WorldWideScience

Sample records for benzodiazepine receptor ligands

  1. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  2. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands

    Science.gov (United States)

    Richter, Lars; de Graaf, Chris; Sieghart, Werner; Varagic, Zdravko; Mörzinger, Martina; de Esch, Iwan J P; Ecker, Gerhard F; Ernst, Margot

    2012-01-01

    Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABAA receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an un biased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design. PMID:22446838

  3. Study on measurement of free ligand concentration in blood and quantitative analysis of brain benzodiazepine receptor

    International Nuclear Information System (INIS)

    Hashimoto, Kenji; Goromaru, Tsuyoshi; Inoue, Osamu; Itoh, Takashi; Yamasaki, Toshiro.

    1988-01-01

    We developed the method to determine rapidly the free ligand concentration in the blood as an input function for the purpose of quantitative analysis of binding potential (B max /K d ) of brain benzodiazepine receptor in vivo. It was found that the unmetabolized radioligand in the blood after intravenous administration of 3 H-Ro 15 - 1788 could be extracted by chloroform, whereas the radioactive metabolites could not be extracted. And the plasma protein binding of 3 H-Ro 15 - 1788 was determined using an ultrafiltration method. The biodistribution of 3 H-Ro 15 - 1788 in the cerebral cortex, cerebellum and pons-medulla after intravenous administration of the radiotracer in the control and forced-swimmed mice was examined. And the time course of the free ligand concentration in the blood was determined as described above. Further, the binding potential of benzodiazepine receptor in the mouse brain was analyzed using a simple mathematical model. It was suggested that the binding potential of benzodiazepine receptor in the mouse brain was significantly decreased by forced-swimming. In conclusion, it was found that these methods would be useful for quantitative analysis of clinical data in the human brain using 11 C-Ro 15 - 1788 and positron emission tomography (PET). (author)

  4. The contribution of endogenous benzodiazepine receptor ligands to the pathogenesis of hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Basile, A.S. (National Institutes of Health, Betheda, MD (USA))

    1991-02-01

    The involvement of the gamma-aminobutyric acid A(GABAA) receptor complex in the pathogenesis of hepatic encephalopathy (HE) was examined in galactosamine-treated rabbits with HE caused by fulminant hepatic failure. Radioligand binding to the constituent components of the GABAA receptor complex was unchanged in rabbits with HE. However, partially purified extracts from encephalopathic rabbit brain were approximately three times more potent in inhibiting ({sup 3}H)Ro 15-1788 binding to benzodiazepine (BZ) receptors than extracts from control rabbits. The inhibition of radioligand binding to the BZ receptor produced by these extracts was competitive and reversible and was significantly enhanced by GABA. Further purification of these extracts by high-performance liquid chromatography (HPLC) indicated that the inhibitory activity was localized in several peaks, some of which had retention times corresponding to 1,4-benzodiazepine standards. The presence of diazepam in these extracts was confirmed using mass spectroscopy. Both mass spectroscopic and radiometric techniques demonstrated that the concentration of diazepam in brain extracts from encephalopathic rabbits was approximately 4 times greater than control extracts. These findings link the presence of BZ receptor agonists to the development of a neuropathological condition, thereby providing a rational basis for the use of BZ receptor antagonists in the management of HE in man.

  5. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood–brain barrier and exhibits anticonvulsive effects

    OpenAIRE

    Kavvadias, Dominique; Sand, Philipp; Youdim, Kuresh A; Qaiser, M Zeeshan; Rice-Evans, Catherine; Baur, Roland; Sigel, Erwin; Rausch, Wolf-Dieter; Riederer, Peter; Schreier, Peter

    2004-01-01

    The functional characterization of hispidulin (4′,5,7-trihydroxy-6-methoxyflavone), a potent benzodiazepine (BZD) receptor ligand, was initiated to determine its potential as a modulator of central nervous system activity.After chemical synthesis, hispidulin was investigated at recombinant GABAA/BZD receptors expressed by Xenopus laevis oocytes. Concentrations of 50 nM and higher stimulated the GABA-induced chloride currents at tested receptor subtypes (α1−3,5,6β2γ2S) indicating positive allo...

  6. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E. (Georgetown Univ. School of Medicine, Washington, DC (USA))

    1989-12-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4{prime}-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit {sup 3}H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations.

  7. Stability of solubilized benzodiazepine receptors

    NARCIS (Netherlands)

    Janssen, M.J; Ensing, K; de Zeeuw, R.A

    1997-01-01

    According to the observations of other researchers, benzodiazepine receptors solubilized with sodium deoxycholate are unstable, but stability can be improved by exchanging deoxycholate for Triton X-100. In our experiments we conclude that the choice of detergent is not the restrictive factor for the

  8. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  9. On the benzodiazepine binding pocket in GABAA receptors.

    Science.gov (United States)

    Berezhnoy, Dmytro; Nyfeler, Yves; Gonthier, Anne; Schwob, Hervé; Goeldner, Maurice; Sigel, Erwin

    2004-01-30

    Benzodiazepines are used for their sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsive effects. They exert their actions through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid, type A (GABA(A)) receptor channel, where they act as positive allosteric modulators. To start to elucidate the relative positioning of benzodiazepine binding site ligands in their binding pocket, GABA(A) receptor residues thought to reside in the site were individually mutated to cysteine and combined with benzodiazepine analogs carrying substituents reactive to cysteine. Direct apposition of such reactive partners is expected to lead to an irreversible site-directed reaction. We describe here the covalent interaction of alpha(1)H101C with a reactive group attached to the C-7 position of diazepam. This interaction was studied at the level of radioactive ligand binding and at the functional level using electrophysiological methods. Covalent reaction occurs concomitantly with occupancy of the binding pocket. It stabilizes the receptor in its allosterically stimulated conformation. Covalent modification is not observed in wild type receptors or when using mutated alpha(1)H101C-containing receptors in combination with the reactive ligand pre-reacted with a sulfhydryl group, and the modification rate is reduced by the binding site ligand Ro15-1788. We present in addition evidence that gamma(2)Ala-79 is probably located in the access pathway of the ligand to its binding pocket.

  10. Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Mattner, F.; Katsifis, A.; Ballantyne, P. [ANSTO, Radiopharmaceuticals Division, Lucas Heights (Australia); Staykova, M.; Willenborg, D.O. [Australian National University Medical School, The Canberra Hospital, Neurosciences Research Unit, Woden, Canberra (Australia)

    2005-04-01

    Peripheral benzodiazepine receptors (PBRs) are upregulated on macrophages and activated microglia, and radioligands for the PBRs can be used to detect in vivo neuroinflammatory changes in a variety of neurological insults, including multiple sclerosis. Substituted 2-phenyl imidazopyridine-3-acetamides with high affinity and selectivity for PBRs have been prepared that are suitable for radiolabelling with a number of positron emission tomography and single-photon emission computed tomography (SPECT) isotopes. In this investigation, the newly developed high-affinity PBR ligand 6-chloro-2-(4'-iodophenyl)-3-(N,N-diethyl)imidazo[1,2-a]pyridine-3-acetamide, or CLINDE, was radiolabelled with{sup 123}I and its biodistribution in the central nervous system (CNS) of rats with experimental autoimmune encephalomyelitis (EAE) evaluated. EAE was induced in male Lewis rats by injection of an emulsion of myelin basic protein and incomplete Freund's adjuvant containing Mycobacterium butyricum. Biodistribution studies with{sup 123}I-CLINDE were undertaken on EAE rats exhibiting different clinical disease severity and compared with results in controls. Disease severity was confirmed by histopathology in the spinal cord of rats. The relationship between inflammatory lesions and PBR ligand binding was investigated using ex vivo autoradiography and immunohistochemistry on rats with various clinical scores. {sup 123}I-CLINDE uptake was enhanced in the CNS of all rats exhibiting EAE when compared to controls. Binding reflected the ascending nature of EAE inflammation, with lumbar/sacral cord > thoracic cord > cervical cord > medulla. The amount of ligand binding also reflected the clinical severity of disease. Ex vivo autoradiography and immunohistochemistry revealed a good spatial correspondence between radioligand signal and foci of inflammation and in particular ED-1{sup +} cells representing macrophages and microglia. These results demonstrate the ability of {sup 123}I

  11. The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant α1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker

    International Nuclear Information System (INIS)

    Lockhart, Andrew; Davis, Bill; Matthews, Julian C.; Rahmoune, Hassan; Hong, Guizhu; Gee, Antony; Earnshaw, David; Brown, John

    2003-01-01

    The peripheral benzodiazepine receptor ligand PK11195 has been used as an in vivo marker of neuroinflammation in positron emission tomography studies in man. One of the methodological issues surrounding the use of the ligand in these studies is the highly variable kinetic behavior of [ 11 C]PK11195 in plasma. We therefore undertook a study to measure the binding of [ 3 H]PK11195 to whole human blood and found a low level of binding to blood cells but extensive binding to plasma proteins. Binding assays using [ 3 H]PK11195 and purified human plasma proteins demonstrated a strong binding to α1-acid glycoprotein (AGP) and a much weaker interaction with albumin. Immunodepletion of AGP from plasma resulted in the loss of plasma [ 3 H]PK11195 binding demonstrating: (i) the specificity of the interaction and (ii) that AGP is the major plasma protein to which PK11195 binds with high affinity. PK11195 was able to displace fluorescein-dexamethasone from AGP with IC 50 of 11 C]PK11195 to the brain parenchyma in diseases with blood brain barrier breakdown. Finally, local synthesis of AGP at the site of brain injury may contribute the pattern of [ 11 C]PK11195 binding observed in neuroinflammatory diseases

  12. Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors.

    OpenAIRE

    Braestrup, C; Nielsen, M; Olsen, C E

    1980-01-01

    Benzodiazepines probably exert their anxiolytic, hypnotic, and anticonvulsant effects by interacting with brain-specific high-affinity benzodiazepine receptors. In searching for possible endogenous ligands for these receptors we have purified a compound 10(7)-fold from human urine by extractions, treatment with hot ethanol, and column chromatography. The compound was identified as beta-carboline-3-carboxylic acid ethyl ester (IIc) by mass spectrometry, NMR spectrometry, and synthesis; IIc was...

  13. Synthesis of [[sup 3]H]tert-butyl 8-chloro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodia zepine 3-carboxylate, a selective, high affinity ligand for the diazepam insensitive (DI) subtype of the benzodiazepine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang Gu; Costa, B.R. de; Wong, Garry; Rice, K.C.; Skolnick, Phil (National Inst. of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (United States))

    1992-12-01

    The preparation of [[sup 3]H]-labelled tert-butyl 8-chloro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]benzodiazepine 3-carboxylate (TCIB, 6), a high affinity ligand for the diazepam insensitive (DI) subtype of the benzodiazepine receptor (BZR) is described. Synthesis of [[sup 3]H]TCIB was accomplished in 4 steps starting from 5-chloroisatoic anhydride. Tritium-label introduction was achieved in the final step by selective catalytic tritiolysis in 62% radiochemical yield with quantitative isotopic incorporation. (Author).

  14. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  15. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  16. Aldosterone-reversible decrease in the density of renal peripheral benzodiazepine receptors in the rat after adrenalectomy

    International Nuclear Information System (INIS)

    Basile, A.S.; Ostrowski, N.L.; Skolnick, P.

    1987-01-01

    A statistically significant decrease in the density of peripheral benzodiazepine receptors was observed in renal membranes of rats beginning 2 weeks after adrenalectomy when compared with sham-operated controls. This decrease in peripheral benzodiazepine receptor density was manifest as a decrease in the maximum binding of two ligands, [ 3 H]Ro 5-4864 and [ 3 H]PK 11195, without accompanying changes in their Kd for this site. Similar changes were not seen in another aldosterone-sensitive organ, the submandibular salivary gland. The decrease in peripheral benzodiazepine receptor density observed in adrenalectomized rat renal membranes was restored to control levels after 1 week of aldosterone administration using a dose (12.5 micrograms/kg/day) that had no effect on peripheral benzodiazepine receptor density in sham-operated animals. In contrast, dexamethasone administration (50 micrograms/kg/day, 1 week) had no effect on renal peripheral benzodiazepine receptor density when administered to either adrenalectomized or sham-operated rats. Further, adrenal demedullation had no effect on renal peripheral benzodiazepine receptor density or affinity. The decrease in peripheral benzodiazepine receptor density was localized to the renal cortex and the outer stripe of the medulla by gross dissection of renal slices and renal tissue section autoradiography. The specific effect of adrenalectomy on renal peripheral benzodiazepine receptor density, the lack of direct effect of aldosterone on [ 3 H] Ro 5-4864 binding and the localization of the change in peripheral benzodiazepine receptor density to the renal cortex and outer stripe suggest that these changes may reflect an adaptation of the renal nephron (possibly the distal convoluted tubule, intermediate tubule and/or the collecting duct) to the loss of mineralocorticoid hormones

  17. Benzodiazepine receptors: Labeling in intact animals with [3H] flunitrazepam

    International Nuclear Information System (INIS)

    Chang, R.S.L.; Snyder, S.H.

    1978-01-01

    [ 3 H] Flunitrazepam appears to label specific benzodiazepine receptors in vitro after i.v. injection in mice. Benzodiazepine potencies in reducing [ 3 H] flunitrazepam binding in vitro corresponds to pharmacological potencies and parallel relative affinities for [ 3 H] flunitrazepam binding sites in isolated brain membranes. However, 50% occupation of [ 3 H]-flunitrazepam sites by benzodiazepines in vivo requires concentrations of the drugs about 1000 times higher than their Ksub(i) values for the binding sites in vitro. In pharmacologically active doses sodium pentobarbital, strychnine, picrotoxin and bicuculline fail to influence [ 3 H] flunitrazepam binding in vivo. (Auth.)

  18. Therapeutic androgen receptor ligands

    Science.gov (United States)

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs). PMID:16604181

  19. Benzodiazepine receptor antagonists for acute and chronic hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Kjaergard, L L; Gluud, C

    2001-01-01

    The pathogenesis of hepatic encephalopathy is unknown. It has been suggested that liver failure leads to the accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition which may progress to coma. Several trials have assessed benzodiazepine receptor...

  20. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    Science.gov (United States)

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  1. Synthetic and computer assisted analysis of the pharmacophore for agonists at benzodiazepine receptors.

    Science.gov (United States)

    Diaz-Arauzo, H; Koehler, K F; Hagen, T J; Cook, J M

    1991-01-01

    In order to employ rational drug design in the discovery of selective benzodiazepine receptor agonists and inverse agonists, pharmacophore/receptor models for both these activities must first be established. Recently, a pharmacophore for the inverse agonist site has been formulated employing the most recent receptor mapping techniques (22). The continuation of this approach to the pharmacophore for agonist ligands has permitted a definition of this site independently of the inverse agonist model. The agonist pharmacophore/receptor contains two hydrogen bond donating sites of interaction (H1 and H2) located about 6.5 A from each other, as well as three areas of lipophilic interaction (L1-L3). The areas L1 and L2 are critical for agonist activity; moreover, some ligands also require an interaction in a third lipophilic area termed L3. This is in agreement with previous work (12-23). In addition, an area of negative steric interaction (S1) between the ligand and receptor-binding protein is defined. In regard to the pharmacophore, it was established that the alignment rule for agonist beta-carbolines is different from that which elicits inverse agonist activity. Consideration of the pharmacophore has resulted in the synthesis of a new beta-carboline 16 which elicits agonist activity. This ligand 16 not only satisfied the requirements of the pharmacophore, but more importantly it elicited both anticonvulsant and anxiolytic activity, but was devoid of the myorelaxant/ataxic properties associated with the benzodiazepines.

  2. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites -current status

    International Nuclear Information System (INIS)

    Pike, V.W.; Osman, S.; Shah, F.; Turton, D.R.; Waters, S.L.; Crouzel, C.; Nutt, D.J.

    1993-01-01

    The status of the radiochemical development and biological evaluation of radioligands for PET studies of central benzodiazepine (BZ) receptors and the so-called peripheral benzodiazepine binding sites, here discriminated and referred to as PK binding sites, is reviewed against current pharmacological knowledge, indicating those agents with present value and those with future potential. Practical recommendations are given for the preparation of two useful radioligands for PET studies, [N-methyl- 11 C]flumazenil for central BZ receptors, and [N-methyl- 11 C]PK 11195 for PK binding sites. Quality assurance and plasma metabolite analysis are also reviewed for these radioligands and practical recommendations are given on methodology for their performance. (Author)

  3. Benzodiazepines

    Science.gov (United States)

    ... with amnesia, hostility, irritability, and vivid or disturbing dreams. Affect on body Benzodiazepines slow down the central nervous system and may cause sleepiness. Drugs causing similar effects Alcohol, barbiturates, sleeping pills, and GHB Overdose effects ...

  4. Benzodiazepine effect of 125I-iomazenil-benzodiazepine receptor binding and serum corticosterone level in a rat model

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2005-01-01

    To test the change in free or unoccupied benzodiazepine receptor (BZR) density in response to diazepam, we investigated 125 I-iomazenil ( 125 I-IMZ) binding and serum corticosterone levels in a rat model. Wistar male rats, which received psychological stress using a communication box for 5 days, were divided into two groups according to the amount of administered diazepam: no diazepam [D (0)] group and 10 mg/kg per day [D (10)] group of 12 rats each. The standardized uptake value (SUV) of 125 I-IMZ of the D (10) group were significantly lower (P 125 I-IMZ, it is clear that diazepam competed with endogenous ligand for the free BZR sites, and the frontal, parietal and temporal cortices, globus pallidus, hippocampus, amygdala and hypothalamus are important areas in which 125 I-IMZ binding is strongly affected by administration of diazepam

  5. Benzodiazepine receptor and neurotransmitter studies in the brain of suicides

    Energy Technology Data Exchange (ETDEWEB)

    Manchon, M.; Kopp, N.; Rouzioux, J.J.; Lecestre, D.; Deluermoz, S.; Miachon, S.

    1987-12-14

    The characteristics of benzodiazepine binding sites were studied on frozen sections of hippocampus of 7 suicides and 5 controls subjects, using biochemical and autoradiographic techniques. /sup 3/H flunitrazepam was used as ligand, clonazepam and CL 218,872 as displacing agents. Some neurotransmitters or their derivatives were evaluated quantitatively in parallel in the hippocampal tissue by liquid chromatography. The authors observed mainly an increase in the Ki of CL 218,872 subtype I binding sites in suicides, and an increase in % of type I binding sites. Among neurotransmitters, only norepinephrine differed significantly between controls and suicides. 36 references, 3 figures, 1 table.

  6. Benzodiazepine receptor and neurotransmitter studies in the brain of suicides

    International Nuclear Information System (INIS)

    Manchon, M.; Kopp, N.; Rouzioux, J.J.; Lecestre, D.; Deluermoz, S.; Miachon, S.

    1987-01-01

    The characteristics of benzodiazepine binding sites were studied on frozen sections of hippocampus of 7 suicides and 5 controls subjects, using biochemical and autoradiographic techniques. 3 H flunitrazepam was used as ligand, clonazepam and CL 218,872 as displacing agents. Some neurotransmitters or their derivatives were evaluated quantitatively in parallel in the hippocampal tissue by liquid chromatography. The authors observed mainly an increase in the Ki of CL 218,872 subtype I binding sites in suicides, and an increase in % of type I binding sites. Among neurotransmitters, only norepinephrine differed significantly between controls and suicides. 36 references, 3 figures, 1 table

  7. Preservation of peripheral benzodiazepine receptors: differential effects of freezing on [3H]Ro 5-4864 and [3H]PK 11195 binding

    International Nuclear Information System (INIS)

    Basile, A.S.; Ostrowski, N.L.; Skolnick, P.

