributed in the brain according to the known BZ receptor distribution. Thirty minutes later a displacement injection of 0.01 mg/kg of unlabelled flumazenil was performed. Activity was rapidly displaced from all BZ receptor regions demonstrating the specific binding of [{sup 18}F]FEF. No displacement was observed in the pons. Plasma input function was obtained from arterial blood sampling, and metabolite analysis was performed by high-performance liquid chromatography. Metabolite quantification revealed a fast decrease in tracer plasma concentration, such that at 5 min post injection about 70% of the total radioactivity in plasma corresponded to [{sup 18}F]FEF, reaching 24% at 30 min post injection. The interactions between [{sup 18}F]FEF and BZ receptors were described using linear compartmental models with plasma input and reference tissue approaches. Binding potential values were in agreement with the known distribution of BZ receptors in human brain. Finally, in two patients with mesiotemporal sclerosis, reduced uptake of [{sup 18}F]FEF was clearly observed in the implicated left hippocampus. (orig.)

  16. DMPD: Endogenous ligands of Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15178705 Endogenous ligands of Toll-like receptors. Tsan MF, Gao B. J Leukoc Biol. ...2004 Sep;76(3):514-9. Epub 2004 Jun 3. (.png) (.svg) (.html) (.csml) Show Endogenous ligands of Toll-like re...ceptors. PubmedID 15178705 Title Endogenous ligands of Toll-like receptors. Authors Tsan MF, Gao B. Publicat

  17. Biodistribution and dosimetry of [{sup 123}I]iodo-Pk 11195: a potential agent for SPET imaging of the peripheral benzodiazepine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Versijpt, J. [Groningen Univ. Hospital (Netherlands). Dept. of Biological Psychiatry; Div. of Nuclear Medicine, Ghent Univ. Hospital (Belgium); Dumont, F.; Vos, F. de; Slegers, G. [Dept. of Radiopharmacy, Ghent Univ. (Belgium); Thierens, H. [Dept. of Biomedical Physics and Radiation Protection, Ghent Univ. (Belgium); Jansen, H.; Dierckx, R.A. [Div. of Nuclear Medicine, Ghent Univ. Hospital (Belgium); Santens, P. [Dept. of Neurology, Ghent Univ. Hospital (Belgium); Korf, J. [Groningen Univ. Hospital (Netherlands). Dept. of Biological Psychiatry

    2000-09-01

    The highest concentrations of the peripheral benzodiazepine receptor (PBR) are found in the kidneys and heart. In addition, the PBR has been reported to reflect neuro-inflammatory damage by co-localisation with activated microglia. PK 11195 is a high-affinity ligand for the PBR. The aim of this study was to investigate in humans the biodistribution and dosimetry of [{sup 123}I]iodo-PK 11195, a potential single-photon emission tomography tracer for the PBR. Five healthy volunteers were injected with 112 MBq of [{sup 123}I]iodo-PK 11195. Sequential whole-body scans were performed up to 72 h post injection. Multiple blood samples were taken, and urine was collected to measure the fraction voided by the renal system. Decay-corrected regions of interest of the whole-body images were analysed, and geometric mean count rates were used to determine organ activity. Organ absorbed doses and effective dose were calculated using the MIRD method. [{sup 123}I]iodo-PK 11195 was rapidly cleared from the blood, mainly by the hepatobiliary system. Approximately 22% was voided in urine after 48 h. Average organ residence times were 0.74, 0.44 and 0.29 h for the liver, upper large intestine and lower large intestine, respectively. The testes received the highest dose, 109.4 {mu}Gy/MBq. All other organs investigated received doses of less than 50 {mu}Gy/MBq. The effective dose was 40.3 {mu}Sv/MBq. In conclusion, [{sup 123}I]iodo-PK 11195 is a suitable agent for the visualisation of the PBR and indirectly for the imaging of neuro-inflammatory lesions. Taking into account the radiation burden of 7.46 mSv following an administration of 185 MBq, a [{sup 123}I]iodo-PK 11195 investigation has to be considered an ICRP risk category IIb investigation. (orig.)

  18. Novel one-pot one-step synthesis of 2'-[{sup 18}F]fluoroflumazenil (FFMZ) for benzodiazepine receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Young, Hyun Yoon; Jae, Min Jeong E-mail: jmjng@snu.ac.kr; Hyung, Woo Kim; Sung, Hyun Hong; Lee, Yun-Sang; Hee, Sup Kil; Dae, Yoon Chi; Dong, Soo Lee; Chung, June-Key; Myung, Chul Lee

    2003-05-01

    We describe the synthesis of 2'-[{sup 18}F]fluoroflumazenil (FFMZ), which differs from the typically used [{sup 18}F]fluoroethylflumazenil (FEFMZ) for benzodiazepine receptor imaging. For one-pot one-step labeling, the precursors, 2'-tosyloxyflumazenil (TFMZ) and 2'-mesyloxyflumazenil (MFMZ), were synthesized in three steps. The precursors were successfully labeled with no-carrier-added {sup 18}F-fluoride which was activated by repeated azeotropic distillation with Kryptofix 2.2.2./potassium carbonate in MeCN. An automated system for labeling and purification of [{sup 18}F]FFMZ was developed. Labeling efficiency and radiochemical purity of [{sup 18}F]FFMZ after synthesis by the automated system were 68% and 98%, respectively. Specific binding of [{sup 18}F]FFMZ to central benzodiazepine receptor of rats was demonstrated by phosphoimaging.

  19. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on alpha1 glycine receptors to compare changes mediated by the agonist, glycine......, and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...

  20. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs).

    Science.gov (United States)

    Handlon, Anthony L; Schaller, Lee T; Leesnitzer, Lisa M; Merrihew, Raymond V; Poole, Chuck; Ulrich, John C; Wilson, Joseph W; Cadilla, Rodolfo; Turnbull, Philip

    2016-01-14

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%).

  1. Development of new peripheral benzodiazepine receptor ligands for SPECT and PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A.; Fookes, C.; Pham, T.; Holmes, T.; Mattner, F.; Berghoffer, P.; Gregoire, M.C.; Loc' h, C.; Greguric, I. [Radiopharmaceuticas Research Institute, ANSTO, Menai, N.S.W. Sydney (Australia); Thominiaux, C.; Boutin, H.; Chauveau, F.; Gregoire, M.C.; Hantraye, Ph.; Tavitain, B.; Dolle, F. [Service Hospitalier Frederic Joliot, CEA/DSV, 91 - Orsay (France); Arlicot, N.; Chalon, S.; Guilloteau, D. [Universite Francois Rabelais, Inserm U619, 37 - Tours (France)

    2008-02-15

    This study aims to demonstrate that a number of radiolabelled ({sup 123}I,{sup 11}C, {sup 18}F) imidazo pyridines, imidazo pyridazines and indolglyoxylamides can be developed as potential tracers for SPECT and PET imaging. (N.C.)

  2. GABA(A)-benzodiazepine receptor complex ligands and stress-induced hyperthermia in singly housed mice.

    NARCIS (Netherlands)

    Olivier, B.; Bouwknecht, J.A.; Pattij, T.; Leahy, C.; Oorschot, R. van; Zethof, T.J.

    2002-01-01

    Stress-induced hyperthermia (SIH) in singly housed mice, in which the rectal temperature of a mouse is measured twice with a 10-min interval, enables to study the effects of a drug on the basal (T(1)) and on the stress-enhanced temperature (T(2)), 10 min later, using the rectal procedure as stressor

  3. Reducing Prescriptions of Long-acting Benzodiazepine Drugs in Denmark

    DEFF Research Database (Denmark)

    Eriksen, Sophie Isabel; Bjerrum, Lars

    2015-01-01

    Prolonged consumption of benzodiazepine drugs (BZD) and benzodiazepine receptor agonists (zolpidem, zaleplon, zopiclone; altogether Z drugs) is related to potential physiological and psychological dependence along with other adverse effects. This study aimed to analyse the prescribing of long...

  4. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  5. Wavelet denoising for voxel-based compartmental analysis of peripheral benzodiazepine receptors with {sup 18}F-FEDAA1106

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Ikoma, Yoko; Seki, Chie; Kanno, Iwao; Kimura, Yuichi [National Institute of Radiological Sciences, Biophysics Group, Molecular Imaging Center, Chiba (Japan); Fujimura, Yota; Ito, Hiroshi; Suhara, Tetsuya [National Institute of Radiological Sciences, Molecular Neuroimaging Group, Molecular Imaging Center, Chiba (Japan); Naganawa, Mika [National Institute of Radiological Sciences, Biophysics Group, Molecular Imaging Center, Chiba (Japan); Japan Society for the Promotion of Science, Tokyo (Japan)

    2008-02-15

    We evaluated the noise reduction capability of wavelet denoising for estimated binding potential (BP) images (k{sub 3}/k{sub 4}) of the peripheral benzodiazepine receptor using {sup 18}F-FEDAA1106 and nonlinear least-square fitting. Wavelet denoising within a three-dimensional discrete dual-tree complex wavelet transform was applied to simulate data and clinical dynamic positron emission tomography images of {sup 18}F-FEDAA1106. To eliminate noise components in wavelet coefficients, real and imaginary coefficients for each subband were thresholded individually using NormalShrink. A simulated dynamic brain image of {sup 18}F-FEDAA1106 was generated and Gaussian noise was added to mimic PET dynamic scan. The derived BP images were compared with true images using 156 rectangular regions of interest. Wavelet denoising was also applied to data derived from seven young normal volunteers. In the simulations, estimated BP by denoised image showed better correlation with the true BP values (Y = 0.83X + 0.94, r = 0.80), although no correlation was observed in the estimates between noise-added and true images (Y = 1.2X + 0.78, r = 0.49). For clinical data, there were visual improvements in the signal-to-noise ratio for estimated BP images. Wavelet denoising improved the bias and reduced the variation of pharmacokinetic parameters for BP. (orig.)

  6. Anxiolytic-like effects of standardized extract of Justicia pectoralis (SEJP) in mice: Involvement of GABA/benzodiazepine in receptor.

    Science.gov (United States)

    Venâncio, E T; Rocha, N F M; Rios, E R V; Feitosa, M L; Linhares, M I; Melo, F H C; Matias, M S; Fonseca, F N; Sousa, F C F; Leal, L K A M; Fonteles, M M F

    2011-03-01

    Justicia pectoralis (Acanthaceae) is used as an antiinflammatory, antimicrobial and bronchodilator, and its extract exerts an anxiolytic-like effect profile in animal models. This work presents the behavioral effects of an aqueous standardized extract of Justicia pectoralis (SEJP) in animal models, such as the elevated plus maze (EPM), light/dark, open field, rota rod and pentobarbital sleep time. The extract was administered intragastrically to male mice at single doses of 50, 100 and 200 mg/kg, while diazepam 1 or 2 mg/kg was used as a standard drug and flumazenil 2.5 mg/kg was used to evaluate the participation of benzodiazepinic receptors. The results showed that, similar to diazepam (1 mg/kg), SEJP significantly modified all the observed parameters in the EPM test, without altering the general motor activity in the open field, rota rod and pentobarbital sleep time tests. Flumazenil reversed not only the diazepam effect but also the SEJP effect. In the same way, all doses of SEJP increased the time of permanence in the light box in the light/dark test. The results showed that SEJP presented an anxiolytic-like effect, disproving sedative effects.

  7. In vivo pharmacological characterization of AC-3933, a benzodiazepine receptor partial inverse agonist for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Hatayama, Y; Hashimoto, T; Kohayakawa, H; Kiyoshi, T; Nakamichi, K; Kinoshita, T; Yoshida, N

    2014-04-18

    GABAergic neurons are known to inhibit neural transduction and therefore negatively affect excitatory neural circuits in the brain. We have previously reported that 5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one (AC-3933), a partial inverse agonist for the benzodiazepine receptor (BzR), reverses GABAergic inhibitory effect on cholinergic neurons, and thus enhances acetylcholine release from these neurons in rat hippocampal slices. In this study, we evaluated AC-3933 potential for the treatment of Alzheimer's disease, a disorder characterized by progressive decline mainly in cholinergic function. Oral administration of AC-3933 (0.01-0.03mg/kg) resulted in the amelioration of scopolamine-induced amnesia, as well as a shift in electroencephalogram (EEG) relative power characteristic of pro-cognitive cholinergic activators, such as donepezil. In addition, treatment with AC-3933 even at the high dose of 100mg/kg p.o. produced no seizure or anxiety, two major adverse effects of BzR inverse agonists developed in the past. These findings indicate that AC-3933 with its low risk for side effects may be useful in the treatment of Alzheimer's disease.

  8. Experiment K-6-18. Study of muscarinic and gaba (benzodiazepine) receptors in the sensory-motor cortex, hippcampus and spinal code

    Science.gov (United States)

    Daunton, N.; Damelio, F.; Krasnov, I.

    1990-01-01

    Frontal lobe samples of rat brains flown aboard Cosmos 1887 were processed for the study of muscarinic (cholinergic) and GABA (benzodiazepine) receptors and for immunocytochemical localization of the neurotransmitter gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP). Although radioactive labeling of both muscarinic cholinergic and GABA (benzodiazepine) receptors proved to be successful with the techniques employed, distinct receptor localization of individual laminae of the frontal neocortex was not possible since the sampling of the area was different in the various groups of animals. In spite of efforts made for proper orientation and regional identification of laminae, it was found that a densitometric (quantitation of autoradiograms) analysis of the tissue did not contribute to the final interpretation of the effects of weightlessness on these receptors. As to the immunocytochemical studies the use of both markers, GFAP and GABA antiserum, confirmed the suitability of the techniques for use in frozen material. However, similar problems to those encountered in the receptor studies prevented an adequate interpretation of the effects of micro-G exposure on the localization and distribution of GABA and GFAP. This study did, however, confirm the feasibility of investigating neurotransmitters and their receptors in future space flight experiments.

  9. GABAA Receptors Implicated in REM Sleep Control Express a Benzodiazepine Binding Site

    OpenAIRE

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A.

    2013-01-01

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consis...

  10. Study of the Interaction of 1,4- and 1,5-Benzodiazepines with GABAA Receptors of Rat Cerebellum Granule Cells in Culture.

    Science.gov (United States)

    Nikas, Periklis; Gatta, Elena; Cupello, Aroldo; Di Braccio, Mario; Grossi, Giancarlo; Pellistri, Francesca; Robello, Mauro

    2015-08-01

    The effects of a classical 1,4-benzodiazepine agonist, such as diazepam, its catabolite N-desmethyl-diazepam (nordiazepam), and 1,5-benzodiazepines such as clobazam and RL 214 (a triazolobenzodiazepine previously synthesized in our labs) were evaluated on native GABAA receptors of cerebellar granule cells in culture. The parameter studied was the increase of GABA-activated chloride currents caused by these substances. The contributions of α6 β2/3 γ2 and α1 α6 β2/3 γ2 receptor subtypes to the increase of GABA-activated chloride current were investigated by comparing the effects of such substances in the presence vs. the absence of furosemide. Furosemide is in fact able to block such receptors. It was found that the percent enhancement of peak GABA-activated current doubled for diazepam, clobazam, and RL 214. However, it did not change for N-desmethyl-diazepam. These results indicate that diazepam, clobazam, and RL 214 interact exclusively with α1 β2/3 γ2 receptors, while N-desmethyl-diazepam seems to interact with not only α1- but also α6-containing receptors.

  11. Role of Receptor Tyrosine Kinases and Their Ligands in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Estefanía Carrasco-García

    2014-04-01

    Full Text Available Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits.

  12. Stimulation of Hepatic Apolipoprotein A-I Production by Novel Thieno-Triazolodiazepines: Roles of the Classical Benzodiazepine Receptor, PAF Receptor, and Bromodomain Binding.

    Science.gov (United States)

    Kempen, Herman J; Bellus, Daniel; Fedorov, Oleg; Nicklisch, Silke; Filippakopoulos, Panagis; Picaud, Sarah; Knapp, Stefan

    2013-01-01

    Expression and secretion of apolipoprotein A-I (apoA-I) by cultured liver cells can be markedly stimulated by triazolodiazepines (TZDs). It has been shown previously that the thieno-TZD Ro 11-1464 increases plasma levels of apoA-I and in vivomacrophage reverse cholesterol transport in mice. However, these effects were only seen at high doses, at which the compound could act on central benzodiazepine (BZD) receptors or platelet activating factor (PAF) receptors, interfering with its potential utility. In this work, we describe 2 new thieno-TZDs MDCO-3770 and MDCO-3783, both derived from Ro 11-1464. These compounds display the same high efficacy on apoA-I production, metabolic stability, and lack of cytotoxicity in cultured hepatocytes as Ro 11-1464, but they do not bind to the central BZD receptor and PAF receptor. The quinazoline RVX-208 was less efficacious in stimulating apoA-I production and displayed signs of cytotoxicity. Certain TZDs stimulating apoA-I production are now known to be inhibitors of bromodomain (BRD) extra-terminal (BET) proteins BRDT, BRD2, BRD3, and BRD4, and this inhibition was inferred as a main molecular mechanism for their effect on apoA-I expression. We show here that the thieno-TZD (+)-JQ1, a potent BET inhibitor, strongly stimulated apoA-I production in Hep-G2 cells, but that its enantiomer (-)-JQ1, which has no BET inhibitor activity, also showed considerable effect on apoA-I production. MDCO-3770 and MDCO-3783 also inhibited BRD3 and BRD4 in vitro, with potency somewhat below that of (+)-JQ1. We conclude that the effect of thieno-TZDs on apoA-I expression is not due to inhibition of the BZD or PAF receptors and is not completely explained by transcriptional repression by BET proteins.

  13. Omega 3 (peripheral type benzodiazepine binding) site distribution in the rat immune system: an autoradiographic study with the photoaffinity ligand (/sup 3/H)PK 14105

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, J.; Dubois, A.; Dennis, T.; Hamel, E.; Scatton, B.

    1989-04-01

    The anatomical distribution of omega 3 (peripheral type benzodiazepine binding) sites in the immune system organs of the rat has been studied autoradiographically at both macroscopic and microscopic levels of resolution using either reversible or irreversible (UV irradiation) labeling with (/sup 3/H)PK 14105. In thymus sections, (/sup 3/H)PK 14105 labeled with high affinity (Kd, derived from saturation experiments = 10.8 nM) a single population of sites which possessed the pharmacological characteristics of omega 3 sites. In the thymus gland, higher omega 3 site densities were detected in the cortex than in the medulla; in these subregions, silver grains were associated to small (10-18 microns diameter) cells. In the spleen, omega 3 sites were more abundant in the white than in the red pulp. In the white pulp, silver grains were denser in the marginal zone than in the vicinity of the central artery and labeling was, as in the thymus, associated to small cytoplasm-poor cells. In the red pulp, omega 3 site associated silver grains were observed mainly in the Bilroth cords. In the lymph nodes, the medullary region showed a higher labeling than the surrounding follicles and paracortex. A significant accumulation of silver grains was observed in the lymph node medullary cords. In the intestine, Peyer patches were particularly enriched in omega 3 sites (especially in the periphery of the follicles). The distribution of omega 3 sites in the immune system organs suggests a preferential labeling of cells of T and monocytic lineages. This is consistent with the proposed immunoregulatory properties of some omega 3 site ligands.

  14. GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo

    NARCIS (Netherlands)

    Moor, E; de Boer, P; Westerink, B.H.C.

    1998-01-01

    In the present study, the regulation of acetylcholine release from the ventral hippocampus by gamma-aminobutyric acid (GABA) was investigated in vivo. GABA receptor agonists and antagonists were administered locally in the medial septum and the adjacent vertical limb of the diagonal band of Broca, o

  15. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system.

    Science.gov (United States)

    Gulyás, Balázs; Makkai, Boglárka; Kása, Péter; Gulya, Károly; Bakota, Lidia; Várszegi, Szilvia; Beliczai, Zsuzsa; Andersson, Jan; Csiba, László; Thiele, Andrea; Dyrks, Thomas; Suhara, Tetsua; Suzuki, Kazutoshi; Higuchi, Makato; Halldin, Christer

    2009-01-01

    The binding of two radiolabelled analogues (N-(5-[125I]Iodo-2-phenoxyphenyl)-N-(2,5-dimethoxybenzyl)acetamide ([125I]desfluoro-DAA1106) and N-(5-[125I]Fluoro-2-phenoxyphenyl)-N-(2-[125I]Iodo-5-methoxybenzyl)acetamide ([125I]desmethoxy-DAA1106) of the peripheral benzodiazepine receptor (PBR) (or TSPO, 18kDa translocator protein) ligand DAA1106 was examined by in vitro autoradiography on human post mortem whole hemisphere brain slices obtained from Alzheimer's disease (AD) patients and age-matched controls. Both [(125)I]desfluoro-IDAA1106 and [(125)I]desmethoxy-IDAA1106 were effectively binding to various brain structures. The binding could be blocked by the unlabelled ligand as well as by other PBR specific ligands. With both radiolabelled compounds, the binding showed regional inhomogeneity and the specific binding values proved to be the highest in the hippocampus, temporal and parietal cortex, the basal ganglia and thalamus in the AD brains. Compared with age-matched control brains, specific binding in several brain structures (temporal and parietal lobes, thalamus and white matter) in Alzheimer brains was significantly higher, indicating that the radioligands can effectively label-activated microglia and the up-regulated PBR/TSPO system in AD. Complementary immunohistochemical studies demonstrated reactive microglia activation in the AD brain tissue and indicated that increased ligand binding coincides with increased regional microglia activation due to neuroinflammation. These investigations yield further support to the PBR/TSPO binding capacity of DAA1106 in human brain tissue, demonstrate the effective usefulness of its radio-iodinated analogues as imaging biomarkers in post mortem human studies, and indicate that its radiolabelled analogues, labelled with short half-time bioisotopes, can serve as prospective in vivo imaging biomarkers of activated microglia and the up-regulated PBR/TSPO system in the human brain.

  16. Probing an artificial polypeptide receptor library using a series of novel histamine H3 receptor ligands.

    Science.gov (United States)

    Bak, Andrzej; Daszykowski, Michal; Kaminski, Zbigniew; Kiec-Kononowicz, Katarzyna; Kuder, Kamil; Fraczyk, Justyna; Kolesinska, Beata; Ciosek, Patrycja; Polanski, Jaroslaw

    2014-02-01

    An artificial polypeptide receptor (APR) library was created by using the self-organization of N-lipidated peptides attached to cellulose via m-aminophenylamino-1,3,5-triazine. The response of the library was probed using a series of novel H3 receptor ligands. Since no guidelines on how to design an APRs selective vs certain receptor types exist, a diverse set of amino acids (Ala, Trp, Pro, Glu, His, Lys and Ser) were used and coupled with one of three gating fatty acids (palmitic, ricinoleic or capric). A competitive adsorption-desorption of an appropriate reporter dye was used for the indirect visualization of the interactions of guests with particular receptors. The resulted library response to individual inhibitors was then arranged in a matrix, preprocessed and analyzed using the principal component analysis (PCA) and partial least squares (PLS) method. The most important conclusion obtained from the PCA analysis is that the library differentiates the probed compounds according to the lipophilicity of the gating unit. The PC3 with a dominant absolute contribution of the receptors containing Glu allowed for the best separation of the ligands with respect to their activity. This conclusion is in agreement with the fact that Glu 206 is a genuine ligand counterpart in the natural histamine receptor.

  17. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABAA receptors expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Hammer, Harriet; Ebert, Bjarke; Jensen, Henrik S.

    2015-01-01

    The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit...... different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences....... The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABAAR) subtypes α1β2γ2S, α2β2γ2S, α3β2γ2S, α5β2γ2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited...

  18. [Endomorphins--endogenous ligands of the mu-opioid receptor].

    Science.gov (United States)

    Perlikowska, Renata; Fichna, Jakub; Janecka, Anna

    2009-01-01

    Two endogenous opioid peptides with extremely high mu-opioid receptor affinity and selectivity, endomorphin-1 and endomorphin-2, were: discovered and isolated from the mammalian brain in 1997. Endomorphins are amidated tetrapeptides, structurally different from so called typical opioids: enkephalins, dynorphins and endorphins. A protein precursor of endomorphins and a gene encoding their sequence remain unknown. Endomorphins are unable to cross the blood-brain barrier because of their low hydrophobicity. In animal models, these peptides turned out to be very potent in relieving neuropathic and inflammatory pain. In comparison with morphine, a prototype opioid receptor ligand, endomorphins produces less undesired side effects. In this article we describe the discovery of endomorphins, their cellular localization and functions in the organism, as well as their structure-activity relationships and biodegradation pathways.

  19. Radiosynthesis and initial evaluation of [{sup 18}F]-FEPPA for PET imaging of peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Alan A. [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada)], E-mail: alan.wilson@camhpet.ca; Garcia, Armando; Parkes, Jun [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); McCormick, Patrick [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Stephenson, Karin A. [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Houle, Sylvain; Vasdev, Neil [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada)

    2008-04-15

    Introduction: A novel [{sup 18}F]-radiolabelled phenoxyanilide, [{sup 18}F]-FEPPA, has been synthesized and evaluated, in vitro and ex vivo, as a potential positron emission tomography imaging agent for the peripheral benzodiazepine receptor (PBR). Methods: [{sup 18}F]-FEPPA and two other radiotracers for imaging PBR, namely [{sup 11}C]-PBR28 and [{sup 11}C]-PBR28-d3, were synthesised and evaluated in vitro and ex vivo as potential PBR imaging agents. Results: [{sup 18}F]-FEPPA is efficiently prepared in one step from its tosylate precursor and [{sup 18}F]-fluoride in high radiochemical yields and at high specific activity. FEPPA displayed a K{sub i} of 0.07 nM for PBR in rat mitochondrial membrane preparations and a suitable lipophilicity for brain penetration (log P of 2.99 at pH 7.4). Upon intravenous injection into rats, [{sup 18}F]-FEPPA showed moderate brain uptake [standard uptake value (SUV) of 0.6 at 5 min] and a slow washout (SUV of 0.35 after 60 min). Highest uptake of radioactivity was seen in the hypothalamus and olfactory bulb, regions previously reported to be enriched in PBR in rat brain. Analysis of plasma and brain extracts demonstrated that [{sup 18}F]-FEPPA was rapidly metabolized, but no lipophilic metabolites were observed in either preparation and only 5% radioactive metabolites were present in brain tissue extracts. Blocking studies to determine the extent of specific binding of [{sup 18}F]-FEPPA in rat brain were problematic due to large perturbations in circulating radiotracer and the lack of a reference region. Conclusions: Further evaluation of the potential of [{sup 18}F]-FEPPA will require the employment of rigorous kinetic models and/or appropriate animal models.

  20. Alterations in in-vivo benzodiazepine-receptor binding of C-11-Ro15-1788 (flumazepil)

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, T.; Inoue, O.; Shinoto, H.; Ito, T.; Hashimoto, K.; Suzuki, K.; Tateno, Y.

    1985-05-01

    Alterations of the central benzodiazepine - receptor function caused by the change of physiological or psychological conditions, were recognized in both animal and human studies. Before the human study, animal experiments using tritiated Ro15-1788 were carried out. The stress was produced by forcing the mice to swim in a water-basin at 16/sup 0/C for 5 min. Within 3 min after the forced swimming, the tracer was injected. Brain radioactivities in stress-loaded mice increased over a period of 15 min after the intra-venous injection of tracers, while brain activities of carrier-added tracer decreased. In human study, approximately 5 mCi of C-11-Ro15-1788, which specific activity is 0.3-1.0 Ci/..mu..mol, were intravenously injected to each case. Measurements of the brain activity were performed using positron-CT, with blood sample collection. 31 human studies were performed on. Cerebral cortex time activity curves in several volunteers in nervous and stressful state, showed the same pattern to that in the stress-loaded animal experiment. It is important that the significant different time course of cerebral activity after the injection of labelled Ro15-1788, was observed in stressful state, compared with control, in both human and animal study. From these results, it will be concluded the positron CT study using /sup 11/C-Ro15-1788 will become a new technic to detect the change of psychological conditions in human brain and to diagnose some kind of neuropsychiatric disease.

  1. MIPs are ancestral ligands for the sex peptide receptor.

    Science.gov (United States)

    Kim, Young-Joon; Bartalska, Katarina; Audsley, Neil; Yamanaka, Naoki; Yapici, Nilay; Lee, Ju-Youn; Kim, Yong-Chul; Markovic, Milica; Isaac, Elwyn; Tanaka, Yoshiaki; Dickson, Barry J

    2010-04-06

    Upon mating, females of many animal species undergo dramatic changes in their behavior. In Drosophila melanogaster, postmating behaviors are triggered by sex peptide (SP), which is produced in the male seminal fluid and transferred to female during copulation. SP modulates female behaviors via sex peptide receptor (SPR) located in a small subset of internal sensory neurons that innervate the female uterus and project to the CNS. Although required for postmating responses only in these female sensory neurons, SPR is expressed broadly in the CNS of both sexes. Moreover, SPR is also encoded in the genomes of insects that lack obvious SP orthologs. These observations suggest that SPR may have additional ligands and functions. Here, we identify myoinhibitory peptides (MIPs) as a second family of SPR ligands that is conserved across a wide range of invertebrate species. MIPs are potent agonists for Drosophila, Aedes, and Aplysia SPRs in vitro, yet are unable to trigger postmating responses in vivo. In contrast to SP, MIPs are not produced in male reproductive organs, and are not required for postmating behaviors in Drosophila females. We conclude that MIPs are evolutionarily conserved ligands for SPR, which are likely to mediate functions other than the regulation of female reproductive behaviors.

  2. Identification of Putative Receptors for the Novel Adipokine CTRP3 Using Ligand-Receptor Capture Technology

    Science.gov (United States)

    Li, Ying; Ozment, Tammy; Wright, Gary L.

    2016-01-01

    C1q TNF Related Protein 3 (CTRP3) is a member of a family of secreted proteins that exert a multitude of biological effects. Our initial work identified CTRP3’s promise as an effective treatment for Nonalcoholic fatty liver disease (NAFLD). Specifically, we demonstrated that mice fed a high fat diet failed to develop NAFLD when treated with CTRP3. The purpose of this current project is to identify putative receptors which mediate the hepatic actions of CTRP3. Methods We used Ligand-receptor glycocapture technology with TriCEPS™-based ligand-receptor capture (LRC-TriCEPS; Dualsystems Biotech AG). The LRC-TriCEPS experiment with CTRP3-FLAG protein as ligand and insulin as a control ligand was performed on the H4IIE rat hepatoma cell line. Results Initial analysis demonstrated efficient coupling of TriCEPS to CTRP3. Further, flow cytometry analysis (FACS) demonstrated successful oxidation and crosslinking of CTRP3-TriCEPS and Insulin-TriCEPS complexes to cell surface glycans. Demonstrating the utility of TriCEPS under these conditions, the insulin receptor was identified in the control dataset. In the CTRP3 treated cells a total enrichment of 261 peptides was observed. From these experiments 5 putative receptors for CTRP3 were identified with two reaching statistically significance: Lysosomal-associated membrane protein 1 (LAMP-1) and Lysosome membrane protein 2 (LIMP II). Follow-up Co-immunoprecipitation analysis confirmed the association between LAMP1 and CTRP3 and further testing using a polyclonal antibody to block potential binding sites of LAMP1 prevented CTRP3 binding to the cells. Conclusion The LRC-TriCEPS methodology was successful in identifying potential novel receptors for CTRP3. Relevance The identification of the receptors for CTRP3 are important prerequisites for the development of small molecule drug candidates, of which none currently exist, for the treatment NAFLD. PMID:27727322

  3. Biological evaluation of 2'-[{sup 18}F]fluoroflumazenil ([{sup 18}F]FFMZ), a potential GABA receptor ligand for PET

    Energy Technology Data Exchange (ETDEWEB)

    Mitterhauser, Markus E-mail: markus.mitterhauser@akh-wien.ac.at; Wadsak, Wolfgang; Wabnegger, Leila; Mien, Leonhard-Key; Toegel, Stefan; Langer, Oliver; Sieghart, Werner; Viernstein, Helmut; Kletter, Kurt; Dudczak, Robert

    2004-02-01

    [{sup 11}C]Flumazenil, a highly selective benzodiazepine antagonist is the most extensively used GABA{sub A} ligand for PET so far. To overcome half life disadvantages of {sup 11}C a [{sup 18}F]-labeled flumazenil derivative, 2'-[{sup 18}F]fluoroflumazenil (FFMZ) was developed and biologically evaluated with respect to the GABA{sub A} receptor. Organ with the highest uptake was the pituitary gland. Brain uptake was high and followed the order cortex>thalamus>cerebellum>rest brain. Fluoroflumazenil displaced [{sup 3}H]flumazenil binding from membrane GABA{sub A} receptors with an IC{sub 50}value (3.5 nM) comparable to that of Flumazenil (2.8 nM). The presented data confirm the potential of [{sup 18}F]FFMZ for PET imaging of the GABA-ergic system.