    1987-01-01

    A statistically significant decrease in the density of peripheral benzodiazepine receptors was observed in renal membranes of rats beginning 2 weeks after adrenalectomy when compared with sham-operated controls. This decrease in peripheral benzodiazepine receptor density was manifest as a decrease in the Bmax of two ligands [ 3 H]Ro 5-4864 and [ 3 H]PK 11195, without accompanying changes in their apparent affinity (Kd) for this site. Similar changes were not seen in another aldosterone-sensitive organ, the submandibular salivary gland. The decrease in peripheral benzodiazepine receptor density in observed in adrenalectomized rat renal membranes was restored to control levels after 1 week of aldosterone administration using a dose (12.5 micrograms/kg/day) that had no effect on peripheral benzodiazepine receptor density in sham-operated animals. In contrast, dexamethasone administration (50 micrograms/kg/day, 1 week) had no effect on renal peripheral benzodiazepine receptor density when administered to either adrenalectomized or sham-operated rats. Further, adrenal demedullation had no effect on renal peripheral benzodiazepine receptor density or affinity. The decrease in peripheral benzodiazepine receptor density was localized to the renal cortex and the outer stripe of the medulla by gross dissection of renal slices and renal tissue section autoradiography. The specific effect of adrenalectomy on renal peripheral benzodiazepine receptor density, the lack of direct effect of aldosterone on [ 3 H]Ro 5-4864 binding, and the localization of the change in peripheral benzodiazepine receptor density to the renal cortex and outer stripe suggests that these changes may reflect an adaptation of the renal nephron (possibly the distal convoluted tubule, intermediate tubule and/or the collecting duct) to the loss of mineralocorticoid hormones

  8. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...... or slightly lower potencies than (S)-AA [e.g., EC(50) = 76 microM for (2S,4S)-4-methyl-AA (5a) as compared to EC(50) = 35 microM for (S)-AA]. The position of the methyl substituent had a profound effect on the observed pharmacology, whereas the absolute stereochemistry at the methylated carbon atom had a very......) analogs, and the synthesis, stereochemistry, and enantiopharmacology of 3-methyl-AA (4a-d), 4-methyl-AA (5a-d), 5-methyl-AA (6a-d), and (E)-Delta(4)-5-methyl-AA (7a and 7b) are reported. The compounds were resolved using chiral HPLC and the configurational assignments of the enantiomers were based on X...

  9. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A Benzodiazepine Receptor Model

    Directory of Open Access Journals (Sweden)

    Terry Clayton

    2015-01-01

    Full Text Available An updated model of the GABA(A benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1 which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM, SH-053-2′F-R-CH3 (2, has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A receptors.

  10. Benzodiazepine effect of {sup 125}I-iomazenil-benzodiazepine receptor binding and serum corticosterone level in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, Nobuyoshi [Proton Medical Research Center, University of Tsukuba, Ibaragi, 305-8575 (Japan)]. E-mail: gzl13162@nifty.ne.jp; Ogi, Shigeyuki [Department of Radiology, Jikei University School of Medicine, Tokyo, 105-8461 (Japan); Uchiyama, Mayuki [Department of Radiology, Jikei University School of Medicine, Tokyo, 105-8461 (Japan); Mori, Yutaka [Department of Radiology, Jikei University School of Medicine, Tokyo, 105-8461 (Japan)

    2005-01-01

    To test the change in free or unoccupied benzodiazepine receptor (BZR) density in response to diazepam, we investigated {sup 125}I-iomazenil ({sup 125}I-IMZ) binding and serum corticosterone levels in a rat model. Wistar male rats, which received psychological stress using a communication box for 5 days, were divided into two groups according to the amount of administered diazepam: no diazepam [D (0)] group and 10 mg/kg per day [D (10)] group of 12 rats each. The standardized uptake value (SUV) of {sup 125}I-IMZ of the D (10) group were significantly lower (P<.05) than those of the D (0) group in the frontal, parietal and temporal cortices, globus pallidus, hippocampus, amygdala and hypothalamus. The serum corticosterone level ratio in the D (10) group was significantly lower than that in the D (0) group (P<.05). From the change in serum corticosterone levels, diazepam attenuated the psychological stress produced by the physical stress to animals in adjacent compartments. From the reduced binding of {sup 125}I-IMZ, it is clear that diazepam competed with endogenous ligand for the free BZR sites, and the frontal, parietal and temporal cortices, globus pallidus, hippocampus, amygdala and hypothalamus are important areas in which {sup 125}I-IMZ binding is strongly affected by administration of diazepam.

  11. INSIGHTS INTO FUNCTIONAL PHARMACOLOGY OF α1 GABAA RECEPTORS: HOW MUCH DOES PARTIAL ACTIVATION AT THE BENZODIAZEPINE SITE MATTER?

    OpenAIRE

    Joksimović, Srđan; Varagic, Zdravko; Kovačević, Jovana; Van Linn, Michael; Milić, Marija; Rallapalli, Sundari; Timić, Tamara; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2013-01-01

    Synthesis of ligands inactive or low-active at α1 GABAA receptors has become the key concept for development of novel, more tolerable benzodiazepine (BZ)-like drugs. WYS8, a remarkably (105 times) α1-subtype selective partial positive modulator, may serve as a pharmacological tool for refining the role of α1 GABAA receptors in mediation of BZs’ effects. Here, the effects of WYS8 on GABA-induced currents and on diazepam-induced potentiation of recombinant BZ-sensitive GABAA receptors were stud...

  12. Association Between Benzodiazepine Receptor Agonists and Snoring Among Women in the Nurses' Health Study.

    Science.gov (United States)

    Lin, Brian M; Hu, Frank B; Curhan, Gary C

    2017-02-01

    Snoring is highly prevalent among adults. The use of benzodiazepine receptor agonists is also common, with higher prevalence of use with more advanced age. Benzodiazepine receptor agonists cause muscle relaxation, which may affect muscle tone and airway dynamics and thereby increase snoring. Previous studies examining the association between use of benzodiazepine receptor agonists and snoring were underpowered to detect clinically meaningful differences or did not report the magnitude of association. To investigate the association between use of benzodiazepine receptor agonists and snoring in women. Women aged 62 to 86 years provided information on snoring and covariates of interest in the 2008 survey of the Nurses' Health Study, a cross-sectional cohort study of female registered nurses in the United States. Potential effect modification of the association between use of benzodiazepine receptor agonists and snoring by age, body mass index, waist circumference, smoking, alcohol consumption, and physical activity was explored. Logistic regression was used to adjust for potential confounders. Data analysis was conducted from November 2015 to March 2016. Self-reported habitual snoring, defined as a few nights a week or more. Of 52 504 participants (mean [SD] age, 72.4 [6.7] years), 14 831 (28.2%) reported habitual snoring. There was a slightly higher prevalence of benzodiazepine receptor agonist use among habitual snorers (11.4%) compared with nonhabitual snorers (10.6%) (absolute difference, 0.8%; 95% CI, 0.2%-1.4%). After multivariable adjustment, use of benzodiazepine receptor agonists was not associated with snoring (odds ratio, 1.01; 95% CI, 0.95-1.07) compared with women who did not use benzodiazepine receptor agonists. Although there was no significant interaction with smoking, there were higher odds of snoring with use of benzodiazepine receptor agonists among current smokers (odds ratio, 1.34; 95% CI, 1.04-1.73). Use of benzodiazepine receptor agonists is

  13. Biochemical study of multiple drug recognition sites on central benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Trifiletti, R.R.

    1986-01-01

    The benzodiazepine receptor complex of mammalian brain possesses recognition sites which mediate (at least in part) the pharmacologic actions of the 1,4-benzodiazepines and barbiturates. Evidence is provided suggesting the existence of least seven distinct drug recognition sites on this complex. Interactions between the various recognition sites have been explored using radioligand binding techniques. This information is utilized to provide a comprehensive scheme for characterizing receptor-active drugs on an anxiolytic-anticonvulsant/proconvulsant continuum using radioligand binding techniques, as well as a comprehensive program for identifying potential endogenous receptor-active substances. Further evidence is provided here supporting the notion of benzodiazepine recognition site heterogeneity. Classical 1,4-benzodiazepines do not appear to differentiate two populations of benzodiazepine receptors in an equilibrium sense, but appear to do so in a kinetic sense. An apparent physical separation of the two receptor subtypes can be achieved by differential solubilization. The benzodiazepine binding subunit can be identified by photoaffinity labeling with the benzodiazepine agonist (/sup 3/H)flunitrazepan. Conditions for reproducible partial proteolytic mapping of (/sup 3/H)flunitrazepam photoaffinity labeled receptors are established. From these maps, it is concluded that there are probably no major differences in the primary sequence of the benzodiazepine binding subunit in various regions of the rat central nervous system.

  14. Bromine-75-labeled 1,4-benzodiazepines: potential agents for the mapping of benzodiazepine receptors in vivo: concise communication

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, H.; Kloster, G.; Stoecklin, G.

    1983-05-01

    We have prepared four different 1,4-benzodiazepines, labeled at C-7 with the 1.6-hr positron emitter Br-75 or the 57-hr gamma emitter Br-77, as potential radio-pharmaceuticals for the mapping of cerebral benzodiazepine receptor areas. The triazene method was used and optimized. Yields at the no-carrier-added level were 20%. (7-/sup 75/Br)-5-(2-flophenyl)-1-methyl-1,3-dihydro-2H-1,4-benzodiazepine-2-one (Br-75 BFB) was isolated with a minimum specific activity of 20,000 Ci/mmole. Biodistribution in mice shows that BFB is taken up rapidly by the brain and is retained there at useful concentrations for significant periods of time. The maximum uptake is observed at 0.25 min. Brain-to-blood concentration ratios are larger than 2 during the interval (0.25 to 10 min) investigated.

  15. Ligand-guided receptor optimization.

    Science.gov (United States)

    Katritch, Vsevolod; Rueda, Manuel; Abagyan, Ruben

    2012-01-01

    Receptor models generated by homology or even obtained by crystallography often have their binding pockets suboptimal for ligand docking and virtual screening applications due to insufficient accuracy or induced fit bias. Knowledge of previously discovered receptor ligands provides key information that can be used for improving docking and screening performance of the receptor. Here, we present a comprehensive ligand-guided receptor optimization (LiBERO) algorithm that exploits ligand information for selecting the best performing protein models from an ensemble. The energetically feasible protein conformers are generated through normal mode analysis and Monte Carlo conformational sampling. The algorithm allows iteration of the conformer generation and selection steps until convergence of a specially developed fitness function which quantifies the conformer's ability to select known ligands from decoys in a small-scale virtual screening test. Because of the requirement for a large number of computationally intensive docking calculations, the automated algorithm has been implemented to use Linux clusters allowing easy parallel scaling. Here, we will discuss the setup of LiBERO calculations, selection of parameters, and a range of possible uses of the algorithm which has already proven itself in several practical applications to binding pocket optimization and prospective virtual ligand screening.

  16. Benzodiazepine receptor binding in vivo with (/sup 3/)-Ro 15-1788

    Energy Technology Data Exchange (ETDEWEB)

    Goeders, N.E.; Kuhar, M.J.

    1985-07-29

    In vivo benzodiazepine receptor binding has generally been studied by ex vivo techniques. In this investigation, the authors identify the conditions where (/sup 3/H)-Ro 15-1788 labels benzodiazepine receptors by true in vivo binding, i.e. where workable specific to nonspecific ratios are obtained in intact tissues without homogenization or washing. (/sup 3/H)-Flunitrazepam and (/sup 3/H)-clonazepam did not exhibit useful in vivo receptor binding. 39 references, 5 figures, 1 table.

  17. Physiology and physiopathology of central type Benzodiazepine receptors: Study in the monkey and in human brain using positron emission tomography

    International Nuclear Information System (INIS)

    Hantraye, P.

    1987-01-01

    A new non-invasive technique that allows to study in a living subject central type benzodiazepine receptors is developed. A combined approach is applied using a specific positron-emitting radiotracer for the in vivo labelling of the receptors and positron emission tomography allowing, by external detection, a quantitative determination of tissue radioactivity. The radioligand used for the in vivo labelling of benzodiazepine receptors is the antagonist RO 15-1788 labelled with carbon 11. The various stages of the study are described: in vivo characterization in the monkey of central type benzodiazepine receptors; characterization of central type benzodiazepine receptors in human brain using selective molecules for the BZ1 benzodiazepine subclass; demonstration of the heterogeneity of central type benzodiazepine receptors in the brain; study of pathological alteration of benzodiazepine receptors in experimental epilepsy [fr

  18. Peripheral benzodiazepines receptor (PBR stimulates steroidogenesis: A potential neuroprotective pathway following brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available The effects of neuroactive steroids have been highly assessed for their significance on inflammation resolution induced by cytotoxic agents. Steroids are derived from cholesterol, and this regulatory pathway may be a target for possible protective strategies. For example, the increased expression of peripheral benzodiazepine receptor (PBR stimulates steroids production, and the action of specific ligands on PBR favors the reduction of glial activity and act as a protective mechanism. The augmented expression of PBR and steroidogenic acute regulatory protein (StAR after injury is associated with local production of steroids by glial cells. For instance, cholesterol is captured by StAR in the outer mitochondrial membrane that transfers it to PBR, which uses it as substrate for the enzyme P450scc in the inner mitochondrial membrane. Some ligands, such as 4'-Chlorodiazepam (Ro5-4864 and isoquinoline carboxamide (PK 11195, act as agonists of the PBR receptor. Previous studies indicate that Ro5-4864 reduces neuronal loss, thus implying the regulation of mitochondrial transition after a traumatic brain injury. In this work, we assess the effects of PBR ligands directly involved in neuronal cell survival and proliferation after injury, thereby activating potential downstream targets as novel therapeutic approaches.

  19. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...

  20. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  1. Early developmental exposure to benzodiazepine ligands alters brain 31P-NMR spectra in young adult rats.

    Science.gov (United States)

    Miranda, R; Ceckler, T; Guillet, R; Kellogg, C

    1990-01-01

    Alterations in brain high energy phosphate compounds, using 31P-NMR (nuclear magnetic resonance) spectroscopy, were measured in vivo in young adult (3-4 months) rats following prenatal exposure to ligands acting specifically at benzodiazepine (BDZ) binding sites. The exposure induced a decrease in intracellular pH that indicated a predominant interaction of the drugs in utero with central-type BDZ receptor sites. Late gestational exposure to BDZ ligands also induced changes in brain phosphocreatine (PCr) utilization. Exposure to the lowest dose of DZ (1.0 mg/kg) but not the higher dose (2.5 mg/kg) induced a significant change in PCr utilization. Exposure to the central-type BDZ receptor antagonist RO15-1788 alone clearly altered PCr utilization in adult offspring, and DZ (2.5 mg/kg) when administered concurrently was not able to prevent this effect. Though exposure to a peripheral-type ligand (PK11195) had no effect by itself, it converted the effect of the high dose of DZ to that of the low dose. Together, these results indicate an interaction during development between the central and peripheral-type BDZ binding sites on organization and/or regulation of cellular energy metabolism. Normalized ATP levels were not changed by any prenatal treatment indicating adequate buffering of intracellular ATP by phosphocreatine. The dopaminergic antagonist haloperidol did not alter intracellular pH or any index of phosphate metabolism indicating a selective receptor mediated role for BDZ ligands in influences on the long term organization of intracellular phosphate metabolism.

  2. Autoradiographic localization of benzodiazepine receptors in the rat kidney

    International Nuclear Information System (INIS)

    Beaumont, K.; Healy, D.P.; Fanestil, D.D.

    1984-01-01

    The localization of benzodiazepine (BZD) receptors in the rat kidney was studied by autoradiography after in vitro labeling of kidney slices with flunitrazepam. The affinity, density, and rank order of displacement of [ 3 H]-flunitrazepam by several BZDs (RO 5-4864 > diazepam > clonazepam) demonstrated that binding was to BZD receptors of the peripheral type. In autoradiograms obtained with tritium-sensitive film, a high density of silver grains was obtained in the outer medulla, with lower densities in the cortex. Binding was absent from the inner medulla (papilla). In higher resolution autoradiograms obtained with an emulsion-coated cover slip procedure, silver grains were seen to be concentrated over a tubular element in both outer medulla and cortex, identifiable by morphology and distribution as the thick ascending limb of the loop of Henle and the distal convoluted tubule. The identity of the labeled tubules was confirmed by immunofluorescent localization in adjacent slices of Tamm-Horsfall protein, a specific marker for these segments of tubules. Investigation of the effects of peripherally specific BZDs such as RO 5-4864 on distal tubule function is indicated

  3. Autoradiographic localization of benzodiazepine receptors in the rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, K.; Healy, D.P.; Fanestil, D.D.

    1984-11-01

    The localization of benzodiazepine (BZD) receptors in the rat kidney was studied by autoradiography after in vitro labeling of kidney slices with flunitrazepam. The affinity, density, and rank order of displacement of (/sup 3/H)-flunitrazepam by several BZDs (RO 5-4864 > diazepam > clonazepam) demonstrated that binding was to BZD receptors of the peripheral type. In autoradiograms obtained with tritium-sensitive film, a high density of silver grains was obtained in the outer medulla, with lower densities in the cortex. Binding was absent from the inner medulla (papilla). In higher resolution autoradiograms obtained with an emulsion-coated cover slip procedure, silver grains were seen to be concentrated over a tubular element in both outer medulla and cortex, identifiable by morphology and distribution as the thick ascending limb of the loop of Henle and the distal convoluted tubule. The identity of the labeled tubules was confirmed by immunofluorescent localization in adjacent slices of Tamm-Horsfall protein, a specific marker for these segments of tubules. Investigation of the effects of peripherally specific BZDs such as RO 5-4864 on distal tubule function is indicated.

  4. GABA and benzodiazepine receptors in the gerbil brain after transient ischemia: demonstration by quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    Onodera, H.; Sato, G.; Kogure, K.

    1987-01-01

    Quantitative receptor autoradiography was used to measure the binding of gamma-aminobutyric acid (GABA) and benzodiazepine receptors after ischemia by means of transient occlusion of bilateral common carotid arteries in the gerbil. [ 3 H]Muscimol was used to label the GABAA receptors and [ 3 H]flunitrazepam to label central type benzodiazepine receptors. In the superolateral convexities of the frontal cortices, [ 3 H]muscimol binding was increased in 60% of the animals killed 3 days after ischemia, and decreased in 67% of the animals killed 27 days after ischemia. Twenty-seven days after ischemia, [ 3 H]flunitrazepam binding in the substantia nigra pars reticulata increased to 252% of the control, though the increase in [ 3 H]muscimol binding was not significant. In the dorsolateral region of the caudate putamen, marked neuronal necrosis and depletion of both [ 3 H]muscimol and [ 3 H]flunitrazepam binding sites were observed 27 days after ischemia, the ventromedial region being left intact. In spite of the depletion of pyramidal cells in the CA1 region of the hippocampus, both [ 3 H]muscimol and [ 3 H]flunitrazepam binding sites were preserved 27 days after ischemia. Since our previous study revealed that adenosine A1 binding sites were depleted in the CA1 subfield of the hippocampus after ischemia correlating with neuronal damage, GABAA and benzodiazepine receptors may not be distributed predominantly on the pyramidal cells in the CA1 region

  5. Platelet peripheral benzodiazepine receptors are decreased in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Bonuccelli, U.; Nuti, A.; Del Dotto, P.; Piccini, P.; Martini, C.; Giannacccini, G.; Lucacchini, A.; Muratorio, A. (Univ. of Pisa (Italy))

    1991-01-01

    Peripheral benzodiazepine (BDZ) receptors are located in a variety of tissues, including platelets, in the nuclear and/or mitochondrial membranes. The authors studied the density of peripheral BDZ receptors in platelets of 10 de novo Parkinson's disease (PD) patients, 18 PD patients treated with a levodopa/carbidopa combination, and in 15 healthy subjects matched for sex and age. The binding assay was conducted using ({sup 3}H)PK 11195, a specific ligand for peripheral BDZ receptors. A significant decrease in the density of ({sup 3}H)PK 11195 binding sites has been observed in PD patients with respect to controls but not between de novo and treated PD patients. No correlation has been found between the decrease in density of ({sup 3}H)PK 11195 binding sites in platelets and either the duration or severity of PD. Peripheral BDZ receptors are implicated in the regulation of mitochondrial respiratory function. Thus, their decrease in PD might parallel the abnormalities in mitochondrial function recently found in this neurologic disease.

  6. Effect of chronic (-)-nicotine treatment on rat cerebral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Magata, Yasuhiro; Kitano, Haruhiro; Shiozaki, Toshiki; Iida, Yasuhiko; Nishizawa, Sadahiko; Saji, Hideo; Konishi, Junji

    2000-01-01

    The purpose of this study was to clarify the effect of (-)-nicotine on cerebral benzodiazepine receptors (BzR) with radiotracer methods. The effect of (-)-nicotine on BzR was examined in in vitro studies using chronic (-)-nicotine-treated rats using 3 H-diazepam. The in vitro radioreceptor assay showed a 14% increase in the maximum number of binding sites of BzR in chronic (-)-nicotine-treated rats in comparison with the control rats. Moreover, a convenient in vivo uptake index of 125 I-iomazenil was calculated and a higher uptake of the radioactivity was observed in the chronic (-)-nicotine-treated group than in the control group. Although further studies of the mechanism of (-)-nicotine on such BzR changes are required, an increase in the amount of BzR in the cerebral cortex was found in rats that underwent chronic (-)-nicotine treatment, and this result contributed to the understanding of the effects of (-)-nicotine and smoking on neural functions

  7. Effect of chronic (-)-nicotine treatment on rat cerebral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Magata, Yasuhiro E-mail: magata@kuhp.kyoto-u.ac.jp; Kitano, Haruhiro; Shiozaki, Toshiki; Iida, Yasuhiko; Nishizawa, Sadahiko; Saji, Hideo; Konishi, Junji

    2000-01-01

    The purpose of this study was to clarify the effect of (-)-nicotine on cerebral benzodiazepine receptors (BzR) with radiotracer methods. The effect of (-)-nicotine on BzR was examined in in vitro studies using chronic (-)-nicotine-treated rats using {sup 3}H-diazepam. The in vitro radioreceptor assay showed a 14% increase in the maximum number of binding sites of BzR in chronic (-)-nicotine-treated rats in comparison with the control rats. Moreover, a convenient in vivo uptake index of {sup 125}I-iomazenil was calculated and a higher uptake of the radioactivity was observed in the chronic (-)-nicotine-treated group than in the control group. Although further studies of the mechanism of (-)-nicotine on such BzR changes are required, an increase in the amount of BzR in the cerebral cortex was found in rats that underwent chronic (-)-nicotine treatment, and this result contributed to the understanding of the effects of (-)-nicotine and smoking on neural functions.

  8. Regulation of renal peripheral benzodiazepine receptors by anion transport inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Basile, A.S.; Lueddens, W.M.; Skolnick, P.

    1988-01-01

    The in vitro and in vivo regulation of (/sup 3/H)Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) by ion transport/exchange inhibitors was studied in the kidney. The potencies of 9-anthroic acid, furosemide, bumetanide, hydrochlorothiazide and SITS as inhibitors of (/sup 3/H)Ro 5-4864 binding to renal membranes were consistent with their actions as anion transport inhibitors (Ki approx. = 30 - 130 ..mu..M). In contrast, spironolactone, amiloride, acetazolamide, and ouabain were less potent (Ki=100-1000 ..mu..M). Administration of furosemide to rats for five days resulted in a profound diuresis accompanied by a significant increase in PBR density (43%) that was apparent by the fifth day of treatment. Administration of hydrochlorothiazide or Ro 5-4864 for five days also caused diuresis and increased renal PBR density. Both the diuresis and increased density of PBR produced by Ro 5-4864 were blocked by coadministration of PK 11195, which alone had no effect on either PBR density or urine volume. The equilibrium binding constants of (/sup 3/H)Ro 5-4864 to cardiac membranes were unaffected by administration of any of these drugs. These findings suggest that renal PBR may be selectively modulated in vivo and in vitro by administration of ion transport/exchange inhibitors. 36 references, 4 tables.

  9. Pharmacological and biochemical properties of the benzodiazepine-GABA receptor in codfish brain in comparison with mammalian brain

    International Nuclear Information System (INIS)

    Deng, L.

    1989-01-01

    The GABA receptor of codfish brain is encoded by an ancestral gene of the mammalian GABA receptor based on phylogenetic studies. The mammalian GABA receptor consists of at least two subunits (β and α) which could be photoaffinity labeled by the GABA agonist [ 3 H]muscimol (57 kDa) and the benzodiazepine (BZ) agonist [ 3 H]flunitrazepam (52 kDa), respectively. In contrast, electrophoresis of codfish GABA receptor photoaffinity labeled by the same ligands showed a single radioactive peak on sodium dodecyl surface polyarcylamide gel, giving rise to a relative molecular weight of 56-57 kDa equivalent to the β subunit of 57 kDa in mammals. The homogeneity of purified receptor using benzodiazepine (Ro 7-1986/1) affinity chromatography was further verified by two-dimensional gel electrophoresis based on isoelectric point and molecular weight, in addition to a single band on a silver stained gel and specific activity. The receptor density and affinity constant for [ 3 H]muscimol and [ 3 H]flunitrazepam are comparable to those in bovine, rate, and human brain

  10. Daily rhythms of benzodiazepine receptor numbers in frontal lobe and cerebellum of the rat

    International Nuclear Information System (INIS)

    Brennan, M.J.W.; Volicer, L.; Moore-Ede, M.C.; Borsook, D.

    1985-01-01

    Behavioral, biochemical and neurophysiological evidence suggests that gamma-aminobutyric acid (GABA) may play an important role in the neural control of circadian rhythms. Central receptors for benzodiazepines are functionally coupled to GABA receptors and appear to mediate behavioral effects of exogenous benzodiazepines. The binding of 3 H-flunitrazepam to synaptic plasma membranes prepared from various regions of rat brain was examined at 6-hour intervals over a 36-hour period. Prominent daily rhythms in receptor number (Bmax) were observed in the frontal lobe and the cerebellum but not in the temporoparietal regions, hypothalamus or medulla/pons. Binding was highest during periods of sleep/low activity with a significant decrease occurring just prior to waking. These results suggest that daily fluctuations in benzodiazepine receptor numbers may be related to the temporal control of sleep/wake and muscle activity cycles. 23 references, 1 figure, 1 table

  11. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise

    2013-01-01

    We present a full-length a1b2c2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate...

  12. Early ontogeny of the central benzodiazepine receptor in human embryos and fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Hebebrand, J.; Hofmann, D.; Reichelt, R.; Schnarr, S.; Knapp, M.; Propping, P.; Foedisch, H.J.

    1988-01-01

    The early ontogeny of the central benzodiazepine receptor (BZR) was investigated in human embryos and fetuses between 7 and 26 weeks of gestation. Brain tissue was gained from terminated pregnancies or spontaneous abortions. Binding studies, which were performed with /sup 3/H-flunitrazepam (FNZ), revealed that specific benzodiazepine binding is already detectable at an embryonal age of 7 weeks post conception. Binding at this early stage can be displaced potently by clonazepam and the inverse agonist ..beta..-CCE. Additionally, /sup 3/H-FNZ binding is enhanced by GABA. Thus, benzodiazepine binding is of the central type. Receptor density increases steeply in whole brain between weeks 8 and 11 of gestation. In frontal cortex receptor density increases gradually between weeks 12 and 26 of gestation. No specific fetal disease entity (including trisomy 21) was consistently associated with exceptionally high or low B/sub max/-values.

  13. Characterization of central- and peripheral-type benzodiazepine receptors in rat salivary glands.

    Science.gov (United States)

    Yamagishi, H; Kawaguchi, M

    1998-01-15

    Benzodiazepines have been shown to inhibit salivary secretion from the rat salivary gland. This action is mediated by specific benzodiazepine binding sites in the glands. The presence and characteristics of central- and peripheral-type benzodiazepine receptors in rat parotid and submandibular glands were examined employing [3H]Ro15-1788 and [3H]PK11195 as radioligands. [3H]Ro15-1788 and [3H]PK11195 bound with high affinity for both salivary glands ([3H]Ro15-1788: 24.5 and 37.4 mM, [3H]PK11195: 1.37 and 1.88 nM, for parotid and submandibular glands, respectively). [3H]Ro15-1788 binding sites occupied only 0.22 to 0.43% of the total binding for benzodiazepine receptors in the glands. The rank order of the competing potency of [3H]Ro15-1788 binding (Ro15-1788 = clonazepam > diazepam > flunitrazepam > PK11195 > Ro5-4864) and [3H]PK11195 binding (Ro5-4864 = PK11195 > diazepam = flunitrazepam > clonazepam) demonstrated that [3H]Ro15-1788 and [3H]PK11195 binding sites were characteristic of the central and peripheral type, respectively. These studies show that both central- and peripheral-type benzodiazepine receptors exist in rat parotid and submandibular glands.

  14. GABAA receptor γ2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines

    Directory of Open Access Journals (Sweden)

    De Blas Angel L

    2005-04-01

    Full Text Available Abstract Background Gamma-aminobutyric acid type A receptors (GABAA-Rs are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The γ2 subunit is highly expressed throughout the brain. Global γ2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous γ2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the γ2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated γ2 expression, i.e., γ2 knockdown mice. Results Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the γ2 gene. Knockdown mice, on average, showed a 65% reduction of γ2 subunit mRNA compared to controls; however γ2 gene expression was highly variable in these mice, ranging from 10–95% of normal. Immunohistochemical studies demonstrated that γ2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the γ2 knockdown mouse line can be used to create γ2 global knockout mice by crossing to a general deleter cre-expressing mouse line. Conclusion We conclude that: 1 insertion of a neomycin resistance gene into intron 8 of the γ2 gene variably

  15. Peripheral-type benzodiazepine receptors: autoradiographic localization in whole-body sections of neonatal rats.

    Science.gov (United States)

    Anholt, R R; De Souza, E B; Oster-Granite, M L; Snyder, S H

    1985-05-01

    We have developed a procedure that allows the autoradiographic localization of benzodiazepine receptors in whole-body sections of neonatal rats. Central-type benzodiazepine receptors, visualized with [3H]methylclonazepam, are restricted to nervous tissue. In contrast, peripheral-type benzodiazepine receptors, visualized with [3H]Ro5-4864, occur widely, but with discrete localizations throughout the body. Peripheral-type benzodiazepine receptors are most concentrated in the adrenal cortex and the skin. Substantial levels of these receptors are also evident in the heart, the salivary glands, discrete regions of the kidney, the epithelium of the lung, the nasal and lingual epithelia, the lining of the pulmonary arteries, the thymus, the hair follicles of the vibrissae, the tooth buds and the bone marrow. Considerable binding of [3H]Ro5-4864 is observed in the brown fat pads, the liver and the spleen, but high levels of nonspecific binding preclude accurate evaluation of the actual specific binding in these organs. Only low levels of [3H]Ro5-4864 binding sites are found in the brain and they are virtually undetectable in the skeletal muscle, the eye, the inner ear and the gastrointestinal tract. High levels of peripheral-type benzodiazepine receptor appear present in tissues that derive their metabolic energy primarily from oxidative phosphorylation, whereas only low levels are present in tissues that can derive their metabolic energy largely from glycogenolysis. Association of these receptors with mitochondria and a possible role in modulation of energy metabolism is suggested further by the observation that the histochemically visualized distribution of cytochrome oxidase activity overlaps the autoradiographic pattern of [3H]Ro5-4864 binding sites.

  16. Peripheral-type benzodiazepine receptors in bronchoalveolar lavage cells of patients with interstitial lung disease

    International Nuclear Information System (INIS)

    Branley, Howard M.; Bois, Roland M. du; Wells, Athol U.; Jones, Hazel A.

    2007-01-01

    Introduction: PK11195 is a ligand with high affinity for peripheral benzodiazepine receptors (PBRs), which are present in large numbers in macrophages. PBRs play a role in antioxidant pathways and apoptosis, key factors in control of lung health. Intrapulmonary PBRs, assessed in vivo by positron emission tomography (PET), are decreased in interstitial lung disease (ILD) despite increased macrophage numbers. We wished to ascertain whether the observed decrease in in vivo expression of PBRs in the PET scans could be accounted for by a reduction in PBRs per cell by saturation-binding assays of R-PK11195 in cells obtained by bronchoalveolar lavage (BAL). Methods: We performed receptor saturation-binding assays with [ 3 H]-R-PK11195 on a mixed population of cells recovered by BAL to quantify the number of R-PK11195 binding sites per macrophage in 10 subjects with ILD and 10 normal subjects. Results: Receptor affinity [dissociation constant (Kd)] was similar in ILD patients and controls. However, R-PK11195 binding sites per cell [(maximal binding sites available (B max )] were decreased in macrophages obtained by BAL from subjects with ILD compared to normal (P<.0005). Microautoradiography confirmed localization of R-PK11195 to macrophages in a mixed inflammatory cell population obtained by BAL. Conclusion: These results demonstrate that in vitro PBR expression per cell on macrophages obtained by BAL is reduced in patients with ILD indicating a potentially functionally different macrophage phenotype. As PBRs are involved in the orchestration of lung inflammatory responses, this finding offers further insight into the role of macrophages in the pathogenesis of ILDs and offers a potential avenue for pharmacological strategy

  17. Brain benzodiazepine receptor-mediated effects on plasma catecholamine and corticosterone concentrations in rats

    NARCIS (Netherlands)

    De Boer, S F; Van der Gugten, J; Slangen, J L; de Boer, Sietse

    The effects of the benzodiazepine (BDZ) receptor agonist chlordiazepoxide (CDP) and antagonist flumazenil (Ro 15-1788), given alone and in combination, on basal and novel environment stress (NES)-elevated plasma noradrenaline (NA), adrenaline (A) and corticosterone (CS) contents were investigated.

  18. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Differential binding properties of the peripheral-type benzodiazepine ligands (/sup 3/H)PK 11195 and (/sup 3/H)Ro 5-4864 in trout and mouse brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Eshleman, A.J.; Murray, T.F.

    1989-08-01

    High-affinity binding sites for (/sup 3/H)PK 11195 have been detected in brain membranes of rainbow trout (Salmo gairdneri) and mouse forebrain, where the densities of receptors were 1,030 and 445 fmol/mg of protein, respectively. Ro 5-4864 (4'-chlorodiazepam) was 2,200-fold less potent as a competitor of (/sup 3/H)PK 11195 binding in the piscine than the murine membranes. Investigation of the regional distribution of these sites in trout yielded a rank order of density of spinal cord greater than olfactory bulb = optic tectum = rhombencephalon greater than cerebellum greater than telencephalon. This site in trout shared some of the characteristics of the peripheral-type benzodiazepine receptor (PTBR) (also known as the mitochondrial benzodiazepine receptor) in rodents, i.e., high affinity for PK 11195 and the endogenous ligand protoporphyrin IX, but was unique in the low affinity of Ro 5-4864 (41 microM) and diazepam and the relatively high affinity of the calcium channel ligand diltiazem and two central benzodiazepine ligands, CGS 8216 and CGS 9896. The differential affinity for the two prototypic PTBR ligands in trout is similar to that previously observed in calf and human brain membranes. Structural differences for the trout sites are indicated by the relative inability of diethyl pyrocarbonate to modify histidine residues of the binding site in trout as compared with mouse membranes. Heterogeneity of binding of the two prototypic PTBR ligands in mouse brain membranes was indicated by additivity studies, equilibrium competition experiments, and saturation isotherms, which together support the hypothesis that Ro 5-4864 discriminates between two (/sup 3/H)PK 11195 binding sites having high (nanomolar) and low (micromolar) affinity, respectively.

  20. The benzodiazepine/GABA receptor complex during severe ethanol intoxication and withdrawal in the rat

    International Nuclear Information System (INIS)

    Hemmingsen, R.; Braestrup, C.; Nielsen, M.; Barry, D.I.

    1982-01-01

    The benzodiazepine/GABA (gammaaminobutyric acid) receptor complex was investigated during severe ethanol intoxication and withdrawal in the rat. The intragastric intubation technique was used to establish physical ethanol dependence in the animals. Cerebral cortex from male Wistar rats was studied 1) after 31/2 days of severe ethanol intoxication, 2) during the ethanol withdrawal reaction and 3) in a control group. The effect of GABA-ergic activation by muscimol and THIP (4,5,6,7-tetrahydroisoxazole(5,4-c)pyridin-3-01) on 3 H-diazepam binding was unchanged during ethanol intoxication and withdrawal, as was the affinity constant (Ksub(D)) and the maximal number of binding sites (Bsub(max)) for 3 H-flunitrazepam. In conclusion, the benzodiazepine/GABA receptor complex is unlikely to play any causual part in physical ethanol dependence. (author)

  1. Characteristics of benzodiazepine receptors in rats differing in predisposition to experimental alcoholism

    International Nuclear Information System (INIS)

    Burov, Yu.V.; Maiskii, A.I.; Yukhananov, R.Yu.

    1986-01-01

    This paper studies the number and affinity of benzodiazepine receptors for diazepam in the cerebral cortex and hippocampus of rats differently predisposed to the development of experimental alcoholism. Ethanol was injected once intraperitoneally, in a dose of 2.5 g/kg. Control animals received the same volume of physiological saline. Bound and free N-methyl-tritium-diazepam were separated by means of GF/B filters. The characteristics of benzodiazepine receptors are shown in rats differing in predisposition to the development of experimental alcoholism and in rats during voluntary chronic alcoholization. It is shown that weakening of functional acitivity of the GABA-benzodiazepam complex in animals predisposed to the development of experimental alcoholism is one of the neurochemical mechanisms of development of the abstinence syndrome

  2. INSIGHTS INTO FUNCTIONAL PHARMACOLOGY OF α1 GABAA RECEPTORS: HOW MUCH DOES PARTIAL ACTIVATION AT THE BENZODIAZEPINE SITE MATTER?