  4. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, N.; Guilloteau, D.; Chalon, S. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Universite Francois Rabelais de Tours, 37 (France); Katsifis, A.; Mattner, F. [ANSTO, Sydney (Australia)

    2008-02-15

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [{sup 125}I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 {+-} 0.109 vs. 0.123 {+-} 0.012% I.D./g tissue; cortex: 0.385 {+-} 0.126 vs. 0.131 {+-} 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  5. Fcγ receptors and ligands and cardiovascular disease.

    Science.gov (United States)

    Tanigaki, Keiji; Sundgren, Nathan; Khera, Amit; Vongpatanasin, Wanpen; Mineo, Chieko; Shaul, Philip W

    2015-01-16

    Fcγ receptors (FcγRs) classically modulate intracellular signaling on binding of the Fc region of IgG in immune response cells. How FcγR and their ligands affect cardiovascular health and disease has been interrogated recently in both preclinical and clinical studies. The stimulation of activating FcγR in endothelial cells, vascular smooth muscle cells, and monocytes/macrophages causes a variety of cellular responses that may contribute to vascular disease pathogenesis. Stimulation of the lone inhibitory FγcR, FcγRIIB, also has adverse consequences in endothelial cells, antagonizing NO production and reparative mechanisms. In preclinical disease models, activating FcγRs promote atherosclerosis, whereas FcγRIIB is protective, and activating FcγRs also enhance thrombotic and nonthrombotic vascular occlusion. The FcγR ligand C-reactive protein (CRP) has undergone intense study. Although in rodents CRP does not affect atherosclerosis, it causes hypertension and insulin resistance and worsens myocardial infarction. Massive data have accumulated indicating an association between increases in circulating CRP and coronary heart disease in humans. However, Mendelian randomization studies reveal that CRP is not likely a disease mediator. CRP genetics and hypertension warrant further investigation. To date, studies of genetic variants of activating FcγRs are insufficient to implicate the receptors in coronary heart disease pathogenesis in humans. However, a link between FcγRIIB and human hypertension may be emerging. Further knowledge of the vascular biology of FcγR and their ligands will potentially enhance our understanding of cardiovascular disorders, particularly in patients whose greater predisposition for disease is not explained by traditional risk factors, such as individuals with autoimmune disorders.

  6. A Tunable Coarse-Grained Model for Ligand-Receptor Interaction

    Science.gov (United States)

    Guantes, Raúl; Miguez, David G.

    2013-01-01

    Cell-surface receptors are the most common target for therapeutic drugs. The design and optimization of next generation synthetic drugs require a detailed understanding of the interaction with their corresponding receptors. Mathematical approximations to study ligand-receptor systems based on reaction kinetics strongly simplify the spatial constraints of the interaction, while full atomistic ligand-receptor models do not allow for a statistical many-particle analysis, due to their high computational requirements. Here we present a generic coarse-grained model for ligand-receptor systems that accounts for the essential spatial characteristics of the interaction, while allowing statistical analysis. The model captures the main features of ligand-receptor kinetics, such as diffusion dependence of affinity and dissociation rates. Our model is used to characterize chimeric compounds, designed to take advantage of the receptor over-expression phenotype of certain diseases to selectively target unhealthy cells. Molecular dynamics simulations of chimeric ligands are used to study how selectivity can be optimized based on receptor abundance, ligand-receptor affinity and length of the linker between both ligand subunits. Overall, this coarse-grained model is a useful approximation in the study of systems with complex ligand-receptor interactions or spatial constraints. PMID:24244115

  7. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for pet imaging of peripheral benzodiazepine receptor in primate brain.

    Science.gov (United States)

    Zhang, Ming-Rong; Maeda, Jun; Ogawa, Masanao; Noguchi, Junko; Ito, Takehito; Yoshida, Yuichiro; Okauchi, Takashi; Obayashi, Shigeru; Suhara, Tetsuya; Suzuki, Kazutoshi

    2004-04-22

    To develop a positron emission tomography (PET) ligand for imaging the 'peripheral benzodiazepine receptor' (PBR) in brain and elucidating the relationship between PBR and brain diseases, four analogues (4-7) of N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide (2) were synthesized and evaluated as ligands for PBR. Of these compounds, fluoromethyl (4) and fluoroethyl (5) analogues had similar or higher affinities for PBR than the parent compound 2 (K(i) = 0.16 nM for PBR in rat brain sections). Iodomethyl analogue 6 displayed a moderate affinity, whereas tosyloxyethyl analogue 7 had weak affinity. Radiolabeling was performed for the fluoroalkyl analogues 4 and 5 using fluorine-18 ((18)F, beta(+); 96.7%, T(1/2) = 109.8 min). Ligands [(18)F]4 and [(18)F]5 were respectively synthesized by the alkylation of desmethyl precursor 3 with [(18)F]fluoromethyl iodide ([(18)F]8) and 2-[(18)F]fluoroethyl bromide ([(18)F]9). The distribution patterns of [(18)F]4 and [(18)F]5 in mice were consistent with the known distribution of PBR. However, compared with [(18)F]5, [(18)F]4 displayed a high uptake in the bone of mice. The PET image of [(18)F]4 for monkey brain also showed significant radioactivity in the bone, suggesting that this ligand was unstable for in vivo defluorination and was not a useful PET ligand. Ligand [(18)F]5 displayed a high uptake in monkey brain especially in the occipital cortex, a region with richer PBR than the other regions in the brain. The radioactivity level of [(18)F]5 in monkey brain was 1.5 times higher than that of [(11)C]2, and 6 times higher than that of (R)-(1-(2-chlorophenyl)-N-[(11)C]methyl,N-(1-methylpropyl)isoquinoline ([(11)C]1). Moreover, the in vivo binding of [(18)F]5 was significantly inhibited by PBR-selective 2 or 1, indicating that the binding of [(18)F]5 in the monkey brain was mainly due to PBR. Metabolite analysis revealed that [(18)F]4 was rapidly metabolized by defluorination to [(18)F]F(-) in the plasma and brain of

  8. Flavylium salts as in vitro precursors of potent ligands to brain GABA-A receptors

    DEFF Research Database (Denmark)

    Kueny-Stotz, Marie; Chassaing, Stefan; Brouillard, Raymond;

    2008-01-01

    The synthesis of a series of derivatized flavylium cations was undertaken and the affinity to the benzodiazepine binding site of the GABA-A receptor evaluated. The observed high affinity for some derivatives (sub-muM range) was explained by an in vitro transformation of the flavylium cations...... into the corresponding trans-retrochalcones, components which are proposed to be the active species in this series....

  9. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  10. Biotinylated recombinant human erythropoietins: Bioactivity and utility as receptor ligand

    Energy Technology Data Exchange (ETDEWEB)

    Wojchowski, D.M.; Caslake, L. (Pennsylvania State Univ., University Park (USA))

    1989-08-15

    Recombinant human erythropoietin labeled covalently with biotin at sialic acid moieties has been prepared, and has been shown to possess high biological activity plus utility as a receptor ligand. Initially, the effects on biological activity of covalently attaching biotin to erythropoietin alternatively at carboxylate, amino, or sialic acid groups were compared. Biotinylation of erythropoietin at carboxylate groups using biotin-amidocaproyl hydrazide plus 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide led to substantial biological inactivation, although biotinylated molecules retained detectable activity when prepared at low stoichiometries. Biotinylation at amino groups using sulfosuccinimidyl 6-(biotinamido) hexanoate resulted in a high level of biological inactivation with little, if any, retention of biological activity, regardless of labeling stoichiometries. Biotinylation at sialic acid moieties using periodate and biotinamidocaproyl hydrazide proceeded efficiently (greater than 95% and 80% labeling efficiencies for human urinary and recombinant erythropoietin, respectively) and yielded stably biotinylated erythropoietin molecules possessing comparably high biological activity (ie, 45% of the activity of unmodified hormone). Utility of recombinant biotin-(sialyl)-erythropoietin (in combination with 125I-streptavidin) in the assay of cell surface receptors was demonstrated using two distinct murine erythroleukemia cell lines, Friend 745 and Rauscher Red 1. The densities and affinities of specific hormone binding sites were 116 +/- 4 sites, 3.3 +/- 0.4 nmol/L kd and 164 +/- 5 sites, 2.7 +/- 0.4 nmol/L kd, respectively. It is predicted that the present development of biotin-(sialyl)-erythropoietin as a chemically and biologically stable, bioactive ligand will assist in advancing an understanding of the regulated expression and physicochemistry of the human and murine erythropoietin receptors.

  11. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J;

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA...

  12. Interaction of pyracetam with specific /sup 3/H-imipramine binding sites and GABA-benzodiazepine receptor complex of brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozhanets, V.V.; Chakhbra, K.K.; Danchev, N.D.; Malin, K.M.; Rusakov, D.Yu.; Val' dman, A.V.

    1986-06-01

    This paper studies the effect of pyracetam on parameters of specific binding of tritium-imipramine and GABA-activated binding of tritium-flunitrazepam with rat brain membranes. The experimental method is described and it is shown that pyracetam and mebicar in experiments in vivo on normal animals can exert their anxiolytic action without the participation of bensodiazepine receptors. Either the interaction of pyracetam and mebicar with benzodiazeprine receptors has a different interpretation than competition of these compounds with specific binding sites of tritium-flunitrazepam, or in experiments on normal animals in vivo GABA-benzodiazepine receptor complex does not accept pyracetam and mebicar, for it contains endogenous inhibitors of GABA-modulating action.

  13. A concise synthesis of 1,4-dihydro-[1,4]diazepine-5,7-dione, a novel 7-TM receptor ligand core structure with melanocortin receptor agonist activity.

    Science.gov (United States)

    Szewczyk, Jerzy R; Laudeman, Chris P; Sammond, Doug M; Villeneuve, Manon; Minick, Douglas J; Grizzle, Mary K; Daniels, Alejandro J; Andrews, John L; Ignar, Diane M

    2010-03-01

    Finding small non-peptide molecules for G protein-coupled receptors (GPCR) whose endogenous ligands are peptides, is a very important task for medicinal chemists. Over the years, compounds mimicking peptide structures have been discovered, and scaffolds emulating peptide backbones have been designed. In our work on GPCR ligands, including cholecystokinin receptor-1 (CCKR-1) agonists, we have employed benzodiazepines as a core structure. Looking for ways to reduce molecular weight and possibly improve physical properties of GPCR ligands, we embarked on the search for molecules providing similar scaffolds to the benzodiazepine with lower molecular weight. One of our target core structures was 1,4-dihydro-[1,4]diazepine-5,7-dione. There was not, however, a known synthetic route to such molecules. Here we report the discovery of a simple and concise method for synthesis of 2-[6-(1H-indazol-3-ylmethyl)-5,7-dioxo-4-phenyl-4,5,6,7-tetrahydro-[1,4]diazepin-1-yl]-N-isopropyl-N-phenyl-acetamide as an example of a compound containing the tetrahydrodiazepine-5,7-dione core. Compounds from this series were tested in numerous GPCR assays and demonstrated activity at melanocortin 1 and 4 receptors (MC1R and MC4R). Selected compounds from this series were tested in vivo in Peptide YY (PYY)-induced food intake. Compounds dosed by intracerebroventricular and oral routes reduced PYY-induced food intake and this effect was reversed by the cyclic peptide MC4R antagonist SHU9119.

  14. Activation profiles of opioid ligands in HEK cells expressing δ opioid receptors

    OpenAIRE

    Clark J; Demirci Hasan; Gharagozlou Parham; Lameh Jelveh

    2002-01-01

    Abstract Background The aim of the present study was to characterize the activation profiles of 15 opioid ligands in transfected human embryonic kidney cells expressing only δ opioid receptors. Activation profiles of most of these ligands at δ opioid receptors had not been previously characterized in vitro. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cAMP production. Results Naltrexone and nalorphine were classified as antagonists at δ opioid receptor....

  15. Structure of the homodimeric androgen receptor ligand-binding domain

    Science.gov (United States)

    Nadal, Marta; Prekovic, Stefan; Gallastegui, Nerea; Helsen, Christine; Abella, Montserrat; Zielinska, Karolina; Gay, Marina; Vilaseca, Marta; Taulès, Marta; Houtsmuller, Adriaan B.; van Royen, Martin E.; Claessens, Frank; Fuentes-Prior, Pablo; Estébanez-Perpiñá, Eva

    2017-01-01

    The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over 40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental effect on the transactivating properties of full-length AR, despite retained hormone-binding capacity. The conservation of essential residues suggests that the unveiled dimerization mechanism might be shared by other nuclear receptors. Our work defines AR-LBD homodimerization as an essential step in the proper functioning of this important transcription factor. PMID:28165461

  16. A comparison of the effects of a subtype selective and non-selective benzodiazepine receptor agonist in two CO(2) models of experimental human anxiety.

    Science.gov (United States)

    Bailey, J E; Papadopoulos, A; Seddon, K; Nutt, D J

    2009-03-01

    Studies in human volunteers that can demonstrate proof of concept are attractive in that possible mechanisms and potential new drug treatments can be examined. We have been developing models of anxiety disorders using the inhalation of 7.5% CO(2) for 20 min to model generalised anxiety disorder, as well as using the previously reported 35% CO(2) as a model for panic anxiety. In a double-blind, placebo-controlled, three-way crossover study in 12 healthy volunteer subjects, we compared a full agonist at the benzodiazepine receptor that binds to four alpha-subtypes of the receptor (alpha-1,-2,-3,-5) (alprazolam 1 mg), with zolpidem (5 mg), an agonist selective for the alpha-1 subtype of the gamma amino butyric acid-receptor subtype A (GABA-A) receptor, which is a widely used hypnotic drug. Compared with placebo, both drugs significantly attenuated peak CO(2)-induced changes in subjective feelings after the inhalation of 7.5% CO(2) for 20 min. However, there were fewer significant differences after a single vital capacity inhalation of 35% CO(2), where zolpidem was less efficacious than alprazolam at reducing CO(2)-induced symptoms. In conclusion, our results show that zolpidem shows some anxiolytic efficacy in the 7.5% CO(2) model, similar to alprazolam, and this is the first report of such an effect of zolpidem in a model of anxiety. These and other studies of benzodiazepines in clinical and volunteer studies suggest a definite role of the GABA-A receptor in CO(2)-induced anxiety, and it would be of interest to examine other GABA-A receptor subtype selective drugs, which are now in early phase clinical studies and are showing selective efficacy in pharmacodynamic studies.

  17. The human peripheral benzodiazepine receptor gene: cloning and characterization of alternative splicing in normal tissues and in a patient with congenital lipoid adrenal hyperplasia.

    Science.gov (United States)

    Lin, D; Chang, Y J; Strauss, J F; Miller, W L

    1993-12-01

    The mitochondrial benzodiazepine receptor (mBzR) appears to be a key factor in the flow of cholesterol into mitochondria to permit the initiation of steroid hormone synthesis. The mBzR consists of three components; the 18-kDa component on the outer mitochondrial membrane appears to contain the benzodiazepine binding site, and is hence often termed the peripheral benzodiazepine receptor (PBR). Using a cloned human PBR cDNA as probe, we have cloned the human PBR gene. The 13-kb gene is divided into four exons, with exon 1 encoding only a short 5' untranslated segment. The 5' flanking DNA lacks TATA and CAAT boxes but contains a cluster of SP-1 binding sites, typical of "house-keeping" genes. The encoded PBR mRNA is alternately spliced into two forms: "authentic" PBR mRNA retains all four exons, while a short form termed PBR-S lacks exon 2. While PBR-S contains a 102-codon open reading frame with a typical initiator sequence, the reading frame differs from that of PBR, so that the encoded protein is unrelated to PBR. RT-PCR and RNase protection experiments confirm that both PBR and PBR-S are expressed in all tissues examined and that expression PBR-S is about 10 times the level of PBR. Expression of PBR cDNA in pCMV5 vectors transfected into COS-1 cells resulted in increased binding of [3H]PK11195, but expression of PBR-S did not. It has been speculated that patients with congenital lipoid adrenal hyperplasia, who cannot make any steroids, might have a genetic lesion in mBzR. RT-PCR analysis of testicular RNA from such a patient, sequencing of the cDNA, and blotting analysis of genomic DNA all indicate that the gene and mRNA for the PBR component of mBzR are normal in this disease.

  18. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  19. Toll-Like Receptors, Their Ligands, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Conrad P. Hodgkinson

    2011-01-01

    Full Text Available Atherosclerosis is a disease characterized by inflammation in the arterial wall. Atherogenesis is dependent on the innate immune response involving activation of Toll-like receptors (TLRs and the expression of inflammatory proteins. TLRs, which recognize various pathogen-associated molecular patterns, are expressed in various cell types within the atherosclerotic plaque. Microbial agents are associated with an increased risk of atherosclerosis and this is, in part, due to activation of TLRs. Recently considerable evidence has been provided suggesting that endogenous proteins promote atherosclerosis by binding to TLRs. In this review, we describe the role of TLRs in atherosclerosis with particular emphasis on those atherogenic endogenous proteins that have been implicated as TLR ligands.

  20. Functional phylogenetics reveals contributions of pleiotropic peptide action to ligand-receptor coevolution

    Science.gov (United States)

    The evolution of peptidergic signaling has been accompanied by a significant degree of ligand-receptor coevolution. Closely related clusters of peptide signaling molecules are observed to activate related groups of receptors, implying that genes encoding these ligands may orchestrate an array of fu...

  1. A [11C]Ro15 4513 PET study suggests that alcohol dependence in man is associated with reduced α5 benzodiazepine receptors in limbic regions.

    Science.gov (United States)

    Lingford-Hughes, Anne; Reid, Alastair G; Myers, James; Feeney, Adrian; Hammers, Alexander; Taylor, Lindsay G; Rosso, Lula; Turkheimer, Federico; Brooks, David J; Grasby, Paul; Nutt, David J

    2012-02-01

    Preclinical evidence suggests the α5 subtype of the GABA-benzodiazepine receptor is involved in some of the actions of alcohol and in memory. The positron emission tomography (PET) tracer, [(11)C]Ro15 4513 shows relative selectivity in labelling the α5 subtype over the other GABA-benzodiazepine receptor subtypes in limbic regions of the brain. We used this tracer to investigate the distribution of α5 subtype availability in human alcohol dependence and its relationship to clinical variables. Abstinent (>6 weeks) alcohol-dependent men and healthy male controls underwent an [(11)C]Ro15 4513 PET scan. We report [(11)C]Ro15 4513 brain uptake for 8 alcohol-dependent men and 11 healthy controls. We found a significant reduction in [(11)C]Ro15 4513 binding in the nucleus accumbens, parahippocampal gyri, right hippocampus and amygdala in the alcohol-dependent compared with the healthy control group. Levels of [(11)C]Ro15 4513 binding in both hippocampi were significantly and positively associated with performance on a delayed verbal memory task in the alcohol-dependent but not the control group. We speculate that the reduced limbic [(11)C]Ro15 4513 binding seen here results from the effects of alcohol, though we cannot currently distinguish whether they are compensatory in nature or evidence of brain toxicity.

  2. Region-selective effects of neuroinflammation and antioxidant treatment on peripheral benzodiazepine receptors and NMDA receptors in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Biegon, A.; Alvarado, M.; Budinger, T.F.; Grossman, R.; Hensley, K.; West, M.S.; Kotake, Y.; Ono, M.; Floyd, R.A.

    2001-12-10

    Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hours after endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (2-3 fold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (>50 percent) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition ({approx}25 percent decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease.

  3. Computational approaches to modeling receptor flexibility upon ligand binding: Application to interfacially activated enzymes

    DEFF Research Database (Denmark)

    Wade, R.C.; Sobolev, V.; Ortiz, A.R. .

    1998-01-01

    Receptors generally undergo conformational change upon ligand binding. We describe how fairly simple techniques may be used in docking and design studies to account for some of the changes in the conformations of proteins on ligand binding. Simulations of protein-ligand interactions that give...... a more complete description of the dynamics important for ligand binding are then discussed. These methods are illustrated for phospholipase A(2) and lipase, enzymes that both undergo interfacial activation....

  4. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  5. Is there a way to curb benzodiazepine addiction?

    Science.gov (United States)

    Lalive, Arnaud L; Rudolph, Uwe; Lüscher, Christian; Tan, Kelly R

    2011-10-19

    Benzodiazepines are widely prescribed drugs used to treat anxiety and insomnia, induce muscle relaxation, control epileptic seizures, promote anaesthesia or produce amnesia. Benzodiazepines are also abused for recreational purposes and the number of benzodiazepine abusers is unfortunately increasing. Within weeks of chronic use, tolerance to the pharmacological effects can develop and withdrawal becomes apparent once the drug is no longer available, which are both conditions indicative of benzodiazepine dependence. Diagnosis of addiction (i.e. compulsive use despite negative consequences) may follow in vulnerable individuals. Here, we review the historical and current use of benzodiazepines from their original synthesis, discovery and commercialisation to the recent identification of the molecular mechanism by which benzodiazepines induce addiction. These results have identified the mechanisms underlying the activation of midbrain dopamine neurons by benzodiazepines, and how these drugs can hijack the mesocorticolimbic reward system. Such knowledge calls for future developments of new receptor subtype specific benzodiazepines with a reduced addiction liability.

  6. Research Progress in Physical Dependence of Benzodiazepine-type Drugs and Receptor Mechanism%苯二氮(艹卓)类药物的躯体依赖及受体机制研究进展

    Institute of Scientific and Technical Information of China (English)

    王丽华

    2011-01-01

    Prolonged use of benzodiazepines can lead to physical dependence. The diverse behavioral effects of benzodiazepines may reflect the actions on different subtypes of GABAA receptors. Benzodiazepine action appears to be determined by the presence of particular ct subunits. But a complex picture is emerging with respect to abuse of benzodiazepines and the roles of different GABAA receptor subtypes. Recent researches suggest an interaction with all GABAA receptor subtypes is required for physical dependence of benzodiazepines. This article reviews physical dependence of benzodiazepine and mediating GABAA receptor subunits.%苯二氮(艹卓)类药物的长期使用会使患者产生躯体依赖.不同的苯二氮(艹卓)类药物的行为效应可能由不同的GABAA受体亚单位介导.苯二氮(艹卓)类药物主要作用于特定的α亚单位.然而,苯二氮艹 卓类药物的滥用和不同的GABAA受体亚单位所起的作用之间却是复杂的.研究表明,苯二氮(艹卓)类药物躯体依赖的发生需要所有GABAA受体亚单位的相互作用.现重点介绍国内外有关苯二氮(艹卓)类药物的躯体依赖的产生,GABAA受体亚单位介导的苯二氮(艹卓)类药物的躯体依赖等研究情况.

  7. Vasopeptidase-activated latent ligands of the histamine receptor-1.

    Science.gov (United States)

    Gera, Lajos; Roy, Caroline; Charest-Morin, Xavier; Marceau, François

    2013-11-01

    Whether peptidases present in vascular cells can activate prodrugs active on vascular cells has been tested with 2 potential latent ligands of the histamine H1 receptor (H1R). First, a peptide consisting of the antihistamine cetirizine (CTZ) condensed at the N-terminus of ε-aminocaproyl-bradykinin (εACA-BK) was evaluated for an antihistamine activity that could be revealed by degradation of the peptide part of the molecule. CTZ-εACA-BK had a submicromolar affinity for the BK B2 receptor (B2R; IC50 of 590 nM, [(3)H]BK binding competition), but a non-negligible affinity for the human H1 receptor (H1R; IC50 of 11 μM for [(3)H]pyrilamine binding). In the human isolated umbilical vein, a system where both endogenous B2R and H1R mediate strong contractions, CTZ-εACA-BK exerted mild antagonist effects on histamine-induced contraction that were not modified by omapatrilat or by a B2R antagonist that prevents endocytosis of the BK conjugate. Cells expressing recombinant ACE or B2R incubated with CTZ-εACA-BK did not release a competitor of [(3)H]pyrilamine binding to H1Rs. Thus, there is no evidence that CTZ-εACA-BK can release free cetirizine in biological environments. The second prodrug was a blocked agonist, L-alanyl-histamine, potentially activated by aminopeptidase N (APN). This compound did not compete for [(3)H]pyrilamine binding to H1Rs. The human umbilical vein contractility assay responded to L-alanyl-histamine (EC50 54.7 μM), but the APN inhibitor amastatin massively (17-fold) reduced its apparent potency. Amastatin did not influence the potency of histamine as a contractile agent. One of the 2 tested latent H1R ligands, L-alanyl-histamine, supported the feasibility of pro-drug activation by vascular ectopeptidases.

  8. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    Science.gov (United States)

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.

  9. Synthesis and evaluation of sup 11 C-PK 11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji (Fukuyama Univ., Hiroshima (Japan). Faculty of Pharmacy and Pharmaceutical Sciences); Inoue, Osamu; Suzuki, Kazutoshi; Yamasaki, Toshiro; Kojima, Masaharu

    1989-07-01

    The biodistribution of {sup 3}H-PK 11195, an antagonist of the peripheral-type benzodiazepine receptors, was studied in mice. High accumulations of radioactivity in the heart, lung, spleen, kidney and adrenal were observed after intravenous injection of tracer amounts of {sup 3}H-PK 11195 into the mice. The radioactivity in the heart, lung, spleen, kidney and adrenal was significantly decreased by the coadministration of carrier PK 11195, which indicated that PK 11195 specifically binds to the receptors. No radioactive metabolites were observed in the heart, lung and brain 20 min after intravenous administration of {sup 3}H-PK 11195. The accumulation of {sup 3}H-PK 11195 in the lung was not affected by pretreatment with either {alpha}-methyl benzylamine or imipramine, suggesting that {sup 3}H-PK 11195 specifically binds to the receptors. The ratios of radioactivity of the kidney, adrenal and spleen to blood increased as a function of time, whereas that of the lung and heart rapidly reached to a steady state. {sup 11}C-PK 11195 was synthesized by the N-methylation of desmethyl precursor yielding more than 100 mCi with high specific activity (more than 1.4 Ci/{mu}mol). The lebeling and purification procedure was completed within 23 min after the end of bombardment (EOB). The {sup 11}C-PK 11195 solution for injection seems to have a high potential for the in vivo study of the peripheral-type benzodiazepine receptors in the living human by means of positron emission tomography (PET). (author).

  10. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E

    2010-01-01

    There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid ¿(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor...... antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non....../or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor...

  11. Effects of ZK 93,426, a beta-carboline benzodiazepine receptor antagonist on night sleep pattern in healthy male volunteers.

    Science.gov (United States)

    Duka, T; Goerke, D; Fichte, K

    1995-01-01

    The beta-carboline ZK 93,426, a benzodiazepine-antagonist with weak inverse agonist activity, was administered intravenously to human volunteers at a dose of 0.04 mg/kg when they initially reached slow-wave sleep during their night's sleep. Eight subjects, subjected to half a night of sleep withdrawal, took part in the study, which was performed according to a double-blind, placebo-controlled, cross-over design. Sleep parameters as determined by electroencephalography, actometry (wrist actometer) and temperature (rectal thermometer) were monitored for the whole night. Vital functions (blood pressure and heart rate) as well as subjectively experienced effects via visual analogue scales were evaluated and blood samples for hormone plasma level estimation were taken before and after sleep. ZK 93,426 was well tolerated. Sleep parameters were reduced under the influence of the drug indicating a stimulant effect. Slow wave sleep (sleep stages 3 and 4) was significantly reduced in favour of light sleep stages 1 and 2 during the first 30 min after the administration of ZK 93,426 (P = 0.02). In keeping with these findings subjects exhibited a significantly (P < 0.02) elevated number and intensity of movements during the first 90 min after the beta-carboline injection. Effects on self-ratings, in body temperature and on hormonal changes were not found. It is assumed that the benzodiazepine-antagonist ZK 93,426 is able to induce activation and disturb sleep via modulation of GABAergic transmission mainly by benzodiazepine receptor blocking properties.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Automated radiosynthesis of [{sup 18}F]PBR111 and [{sup 18}F]PBR102 using the Tracerlab FX{sub FN} and Tracerlab MX{sub FDG} module for imaging the peripheral benzodiazepine receptor with PET

    Energy Technology Data Exchange (ETDEWEB)

    Bourdier, Thomas, E-mail: thomas@nucmed.rpa.cs.nsw.gov.au [PET and Nuclear Medicine Department, Royal Prince Alfred Hospital, Missenden road, Camperdown NSW 2050, Sydney (Australia); Pham, Tien Q. [LifeSciences, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232, Sydney (Australia); Henderson, David [PET and Nuclear Medicine Department, Royal Prince Alfred Hospital, Missenden road, Camperdown NSW 2050, Sydney (Australia); Jackson, Timothy [LifeSciences, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232, Sydney (Australia); Lam, Peter [PET and Nuclear Medicine Department, Royal Prince Alfred Hospital, Missenden road, Camperdown NSW 2050, Sydney (Australia); Izard, Michael; Katsifis, Andrew [LifeSciences, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232, Sydney (Australia)

    2012-01-15

    [{sup 18}F]PBR111 and [{sup 18}F]PBR102 are selective radioligands for imaging of the Peripheral Benzodiazepine Receptor (PBR). We have developed a fully automated method for the radiosynthesis of [{sup 18}F]PBR111 and [{sup 18}F]PBR102 in the Tracerlab FX{sub FN} (30{+-}2% radiochemical yield non-decay-corrected for both tracers) and Tracerlab MX{sub FDG} (25{+-}2% radiochemical yield non-decay-corrected for both tracers) from the corresponding p-toluenesulfonyl precursors. For all tracers, radiochemical purity was >99% and specific activity was >150 GBq/{mu}mol after less than 60 min of preparation time. - Highlights: Black-Right-Pointing-Pointer Radiosynthesis of novel ligands PBR111 and PBR102 with fluorine-18. Black-Right-Pointing-Pointer Fully automated synthesis undertaken using the GE Tracerlab FX{sub FN} and MX{sub FDG} modules. Black-Right-Pointing-Pointer Reproducible high yields suitable for clinical applications. Black-Right-Pointing-Pointer Radiosynthesis and formulation achieved in less than 60 mins. Black-Right-Pointing-Pointer PBR111 and PBR102 prepared in high radiochemical yield and specific activity.

  13. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  14. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  15. PET and SPECT in medically non-refractory complex partial seizures. Temporal asymmetries of glucose consumption, Benzodiazepine receptor density

    Energy Technology Data Exchange (ETDEWEB)

    Matheja, P.; Kuwert, T.; Wolf, K.; Schober, O. [Muenster Univ. (Germany). Kliniken und Polikliniken fuer Nuklearmedizin; Stodieck, S.R.G.; Diehl, B.; Ringelstein, E.B. [Muenster Univ. (Germany). Klinik fuer Neurologie; Schuierer, G. [Muenster Univ. (Germany). Inst. fuer Klinische Radiologie

    1998-12-31

    Aim: In contrast to medically refractory complex partial seizures (CPS), only limited knowledge exists on cerebral perfusion and metabolism in medically non-refractory CPS. The aim of this study was to investigate the frequency of temporal asymmetries in regional cerebral glucose consumption (rCMRGlc), regional cerebral blood flow (rCBF), and regional cerebral benzodiazepine receptor density (BRD) in this group of patients. Methods: The study included 49 patients with medically non-refractory cryptogenic CPS (age: 36.0{+-}16.1 years). rCMRGlc was studied with F-18-FDG-PET (FDG), rCBF with Tc-99m-ECD-SPECT (ECD), and BRD with I-123-iomazenil-SPECT (IMZ). All studies were performed interictally and within four weeks in each patient. Duration of epilepsy ranged from 0.1 to 42 years (median 4.0 years). SPECT was performed with the triple-headed SPECT camera Multispect 3, PET with the PET camera ECAT EXACT 47. Using linear profiles, glucose consumption, as well as uptake of ECD and IMZ, were measured in four temporal regions of interest (ROIs), and asymmetry indices were calculated (ASY). The results were compared to 95% confidence intervals determined in control subjects. Results: Thirty-five of the 49 (71%) patients had at least one significantly elevated ASY; temporal rCMRGlc was asymmetrical in 41% of the patients, temporal BRD in 29%, and temporal rCBF in 24%. One patient had an asymmetry of all three variables, two of temporal rCMRGlc and BRD, three of temporal rCMRGlc and rCBF, and another four of rCBF and BRD. Fourteen patients had an isolated temporal asymmetry in rCMRGlc, seven in BRD, and four in rCBF. A discrepancy in lateralization between the three modalities was not observed. Conclusion: The majority of patients with medically non-refractory CPS have focal abnormalities of blood flow and metabolism in their temporal lobe. In this group of patients, FDG-PET demonstrates abnormalities with the highest frequency of the three modalities studied, followed by

  16. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  17. CLE Peptides in Plants: Proteolytic Processing,Structure-Activity Relationship, and Ligand-Receptor Interaction

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Gao; Yongfeng Guo

    2012-01-01

    Ligand-receptor signaling initiated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) family peptides is critical in regulating cell division and differentiation in meristematic tissues in plants.Biologically active CLE peptides are released from precursor proteins via proteolytic processing.The mature form of CLE ligands consists of 12-13 amino acids with several post-translational modifications.This review summarizes recent progress toward understanding the proteolytic activities that cleave precursor proteins to release CLE peptides,the molecular structure and function of mature CLE ligands,and interactions between CLE ligands and corresponding leucine-rich repeat (LRR) receptor-like kinases (RLKs).