    Science.gov (United States)

    Joksimović, Srđan; Varagic, Zdravko; Kovačević, Jovana; Van Linn, Michael; Milić, Marija; Rallapalli, Sundari; Timić, Tamara; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2013-01-01

    Synthesis of ligands inactive or low-active at α1 GABAA receptors has become the key concept for development of novel, more tolerable benzodiazepine (BZ)-like drugs. WYS8, a remarkably (105 times) α1-subtype selective partial positive modulator, may serve as a pharmacological tool for refining the role of α1 GABAA receptors in mediation of BZs’ effects. Here, the effects of WYS8 on GABA-induced currents and on diazepam-induced potentiation of recombinant BZ-sensitive GABAA receptors were studied in more detail. In addition, the behavioral profile of WYS8 (0.2, 1 and 10 mg/kg i.p.), on its own and in combination with diazepam, was tested in the spontaneous locomotor activity, elevated plus maze, grip strength, rotarod and pentylenetetrazole tests. WYS8, applied at an in vivo attainable concentration of 100 nM, reduced the stimulation of GABA currents by 1 μM diazepam by 57% at α1β3γ2, but not at α2β3γ2, α3β3γ2, or α5β3γ2 GABAA receptors. The administration of WYS8 alone induced negligible behavioral consequences. When combined with diazepam, WYS8 caused a reduced sedation, muscle relaxation and anticonvulsant activity, as compared to this BZ alone, whereas ataxia was preserved, and the anxiolytic effect of 2 mg/kg diazepam was unmasked. Hence, a partial instead of full activation at α1 GABAA receptors did not necessarily result in the attenuation of the effects assumed to be mediated by activation of these receptors, or in the full preservation of the effects mediated by activation of other GABAA receptors. Thus, the role of α1 GABAA receptors appears more complex than that proposed by genetic studies. PMID:23685860

  3. Benzodiazepine-induced shaking behavior in the rat: structure-activity and relation to serotonin and benzodiazepine receptors.

    Science.gov (United States)

    Pranzatelli, M R

    1989-06-01

    In studying the role of serotonin (5-HT) in the mechanism of action of benzodiazepine (BDZ)-induced wet-dog shakes (WDS), only certain 1,4-substituted BDZ agonists were found to induce WDS at doses up to 60 mg/kg in the rat with the rank order of potency at peak dose effect clonazepam greater than nitrazepam = flunitrazepam much greater than nimetazepam = lorazepam. BDZs evoking WDS at lowest doses contained an R7 nitro group on the A ring. Non-BDZ agonists (CL 218,872), inverse agonists (beta-CCE), peripheral type receptor agonists (Ro 5-4864), and BDZ antagonists (Ro 15-1788) did not induce shaking behavior. Several 5-HT1 and 5-HT2 agonists and antagonists were tested as blockers, but only putative 5-HT1A agonists reduced WDS, 8-OH-DPAT and ipsapirone but not PAPP and 5-MeO-DMT having a significant effect. The effect of 8-OH-DPAT was dose dependent, with an ID50 of 0.86 mg/kg, but it was not reversed by 5-HT or adrenergic antagonists at the doses studied. Intracisternal 5,7-dihydroxytryptamine lesions did not alter frequency, latency, or time course of BDZ-induced WDS. BDZ-evoked WDS were enhanced by Ro 15-1788 (which inhibited ataxia) but were unaffected by the various types of BDZ agonists. Several BDZ agonists induced both WDS and ataxia, but ataxia was not blocked by serotonergic drugs. No significant correlation with ataxia, BDZ radioligand binding, antipentylenetetrazol activity, or other BDZ property was found. BDZ-evoked WDS may relate to the unique predominance of BDZ II and 5-HT1A receptors in the hippocampus, an important site for WDS, but 5-HT1A agonists appear to modulate WDS by opposing pharmacologic actions rather than by direct receptor antagonism. These data indicate a species difference in the shakes induced by BDZs in rats (5-HT2 independent) and in mice (5-HT2 related).

  4. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.

    Science.gov (United States)

    Olsen, Richard W

    2015-01-01

    GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation. © 2015 Elsevier Inc. All rights reserved.

  5. In vivo study of drug interaction with brain benzodiazepine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, O.; Shinotoh, H.; Ito, T.; Suzuki, K.; Hashimoto, K.; Yamasaki, T.

    1985-05-01

    The possibility of direct estimation of in vivo Bz receptor occupancy in brain was evaluated using C-11, or H-3-flumazepil (Ro15-1788). In animal experiments, 1 ..mu..Ci of H-3-Ro15-1788 was injected at 0.5 or 20 hr after i.v. injection of various dosage of clonazepam. Then radioactivity in cerebral cortex, cerebellum and blood at 5 min. after injection of the tracer was compared. Competitive inhibition of in vivo binding was clearly observed when clonazepam was pretreated at 0.5 hr before injection of the tracer. On the other hand, brain radioactivity was increased when clonazepam was administered at 20 hr before injection of the tracer. This increase in binding of H-3-Ro15-1788 might be caused by rebound of Bz receptor function by treatment with Bz agonist, and this rebound may have an important role in physiological function. Clinical investigation concerning drug interaction with brain Bz receptor was performed in normal volunteer and patients with neurological disorders. The distribution of C-11-Ro15-1788 in the brain of patients chronically treated with clonazepam were significantly heterogeneous. However, cerebral blood flow estimated with N-13 NH3 of these patients were normal.

  6. Radiosynthesis and in vivo evaluation of N-[11C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Sekimata, Katsuhiko; Hatano, Kentaro; Ogawa, Mikako; Abe, Junichiro; Magata, Yasuhiro; Biggio, Giovanni; Serra, Mariangela; Laquintana, Valentino; Denora, Nunzio; Latrofa, Andrea; Trapani, Giuseppe; Liso, Gaetano; Ito, Kengo

    2008-01-01

    Imidazopyridineacetoamide 5-8, a series of novel and potentially selective peripheral benzodiazepine receptor (PBR) ligands with affinities comparable to those of known PBR ligands, was investigated. Radiosyntheses of [ 11 C]5, 6, 7 or 8 was accomplished by N-methylation of the corresponding desmethyl precursors with [ 11 C]methyl iodide in the presence of NaH in dimethylformamide (DMF), resulting in 25% to 77% radiochemical yield and specific activitiy of 20 to 150 MBq/nmol. Each of the labeled compounds was injected in ddY mice, and the radioactivity and weight of dissected peripheral organs and brain regions were measured. Organ distribution of [ 11 C]7 was consistent with the known PBR distribution. Moreover, [ 11 C]7 showed the best combination of brain uptake and PBR binding, leading to its high retention in the olfactory bulb and cerebellum, areas where PBR density is high in mouse brain. Coinjection of PK11195 or unlabeled 7 significantly reduced the brain uptake of [ 11 C]7. These results suggest that [ 11 C]7 could be a useful radioligand for positron emission tomography imaging of PBRs

  7. Application of gamma-aminobutyric acid type A-benzodiazepine receptor imaging for study of neuropsychiatric disorders

    International Nuclear Information System (INIS)

    Bao Weiqi; Qiu Chun; Guan Yihui

    2012-01-01

    Gamma-aminobutyric acid type A-benzodiazepine receptors are heterogeneous polypeptide pentamers widely spread in the central nervous system on the neuron membrane. Different subunit combinations educe various neuro-inhibitory pharmacological effects such as sedative, hypnosis, anticonvulsion and anxiolysis. PET can be utilized to study the binding of the receptors in vivo. PET radioligands of gamma-aminobutyric acid type A-benzodiazepine receptors can be classified into 3 types: antagonists,agonists and reverse agonists, of which antagonist radiotracer 11 C-flumazenil is the most commonly applied in epilepsy, anxiety disorders, depression, vegetative state,addiction and other neuro-psychiatric disorders. (authors)

  8. Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET

    DEFF Research Database (Denmark)

    Lassen, N A; Bartenstein, P A; Lammertsma, A A

    1995-01-01

    Carbon-11-labeled flumazenil combined with positron emission tomography (PET) was used to measure the concentration (Bmax) of the benzodiazepine (Bz) receptor in the brain and its equilibrium dissociation constant (KD) for flumazenil in five normal subjects. The steady-state approach was used...... injecting the tracer as a bolus of high specific activity. In each subject two studies were carried out. The first study was performed at essentially zero receptor occupancy, the tracer alone study. The second study was performed at a steady-state receptor occupancy of about 50%, achieved by a prolonged...... constant infusion of nonlabeled ("cold") flumazenil starting 2h before the bolus tracer injection and continuing until the end of scanning period. In this second study the free concentration of unmetabolized flumazenil in plasma water was measured in multiple blood samples. The observed tissue and plasma...

  9. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    International Nuclear Information System (INIS)

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies

  10. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  11. Effects of the benzodiazepine receptor antagonist flumazenil in hepatic encephalopathy in humans.

    Science.gov (United States)

    Bansky, G; Meier, P J; Riederer, E; Walser, H; Ziegler, W H; Schmid, M

    1989-09-01

    If increased gamma-aminobutyric acid (GABA)-mediated neurotransmission contributes to the mediation of hepatic encephalopathy, it may be possible to induce ameliorations of the syndrome by pharmacologically antagonizing a component of the GABA/benzodiazepine receptor complex. To test this possibility we administered the benzodiazepine receptor antagonist flumazenil by intravenous injection to 14 patients with hepatic encephalopathy complicating cirrhosis. Flumazenil administration induced variable and transient, but distinct, improvements of the mental status in 71% of the patients. The degree of encephalopathy improved from stage IV to stage II in 4 patients and from stage IV to stage III in 2 patients. The mental status of all patients with less advanced encephalopathy (3 with stage III, 1 with stage II) also improved, but these responses were clinically less impressive. The arousal effect occurred within minutes after the injection and lasted for 1 to 2 h. Furthermore, it was associated with a significant increase of the mean electroencephalographic frequency from 4.2 to 5.2 cycle/s. Of the 8 patients who were ultimately discharged from the hospital, 7 had responded to flumazenil. No patient who died within 48 h of receiving flumazenil had shown any arousal effect. These findings strongly favor a prominent pathogenetic role of increased GABAergic tone in hepatic encephalopathy in humans and suggest that a positive response to flumazenil might be of prognostic value in predicting short-term survival in encephalopathic patients with liver disease.

  12. Ligand specificity of nuclear hormone receptors: sifting through promiscuity.

    Science.gov (United States)

    Noy, Noa

    2007-11-27

    The superfamily of nuclear hormone receptors includes transcription factors that play key roles in regulating multiple biological functions during embryonic development and in adult tissues, as well as in many disease states. The quintessential characteristic of nuclear receptors, and the basis for the name of the family, is that their transcriptional activities can be regulated by small molecules, usually comprised of hydrophobic compounds. However, the endogenous ligands for approximately half of the members of the nuclear receptor family are unknown, and these receptors are thus designated as "orphan receptors". One class of orphan receptors encompasses receptors that display a broad ligand selectivity; i.e., they can promiscuously bind to and may be activated by multiple ligands. This characteristic complicates the identification of physiologically meaningful ligands that activate these receptors in vivo. Here, we discuss a few examples of promiscuous receptors and outline strategies that may be employed in shedding light on the nature of bona fide ligands for such receptors.

  13. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lummis, S.C.R.; Johnston, G.A.R. (Univ. of Sydney, New South Wales (Australia)); Nicoletti, G. (Royal Melbourne Inst. of Tech. (Australia)); Holan, G. (CSIRO, Melbourne (Australia))

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.

  14. Midazolam inhibits chondrogenesis via peripheral benzodiazepine receptor in human mesenchymal stem cells.

    Science.gov (United States)

    Chen, Yung-Ching; Wu, King-Chuen; Huang, Bu-Miin; So, Edmund Cheung; Wang, Yang-Kao

    2018-05-01

    Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high-density culture performed with TGF-β-driven chondrogenic induction medium. Treatment of the Midazolam dose-dependently inhibited chondrogenesis, examined using Alcian blue-stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor-β-induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam-induced congenital malformations of the musculoskeletal system through PBR. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Size-exclusion chromatographic reconstitution of the bovine brain benzodiazepine receptor : Effects of lipid environment on the binding characteristics

    NARCIS (Netherlands)

    Viel, G.T; Yang, Q; Lundahl, P; Ensing, K; de Zeeuw, R.A

    1997-01-01

    The benzodiazepine receptor from calf brain was solubilized with sodium deoxycholate (2 mg/ml) in the presence of 0.5 M KCl and protease inhibitors, and bound flunitrazepam with an equilibrium dissociation constant (K-d) of 2.7+/-1.2 nM and with 0.40+/-0.04 pmol binding sites per mg protein (B-max).

  16. Ligand-directed trafficking of receptor stimulus.

    Science.gov (United States)

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist.

    Science.gov (United States)

    Nutt, David J; Besson, Marie; Wilson, Susan J; Dawson, Gerard R; Lingford-Hughes, Anne R

    2007-12-01

    Alcohol produces many subjective and objective effects in man including pleasure, sedation, anxiolysis, plus impaired eye movements and memory. In human volunteers we have used a newly available GABA-A/benzodiazepine receptor inverse agonist that is selective for the alpha5 subtype (a5IA) to evaluate the role of this subtype in mediating these effects of alcohol on the brain. After pre-treatment with a5IA, we found almost complete blockade of the marked impairment caused by alcohol (mean breath concentration 150mg/100ml) of word list learning and partial but non-significant reversal of subjective sedation without effects on other measures such as intoxication, liking, and slowing of eye movements. This action was not due to alterations in alcohol kinetics and so provides the first proof of concept that selectively decreasing GABA-A receptor function at a specific receptor subtype can offset some actions of alcohol in humans. It also supports growing evidence for a key role of the alpha5 subtype in memory. Inverse agonists at other GABA-A receptor subtypes may prove able to reverse other actions of alcohol, and so offer a new approach to understanding the actions of alcohol in the human brain and in the treatment of alcohol related disorders in humans.

  18. Methodology for benzodiazepine receptor binding assays at physiological temperature. Rapid change in equilibrium with falling temperature

    International Nuclear Information System (INIS)

    Dawson, R.M.

    1986-01-01

    Benzodiazepine receptors of rat cerebellum were assayed with [ 3 H]-labeled flunitrazepam at 37 0 C, and assays were terminated by filtration in a cold room according to one of three protocols: keeping each sample at 37 degrees C until ready for filtration, taking the batch of samples (30) into the cold room and filtering sequentially in the order 1-30, and taking the batch of 30 samples into the cold room and filtering sequentially in the order 30-1. the results for each protocol were substantially different from each other, indicating that rapid disruption of equilibrium occurred as the samples cooled in the cold room while waiting to be filtered. Positive or negative cooperativity of binding was apparent, and misleading effects of gamma-aminobutyric acid on the affinity of diazepam were observed, unless each sample was kept at 37 0 C until just prior to filtration

  19. Benzodiazepine receptor distribution and cerebral blood flow in early blindness. A PET study

    International Nuclear Information System (INIS)

    Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro

    2000-01-01

    We studied benzodiazepine receptor (BZR) distribution, which is thought to be affected by neuronal density in the cerebral cortex, and CBF using [ 11 C]flumazenil and [ 15 O]water PET in early blind (EB) and in blindfold sighted control (SC) subjects. PET images were co-registered to the subject's MRI. Using SPM96, MRI images were normalized in the Talairach and Tournoux coordinate system, and accordingly MRI-registered PET images were spatially normalized. Statistical parametric maps were computed on a voxel-by-voxel basis, using the general linear model. CBF for EB was significantly larger in the Brodmann area 17 and 18, especially anterior area, than that for SC, while there was no significant difference in BZR distribution. Our BZR data suggest that the amount of neurons do not change due to early visual deprivation in the visual cortex, in spite of high CBF in visual cortex of EB subjects. (author)

  20. Analysis of subcomponents of the gamma-aminobutyric acid/benzodiazepine receptor macromolecular complex in mammalian central nervous system

    International Nuclear Information System (INIS)

    McCabe, R.T.

    1987-01-01

    Since the presence of endogenous gamma-aminobutyric acid (GABA) may affect benzodiazepine binding to tissue sections in autoradiographic studies, a protocol designed to check for this influence has been investigated. [ 3 H]Flunitrazepam (1 nM) was used to label benzodiazepine receptors for autoradiographic localization. Bicuculline was added to the incubation medium of an additional set of tissue sections to antagonize any potential effect of endogenous GABA. Binding in these sections was compared to that occurring in another set in which excess GABA was added to create further GABA enhancement. Binding was also compared to adjacent sections which were treated similarly but also preincubated in distilled-deionized water to burst the cells by osmotic shock and eliminate endogenous GABA, thereby preventing any effect on benzodiazepine binding. The results indicated that endogenous GABA is indeed present in the slide-mounted tissue sections and is affecting benzodiazepine receptor binding differentially in various regions of the brain depending on the density of GABAergic innervation. Scatchard analysis of saturation data demonstrated that the alteration in BZ binding due to GABA was a result of a change in the affinity rather than number of receptors present

  1. Reversal of diastereoselectivity in the synthesis of peptidomimetic 3-carboxamide-1,4-benzodiazepin-5-ones.

    Science.gov (United States)

    Pertejo, Pablo; Corres, Nazaret; Torroba, Tomás; García-Valverde, María

    2015-02-06

    Enantiopure 3-carboxamide-1,4-benzodiazepin-5-ones were synthesized via the Ugi reaction followed by the Staudinger/aza-Wittig or reduction reactions in only two steps. A complete reversal of diastereoselectivity was achieved depending on the cyclization methodology employed. The different orientation of the C3 substituent in our 3-substituted 1,4-benzodiazepin-5-ones with respect to the most studied 1,4-benzodiazepin-2-ones makes them complementary in the development of new drugs because the primary source of binding selectivity of 1,4-benzodiazepines is the selective recognition of ligand conformations by the receptor.

  2. Novel Somatostatin Receptor Ligands Therapies for Acromegaly

    Directory of Open Access Journals (Sweden)

    Rosa Maria Paragliola

    2018-03-01

    Full Text Available Surgery is considered the treatment of choice in acromegaly, but patients with persistent disease after surgery or in whom surgery cannot be considered require medical therapy. Somatostatin receptor ligands (SRLs octreotide (OCT, lanreotide, and the more recently approved pasireotide, characterized by a broader receptor ligand binding profile, are considered the mainstay in the medical management of acromegaly. However, in the attempt to offer a more efficacious and better tolerated medical approach, recent research has been aimed to override some limitations related to the use of currently approved drugs and novel SRLs therapies, with potential attractive features, have been proposed. These include both new formulation of older molecules and new molecules. Novel OCT formulations are aimed in particular to improve patients’ compliance and to reduce injection discomfort. They include an investigational ready-to-use subcutaneous depot OCT formulation (CAM2029, delivered via prefilled syringes and oral OCT that uses a “transient permeability enhancer” technology, which allows for OCT oral absorption. Another new delivery system is a long-lasting OCT implant (VP-003, which provide stable doses of OCT throughout a period of several months. Finally, a new SRL DG3173 (somatoprim seems to be more selective for GH secretion, suggesting possible advantages in the presence of hyperglycemia or diabetes. How much these innovations will actually be beneficial to acromegaly patients in real clinical practice remains to be seen.

  3. Substrate coated with receptor and labelled ligand for assays

    International Nuclear Information System (INIS)

    1980-01-01

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine ( 125 I) and the receptor is digoxin antibody. (U.K.)