  18. Intracerebroventricular administration of inosine is anticonvulsant against quinolinic acid-induced seizures in mice: an effect independent of benzodiazepine and adenosine receptors.

    Science.gov (United States)

    Ganzella, Marcelo; Faraco, Rafael Berger; Almeida, Roberto Farina; Fernandes, Vinícius Fornari; Souza, Diogo Onofre

    2011-12-01

    Inosine (INO) has an anticonvulsant effect against seizures induced by antagonists of GABAergic system. Quinolinic acid (QA) is an agonist NMDA receptors implicated in the neurobiology of seizures. In the present study, we investigated the anticonvulsant effect of intracerebroventricular (i.c.v.) INO administration against QA-induced seizures in adult mice. We also investigated whether the benzodiazepines (BZ) or adenosine (ADO) receptors were involved in the INO effects. Animals were pretreated with an i.c.v. injection of either vehicle or INO before an i.c.v. administration of 4 μl QA (36.8 nmol). All animals pretreated with vehicle followed by QA presented seizures. INO protected against QA-induced seizures in a time and dose dependent manner (up to 60% at 400 nmol, 5 min before QA injection). Diazepam (DZ) and ADO (i.c.v.) also exhibited anticonvulsant effect against QA induced seizures. Additionally, i.p. administration of either flumazenil, a BZ receptor antagonist, or caffeine, an ADO receptor antagonist, did not change the anticonvulsant potency of INO i.c.v. injection, but completely abolished the DZ and ADO anticonvulsant effects, respectively. In conclusion, this study demonstrated that INO exert anticonvulsant effect against hyperactivity of the glutamatergic system independently of BZ or ADO receptors activation.

  19. Computational studies of ligand-receptor interactions in bitter taste receptors.

    Science.gov (United States)

    Miguet, Laurence; Zhang, Ziding; Grigorov, Martin G

    2006-01-01

    Phenylthiocarbamide tastes intensely bitter to some individuals, but others find it completely tasteless. Recently, it was suggested that phenylthiocarbamide elicits bitter taste by interacting with a human G protein-coupled receptor (hTAS2R38) encoded by the PTC gene. The phenylthiocarbamide nontaster trait was linked to three single nucleotide polymorphisms occurring in the PTC gene. Using the crystal structure of bovine rhodopsin as template, we generated the 3D structure of hTAS2R38 bitter taste receptor. We were able to map on the receptor structure the amino acids affected by the genetic polymorphisms and to propose molecular functions for two of them that explained the emergence of the nontaster trait. We used molecular docking simulations to find that phenylthiocarbamide exhibited a higher affinity for the target receptor than the structurally similar molecule 6-n-propylthiouracil, in line with recent experimental studies. A 3D model was constructed for the hTAS2R16 bitter taste receptor as well, by applying the same protocol. We found that the recently published experimental ligand binding affinity data for this receptor correlated well with the binding scores obtained from our molecular docking calculations.

  20. The orthosteric GABAA receptor ligand Thio-4-PIOL displays distinctly different functional properties at synaptic and extrasynaptic receptors

    DEFF Research Database (Denmark)

    Hoestgaard-Jensen, K; O'Connor, R M; Dalby, Nils Ole

    2013-01-01

    Explorations into the heterogeneous population of native GABA type A receptors (GABAA Rs) and the physiological functions governed by the multiple GABAA R subtypes have for decades been hampered by the lack of subtype-selective ligands....

  1. Phenylpyrroles, a new chemolibrary virtual screening class of 5-HT7 receptor ligands.

    Science.gov (United States)

    Paillet-Loilier, Magalie; Fabis, Frédéric; Lepailleur, Alban; Bureau, Ronan; Butt-Gueulle, Sabrina; Dauphin, François; Delarue, Catherine; Vaudry, Hubert; Rault, Sylvain

    2005-08-15

    Virtual screening studies have identified a series of phenylpyrroles as novel 5-HT7 receptor ligands. The synthesis and the affinity for the 5-HT7 receptor of these phenylpyrroles are described. Some of these compounds exhibited high affinity for the 5-HT7 receptors.

  2. Cell surface receptors for signal transduction and ligand transport - a design principles study

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Resat, Haluk; Wiley, H. S.

    2007-06-01

    Although many different receptors undergo endocytosis, the system-level design principles that govern the evolution of receptor dynamics are far from fully understood. We have constructed a generalized mathematical model to understand how receptor internalization dynamics encodes receptor function and regulation. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptors can be categorized a being: i) avidity-controlled where the response control depends primarily on the extracelluar ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled and epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to anhance the accuracy of signaling receptors rather than serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulations.

  3. 1,2,3-triazolyl amino acids as AMPA receptor ligands

    DEFF Research Database (Denmark)

    Stanley, Nathan J.; Pedersen, Daniel Sejer; Nielsen, Birgitte

    2010-01-01

    The central nervous system glutamate receptors are an important target for drug discovery. Herein we report initial investigations into the synthesis and glutamate receptor activity of 1,2,3-triazolyl amino acids. Two compounds were found to be selective AMPA receptor ligands, which warrant further...

  4. Monitoring ligand-receptor interactions by photonic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeney, Sylvia [M E Mueller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, 4056 (Switzerland); Mor, Flavio; Forro, Laszlo [Laboratory of Complex Matter Physics (LPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Koszali, Roland [Institute for Information and Communication Technologies (IICT), University of Applied Sciences of Western Switzerland (HEIG-VD), Rue Galilee 15, CH 1401 Yverdon-les-bains (Switzerland); Moy, Vincent T, E-mail: sylvia.jeney@unibas.ch, E-mail: vmoy@miami.edu [Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136 (United States)

    2010-06-25

    We introduce a method for the acquisition of single molecule force measurements of ligand-receptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three-dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond, with the lifetime increasing tenfold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements, as tethers, longer than 200 nm, could be extracted from polystyrene beads.

  5. Pyridine analogues of spirocyclic σ₁ receptor ligands.

    Science.gov (United States)

    Miyata, Kengo; Möller, Guido; Schepmann, Dirk; Wünsch, Bernhard

    2014-08-01

    Spirocyclic benzopyrans 2 interact with high affinity and selectivity with σ₁ receptors. Bioisosteric replacement of the benzene ring of the benzopyran substructure with the electron rich thiophene ring (3) led to increased σ₁ affinity. Herein the synthesis and pharmacological evaluation of electron deficient pyridine bioisosteres 4 are reported. Homologation of the aldehyde 6 to afford the pyridylacetaldehyde derivative 8 was performed by a Wittig reaction. Bromine lithium exchange of the bromopyridine 8, addition to 1-benzylpiperidin-4-one and cyclization led to the spirocyclic pyrranopyridine 10. Hydrogenolytic removal of the N-benzyl moiety of 10 provided the secondary amine 11, which allowed the introduction of various N-substituents (12a-d). Cyclization of the hydroxy acetal 9 with HCl led to various modifications of the substituent in 3'-position. Generally the σ₁ affinity of the pyridine derivatives is reduced compared with those of the benzene and thiophene derivatives 2 and 3. However, the relationships between the structure and the σ₁ affinity follow the same rules as for the benzene and thiophene derivatives. The most promising σ₁ ligand within this class of compounds is the pyranopyridine 15 with a double bond in the pyran ring revealing a Ki-value of 4.6 nM and a very high selectivity (>217-fold) over the σ₂ subtype.

  6. Partial chemical characterization of cyclopyrrolones ((/sup 3/H) suriclone) and benzodiazepines ((/sup 3/H)flunitrazepam) binding site: Differences

    Energy Technology Data Exchange (ETDEWEB)

    Zundel, J.L.; Blanchard, J.C.; Julou, L.

    1985-06-10

    Rat hippocampus membranes were treated with several protein modifying reagents (iodoacetamide, N-ethylmaleimide, tetranitromethane and N-acetylimidazole). The effects of these treatments on the binding sites of cyclopyrrolones ((/sup 3/H) suriclone), a new chemical family of minor tranquilizers, and benzodiazepines ((/sup 3/H) flunitrazepam) were investigated. Here the authors show that both ligands are similarly sensitive to cysteine alkylation: (/sup 3/H) suriclone and (/sup 3/H) flunitrazepam binding are reduced by iodoacetamide and slightly increased by N-ethylmaleimide. On the contrary they are clearly differentiated by tyrosine modification: (/sup 3/H) suriclone binding is not changed whereas (/sup 3/H) flunitrazepam binding is increased by tetranitromethane and decreased by N-acetylimidazole. The present findings and published evidence suggest cyclopyrrolones and benzodiazepines bind to distinct sites or to different allosteric forms of the benzodiazepine receptor. 28 references, 6 figures.

  7. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2009-12-01

    Full Text Available Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses. The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.

  8. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit.

    Science.gov (United States)

    Aydar, Ebru; Palmer, Christopher P; Klyachko, Vitaly A; Jackson, Meyer B

    2002-04-25

    The sigma receptor is a novel protein that mediates the modulation of ion channels by psychotropic drugs through a unique transduction mechanism depending neither on G proteins nor protein phosphorylation. The present study investigated sigma receptor signal transduction by reconstituting responses in Xenopus oocytes. Sigma receptors modulated voltage-gated K+ channels (Kv1.4 or Kv1.5) in different ways in the presence and absence of ligands. Association between Kv1.4 channels and sigma receptors was demonstrated by coimmunoprecipitation. These results indicate a novel mechanism of signal transduction dependent on protein-protein interactions. Domain accessibility experiments suggested a structure for the sigma receptor with two cytoplasmic termini and two membrane-spanning segments. The ligand-independent effects on channels suggest that sigma receptors serve as auxiliary subunits to voltage-gated K+ channels with distinct functional interactions, depending on the presence or absence of ligand.

  9. Peripheral-type benzodiazepine receptor levels correlate with the ability of human breast cancer MDA-MB-231 cell line to grow in SCID mice.

    Science.gov (United States)

    Hardwick, M; Rone, J; Han, Z; Haddad, B; Papadopoulos, V

    2001-11-01

    MDA-MB-231 (MDA-231) human breast cancer cells have a high proliferation rate, lack the estrogen receptor, express the intermediate filament vimentin, the hyaluronan receptor CD44, and are able to form tumors in nude mice. The MDA-231 cell line has been used in our laboratory to examine the role of the peripheral-type benzodiazepine receptor (PBR) in the progression of cancer. During these studies 2 populations of MDA-231 cells were subcloned based on the levels of PBR. The subclones proliferated at approximately the same rate, lacked the estrogen receptor, expressed vimentin and CD44, and had the same in vitro chemoinvasive and chemotactic potential. Both restriction fragment length polymorphism and comparative genomic hybridization analyses of genomic DNA from these cells indicated that both subclones are of the same genetic lineage. Only the subclone with high PBR levels, however, was able to form tumors when injected in SCID mice. These data suggest that the ability of MDA-231 cells to form tumors in vivo may depend on the amount of PBR present in the cells.

  10. Using [(11)C]Ro15 4513 PET to characterise GABA-benzodiazepine receptors in opiate addiction: Similarities and differences with alcoholism.

    Science.gov (United States)

    Lingford-Hughes, Anne; Myers, James; Watson, Ben; Reid, Alastair G; Kalk, Nicola; Feeney, Adrian; Hammers, Alexander; Riaño-Barros, Daniela A; McGinnity, Colm J; Taylor, Lindsay G; Rosso, Lula; Brooks, David J; Turkheimer, Federico; Nutt, David J

    2016-05-15

    The importance of the GABA-benzodiazepine receptor complex and its subtypes are increasingly recognised in addiction. Using the α1/α5 benzodiazepine receptor PET radioligand [(11)C]Ro15 4513, we previously showed reduced binding in the nucleus accumbens and hippocampus in abstinent alcohol dependence. We proposed that reduced [(11)C]Ro15 4513 binding in the nucleus accumbens was a marker of addiction whilst the reduction in hippocampus and positive relationship with memory was a consequence of chronic alcohol abuse. To examine this further we assessed [(11)C]Ro15 4513 binding in another addiction, opiate dependence, and used spectral analysis to estimate contributions of α1 and α5 subtypes to [(11)C]Ro15 4513 binding in opiate and previously acquired alcohol-dependent groups. Opiate substitute maintained opiate-dependent men (n=12) underwent an [(11)C]Ro15 4513 PET scan and compared with matched healthy controls (n=13). We found a significant reduction in [(11)C]Ro15 4513 binding in the nucleus accumbens in the opiate-dependent compared with the healthy control group. There was no relationship between [(11)C]Ro15 4513 binding in the hippocampus with memory. We found that reduced [(11)C]Ro15 4513 binding was associated with reduced α5 but not α1 subtypes in the opiate-dependent group. This was also seen in an alcohol-dependent group where an association between memory performance and [(11)C]Ro15 4513 binding was primarily driven by α5 and not α1 subtype. We suggest that reduced α5 levels in the nucleus accumbens are associated with addiction since we have now shown this in dependence to two pharmacologically different substances, alcohol and opiates.

  11. Increased expression of mitochondrial benzodiazepine receptors following low-level light treatment facilitates enhanced protoporphyrin IX production in glioma-derived cells in vitro

    Science.gov (United States)

    Bisland, S. K.; Hassanali, N. S.; Johnson, C.; Wilson, B. C.

    2007-02-01

    This study investigates whether low level light treatment (LLLT) can enhance the expression of Peripheral-type mitochondrial benzodiazepine receptors (PBRs) on the glioma-derived tumour cell line, CNS-1, and by doing so promote the synthesis of protoporphyrin IX (PpIX) and increase the photodynamic therapy (PDT)-induced cell kill using 5-aminolevulinic acid (ALA). The endogenous photosensitizer, (PpIX) and related metabolites including coproporphyrin III are known to traffic via the PBRs on the outer mitochondrial membrane on their passage into or out of the mitochondria. Astrocyte-derived cells within the brain express PBRs, while neurons express the central-type of benzodiazepine receptor. CNS-1 cells were exposed to a range of differing low-level light protocols immediately prior to PDT. LLLT involved using broad-spectrum light or monochromatic laser light specific to 635 or 905 nm wavelength. Cells (5μ10 5) were exposed to a range of LLLT doses (0, 1 or 5 J/cm2) using a fixed intensity of 10 mW/cm2 and subsequently harvested for cell viability, immunofluorescence or western blot analysis of PBR expression. The amount of PpIX within the cells was determined using chemical extraction techniques. Results confirm the induction of PBR following LLLT is dependent on the dose and wavelength of light used. Broadspectrum light provided the greatest cell kill following PDT, although LLLT with 635 nm or 905 nm also increased cell kill as compared to PDT alone. All LLLT regimens increased PBR expression compared to controls with corresponding increases in PpIX production. These data suggest that by selectively increasing PBR expression in tumour cells, LLLT may facilitate enhanced cell kill using ALA-PDT without damaging surrounding normal brain.

  12. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshiyuki [Dept. of Radiology, Osaka National Hospital (Japan); Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko [Div. of Tracer Kinetics, Osaka University Medical School (Japan); Kusuoka, Hideo [Clinical Research Institute, Osaka National Hospital (Japan); Nakamura, Hironobu [Dept. of Radiology, Osaka University Medical School (Japan)

    2000-03-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, {sup 125}I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and {sup 123}I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of {sup 123}I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  13. Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats.

    Science.gov (United States)

    Rojas, Santiago; Martín, Abraham; Arranz, Maria J; Pareto, Deborah; Purroy, Jesús; Verdaguer, Esther; Llop, Jordi; Gómez, Vanessa; Gispert, Joan D; Millán, Olga; Chamorro, Angel; Planas, Anna M

    2007-12-01

    [(11)C]PK11195 is used in positron emission tomography (PET) studies for imaging brain inflammation in vivo as it binds to the peripheral-type benzodiazepine receptor (PBR) expressed by reactive glia and macrophages. However, features of the cellular reaction required to induce a positive [(11)C]PK11195 signal are not well characterized. We performed [(11)C]PK11195 PET and autoradiography in rats after transient focal cerebral ischemia. We determined [(3)H]PK11195 binding and PBR expression in brain tissue and examined the lesion with several markers. [(11)C]PK11195 standard uptake value increased at day 4 and grew further at day 7 within the ischemic core. Accordingly, ex vivo [(3)H]PK11195 binding increased at day 4, and increases further at day 7. The PET signal also augmented in peripheral regions, but to a lesser extent than in the core. Binding in the region surrounding infarction was supported by [(11)C]PK11195 autoradiography at day 7 showing that the radioactive signal extended beyond the infarcted core. Enhanced binding was preceded by increases in PBR mRNA expression in the ipsilateral hemisphere, and a 18-kDa band corresponding to PBR protein was detected. Peripheral-type benzodiazepine receptor immunohistochemistry showed subsets of ameboid microglia/macrophages within the infarcted core showing a distinctive strong PBR expression from day 4. These cells were often located surrounding microhemorrhages. Reactive astrocytes forming a rim surrounding infarction at day 7 also showed some PBR immunostaining. These results show cellular heterogeneity in the level of PBR expression, supporting that PBR is not a simple marker of inflammation, and that the extent of [(11)C]PK11195 binding depends on intrinsic features of the inflammatory cells.

  14. Ligands, cell-based models, and readouts required for Toll-like receptor action.

    LENUS (Irish Health Repository)

    Dellacasagrande, Jerome

    2012-02-01

    This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.

  15. Molecular modeling study of the differential ligand-receptor interaction at the μ, δ and κ opioid receptors

    Science.gov (United States)

    Filizola, Marta; Carteni-Farina, Maria; Perez, Juan J.

    1999-07-01

    3D models of the opioid receptors μ, δ and κ were constructed using BUNDLE, an in-house program to build de novo models of G-protein coupled receptors at the atomic level. Once the three opioid receptors were constructed and before any energy refinement, models were assessed for their compatibility with the results available from point-site mutations carried out on these receptors. In a subsequent step, three selective antagonists to each of three receptors (naltrindole, naltrexone and nor-binaltorphamine) were docked onto each of the three receptors and subsequently energy minimized. The nine resulting complexes were checked for their ability to explain known results of structure-activity studies. Once the models were validated, analysis of the distances between different residues of the receptors and the ligands were computed. This analysis permitted us to identify key residues tentatively involved in direct interaction with the ligand.

  16. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-(/sup 11/C)methyl-6-oxo-4H-imidazo(1,5-a)(1,4)benzodiazepine-3-carboxylate (RO 15. 1788-/sup 11/C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Maziere, M.; Hantraye, P.; Prenant, C.; Sastre, J.; Comar, D. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1984-10-01

    A method of labelling ethyl 8-fluoro-5,6-dihydro-5-(/sup 11/C) methyl-6-oxo-4H-imidazo(1,5-a)(1,4)benzodiazepine-3-carboxylate (RO 15.1788 /sup 11/C), a benzodiazepine antagonist with carbon-11 has been developed. RO 15.1788-/sup 11/C was prepared by methylation of the nor derivative by I/sup 11/CH/sub 3/. About 100 mCi (maximum 153 mCi, 5.66 GBq) of the chemically and radiochemically pure labelled product were obtained within 25 min with a specific activity on average of 1100 mCi/..mu.. mol (maximum 1740 mCi/..mu..mol-64.4 GBq/..mu..mol). Preliminary results obtained after i.v. administration in the baboon have shown RO 15.1788-/sup 11/C to be of interest as a benzodiazepine radioligand for the in vivo study of benzodiazepine receptors by positron emission tomography.

  17. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    Science.gov (United States)

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  18. On the denaturation mechanisms of the ligand binding domain of thyroid hormone receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Souza, Paulo C T; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics simulations to investigate unfolding of the LBDs of t

  19. On the Denaturation Mechanisms of the Ligand Binding Domain of Thyroid Hormone Receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Telles de Souza, P C; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of t

  20. Impact of killer immunoglobulin-like receptor-human leukocyte antigens ligand incompatibility among renal transplantation.

    Science.gov (United States)

    Alam, S; Rangaswamy, D; Prakash, S; Sharma, R K; Khan, M I; Sonawane, A; Agrawal, S

    2015-01-01

    Killer immunoglobulin-like receptor (KIR) gene shows a high degree of polymorphism. Natural killer cell receptor gets activated once they bind to self-human leukocyte antigens (HLAs) with specific ligand. KIR gene and HLA ligand incompatibility due to the presence/absence of KIR in the recipient and the corresponding HLA ligand in the allograft may impact graft survival in solid organ transplantation. This study evaluates the effect of matches between KIR genes and known HLA ligands. KIR genotypes were determined using sequence specific primer polymerase chain reaction. Presence of certain KIR in a recipient, where the donor lacked the corresponding HLA ligand was considered a mismatch. The allograft was considered matched when both KIR receptor and HLA alloantigen reveald compatibility among recipient and donor. The data revealed better survival among individuals with matched inhibitory KIR receptors and their corresponding HLA ligands (KIR2DL2/DL3-HLAC2, KIR3DL1-HLABw4). On the contrary, no adverse effect was seen for matched activating KIR receptors and their corresponding HLA ligands. One of the activating gene KIR2DS4 showed risk (P = 0.0413, odds ratio = 1.91, 95% confidence interval = 1.02-3.57) association with renal allograft rejection. We conclude that the presence of inhibitory KIR gene leads to better survival; whereas activating motifs show no significant role in renal allograft survival.

  1. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120)

    OpenAIRE

    Hudson, Brian D.; Shimpukade, Bharat; Milligan, Graeme; Ulven, Trond

    2014-01-01

    The long-chain fatty acid receptor FFA4(previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. The current study examines for the first time the detailed mode of binding of both a long-chain fatty acid and synthetic agonist ligands at FFA4 by integrating molecular modeling, receptor mutagenesis, and ligand structure-activity relationship approaches in an iterative format. In doing so, residues required for binding of fat...

  2. Benzodiazepines and Pregnancy

    Science.gov (United States)

    Benzodiazepines and Pregnancy In every pregnancy, a woman starts out with a 3-5% chance of having ... risk. This sheet talks about whether exposure to benzodiazepines may increase the risk for birth defects over ...

  3. A ligand channel through the G protein coupled receptor opsin.

    Directory of Open Access Journals (Sweden)

    Peter W Hildebrand

    Full Text Available The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7, and B (between TM5 and 6, respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all

  4. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  5. Design, synthesis and biological evaluation of bivalent ligands against A1-D1 receptor heteromers

    Institute of Scientific and Technical Information of China (English)

    Jian SHEN; Lei ZHANG; Wan-ling SONG; Tao MENG; Xin WANG; Lin CHEN; Lin-yin FENG

    2013-01-01

    Aim:To design and synthesize bivalent ligands for adenosine A1-dopamine D1 receptor heteromers (A1-D1R),and evaluate their pharmacological activities.Methods:Bivalent ligands and their corresponding A1R monovalent ligands were designed and synthesized.The affinities of the bivalent ligands for A1R and D1R in rat brain membrane preparation were examined using radiolabeled binding assays.To demonstrate the formation of A1-D1R,fluorescence resonance energy transfer (FRET) was conducted in HEK293 cells transfected with D1-CFP and A1-YFP.Molecular modeling was used to analyze the possible mode of protein-protein and protein-ligand interactions.Results:Two bivalent ligands for A1R and D1R (20a,20b),as well as the corresponding A1R monovalent ligands (21a,21b) were synthesized.In radiolabeled binding assays,the bivalent ligands showed affinities for A1R 10-100 times higher than those of the corresponding monovalent ligands.In FRET experiments,the bivalent ligands significantly increased the heterodimerization of A1R and D1R compared with the corresponding monovalent ligands.A heterodimer model with the interface of helixes 3,4,5 of A1R and helixes 1,6,7 from D1R was established with molecular modeling.The distance between the two ligand binding sites in the heterodimer model was approximately 48.4 (A),which was shorter than the length of the bivalent ligands.Conclusion:This study demonstrates the existence of A1-D1R in situ and a simultaneous interaction of bivalent ligands with both the receptors.

  6. Directed evolution of estrogen receptor proteins with altered ligand-binding specificities.

    Science.gov (United States)

    Islam, Kazi Mohammed Didarul; Dilcher, Meik; Thurow, Corinna; Vock, Carsten; Krimmelbein, Ilga Kristine; Tietze, Lutz Friedjan; Gonzalez, Victor; Zhao, Huimin; Gatz, Christiane

    2009-01-01

    Transcriptional activators that respond to ligands with no cellular targets are powerful tools that can confer regulated expression of a transgene in almost all biological systems. In this study, we altered the ligand-binding specificity of the human estrogen receptor alpha (hER alpha) so that it would recognize a non-steroidal synthetic compound with structural similarities to the phytoestrogen resveratrol. For this purpose, we performed iterative rounds of site-specific saturation mutagenesis of a fixed set of ligand-contacting residues and subsequent random mutagenesis of the entire ligand-binding domain. Selection of the receptor mutants and quantification of the interaction were carried out by exploiting a yeast two-hybrid system that reports the ligand-dependent interaction between hER alpha and steroid receptor coactivator-1 (SRC-1). The screen was performed with a synthetic ligand (CV3320) that promoted growth of the reporter yeast strain to half maximal levels at a concentration of 3.7 microM. The optimized receptor mutant (L384F/L387M/Y537S) showed a 67-fold increased activity to the synthetic ligand CV3320 (half maximal yeast growth at 0.055 microM) and a 10-fold decreased activity to 17beta-estradiol (E2; half maximal yeast growth at 4 nM). The novel receptor-ligand pair partially fulfills the requirements for a specific 'gene switch' as it responds to concentrations of the synthetic ligand which do not activate the wildtype receptor. Due to its residual responsiveness to E2 at concentrations (4 nM) that might occur in vivo, further improvements have to be performed to render the system applicable in organisms with endogenous E2 synthesis.

  7. Following a TRAIL:Update on a ligand and its five receptors

    Institute of Scientific and Technical Information of China (English)

    Fiona C. KIMBERLEY; Gavin R. SCREATON

    2004-01-01

    Identification of tumour necrosis factor apoptosis inducing ligand (TRAIL), a TNF family ligand, sparked a torrent of research, following an initial observation that it could kill tumour cells, but spare normal cells. Almost a decade after its discovery, and with five known receptors, the true physiological role of TRAIL is still debated and its anti-tumorigenic properties limited by potential toxicity. This review takes a comprehensive look at the story of this enigmatic ligand,addressing its remaining potential as a therapeutic and providing an overview of the TRAIL receptors themselves.

  8. Direct identification of ligand-receptor interactions on living cells and tissues.

    Science.gov (United States)

    Frei, Andreas P; Jeon, Ock-Youm; Kilcher, Samuel; Moest, Hansjoerg; Henning, Lisa M; Jost, Christian; Plückthun, Andreas; Mercer, Jason; Aebersold, Ruedi; Carreira, Erick M; Wollscheid, Bernd

    2012-10-01

    Many cellular responses are triggered by proteins, drugs or pathogens binding to cell-surface receptors, but it can be challenging to identify which receptors are bound by a given ligand. Here we describe TRICEPS, a chemoproteomic reagent with three moieties--one that binds ligands containing an amino group, a second that binds glycosylated receptors on living cells and a biotin tag for purifying the receptor peptides for identification by quantitative mass spectrometry. We validated this ligand-based, receptor-capture (LRC) technology using insulin, transferrin, apelin, epidermal growth factor, the therapeutic antibody trastuzumab and two DARPins targeting ErbB2. In some cases, we could also determine the approximate ligand-binding sites on the receptors. Using TRICEPS to label intact mature vaccinia viruses, we identified the cell surface proteins AXL, M6PR, DAG1, CSPG4 and CDH13 as binding factors on human cells. This technology enables the identification of receptors for many types of ligands under near-physiological conditions and without the need for genetic manipulations.

  9. An ELISA Based Binding and Competition Method to Rapidly Determine Ligand-receptor Interactions.

    Science.gov (United States)

    Syedbasha, Mohameedyaseen; Linnik, Janina; Santer, Deanna; O'Shea, Daire; Barakat, Khaled; Joyce, Michael; Khanna, Nina; Tyrrell, D Lorne; Houghton, Michael; Egli, Adrian

    2016-01-01

    A comprehensive understanding of signaling pathways requires detailed knowledge regarding ligand-receptor interaction. This article describes two fast and reliable point-by-point protocols of enzyme-linked immunosorbent assays (ELISAs) for the investigation of ligand-receptor interactions: the direct ligand-receptor interaction assay (LRA) and the competition LRA. As a case study, the ELISA based analysis of the interaction between different lambda interferons (IFNLs) and the alpha subunit of their receptor (IL28RA) is presented: the direct LRA is used for the determination of dissociation constants (KD values) between receptor and IFN ligands, and the competition LRA for the determination of the inhibitory capacity of an oligopeptide, which was designed to compete with the IFNLs at their receptor binding site. Analytical steps to estimate KD and half maximal inhibitory concentration (IC50) values are described. Finally, the discussion highlights advantages and disadvantages of the presented method and how the results enable a better molecular understanding of ligand-receptor interactions.

  10. The type I interleukin-1 receptor mediates fever in the rat as shown by interleukin-1 receptor subtype selective ligands.

    Science.gov (United States)

    Malinowsky, D; Chai, Z; Bristulf, J; Simoncsits, A; Bartfai, T

    1995-12-01

    The interleukin-1 (IL-1) system possesses two distinct receptors (type I and type II) which, together with the accessory protein, mediate a multitude of responses to IL-1 alpha and IL-1 beta, including fever. So far, no receptor subtype-specific ligands have been described. Since both types of IL-1 receptors occur in the thermoregulatory areas it was unclear which IL-1 receptor type mediates fever. We report here that for a series of deletion mutants of human recombinant IL-1 beta (hrIL-1 beta), the affinity of these ligands for the type I IL-1 receptor correlates with their efficacy to evoke the fever response (hrIL-1 beta > des-SND52-54 > des-QGE48-50 > des-I56). Thus, the results suggest that agonist occupancy of the type I IL-1 receptor is essential for IL-1 beta-mediated fever.

  11. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  12. Recent development of CB2 selective and peripheral CB1/CB2 cannabinoid receptor ligands.

    Science.gov (United States)

    Nevalainen, Tapio

    2014-01-01

    Cannabinoids have potential therapeutic value e.g. in pain relief, cancer therapy, control of nausea and vomiting, and appetite stimulation, but their therapeutic benefits are limited by unwanted central nervous system (CNS) side-effects. Separating the therapeutic effects of cannabinoid agonists from their undesired CNS effects can be achieved by either increasing the selectivity of the ligands for the CB2 receptor or by developing peripherally restricted CB1/CB2 ligands. A vast number of structurally diverse CB2 ligands have been developed during the past 3 years, stemming from the screening hits, which are further optimized towards lead compounds and drug candidates. Some of CB2 ligands may ultimately enter into clinical use as pain relief, anticancer, or antipruritic agents. This review focuses on the recent literature dealing with selective CB2 receptor ligands, with a particular emphasis on the CB2 agonists developed from 2009 onwards.

  13. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong (Pitt); (Xiamen)

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  14. Molecular modeling of sigma 1 receptor ligands: a model of binding conformational and electrostatic considerations.

    Science.gov (United States)

    Gund, Tamara M; Floyd, Jie; Jung, Dawoon

    2004-01-01

    We have performed molecular modeling studies on several sigma 1 specific ligands, including PD144418, spipethiane, haloperidol, pentazocine, and others to develop a pharmacophore for sigma 1 receptor-ligand binding, under the assumption that all the compounds interact at the same receptor binding site. The modeling studies have investigated the conformational and electrostatic properties of the ligands. Superposition of active molecules gave the coordinates of the hypothetical 5-point sigma 1 pharmacophore, as follows: R1 (0.85, 7.26, 0.30); R2 (5.47, 2.40, -1.51); R3 (-2.57, 4.82, -7.10); N (-0.71, 3.29, -6.40); carbon centroid (3.16, 4.83, -0.60), where R1, R2 were constructed onto the aromatic ring of each compound to represent hydrophobic interactions with the receptor; and R3 represents a hydrogen bond between the nitrogen atom and the receptor. Additional analyses were used to describe secondary binding sites to electronegative groups such as oxygen or sulfur atom. Those coordinates are (2.34, 5.08, -4.18). The model was verified by fitting other sigma 1 receptor ligands. This model may be used to search conformational databases for other possibly active ligands. In conjunction with rational drug design techniques the model may be useful in design and synthesis of novel sigma 1 ligands of high selectivity and potency. Calculations were performed using Sybyl 6.5.