  4. Synthesis of [{sup 123}I]iodine labelled imidazo[1,2-b] pyridazines as potential probes for the study of peripheral benzodiazepine receptors using SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A.; Mattner, F.; Dikic, B. [Radiopharmaceuticals Div. ANSTO, Menai, NSW (Australia); Barlin, G. [Div. of Neurosciences, John Curtin School of Medical Research, Australian National Univ., Canberra (Australia)

    2004-07-01

    The pyridazines 3-acetamidomethyl-6-chloro-2-(4'-iodophenyl)imidazo[1,2-b]pyridazine 1 (IC{sub 50} = 1.6 nM) and 3-benzamidomethyl-6-iodo-2-(4'-t-butylphenyl)imidazo[1,2-b] pyridazine 2 (IC{sub 50} = 4.2 nM), are high affinity and selective ligands for the peripheral benzodiazepine receptors (PBR) compared to the central benzodiazepine counterparts. The [{sup 123}I]1 and [{sup 123}I]2 labelled analogues of these compounds were subsequently synthesised for the potential study of the PBR in vivo using SPECT. Radioiodination of [{sup 123}I]1 was achieved by iododestannylation of the corresponding tributyl tin precursor with Na[{sup 123}I] in the presence of peracetic acid or chloramine-T and the product isolated by C-18 RP HPLC. Radioiodination of [{sup 123}I]2 was achieved by copper assisted bromine [{sup 123}I]iodine exchange of the corresponding bromo precursor in the presence of acetic acid and sodium bisulfate as reducing agent at 200 C. Purification of the crude products were achieved by semi-preparative C-18 RP HPLC to give the products in radiochemical yields > 90%. The products were obtained in > 97% chemical and radiochemical purity and with specific activities > 180 GBq/{mu}mol. (orig.)

  5. Subchronic treatment with antiepileptic drugs modifies pentylenetetrazol-induced seizures in mice: Its correlation with benzodiazepine receptor binding

    Directory of Open Access Journals (Sweden)

    Luisa Rocha

    2008-06-01

    Full Text Available Luisa RochaPharmacobiology Department, Center for Research and Advanced Studies, Calz, Tenorios, MéxicoAbstract: Experiments using male CD1 mice were carried out to investigate the effects of subchronic (daily administration for 8 days pretreatments with drugs enhancing GABAergic transmission (diazepam, 10 mg/kg, ip; gabapentin, 100 mg/kg, po; or vigabatrin, 500 mg/kg, po on pentylenetetrazol (PTZ-induced seizures, 24 h after the last injection. Subchronic administration of diazepam reduced latencies to clonus, tonic extension and death induced by PTZ. Subchronic vigabatrin produced enhanced latency to the first clonus but faster occurrence of tonic extension and death induced by PTZ. Subchronic gabapentin did not modify PTZ-induced seizures. Autoradiography experiments revealed reduced benzodiazepine receptor binding in several brain areas after subchronic treatment with diazepam or gabapentin, whereas subchronic vigabatrin did not induce significant receptor changes. The present results indicate differential effects induced by the subchronic administration of diazepam, vigabatrin, and gabapentin on the susceptibility to PTZ-induced seizures, benzodiazepine receptor binding, or both.Keywords: diazepam, gabapentin, vigabatrin, pentylenetetrazol, benzodiazepine receptors

  6. 125I-iomazenil - benzodiazepine receptor binding and serum corticosterone level during psychological stress in a rat model

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2004-01-01

    To test the hypothesis that benzodiazepine receptor density decreases in response to stress, we correlated 125 I-iomazenil ( 125 I-IMZ) binding with serum corticosterone levels in a rat model. Wistar male rats were divided into four groups; control group (CON, 10 rats), no physical or psychological stress; and one-, three-, and five-day stress groups of 12 rats each (1-DAY, 3-DAY, and 5-DAY, respectively), receiving psychological stress for the given number of days. Psychological stress were given to rats with a communication box. The standardized uptake value (SUV) of 125 I-iomazenil of the 3-DAY and 5-DAY showed that 125 I-iomazenil - benzodiazepine receptor binding was significantly reduced in the cortices, accumbens nuclei, amygdala and caudate putamen (p 125 I-IMZ is a useful radioligand to reflect received stress and its binding in the cortices, accumbens nuclei, amygdala and caudate putamen is strongly affected by psychological stress

  7. Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABAA receptors supports an allosteric model of modulation

    OpenAIRE

    Downing, Scott S; Lee, Yan T; Farb, David H; Gibbs, Terrell T

    2005-01-01

    Benzodiazepines (BZDs) have been used extensively for more than 40 years because of their high therapeutic index and low toxicity. Although BZDs are understood to act primarily as allosteric modulators of GABAA receptors, the mechanism of modulation is not well understood.The applicability of an allosteric model with two binding sites for γ-aminobutyric acid (GABA) and one for a BZD-like modulator was investigated.This model predicts that BZDs should enhance the efficacy of partial agonists.C...

  8. Synthesis and in vivo evaluation of [{sup 11}C]zolpidem, an imidazopyridine with agonist properties at central benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, Filip; Waterhouse, Rikki N. E-mail: rnw7@columbia.edu; Montoya, Julie A.; Mattner, Filomena; Katsifis, Andrew; Kegeles, Lawrence S.; Laruelle, Marc

    2003-05-01

    The synthesis and evaluation of [{sup 11}C]zolpidem, an imidazopyridine with agonist properties at central benzodiazepine receptors, is reported herein. The reaction of desmethylzolpidem with [{sup 11}C] methyl iodide afforded the title compound [{sup 11}C]zolpidem in a yield of 19.19 {+-} 3.23% in 41 {+-} 2 min in specific activities of 0.995-1.19 Ci/{mu}mol (1.115 {+-} 0.105 Ci/{mu}mol) (n = 3; decay corrected, EOB). The amount of radioactivity in the brain after tail vein injection in male Wistar rats was low, and the regional distribution was homogeneous and not consistent with the known distribution of the central benzodiazepine receptors. The frontal cortex/cerebellum ratio was not significantly greater than one (1.007 {+-} 0.266 at 5 min) and did not increase from 5 to 40 min post-injection. A PET brain imaging study in one baboon confirmed the results obtained in rats. Therefore, it can be concluded that [{sup 11}C]zolpidem is not a suitable tracer for in vivo visualization of central benzodiazepine receptors.

  9. Interactions of pyrethroid insecticides with GABA sub A and peripheral-type benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, L.L.

    1988-01-01

    Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1R{alpha}S, cis cypermethrin having an ED{sub 50} value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of ({sup 3}H)Ro5-4864 to rat brain membranes with a significant correlation between the log EC{sub 50} values for their activities as proconvulsants and the log IC{sub 50} values for their inhibition of ({sup 3}H)Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific ({sup 35}S)TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of ({sup 35}S)TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated {sup 36}Chloride influx. Moreover, the Type II pyrethroids elicited an increase in {sup 36}chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin.

  10. Benzodiazepine receptor imaging with iomazenil SPECT in aphasic patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Ohyama, Masashi [Nippon Medical School, Tokyo (Japan)] (and others)

    1999-08-01

    To investigate the relationship between prognosis of aphasia and neuronal damage in the cerebral cortex, we evaluated the distribution of central-type benzodiazepine receptor (BZR) binding in post-stroke aphasics with [{sup 123}I]iomazenil and SPECT. We performed iomazenil SPECT in six aphasic patients (aged from 45 to 75 years; all right-handed) with unilateral left cerebral infarction. Three patients showed signs of Broca's aphasia and the other three Wernicke's aphasia. Cerebral blood flow (CBF) imaging was performed with [{sup 123}I]iodoamphetamine (IMP). The regions of interest (ROIs) on both images were set in the cerebral cortex, cerebellar cortex and language relevant area in both hemispheres. Three patients were classified in the mild prognosis group and the other three in the moderate prognosis group. The left language-relevant area was more closely concerned with the difference in aphasic symptoms than the right one in both BZR and CBF distribution, but the ipsilateral to the contralateral ratio (I/C ratio) in the language-relevant areas in the BZR distribution was significantly lower in the moderate prognosis group than in the mild prognosis group, although no difference was seen for these values between the two groups in the CBF distribution. These results suggest that BZR imaging, which makes possible an increase in neuronal cell viability in the cerebral cortex, is useful not only for clarifying the aphasic symptoms but also for evaluating the prognosis of aphasia in patients with cerebral infarction. (author)

  11. Benzodiazepine receptor imaging with iomazenil SPECT in aphasic patients with cerebral infarction

    International Nuclear Information System (INIS)

    Koshi, Yasuhiko; Kitamura, Shin; Ohyama, Masashi

    1999-01-01

    To investigate the relationship between prognosis of aphasia and neuronal damage in the cerebral cortex, we evaluated the distribution of central-type benzodiazepine receptor (BZR) binding in post-stroke aphasics with [ 123 I]iomazenil and SPECT. We performed iomazenil SPECT in six aphasic patients (aged from 45 to 75 years; all right-handed) with unilateral left cerebral infarction. Three patients showed signs of Broca's aphasia and the other three Wernicke's aphasia. Cerebral blood flow (CBF) imaging was performed with [ 123 I]iodoamphetamine (IMP). The regions of interest (ROIs) on both images were set in the cerebral cortex, cerebellar cortex and language relevant area in both hemispheres. Three patients were classified in the mild prognosis group and the other three in the moderate prognosis group. The left language-relevant area was more closely concerned with the difference in aphasic symptoms than the right one in both BZR and CBF distribution, but the ipsilateral to the contralateral ratio (I/C ratio) in the language-relevant areas in the BZR distribution was significantly lower in the moderate prognosis group than in the mild prognosis group, although no difference was seen for these values between the two groups in the CBF distribution. These results suggest that BZR imaging, which makes possible an increase in neuronal cell viability in the cerebral cortex, is useful not only for clarifying the aphasic symptoms but also for evaluating the prognosis of aphasia in patients with cerebral infarction. (author)

  12. 125I-iomazenil-benzodiazepine receptor binding during psychological stress in rats

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Tsuchida, Daisuke; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2002-01-01

    We investigated the changes in 125 I-iomazenil ( 125 I-IMZ) benzodiazepine receptor (BZR) binding with psychological stress in a rat model. Six male Wistar rats were placed under psychological stress for 1 hour by using a communication box. No physical stress was not received. 1.85 MBq of 125 I-IMZ was injected into the lateral tail vein and the rat was killed 3 hours later. Twenty-micormeter-thick sections of the brain were collected and % injected dose per body weight (% ID/BW) of eleven regions (frontal, parietal, temporal, occipital cortices, caudate putamen, accumubens nuclei, globus pallidus, amygdala, thalamus, hippocampus and hypothalamus) were calculated by autoradiography. The %ID/BW of rats which were placed under psychological stress was compared with that of 6 control rats. The %ID/BW of rats which were placed under psychological stress diffusely tended to show a reduction in 125 I-IMZ-BZR binding. A significant decrease in BZR binding was observed in the hippocampus of the rats which were placed under psychological stress. 125 I-IMZ-BZR binding tended to decrease throughout the brain. (author)

  13. Species dependent dual modulation of the benzodiazepine/GABA receptor chloride channel by dihydroergosine

    Energy Technology Data Exchange (ETDEWEB)

    Pericic, D.; Tvrdeic, A. (Rudjer Boskovic Institute, Zagreb (Yugoslavia))

    1990-01-01

    Dihydroergosine enhanced the incidence of bicuculline induced convulsions in female rats, while 100 mg/kg of dihydroergosine given to female mice made 45% convulsive dose of bicuculline to be subconvulsive. The same dose of dihydroergosine enhanced in mice the latency of bicuculline-induced convulsions. Although, in in vitro experiments dihydroergosine showed very weak ability to prevent the binding of {sup 3}H-muscimol, the drug was able to diminish and to augment the IC{sub 50} of bicuculline and GABA when added to crude synaptosomal pellet of the rat and mouse brain respectively. Lower concentrations of dihydroergosine stimulated and higher inhibited {sup 3}H-TBOB binding to the crude synaptosomal pellet of the rat brain. In the preparation of mouse brain dihydroergosine produced only inhibition of {sup 3}H-TBOB binding. Only slight quantitative differences were observed in bicuculline-induced stimulation and in GABA- and diazepam-induced inhibition of {sup 3}H-TBOB binding between the two species. The results suggest that the opposite species-dependent effects of dihydroergosine on bicuculline-induced convulsions are due to the ability of this drug to modulate species-dependently the benzodiazepine/GABA receptor chloride channel complex.

  14. Maternal Characteristics of Women Exposed to Hypnotic Benzodiazepine Receptor Agonist during Pregnancy

    Directory of Open Access Journals (Sweden)

    Bjarke Askaa

    2014-01-01

    Full Text Available Background. There is little knowledge regarding the characteristics of women treated with hypnotic benzodiazepine receptor agonists (HBRAs during pregnancy. In this large Danish cohort study, we characterize women exposed to HBRA during pregnancy. We determined changes in prevalence of HBRA use from 1997 to 2010 and exposure to HBRAs in relation to pregnancy. Methods. We performed a retrospective cohort study including 911,017 pregnant women in the period from 1997 to 2010. Information was retrieved from The Danish Birth Registry and The Registry of Medicinal Product Statistics to identify pregnant women redeeming a prescription of HBRAs. Results. We identified 2,552 women exposed to HBRAs during pregnancy, increasing from 0.18% in 1997 to 0.23% in 2010. Compared to unexposed women, exposed women were characterized by being older, with higher BMI, in their third or fourth parity, of lower income and education level, more frequently smokers, and more likely to be comedicated with antipsychotic, anxiolytic, or antidepressant drugs (P<0.0001. Conclusion. Women using HBRAs during their pregnancy differ from unexposed women in socioeconomic factors and were more likely to receive comedication. The consumption of HBRAs was reduced during pregnancy compared to before conception.

  15. Tryptic mapping and membrane topology of the benzodiazepine receptor alpha-subunit

    Energy Technology Data Exchange (ETDEWEB)

    Lentes, K.U.; Venter, J.C.

    1986-05-01

    Rat brain membrane benzodiazepine receptors (BZR) were photoaffinity labelled specifically (in presence or absence of 6 ..mu..M clonazepam) with 10 nM /sup 3/H-flunitrazepam (FNZ). Digestion of the FNZ-labelled, membrane-bound BZR with 200 ..mu..g trypsin/mg membrane protein yielded H/sub 2/O-soluble BZR-fragments of molecular mass (M/sub r/) 34, 31, 28, 24, 21, 18, 16, 12, 10 and 7kDa. Because the 34kDa-peptide is the largest fragment containing a FNZ-binding site they conclude that this represents the extracellular domain of the BZR. In the remaining pellet two labelled peptides with M/sub r/ of 44kDa and 28kDa were found that required the use of detergents for their solubilization; they therefore contain the membrane anchoring domain. Digestion of the 0.5% Na-deoxycholate solubilized, intact BZR (M/sub r/ 51kDa) resulted in the same tryptic pattern as the membrane form of the receptor plus two larger fragments of M/sub r/ 45kDa and 40kDa. Arrangement of all tryptic fragments with reference to the FNZ binding site reveals a membrane topology of the BZR alpha-subunit with 67% (34kDa) for the extracellular domain, 21% (11kDa) for the membrane anchoring domain and 12% (6kDa) for a putative cytoplasmic domain. The overlap between some of the labelled fragments suggest that the BZ binding site must be located near the membrane surface of the extracellular domain.

  16. Apparent target size of rat brain benzodiazepine receptor, acetylcholinesterase, and pyruvate kinase is highly influenced by experimental conditions

    International Nuclear Information System (INIS)

    Nielsen, M.; Braestrup, C.

    1988-01-01

    Radiation inactivation is a method to determine the apparent target size of molecules. In this report we examined whether radiation inactivation of various enzymes and brain receptors is influenced by the preparation of samples preceding irradiation. The apparent target sizes of endogenous acetylcholinesterase and pyruvate kinase from rat brain and from rabbit muscle and benzodiazepine receptor from rat brain were investigated in some detail. In addition the target sizes of alcohol dehydrogenase (from yeast and horse liver), beta-galactosidase (from Escherichia coli), lactate dehydrogenase (endogenous from rat brain), and 5-HT2 receptors, acetylcholine muscarine receptors, and [ 35 S] butyl bicyclophosphorothionate tertiary binding sites from rat brain were determined. The results show that apparent target sizes are highly influenced by the procedure applied for sample preparation before irradiation. The data indicate that irradiation of frozen whole tissue as opposed to lyophilized tissue or frozen tissue homogenates will estimate the smallest and most relevant functional target size of a receptor or an enzyme

  17. The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study.

    Science.gov (United States)

    Mendez, Maria Andreina; Horder, Jamie; Myers, Jim; Coghlan, Suzanne; Stokes, Paul; Erritzoe, David; Howes, Oliver; Lingford-Hughes, Anne; Murphy, Declan; Nutt, David

    2013-05-01

    GABA (gamma-amino-butyric-acid) is the primary inhibitory neurotransmitter in the human brain. It has been proposed that the symptoms of autism spectrum disorders (ASDs) are the result of deficient GABA neurotransmission, possibly including reduced expression of GABAA receptors. However, this hypothesis has not been directly tested in living adults with ASD. In this preliminary investigation, we used Positron Emission Tomography (PET) with the benzodiazepine receptor PET ligand [(11)C]Ro15-4513 to measure α1 and α5 subtypes of the GABAA receptor levels in the brain of three adult males with well-characterized high-functioning ASD compared with three healthy matched volunteers. We found significantly lower [(11)C]Ro15-4513 binding throughout the brain of participants with ASD (p < 0.0001) compared with controls. Planned region of interest analyses also revealed significant reductions in two limbic brain regions, namely the amygdala and nucleus accumbens bilaterally. Further analysis suggested that these results were driven by lower levels of the GABAA α5 subtype. These results provide initial evidence of a GABAA α5 deficit in ASD and support further investigations of the GABA system in this disorder. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Chronic stress in Lizards: Studies on the Behavior and Benzodiazepine Receptors in Liolaemus koslowskyi and Cnemidophorus tergolaevigatus.

    Science.gov (United States)

    Soloaga, Alejandra; Pueta, Mariana; Cruz, Félix Benjamín; Kembro, Jackelyn Melissa; Marin, Raul Hector

    2016-12-01

    Behavioral and physiological adaptive responses of animals facing chronic exposure to a single stressor may allow them to overcome its negative effects for future exposures to similar stressful situations. At chemical level, the GABA A /benzodiazepine complex is considered one of the main receptor systems involved in the modulation of stress-induced responses. Here, we describe the behavioral responses of two different lizard species, Liolaemus koslowskyi and Cnemidophorus tergolaevigatus exposed to three potential chronic stressful treatments: (a) high temperature, (b) forced swimming, and (c) simulated predator. Additionally, we aimed to determine in those lizards whether the central-type benzodiazepine receptor (CBR; an allosteric modulator site of the GABA A receptor) is related to adaptive responses to those stressful stimulations. Our results revealed that the simulated predator was the stress condition that showed the largest difference in behavioral responses between the two species, resembling previously described strategies in nature. The basal affinity of CBRs (obtained from undisturbed animals) showed differences between both species, and the simulated predator was the only stressor that altered the affinity of CBRs. L. koslowskyi CBRs showed a decreased receptor affinity, whereas C. tergolaevigatus showed an increased receptor affinity in comparison to their respective control groups. We show for the first time the effects of different types of stressors upon behavioral responses and CBR biochemical parameters in two lizard species. Our findings suggest a potential GABA/benzodiazepine role in the ability of lizards to cope with a repeated exposure to a stressful (e.g., predator) condition. © 2017 Wiley Periodicals, Inc.

  19. High density of benzodiazepine binding sites in the substantia innominata of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Sarter, M.; Schneider, H.H.

    1988-07-01

    In order to study the neuronal basis of the pharmacological interactions between benzodiazepine receptor ligands and cortical cholinergic turnover, we examined the regional distribution of specific benzodiazepine binding sites using in vitro autoradiography. In the basal forebrain, the substantia innominata contained a high density of (/sup 3/H)lormetazepam (LMZ) binding sites (Bmax = 277 fmol/mg tissue; Kd = 0.55 nM). The label could be displaced by diazepam (IC50 = 100 nM), the benzodiazepine receptor antagonist beta-carboline ZK 93426 (45 nM) and the partial inverse agonist beta-carboline FG 7142 (540 nM). It is hypothesized that the amnesic effects of benzodiazepine receptor agonists are exerted through benzodiazepine receptors which are situated on cholinergic neurons in the substantia innominata and are involved in a tonic inhibition of cortical acetylcholine release. The benzodiazepine receptor antagonist ZK 93426 may exert its nootropic effects via benzodiazepine receptors in the substantia innominata and, consequently, by disinhibiting cortical acetylcholine release.

  20. Decrease in benzodiazepine receptor binding in a patient with Angelman syndrome detected by iodine-123 iomazenil and single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Odano, Ikuo [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Anezaki, Toshiharu [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan); Ohkubo, Masaki [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Yonekura, Yoshiharu [Nihon Medi-Physics Co. Ltd., Hyogo (Japan); Onishi, Yoshihiro [Biomedical Imaging Research Center, Fukui Medical School, Fukui (Japan); Inuzuka, Takashi [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan); Takahashi, Makoto [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Tsuji, Shoji [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan)

    1996-05-01

    A receptor mapping technique using iodine-123 iomazenil and single-photon emission tomography (SPET) was employed to examine benzodiazepine receptor binding in a patient with Angelman syndrome (AS). AS is characterized by developmental delay, seizures, inappropriate laughter and ataxic movement. In this entity there is a cytogenic deletion of the proximal long arm of chromosome 15q11-q13, where the gene encoding the GABA{sub A} receptor {beta}3 subunit (GABRB3) is located. Since the benzodiazepine receptor is constructed as a receptor-ionophore complex that contains the GABA{sub A} receptor, it is a suitable marker for GABA-ergic synapsis. To determine whether benzodiazepine receptor density, which indirectly indicates changes in GABA{sub A} receptor density, is altered in the brain in patients with AS, we investigated a 27-year-old woman with AS using {sup 123}I-iomazenil and SPET. Receptor density was quantitatively assessed by measuring the binding potential using a simplified method. Regional cerebral blood flow was also measured with N-isopropyl-p-[{sup 123}]iodoamphetamine. We demonstrated that benzodiazepine receptor density is severely decreased in the cerebellum, and mildly decreased in the frontal and temporal cortices and basal ganglia, a result which is considered to indicate decreased GABA{sub A} receptor density in these regions. Although the deletion of GABRB3 was not observed in the present study, we indirectly demonstrated the disturbance of inhibitory neurotransmission mediated by the GABA{sub A} receptor in the investigated patient. {sup 123}I-iomazenil with SPET was useful to map benzodiazepine receptors, which indicate GABA{sub A} receptor distribution and their density. (orig.)

  1. Radiosynthesis and in vivo evaluation of N-[{sup 11}C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimata, Katsuhiko [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan); Hatano, Kentaro [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan)], E-mail: hatanok@nils.go.jp; Ogawa, Mikako [Photon Medical Research Center, Hamamatsu University School of Medicine, Shizuoka 431-3192 Japan (Japan); Abe, Junichiro [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan); Magata, Yasuhiro [Photon Medical Research Center, Hamamatsu University School of Medicine, Shizuoka 431-3192 Japan (Japan); Biggio, Giovanni; Serra, Mariangela [Department of Experimental Biology, University of Cagliari, Cagliari 09100 (Italy); Laquintana, Valentino; Denora, Nunzio; Latrofa, Andrea; Trapani, Giuseppe; Liso, Gaetano [Pharmaco-Chemistry Department, University of Bari, Bari 70125 (Italy); Ito, Kengo [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan)

    2008-04-15

    Imidazopyridineacetoamide 5-8, a series of novel and potentially selective peripheral benzodiazepine receptor (PBR) ligands with affinities comparable to those of known PBR ligands, was investigated. Radiosyntheses of [{sup 11}C]5, 6, 7 or 8 was accomplished by N-methylation of the corresponding desmethyl precursors with [{sup 11}C]methyl iodide in the presence of NaH in dimethylformamide (DMF), resulting in 25% to 77% radiochemical yield and specific activitiy of 20 to 150 MBq/nmol. Each of the labeled compounds was injected in ddY mice, and the radioactivity and weight of dissected peripheral organs and brain regions were measured. Organ distribution of [{sup 11}C]7 was consistent with the known PBR distribution. Moreover, [{sup 11}C]7 showed the best combination of brain uptake and PBR binding, leading to its high retention in the olfactory bulb and cerebellum, areas where PBR density is high in mouse brain. Coinjection of PK11195 or unlabeled 7 significantly reduced the brain uptake of [{sup 11}C]7. These results suggest that [{sup 11}C]7 could be a useful radioligand for positron emission tomography imaging of PBRs.

  2. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Wilson, Alan A.; Garcia, Armando; Parkes, Jun; McCormick, Patrick; Stephenson, Karin A.; Houle, Sylvain; Vasdev, Neil

    2008-01-01

    Introduction: A novel [ 18 F]-radiolabelled phenoxyanilide, [ 18 F]-FEPPA, has been synthesized and evaluated, in vitro and ex vivo, as a potential positron emission tomography imaging agent for the peripheral benzodiazepine receptor (PBR). Methods: [ 18 F]-FEPPA and two other radiotracers for imaging PBR, namely [ 11 C]-PBR28 and [ 11 C]-PBR28-d3, were synthesised and evaluated in vitro and ex vivo as potential PBR imaging agents. Results: [ 18 F]-FEPPA is efficiently prepared in one step from its tosylate precursor and [ 18 F]-fluoride in high radiochemical yields and at high specific activity. FEPPA displayed a K i of 0.07 nM for PBR in rat mitochondrial membrane preparations and a suitable lipophilicity for brain penetration (log P of 2.99 at pH 7.4). Upon intravenous injection into rats, [ 18 F]-FEPPA showed moderate brain uptake [standard uptake value (SUV) of 0.6 at 5 min] and a slow washout (SUV of 0.35 after 60 min). Highest uptake of radioactivity was seen in the hypothalamus and olfactory bulb, regions previously reported to be enriched in PBR in rat brain. Analysis of plasma and brain extracts demonstrated that [ 18 F]-FEPPA was rapidly metabolized, but no lipophilic metabolites were observed in either preparation and only 5% radioactive metabolites were present in brain tissue extracts. Blocking studies to determine the extent of specific binding of [ 18 F]-FEPPA in rat brain were problematic due to large perturbations in circulating radiotracer and the lack of a reference region. Conclusions: Further evaluation of the potential of [ 18 F]-FEPPA will require the employment of rigorous kinetic models and/or appropriate animal models

  3. Comparison of benzodiazepine receptor and regional cerebral blood flow imagings of epileptiform foci in hippocampal kindled rabbits

    International Nuclear Information System (INIS)

    Kurokawa, Kenzo

    1993-01-01

    To compare the benzodiazepine (Bz) receptor imaging and regional cerebral blood flow (rCBF) imaging in the detection of epileptic foci, the distribution pattern of the Bz receptor and rCBF in hippocampal kindled rabbits was examined by a double tracer autoradiography using ethyl 7-[ 125 I]-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1, 5-a][1,4] benzodiazepine-3-carboxylate ( 125 I-Ro 16-0154) and 99m Tc-hexamethyl-propyleneamine oxime ( 99m Tc-HMPAO). In visual and quantitative analyses, 125 I-Ro 16-0154 accumulation in brain slices extracted after the completion of the kindling was markedly and extensively decreased in the kindled CA1 region mimicking a primary epileptic focus. 125 I-Ro 16-0154 accumulation was moderately decreased in the ipsilateral temporal lobe, dentate gyrus, CA2, CA4, and bilateral CA3 regions, regarded as the propagated sites of seizure discharges. 99m Tc-HMPAO accumulation was found to be decreased in the ipsilateral CA1, frontal, temporal and dentate gyri. However, the decrease was much more slight and less extensive than that in 125 I-Ro 16-0154 accumulation. These results suggest that Bz receptor imaging is much more sensitive in the detection of epileptic foci than rCBF imaging, and therefore that Bz receptor imaging is useful in clinical epilepsy. (author)

  4. Structural basis for ligand recognition of incretin receptors

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Parthier, Christoph; Reedtz-Runge, Steffen

    2010-01-01

    The glucose-dependent insulinotropic polypeptide (GIP) receptor and the glucagon-like peptide-1 (GLP-1) receptor are homologous G-protein-coupled receptors (GPCRs). Incretin receptor agonists stimulate the synthesis and secretion of insulin from pancreatic β-cells and are therefore promising agents...... appear to be the main driving force for ligand binding to the ECD of incretin receptors. Obviously, the-still missing-structures of full-length incretin receptors are required to construct a complete picture of receptor function at the molecular level. However, the progress made recently in structural...

  5. Epibatidine-derivatives: ligands for the neuronal nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Westera, G.; Patt, J.T.; Jankowski, K.; Bertrand, D.; Spang, J.; Schubiger, P.A.

    1997-01-01

    Epibatidine, isolated from the Ecuadorian frog Epipedobates tricolar, has been synthesized. 11 C-N-methyl derivate is investigated as useful nicotinergic receptor ligand by electrophysiological methods and in vivo mice experiments. (author) 2 figs., 7 refs

  6. The shivering threshold in rabbits with JM-1232(-), a new benzodiazepine receptor agonist.

    Science.gov (United States)

    Masamune, Taishi; Sato, Hiroaki; Okuyama, Katsumi; Imai, Yusuke; Iwashita, Hironobu; Ishiyama, Tadahiko; Oguchi, Takeshi; Sessler, Daniel I; Matsukawa, Takashi

    2009-07-01

    JM-1232(-) is a novel isoindoline derivative which shows sedative and hypnotic activities through the benzodiazepine site of gamma-aminobutyric acid type A (GABAA) receptors. Typical doses of midazolam, another GABAA receptor agonist, slightly reduce the shivering threshold in humans. We thus determined the extent to which JM-1232(-) decreases the shivering threshold. Eighteen rabbits, lightly anesthetized with isoflurane 0.2 minimum alveolar anesthetic concentration (MAC), were randomly assigned to infusions of 1) saline (control), 2) 0.01 mg x kg(-1) x min(-1) JM-1232(-), or 3) 0.1 mg x kg(-1) x min(-1) JM-1232(-). Body temperature was reduced at a rate of 2-3 degrees C/h by perfusing water at 10 degrees C though a U-shaped plastic tube positioned in the colon. Cooling continued until shivering was observed by an investigator blinded to treatment, or until core temperature reached 34 degrees C. Core temperatures were recorded from the distal esophagus, and core temperature at the onset of shivering defined the threshold. Data were analyzed by one-way analysis of variance with Student-Newman-Keuls tests. Results are presented as means +/- SD; P shivered at 36.5 +/- 0.3 degrees C. Five of the six rabbits given JM-1232(-) at a rate of 0.01 mg x kg(-1) x min(-1) shivered at 35.7 +/- 0.8 degrees C, and one of these rabbits failed to shiver at 34.0 degrees C. None of the rabbits given JM-1232(-) at a rate of 0.1 mg x kg(-1) x min(-1) shivered before reaching the 34.0 degrees C cutoff temperature. A low dose of JM-1232(-) reduced the shivering threshold in rabbits approximately 0.8 degrees C which is similar to the effects in humans given premedication doses of midazolam. In contrast, a 10-fold larger dose reduced the threshold more than 2.5 degrees C. This is a substantial decrement and might facilitate induction of therapeutic hypothermia.

  7. Exploiting ligand-protein conjugates to monitor ligand-receptor interactions.

    Directory of Open Access Journals (Sweden)

    Hirohito Haruki

    Full Text Available We introduce three assays for analyzing ligand-receptor interactions based on the specific conjugation of ligands to SNAP-tag fusion proteins. Conjugation of ligands to different SNAP-tag fusions permits the validation of suspected interactions in cell extracts and fixed cells as well as the establishment of high-throughput assays. The different assays allow the analysis of strong and weak interactions. Conversion of ligands into SNAP-tag substrates thus provides access to a powerful toolbox for the analysis of their interactions with proteins.

  8. Competitive antagonism of AMPA receptors by ligands of different classes

    DEFF Research Database (Denmark)

    Hogner, Anders; Greenwood, Jeremy R; Liljefors, Tommy

    2003-01-01

    that ATPO and DNQX stabilize an open form of the ligand-binding core by different sets of interactions. Computational techniques are used to quantify the differences between these two ligands and to map the binding site. The isoxazole moiety of ATPO acts primarily as a spacer, and other scaffolds could......-(phosphonomethoxy)-4-isoxazolyl]propionic acid (ATPO) in complex with the ligand-binding core of the receptor. Comparison with the only previous structure of the ligand-binding core in complex with an antagonist, 6,7-dinitro-2,3-quinoxalinedione (DNQX) (Armstrong, N.; Gouaux, E. Neuron 2000, 28, 165-181), reveals...

  9. 3D-QSAR model of flavonoids binding at benzodiazepine site in GABAA receptors.

    Science.gov (United States)

    Huang, X; Liu, T; Gu, J; Luo, X; Ji, R; Cao, Y; Xue, H; Wong, J T; Wong, B L; Pei, G; Jiang, H; Chen, K

    2001-06-07

    With flavone as a structural template, three-dimensional quantitative structure-activity relationship (3D-QSAR) studies and ab initio calculations were performed on a series of flavonoids. A reasonable pharmacophore model was built through CoMFA, CoMSIA, and HQSAR analyses and electrostatic potential calculations. A plausible binding mode for flavonoids with GABA(A) receptors was rationalized. On the basis of the commonly recognized binding site, the specific S1 and S2 subsites relating to substituent positions were proposed. The different binding affinities could be explained according to the frontier orbitals and electrostatic potential (ESP) maps. The ESP could be used as a novel starting point for designing more selective BZ-binding-site ligands.

  10. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach

    Science.gov (United States)

    Lam, Polo C.-H.; Abagyan, Ruben; Totrov, Maxim

    2018-01-01

    Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace.

  11. {sup 125}I-iomazenil - benzodiazepine receptor binding and serum corticosterone level during psychological stress in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, Nobuyoshi E-mail: GZL13162@nifty.ne.jp; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2004-02-01

    To test the hypothesis that benzodiazepine receptor density decreases in response to stress, we correlated {sup 125}I-iomazenil ({sup 125}I-IMZ) binding with serum corticosterone levels in a rat model. Wistar male rats were divided into four groups; control group (CON, 10 rats), no physical or psychological stress; and one-, three-, and five-day stress groups of 12 rats each (1-DAY, 3-DAY, and 5-DAY, respectively), receiving psychological stress for the given number of days. Psychological stress were given to rats with a communication box. The standardized uptake value (SUV) of {sup 125}I-iomazenil of the 3-DAY and 5-DAY showed that {sup 125}I-iomazenil - benzodiazepine receptor binding was significantly reduced in the cortices, accumbens nuclei, amygdala and caudate putamen (p<0.05). Serum corticosterone level ratio appeared to be slightly elevated in 3-DAY and 5-DAY, although this elevation was not significant. These data suggest that {sup 125}I-IMZ is a useful radioligand to reflect received stress and its binding in the cortices, accumbens nuclei, amygdala and caudate putamen is strongly affected by psychological stress.

  12. Yokukansan enhances pentobarbital-induced sleep in socially isolated mice: possible involvement of GABA(A)-benzodiazepine receptor complex.

    Science.gov (United States)

    Egashira, Nobuaki; Nogami, Ai; Iwasaki, Katsunori; Ishibashi, Ayumi; Uchida, Naoki; Takasaki, Kotaro; Mishima, Kenichi; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2011-01-01

    In the present study, we investigated the effect of the Kampo medicine Yokukansan (YKS) on pentobarbital-induced sleep in group-housed and socially isolated mice. Socially isolated mice showed shorter sleeping time than the group-housed mice. YKS (300 mg/kg, p.o.) prolonged the pentobarbital-induced sleeping time in socially isolated mice without affecting pentobarbital sleep in group-housed mice. The prolongation of sleeping time by YKS was reversed by bicuculline (3 mg/kg, i.p.) and flumazenil (3 mg/kg, i.p.), but not WAY100635. These findings suggest that the GABA(A)-benzodiazepine receptor complex, but not 5-HT(1A) receptors, is involved in the reversal effect of YKS on the decrease of pentobarbital sleep by social isolation.

  13. A2A receptor ligands: past, present and future trends.

    Science.gov (United States)

    Clementina, Manera; Giuseppe, Saccomanni

    2010-01-01

    The adenosine A(2A) receptor is a member of the G protein-coupled receptor family and mediates multiple physiological effects of adenosine, both at the central nervous system and at peripheral tissues. Increasing evidence relates the A(2A) receptor with several pathological conditions such as neurodegenerative disorders, inflammation, pharmacological stress, and wound healing renewing the interest in A(2A) receptor agonists and antagonists as promising leads for drugs. However some of them initially tested in clinical trials presented several side effects, short half-life, lower solubility, and in some cases a lack of effects, perhaps attributable to receptor desensitization or to low receptor density in the targeted tissue. For these reasons it is evident that additional rational chemical modifications of the existing A(2A) receptor ligands to improve their affinity/selectivity and bioavailability as well as further studies to get new template for A(2A)AR ligands are necessary. The purpose of this review is to analyze and summarize the past and the present aspects related to the medicinal chemistry of A(2A) receptor ligands. Moreover their current and possible therapeutic applications have been also highlighted.

  14. Ligands of histamine receptors modulate acid-sensing ion channels.

    Science.gov (United States)

    Shteinikov, V Y; Korosteleva, A S; Tikhonova, T B; Potapieva, N N; Tikhonov, D B

    2017-09-02

    Recently we found that synthetic compounds containing amino group linked to hydrophobic or aromatic moiety are potent modulators of the proton-gated channels (ASICs). These structures have clear similarity with ligands of histamine receptors. We have also demonstrated that histamine potentiates homomeric ASIC1a by shifting its activation dependence to less acidic conditions. In the present work the action of a series of histamine receptors ligands on recombinant ASIC1a and ASIC2a was characterized. Two types of action were found for ASIC1a. 1-methylhistamine, N-alpha-methylhistamine, dimaprit and thioperamide caused significant potentiation, which was pH-dependent and voltage-independent. The H4R antagonist A943931 caused inhibition, which is likely due to voltage-dependent pore block. ASIC2a were virtually insensitive to the drugs tested. We conclude that ligands of histamine receptors should also be considered as ASIC modulators. Copyright © 2017. Published by Elsevier Inc.