  15. Flumazenil, a Benzodiazepine Receptor Anatagonist, in the Reversal of Conscious Sedation following Gastroscopy. A Placebo Controlled, Dose Finding Study

    Directory of Open Access Journals (Sweden)

    Lloyd Sutherland

    1991-01-01

    Full Text Available Tim double-blind, placebo controlled, study assessed the efficacy and safety of flumazenil, a benzodiazepine antagonist, in reversing diazepam-induced sedation in 60 patients undergoing endoscopy. Patients were randomly assigned to one of six treatment groups (placebo, 5, 10, 15, 20 or 25 μg/kg flumazenil. Patient psychomotor function was determined using four standard assessments – Trieger, digit substitution, track tracing and cancellation tests. Flumazenil was well tolerated by all patients. All doses of Flumazenil were superior to placebo in reversing sedation. No significant differences were detected between the various treatment groups. Forty-five minutes after the flumazenil infusion, there were no differences between flumazenil- and placebo-treated patients in psychomotor function. Flumazenil is a safe, effective medication which reverses diazepam-induced conscious sedation. For most patients 0.5 mg given intravenously will reverse sedation.

  16. Synthesis and evaluation of N-(5-fluoro-2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide: a deuterium-substituted radioligand for peripheral benzodiazepine receptor.

    Science.gov (United States)

    Zhang, Ming-Rong; Maeda, Jun; Ito, Takehito; Okauchi, Takashi; Ogawa, Masanao; Noguchi, Junko; Suhara, Tetsuya; Halldin, Christer; Suzuki, Kazutoshi

    2005-03-01

    N-(5-Fluoro-2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide ([(18)F]2) is a potent ligand (IC(50): 1.71 nM) for peripheral benzodiazepine receptor (PBR). However, in vivo evaluation on rodents and primates showed that this ligand was unstable and rapidly metabolized to [(18)F]F(-) by defluorination of the [(18)F]fluoromethyl moiety. In this study, we designed a deuterium-substituted analogue, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide ([(18)F]5) as a radioligand for PBR to reduce the in vivo metabolic rate of the non-deuterated [(18)F]2. The design principle was based on the hypothesis that the deuterium substitution may reduce the rate of defluorination initiated by cleavage of the C-H bond without altering the binding affinity for PBR. The non-radioactive 5 was prepared by reacting diiodomethane-d(2) (CD(2)I(2), 6) with a phenol precursor 7, followed by treatment with tetrabutylammonium fluoride. The ligand [(18)F]5 was synthesized by the alkylation of 7 with [(18)F]fluoromethyl iodide-d(2) ([(18)F]FCD(2)I, [(18)F]9). Compound 5 displayed a similar in vitro affinity to PBR (IC(50): 1.90 nM) with 2. In vivo evaluation demonstrated that [(18)F]5 was metabolized by defluorination to [(18)F]F(-) as a main radioactive component, but its metabolic rate was slower than that of [(18)F]2 in the brain of mice. The deuterium substitution decreased the radioactivity level of [(18)F]5 in the bone of mouse, augmented by the percentage of specific binding to PBR in the rat brain determined by ex vivo autoradiography. However, the PET image of [(18)F]5 for monkey brain showed high radioactivity in the brain and skull, suggesting a possible species difference between rodents and primates.

  17. Benzodiazepines do not potentiate GABA responses in neonatal hippocampal neurons.

    Science.gov (United States)

    Rovira, C; Ben-Ari, Y

    1991-09-16

    Benzodiazepines (midazolam; flunitrazepam) and pentobarbital increase the response to exogenous gamma-aminobutyric acid (GABA) in adult hippocampal cells. We report in this paper that in contrast pentobarbital but not benzodiazepine potentiate the effects of exogenous (GABA) in neurons recorded from slices of less than two weeks old. This finding suggests that the functional association of benzodiazepine and GABAA receptors is changed during early postnatal life.

  18. Increased accuracy of ligand sensing by receptor diffusion on cell surface

    Science.gov (United States)

    Aquino, Gerardo; Endres, Robert G.

    2010-10-01

    The physical limit with which a cell senses external ligand concentration corresponds to the perfect absorber, where all ligand particles are absorbed and overcounting of same ligand particles does not occur. Here, we analyze how the lateral diffusion of receptors on the cell membrane affects the accuracy of sensing ligand concentration. Specifically, we connect our modeling to neurotransmission in neural synapses where the diffusion of glutamate receptors is already known to refresh synaptic connections. We find that receptor diffusion indeed increases the accuracy of sensing for both the glutamate α -Amino-3-hydroxy-5-Methyl-4-isoxazolePropionic Acid (AMPA) and N -Methyl-D-aspartic Acid (NMDA) receptor, although the NMDA receptor is overall much noisier. We propose that the difference in accuracy of sensing of the two receptors can be linked to their different roles in neurotransmission. Specifically, the high accuracy in sensing glutamate is essential for the AMPA receptor to start membrane depolarization, while the NMDA receptor is believed to work in a second stage as a coincidence detector, involved in long-term potentiation and memory.

  19. Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Smethurst, Christopher; Holst, Peter Johannes;

    2011-01-01

    The Epstein-Barr virus-induced receptor 2 (EBI2) is a constitutively active seven-transmembrane receptor, which was recently shown to orchestrate the positioning of B cells in the follicle. To date, no ligands, endogenously or synthetic, have been identified that modulate EBI2 activity. Here we...

  20. Potential applications for sigma receptor ligands in cancer diagnosis and therapy

    NARCIS (Netherlands)

    van Waarde, Aren; Rybczynska, Anna A.; Kuzhuppilly Ramakrishnan, Nisha; Ishiwata, Kiichi; Elsinga, Philip H.; Dierckx, Rudi A. J. O.

    2015-01-01

    Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to b

  1. GABA systems, benzodiazepines, and substance dependence.

    Science.gov (United States)

    Malcolm, Robert J

    2003-01-01

    Alterations in the gamma-aminobutyric acid (GABA) receptor complex and GABA neurotransmission influence the reinforcing and intoxicating effects of alcohol and benzodiazepines. Chronic modulation of the GABA(A)-benzodiazepine receptor complex plays a major role in central nervous system dysregulation during alcohol abstinence. Withdrawal symptoms stem in part from a decreased GABAergic inhibitory function and an increase in glutamatergic excitatory function. GABA(A) receptors play a role in both reward and withdrawal phenomena from alcohol and sedative-hypnotics. Although less well understood, GABA(B) receptor complexes appear to play a role in inhibition of motivation and diminish relapse potential to reinforcing drugs. Evidence suggests that long-term alcohol use and concomitant serial withdrawals permanently alter GABAergic function, down-regulate benzodiazepine binding sites, and in preclinical models lead to cell death. Benzodiazepines have substantial drawbacks in the treatment of substance use-related disorders that include interactions with alcohol, rebound effects, alcohol priming, and the risk of supplanting alcohol dependency with addiction to both alcohol and benzodiazepines. Polysubstance-dependent individuals frequently self-medicate with benzodiazepines. Selective GABA agents with novel mechanisms of action have anxiolytic, anticonvulsant, and reward inhibition profiles that have potential in treating substance use and withdrawal and enhancing relapse prevention with less liability than benzodiazepines. The GABA(B) receptor agonist baclofen has promise in relapse prevention in a number of substance dependence disorders. The GABA(A) and GABA(B) pump reuptake inhibitor tiagabine has potential for managing alcohol and sedative-hypnotic withdrawal and also possibly a role in relapse prevention.

  2. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Monine, Michael [Los Alamos National Laboratory; Posner, Richard [TRANSLATION GENOMICS RESAEARCH INSTITUTE; Savage, Paul [BYU; Faeder, James [UNIV OF PITTSBURGH; Hlavacek, William S [UNM

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  3. New Insights in Glucocorticoid Receptor Signaling—More Than Just a Ligand-Binding Receptor

    Science.gov (United States)

    Scheschowitsch, Karin; Leite, Jacqueline Alves; Assreuy, Jamil

    2017-01-01

    The clinical use of classical glucocorticoids (GC) is narrowed by the many side effects it causes and the resistance to GC observed in some diseases. Since the great majority of GC effects depend on the activation of a glucocorticoid receptor (GR), many research groups had focused to better understand the signaling pathways involving those receptors. Transgenic animal models and genetic modifications of the receptor brought a huge insight into GR mechanisms of action. This in turn opened a new window for the search of selective GR modulators that ideally may have agonistic and antagonistic combined effects and activate one specific signaling pathway, inducing mostly transrepression or transactivation mechanisms. Another important research field concerns to posttranslational modifications that affect the GR and consequently also affect its signaling and function. In this mini review, we discuss many of those aspects of GR signaling, as well as findings like the ligand-independent activation of GR, which add another layer of complexity in GR signaling pathways. Although several recent data have been added to the GR field, much work has yet to be done, especially to find out the biological relevance of those alternative GR signaling pathways. Improving the knowledge about alternative GR signaling pathways and understanding how these pathways intercommunicate and in which situations they are relevant might help to develop new strategies to take benefit of it and to improve GC or other compounds efficacy causing minimal side effects. PMID:28220107

  4. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands.

    Science.gov (United States)

    Shinya, Tomonori; Osada, Tomohiko; Desaki, Yoshitake; Hatamoto, Masahiro; Yamanaka, Yuko; Hirano, Hisashi; Takai, Ryota; Che, Fang-Sik; Kaku, Hanae; Shibuya, Naoto

    2010-02-01

    The plant genome encodes a wide range of receptor-like proteins but the function of most of these proteins is unknown. We propose the use of affinity cross-linking of biotinylated ligands for a ligand-based survey of the corresponding receptor molecules. Biotinylated ligands not only enable the analysis of receptor-ligand interactions without the use of radioactive compounds but also the isolation and identification of receptor molecules by a simple affinity trapping method. We successfully applied this method for the characterization, isolation and identification of the chitin elicitor binding protein (CEBiP). A biocytin hydrazide conjugate of N-acetylchitooctaose (GN8-Bio) was synthesized and used for the detection of CEBiP in the plasma or microsomal membrane preparations from rice and carrot cells. Binding characteristics of CEBiP analyzed by inhibition studies were in good agreement with the previous results obtained with the use of a radiolabeled ligand. The biotin-tagged CEBiP could be purified by avidin affinity chromatography and identified by LC-MALDI-MS/MS after tryptic digestion. We also used this method to detect OsFLS2, a rice receptor-like kinase for the perception of the peptide elicitor flg22, in membrane preparations from rice cells overexpressing OsFLS2. This work demonstrates the applicability of this method to the purification and identification of plant receptor proteins.

  5. [Suicidal poisoning with benzodiazepines].

    Science.gov (United States)

    Chodorowski, Z; Sein Anand, J

    1997-01-01

    In the period from 1987 to 1996, 103 patients with suicidal benzodiazepines poisoning were treated, including 62 women and 41 men from 16 to 79 (mean 34) years old. 23 persons were poisoned only by benzodiazepines, in 80 remaining cases intoxications were mixed eg. including benzodiazepines and alcohol, tricyclic antidepressants, barbiturates, opioids, phenothiazines. The main causes of suicides were mainly depression, drug addiction and alcoholism. Nobody died in the benzodiazepines group, while mortality rate in the group of mixed poisoning was 4%. Prescribing benzodiazepines by physicians was quite often not justified and facilitated, among others, accumulation of the dose sufficient for suicide attempt. Flumazenil was efficient for leading out from coma in 86% of cases with poisoning only by benzodiazepines and 13% of cases with mixed intoxications mainly containing benzodiazepines and alcohol or carbamazepine.

  6. Assessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors

    DEFF Research Database (Denmark)

    Nguyen, E.D.; Meiler, J.; Norn, C.;

    2013-01-01

    The rapidly increasing number of high-resolution X-ray structures of G-protein coupled receptors (GPCRs) creates a unique opportunity to employ comparative modeling and docking to provide valuable insight into the function and ligand binding determinants of novel receptors, to assist in virtual...... screening and to design and optimize drug candidates. However, low sequence identity between receptors, conformational flexibility, and chemical diversity of ligands present an enormous challenge to molecular modeling approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone...

  7. DMPD: Nucleic acid-sensing Toll-like receptors: beyond ligand search. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18321608 Nucleic acid-sensing Toll-like receptors: beyond ligand search. Miyake K. ...id-sensing Toll-like receptors: beyond ligand search. PubmedID 18321608 Title Nucleic acid-sensing Toll-like receptors: beyond liga

  8. DMPD: Toll-like receptors, Notch ligands, and cytokines drive the chronicity of lunginflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18073395 Toll-like receptors, Notch ligands, and cytokines drive the chronicity of ...2007 Dec;4(8):635-41. (.png) (.svg) (.html) (.csml) Show Toll-like receptors, Notch ligands, and cytokines d...rive the chronicity of lunginflammation. PubmedID 18073395 Title Toll-like receptors, Notch liga

  9. Development of technetium-99m-based CNS receptor ligands: have there been any advances?

    Energy Technology Data Exchange (ETDEWEB)

    Johannsen, B. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Pietzsch, H.-J. [Forschungszentrum Rossendorf, Institut fuerr Bioanorganische und Radiopharmazeutische Chemie, Dresden (Germany)

    2002-02-01

    By virtue of its ideal nuclear physical characteristics for routine nuclear medicine diagnostics and its ready availability, technetium-99m is of outstanding interest in the development of novel radiopharmaceuticals. The potential for the development of {sup 99m}Tc-based radioligands for the study the receptor function in the central nervous system (CNS) is also well recognised despite the difficulties to be overcome. A fundamental challenge is the pharmacologically acceptable integration of the transition metal technetium, with its specific coordination chemistry, into the molecular entity of CNS receptor ligands. Conceptually, the ligand molecule can be assembled by three building blocks: a small neutral chelate unit, an organic linker that may also serve as a pharmacological modifier and a receptor-binding region derived from selective receptor antagonists. The recent introduction of novel technetium chelate units, particularly mixed-ligand complexes and low-valency organometallic compounds of technetium, provides an impetus for the further development of CNS receptor ligands. Moreover, progress in receptor pharmacology and the experience gained with positron emission tomography radiotracers have facilitated the design of numerous {sup 99m}Tc-based CNS receptor ligands. The formidable challenge of developing {sup 99m}Tc probes as single-photon emission tomography imaging agents targeting CNS receptors can be viewed with optimism given the successful development of [{sup 99m}Tc]TRODAT-1 as a {sup 99m}Tc complex for imaging dopamine transporters in the brain, although there are a number of receptor-specific imaging agents that have so far resisted all efforts to develop them. This review presents recent advances and discusses the remaining hurdles in the design of {sup 99m}Tc-based CNS receptor imaging agents. (orig.)

  10. The Anticonvulsant Activity of a Flavonoid-Rich Extract from Orange Juice Involves both NMDA and GABA-Benzodiazepine Receptor Complexes

    Directory of Open Access Journals (Sweden)

    Rita Citraro

    2016-09-01

    Full Text Available The usage of dietary supplements and other natural products to treat neurological diseases has been growing over time, and accumulating evidence suggests that flavonoids possess anticonvulsant properties. The aim of this study was to examine the effects of a flavonoid-rich extract from orange juice (OJe in some rodent models of epilepsy and to explore its possible mechanism of action. The genetically audiogenic seizures (AGS-susceptible DBA/2 mouse, the pentylenetetrazole (PTZ-induced seizures in ICR-CD1 mice and the WAG/Rij rat as a genetic model of absence epilepsy with comorbidity of depression were used. Our results demonstrate that OJe was able to exert anticonvulsant effects on AGS-sensible DBA/2 mice and to inhibit PTZ-induced tonic seizures, increasing their latency. Conversely, it did not have anti-absence effects on WAG/Rij rats. Our experimental findings suggest that the anti-convulsant effects of OJe are likely mediated by both an inhibition of NMDA receptors at the glycine-binding site and an agonistic activity on benzodiazepine-binding site at GABAA receptors. This study provides evidences for the antiepileptic activity of OJe, and its results could be used as scientific basis for further researches aimed to develop novel complementary therapy for the treatment of epilepsy in a context of a multitarget pharmacological strategy.

  11. Receptor binding characterization of the benzodiazepine radioligand sup 125 I-Ro16-0154: Potential probe for SPECT (Single Photon Emission Computed Tomography) brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.W.; Woods, S.W.; Zoghbi, S.; Baldwin, R.M.; Innis, R.B. (Yale Univ., West Haven, CT (USA)); McBride, B.J. (Medi-Physics, Inc., Emeryville, CA (USA))

    1990-01-01

    The binding of an iodinated benzodiazepine (BZ) radioligand has been characterized, particularly in regard to its potential use as a neuroreceptor brain imaging agent with SPECT (Single Photon Emission Computed Tomography). Ro16-0154 is an iodine-containing BZ antagonist and a close analog of Ro15-1788. In tissue homogenates prepared from human and monkey brain, the binding of {sup 125}I-labeled Ro16-0154 was saturable, of high affinity, and had high ratios of specific to non-specific binding. Physiological concentrations of NaCl enhanced specific binding approximately 15% compared to buffer without this salt. Kinetic studies of association and dissociation demonstrated a temperature dependent decrease in affinity with increasing temperature. Drug displacement studies confirmed that {sup 125}I-Ro16-0154 binds to the central type BZ receptor: binding is virtually identical to that of {sup 3}H-Ro15-1788 except that {sup 125}I-Ro16-0154 shows an almost 10 fold higher affinity at 37{degree}C. These in vitro results suggest that {sup 123}I-labeled Ro16-0154 shows promise as a selective, high affinity SPECT probe of the brain's BZ receptor.

  12. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H. (Biopharmaceuticals Div., Bagsvaerd (Denmark))

    1990-08-14

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the {alpha}-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor.

  13. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

    Science.gov (United States)

    Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens

    2014-08-05

    The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles.

  14. Why do receptor-ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    Science.gov (United States)

    Gao, Zhiwen; Gao, Yanfei

    2016-10-01

    Cell adhesion often exhibits the clustering of the receptor-ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation for the clustering/assembling of the receptor-ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor-ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.

  15. Myeloperoxidase formation of PAF receptor ligands induces PAF receptor-dependent kidney injury during ethanol consumption.

    Science.gov (United States)

    Latchoumycandane, Calivarathan; Nagy, Laura E; McIntyre, Thomas M

    2015-09-01

    Cytochrome P450 2E1 (CYP2E1) induction and oxidative metabolism of ethanol in hepatocytes inflame and damage liver. Chronic ethanol ingestion also induces kidney dysfunction, which is associated with mortality from alcoholic hepatitis. Whether the kidney is directly affected by ethanol or is secondary to liver damage is not established. We found that CYP2E1 was induced in kidney tubules of mice chronically ingesting a modified Lieber-deCarli liquid ethanol diet. Phospholipids of kidney tubules were oxidized and fragmented in ethanol-fed mice with accumulation of azelaoyl phosphatidylcholine (Az-PC), a nonbiosynthetic product formed only by oxidative truncation of polyunsaturated phosphatidylcholine. Az-PC stimulates the inflammatory PAF receptor (PTAFR) abundantly expressed by neutrophils and kidney tubules, and inflammatory cells and myeloperoxidase-containing neutrophils accumulated in the kidneys of ethanol-fed mice after significant hysteresis. Decreased kidney filtration and induction of the acute kidney injury biomarker KIM-1 in tubules temporally correlated with leukocyte infiltration. Genetic ablation of PTAFR reduced accumulation of PTAFR ligands and reduced leukocyte infiltration into kidneys. Loss of this receptor in PTAFR(-/-) mice also suppressed oxidative damage and kidney dysfunction without affecting CYP2E1 induction. Neutrophilic inflammation was responsible for ethanol-induced kidney damage, because loss of neutrophil myeloperoxidase in MPO(-/-) mice was similarly protective. We conclude that ethanol catabolism in renal tubules results in a self-perpetuating cycle of CYP2E1 induction, local PTAFR ligand formation, and neutrophil infiltration and activation that leads to myeloperoxidase-dependent oxidation and damage to kidney function. Hepatocytes do not express PTAFR, so this oxidative cycle is a local response to ethanol catabolism in the kidney.

  16. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    Science.gov (United States)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  17. Kappa-opioid receptor-selective dicarboxylic ester-derived salvinorin A ligands.

    Science.gov (United States)

    Polepally, Prabhakar R; White, Kate; Vardy, Eyal; Roth, Bryan L; Ferreira, Daneel; Zjawiony, Jordan K

    2013-05-15

    Salvinorin A, the active ingredient of the hallucinogenic plant Salvia divinorum is the most potent known naturally occurring hallucinogen and is a selective κ-opioid receptor agonist. To better understand the ligand-receptor interactions, a series of dicarboxylic ester-type of salvinorin A derivatives were synthesized and evaluated for their binding affinity at κ-, δ- and μ-opioid receptors. Most of the analogues show high affinity to the κ-opioid receptor. Methyl malonyl derivative 4 shows the highest binding affinity (Ki=2nM), analogues 5, 7, and 14 exhibit significant affinity for the κ-receptor (Ki=21, 36 and 39nM).

  18. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores.

    Science.gov (United States)

    Lagarde, Nathalie; Delahaye, Solenne; Zagury, Jean-François; Montes, Matthieu

    2016-01-01

    Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands and we found that the best performances were obtained by combining the structure-based and the ligand-based approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a predictor of the pharmacological activity of NRs ligands.Graphical AbstractUsing a combination of structure-based and ligand-based pharmacophores, agonist and antagonist ligands of the Nuclear Receptors included in the NRLiSt BDB database could be separated.

  19. 5-HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze.

    Science.gov (United States)

    Gonzalez, L E; Andrews, N; File, S E

    1996-09-01

    In order to investigate the role of the 5-HT1A receptors of the amygdala in modulating anxiety, rats were implanted with bilateral cannulae aimed at the basolateral nucleus of the amygdala complex and infused with either artificial cerebrospinal fluid (aCSF) or the selective 5-HT1A receptor agonist 8-OH-DPAT (50-200 ng) and tested in two animal models of anxiety. In the elevated plus-maze test, no significant effects were detected in this dose range. In contrast, 8-OH-DPAT caused an overall reduction in levels of social investigation, thus indicating anxiogenic actions in the social interaction test. At 50 ng, 8-OH-DPAT had a selective action on anxiety, while at 200 ng there was a concomitant reduction in locomotor activity and, in some animals, signs of the 5-HT1A syndrome. Evidence that the anxiogenic effect of 8-OH-DPAT (50 ng) was due to activation of 5-HT1A receptors came from the finding that (-)-tertatolol, a 5-HT1A receptor antagonist, reversed this effect at a dose (1.5 micrograms) which was silent when given alone. The benzodiazepine receptor agonist, midazolam (1 and 2 micrograms) was bilaterally administered into the basolateral nucleus of the amygdala and evoked clear-cut anxiolytic effects in the social interaction test. These data indicate that the agonist activation of post-synaptic 5-HT1A receptors in the basolateral nucleus of the amygdala may produce anxiogenic effects, while agonist activation of BDZ receptors in the same areas evokes anxiolytic effects. Our results from the social interaction test are similar to those previously reported from tests of anxiety using punished paradigms, but contrast with those found in the elevated plus-maze. Thus, it is concluded that either the two tests have different sensitivities to midazolam and 8-OH-DPAT or more intriguingly, the tests are evoking fundamentally different states of anxiety, with that evoked by the plus-maze being mediated via brain areas or receptors different from those studied here.

  20. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  1. The history of benzodiazepines.

    Science.gov (United States)

    Wick, Jeannette Y

    2013-09-01

    After more than 50 years of experience with benzodiazepines, the American health care system has a love-hate relationship with them. In 1955, Hoffmann-La Roche chemist Leo Sternbach serendipitously identified the first benzodiazepine, chlordiazepoxide (Librium). By 1960, Hoffmann-La Roche marketed it as Librium, and it pursued molecular modifications for enhanced activity. Valium (diazepam) followed in 1963. Hoffmann-La Roche's competitors also began looking for analogues. Initially, benzodiazepines appeared to be less toxic and less likely to cause dependence than older drugs. A specific improvement was their lack of respiratory depression, a safety concern with barbiturates. Medical professionals greeted benzodiazepines enthusiastically at first, skyrocketing their popularity and patient demand. In the mid-to-late 1970s, benzodiazepines topped all "most frequently prescribed" lists. It took 15 years for researchers to associate benzodiazepines and their effect on gamma-aminobutyric acid as a mechanism of action. By the 1980s, clinicians' earlier enthusiasm and propensity to prescribe created a new concern: the specter of abuse and dependence. As information about benzodiazepines, both raising and damning, accumulated, medical leaders and legislators began to take action. The result: individual benzodiazepines and the entire class began to appear on guidelines and in legislation giving guidance on their use. Concurrently, clinicians began to raise concerns about benzodiazepine use by elderly patients, indicating that elders'lesser therapeutic response and heightened sensitivity to side effects demanded prescriber caution. The benzodiazepine story continues to evolve and includes modern-day issues and concerns beyond those ever anticipated.

  2. Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling.

    Science.gov (United States)

    Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E; Tamrazi, Anobel; Belford, R Linn; Katzenellenbogen, John A

    2004-02-24

    Site-directed spin labeling (SDSL), the site-specific incorporation of nitroxide spin-labels into a protein, has allowed us to investigate ligand-induced conformational changes in the ligand-binding domain of human estrogen receptor alpha (hERalpha-LBD). EPR (electron paramagnetic resonance) spectroscopy of the nitroxide probe attached to ER produces different spectra depending upon the identity of the bound ligand; these differences are indicative of changes in the type and degree of motional character of the spin-label induced by different ligand-induced conformations of labeled ER. Visual inspection of EPR spectra, construction of B versus C cross-correlation plots, and cross-comparison of spectral pairs using a relative squared difference (RSD) calculation allowed receptor-ligand complexes to be profiled according to their conformational character. Plotting B and C parameters allowed us to evaluate the liganded receptor according to the motional characteristics of the attached spin-label, and they were particularly illustrative for the receptor labeled at position 530, which had motion between the fast and intermediate regimes. RSD analysis allowed us to directly compare the similarity or difference between two different spectra, and these comparisons produced groupings that paralleled those seen in B versus C cross-correlation plots, again relating meaningfully with the pharmacological nature of the bound ligand. RSD analysis was also particularly useful for qualifying differences seen with the receptor labeled at position 417, which had motion between the intermediate and slow motional regimes. This work demonstrates that B and C formulas from EPR line shape theory are useful for qualitative analysis of spectra with differences subtler than those that are often analyzed by EPR spectroscopists. This work also provides evidence that the ER can exist in a range of conformations, with specific conformations resulting from preferential stabilization of ER by the

  3. Development of a multiplex non-radioactive receptor assay : the benzodiazepine receptor, the serotonin transporter and the beta-adrenergic receptor

    NARCIS (Netherlands)

    de Jong, Lutea A. A.; Jeronimus-Stratingh, C. Margot; Cremers, Thomas I. F. H.

    2007-01-01

    Binding assays still form a fundamental part of modem drug development. Receptor binding assays are mostly based on radioactivity because of their speed, ease of use and reproducibility. Disadvantages, such as health hazards and production of radioactive waste, have prompted the development of non-r

  4. Perspectives on cognitive domains, H3 receptor ligands and neurological disease.

    Science.gov (United States)

    Hancock, Arthur A; Fox, Gerard B

    2004-10-01

    Histamine H(3) receptor agonists and antagonists have been evaluated in numerous in vitro and in vivo animal models to better understand how H(3) receptors modulate neurotransmitter function in the central nervous system. Likewise, behavioural models have explored the hypothesis that changes in neurotransmitter release could enhance cognitive function in human diseases. This review examines the reported effects of H(3) receptor ligands and how they influence cognitive behaviour. These data are interpreted on the basis of different cognitive domains that are relevant to neuropsychiatric diseases. Because of the diversity of H(3) receptors, their function and their influence on neurotransmitter systems, considerable promise exists for H(3) ligands to treat diseases in which aspects of learning and memory are impaired. However, because of the complexities of the histaminergic system and H(3) receptors and the lack of clinical data so far, proof of principle for use in human disease remains to be established.

  5. Signal processing in the TGF-beta superfamily ligand-receptor network.

    Directory of Open Access Journals (Sweden)

    Jose M G Vilar

    2006-01-01

    Full Text Available The TGF-beta pathway plays a central role in tissue homeostasis and morphogenesis. It transduces a variety of extracellular signals into intracellular transcriptional responses that control a plethora of cellular processes, including cell growth, apoptosis, and differentiation. We use computational modeling to show that coupling of signaling with receptor trafficking results in a highly versatile signal-processing unit, able to sense by itself absolute levels of ligand, temporal changes in ligand concentration, and ratios of multiple ligands. This coupling controls whether the response of the receptor module is transient or permanent and whether or not different signaling channels behave independently of each other. Our computational approach unifies seemingly disparate experimental observations and suggests specific changes in receptor trafficking patterns that can lead to phenotypes that favor tumor progression.

  6. 3-Substituted phenylalanines as selective AMPA- and kainate receptor ligands

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Pickering, Darryl S; Nielsen, Birgitte;

    2009-01-01

    On the basis of X-ray structures of ionotropic glutamate receptor constructs in complex with amino acid-based AMPA and kainate receptor antagonists, a series of rigid as well as flexible biaromatic alanine derivatives carrying selected hydrogen bond acceptors and donors have been synthesized in o...

  7. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function.

    Science.gov (United States)

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P

    2013-04-26

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy.

  8. Toll-like Receptor 2 Ligands Regulate Monocyte Fcγ Receptor Expression and Function*

    Science.gov (United States)

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E.; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P.

    2013-01-01

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy. PMID:23504312

  9. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor.

    Science.gov (United States)

    Ke, Xiaobo; Miller, Laura C; Bassler, Bonnie L

    2015-01-01

    Quorum sensing is a process of bacterial cell-cell communication that relies on the production, release and receptor-driven detection of extracellular signal molecules called autoinducers. The quorum-sensing bacterium Vibrio harveyi exclusively detects the autoinducer N-((R)-3-hydroxybutanoyl)-L-homoserine lactone (3OH-C4 HSL) via the two-component receptor LuxN. To discover the principles underlying the exquisite selectivity LuxN has for its ligand, we identified LuxN mutants with altered specificity. LuxN uses three mechanisms to verify that the bound molecule is the correct ligand: in the context of the overall ligand-binding site, His210 validates the C3 modification, Leu166 surveys the chain-length and a strong steady-state kinase bias imposes an energetic hurdle for inappropriate ligands to elicit signal transduction. Affinities for the LuxN kinase on and kinase off states underpin whether a ligand will act as an antagonist or an agonist. Mutations that bias LuxN to the agonized, kinase off, state are clustered in a region adjacent to the ligand-binding site, suggesting that this region acts as the switch that triggers signal transduction. Together, our analyses illuminate how a histidine sensor kinase differentiates between ligands and exploits those differences to regulate its signaling activity.

  10. Lipoteichoic acid induces unique inflammatory responses when compared to other toll-like receptor 2 ligands.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Long

    Full Text Available Toll-like receptors (TLRs recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA, we demonstrate that these ligands activate NF-kappaB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands.

  11. Neural bases for addictive properties of benzodiazepines.

    Science.gov (United States)

    Tan, Kelly R; Brown, Matthew; Labouèbe, Gwenaël; Yvon, Cédric; Creton, Cyril; Fritschy, Jean-Marc; Rudolph, Uwe; Lüscher, Christian

    2010-02-11

    Benzodiazepines are widely used in clinics and for recreational purposes, but will lead to addiction in vulnerable individuals. Addictive drugs increase the levels of dopamine and also trigger long-lasting synaptic adaptations in the mesolimbic reward system that ultimately may induce the pathological behaviour. The neural basis for the addictive nature of benzodiazepines, however, remains elusive. Here we show that benzodiazepines increase firing of dopamine neurons of the ventral tegmental area through the positive modulation of GABA(A) (gamma-aminobutyric acid type A) receptors in nearby interneurons. Such disinhibition, which relies on alpha1-containing GABA(A) receptors expressed in these cells, triggers drug-evoked synaptic plasticity in excitatory afferents onto dopamine neurons and underlies drug reinforcement. Taken together, our data provide evidence that benzodiazepines share defining pharmacological features of addictive drugs through cell-type-specific expression of alpha1-containing GABA(A) receptors in the ventral tegmental area. The data also indicate that subunit-selective benzodiazepines sparing alpha1 may be devoid of addiction liability.

  12. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  13. Dopamine D(3) receptor antagonists: The quest for a potentially selective PET ligand. Part two: Lead optimization.