  15. Improvement of chronic hepatic encephalopathy in dogs by the benzodiazepine-receptor partial inverse agonist sarmazenil, but not by the antagonist flumazenil

    NARCIS (Netherlands)

    Meyer, H. P.; Legemate, D. A.; van den Brom, W.; Rothuizen, J.

    1998-01-01

    Therapeutic modulation of the increased GABAergic tone in chronic hepatic encephalopathy (HE) by the benzodiazepine receptor (BR) antagonist flumazenil (F) has led to conflicting results in humans and animal models for HE. The BR inverse agonist sarmazenil (S) has only been used in animal models of

  16. Chemokine-Ligands/Receptors: Multiplayers in Traumatic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Friederike Knerlich-Lukoschus

    2015-01-01

    Full Text Available Spinal cord injury (SCI results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis after traumatic spinal cord (sc insults on basis of recent in vivo and in vitro findings in a SCI paradigm of thoracic force-defined impact lesions (Infinite Horizon Impactor in adult rats. Analyses of chemokine-ligand/receptor-expression at defined time points after sc lesion of different severity grades or sham operation revealed that these inflammatory mediators are induced in distinct anatomical sc regions and in thalamic nuclei, periaqueductal grey, and hippocampal structures in the brain. Cellular and anatomical expression profiles together with colocalization/expression of neural stem/progenitor cell markers in adult sc stem cells niches or with pain-related receptors and mediators in dorsal horns, dorsal columns, and pain-processing brain areas support the notion that chemokines are involved in distinct cascades underlying clinical posttraumatic impairments and syndromes. These aspects and their implication in concepts of tailored SCI treatment are reviewed in the context of the recent literature on chemokine-ligand/receptor involvement in complex secondary lesion cascades.

  17. The 18-kDa translocator protein, formerly known as the peripheral-type benzodiazepine receptor, confers proapoptotic and antineoplastic effects in a human colorectal cancer cell line.

    Science.gov (United States)

    Shoukrun, Rami; Veenman, Leo; Shandalov, Yulia; Leschiner, Svetlana; Spanier, Ilana; Karry, Rachel; Katz, Yeshayahu; Weisinger, Gary; Weizman, Abraham; Gavish, Moshe

    2008-11-01

    The involvement of the 18-kDa translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, in apoptosis regulation of HT29 colorectal cancer cells was studied in-vitro. In-vivo TSPO involvement in tumor growth of HT29 cells xenografted into SCID mice was studied. Knockdown of TSPO expression in the human HT29 cell line was established by stable transfection with vectors containing the TSPO gene in the antisense direction. Successful TSPO knockdown was characterized by reduction of 20% in TSPO RNA levels, 50% in protein expression of the TSPO, and 50% in binding with the TSPO ligand, [3H]PK 11195. Subsequently, in-vitro cell viability and proliferation assays were applied. In addition, transient transfecton with short interfering RNA (siRNA) directed against human TSPO was studied in this way. Furthermore, we also grafted HT29 cells subcutaneously into the right thighs of SCID mice to examine the effects of the putative TSPO agonist, FGIN-1-27, on tumor growth in-vivo. In-vitro TSPO knockdown established by stable transfection of TSPO antisense gene resulted in HT29 clones displaying significantly lower levels of cell death as determined with trypan blue (50% less), lower apoptotic rates (28% less), and higher proliferation rates (48% more one week after seeding and 27% more two weeks after seeding). Transient transfection with anti-human TSPO siRNA resulted in similar viability and antiapoptotic effects. In-vivo, the proapoptotic TSPO ligand, FGIN-1-27 significantly reduced the growth rate of grafted tumors (40% less), in comparison with vehicle-treated mice. TSPO knockdown by genetic manipulation transforms the human HT29 cancer line to a more malignant type in-vitro. In-vivo pharmacological treatment with the putative TSPO agonist FGIN-1-27 reduces tumor growth of the HT29 cell line. These data suggest that TSPO involvement in apoptosis provides a target for anticancer treatment.

  18. (/sup 3/H)Clonazepam, like (/sup 3/H)flunitrazepam, is a photoaffinity label for the central type of benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sieghart, W. (Vienna Univ. (Austria)); Moehler, H. (Hoffmann-La Roche (F.) and Co., Basel (Switzerland))

    1982-06-16

    (/sup 3/H)Clonazepam, like (/sup 3/H)flunitrazepam, is irreversibly bound to membrane proteins of brain tissue when exposed to UV light. In polyacrylamide gel electrophoresis followed by fluorography, the same pattern of photolabelled proteins was obtained in cerebellum and in hippocampus when either (/sup 3/H)clonazepam or (/sup 3/H)flunitrazepam was used as photoaffinity label. Since (/sup 3/H)clonazepam does not interact with the peripheral type of benzodiazepine binding site present in the brain, these results confirm previous evidence that the proteins photolabelled with (/sup 3/H)flunitrazepam are associated with the central type of benzodiazepine receptor.

  19. Structural and Functional Diversity of Estrogen Receptor Ligands

    OpenAIRE

    Farooq, Amjad

    2015-01-01

    Estrogen receptors, comprised of ERα and ERβ isoforms in mammals, act as ligand-modulated transcription factors and orchestrate a plethora of cellular functions from sexual development and reproduction to metabolic homeostasis. Herein, I revisit the structural basis of the binding of ERα to DNA and estradiol in light of the recent discoveries and emerging trends in the field of nuclear receptors. A particular emphasis of this review is on the chemical and structural diversity of an ever-incre...

  20. Novel retinoic acid receptor ligands in Xenopus embryos.

    OpenAIRE

    Blumberg, B; Bolado, J; Derguini, F; Craig, A G; Moreno, T A; Chakravarti, D; Heyman, R A; Buck, J; Evans, R M

    1996-01-01

    Retinoids are a large family of natural and synthetic compounds related to vitamin A that have pleiotropic effects on body physiology, reproduction, immunity, and embryonic development. The diverse activities of retinoids are primarily mediated by two families of nuclear retinoic acid receptors, the RARs and RXRs. Retinoic acids are thought to be the only natural ligands for these receptors and are widely assumed to be the active principle of vitamin A. However, during an unbiased, bioactivit...

  1. The Parathyroid Hormone Family of Ligands and Receptors

    Directory of Open Access Journals (Sweden)

    Damian G. D'Souza

    2015-07-01

    Full Text Available The PTH family of ligands and receptors have a wide range of vital functions from calcium homeostasis to tissue and bone development from the embryo to adult. This family has undergone whole genome duplication events predating vertebrate evolution, indicating more primitive and ancient functions other than skeletal development. The N-terminal region of the ligands, have been widely studied by biophysical and functional analysis, resulting in the discovery of key characteristics essential for ligand-receptor activation being elucidated. Multi-substituted amino acid analogs with differential binding affinities and either antagonistic or agonistic signalling potencies have been created based on these findings allowing for improvement on potential therapies affected by the PTH system in skeletal and embryonic development. The PTH family has diversely evolved to cover a wide range of pivotal pathways crucial to growth and development throughout all animal life.

  2. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...

  3. Effects of LiCl/pilocarpine-induced status epilepticus on rat brain mu and benzodiazepine receptor binding: Regional and ontogenetic studies

    Czech Academy of Sciences Publication Activity Database

    Rocha, L.; Suchomelová, Lucie; Mareš, Pavel; Kubová, Hana

    2007-01-01

    Roč. 1181, - (2007), s. 104-117 ISSN 0006-8993 R&D Projects: GA MŠk(CZ) LC554; GA ČR GA304/05/2582 Grant - others: CONACyT (MX) 45943-M Institutional research plan: CEZ:AV0Z50110509 Keywords : benzodiazepine receptor * µ receptor binding * status epilepticus Subject RIV: ED - Physiology Impact factor: 2.218, year: 2007

  4. The 18 kDa translocator protein (peripheral benzodiazepine receptor expression in the bone of normal, osteoprotegerin or low calcium diet treated mice.

    Directory of Open Access Journals (Sweden)

    Winnie Wai-Ying Kam

    Full Text Available The presence of the translocator protein (TSPO, previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195.In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells.In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [(3H]PK11195 binding in the spongiosa (320±128 Bq x mg(-1, 499±106 Bq x mg(-1 in saline-treated controls. In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [(3H]PK11195 binding in the spongiosa (615±90 Bq x mg(-1. Further, our study includes technical feasibility data on [(18F]fluoride microPET imaging of rodent bone with altered turnover. Despite [(18F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [(18F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.

  5. Modeling of ligand binding to dopamine D2 receptor

    Directory of Open Access Journals (Sweden)

    Ostopovici-Halip Liliana

    2014-01-01

    Full Text Available The dopaminic receptors have been for long time the major targets for developing new small molecules with high affinity and selectivity to treat psychiatric disorders, neurodegeneration, drug abuse, and other therapeutic areas. In the absence of a 3D structure for the human D2 dopamine (HDD2 receptor, the efforts for discovery and design of new potential drugs rely on comparative models generation, docking and pharmacophore development studies. To get a better understanding of the HDD2 receptor binding site and the ligand-receptor interactions a homology model of HDD2 receptor based on the X-ray structure of β2-adrenergic receptor has been built and used to dock a set of partial agonists of HDD2 receptor. The main characteristics of the binding mode for the HDD2 partial agonists set are given by the ligand particular folding and a complex network of contacts represented by stacking interactions, salt bridge and hydrogen bond formation. The characterization of the partial agonist binding mode at HDD2 receptor provide the needed information to generate pharmacophore models which represent essential information in the future virtual screening studies in order to identify new potential HDD2 partial agonists.

  6. Entropic Control of Receptor Recycling Using Engineered Ligands.

    Science.gov (United States)

    DeGroot, Andre C M; Busch, David J; Hayden, Carl C; Mihelic, Samuel A; Alpar, Aaron T; Behar, Marcelo; Stachowiak, Jeanne C

    2018-03-27

    Receptor internalization by endocytosis regulates diverse cellular processes, from the rate of nutrient uptake to the timescale of essential signaling events. The established view is that internalization is tightly controlled by specific protein-binding interactions. However, recent work suggests that physical aspects of receptors influence the process in ways that cannot be explained by biochemistry alone. Specifically, work from several groups suggests that increasing the steric bulk of receptors may inhibit their uptake by multiple types of trafficking vesicles. How do biochemical and biophysical factors work together to control internalization? Here, we show that receptor uptake is well described by a thermodynamic trade-off between receptor-vesicle binding energy and the entropic cost of confining receptors within endocytic vesicles. Specifically, using large ligands to acutely increase the size of engineered variants of the transferrin receptor, we demonstrate that an increase in the steric bulk of a receptor dramatically decreases its probability of uptake by clathrin-coated structures. Further, in agreement with a simple thermodynamic analysis, all data collapse onto a single trend relating fractional occupancy of the endocytic structure to fractional occupancy of the surrounding plasma membrane, independent of receptor size. This fundamental scaling law provides a simple tool for predicting the impact of receptor expression level, steric bulk, and the size of endocytic structures on receptor uptake. More broadly, this work suggests that bulky ligands could be used to drive the accumulation of specific receptors at the plasma membrane surface, providing a biophysical tool for targeted modulation of signaling and metabolism from outside the cell. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. An analytic study of central benzodiazepine receptor in the surgically resected tissues of patients with intractable localization-related epilepsy. Quantitative analysis using 125I-iomazenil autoradiography

    International Nuclear Information System (INIS)

    Doi, Toshiaki; Matsuda, Kazumi; Mihara, Tadahiro; Yagi, Kazuichi; Seino, Masakazu

    1998-01-01

    The authors report a quantitative autoradiographic analysis of benzodiazepine receptors using the partial inverse agonist 125 I-iomazenil in surgically resected tissues of 27 patients with intractable partial epilepsies. Pathological diagnosis of these tissues was; 14 mesial temporal sclerosis (MTS), 8 dysembryoplastic neuroepithelial tumor (DNT), 4 cortical dysplasia (CD) and 1 angioma. In MTS patients, the density of benzodiazepine receptors decreased in CA1, CA3 and CA4. The layers of gyrus dentatus were displaced with a thick and high density band. These findings were similar to simultaneous GABA-A stain findings. The decrease of receptor in each hippocampal structure highly correlated to the degree of cell loss in CA1, CA3 and CA4. The receptors were almost absent in the main lesions of DNT and angioma, and showed irregular distributions in the cortex around these lesions. The receptor densities of CD were parallel to Palmini's pathological grading. Nine cases were analyzed using 123 I-iomazenil SPECT before surgery after obtaining informed consent. Eight of them revealed marked low accumulations in the areas corresponding to the epileptogenic foci. We conclude that our results support histochemically the clinical availability of 123 I-iomazenil SPECT as a non-invasive technique for detecting the changes in benzodiazepine receptor densities in patients with partial epilepsies. (author)

  8. Evolution of ligand specificity in vertebrate corticosteroid receptors

    Directory of Open Access Journals (Sweden)

    Deitcher David L

    2011-01-01

    Full Text Available Abstract Background Corticosteroid receptors include mineralocorticoid (MR and glucocorticoid (GR receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. Results We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC] to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (Mus musculus and the midshipman fish (Porichthys notatus, a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (Neolamprologus pulcher, another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences. Conclusion The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.

  9. SPECT imaging of GABA{sub A}/benzodiazepine receptors and cerebral perfusion in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Pappata, Sabina; Varrone, Andrea; Vicidomini, Caterina; Sansone, Valeria; Comerci, Marco; Panico, Maria Rosaria; Quarantelli, Mario [CNR, Institute of Biostructure and Bioimaging, Naples (Italy); Milan, Graziella; De Falco, Caterina; Lore, Elisa; Postiglione, Alfredo [University ' ' Federico II' ' , Department of Clinical and Experimental Medicine, Naples (Italy); Iavarone, Alessandro [Neurologic and Stroke Unit, CTO Hospital, Naples (Italy); Salvatore, Marco [CNR, Institute of Biostructure and Bioimaging, Naples (Italy); University ' ' Federico II' ' , Department of Biomorphological and Functional Sciences, Naples (Italy)

    2010-06-15

    The involvement of neocortical and limbic GABA{sub A}/benzodiazepine (BZD) receptors in Alzheimer's disease (AD) is controversial and mainly reported in advanced stages. The status of these receptors in the very early stages of AD is unclear and has not been explored in vivo. Our aims were to investigate in vivo the integrity of cerebral cortical GABA{sub A}/BZD receptors in subjects with amnestic mild cognitive impairment (MCI) and to compare possible receptor changes to those in cerebral perfusion. [{sup 123}I]Iomazenil and [{sup 99m}Tc]HMPAO SPECT images were acquired in 16 patients with amnestic MCI and in 14 normal elderly control subjects (only [{sup 123}I]iomazenil imaging in 5, only [{sup 99m}Tc]HMPAO imaging in 4, and both [{sup 123}I]iomazenil and [{sup 99m}Tc]HMPAO imaging in 5). Region of interest (ROI) analysis and voxel-based analysis were performed with cerebellar normalization. Neither ROI analysis nor voxel-based analysis showed significant [{sup 123}I]iomazenil binding changes in MCI patients compared to control subjects, either as a whole group or when considering only those patients with MCI that converted to AD within 2 years of clinical follow-up. In contrast, the ROI analysis revealed significant hypoperfusion of the precuneus and posterior cingulate cortex in the whole group of MCI patients and in MCI converters as compared to control subjects. Voxel-based analysis showed similar results. These results indicate that in the very early stages of AD, neocortical and limbic neurons/synapses expressing GABA{sub A}/BZD receptors are essentially preserved. They suggest that in MCI patients functional changes precede neuronal/synaptic loss in neocortical posterior regions and that [{sup 99m}Tc]HMPAO rCBF imaging is more sensitive than [{sup 123}I]iomazenil GABA{sub A}/BZD receptor imaging in detecting prodromal AD. (orig.)

  10. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  11. Affinities and densities of high-affinity [3H]muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    International Nuclear Information System (INIS)

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-01-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using [ 3 H]muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using [ 3 H]flunitrazepam and [ 3 H]Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of [ 3 H]muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy

  12. DMPD: Endogenous ligands of Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15178705 Endogenous ligands of Toll-like receptors. Tsan MF, Gao B. J Leukoc Biol. ...2004 Sep;76(3):514-9. Epub 2004 Jun 3. (.png) (.svg) (.html) (.csml) Show Endogenous ligands of Toll-like re...ceptors. PubmedID 15178705 Title Endogenous ligands of Toll-like receptors. Authors Tsan MF, Gao B. Publicat

  13. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABA(A receptors expressed in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Harriet Hammer

    Full Text Available The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABA(AR subtypes α1β2γ(2S, α2β2γ(2S, α3β2γ(2S, α5β2γ(2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α(1,2,3,5β2γ(2S GABA(ARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold as positive allosteric modulators at the α6β2δ GABA(AR than at the α(1,2,3,5β2γ(2S receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non

  14. Steroid receptors and their ligands: effects on male gamete functions.

    Science.gov (United States)

    Aquila, Saveria; De Amicis, Francesca

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Modulation of cholinephosphotransferase activity in breast cancer cell lines by Ro5-4864, a peripheral benzodiazepine receptor agonist

    International Nuclear Information System (INIS)

    Akech, Jacqueline; Roy, Somdutta Sinha; Das, Salil K.

    2005-01-01

    Changes in phospholipid and fatty acid profile are hallmarks of cancer progression. Increase in peripheral benzodiazepine receptor expression has been implicated in breast cancer. The benzodiazepine, Ro5-4864, increases cell proliferation in some breast cancer cell lines. Biosynthesis of phosphatidylcholine (PC) has been identified as a marker for cells proliferating at high rates. Cholinephosphotransferase (CPT) is the terminal enzyme for the de novo biosynthesis of PC. We have addressed here whether Ro5-4864 facilitates some cancer causing mechanisms in breast cancer. We report that cell proliferation increases exponentially in aggressive breast cancer cell lines 11-9-1-4 and BT-549 when treated with nanomolar concentrations of Ro5-4864. This increase is seen within 24 h of treatment, consistent with the cell doubling time in these cells. Ro5-4864 also upregulates c-fos expression in breast cancer cell lines 11-9-1-4 and BT-549, while expression in non-tumorigenic cell line MCF-12A was either basal or slightly downregulated. We further examined the expression of the CPT gene in breast cancer (11-9-1-4, BT-549) and non-tumorigenic cell lines (MCF-12A, MCF-12F). We found that the CPT gene is overexpressed in breast cancer cell lines compared to the non-tumorigenic cell lines. Furthermore, the activity of CPT in forming PC is increased in the breast cancer cell lines cultured for 24 h. Additionally, we examined the CPT activity in the presence of nanomolar concentrations of Ro5-4864. Biosynthesis of PC was increased in breast cancer cell lines upon treatment. We therefore propose that Ro5-4864 facilitates PC formation, a process important in membrane biogenesis for proliferating cells

  16. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1

    NARCIS (Netherlands)

    Zwijsen, R.M.L.; Buckle, R.S.; Hijmans, E.M.; Loomans, C.J.M.; Bernards, R.A.

    1998-01-01

    The estrogen receptor (ER) is an important regulator of growth and differentiation of breast epithelium. Transactivation by ER depends on a leucine-rich motif, which constitutes a ligand-regulated binding site for steroid receptor coactivators (SRCs). Cyclin D1 is frequently amplified in breast

  17. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs).