    Science.gov (United States)

    Micheli, Fabrizio; Holmes, Ian; Arista, Luca; Bonanomi, Giorgio; Braggio, Simone; Cardullo, Francesca; Di Fabio, Romano; Donati, Daniele; Gentile, Gabriella; Hamprecht, Dieter; Terreni, Silvia; Heidbreder, Christian; Savoia, Chiara; Griffante, Cristiana; Worby, Angela

    2009-08-01

    The lead optimization process to identify new selective dopamine D(3) receptor antagonists is reported. DMPK parameters and binding data suggest that selective D(3) receptor antagonists as potential PET ligands might have been identified.

  14. Therapeutic Potential of 5-HT2C Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Nanna H. Jensen

    2010-01-01

    Full Text Available Serotonin 2C receptors are G protein-coupled receptors expressed by GABAergic, glutamatergic, and dopaminergic neurons. Anatomically, they are present in various brain regions, including cortical areas, hippocampus, ventral midbrain, striatum, nucleus accumbens, hypothalamus, and amygdala. A large body of evidence supports a critical role of serotonin 2C receptors in mediating the interaction between serotonergic and dopaminergic systems, which is at the basis of their proposed involvement in the regulation of mood, affective behavior, and memory. In addition, their expression in specific neuronal populations in the hypothalamus would be critical for their role in the regulation of feeding behavior. Modulation of these receptors has therefore been proposed to be of interest in the search for novel pharmacological strategies for the treatment of various pathological conditions, including schizophrenia and mood disorders, as well as obesity. More precisely, blockade of serotonin 2C receptors has been suggested to provide antidepressant and anxiolytic benefit, while stimulation of these receptors may offer therapeutic benefit for the treatment of psychotic symptoms in schizophrenia and obesity. In addition, modulation of serotonin 2C receptors may offer cognitive-enhancing potential, albeit still a matter of debate. In the present review, the most compelling evidence from the literature is presented and tentative hypotheses with respect to existing controversies are outlined.

  15. Rapid and efficient radiosynthesis of [{sup 123}I]I-PK11195, a single photon emission computed tomography tracer for peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pimlott, Sally L. [Department of Clinical Physics, West of Scotland Radionuclide Dispensary, Western Infirmary, G11 6NT Glasgow (United Kingdom)], E-mail: s.pimlott@clinmed.gla.ac.uk; Stevenson, Louise [Department of Chemistry, WestCHEM, University of Glasgow, G12 8QQ Glasgow (United Kingdom); Wyper, David J. [Institute of Neurological Sciences, Southern General Hospital, G51 4TF Glasgow (United Kingdom); Sutherland, Andrew [Department of Chemistry, WestCHEM, University of Glasgow, G12 8QQ Glasgow (United Kingdom)

    2008-07-15

    Introduction: [{sup 123}I]I-PK11195 is a high-affinity single photon emission computed tomography radiotracer for peripheral benzodiazepine receptors that has previously been used to measure activated microglia and to assess neuroinflammation in the living human brain. This study investigates the radiosynthesis of [{sup 123}I]I-PK11195 in order to develop a rapid and efficient method that obtains [{sup 123}I]I-PK11195 with a high specific activity for in vivo animal and human imaging studies. Methods: The synthesis of [{sup 123}I]I-PK11195 was evaluated using a solid-state interhalogen exchange method and an electrophilic iododestannylation method, where bromine and trimethylstannyl derivatives were used as precursors, respectively. In the electrophilic iododestannylation method, the oxidants peracetic acid and chloramine-T were both investigated. Results: Electrophilic iododestannylation produced [{sup 123}I]I-PK11195 with a higher isolated radiochemical yield and a higher specific activity than achievable using the halogen exchange method investigated. Using chloramine-T as oxidant provided a rapid and efficient method of choice for the synthesis of [{sup 123}I]I-PK11195. Conclusions: [{sup 123}I]I-PK11195 has been successfully synthesized via a rapid and efficient electrophilic iododestannylation method, producing [{sup 123}I]I-PK11195 with a higher isolated radiochemical yield and a higher specific activity than previously achieved.

  16. Different sensitivities to competitive inhibition of benzodiazepine receptor binding of {sup 11}C-iomazenil and {sup 11}C-flumazenil in rhesus monkey brain

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Osamu; Hosoi, Rie; Kobayashi, Kaoru [Osaka Univ., Suita (Japan). Medical School; Itoh, Takashi; Gee, A.; Suzuki, Kazutoshi

    2001-04-01

    The in vivo binding kinetics of {sup 11}C-iomazenil were compared with those of {sup 11}C-flumazenil binding in rhesus monkey brain. The monkey was anesthetized with ketamine and intravenously injected with either {sup 11}C-iomazenil or {sup 11}C-flumazenil in combination with the coadministration of different doses of non-radioactive flumazenil (0, 5 and 20 {mu}g/kg). The regional distribution of {sup 11}C-iomazenil in the brain was similar to that of {sup 11}C-flumazenil, but the sensitivity of {sup 11}C-iomazenil binding to competitive inhibition by non-radioactive flumazenil was much less than that of {sup 11}C-flumazenil binding. A significant reduction in {sup 11}C-flumazenil binding in the cerebral cortex was observed with 20 {mu}g/kg of flumazenil, whereas a relatively smaller inhibition of {sup 11}C-iomazenil binding in the same region was observed with the same dose of flumazenil. These results suggest that {sup 11}C-flumazenil may be a superior radiotracer for estimating benzodiazepine receptor occupancy in the intact brain. (author)

  17. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    Science.gov (United States)

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  18. Expression of a glycosylphosphatidylinositol-anchored ligand, growth hormone, blocks receptor signalling.

    Science.gov (United States)

    Guesdon, François; Kaabi, Yahia; Riley, Aiden H; Wilkinson, Ian R; Gray, Colin; James, David C; Artymiuk, Peter J; Sayers, Jon R; Ross, Richard J

    2012-12-01

    We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor's extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH-GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize.

  19. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  20. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2...

  1. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  2. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    OpenAIRE

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internali...

  3. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy.

    Science.gov (United States)

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R

    1994-09-09

    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  4. NFkappaB Selectivity of Estrogen Receptor Ligands Revealed By Comparative Crystallographic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nettles, K.W.; Bruning, J.B.; Gil, G.; Nowak, J.; Sharma, S.K.; Hahm, J.B.; Kulp, K.; Hochberg, R.B.; Zhou, H.; Katzenellenbogen, J.A.; Katzenllenbogen, B.S.; Kim, Y.; Joachmiak, A.; Greene, G.L.

    2009-05-22

    Our understanding of how steroid hormones regulate physiological functions has been significantly advanced by structural biology approaches. However, progress has been hampered by misfolding of the ligand binding domains in heterologous expression systems and by conformational flexibility that interferes with crystallization. Here, we show that protein folding problems that are common to steroid hormone receptors are circumvented by mutations that stabilize well-characterized conformations of the receptor. We use this approach to present the structure of an apo steroid receptor that reveals a ligand-accessible channel allowing soaking of preformed crystals. Furthermore, crystallization of different pharmacological classes of compounds allowed us to define the structural basis of NF{kappa}B-selective signaling through the estrogen receptor, thus revealing a unique conformation of the receptor that allows selective suppression of inflammatory gene expression. The ability to crystallize many receptor-ligand complexes with distinct pharmacophores allows one to define structural features of signaling specificity that would not be apparent in a single structure.

  5. Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ian D. Tomlinson

    2007-01-01

    Full Text Available We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes.

  6. Selective nonpeptidic fluorescent ligands for oxytocin receptor: design, synthesis, and application to time-resolved FRET binding assay.

    Science.gov (United States)

    Karpenko, Iuliia A; Margathe, Jean-François; Rodriguez, Thiéric; Pflimlin, Elsa; Dupuis, Elodie; Hibert, Marcel; Durroux, Thierry; Bonnet, Dominique

    2015-03-12

    The design and the synthesis of the first high-affinity fluorescent ligands for oxytocin receptor (OTR) are described. These compounds enabled the development of a TR-FRET based assay for OTR, readily amenable to high throughput screening. The validation of the assay was achieved by competition experiments with both peptide and nonpeptide OTR ligands as competitors. These probes represent the first selective fluorescent ligands for the oxytocin G protein-coupled receptor.

  7. Stochastic description of the ligand-receptor interaction of biologically active substances at extremely low doses.

    Science.gov (United States)

    Gurevich, Konstantin G; Agutter, Paul S; Wheatley, Denys N

    2003-04-01

    Signalling molecules can be effective at extraordinarily low concentrations (down to attomolar levels). To handle such cases, probabilistic methods have been used to describe the formal kinetics of action of biologically active substances in these low doses, although it has been necessary to review what is meant by such a term. The mean numbers of transformed/degraded molecules and their dispersions were calculated for the possible range of ligand-receptor binding schemes. We used both analytical equations and numerical simulations to calculate the coefficients of variation (ratio of standard deviation to mean) and demonstrated that the distribution of the coefficient is highly dependent on the reaction scheme. It may, therefore, be used as an additional factor for discriminating between cooperative and noncooperative models of ligand-receptor interaction over extreme ranges of ligand dilution. The relevance to signalling behaviour is discussed.

  8. Modulation of estrogen receptor α levels by endogenous and exogenous ligands

    Directory of Open Access Journals (Sweden)

    P. La Rosa

    2011-01-01

    Full Text Available ERα is a ligand-activated transcription factor, member of the nuclear receptor superfamily. Regulation of ERα levels is intrinsically required for its transcriptional activity and thus for the modulation of the physiological actions of the cognate hormone 17β-estradiol (E2. Indeed, ERα exogenous ligands that target this molecular circuitry are used as drugs in clinical practice. Interestingly, some natural and synthetic molecules, which human beings are commonly exposed to, interfere with the endocrine system and operate through ERα by selectively modifying its signalling. In addition, these molecules may also modulate ERα cellular content. Here, we report the recent advances in our understanding of how exogenous ERα ligands impact on receptor levels and change the physiological E2-dipendent modulation of specific cellular function.

  9. Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies.

    Science.gov (United States)

    Kämper, Andreas; Apostolakis, Joannis; Rarey, Matthias; Marian, Christel M; Lengauer, Thomas

    2006-01-01

    The prediction of the structure of host-guest complexes is one of the most challenging problems in supramolecular chemistry. Usual procedures for docking of ligands into receptors do not take full conformational freedom of the host molecule into account. We describe and apply a new docking approach which performs a conformational sampling of the host and then sequentially docks the ligand into all receptor conformers using the incremental construction technique of the FlexX software platform. The applicability of this approach is validated on a set of host-guest complexes with known crystal structure. Moreover, we demonstrate that due to the interchangeability of the roles of host and guest, the docking process can be inverted. In this inverse docking mode, the receptor molecule is docked around its ligand. For all investigated test cases, the predicted structures are in good agreement with the experiment for both normal (forward) and inverse docking. Since the ligand is often smaller than the receptor and, thus, its conformational space is more restricted, the inverse docking approach leads in most cases to considerable speed-up. By having the choice between two alternative docking directions, the application range of the method is significantly extended. Finally, an important result of this study is the suitability of the simple energy function used here for structure prediction of complexes in organic media.

  10. A multistep continuous-flow system for rapid on-demand synthesis of receptor ligands

    DEFF Research Database (Denmark)

    Petersen, Trine P; Ritzén, Andreas; Ulven, Trond

    2009-01-01

    A multistep continuous-flow system for synthesis of receptor ligands by assembly of three variable building blocks in a single unbroken flow is described. The sequence consists of three reactions and two scavenger steps, where a Cbz-protected diamine is reacted with an isocyanate, deprotected, an...

  11. Aryl hydrocarbon receptor ligand effects in RBL2H3 cells

    DEFF Research Database (Denmark)

    Maaetoft-Udsen, Kristina; Shimoda, Lori M. N.; Frøkiær, Hanne;

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system, but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory...

  12. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120)

    DEFF Research Database (Denmark)

    Hudson, Brian D; Shimpukade, Bharat; Milligan, Graeme

    2014-01-01

    The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands ...

  13. Sigma Receptors in Oncology : Therapeutic and Diagnostic Applications of Sigma Ligands

    NARCIS (Netherlands)

    van Waarde, Aren; Rybczynska, Anna A.; K. Ramakrishnan, Nisha; Ishiwata, Kiichi; Elsinga, Philip H.; Dierckx, Rudi A. J. O.

    2010-01-01

    Sigma receptors (subtypes sigma-1 and sigma-2) are a unique class of binding sites expressed throughout the mammalian body. The endogenous ligand for these sites has not been identified, but steroid hormones (particularly progesterone), sphingolipid-derived amines and N,N-dimethyltryptamine can bind

  14. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud;

    2003-01-01

    G protein-coupled receptors (GPCRs) constitute a large class of seven transmembrane proteins, which bind selectively agonists or antagonists with important consequences for cellular signaling and function. Comprehension of the molecular details of ligand binding is important for the understanding...

  15. Benzodiazepine dependence and its treatment with low dose flumazenil.

    Science.gov (United States)

    Hood, Sean David; Norman, Amanda; Hince, Dana Adelle; Melichar, Jan Krzysztof; Hulse, Gary Kenneth

    2014-02-01

    Globally benzodiazepines remain one of the most prescribed medication groups, especially in the primary care setting. With such high levels of prescribing it is not surprising that benzodiazepine dependence is common, cutting across all socioeconomic levels. Despite recognition of the potential for the development of iatrogenic dependence and the lack of any effective treatment, benzodiazepines continue to be widely prescribed in general practice. Conventional dependence management, benzodiazepine tapering, is commonly a protracted process over several weeks or months. It is often associated with significant withdrawal symptoms and craving leading to patient drop out and return to use. Accordingly, there is a worldwide need to find effective pharmacotherapeutic interventions for benzodiazepine dependence. One drug of increasing interest is the GABAA benzodiazepine receptor antagonist/partial agonist, flumazenil. Multiple bolus intravenous infusions of low dose flumazenil used either with or without benzodiazepine tapering can reduce withdrawal sequelae, and/or longer term symptoms in the months following withdrawal. Preliminary data suggest that continuous intravenous or subcutaneous flumazenil infusion for 4 days significantly reduces acute benzodiazepine withdrawal sequelae. The subcutaneous infusion was shown to be tissue compatible so the development of a longer acting (i.e. several weeks) depot flumazenil formulation has been explored. This could be capable of managing both acute and longer term benzodiazepine withdrawal sequelae. Preliminary in vitro water bath and in vivo biocompatibility data in sheep show that such an implant is feasible and so is likely to be used in clinical trials in the near future.

  16. Neuroprotective effects of receptor imidazoline 2 and its endogenous ligand agmatine

    Institute of Scientific and Technical Information of China (English)

    Wei-Wen QIU; Rong-Yuan ZHENG

    2006-01-01

    Receptor imidazoline 2 (I2) is one of the imidazoline receptors with high affinity for [3H]-idazoxan. Receptor I2,being classified into I2A and I2B subtypes, is mainly localized to the outer membrane of mitochondria in liver, kidney and brain. Receptor I2, displaying high similarity of sequence with monoamine oxidase-B (MAO-B), is structurally related to MAO-B, but the I2 imidazoline binding site (I2BS) with ligand is distinct from the catalytic site of MAO-B. Agmatine is the endogenous ligand of receptor I2. Accumulating evidence have revealed that the activation of receptors I2 may produce neuroprotective effects by increasing expression of glial fibrillary acidic protein (GFAP) in astrocytes, inhibiting activity of MAO, reducing calcium overload in cells. Agmatine exerts neuroprotection against ischemia-hypoxia, injury, glutamateinduced neurotoxicity by activating imidazoline receptors, blocking N-methyl-D-aspartate (NMDA) receptor, inhibiting all isoforms of nitric oxide synthase (NOS), and selectively blocking the voltage-gated calcium channels (VGCC). It would be expected that agmatine is one of the potential neuroprotective agents.

  17. Hydrophobic side chain dynamics of a glutamate receptor ligand binding domain.

    Science.gov (United States)

    Maltsev, Alexander S; Oswald, Robert E

    2010-03-26

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate much of the fast excitatory neurotransmission in the central nervous system. The extracellular ligand binding core (S1S2) of the GluR2 subtype of ionotropic glutamate receptors can be produced as a soluble protein with properties essentially identical to the corresponding domain in the intact, membrane-bound protein. Using a variety of biophysical techniques, much has been learned about the structure and dynamics of S1S2 and the relationship between its ligand-induced conformational changes and the function of the receptor. It is clear that dynamic processes are essential to the function of ionotropic glutamate receptors. We have isotopically labeled side chain methyls of GluR2 S1S2 and used NMR spectroscopy to study their dynamics on the ps-ns and mus-ms time scales. Increased disorder is seen in regions that are part of the key dimer interface in the intact protein. When glutamate is bound, the degree of ps-ns motion is less than that observed with other ligands, suggesting that the physiological agonist binds to a preformed binding site. At the slower time scales, the degree of S1S2 flexibility induced by ligand binding is greatest for willardiine partial agonists, least for antagonists, and intermediate for full agonists. Notable differences among bound ligands are in the region of the protein that forms a hinge between two lobes that close upon agonist binding, and along the beta-sheet in Lobe 2. These motions provide clues as to the functional properties of partial agonists and to the conformational changes associated with lobe closure and channel activation.

  18. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?

    Science.gov (United States)

    Riese, David J.

    2010-01-01

    Introduction Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. Areas covered Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. Expert opinion While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and –independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics. PMID:21532939

  19. A structural feature of the non-peptide ligand interactions with mice mu-opioid receptors.

    Science.gov (United States)

    Noori, Hamid R; Mucksch, Christian; Urbassek, Herbert M

    2014-01-01

    By binding to and activating the G-protein coupled μ-, κ- and δ-opioid receptors in the central nervous system, opiates are known to induce analgesic and sedative effects. In particular, non-peptide opioid ligands are often used in clinical applications to induce these therapeutically beneficial effects, due to their superior pharmacokinetics and bioavailability in comparison to endogenous neuropeptides. However, since opioid alkaloids are highly addictive substances, it is necessary to understand the exact mechanisms of their actions, specifically the ligand-binding properties of the target receptors, in order to safely apply opiates for therapeutic purposes. Using an in silico molecular docking approach (AutoDock Vina) combined with two-step cluster analysis, we have computationally obtained the docking scores and the ligand-binding pockets of twelve representative non-peptide nonendogenous agonists and antagonists at the crystallographically identified μ-opioid receptor. Our study predicts the existence of two main binding sites that are congruently present in all opioid receptor types. Interestingly, in terms of the agonist or antagonist properties of the substances on the receptors, the clustering analysis suggests a relationship with the position of the ligand-binding pockets, particularly its depth within the receptor structure. Furthermore, the binding affinity of the substances is directly correlated to the proximity of the binding pockets to the extracellular space. In conclusion, the results provide further insights into the structural features of the functional pharmacology of opioid receptors, suggesting the importance of the binding position of non-peptide agonists and antagonists- specifically the distance and the level of exposure to the extracellular space- to their dissociation kinetics and subsequent potency.

  20. A python-based docking program utilizing a receptor bound ligand shape: PythDock.

    Science.gov (United States)

    Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi

    2011-09-01

    PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

  1. Mechanism and site of inhibition of AMPA receptors: substitution of one and two methyl groups at the 4-aminophenyl ring of 2,3-benzodiazepine and implications in the "E" site.

    Science.gov (United States)

    Wang, Congzhou; Wu, Andrew; Shen, Yu-Chuan; Ettari, Roberta; Grasso, Silvana; Niu, Li

    2015-08-19

    2,3-Benzodiazepines are a well-known group of compounds for their potential antagonism against AMPA receptors. It has been previously reported that the inhibitory effect of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety can be enhanced by simply adding a chlorine atom at position 3 of the 4-aminophenyl ring. Here we report that adding a methyl group at position 3 on the 4-aminophenyl ring, termed as BDZ-11-7, can similarly enhance the inhibitory activity, as compared with the unsubstituted one or BDZ-11-2. Our kinetic studies have shown that BDZ-11-7 is a noncompetitive antagonist of GluA2Q homomeric receptors and prefers to inhibit the closed-channel state. However, adding another methyl group at position 5 on the 4-aminophenyl ring, termed as BDZ-11-6, fails to yield extra inhibition on GluA2Q receptors. Instead, BDZ-11-6 exhibits a diminished inhibition of GluA2Q. Site interaction test indicates the two compounds, BDZ-11-6 and BDZ-11-7, bind to the same site on GluA2Q, which is also the binding site for their prototype, BDZ-11-2. Based on the results from this and our earlier studies, we propose that the binding site that accommodates the 4-aminophenyl ring must contain two interactive points, with one preferring polar groups like chlorine and the other preferring nonpolar groups such as a methyl group. Either adding a chlorine or a methyl group may enhance the inhibitory activity of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety. Adding any two of the same group on positions 3 and 5 of the 4-aminophenyl ring, however, significantly reduces the interaction between these 2,3-benzodiazepines and their binding site, because one group is always repelled by one interactive point. We predict therefore that adding a chlorine atom at position 3 and a methyl group at position 5 of the 4-aminophenyl ring of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety may produce a new compound that is more potent.

  2. Effects of 2,3-benzodiazepine AMPA receptor antagonists on dopamine turnover in the striatum of rats with experimental parkinsonism.

    Science.gov (United States)

    Megyeri, Katalin; Marko, Bernadett; Sziray, Nora; Gacsalyi, Istvan; Juranyi, Zsolt; Levay, Gyorgy; Harsing, Laszlo G

    2007-03-15

    Although levodopa is the current "gold standard" for treatment of Parkinson's disease, there has been disputation on whether AMPA receptor antagonists can be used as adjuvant therapy to improve the effects of levodopa. Systemic administration of levodopa, the precursor of dopamine, increases brain dopamine turnover rate and this elevated turnover is believed to be essential for successful treatment of Parkinson's disease. However, long-term treatment of patients with levodopa often leads to development of dyskinesia. Therefore, drugs that feature potentiation of dopamine turnover rate and are able to reduce daily levodopa dosages might be used as adjuvant in the treatment of patients suffering from Parkinson's disease. To investigate such combined treatment, we have examined the effects of two non-competitive AMPA receptor antagonists, GYKI-52466 and GYKI-53405, alone or in combination with levodopa on dopamine turnover rate in 6-hydroxydopamine-lesioned striatum of the rat. We found here that repeated administration of levodopa, added with the peripheral DOPA decarboxylase inhibitor carbidopa, increased dopamine turnover rate after lesioning the striatum with 6-hydroxydopamine. Moreover, combination of levodopa with GYKI-52466 or GYKI-53405 further increased dopamine turnover enhanced by levodopa administration while the AMPA receptor antagonists by themselves failed to influence striatal dopamine turnover. We concluded from the present data that potentiation observed between levodopa and AMPA receptor antagonists may reflect levodopa-sparing effects in clinical treatment indicating the therapeutic potential of such combination in the management of Parkinson's disease.

  3. Triton X-100 inhibits agonist-induced currents and suppresses benzodiazepine modulation of GABA(A) receptors in Xenopus oocytes

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Ebert, Bjarke; Klaerke, Dan

    2009-01-01

    Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na(+) and L-type Ca(2+) channels and GABA(A) receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its ...

  4. Targeting Ligand Dependent and Ligand Independent Androgen Receptor Signaling in Prostate Cancer

    Science.gov (United States)

    2014-10-01

    References 1. Cunha GR, Lung B, Reese B. Glandular epithelial induction by embryonic mesenchyme in adult bladder epithelium of BALB/c mice. Invest Urol...Buffalo, New York 14203 Androgen receptor (AR) action throughout prostate development and in maintenance of the pros- tatic epithelium is partly... epithelium causes prostatic hyperplasia and alteration of differentiated phenotype [published online May 19, 2014]. Lab Invest. 2014. doi:10.1038/labinvest

  5. Imaging of peripheral-type benzodiazepine receptor in tumor: in vitro binding and in vivo biodistribution of N-benzyl-N-[{sup 11}C]methyl-2- (7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl) acetamide

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Tomoteru; Kumata, Katsushi; Yanamoto, Kazuhiko; Hatori, Akiko [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Takei, Makoto; Nakamura, Yukio [Tokyo Nuclear Service Co. Ltd., Tokyo 141-8686 (Japan); Koike, Sachiko; Ando, Koichi [Heavy-ion Radiobiology Research Group, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Suzuki, Kazutoshi [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Zhang, Ming-Rong [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan)], E-mail: zhang@nirs.go.jp

    2009-10-15

    Introduction: The aim of this study was to evaluate N-benzyl-N-[{sup 11}C]methyl-2- (7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl) acetamide ([{sup 11}C]DAC) as a novel peripheral-type benzodiazepine receptor (PBR) ligand for tumor imaging. Methods: [{sup 11}C]DAC was synthesized by the reaction of a desmethyl precursor with [{sup 11}C]CH{sub 3}I. In vitro uptake of [{sup 11}C]DAC was examined in PBR-expressing C6 glioma and intact murine fibrosarcoma (NFSa) cells. In vivo distribution of [{sup 11}C]DAC was determined using NFSa-bearing mice and small-animal positron emission tomography (PET). Results: [{sup 11}C]DAC showed specific binding to PBR in C6 glioma cells, a standard cell line with high PBR expression. Specific binding of [{sup 11}C]DAC was also confirmed in NFSa cells, a target tumor cell line in this study. Results of PET experiments using NFSa-bearing mice, showed that [{sup 11}C]DAC was taken up specifically into the tumor, and pretreatment with PK11195 abolished the uptake. Conclusions: [{sup 11}C]DAC was taken up into PBR-expressing NFSa. [{sup 11}C]DAC is a promising PET ligand that can be used for imaging PBR in tumor-bearing mice.

  6. A selection fit mechanism in BMP receptor IA as a possible source for BMP ligand-receptor promiscuity.

    Directory of Open Access Journals (Sweden)

    Stefan Harth

    Full Text Available BACKGROUND: Members of the TGF-β superfamily are characterized by a highly promiscuous ligand-receptor interaction as is readily apparent from the numeral discrepancy of only seven type I and five type II receptors available for more than 40 ligands. Structural and functional studies have been used to address the question of how specific signals can be deduced from a limited number of receptor combinations and to unravel the molecular mechanisms underlying the protein-protein recognition that allow such limited specificity. PRINCIPAL FINDINGS: In this study we have investigated how an antigen binding antibody fragment (Fab raised against the extracellular domain of the BMP receptor type IA (BMPR-IA recognizes the receptor's BMP-2 binding epitope and thereby neutralizes BMP-2 receptor activation. The crystal structure of the complex of the BMPR-IA ectodomain bound to the Fab AbD1556 revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface for BMP-2 interaction. Although the structural epitopes of BMPR-IA to both binding partners coincides, the structures of BMPR-IA in the two complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to the antibody and BMP-2 are almost identical. CONCLUSIONS: Comparing the structures of BMPR-IA bound to BMP-2 or bound to the Fab AbD1556 with the structure of unbound BMPR-IA shows that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability. The functional and structural analysis of the BMPR-IA binding antibody AbD1556 mimicking the BMP-2 binding epitope may thus pave the way for the design of low-molecular weight synthetic receptor binders/inhibitors.

  7. Cholinesterase inhibitory activity of chlorophenoxy derivatives-Histamine H3 receptor ligands.

    Science.gov (United States)

    Łażewska, Dorota; Jończyk, Jakub; Bajda, Marek; Szałaj, Natalia; Więckowska, Anna; Panek, Dawid; Moore, Caitlin; Kuder, Kamil; Malawska, Barbara; Kieć-Kononowicz, Katarzyna

    2016-08-15

    In recent years, multitarget-directed ligands have become an interesting strategy in a search for a new treatment of Alzheimer's disease. Combination of both: a histamine H3 receptor antagonist/inverse agonist and a cholinesterases inhibitor in one molecule could provide a new therapeutic opportunity. Here, we present biological evaluation of histamine H3 receptor ligands-chlorophenoxyalkylamine derivatives against cholinesterases: acetyl- and butyrylcholinesterase. The target compounds showed cholinesterase inhibitory activity in a low micromolar range. The most potent in this group was 1-(7-(4-chlorophenoxy)heptyl)homopiperidine (18) inhibiting the both enzymes (EeAChE IC50=1.93μM and EqBuChE IC50=1.64μM). Molecular modeling studies were performed to explain the binding mode of 18 with histamine H3 receptor as well as with cholinesterases.

  8. Synthesis and biological activity of novel small peptides with aminophosphonates moiety as NOP receptor ligands.

    Science.gov (United States)

    Naydenova, Emilia D; Todorov, Petar T; Mateeva, Polina I; Zamfirova, Rositza N; Pavlov, Nikola D; Todorov, Simeon B

    2010-11-01

    The aim of the present study was the synthesis and the biological screening of new analogs of Ac-RYYRWK-NH2, modified at the N-terminal with 1-[(methoxyphosphono)methylamino]cycloalkanecarboxylic acids. The four newly synthesized ligands for the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) have been prepared by solid-phase peptide synthesis--Fmoc-strategy. These compounds were tested for agonistic activity in vitro on electrically stimulated smooth-muscle preparations isolated from vas deferens of Wistar rats. Our data showed that substitution of Arg at position 1 with aminophosphonates moiety decreased significantly the affinity of ligands to the NOP receptor. Furthermore, the enlargement of the cycle (with 5-8 carbon atoms) additionally diminished both the activity and the selectivity for NOP-receptor.

  9. Foreign or Domestic CARs: Receptor Ligands as Antigen-Binding Domains

    Directory of Open Access Journals (Sweden)

    Donald R. Shaffer

    2014-01-01

    Full Text Available Chimeric antigen receptors (CARs are increasingly being used in clinical trials to treat a variety of malignant conditions and recent results with CD19-specific CARs showing complete tumor regressions has sparked the interest of researchers and the public alike. Traditional CARs have been generated using single-chain variable fragments (scFv, often derived from murine monoclonal antibodies, for antigen specificity. As the clinical experience with CAR T cells grows, so does the potential for unwanted immune responses against the foreign transgene. Strategies that may reduce the immunogenicity of CAR T cells are humanization of the scFv and the use of naturally occurring receptor ligands as antigen-binding domains. Herein, we review the experience with alternatively designed CARs that contain receptor ligands rather than scFv. While most of the experiences have been in the pre-clinical setting, clinical data is also emerging.

  10. Regulation of muscle growth by multiple ligands signaling through activin type II receptors

    Science.gov (United States)

    Lee, Se-Jin; Reed, Lori A.; Davies, Monique V.; Girgenrath, Stefan; Goad, Mary E. P.; Tomkinson, Kathy N.; Wright, Jill F.; Barker, Christopher; Ehrmantraut, Gregory; Holmstrom, James; Trowell, Betty; Gertz, Barry; Jiang, Man-Shiow; Sebald, Suzanne M.; Matzuk, Martin; Li, En; Liang, Li-fang; Quattlebaum, Edwin; Stotish, Ronald L.; Wolfman, Neil M.

    2005-01-01

    Myostatin is a secreted protein that normally functions as a negative regulator of muscle growth. Agents capable of blocking the myostatin signaling pathway could have important applications for treating human muscle degenerative diseases as well as for enhancing livestock production. Here we describe a potent myostatin inhibitor, a soluble form of the activin type IIB receptor (ACVR2B), which can cause dramatic increases in muscle mass (up to 60% in 2 weeks) when injected into wild-type mice. Furthermore, we show that the effect of the soluble receptor is attenuated but not eliminated in Mstn-/- mice, suggesting that at least one other ligand in addition to myostatin normally functions to limit muscle growth. Finally, we provide genetic evidence that these ligands signal through both activin type II receptors, ACVR2 and ACVR2B, to regulate muscle growth in vivo. PMID:16330774

  11. Eph family receptors and ligands in vascular cell targeting and assembly.

    Science.gov (United States)

    Stein, E; Schoecklmann, H; Daniel, T O

    1997-11-01

    Members of the Eph family of receptor tyrosine kinases determine neural cell aggregation and targeting behavior, functions that are also critical in vascular assembly and remodeling. Among this class of diverse receptors, EphA2 (Eck) and EphB1 (ELK) represent prototypes for two receptor subfamilies distinguished by high-affinity interaction with either glycerophosphatidylinositol (GPI)-linked or transmembrane ligands, respectively. EphA2 participates in angiogenic responses to tumor necrosis factor (TNF) through an autocrine loop affecting endothelial cell migration. EphB1 and its ligand Ephrin-B1 (LERK-2) are important determinants of assembly of endothelial cells from the microvasculature of the kidney, where both are expressed in endothelial progenitors and in glomerular microvascular endothelial cells. Ephrin-B1 activation of EphB1 promotes assembly of these cells into capillary-like structures. Interaction trap approaches have identified downstream signaling proteins that complex with ligand-activated EphA2 or EphB1, including nonreceptor tyrosine kinases and SH2 domain-containing adapter proteins. The Grb 10 adapter is one of a subset that binds activated EphB1, but not EphA2, defining distinct signaling mechanisms for these related endothelial receptors. On the basis of observations in vascular endothelial cells and recent results defining Eph receptor and ligand roles in neural cell targeting, we propose that these receptors direct cell-cell recognition events that are critical in vasculogenesis and angiogenesis. (Trends Cardiovasc Med 1997;7:329-334). © 1997, Elsevier Science Inc.

  12. Binding characteristics of sigma2 receptor ligands Características estruturais de ligantes do receptor sigma2

    Directory of Open Access Journals (Sweden)

    Richard A. Glennon

    2005-03-01

    Full Text Available Sigma (sigma receptors, once considered a type of opioid receptor, are now recognized as representing a unique receptive entity and at least two different types of sigma receptors have been identified: sigma1 and sigma2 receptors. Evidence suggests that these receptors might be targeted and exploited for the development of agents potentially useful for the treatment of several central disorders. This review primarily describes some of our efforts to understand those structural features that contribute to sigma2 receptor binding, and some recent work by other investigators is also included. Despite an inability to formulate a unified pharmacophore model for sigma2 binding due to the diversity of structure-types that bind at the receptor, and to the conformational flexibility of these ligands, significant progress has been made toward the development of some very high-affinity agents.Receptores sigma (sigma, considerados como um tipo de receptor opióide, sigma ão hoje considerados como uma entidade receptora singular. Pelo menos dois subtipos desses receptores foram identificados: sigma1e sigma2. Há evidências de que esses receptores devam ser explorados como alvo para o desenvolvimento de agentes potencialmente úteis para o tratamento de várias disfunções centrais. Esta revisão descreve, principalmente, alguns dos nossos esforços para compreender as características estruturais que contribuem para a ligação no receptor sigma2 , e incluem-se alguns trabalhos recentes desenvolvidos por outros pesquisadores. Apesar da incapacidade de formular um modelo de farmacóforo único para ligação no receptor s 2, em razão da diversidade de estruturas que a ele se ligam e da flexibilidade conformacional desses ligantes, houve progresso significativo no desenvolvimento de agentes de alta afinidade.

  13. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies.

    Science.gov (United States)

    Ji, Bin; Maeda, Jun; Sawada, Makoto; Ono, Maiko; Okauchi, Takashi; Inaji, Motoki; Zhang, Ming-Rong; Suzuki, Kazutoshi; Ando, Kiyoshi; Staufenbiel, Matthias; Trojanowski, John Q; Lee, Virginia M Y; Higuchi, Makoto; Suhara, Tetsuya

    2008-11-19

    We demonstrate the significance of peripheral benzodiazepine receptor (PBR) imaging in living mouse models of Alzheimer's disease (AD) as biomarkers and functional signatures of glial activation. By radiochemically and immunohistochemically analyzing murine models of the two pathological hallmarks of AD, we found that AD-like Abeta deposition is concurrent with astrocyte-dominant PBR expression, in striking contrast with nonastroglial PBR upregulation in accumulations of AD-like phosphorylated tau. Because tau-induced massive neuronal loss was distinct from the marginal neurodegeneration associated with Abeta plaques in these models, cellular localization of PBR reflected deleterious and beneficial glial reactions to tau versus Abeta pathologies, respectively. This notion was subsequently examined in models of various non-AD neuropathologies, revealing the following reactive glial dynamics underlying differential PBR upregulation: (1) PBR(-) astrogliosis uncoupled with microgliosis or coupled with PBR(+) microgliosis associated with irreversible neuronal insults; and (2) PBR(+) astrogliosis coupled with PBR(- or +/-) microgliosis associated with minimal or reversible neuronal toxicity. Intracranial transplantation of microglia also indicated that nontoxic microglia drives astroglial PBR expression. Moreover, levels of glial cell line-derived neurotrophic factor (GDNF) in astrocytes were correlated with astroglial PBR, except for increased GDNF in PBR(-) astrocytes in the model of AD-like tau pathology, thereby suggesting that PBR upregulation in astrocytes is an indicator of neurotrophic support. Together, PBR expressions in astrocytes and microglia reflect beneficial and deleterious glial reactions, respectively, in diverse neurodegenerative disorders including AD, pointing to new applications of PBR imaging for monitoring the impact of gliosis on the pathogenesis and treatment of AD.

  14. [Drug discrimination properties and cytotoxicity of the cannabinoid receptor ligands].

    Science.gov (United States)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2012-06-01

    The worldwide distribution of smokable herbal mixtures called "Spice" that contain synthetic cannabinoids with a pharmacological activity similar to delta 9-tetrahydrocannabinol (delta 9-THC) has been reported. The synthetic cannabinoids induce behavior and have biochemical properties similar to naturally occurring cannabinoids such as delta 9-THC. In drug discrimination procedures, animal behavior is differentially reinforced depending on the presence or absence of specific drug stimuli. This review seeks to establish an animal model to serve as a discriminative stimulus of the synthetic cannabinoids, to determine whether this discriminative stimulus is identical to that of delta 9-THC. Much data have been obtained in drug discrimination experiments with various synthetic cannabinoids. In the discriminative study, synthetic cannabinoids such as CP-55,940 and WIN-55,212-2 were substituted for delta 9-THC in rats trained to discriminate delta 9-THC from the vehicle. These discriminative effects of synthetic cannabinoids were antagonized by CB1 antagonist SR-141,716A. The discriminative effects of synthetic cannabinoids may overlap with the delta 9-THC cue mediated by CB1 receptors. In in vitro study using NG 108-15 cell lines, synthetic cannabinoids have produced strong cytotoxicities that were suppressed by pretreatment with the CB1 receptor antagonist. Furthermore, pretreatment with caspase inhibitors suppressed these synthetic-cannabinoid-induced cytotoxicities in NG 108-15 cells. These findings indicate that the cytotoxicity of synthetic cannabinoids towards NG 108-15 cells is mediated by the CB1 receptors and further suggest that caspase cascades may play an important role in the cytotoxicities induced by these synthetic cannabinoids. In conclusion, synthetic cannabinoid abuse could be a health hazard for humans.

  15. The Molecular Basis of Ligand Interaction at Free Fatty Acid Receptor 4 (FFA4/GPR120)*

    Science.gov (United States)

    Hudson, Brian D.; Shimpukade, Bharat; Milligan, Graeme; Ulven, Trond

    2014-01-01

    The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands at FFA4 by integrating molecular modeling, receptor mutagenesis, and ligand structure-activity relationship approaches in an iterative format. In doing so, residues required for binding of fatty acid and synthetic agonists to FFA4 have been identified. This has allowed for the refinement of a well validated model of the mode of ligand-FFA4 interaction that will be invaluable in the identification of novel ligands and the future development of this receptor as a therapeutic target. The model reliably predicted the effects of substituent variations on agonist potency, and it was also able to predict the qualitative effect of binding site mutations in the majority of cases. PMID:24860101

  16. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Arunima; Pasquel, Danielle [Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Tyagi, Rakesh Kumar [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Mani, Sridhar, E-mail: sridhar.mani@einstein.yu.edu [Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2011-03-18

    Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  17. Requirement for sialic acid on the endothelial ligand of a lymphocyte homing receptor.

    Science.gov (United States)

    True, D D; Singer, M S; Lasky, L A; Rosen, S D

    1990-12-01

    The entry of blood-borne lymphocytes into most secondary lymphoid organs is initiated by a highly specific adhesive interaction with the specialized cuboidal endothelial cells of high endothelial venules (HEV). The adhesive receptors on lymphocytes that dictate interactions with HEV in different lymphoid organs are called homing receptors, signifying their critical role in controlling organ-selective lymphocyte migration. Considerable work has established that the mouse peripheral lymph node homing receptor (pnHR), defined by the mAb MEL-14, functions as a lectin-like adhesive protein. We have previously shown that sialidase treatment of peripheral lymph node (PN) HEV abrogates lymphocyte attachment to the HEV both in vivo and in vitro. We extend this evidence by demonstrating that Limax agglutinin (LA), a sialic acid-specific lectin, when reacted with HEV exposed in cryostat-cut tissue sections, blocks lymphocyte attachment to PN HEV and, unexpectedly, to the HEV of Peyer's patches (PP) as well. Using a recombinant form of the pnHR as a histochemical probe for its cognate adhesive site (HEV-ligand) on PN HEV, we demonstrate that both sialidase and Limax agglutinin functionally inactive this ligand. It is concluded that the requirement for sialic acid is at the level of the pnHR interaction with its HEV ligand. A distinct sialyloligosaccharide may encode the recognition determinant of a PP HEV ligand.

  18. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan.

    Science.gov (United States)

    Mahanti, Parag; Bose, Neelanjan; Bethke, Axel; Judkins, Joshua C; Wollam, Joshua; Dumas, Kathleen J; Zimmerman, Anna M; Campbell, Sydney L; Hu, Patrick J; Antebi, Adam; Schroeder, Frank C

    2014-01-07

    Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized, primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin D and liver X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network, including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs.

  19. [Benzodiazepines in geriatrics].

    Science.gov (United States)

    Hofmann, W

    2013-12-01

    About 10 % of community dwelling elderly people are chronically consuming benzodiazepines. This proportion rises to 30 % in nursing homes or hospitals. Particularly in older patients, this usage leads to a higher risk of adverse drug reactions. Exposure contributes to delirium and falls with subsequent femoral neck fractures. The WHO has classified the risk potential of the new z-drugs to be the same as that associated with benzodiazepines. It is recommended that benzodiazepines should be discontinued step by step under supervision of a doctor or the dosage should be reduced.

  20. Benzodiazepines: Sedation and Agitation.

    Science.gov (United States)

    Gallagher, Catherine

    2016-01-01

    Dental anxiety is common and frequently poses a barrier to necessary dental treatment. The increasing availability of conscious sedation in dental practice has made treatment much more accessible for anxious patients. At present, benzodiazepines are the most commonly used drugs in sedation practice and provide a pleasant experience for most, but not all, patients. An understanding of the mechanism of action of benzodiazepines should inform our practice and deepen our understanding of why and how sedation may fail. CPD/CLINICAL RELEVANCE: As an increasing number of dentists provide sedation for their patients an update on benzodiazepines is timely.

  1. Peroxisome proliferator-activated receptor γ ligands suppress liver carcinogenesis induced by diethylnitrosamine in rats

    Institute of Scientific and Technical Information of China (English)

    Yan-Tong Guo; Xi-Sheng Leng; Tao Li; Jing-Ming Zhao; Xi-Hou Lin

    2004-01-01

    AIM: Peroxisome proliferator-activated receptor γ (PPARγ)is known to regulate growth arrest and terminal differentiation of adipocytes and is used clinically as a new class of antidiabetic drugs. Recently, several studies have reported that treatment of cancer cells with PPARγ ligands could induce cell differentiation and apoptosis, suggesting a potential application as chemopreventive agents against carcinogenesis. In the present study, 3 different kinds of PPARγ ligands were subjected to the experiments to confirm their suppressive effects on liver carcinogenesis.METHODS: Three PPARγ ligands, pioglitazone (Pio) (200 ppm),rosiglitazone (Rosi) (200 ppm), and troglitazone (Tro)(1 000 ppm) were investigated on the induction of the placental form of rat glutathione S-transferase (rGST P)positive foci, a precancerous lesion of the liver, and liver cancer formation using a diethylnitrosamine-induced liver cancer model in Wistar rats, and dose dependency of a PPARγ ligand was also examined.RESULTS: PPARγ ligands reduced the formation of rGST P-positive foci by diethylnitrosamine and induction of liver cancers was also markedly suppressed by a continuous feeding of Pio at 200 ppm.CONCLUSION: PPARγ ligands are potential chemopreventive agents for liver carcinogenesis.

  2. A Vitamin D Receptor Selectively Activated by Gemini Analogs Reveals Ligand Dependent and Independent Effects

    Directory of Open Access Journals (Sweden)

    Tiphaine Huet

    2015-02-01

    Full Text Available The bioactive form of vitamin D [1,25(OH2D3] regulates mineral and bone homeostasis and exerts potent anti-inflammatory and antiproliferative properties through binding to the vitamin D receptor (VDR. The 3D structures of the VDR ligand-binding domain with 1,25(OH2D3 or gemini analogs unveiled the molecular mechanism underlying ligand recognition. On the basis of structure-function correlations, we generated a point-mutated VDR (VDRgem that is unresponsive to 1,25(OH2D3, but the activity of which is efficiently induced by the gemini ligands. Moreover, we show that many VDR target genes are repressed by unliganded VDRgem and that mineral ion and bone homeostasis are more impaired in VDRgem mice than in VDR null mice, demonstrating that mutations abolishing VDR ligand binding result in more severe skeletal defects than VDR null mutations. As gemini ligands induce VDRgem transcriptional activity in mice and normalize their serum calcium levels, VDRgem is a powerful tool to further unravel both liganded and unliganded VDR signaling.

  3. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

    Science.gov (United States)

    Cawston, Erin E; Harikumar, Kaleeckal G; Miller, Laurence J

    2012-02-01

    Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle(28,31),d-Trp(30))CCK-26-32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Ligand-stimulated internalization was studied morphologically using fluorescent CCK and d-Trp-OPE. d-Trp-OPE occupation of Chinese hamster ovary cell receptors stimulated internalization into the same region as CCK. Arrestin-biased action was ruled out using morphological translocation of fluorescent arrestin 2 and arrestin 3, moving to the membrane in response to CCK, but not d-Trp-OPE. Possible roles of the carboxyl terminus were studied using truncated receptor constructs, eliminating the proline-rich distal tail, the serine/threonine-rich midregion, and the remainder to the vicinal cysteines. None of these constructs disrupted d-Trp-OPE-stimulated internalization. Possible contributions of transmembrane segments were studied using competitive inhibition with peptides that also had no effect. Intracellular regions were studied with a similar strategy using coexpressing cell lines. Peptides corresponding to ends of each loop region were studied, with only the peptide at the carboxyl end of the third loop inhibiting d-Trp-OPE-stimulated internalization but having no effect on CCK-stimulated internalization. The region contributing to this effect was refined to peptide 309-323, located below the recognized G protein-association motif. While a receptor in which this segment was deleted did internalize in response to d-Trp-OPE, it exhibited abnormal ligand binding and did not signal in response to CCK, suggesting an abnormal conformation and possible mechanism of internalization

  4. Metabotropic glutamatergic receptors and their ligands in drug addiction.

    Science.gov (United States)

    Pomierny-Chamioło, Lucyna; Rup, Kinga; Pomierny, Bartosz; Niedzielska, Ewa; Kalivas, Peter W; Filip, Małgorzata

    2014-06-01

    Glutamatergic excitatory transmission is implicated in physiological and pathological conditions like learning, memory, neuronal plasticity and emotions, while glutamatergic abnormalities are reported in numerous neurological and psychiatric disorders, including neurodegenerative diseases, epilepsy, stroke, traumatic brain injury, depression, anxiety, schizophrenia and pain. Also, several lines of evidence have accumulated indicating a pivotal role for glutamatergic neurotransmission in mediating addictive behaviors. Among the proteins regulating glutamatergic transmission, the metabotropic glutamate receptors (mGluR) are being developed as pharmacological targets for treating many neuropsychiatric disorders, including drug addiction. In this review we describe the molecular structure of mGluRs and their distribution, physiology and pharmacology in the central nervous system, as well as their use as targets in preclinical studies of drug addiction.

  5. Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation

    Directory of Open Access Journals (Sweden)

    Charles R. Midgett

    2012-01-01

    Full Text Available Ligand-gated ion channels couple the free energy of agonist binding to the gating of selective transmembrane ion pores, permitting cells to regulate ion flux in response to external chemical stimuli. However, the stereochemical mechanisms responsible for this coupling remain obscure. In the case of the ionotropic glutamate receptors (iGluRs, the modular nature of receptor subunits has facilitated structural analysis of the N-terminal domain (NTD, and of multiple conformations of the ligand-binding domain (LBD. Recently, the crystallographic structure of an antagonist-bound form of the receptor was determined. However, disulfide trapping of this conformation blocks channel opening, suggesting that channel activation involves additional quaternary packing arrangements. To explore the conformational space available to iGluR channels, we report here a second, clearly distinct domain architecture of homotetrameric, calcium-permeable AMPARs, determined by single-particle electron microscopy of untagged and fluorescently tagged constructs in a ligand-free state. It reveals a novel packing of NTD dimers, and a separation of LBD dimers across a central vestibule. In this arrangement, which reconciles diverse functional observations, agonist-induced cleft closure across LBD dimers can be converted into a twisting motion that provides a basis for receptor activation.

  6. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H. [and others

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  7. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands.

    Science.gov (United States)

    Christopoulos, Arthur; Changeux, Jean-Pierre; Catterall, William A; Fabbro, Doriano; Burris, Thomas P; Cidlowski, John A; Olsen, Richard W; Peters, John A; Neubig, Richard R; Pin, Jean-Philippe; Sexton, Patrick M; Kenakin, Terry P; Ehlert, Frederick J; Spedding, Michael; Langmead, Christopher J

    2014-10-01

    Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.

  8. Urinary EGF Receptor Ligand Excretion in Patients with Autosomal Dominant Polycystic Kidney Disease and Response to Tolvaptan

    NARCIS (Netherlands)

    Harskamp, Laura R.; Gansevoort, Ron T.; Boertien, Wendy E.; van Oeveren, Wim; Engels, Gerwin E.; van Goor, Harry; Meijer, Esther

    2015-01-01

    Background and objectives Recent animal experiments suggest that dysregulation of the EGF receptor pathway plays a role in the pathophysiology of autosomal dominant polycystic kidney disease (ADPKD). Research on EGF receptor ligands in humans with ADPKD is lacking. EGF receptor figands were measured

  9. ONRLDB--manually curated database of experimentally validated ligands for orphan nuclear receptors: insights into new drug discovery.

    Science.gov (United States)

    Nanduri, Ravikanth; Bhutani, Isha; Somavarapu, Arun Kumar; Mahajan, Sahil; Parkesh, Raman; Gupta, Pawan

    2015-01-01

    Orphan nuclear receptors are potential therapeutic targets. The Orphan Nuclear Receptor Ligand Binding Database (ONRLDB) is an interactive, comprehensive and manually curated database of small molecule ligands targeting orphan nuclear receptors. Currently, ONRLDB consists of ∼11,000 ligands, of which ∼6500 are unique. All entries include information for the ligand, such as EC50 and IC50, number of aromatic rings and rotatable bonds, XlogP, hydrogen donor and acceptor count, molecular weight (MW) and structure. ONRLDB is a cross-platform database, where either the cognate small molecule modulators of a receptor or the cognate receptors to a ligand can be searched. The database can be searched using three methods: text search, advanced search or similarity search. Substructure search, cataloguing tools, and clustering tools can be used to perform advanced analysis of the ligand based on chemical similarity fingerprints, hierarchical clustering, binning partition and multidimensional scaling. These tools, together with the Tree function provided, deliver an interactive platform and a comprehensive resource for identification of common and unique scaffolds. As demonstrated, ONRLDB is designed to allow selection of ligands based on various properties and for designing novel ligands or to improve the existing ones. Database URL: http://www.onrldb.org/.

  10. Novel chalcone-based fluorescent human histamine H3 receptor ligands as pharmacological tools

    Directory of Open Access Journals (Sweden)

    Holger eStark

    2012-03-01

    Full Text Available Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R have been designed, synthesized and characterized. Compounds described are non-imidazole analogues of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like that of the reference antagonist ciproxifan (hH3R pKi value of 7.2. Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be taken to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues.

  11. Ligand-receptor binding kinetics in surface plasmon resonance cells: A Monte Carlo analysis

    CERN Document Server

    Carroll, Jacob; Forsten-Williams, Kimberly; Täuber, Uwe C

    2016-01-01

    Surface plasmon resonance (SPR) chips are widely used to measure association and dissociation rates for the binding kinetics between two species of chemicals, e.g., cell receptors and ligands. It is commonly assumed that ligands are spatially well mixed in the SPR region, and hence a mean-field rate equation description is appropriate. This approximation however ignores the spatial fluctuations as well as temporal correlations induced by multiple local rebinding events, which become prominent for slow diffusion rates and high binding affinities. We report detailed Monte Carlo simulations of ligand binding kinetics in an SPR cell subject to laminar flow. We extract the binding and dissociation rates by means of the techniques frequently employed in experimental analysis that are motivated by the mean-field approximation. We find major discrepancies in a wide parameter regime between the thus extracted rates and the known input simulation values. These results underscore the crucial quantitative importance of s...

  12. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  13. Benzodiazepine poisoning in elderly

    Directory of Open Access Journals (Sweden)

    Perković-Vukčević Nataša

    2016-01-01

    Full Text Available Background/Aim. Benzodiazepines are among the most frequently ingested drugs in self-poisonings. Elderly may be at greater risk compared with younger individuals due to impaired metabolism and increased sensitivity to benzodiazepines. The aim of this study was to assess toxicity of benzodiazepines in elderly attempted suicide. Methods. A retrospective study of consecutive presentations to hospital after self-poisoning with benzodiazepines was done. Collected data consisted of patient's characteristics (age, gender, benzodiazepine ingested with its blood concentrations at admission, clinical findings including vital signs and Glasgow coma score, routine blood chemistry, complications of poisoning, details of management, length of hospital stay and outcome. According the age, patients are classified as young (15-40-year old, middle aged (41-65-year old and elderly (older than 65. Results. During a 2-year observational period 387 patients were admitted because of pure benzodiazepine poisoning. The most frequently ingested drug was bromazepam, the second was diazepam. The incidence of coma was significantly higher, and the length of hospital stay significantly longer in elderly. Respiratory failure and aspiration pneumonia occurred more frequently in old age. Also, flumazenil was more frequently required in the group of elderly patients. Conclusion. Massive benzodiazepines overdose in elderly may be associated with a significant morbidity, including deep coma with aspiration pneumonia, respiratory failure, and even death. Flumazenil is indicated more often to reduce CNS depression and prevent complications of prolonged unconsciousness, but supportive treatment and proper airway management of comatose patients is the mainstay of the treatment of acute benzodiazepine poisoning.

  14. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A.; Alvarez, Susana; de Lera, Angel R.; Kuraku, Shigehiro; Bourguet, William; Laudet, Vincent

    2016-01-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication–degeneration–complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor–ligand interactions of NRs following WGDs. PMID:27069642

  15. Identification and functional analysis of ligands for natural killer cell activating receptors in colon carcinoma.

    Science.gov (United States)

    Zhang, Zhang; Su, Tao; He, Liang; Wang, Hongtao; Ji, Gang; Liu, Xiaonan; Zhang, Yun; Dong, Guanglong

    2012-01-01

    Natural killer (NK) cells play important roles in the immune defense against tumor cells. The function of NK cells is determined by a balance between activating and inhibitory signals. DNAX accessory molecule-1 (DNAM-1) and NK group 2 member D (NKG2D) are major NK cell activating receptors, which transduce activating signals after binding their ligands CD155, CD112 and major histocompatibility complex class I-related chains A and B (MICA/B). However, the expression and functions of these ligands in colon carcinoma are still elusive. Here, we show the higher expression of CD155, CD112 and MICA/B in colon carcinoma tissues, although no correlations between the ligands expression and patient clinicopathological parameters were found. The subsequent cytotoxicity assay indicated that NK cells effectively kill colon carcinoma cells. Functional blocking of these ligands and/or receptors with antibodies led to significant inhibition of NK cell cytotoxicity. Importantly, expression of DNAM-1 and NKG2D was reduced in NK cells of colon cancer patients, and this reduction could directly suppress the activation of NK cells. Moreover, colon cancer patients have higher serum concentrations of sCD155 and sMICA/B (soluble ligands, secreted or shed from cells) than those in healthy donors (sCD155, 127.82 ± 44.12 vs. 63.67 ± 22.30 ng/ml; sMICA, 331.51 ± 65.23 vs. 246.74 ± 20.76 pg/ml; and sMICB, 349.42 ± 81.69 vs. 52.61 ± 17.56 pg/ml). The up-regulation of these soluble ligands may down-regulate DNAM-1 and NKG2D on NK cells, ultimately leading to the inhibition of NK cytotoxicity. Colon cancer might be a promising target for NK cell-based adoptive immunotherapy.

  16. Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands

    Directory of Open Access Journals (Sweden)

    You Haitao

    2011-11-01

    Full Text Available Abstract Background Both T-type calcium channels and cannabinoid receptors modulate signalling in the primary afferent pain pathway. Here, we investigate the analgesics activities of a series of novel cannabinoid receptor ligands with T-type calcium channel blocking activity. Results Novel compounds were characterized in radioligand binding assays and in vitro functional assays at human and rat CB1 and CB2 receptors. The inhibitory effects of these compounds on transient expressed human T-type calcium channels were examined in tsA-201 cells using standard whole-cell voltage clamp techniques, and their analgesic effects in response to various administration routes (intrathecally, intraplantarly, intraperitoneally assessed in the formalin model. A series of compounds were synthesized and evaluated for channel and receptor activity. Compound NMP-7 acted as non-selective CB1/CB2 agonist while NMP4 was found to be a CB1 partial agonist and CB2 inverse agonist. Furthermore, NMP-144 behaved as a selective CB2 inverse agonist. All of these three compounds completely inhibited peak Cav3.2 currents with IC50 values in the low micromolar range. All compounds mediated analgesic effects in the formalin model, but depending on the route of administration, could differentially affect phase 1 and phase 2 of the formalin response. Conclusions Our results reveal that a set of novel cannabinioid receptor ligands potently inhibit T-type calcium channels and show analgesic effects in vivo. Our findings suggest possible novel means of mediating pain relief through mixed T-type/cannabinoid receptor ligands.

  17. Communication: Free energy of ligand-receptor systems forming multimeric complexes

    Science.gov (United States)

    Di Michele, Lorenzo; Bachmann, Stephan J.; Parolini, Lucia; Mognetti, Bortolo M.

    2016-04-01

    Ligand-receptor interactions are ubiquitous in biology and have become popular in materials in view of their applications to programmable self-assembly. Although complex functionalities often emerge from the simultaneous interaction of more than just two linker molecules, state of the art theoretical frameworks enable the calculation of the free energy only in systems featuring one-to-one ligand/receptor binding. In this Communication, we derive a general formula to calculate the free energy of systems featuring simultaneous direct interaction between an arbitrary number of linkers. To exemplify the potential and generality of our approach, we apply it to the systems recently introduced by Parolini et al. [ACS Nano 10, 2392 (2016)] and Halverson and Tkachenko [J. Chem. Phys. 144, 094903 (2016)], both featuring functionalized Brownian particles interacting via three-linker complexes.

  18. Synthesis and radiofluorination of putative NMDA receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, U.

    2011-01-15

    In the course of this work on the synthesis of radioligands for the NMDA receptor the authentic standards and labeling precursors of four compounds with an amidine structure was performed. Synthesis of the precursors followed reaction conditions given in the literature and was successful. The imidoesters used for the synthesis were obtained from their nitriles in a Pinner synthesis, while 2-hydroxybenzylamine was synthesized in a reduction of 2-hydroxybenzonitrile using borane as a reducing agent. After a coupling reaction of the amine and the imidoester in DMF using triethylamine as base the precursors were obtained in good yields and purified by crystallization from methanol. The cyclic standard compound was synthesized directly from 2-(bromomethyl)- benzonitrile and 2-hydroxybenzylamine in a ring closing reaction. Similar to the other precursors, crystallization from methanol produced a pure compound. The authentic standards were synthesized starting from salicylaldehyde. In a four step synthesis the desired ortho-fluoroethoxybenzylamine was obtained in good yield. Coupling of the amine with the respective imidoester or in the case of the cyclic compound 2-(bromomethyl)-benzonitrile gave the desired product which was then purified by column chromatography or by crystallization from ethanol and water. For the labeling procedure 1-bromo-2-[{sub 18}F]fluoroethane was synthesized following a previously published pathway starting from 1,2-dibromoethane. An alternative route of radiosynthesis for this prosthetic group was tested using ethyleneglycole- 1,2-ditosylate. The labeling reaction was performed on one of the precursors testing both DMF and DMSO as solvents and using NaOH as base. Yields of N-(2-fluoroethoxybenzyl)- cinnamamidine were about 78 % at 80 C after 30 minutes in DMSO. The desired product can now be synthesized in sufficient yields for in vitro and in vivo evaluation studies. Labeling on the cyclic precursor was attempted utilizing DMSO as solvent

  19. Development of sub-nanomolar dipeptidic ligands of neuropeptide FF receptors.

    Science.gov (United States)

    Gealageas, Ronan; Schneider, Séverine; Humbert, Jean-Paul; Bertin, Isabelle; Schmitt, Martine; Laboureyras, Emilie; Dugave, Christophe; Mollereau, Catherine; Simonnet, Guy; Bourguignon, Jean-Jacques; Simonin, Frédéric; Bihel, Frédéric

    2012-12-15

    Based on our earlier reported neuropeptide FF receptors antagonist (RF9), we carried out an extensive structural exploration of the N-terminus part of the amidated dipeptide Arg-Phe-NH(2) in order to establish a structure-activity relationships (SAR) study towards both NPFF receptor subtypes. This SAR led to the discovery of dipeptides (12, 35) with subnanomolar affinities towards NPFF1 receptor subtype, similar to endogenous ligand NPVF. More particularly, compound 12 exhibited a potent in vivo preventive effect on opioid-induced hyperalgesia at low dose. The significant selectivity of 12 toward NPFF1-R indicates that this receptor subtype may play a critical role in the anti-opioid activity of NPFF-like peptides.

  20. Cbln1 and the δ2 glutamate receptor--an orphan ligand and an orphan receptor find their partners.

    Science.gov (United States)

    Matsuda, Keiko; Yuzaki, Michisuke

    2012-03-01

    Cerebellin was originally discovered as a Purkinje cell-specific peptide more than two decades ago. Later, its precursor protein precerebellin (Cbln1) was found to be produced in cerebellar granule cells. It has become increasingly clear that although the cerebellin peptide may have certain functions, Cbln1 is an actual signaling molecule that belongs to the C1q family. However, the precise function of Cbln1 has been unresolved. Cbln1 is released from granule cells, and disruption of the cbln1 gene in mice causes a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs; axons of granule cells) and results in cerebellar ataxia. The glutamate receptor δ2 (GluD2) is highly expressed on Purkinje cells' dendritic spines which make synapses with PFs. Although GluD2 was identified as a member of the ionotropic glutamate receptors more than 15 years ago, it has been referred to as an orphan receptor because its endogenous ligands are unclear. Interestingly, GluD2-null mice phenocopy cbln1-null mice precisely. Cbln1 and GluD2 have therefore been thought to participate in a common signaling pathway that is required for the formation of PF synapses. We recently established a direct ligand-receptor relationship between Cbln1 and GluD2. The Cbln1-GluD2 complex is located at the cleft of PF-Purkinje cell synapses and bidirectionally regulates both presynaptic and postsynaptic differentiation.

  1. Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization.

    Science.gov (United States)

    Chuenchor, Watchalee; Jin, Tengchuan; Ravilious, Geoffrey; Xiao, T Sam

    2014-02-01

    Pattern recognition receptors (PRRs) are essential sentinels for pathogens or tissue damage and integral components of the innate immune system. Recent structural studies have provided unprecedented insights into the molecular mechanisms of ligand recognition and signal transduction by several PRR families at distinct subcellular compartments. Here we highlight some of the recent discoveries and summarize the common themes that are emerging from these exciting studies. Better mechanistic understanding of the structure and function of the PRRs will improve future prospects of therapeutic targeting of these important innate immune receptors.

  2. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings.

    Science.gov (United States)

    Le Foll, Bernard; Collo, Ginetta; Rabiner, Eugenii A; Boileau, Isabelle; Merlo Pich, Emilio; Sokoloff, Pierre

    2014-01-01

    The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction.

  3. Arrest functions of the MIF ligand/receptor axes in atherogenesis

    Directory of Open Access Journals (Sweden)

    Sabine eTillmann

    2013-05-01

    Full Text Available Macrophage migration inhibitory factor (MIF has been defined as an important chemokine-like function (CLF chemokine with an essential role in monocyte recruitment and arrest. Adhesion of monocytes to the vessel wall and their transendothelial migration are critical in atherogenesis and many other inflammatory diseases. Chemokines carefully control all steps of the monocyte recruitment process. Those chemokines specialized in controlling arrest are typically immobilized on the endothelial surface, mediating the arrest of rolling monocytes by chemokine receptor-triggered pathways. The chemokine receptor CXCR2 functions as an important arrest receptor on monocytes. An arrest function has been revealed for the bona fide CXCR2 ligands CXCL1 and CXCL8, but genetic studies also suggested that additional arrest chemokines are likely to be involved in atherogenic leukocyte recruitment. While CXCR2 is known to interact with numerous CXC chemokine ligands, the CLF-chemokine MIF, which structurally does not belong to the CXC chemokine sub-family, was surprisingly identified as a non-cognate ligand of CXCR2, responsible for critical arrest functions during the atherogenic process. MIF was originally identified as macrophage migration inhibitory factor, but is now known as a potent inflammatory cytokine with chemokine-like functions including chemotaxis and leukocyte arrest. This review will cover the mechanisms underlying these functions, including MIF’s effects on LFA1 integrin activity and signal transduction, and will discuss the structural similarities between MIF and the bona fide CXCR2 ligand CXCL8 while emphasizing the structural differences. As MIF also interacts with CXCR4, a chemokine receptor implicated in CXCL12-elicited lymphocyte arrest, the arrest potential of the MIF/CXCR4 axis will also be scrutinized as well as the recently identified role of pericyte MIF in attracting leukocytes exiting through venules as part of the pericyte 'motility

  4. Glucocorticoid-induced tumour necrosis factor receptor (GITR) and its ligand (GITRL) in atopic dermatitis

    DEFF Research Database (Denmark)

    Baumgartner-Nielsen, Jane; Vestergaard, Christian; Thestrup-Pedersen, K.

    2006-01-01

    The glucocorticoid-induced tumour necrosis factor receptor-related gene (GITR) is expressed on regulatory T-cells (Treg), which are CD4+CD25+ lymphocytes. Binding of the GITR-ligand (GITRL) leads to downregulation of the regulatory function of Tregs. Patients suffering from a defect in their Treg......-cells are localized in the vicinity of GITRL-expressing cells in atopic dermatitis skin, the GITR/GITRL interaction may serve to perpetuate the inflammation locally....

  5. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Venu Gopal Jonnalagadda

    2014-05-01

    Full Text Available Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.

  6. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric (Van Andel); (Mayo)

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  7. High-throughput screening assay for new ligands at human melatonin receptors

    Institute of Scientific and Technical Information of China (English)

    Jian-hua YAN; Hao-ran SU; Jean A BOUTIN; M Pierre RENARD; Ming-wei WANG

    2008-01-01

    Aim: Melatonin (MT) is a neurohormone produced and secreted primarily by the pineal gland in a circadian manner, and mainly acta through 2 receptor subtypes: MT1 and MT2 in humans. The diversity in their tissue distribution is in favor of different functions for each receptor subtype. Selective modulators are therefore required to determine the physiological roles of these melatonin receptor sub-types and their implications in pathological processes. Methods: A homogenous MT1/MT2 receptor binding assay was established for high-throughput screening of new ligands at the hMT1 and/or hMT2 receptors. The functional properties (agonists or antagonists) were assessed by a conventional guanosine-5'[γ-35S] triphosphate (GTP-γS) assay. Results: Three hMT, receptor-selective small mol-ecule antagonists and 1 hMT2 receptor-selective small molecule antagonist with novel structural features were identified following a high-throughput screening campaign of 48 240 synthetic and natural compounds. Conclusion: The findings may assist in the expansion of chemical probes to these 2 receptor subtypes.

  8. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands.

    Directory of Open Access Journals (Sweden)

    Giulia Falivelli

    Full Text Available The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting "in trans" with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As or a transmembrane segment (ephrin-Bs, which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral "cis" associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.

  9. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Zdzisław Chilmonczyk

    2015-08-01

    Full Text Available Serotonin (5-HT is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems, which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.

  10. CHARMM Force Field Parameterization of Peroxisome Proliferator-Activated Receptor γ Ligands

    Science.gov (United States)

    Mottin, Melina; Souza, Paulo C. T.; Ricci, Clarisse G.; Skaf, Munir S.

    2016-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) ligands are important therapeutic drugs for the treatment of type 2 diabetes, obesity and cardiovascular diseases. In particular, partial agonists and non-agonists are interesting targets to reduce glucose levels, presenting few side effects in comparison to full agonists. In this work, we present a set of CHARMM-based parameters of a molecular mechanics force field for two PPARγ ligands, GQ16 and SR1664. GQ16 belongs to the thiazolidinedione class of drugs and it is a PPARγ partial agonist that has been shown to promote the “browning” of white adipose tissue. SR1664 is the precursor of the PPARγ non-agonist class of ligands that activates PPARγ in a non-classical manner. Here, we use quantum chemical calculations consistent with the CHARMM protocol to obtain bonded and non-bonded parameters, including partial atomic charges and effective torsion potentials for both molecules. The newly parameterized models were evaluated by examining the behavior of GQ16 and SR1664 free in water and bound to the ligand binding pocket of PPARγ using molecular dynamics simulations. The potential parameters derived here are readily transferable to a variety of pharmaceutical compounds and similar PPARγ ligands. PMID:28025495

  11. A new feature of Mpl receptor: ligand-induced transforming activity in FRE rat fibroblasts.

    Science.gov (United States)

    Challier, C; Cocault, L; Flon, M; Pauchard, M; Porteu, F; Gisselbrecht, S; Souyri, M

    2000-04-13

    Mpl is the receptor for thrombopoietin, the primary regulator of platelet production by megakaryocytes. Upon stimulation by its ligand, Mpl receptor induces proliferation and differentiation of hematopoietic cell lines of various origins. In this paper, we show that Mpl is also able to transform FRE rat fibroblasts in the presence of MGDF (pegylated Megakaryocyte Growth and Development Factor), a modified form of its ligand. We also demonstrate that upon MGDF stimulation Mpl receptor activates the classical transduction pathways described for hematopoietic cell lines in FRE cells. Introduction of Mpl deletion mutants in FRE cells allowed us to demonstrate that the C-terminal region of the Mpl intracytoplasmic domain, which is involved in hematopoietic differentiation, is necessary for the transformation process. Within that region, site-directed mutagenesis showed that the Y112 residue, which is required for Shc phosphorylation, is essential for rat fibroblast transformation by Mpl/MGDF, suggesting the involvement of Shc in Mpl-mediated transformation. Interestingly, we showed that transformation correlated with strong and sustained MAPK activation. Neither Jak2, Stat3 nor Stat5 phosphorylation was sufficient to induce the transformation process. Taken altogether, our results suggest the oncogenicity of Mpl in fibroblastic cells in the presence of its ligand.

  12. Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masayuki Yarimizu

    2015-01-01

    Full Text Available Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP and UniProtKB, filtered them by removing sequence redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is based on support vector machines (SVMs, and we evaluated several input features suitable for tyrosine kinase for machine learning and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that obtained from general protein-protein interaction pair predictions.

  13. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  14. Anticonvulsant properties of histamine H3 receptor ligands belonging to N-substituted carbamates of imidazopropanol.

    Science.gov (United States)

    Sadek, Bassem; Shehab, Safa; Więcek, Małgorzata; Subramanian, Dhanasekaran; Shafiullah, Mohamed; Kieć-Kononowicz, Katarzyna; Adem, Abdu

    2013-09-01

    Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. Therefore, the previously described and structurally strongly related imidazole-based derivatives belonging to carbamate class with high H3R in vitro affinity, in-vivo antagonist potency, and H3R selectivity profile were investigated on their anticonvulsant activity in maximal electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled seizure models in Wistar rats. The effects of systemic injection of H3R ligands 1-13 on MES-induced and PTZ-kindled seizures were screened and evaluated against the reference antiepileptic drug (AED) Phenytoin (PHT) and the standard histamine H3R inverse agonist/antagonist Thioperamide (THP) to determine their potential as new antiepileptic drugs. Following administration of the H3R ligands 1-13 (5, 10 and 15 mg/kg, ip) there was a significant dose dependent reduction in MES-induced seizure duration. The protective action observed for the pentenyl carbamate derivative 4, the most protective H3R ligand among 1-13, was significantly higher (P histamine (RAMH) (10mg/kg), or with the CNS penetrant H1R antagonist Pyrilamine (PYR) (10mg/kg). In addition, subeffective dose of H3R ligand 4 (5mg/kg, ip) significantly potentiated the protective action in rats pretreated with PHT (5mg/kg, ip), a dose without appreciable protective effect when given alone. In contrast, pretreatment with H3R ligand 4 (10mg/kg ip) failed to modify PTZ-kindled convulsion, whereas the reference drug PHT was found to fully protect PTZ-induced seizure. These results indicate that some of the investigated imidazole-based H3R ligands 1-13 may be of future therapeutic value in epilepsy.

  15. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang

    2008-01-01

    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  16. Cyclic guanidines as dual 5-HT5A/5-HT7 receptor ligands: structure-activity relationship elucidation.

    Science.gov (United States)

    Peters, Jens-Uwe; Lübbers, Thomas; Alanine, Alexander; Kolczewski, Sabine; Blasco, Francesca; Steward, Lucinda

    2008-01-01

    The optimisation of affinity and selectivity in a novel series of dual 5-HT5A/5-HT7 receptor ligands is described. Brain penetrant 2-aminodihydroquinazolines with low nanomolar affinities were identified.

  17. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives.

    Science.gov (United States)

    Pawig, Lukas; Klasen, Christina; Weber, Christian; Bernhagen, Jürgen; Noels, Heidi

    2015-01-01

    CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific

  18. Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jørgensen, M U; Emr, S D; Winther, Jakob R.

    1999-01-01

    Vp10p is a receptor that sorts several different vacuolar proteins by cycling between a late Golgi compartment and the endosome. The cytoplasmic tail of Vps10p is necessary for the recycling, whereas the lumenal domain is predicted to interact with the soluble ligands. We have studied ligand bind...

  19. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells : discord in the death receptor family

    NARCIS (Netherlands)

    Azijli, K.; Weyhenmeyer, B.; Peters, G. J.; de Jong, S.; Kruyt, F. A. E.

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand

  20. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Tikhonova, Irina G

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL...... on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.-Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering...

  1. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    Science.gov (United States)

    Hudson, Brian D.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Kostenis, Evi; Adams, David R.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC50 values for inhibition of cAMP, 5.83 ± 0.11; Ca2+ mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.—Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. PMID:22919070

  2. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor.

    Science.gov (United States)

    Kasina, Sathish; Macoska, Jill A

    2012-04-01

    The molecular mechanisms responsible for the transition of some prostate cancers from androgen ligand-dependent to androgen ligand-independent are incompletely established. Molecules that are ligands for G protein coupled receptors (GPCRs) have been implicated in ligand-independent androgen receptor (AR) activation. The purpose of this study was to examine whether CXCL12, the ligand for the GPCR, CXCR4, might mediate prostate cancer cell proliferation through AR-dependent mechanisms involving functional transactivation of the AR in the absence of androgen. The results of these studies showed that activation of the CXCL12/CXCR4 axis promoted: The nuclear accumulation of both wild-type and mutant AR in several prostate epithelial cell lines; AR-dependent proliferative responses; nuclear accumulation of the AR co-regulator SRC-1 protein; SRC-1:AR protein:protein association; co-localization of AR and SRC-1 on the promoters of AR-regulated genes; AR- and SRC-1 dependent transcription of AR-regulated genes; AR-dependent secretion of the AR-regulated PSA protein; P13K-dependent phosphorylation of AR; MAPK-dependent phosphorylation of SRC-1, and both MAPK- and P13K-dependent secretion of the PSA protein, in the absence of androgen. Taken together, these studies identify CXCL12 as a novel, non-steroidal growth factor that promotes the growth of prostate epithelial cells through AR-dependent mechanisms in the absence of steroid hormones. These findings support the development of novel therapeutics targeting the CXCL12/CXCR4 axis as an ancillary to those targeting the androgen/AR axis to effectively treat castration resistant/recurrent prostate tumors.

  3. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    Directory of Open Access Journals (Sweden)

    Vignir Isberg

    Full Text Available Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  4. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation.

    Science.gov (United States)

    Peeters, M C; van Westen, G J P; Li, Q; IJzerman, A P

    2011-01-01

    G protein-coupled receptors (GPCRs) are the major drug target of medicines on the market today. Therefore, much research is and has been devoted to the elucidation of the function and three-dimensional structure of this large family of membrane proteins, which includes multiple conserved transmembrane domains connected by intra- and extracellular loops. In the last few years, the less conserved extracellular loops have garnered increasing interest, particularly after the publication of several GPCR crystal structures that clearly show the extracellular loops to be involved in ligand binding. This review will summarize the recent progress made in the clarification of the ligand binding and activation mechanism of class-A GPCRs and the role of extracellular loops in this process.

  5. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR.

    Science.gov (United States)

    Latek, Dorota; Kolinski, Michal; Ghoshdastider, Umesh; Debinski, Aleksander; Bombolewski, Rafal; Plazinska, Anita; Jozwiak, Krzysztof; Filipek, Slawomir

    2011-09-01

    Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) G protein coupled receptors. Docking of agonists and antagonists to CB(1) and CB(2) cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch and its possible participation in the mechanism of agonist/antagonist recognition. The switch is composed of two residues, F3.36 and W6.48, located on opposite transmembrane helices TM3 and TM6 in the central part of the membranous domain of cannabinoid receptors. The CB(1) and CB(2) receptor models were constructed based on the adenosine A(2A) receptor template. The two best scored conformations of each receptor were used for the docking procedure. In all poses (ligand-receptor conformations) characterized by the lowest ligand-receptor intermolecular energy and free energy of binding the ligand type matched the state of the rotamer toggle switch: antagonists maintained an inactive state of the switch, whereas agonists changed it. In case of agonists of β(2)AR, the (R,R) and (S,S) stereoisomers of fenoterol, the molecular dynamics simulations provided evidence of different binding modes while preserving the same average position of ligands in the binding site. The (S,S) isomer was much more labile in the binding site and only one stable hydrogen bond was created. Such dynamical binding modes may also be valid for ligands of cannabinoid receptors because of the hydrophobic nature of their ligand-receptor interactions. However, only very long molecular dynamics simulations could verify the validity of such binding modes and how they affect the process of activation.

  6. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands.

    Science.gov (United States)

    Lacal, Jesús; Alfonso, Carlos; Liu, Xianxian; Parales, Rebecca E; Morel, Bertrand; Conejero-Lara, Francisco; Rivas, Germán; Duque, Estrella; Ramos, Juan L; Krell, Tino

    2010-07-23

    We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (T(m)) and unfolding enthalpy (DeltaH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.

  7. Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors.

    Science.gov (United States)

    Takahashi, Akiyoshi; Davis, Perry; Reinick, Christina; Mizusawa, Kanta; Sakamoto, Tatsuya; Dores, Robert M

    2016-06-01

    This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs) related to research published in "Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish" (Takahashi et al., 2016) [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR.

  8. Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors

    Directory of Open Access Journals (Sweden)

    Akiyoshi Takahashi

    2016-06-01

    Full Text Available This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs related to research published in “Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish” (Takahashi et al., 2016 [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR.

  9. ephrin ligands and Eph receptors show regionally restricted expression in the developing palate and tongue

    Directory of Open Access Journals (Sweden)

    Guilherme Machado Xavier

    2016-02-01

    Full Text Available The Eph family receptor-interacting (ephrin ligands and erythropoietin-producing hepatocellular carcinoma (Eph receptors constitute the largest known family of receptor tyrosine kinases. Ephrin ligands and their receptors form an important cell communication system with widespread roles in normal physiology and disease pathogenesis. In order to investigate potential roles of the ephrin-Eph system during palatogenesis and tongue development, we have characterized the cellular mRNA expression of family members EphrinA1-A3, EphA1–A8 and EphrinB2, EphB1, EphB4 during murine embryogenesis between embryonic day 13.5–16.5 using radioactive in situ hybridization. With the exception of EphA6 and ephrinA3, all genes were regionally expressed during the process of palatogenesis, with restricted and often overlapping domains. Transcripts were identified in the palate epithelium, localized at the tip of the palatal shelves, in the mesenchyme and also confined to the medial epithelium seam. Numerous Eph transcripts were also identified during tongue development. In particular, EphA1 and EphA2 demonstrated a highly restricted and specific expression in the tongue epithelium at all stages examined, whereas EphA3 was strongly expressed in the lateral tongue mesenchyme. These results suggest regulatory roles for ephrin-EphA signaling in development of the murine palate and tongue.

  10. Generalization of a targeted library design protocol: application to 5-HT7 receptor ligands.

    Science.gov (United States)

    Nordling, Erik; Homan, Evert

    2004-01-01

    Herein a general concept for the design of targeted libraries for proteins with binding sites that are divided into subsites is laid out, including several practical aspects and their solutions. The design is based on a chemogenomic classification of the subsites followed by collection of bioactive molecular fragments and virtual library generation. The general process is outlined and applied to the assembly of a library of 500 molecules targeting the serotonin type 7 (5-HT7) receptor, a class A G-Protein Coupled Receptor (GPCR). Utilizing commercially available building blocks of similar size and composition, a reference library was created. Control sets of known ligands for the 5-HT7 receptor, other GPCRs, and nuclear receptors were collected from literature sources. Principal component analysis of molecular descriptors for the two libraries and the literature sets, displayed a focusing of the targeted library to the region in the chemical space defined by the literature actives, suggesting a denser coverage of the bioactive region than for the more diverse reference library. Additional computational validations, including PCA class predictions, 3D pharmacophore modeling, and docking calculations all indicated an enrichment factor of 5-HT7 ligand-like molecules in the range of 2-4 for the targeted library compared to the reference library.

  11. Evolutionarily conserved paired immunoglobulin-like receptor α (PILRα) domain mediates its interaction with diverse sialylated ligands.

    Science.gov (United States)

    Sun, Yonglian; Senger, Kate; Baginski, Tomasz K; Mazloom, Anita; Chinn, Yvonne; Pantua, Homer; Hamidzadeh, Kajal; Ramani, Sree Ranjani; Luis, Elizabeth; Tom, Irene; Sebrell, Andrew; Quinones, Gabriel; Ma, Yan; Mukhyala, Kiran; Sai, Tao; Ding, Jiabing; Haley, Benjamin; Shadnia, Hooman; Kapadia, Sharookh B; Gonzalez, Lino C; Hass, Philip E; Zarrin, Ali A

    2012-05-04

    Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ∼22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed.

  12. Molecular Dynamics Investigation of gluazo, a Photo-Switchable Ligand for the Glutamate Receptor GluK2.

    Directory of Open Access Journals (Sweden)

    Yanan Guo

    Full Text Available Photochromic ligands (PCLs, defined as photoswitchable molecules that are able to endow native receptors with a sensitivity towards light, have become a promising photopharmacological tool for various applications in biology. In general, PCLs consist of a ligand of the target receptor covalently linked to an azobenzene, which can be reversibly switched between two configurations upon light illumination. Gluazo, as a PCL that targets excitatory amino acid receptors, in its dark-adapted trans iso-form was characterized to be a partial agonist of the kainate glutamate receptor GluK2. Application of UV light leads to the formation of the cis form, with remarkedly reduced affinity towards GluK2. The mechanism of the change of ligand affinity induced by the photoisomerization was unresolved. The presented computational study explains how the isomerization of such a PCL affects the structural changes in the target receptor that lead to its activation.

  13. Dissecting Individual Ligand-Receptor Bonds with a Laminar Flow Chamber

    CERN Document Server

    Pierres, Anne; Benoliel, Anne-Marie; Bongrand, Pierre

    2008-01-01

    The most important function of proteins may well be to bind to other biomolecules. It has long been felt that kinetic rates of bond formation and dissociation between soluble receptors and ligands might account for most features of the binding process. Only theoretical considerations allowed to predict the behaviour of surface-attached receptors from the properties of soluble forms. During the last decade, experimental progress essentially based on flow chambers, atomic force microscopes or biomembrane force probes allowed direct analysis of biomolecule interaction at the single bond level and gave new insight into previously ignored features such as bond mechanical properties or energy landscapes. The aim of this review is (i) to describe the main advances brought by laminar flow chambers, including information on bond response to forces, multiplicity of binding states, kinetics of bond formation between attached structures, effect of molecular environment on receptor efficiency and behaviour of multivalent ...

  14. ReFlexIn: a flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Simon Leis

    Full Text Available For many targets of pharmaceutical importance conformational changes of the receptor protein are relevant during the ligand binding process. A new docking approach, ReFlexIn (Receptor Flexibility by Interpolation, that combines receptor flexibility with the computationally efficient potential grid representation of receptor molecules has been evaluated on the retroviral HIV-1 (Human Immunodeficiency Virus 1 protease system. An approximate inclusion of receptor flexibility is achieved by using interpolation between grid representations of individual receptor conformations. For the retroviral protease the method was tested on an ensemble of protease structures crystallized in the presence of different ligands and on a set of structures obtained from morphing between the unbound and a ligand-bound protease structure. Docking was performed on ligands known to bind to the protease and several non-binders. For the binders the ReFlexIn method yielded in almost all cases ligand placements in similar or closer agreement with experiment than docking to any of the ensemble members without degrading the discrimination with respect to non-binders. The improved docking performance compared to docking to rigid receptors allows for systematic virtual screening applications at very small additional computational cost.

  15. Characterization of the 5-HT7receptor : Synthesis and molecular modeling of ligands and the receptor

    NARCIS (Netherlands)

    Vermeulen, Erik Sander

    2005-01-01

    De serotonine-receptor 5-HT7 komt voor in bepaalde delen van de hersenen van de mens en is waarschijnlijk betrokken bij aandoeningen als migraine, depressiviteit en slaapstoornissen. In het proefschrift van Erik Vermeulen wordt het werkingsmechanisme van deze receptor onderzocht. Vermeulen synthetis

  16. Characterization of the 5-HT7 receptor : synthesis and molecular modeling of ligands and the receptor

    NARCIS (Netherlands)

    Vermeulen, Erik Sander

    2005-01-01

    De serotonine-receptor 5-HT7 komt voor in bepaalde delen van de hersenen van de mens en is waarschijnlijk betrokken bij aandoeningen als migraine, depressiviteit en slaapstoornissen. In het proefschrift van Erik Vermeulen wordt het werkingsmechanisme van deze receptor onderzocht. Vermeulen synthetis

  17. Local and global ligand-induced changes in the structure of the GABA(A) receptor.

    Science.gov (United States)

    Muroi, Yukiko; Czajkowski, Cynthia; Jackson, Meyer B

    2006-06-13

    Ligand-gated channels mediate synaptic transmission through conformational transitions triggered by the binding of neurotransmitters. These transitions are well-defined in terms of ion conductance, but their structural basis is poorly understood. To probe these changes in structure, GABA(A) receptors were expressed in Xenopus oocytes and labeled at selected sites with environment-sensitive fluorophores. With labels at two different residues in the alpha1 subunit in loop E of the GABA-binding pocket, GABA elicited fluorescence changes opposite in sign. This pattern of fluorescence changes is consistent with a closure of the GABA-binding cavity at the subunit interface. The competitive antagonist SR-95531 inverted this pattern of fluorescence change, but the noncompetitive antagonist picrotoxin failed to elicit optical signals. In response to GABA (but not SR-95531), labels at the homologous residues in the beta2 subunit showed the same pattern of fluorescence change as the alpha1-subunit labels, indicating a global transition with comparable movements in homologous regions of different subunits. Incorporation of the gamma2 subunit altered the fluorescence changes of alpha1-subunit labels and eliminated them in beta2-subunit labels. Thus, the ligand-induced structural changes in the GABA(A) receptor can extend over considerable distances or remain highly localized, depending upon subunit composition and ligand.

  18. Cannabinoid receptor 1 ligands revisited: Pharmacological assessment in the ACTOne system.

    Science.gov (United States)

    Presley, Chaela S; Abidi, Ammaar H; Moore, Bob M

    2016-04-01

    In vitro cannabinoid pharmacology has evolved over time from simple receptor binding to include [(35)S]GTPγ, β-arrestin, and cAMP assays. Each assay has benefits and drawbacks; however, no single functional system has been used for high-throughput evaluation of compounds from binding to pharmacological functionality and antagonist assessment in a well-characterized human cell line. In this study, we evaluated and validated one system-ACTOne human embryonic kidney cells transfected with a cyclic nucleotide gated channel and cannabinoid receptor 1 (CB1)-and compared human CB1 affinity, functional, and antagonistic effects on cAMP with previously published results. The study was conducted on a diverse group of CB1 ligands, including endocannabinoids and related compounds, 2-AG, AEA, MAEA, and ACEA, the phytocannabinoid Δ(9) THC, and synthetic cannabinoids CP 55,940, WIN 55,212-2, SR 141716A, CP 945,598, and WIN 55,212-3. Our results were compared with literature values where human CB1 was used for affinity determination and cAMP was used as a functional readout. Here we report the first detailed evaluation of the ACTOne assay for the pharmacological evaluation of CB1 ligands. The results from the study reveal some interesting deviations from previously reported functional activities of the aforementioned ligands.

  19. Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Ligand Choreography: Newcomers Take the Stage.

    Science.gov (United States)

    Garcia-Vallvé, Santiago; Guasch, Laura; Tomas-Hernández, Sarah; del Bas, Josep Maria; Ollendorff, Vincent; Arola, Lluís; Pujadas, Gerard; Mulero, Miquel

    2015-07-23

    Thiazolidinediones (TZDs), such as rosiglitazone and pioglitazone, are peroxisome proliferator-activated receptor γ (PPARγ) full agonists that have been widely used in the treatment of type 2 diabetes mellitus. Despite the demonstrated beneficial effect of reducing glucose levels in the plasma, TZDs also induce several adverse effects. Consequently, the search for new compounds with potent antidiabetic effects but fewer undesired effects is an active field of research. Interestingly, the novel proposed mechanisms for the antidiabetic activity of PPARγ agonists, consisting of PPARγ Ser273 phosphorylation inhibition, ligand and receptor mutual dynamics, and the presence of an alternate binding site, have recently changed the view regarding the optimal characteristics for the screening of novel PPARγ ligands. Furthermore, transcriptional genomics could bring essential information about the genome-wide effects of PPARγ ligands. Consequently, facing the new mechanistic scenario proposed for these compounds is essential for resolving the paradoxes among their agonistic function, antidiabetic activities, and side effects and should allow the rational development of better and safer PPARγ-mediated antidiabetic drugs.

  20. Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Judyta eJuranek

    2015-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal motor neuron disorder of largely unknown pathogenesis. Recent studies suggest that enhanced oxidative stress and neuroinflammation contribute to the progression of the disease. Mounting evidence implicates the receptor for advanced glycation end-products (RAGE as a significant contributor to the pathogenesis of certain neurodegenerative diseases and chronic conditions. It is hypothesized that detrimental actions of RAGE are triggered upon binding to its ligands, such as AGEs (advanced glycation end products, S100/calgranulin family members, and High Mobility Group Box-1 (HMGB1 proteins. Here, we examined the expression of RAGE and its ligands in human ALS spinal cord. Tissue samples from age-matched human control and ALS spinal cords were tested for the expression of RAGE, carboxymethyllysine (CML AGE, S100B and HMGB1, and intensity of the immunofluorescent and immunoblotting signals was assessed. We found that the expression of both RAGE and its ligands was significantly increased in the spinal cords of ALS patients versus age-matched control subjects. Our study is the first report describing co-expression of both RAGE and its ligands in human ALS spinal cords. These findings suggest that further probing of RAGE as a mechanism of neurodegeneration in human ALS is rational.

  1. Ligand-receptor affinities computed by an adapted linear interaction model for continuum electrostatics and by protein conformational averaging.

    Science.gov (United States)

    Nunes-Alves, Ariane; Arantes, Guilherme Menegon

    2014-08-25

    Accurate calculations of free energies involved in small-molecule binding to a receptor are challenging. Interactions between ligand, receptor, and solvent molecules have to be described precisely, and a large number of conformational microstates has to be sampled, particularly for ligand binding to a flexible protein. Linear interaction energy models are computationally efficient methods that have found considerable success in the prediction of binding free energies. Here, we parametrize a linear interaction model for implicit solvation with coefficients adapted by ligand and binding site relative polarities in order to predict ligand binding free energies. Results obtained for a diverse series of ligands suggest that the model has good predictive power and transferability. We also apply implicit ligand theory and propose approximations to average contributions of multiple ligand-receptor poses built from a protein conformational ensemble and find that exponential averages require proper energy discrimination between plausible binding poses and false-positives (i.e., decoys). The linear interaction model and the averaging procedures presented can be applied independently of each other and of the method used to obtain the receptor structural representation.

  2. LIBSA--a method for the determination of ligand-binding preference to allosteric sites on receptor ensembles.

    Science.gov (United States)

    Hocker, Harrison J; Rambahal, Nandini; Gorfe, Alemayehu A

    2014-02-24

    Incorporation of receptor flexibility into computational drug discovery through the relaxed complex scheme is well suited for screening against a single binding site. In the absence of a known pocket or if there are multiple potential binding sites, it may be necessary to do docking against the entire surface of the target (global docking). However no suitable and easy-to-use tool is currently available to rank global docking results based on the preference of a ligand for a given binding site. We have developed a protocol, termed LIBSA for LIgand Binding Specificity Analysis, that analyzes multiple docked poses against a single or ensemble of receptor conformations and returns a metric for the relative binding to a specific region of interest. By using novel filtering algorithms and the signal-to-noise ratio (SNR), the relative ligand-binding frequency at different pockets can be calculated and compared quantitatively. Ligands can then be triaged by their tendency to bind to a site instead of ranking by affinity alone. The method thus facilitates screening libraries of ligand cores against a large library of receptor conformations without prior knowledge of specific pockets, which is especially useful to search for hits that selectively target a particular site. We demonstrate the utility of LIBSA by showing that it correctly identifies known ligand binding sites and predicts the relative preference of a set of related ligands for different pockets on the same receptor.

  3. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells

    Science.gov (United States)

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A.; Ackerman, Janet M.; Yaswen, Paul; Vulpe, Chris D.; Leitman, Dale C.

    2015-01-01

    Background: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. Objectives: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). Methods: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Results: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Conclusion: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Citation: Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM

  4. Synthesis and biological activity of small peptides as NOP and opioid receptors' ligands: view on current developments.

    Science.gov (United States)

    Naydenova, Emilia; Todorov, Petar; Zamfirova, Rositza

    2015-01-01

    The heptadecapeptide nociceptin, also called orphanin FQ (N/OFQ), is the endogenous agonist of the N/OFQ peptide receptor (NOP receptor) and is involved in several central nervous system pathways, such as nociception, reward, tolerance, and feeding. The discovery of small molecule ligands for NOP is being actively pursued for several therapeutic applications. This review presents overview of the several recently reported NOP ligands (agonists and antagonists), with an emphasis of the structural features that may be important for modulating the intrinsic activity of these ligands. In addition, a brief account on the characterization of newly synthesized ligands of NOP receptor with aminophosphonate moiety and β-tryptophan analogues will be presented.

  5. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range

    Science.gov (United States)

    Ventura, Alejandra C.; Bush, Alan; Vasen, Gustavo; Goldín, Matías A.; Burkinshaw, Brianne; Bhattacharjee, Nirveek; Folch, Albert; Brent, Roger; Chernomoretz, Ariel; Colman-Lerner, Alejandro

    2014-01-01

    Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. PMID:25172920

  6. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    Science.gov (United States)

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  7. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  8. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.

  9. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    Science.gov (United States)

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  10. Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System.

    Science.gov (United States)

    Chitu, Violeta; Gokhan, Şölen; Nandi, Sayan; Mehler, Mark F; Stanley, E Richard

    2016-06-01

    The colony-stimulating factor-1 receptor (CSF-1R) kinase regulates tissue macrophage homeostasis, osteoclastogenesis, and Paneth cell development. However, recent studies in mice have revealed that CSF-1R signaling directly controls the development and maintenance of microglia, and cell autonomously regulates neuronal differentiation and survival. While the CSF-1R-cognate ligands, CSF-1 and interleukin-34 (IL-34) compete for binding to the CSF-1R, they are expressed in a largely non-overlapping manner by mature neurons. The recent identification of a dominantly inherited, adult-onset, progressive dementia associated with inactivating mutations in the CSF-1R highlights the importance of CSF-1R signaling in the brain. We review the roles of the CSF-1R and its ligands in microglial and neural development and function, and their relevance to our understanding of neurodegenerative disease.

  11. Ligand- and mutation-induced conformational selection in the CCR5 chemokine G protein-coupled receptor.

    Science.gov (United States)

    Abrol, Ravinder; Trzaskowski, Bartosz; Goddard, William A; Nesterov, Alexandre; Olave, Ivan; Irons, Christopher

    2014-09-09

    We predicted the structural basis for pleiotropic signaling of the C-C chemokine type 5 (CCR5) G protein-coupled receptor (GPCR) by predicting the binding of several ligands to the lower-energy conformations of the CCR5 receptor and 11 mutants. For each case, we predicted the ∼ 20 most stable conformations for the receptor along with the binding sites for four anti-HIV ligands. We found that none of the ligands bind to the lowest-energy apo-receptor conformation. The three ligands with a similar pharmacophore (Maraviroc, PF-232798, and Aplaviroc) bind to a specific higher-energy receptor conformation whereas TAK-779 (with a different pharmacophore) binds to a different high-energy conformation. This result is in agreement with the very different binding-site profiles for these ligands obtained by us and others. The predicted Maraviroc binding site agrees with the recent structure of CCR5 receptor cocrystallized with Maraviroc. We performed 11 site-directed mutagenesis experiments to validate the predicted binding sites. Here, we independently predicted the lowest 10 mutant protein conformations for each of the 11 mutants and then docked the ligands to these lowest conformations. We found the predicted binding energies to be in excellent agreement with our mutagenesis experiments. These results show that, for GPCRs, each ligand can stabilize a different protein conformation, complicating the use of cocrystallized structures for ligand screening. Moreover, these results show that a single-point mutation in a GPCR can dramatically alter the available low-energy conformations, which in turn alters the binding site, potentially altering downstream signaling events. These studies validate the conformational selection paradigm for the pleiotropic function and structural plasticity of GPCRs.

  12. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors

    NARCIS (Netherlands)

    Brejc, K.; Dijk, van W.J.; Klaassen, R.V.; Schuurmans, M.; Oost, van der J.; Smit, A.B.; Sixma, T.K.

    2001-01-01

    Pentameric ligand gated ion-channels, or Cys-loop receptors, mediate rapid chemical transmission of signals. This superfamily of allosteric transmembrane proteins includes the nicotinic acetylcholine (nAChR), serotonin 5-HT3, -aminobutyric-acid (GABAA and GABAC) and glycine receptors. Biochemical an

  13. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.;

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists...

  14. The relaxin family peptide receptors and their ligands : new developments and paradigms in the evolution from jawless fish to mammals

    NARCIS (Netherlands)

    Yegorov, Sergey; Bogerd, Jan; Good, Sara V

    2014-01-01

    Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4.

  15. GluVII:06--a highly conserved and selective anchor point for non-peptide ligands in chemokine receptors

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Schwartz, Thue W

    2006-01-01

    to be crucially important for the binding and action of a number of non-peptide ligands in for example the CCR1, CCR2 and CCR5 receptors. It is proposed that in chemokine receptors in general GluVII:06 serves as a selective anchor point for the centrally located, positively charged nitrogen of the small molecule...

  16. NOP Receptor Ligands as Potential Agents for Inflammatory and Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Elaine C. Gavioli

    2011-01-01

    Full Text Available Nociceptin/orphanin FQ (N/OFQ is a seventeen-amino acid peptide that is the endogenous ligand of a G-protein-coupled receptor (NOP. Various immune cells express the precursor protein and secrete N/OFQ as well as display binding sites for this peptide. The functional capacity of NOP receptor was demonstrated in vitro and in vivo studies by the ability of N/OFQ to induce chemotaxis of immune cells, to regulate the expression of cytokines and other inflammatory mediators, and to control cellular and humoral immunity. In this context, N/OFQ could modulate the outcome of some inflammatory diseases, such as sepsis and autoimmune pathologies by mechanisms not clearly elucidated yet. In fact, human body fluid revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's diagnose. Preclinical studies pointed to the blockade of NOP receptor signaling as successful in treating these experimental conditions. Further preclinical and clinical studies are required to investigate the potential of NOP ligands in treating inflammatory diseases.

  17. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore.

    Science.gov (United States)

    Klement, Göran; Eisele, Lina; Malinowsky, David; Nolting, Andreas; Svensson, Mats; Terp, Gitte; Weigelt, Dirk; Dabrowski, Michael

    2013-02-19

    The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.

  18. Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli.

    Science.gov (United States)

    Liu, Yan; Mémet, Sylvie; Saban, Ricardo; Kong, Xiangpeng; Aprikian, Pavel; Sokurenko, Evgeni; Sun, Tung-Tien; Wu, Xue-Ru

    2015-11-09

    During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC.

  19. Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation.

    Science.gov (United States)

    Mizrahi, Keren; Askenasy, Nadir

    2014-07-10

    Secretion of ligands of the tumor necrosis factor (TNF) superfamily is a conserved response of parenchymal tissues to injury and inflammation that commonly perpetuates elimination of dysfunctional cellular components by apoptosis. The same signals of tissue injury that induce apoptosis in somatic cells activate stem cells and initiate the process of tissue regeneration as a coupling mechanism of injury and recovery. Hematopoietic stem and progenitor cells upregulate the TNF family receptors under stress conditions and are transduced with trophic signals. The progeny gradually acquires sensitivity to receptor-mediated apoptosis along the differentiation process, which becomes the major mechanism of negative regulation of mature proliferating hematopoietic lineages and immune homeostasis. Receptor/ligand interactions of the TNF family are physiological mechanisms transducing the need for repair, which may be harnessed in pathological conditions and transplantation. Because these interactions are physiological mechanisms of injury, neutralization of these pathways has to be carefully considered in disorders that do not involve intrinsic aberrations of excessive susceptibility to apoptosis.

  20. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    Science.gov (United States)

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.

  1. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    Science.gov (United States)

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; Mcdougal, Owen M.

    2017-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  2. Individual and combined manipulation of muscarinic, NMDA, and benzodiazepine receptor activity in the water maze task: implications for a rat model of Alzheimer dementia.

    Science.gov (United States)

    Cain, D P; Ighanian, K; Boon, F

    2000-06-15

    Recent evidence indicates that Alzheimer disease typically involves different degrees of impairment in a variety of neurotransmitter systems, behaviors, and cognitive abilities in different patients. To investigate the relations between neurotransmitter system, behavioral, and cognitive impairments in an animal model of Alzheimer disease we studied spatial learning in a Morris water maze in male Long-Evans rats given neurochemical agents that targeted muscarinic cholinergic, NMDA, or benzodiazepine systems. Naive rats given a single agent or a combination of agents were severely impaired in place responding and had behavioral strategy impairments. Rats made familiar with the required water maze behavioral strategies by non-spatial pretraining performed as well as controls if given a single agent. Non-spatially pretrained rats with manipulation of both muscarinic cholinergic and NMDA or muscarinic cholinergic and benzodiazepine systems had a specific place response impairment but no behavioral strategy impairments. The results suggest that impairment of both muscarinic cholinergic and NMDA, or muscarinic cholinergic and benzodiazepine systems may model some aspects of human Alzheimer disease (impairments in navigation in familiar environments), but not other aspects of this disorder (global dementia leading to general loss of adaptive behavior). Previous research suggests that impairment of both muscarinic cholinergic and serotonergic systems may provide a better model of global dementia. The water maze testing and detailed behavioral analysis techniques used here appear to provide a means of investigating the contributions of various combinations of neurotransmitter system impairments to an animal model of Alzheimer disease.

  3. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins.

  4. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans

    Science.gov (United States)

    Reis Rodrigues, Pedro; Kaul, Tiffany K.; Ho, Jo-Hao; Lucanic, Mark; Burkewitz, Kristopher; Mair, William B.; Held, Jason M.; Bohn, Laura M.; Gill, Matthew S.

    2016-01-01

    Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans. PMID:27172180

  5. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby;

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...

  6. Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias.

    Directory of Open Access Journals (Sweden)

    Kim Vietz Andreassen

    Full Text Available Salmon calcitonin (sCT and human calcitonin (hCT are pharmacologically distinct. However, the reason for the differences is unclear. Here we analyze the differences between sCT and hCT on the human calcitonin receptor (CT(aR with respect to activation of cAMP signaling, β-arrestin recruitment, ligand binding kinetics and internalization. The study was conducted using mammalian cell lines heterologously expressing the human CT(a receptor. CT(aR downstream signaling was investigated with dose response profiles for cAMP production and β-arrestin recruitment for sCT and hCT during short term (<2 hours and prolonged (up to 72 hours stimulation. CT(aR kinetics and internalization was investigated with radio-labeled sCT and hCT ligands on cultured cells and isolated membrane preparations from the same cell line. We found that sCT and hCT are equipotent during short-term stimulations with differences manifesting themselves only during long-term stimulation with sCT inducing a prolonged activation up to 72 hours, while hCT loses activity markedly earlier. The prolonged sCT stimulation of both cAMP accumulation and β-arrestin recruitment was attenuated, but not abrogated by acid wash, suggesting a role for sCT activated internalized receptors. We have demonstrated a novel phenomenon, namely that two distinct CT(aR downstream signaling activation patterns are activated by two related ligands, thereby highlighting qualitatively different signaling responses in vitro that could have implications for sCT use in vivo.

  7. Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias.

    Science.gov (United States)

    Andreassen, Kim Vietz; Hjuler, Sara Toftegaard; Furness, Sebastian G; Sexton, Patrick M; Christopoulos, Arthur; Nosjean, Olivier; Karsdal, Morten Asser; Henriksen, Kim

    2014-01-01

    Salmon calcitonin (sCT) and human calcitonin (hCT) are pharmacologically distinct. However, the reason for the differences is unclear. Here we analyze the differences between sCT and hCT on the human calcitonin receptor (CT(a)R) with respect to activation of cAMP signaling, β-arrestin recruitment, ligand binding kinetics and internalization. The study was conducted using mammalian cell lines heterologously expressing the human CT(a) receptor. CT(a)R downstream signaling was investigated with dose response profiles for cAMP production and β-arrestin recruitment for sCT and hCT during short term (<2 hours) and prolonged (up to 72 hours) stimulation. CT(a)R kinetics and internalization was investigated with radio-labeled sCT and hCT ligands on cultured cells and isolated membrane preparations from the same cell line. We found that sCT and hCT are equipotent during short-term stimulations with differences manifesting themselves only during long-term stimulation with sCT inducing a prolonged activation up to 72 hours, while hCT loses activity markedly earlier. The prolonged sCT stimulation of both cAMP accumulation and β-arrestin recruitment was attenuated, but not abrogated by acid wash, suggesting a role for sCT activated internalized receptors. We have demonstrated a novel phenomenon, namely that two distinct CT(a)R downstream signaling activation patterns are activated by two related ligands, thereby highlighting qualitatively different signaling responses in vitro that could have implications for sCT use in vivo.

  8. Expressions of chemokine receptor CXCR4 and its ligand CXCL12 in salivary adenoid cystic carcinoma

    Institute of Scientific and Technical Information of China (English)

    徐晓刚; 吕春堂; 周中华

    2004-01-01

    Objective: To examine expressions of chemokine receptor CXCR4 and its ligand CXCL12 in primary focus and lymphogenous metastasis of salivary adenoid cystic carcinoma (ACC) with lung metastasis. Methods: Using immunohistochemical hypersensitivity catalyzed signal amplification (CSA), expressions of chemokine receptor CXCR4 and ligand CXCL12 were detected in tissue specimens from 20 cases of primary cancer focus and lymphogenous metastasis of salivary adenoid cystic carcinoma, of which 7 cases were associated with lung metastasis and 3 with lympogenons metastasis. Twenty cases of tongue carcinoma (including 10 cases with lymphogenous metastasis) and 15 cases of mucoepidermoid carcinoma (including 5 cases with lymphogenous metastasis) were used as the malignant control group; and salivary mixed tumor ( n =10), tongue leukoceratosis ( n = 10) and cervical lymph node reactive hyperplasia ( n = 10) were used as the benign control group. Results: Expression of CXCR4 in the tissues and lymph metastases of oral and maxillofacial salivary ACC, mucoepidermoid carcinoma and tongue carcinoma was significantly higher than that of the benign control group ( P < 0.05); expression of CXCR4 in the primary focus of ACC was significantly higher than that of the malignant control group; and expression of CXCR4 in the ACC with lung metastasis was 87.1% (6/7), significantly higher than that without lung metastasis( P <0.01 ). There was evident positive expression of CXCL12 in endotheliocytes of microvessels within cancer and paracancer tissues and significantly high expression of CXCL12 in lymphogenous metastasis( P < 0.05). Conclusion: Chemokine receptor CXCR4 and its ligand CXCL12 may be associated with local invasion and lymphogenous metastasis of oral and maxillofacial cancer, especially with lung metastasis of salivary ACC.

  9. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  10. Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart.

    Science.gov (United States)

    Perjés, Ábel; Kilpiö, Teemu; Ulvila, Johanna; Magga, Johanna; Alakoski, Tarja; Szabó, Zoltán; Vainio, Laura; Halmetoja, Eveliina; Vuolteenaho, Olli; Petäjä-Repo, Ulla; Szokodi, István; Kerkelä, Risto

    2016-01-01

    The G protein-coupled apelin receptor regulates important processes of the cardiovascular homeostasis, including cardiac development, cardiac contractility, and vascular tone. Most recently, a novel endogenous peptide ligand for the apelin receptor was identified in zebrafish, and it was named apela/elabela/toddler. The peptide was originally considered as an exclusively embryonic regulator, and so far its function in the adult organism remains elusive. We show here that apela is predominantly expressed in the non-cardiomyocyte fraction in the adult rodent heart. We also provide evidence that apela binds to apelin receptors in the heart. Using isolated adult rat hearts, we demonstrate, that just like the fellow receptor agonist apelin, apela increases cardiac contractility and induces coronary vasodilation already in the nanomolar level. The inotropic effect, as revealed by Western blot analysis, is accompanied by a significant increase in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Pharmacological inhibition of ERK1/2 activation markedly attenuates the apela-induced inotropy. Analysis of samples from infarcted mouse hearts showed that expression of both apela and apelin receptor is induced in failing mouse hearts and correlate with left ventricular ejection fraction. Hence, we conclude that apela is present in the adult heart, is upregulated in post-infarction cardiac remodeling, and increases cardiac contractility in an ERK1/2-dependent manner.

  11. Synthetic NCAM-derived Ligands of the Fibroblast Growth Factor Receptor

    DEFF Research Database (Denmark)

    Hansen, Stine; Li, Shizhong; Bock, Elisabeth;

    2008-01-01

    receptor (FGFR). NCAM interacts with FGFR via two fibronectin type III (FN3) modules in the extracellular part of NCAM. These modules consist of beta-strands and connecting loop regions. Based on structural analysis of the NCAM FN3 modules, four peptide sequences, FGL, BCL, dekaCAM, and FRM, encompassing...... various FN3 module loop regions, have been identified as FGFR ligands. All four peptides activate FGFR and differentially modulate a number of neuronal functions, such as differentiation, survival, and synaptic changes that are important for learning, memory, and neuronal regeneration....

  12. Cyclic guanidines as dual 5-HT5A/5-HT7 receptor ligands: optimising brain penetration.

    Science.gov (United States)

    Peters, Jens-Uwe; Lübbers, Thomas; Alanine, Alexander; Kolczewski, Sabine; Blasco, Francesca; Steward, Lucinda

    2008-01-01

    The optimisation of molecular properties within a series of 2-amino dihydroquinazoline 5-HT5A/5-HT7 receptor ligands resulted in a significantly improved brain-to-plasma ratio, enhancing the pharmacological utility of these compounds. By modulating the lipophilicity and pKa, a 20-fold increase in brain-to-plasma ratio could be achieved, leading to micromolar brain concentrations after oral administration. The enantiomers of one representative of this series of improved compounds were separated, and the configuration of the eutomer was determined by X-ray crystallography.

  13. An Accurate Method for Determination of Receptor-Ligand and Enzyme-Inhibitor Dissociation Constants from Displacement Curves

    Science.gov (United States)

    Horovitz, Amnon; Levitzki, Alexander

    1987-10-01

    Receptor-ligand dissociation constants are usually calculated from the displacement curve of a radioactively labeled ligand bound to the receptor. The formula used is restricted to cases in which the concentration of receptor is negligible compared to the concentration of both the displacing ligand and the radioactive ligand used. In this study, we rigorously derive a simple equation that can be used for calculating receptor-ligand dissociation constants for any set of experimental conditions. A linearized form of this equation provides a convenient plot from which the dissociation constant of the displacing ligand can be directly obtained. The plot is also a test for the competitive mode of binding. This exact equation now allows us to estimate the error incurred by the conventionally used equations. Similarly, we show that for competitive inhibition in enzymology, one can derive the analogous formula. Our new formula is free of the usual restrictions--namely, that the enzyme concentration is very small compared to the concentration of both the substrate and the inhibitor. It may therefore be applied to any set of experimental conditions.

  14. Photoaffinity labeling of the erythropoietin receptor and its identification in a ligand-free form

    Energy Technology Data Exchange (ETDEWEB)

    Hosoi, Takayuki; Sawyer, S.T.; Krantz, S.B. (Vanderbilt Univ. School of Medicine, Nashville, TN (USA))

    1991-01-01

    Pure human recombinant erythropoietin (EP) was acylated through a primary amino residue with a cross-linking reagent, N-((3-((4-((p-azido-m-({sup 125}I)iodophenyl)azo)benzoyl)amino)propanoyl)oxy)-succinimide (Denny-Jaffe reagent), which is photoreactive and cleavable at the azo residue. The resulting conjugated hormone (DJ-EP) was purified from unmodified EP by reverse-phase high-pressure liquid chromatography and maintained its capacity to bind to receptors for EP on erythroid progenitor cells. The receptor for EP was previously identified as two related proteins of 100 and 85 kDa molecular mass by chemical cross-linking to {sup 125}I-EP. Recently, D'Andrea and co-workers cloned a cDNA that codes for a protein of 55-66 kDa, which is thought to be the EP receptor. In this report, cross-linking to the receptor through the monofunctional DJ-EP labeled the same 140- and 125-kDa molecular mass bands cross-linked with {sup 125}I-EP and disuccinimidyl suberate. Furthermore, cleavage of the azo bond of the DJ-EP receptor complex by sodium dithionite demonstrated that proteins of 105 and 90 kDa were labeled in ligand-free form by DJ-EP. This result demonstrates that artifactual cross-linking of multiple proteins or other artifacts of cross-linking do not explain the difference in molecular mass of the EP receptor identified by cross-linking and the receptor identified by expression cloning.

  15. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells

    CERN Document Server

    Winckler, Pascale; Giannone, Gregory; De Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent

    2013-01-01

    Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule F\\"orster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-...

  16. Bodilisant-a novel fluorescent, highly affine histamine h3 receptor ligand.

    Science.gov (United States)

    Tomasch, Miriam; Schwed, J Stephan; Paulke, Alexander; Stark, Holger

    2013-02-14

    A piperidine-based lead structure for the human histamine H3 receptor (hH3R) was coupled with the BODIPY fluorophore and resulted in a strong green fluorescent (quantum yield, 0.92) hH3R ligand with affinity in the nanomolar concentration range (K i hH3R = 6.51 ± 3.31 nM), named Bodilisant. Screening for affinities at histamine and dopamine receptor subtypes showed high hH3R preference. Bodilisant was used for visualization of hH3R in hH3R overexpressing HEK-293 cells with fluorescence confocal laser scanning microscopy. In addition, in native human brain tissues, Bodilisant showed clear and displaceable images of labeled hH3R.

  17. Novel highly potent serotonin 5-HT7 receptor ligands: structural modifications to improve pharmacokinetic properties.

    Science.gov (United States)

    Lacivita, Enza; Di Pilato, Pantaleo; Stama, Madia Letizia; Colabufo, Nicola Antonio; Berardi, Francesco; Perrone, Roberto; De Filippis, Bianca; Laviola, Giovanni; Adriani, Walter; Niso, Mauro; Leopoldo, Marcello

    2013-11-15

    Here we report the synthesis, pharmacological and pharmacokinetic evaluation of a pilot set of compounds structurally related to the potent and selective 5-HT7 ligand LP-211. Among the studied compounds, N-pyridin-3-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (4b) showed high affinity for 5-HT7 receptors (K(i)=23.8 nM), selectivity over 5-HT1A receptors (>50-fold), in vitro metabolic stability (82%) and weak interaction with P-glycoprotein (BA/AB=3.3). Compound 4b was injected ip in mice to preliminarily evaluate its distribution between blood and brain.

  18. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Trindade, Marlene; Power, Deborah M

    2014-12-01

    The secretin receptor (SCTR) is a member of Class 2 subfamily B1 GPCRs and part of the PAC1/VPAC receptor subfamily. This receptor has long been known in mammals but has only recently been identified in other vertebrates including teleosts, from which it was previously considered to be absent. The ligand for SCTR in mammals is secretin (SCT), an important gastrointestinal peptide, which in teleosts has not yet been isolated, or the gene identified. This study revises the evolutionary model previously proposed for the secretin-GPCRs in metazoan by analysing in detail the fishes, the most successful of the extant vertebrates. All the Actinopterygii genomes analysed and the Chondrichthyes and Sarcopterygii fish possess a SCTR gene that shares conserved sequence, structure and synteny with the tetrapod homologue. Phylogenetic clustering and gene environment comparisons revealed that fish and tetrapod SCTR shared a common origin and diverged early from the PAC1/VPAC subfamily group. In teleosts SCTR duplicated as a result of the fish specific whole genome duplication but in all the teleost genomes analysed, with the exception of tilapia (Oreochromis niloticus), one of the duplicates was lost. The function of SCTR in teleosts is unknown but quantitative PCR revealed that in both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) transcript abundance is high in the gastrointestinal tract suggesting it may intervene in similar processes to those in mammals. In contrast, no gene encoding the ligand SCT was identified in the ray-finned fishes (Actinopterygii) although it was present in the coelacanth (lobe finned fish, Sarcopterygii) and in the elephant shark (holocephalian). The genes in linkage with SCT in tetrapods and coelacanth were also identified in ray-finned fishes supporting the idea that it was lost from their genome. At present SCTR remains an orphan receptor in ray-finned fishes and it will be of interest in the future to establish why SCT was

  19. Drug-likeness approach of 2-aminopyrimidines as histamine H3 receptor ligands

    Directory of Open Access Journals (Sweden)

    Sadek B

    2014-09-01

    Full Text Available Bassem Sadek,1 Annemarie Schreeb,2 Johannes Stephan Schwed,2,3 Lilia Weizel,2 Holger Stark3 1Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 2Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany; 3Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany Abstract: A small series of compounds containing derivatives of 2,4-diamino- and 2,4,6-triaminopyrimidine (compounds 2–7 was synthesized and tested for binding affinity to human histamine H3 receptors (hH3Rs stably expressed in HEK-293 cells and human H4Rs (hH4Rs co-expressed with Gαi2 and Gβ1γ2 subunits in Sf9 cells. Working in part from the lead compound 6-(4-methylpiperazin-1-yl-N4-(3-(piperidin-1-ylpropylpyrimidine-2,4-diamine (compound 1 with unsatisfactory affinity and selectivity to hH3Rs, our structure-activity relationship studies revealed that replacement of 4-methylpiperazino by N-benzylamine and substitution of an amine group at the 2-position of the 2-aminopyrimidine core structure with 3-piperidinopropoxyphenyl moiety as an hH3R pharmacophore resulted in N4-benzyl-N2-(4-(3-(piperidin-1-ylpropoxyphenylpyrimidine-2,4-diamine (compound 5 with high hH3R affinity (ki =4.49±1.25 nM and H3R receptor subtype selectivity of more than 6,500×. Moreover, initial metric analyses were conducted based on their target-oriented drug-likeness for predictively quantifying lipophilicity, ligand efficiency, lipophilicity-dependent ligand efficiency, molecular size-independent efficiency, and topological molecular polar surface. As to the development of potential H3R ligands, results showed that integration of the hH3R pharmacophore in hH4R-affine structural scaffolds resulted in compounds with high hH3R affinity (4.5–650 nM, moderate to low hH4R affinity (4,500–30,000 nM, receptor subtype selectivity

  20. Radioiodinated benzodiazepines: agents for mapping glial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Van Dort, M.E.; Ciliax, B.J.; Gildersleeve, D.L.; Sherman, P.S.; Rosenspire, K.C.; Young, A.B.; Junck, L.; Wieland, D.M.

    1988-11-01

    Two isomeric iodinated analogues of the peripheral benzodiazepine binding site (PBS) ligand Ro5-4864 have been synthesized and labeled in high specific activity with iodine-125. Competitive binding assays conducted with the unlabeled analogues indicate high affinity for PBS. Tissue biodistribution studies in rats with these /sup 125/I-labeled ligands indicate high uptake of radioactivity in the adrenals, heart, and kidney--tissues known to have high concentrations of PBS. Preadministration of the potent PBS antagonist PK 11195 blocked in vivo uptake in adrenal tissue by over 75%, but to a lesser degree in other normal tissues. In vivo binding autoradiography in brain conducted in C6 glioma bearing rats showed dense, PBS-mediated accumulation of radioactivity in the tumor. Ligand 6 labeled with /sup 123/I may have potential for scintigraphic localization of intracranial glioma.

  1. Ligand binding alters dimerization and sequestering of urokinase receptors in raft-mimicking lipid mixtures.

    Science.gov (United States)

    Ge, Yifan; Siegel, Amanda P; Jordan, Rainer; Naumann, Christoph A

    2014-11-01

    Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the sequestering of membrane proteins in plasma membranes, thereby influencing membrane protein functionality. However, the underlying mechanisms of such sequestration processes remain elusive, in part, due to the small size and often transient nature of these functional membrane heterogeneities in cellular membranes. To overcome these challenges, here we report the sequestration behavior of urokinase receptor (uPAR), a glycosylphosphatidylinositol-anchored protein, in a planar model membrane platform with raft-mimicking lipid mixtures of well-defined compositions using a powerful optical imaging platform consisting of confocal spectroscopy XY-scans, photon counting histogram, and fluorescence correlation spectroscopy analyses. This methodology provides parallel information about receptor sequestration, oligomerization state, and lateral mobility with single molecule sensitivity. Most notably, our experiments demonstrate that moderate changes in uPAR sequestration are not only associated with modifications in uPAR dimerization levels, but may also be linked to ligand-mediated allosteric changes of these membrane receptors. Our data show that these modifications in uPAR sequestration can be induced by exposure to specific ligands (urokinase plasminogen activator, vitronectin), but not via adjustment of the cholesterol level in the planar model membrane system. Good agreement of our key findings with published results on cell membranes confirms the validity of our model membrane approach. We hypothesize that the observed mechanism of receptor translocation in the presence of raft-mimicking lipid mixtures is also applicable to other glycosylphosphatidylinositol-anchored proteins.

  2. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  3. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook;

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and...

  4. NRLiSt BDB, the manually curated nuclear receptors ligands and structures benchmarking database.

    Science.gov (United States)

    Lagarde, Nathalie; Ben Nasr, Nesrine; Jérémie, Aurore; Guillemain, Hélène; Laville, Vincent; Labib, Taoufik; Zagury, Jean-François; Montes, Matthieu

    2014-04-10

    Nuclear receptors (NRs) constitute an important class of drug targets. We created the most exhaustive NR-focused benchmarking database to date, the NRLiSt BDB (NRs ligands and structures benchmarking database). The 9905 compounds and 339 structures of the NRLiSt BDB are ready for structure-based and ligand-based virtual screening. In the present study, we detail the protocol used to generate the NRLiSt BDB and its features. We also give some examples of the errors that we found in ChEMBL that convinced us to manually review all original papers. Since extensive and manually curated experimental data about NR ligands and structures are provided in the NRLiSt BDB, it should become a powerful tool to assess the performance of virtual screening methods on NRs, to assist the understanding of NR's function and modulation, and to support the discovery of new drugs targeting NRs. NRLiSt BDB is freely available online at http://nrlist.drugdesign.fr .

  5. Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling.

    Science.gov (United States)

    Pawar, Parag; Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2008-10-01

    Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales.

  6. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    Full Text Available The primary gestagen of elephants is 5α-dihydroprogesterone (DHP, which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR. Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD, we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.

  7. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery.

    Science.gov (United States)

    Wei, Xiaoli; Zhan, Changyou; Shen, Qing; Fu, Wei; Xie, Cao; Gao, Jie; Peng, Chunmei; Zheng, Ping; Lu, Weiyue

    2015-03-01

    Lysosomes of brain capillary endothelial cells are implicated in nicotine acetylcholine receptor (nAChR)-mediated transcytosis and act as an enzymatic barrier for the transport of peptide ligands to the brain. A D-peptide ligand of nAChRs (termed (D)CDX), which binds to nAChRs with an IC50 value of 84.5 nM, was developed by retro-inverso isomerization. (D)CDX displayed exceptional stability in lysosomal homogenate and serum, and demonstrated significantly higher transcytosis efficiency in an in vitro blood-brain barrier monolayer compared with the parent L-peptide. When modified on liposomal surface, (D)CDX facilitated significant brain-targeted delivery of liposomes. As a result, brain-targeted delivery of (D)CDX modified liposomes enhanced therapeutic efficiency of encapsulated doxorubicin for glioblastoma. This study illustrates the importance of ligand stability in nAChRs-mediated transcytosis, and paves the way for developing stable brain-targeted entities.

  8. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  9. Synthesis of substituted [{sup 123}I]imidazo[1,2-a]pyridines as potential probes for the study of the peripheral benzodiazepine receptors using SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A.; Mattner, F.; Dikic, B.; Papazian, V. [Radiopharmaceuticals Div. R and D, ANSTO, Menai, NSW (Australia)

    2000-07-01

    The imidazo[1,2-a]pyridines N,N'-dimethyl-6-chloro-(4'-iodophenyl)imidazo[1,2-a]pyridine-3-acetamide 1. N,N'-diethyl-6-chloro-(4'-iodophenyl)imidazo[1,2-a]pyridine-3-acetamide 2, and N-methyl-6-chloro-(4'-iodophenyl)imidazo[1,2-a]pyridine-3-acetamide 3, are high affinity and selective ligands for the peripheral benzodiazepineodiazepine receptors (PBR). The [{sup 123}I]1-3 labelled analogues of these compounds were subsequently synthesised for the potential study of the PBR in vivo using SPECT. Radioiodination was achieved by iododestannylation reactions of the corresponding tributyl tin precursors with Na[{sup 123}I] in the presence of peracetic acid, chloramine-T or Iodogen. Purification of the crude product was achieved by semipreparative C-18 RP HPLC to give the products in radiochemical yields of 40-85%. The products were obtained in >97% chemical and radiochemical purity and with specific activities >80 GBq/{mu}mol. (orig.)

  10. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth.

    Science.gov (United States)

    Han, ShouWei; Roman, Jesse

    2004-02-20

    Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.

  11. QSAR study of selective ligands for the thyroid hormone receptor beta.

    Science.gov (United States)

    Liu, Huanxiang; Gramatica, Paola

    2007-08-01

    In this paper, an accurate and reliable QSAR model of 87 selective ligands for the thyroid hormone receptor beta 1 (TRbeta1) was developed, based on theoretical molecular descriptors to predict the binding affinity of compounds with receptor. The structural characteristics of compounds were described wholly by a large amount of molecular structural descriptors calculated by DRAGON. Six most relevant structural descriptors to the studied activity were selected as the inputs of QSAR model by a robust optimization algorithm Genetic Algorithm. The built model was fully assessed by various validation methods, including internal and external validation, Y-randomization test, chemical applicability domain, and all the validations indicate that the QSAR model we proposed is robust and satisfactory. Thus, the built QSAR model can be used to fast and accurately predict the binding affinity of compounds (in the defined applicability domain) to TRbeta1. At the same time, the model proposed could also identify and provide some insight into what structural features are related to the biological activity of these compounds and provide some instruction for further designing the new selective ligands for TRbeta1 with high activity.

  12. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong; Choi, Mihwa; Cavey, Greg; Daugherty, Jennifer; Suino, Kelly; Kovach, Amanda; Bingham, Nathan C.; Kliewer, Steven A.; Xu, H.Eric (Van Andel); (U. of Texas-SMED)

    2010-11-10

    The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.

  13. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao [Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Han, Xiang Hua [College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Lee, Dong-Ho [Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Lee, Hak-Ju [Division of Green Business Management, Department of Forest Resources Utilization, Korean Forest Research Institute, Seoul 130-712 (Korea, Republic of); Hwang, Bang Yeon, E-mail: byhwang@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Lee, Sung-Joon, E-mail: junelee@korea.ac.kr [Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  14. Cytisine derivatives as ligands for neuronal nicotine receptors and with various pharmacological activities.

    Science.gov (United States)

    Boido, Caterina Canu; Tasso, Bruno; Boido, Vito; Sparatore, Fabio

    2003-03-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) form a family of ACh-gated cation channels made up of different subtypes. They are widely distributed in peripheral and central nervous systems and are involved in complex cerebral processes as learning, memory, nociception, movement, etc. The possibility that subtype-selective ligands be used in the treatment of CNS disorders promoted the synthesis of a large number of structural analogues of nicotine and epibatidine, two very potent nAChR agonists. Pursuing our long standing research on the structural modification of quinolizidine alkaloids, we devoted our attention to cytisine, another very potent ligand for many nAChR subtypes. Thus a systematic structural modification of cytisine was undertaken in order to obtain compounds of potential therapeutic interest at peripheral as well as central level, with a particular concern for achieving nAChR subtype selective ligands. Up to the present more than 80 cytisine derivatives, mainly of N-substitution and a few by modifying the pyridone ring, have been prepared. The biological results, which concern so far about an half of the prepared compounds, indicate that the introduction of a nitro group in position 3 of the pyridone nucleus further enhances the high affinity of cytisine, while the introduction of s