    Science.gov (United States)

    Handlon, Anthony L; Schaller, Lee T; Leesnitzer, Lisa M; Merrihew, Raymond V; Poole, Chuck; Ulrich, John C; Wilson, Joseph W; Cadilla, Rodolfo; Turnbull, Philip

    2016-01-14

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%).

  18. Peptide ligand recognition by G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Brian E Krumm

    2015-03-01

    Full Text Available The past few years have seen spectacular progress in the structure determination of G protein-coupled receptors (GPCRs. We now have structural representatives from classes A, B, C, and F. Within the rhodopsin-like class A, most structures belong to the α group, whereas fewer GPCR structures are available from the β, γ, and δ groups, which include peptide GPCRs such as the receptors for neurotensin (β group, opioids, chemokines (γ group, and protease-activated receptors (δ group. Structural information on peptide GPCRs is restricted to complexes with non-peptidic drug-like antagonists with the exception of the chemokine receptor CXCR4 that has been crystallized in the presence of a cyclic peptide antagonist. Notably, the neurotensin receptor (NTSR1 is to date the only peptide GPCR whose structure has been solved in the presence of a peptide agonist. Although limited in number, the current peptide GPCR structures reveal great diversity in shape and electrostatic properties of the ligand binding pockets, features that play key roles in the discrimination of ligands. Here, we review these aspects of peptide GPCRs in view of possible models for peptide agonist binding.

  19. GABA(A)-benzodiazepine receptor complex ligands and stress-induced hyperthermia in singly housed mice.

    NARCIS (Netherlands)

    Olivier, B.; Bouwknecht, J.A.; Pattij, T.; Leahy, C.; Oorschot, R. van; Zethof, T.J.

    2002-01-01

    Stress-induced hyperthermia (SIH) in singly housed mice, in which the rectal temperature of a mouse is measured twice with a 10-min interval, enables to study the effects of a drug on the basal (T(1)) and on the stress-enhanced temperature (T(2)), 10 min later, using the rectal procedure as

  20. Synthesis of iodine-123 labelled analogues of the partial agonist (S)-and (R)-bretazenil for the study of CNS benzodiazepine receptors using SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, Andrew; Mattner, Filomena; McPhee, Meredith; Kassiou, Michael; Najdovski, Ljubco; Dikic, Branko [Australian Nuclear Science and Technology Organisation, Radiopharmaceutical Div., Menai, Sydney, NSW (Australia)

    1996-09-01

    The (S) and (R)-[{sup 123}I]iodinated analogues of the benzodiazepine receptor partial agonist bretazenil have been synthesized for study of the central benzodiazepine receptor using SPECT, (S)- and (R)-[{sup 123}I]iodobretazenil were prepared from the appropriate tin precursors by electrophilic iododestannylation with Na[{sup 123}I] in the presence of Chloramine-T. The products were purified by semi-preparative reverse-phase HPLC with radiochemical yields of 80% in a total synthesis time of 50 minutes. The specific activity was determined to be greater than 2500 Ci/mmol. The radiochemical and chemical purity assessed by radio-TLC and HPLC were found to be 98%. The enantiomeric purity of the (S) and (R) isomers were greater than 97% as assessed by analytical chiral HPLC analysis. (author).

  1. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  2. Steroid receptors and their ligands: Effects on male gamete functions

    International Nuclear Information System (INIS)

    Aquila, Saveria; De Amicis, Francesca

    2014-01-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  3. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E

    2010-01-01

    There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid ¿(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor...

  4. Synthesis and evaluation of [{sup 123}I]labelled analogues of the partial inverse agonist Ro 15-4513 for the study of diazepam-insensitive benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, Andrew E-mail: akx@ansto.gov.au; Mardon, Karine; McPhee, Meredith; Mattner, Filomena; Dikic, Branko; Ridley, Damon

    1999-08-01

    The imidazobenzodiazepines ethyl 8-iodo-5,6 dihydro-5-methyl-6-oxo-4H-imidazo[1,5a][1,4] benzodiazepine-3-carboxylate 1 and tert-butyl 8-iodo-5,6 dihydro-5-methyl-6-oxo-4H-imidazo [1,5a][1,4] benzodiazepine-3-carboxylate 2 were prepared to study the diazepam-insensitive (DI) benzodiazepine receptor (BZR) subtype. The [{sup 123}I] analogues were prepared via iododestannylation reactions in radiochemical yields of 70-80% and a specific activity >2,500 Ci/mmol. The tert-butyl analogue [{sup 123}I]-2 exhibited nanomolar affinity for BZRs in homogenate membranes of rat cerebellum with K{sub d} values for the diazepam-sensitive (DS) and DI receptors of 3.18{+-}0.58 and 13.55{+-}2.72 nM, respectively. The B{sub max} for cerebellar DS and DI receptors were 1,276{+-}195 and 518{+-}26 fmol/mg protein, respectively.

  5. Structural basis of ligand interaction with atypical chemokine receptor 3

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-18

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  6. Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction

    Science.gov (United States)

    Lynch, Diane L.; Hurst, Dow P.; Shore, Derek M.; Pitman, Mike C.; Reggio, Patricia H.

    2018-01-01

    The cannabinoid type 1 and 2 G-protein-coupled receptors are currently important pharmacological targets with significant drug discovery potential. These receptors have been shown to display functional selectivity or biased agonism, a property currently thought to have substantial therapeutic potential. Although recent advances in crystallization techniques have provided a wealth of structural information about this important class of membrane-embedded proteins, these structures lack dynamical information. In order to fully understand the interplay of structure and function for this important class of proteins, complementary techniques that address the dynamical aspects of their function are required such as NMR as well as a variety of other spectroscopies. Complimentary to these experimental approaches is molecular dynamics, which has been effectively used to help unravel, at the atomic level, the dynamics of ligand binding and activation of these membrane-bound receptors. Here, we discuss and present several representative examples of the application of molecular dynamics simulations to the understanding of the signatures of ligand-binding and -biased signaling at the cannabinoid type 1 and 2 receptors. PMID:28750815

  7. Control of estrogen receptor ligand binding by Hsp90.

    Science.gov (United States)

    Fliss, A E; Benzeno, S; Rao, J; Caplan, A J

    2000-04-01

    The molecular chaperone Hsp90 interacts with unliganded steroid hormone receptors and regulates their activity. We have analyzed the function of yeast and mammalian Hsp90 in regulating the ability of the human estrogen receptor (ER) to bind ligands in vivo and in vitro. Using the yeast system, we show that the ER expressed in several different hsp82 mutant strains binds reduced amounts of the synthetic estrogen diethylstilbestrol compared to the wild type. This defect in hormone binding occurs without any significant change in the steady state levels of ER protein. To analyze the role of mammalian Hsp90, we synthesized the human ER in rabbit reticulocyte lysates containing geldanamycin, an Hsp90 inhibitor. At low concentrations of geldanamycin we observed reduced levels of hormone binding by the ER. At higher concentrations, we found reduced synthesis of the receptor. These data indicate that Hsp90 functions to maintain the ER in a high affinity hormone-binding conformation.

  8. Alterations of benzodiazepine receptor binding potential in anxiety and somatoform disorders measured by 123I-iomazenil SPECT

    International Nuclear Information System (INIS)

    Tokunaga, Mari; Ida, Ituro; Mikuni, Masahiko; Higuchi, Teruhiko.

    1997-01-01

    123 I-iomazenil (IMZ), a newly developed radioligand which acts on benzodiazepine receptors (BZR) as a partial inverse agonist, made it possible to evaluate the function of central BZR by single photon emission tomography (SPECT). To examine the alterations of the binding potential (BP) in the anxiety state, 123 I-IMZ SPECT was performed in five patients with anxiety and somatoform disorders, and five epileptic patients without anxiety symptoms served as a reference. The BP of BZR was determined by using a table look-up procedure based on a three-compartment, two-parameter model in the bilateral superior frontal, inferior frontal, temporal, parietal, occipital, and cerebellar cortex. The mean BP of patients with anxiety and somatoform disorders was significantly decreased in the superior frontal, temporal, and parietal cortex, in comparison with that of epileptic patients. A significant correlation was observed between the anxiety levels scored on the Hamilton anxiety scale and BP in the right temporal cortex and left superior frontal cortex. These changes in BZR revealed by SPECT suggest the usefulness of 123 I-IMZ SPECT to objectively evaluate anxiety levels in patients with anxiety symptoms. (author)

  9. GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo

    NARCIS (Netherlands)

    Moor, E; de Boer, P; Westerink, B.H.C.

    1998-01-01

    In the present study, the regulation of acetylcholine release from the ventral hippocampus by gamma-aminobutyric acid (GABA) was investigated in vivo. GABA receptor agonists and antagonists were administered locally in the medial septum and the adjacent vertical limb of the diagonal band of Broca,

  10. Progress on the application of ligand receptor binding assays in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zhou Xue; Qian Jinping; Kong Aiying; Zhu Lin

    2010-01-01

    Receptor binding assay is an important drug screening method, which can quickly and inexpensively study the interactions between the targeted receptor and the potential ligands in vitro and provide the information of the relative binding affinity of ligand-receptor. The imaging of many radiopharmaceuticals is based on highly selective radioligand-receptor binding. The technique plays an important role in the design and screening of receptor-targeting radiopharmaceuticals. (authors)

  11. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity

    OpenAIRE

    Cawston, Erin E.; Harikumar, Kaleeckal G.; Miller, Laurence J.

    2011-01-01

    Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle28,31,d-Trp30)CCK-26–32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Liga...

  12. Omega 3 (peripheral type benzodiazepine binding) site distribution in the rat immune system: an autoradiographic study with the photoaffinity ligand [3H]PK 14105

    International Nuclear Information System (INIS)

    Benavides, J.; Dubois, A.; Dennis, T.; Hamel, E.; Scatton, B.

    1989-01-01

    The anatomical distribution of omega 3 (peripheral type benzodiazepine binding) sites in the immune system organs of the rat has been studied autoradiographically at both macroscopic and microscopic levels of resolution using either reversible or irreversible (UV irradiation) labeling with [ 3 H]PK 14105. In thymus sections, [ 3 H]PK 14105 labeled with high affinity (Kd, derived from saturation experiments = 10.8 nM) a single population of sites which possessed the pharmacological characteristics of omega 3 sites. In the thymus gland, higher omega 3 site densities were detected in the cortex than in the medulla; in these subregions, silver grains were associated to small (10-18 microns diameter) cells. In the spleen, omega 3 sites were more abundant in the white than in the red pulp. In the white pulp, silver grains were denser in the marginal zone than in the vicinity of the central artery and labeling was, as in the thymus, associated to small cytoplasm-poor cells. In the red pulp, omega 3 site associated silver grains were observed mainly in the Bilroth cords. In the lymph nodes, the medullary region showed a higher labeling than the surrounding follicles and paracortex. A significant accumulation of silver grains was observed in the lymph node medullary cords. In the intestine, Peyer patches were particularly enriched in omega 3 sites (especially in the periphery of the follicles). The distribution of omega 3 sites in the immune system organs suggests a preferential labeling of cells of T and monocytic lineages. This is consistent with the proposed immunoregulatory properties of some omega 3 site ligands

  13. Omega 3 (peripheral type benzodiazepine binding) site distribution in the rat immune system: an autoradiographic study with the photoaffinity ligand [3H]PK 14105.

    Science.gov (United States)

    Benavides, J; Dubois, A; Dennis, T; Hamel, E; Scatton, B

    1989-04-01

    The anatomical distribution of omega 3 (peripheral type benzodiazepine binding) sites in the immune system organs of the rat has been studied autoradiographically at both macroscopic and microscopic levels of resolution using either reversible or irreversible (UV irradiation) labeling with [3H]PK 14105. In thymus sections, [3H]PK 14105 labeled with high affinity (Kd, derived from saturation experiments = 10.8 nM) a single population of sites which possessed the pharmacological characteristics of omega 3 sites. In the thymus gland, higher omega 3 site densities were detected in the cortex than in the medulla; in these subregions, silver grains were associated to small (10-18 microns diameter) cells. In the spleen, omega 3 sites were more abundant in the white than in the red pulp. In the white pulp, silver grains were denser in the marginal zone than in the vicinity of the central artery and labeling was, as in the thymus, associated to small cytoplasm-poor cells. In the red pulp, omega 3 site associated silver grains were observed mainly in the Bilroth cords. In the lymph nodes, the medullary region showed a higher labeling than the surrounding follicles and paracortex. A significant accumulation of silver grains was observed in the lymph node medullary cords. In the intestine, Peyer patches were particularly enriched in omega 3 sites (especially in the periphery of the follicles). The distribution of omega 3 sites in the immune system organs suggests a preferential labeling of cells of T and monocytic lineages. This is consistent with the proposed immunoregulatory properties of some omega 3 site ligands.

  14. Omega 3 (peripheral type benzodiazepine binding) site distribution in the rat immune system: an autoradiographic study with the photoaffinity ligand (/sup 3/H)PK 14105

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, J.; Dubois, A.; Dennis, T.; Hamel, E.; Scatton, B.

    1989-04-01

    The anatomical distribution of omega 3 (peripheral type benzodiazepine binding) sites in the immune system organs of the rat has been studied autoradiographically at both macroscopic and microscopic levels of resolution using either reversible or irreversible (UV irradiation) labeling with (/sup 3/H)PK 14105. In thymus sections, (/sup 3/H)PK 14105 labeled with high affinity (Kd, derived from saturation experiments = 10.8 nM) a single population of sites which possessed the pharmacological characteristics of omega 3 sites. In the thymus gland, higher omega 3 site densities were detected in the cortex than in the medulla; in these subregions, silver grains were associated to small (10-18 microns diameter) cells. In the spleen, omega 3 sites were more abundant in the white than in the red pulp. In the white pulp, silver grains were denser in the marginal zone than in the vicinity of the central artery and labeling was, as in the thymus, associated to small cytoplasm-poor cells. In the red pulp, omega 3 site associated silver grains were observed mainly in the Bilroth cords. In the lymph nodes, the medullary region showed a higher labeling than the surrounding follicles and paracortex. A significant accumulation of silver grains was observed in the lymph node medullary cords. In the intestine, Peyer patches were particularly enriched in omega 3 sites (especially in the periphery of the follicles). The distribution of omega 3 sites in the immune system organs suggests a preferential labeling of cells of T and monocytic lineages. This is consistent with the proposed immunoregulatory properties of some omega 3 site ligands.

  15. [Treatment of nausea and vomiting with 5HT3 receptor antagonists, steroids, antihistamines, anticholinergics, somatostatinantagonists, benzodiazepines and cannabinoids in palliative care patients : a systematic review].

    Science.gov (United States)

    Benze, G; Geyer, A; Alt-Epping, B; Nauck, F

    2012-09-01

    Various recommendations exist for the treatment of nausea and vomiting in palliative care but only few studies and even less systematic reviews look into antiemetic therapy for patients receiving palliative care. This systematic review aims to analyze the current evidence for antiemetic treatment with 5HT3 receptor antagonists, steroids, antihistamines, anticholinergics, somatostatin analogs, benzodiazepines and cannabinoids in palliative care patients with far advanced cancer not receiving chemotherapy or radiotherapy, acquired immune deficiency syndrome (AIDS), chronic obstructive pulmonary disease (COPD), progressive heart failure, amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS). Results regarding evidence of treatment with prokinetic and neuroleptic agents will be published separately. The electronic databases PubMed and EmBase were systematically searched for studies (published 1966-2011) dealing with antiemetic therapy in palliative care and electronic retrieval was completed by manual searching. Studies with patients undergoing chemotherapy or radiotherapy, pediatric studies and studies published in languages other than English or German were excluded. Studies addressing therapy with 5HT3 receptor antagonists, steroids, antihistamines, anticholinergics, somatostatin analogs, benzodiazepines or cannabinoids were identified and selected for this systematic review. In the general search 75 relevant studies were found. Of those 36 addressed 5HT3 receptor antagonists, steroids, antihistamines, anticholinergics, somatostatin analogs, benzodiazepines and cannabinoids, 13 considered 5HT3 receptor antagonists, 10 somatostatin antagonists, 9 steroids, 5 cannabinoids, 4 anticholinergics, 1 antihistamines and none benzodiazepines. Furthermore six systematic reviews exist. Evidence for any drug used as an antiemetic is low. Concerning 5HT3 receptor antagonists data are insufficient for recommendations on the treatment of patients with AIDS and MS due to

  16. Euphorbia hirta reverses chronic stress-induced anxiety and mediates its action through the GABA(A) receptor benzodiazepine receptor-Cl(-) channel complex.

    Science.gov (United States)

    Anuradha, H; Srikumar, B N; Shankaranarayana Rao, B S; Lakshmana, M

    2008-01-01

    Chronic stress is known to result in impairment of learning and memory and precipitate several affective disorders including depression and anxiety. Drugs of natural origin are known to possess several effects on the central nervous system and are emerging as promising alternative therapies. In this context, the hydroalcoholic extract of Euphorbia hirta (Eh) was evaluated for anxiolytic property in chronically stressed rats subjected to elevated plus maze (EPM) and open field test (OFT). Eh treatment (200 mg/kg, p.o.; seven days) showed marked anti-anxiety activity in chronic immobilization stress. In contrast, the forced swim stress-induced anxiety was only partially decreased by Eh. Co-treatment of rats with flumazenil (0.5 mg/kg, i.p.), bicuculline (1 mg/kg, i.p.) or picrotoxin (1 mg/kg, i.p.) resulted in a significant reduction of anxiolytic effect of Eh indicating that its actions are mediated through GABA(A) receptor-benzodiazepine receptor-Cl(-) channel complex. Thus, our studies indicate that Eh is a potential anxiolytic drug, which might be beneficial in the treatment of stress-induced anxiety disorders.

  17. Radiosynthesis and initial evaluation of [{sup 18}F]-FEPPA for PET imaging of peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Alan A. [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada)], E-mail: alan.wilson@camhpet.ca; Garcia, Armando; Parkes, Jun [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); McCormick, Patrick [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Stephenson, Karin A. [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Houle, Sylvain; Vasdev, Neil [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada)

    2008-04-15

    Introduction: A novel [{sup 18}F]-radiolabelled phenoxyanilide, [{sup 18}F]-FEPPA, has been synthesized and evaluated, in vitro and ex vivo, as a potential positron emission tomography imaging agent for the peripheral benzodiazepine receptor (PBR). Methods: [{sup 18}F]-FEPPA and two other radiotracers for imaging PBR, namely [{sup 11}C]-PBR28 and [{sup 11}C]-PBR28-d3, were synthesised and evaluated in vitro and ex vivo as potential PBR imaging agents. Results: [{sup 18}F]-FEPPA is efficiently prepared in one step from its tosylate precursor and [{sup 18}F]-fluoride in high radiochemical yields and at high specific activity. FEPPA displayed a K{sub i} of 0.07 nM for PBR in rat mitochondrial membrane preparations and a suitable lipophilicity for brain penetration (log P of 2.99 at pH 7.4). Upon intravenous injection into rats, [{sup 18}F]-FEPPA showed moderate brain uptake [standard uptake value (SUV) of 0.6 at 5 min] and a slow washout (SUV of 0.35 after 60 min). Highest uptake of radioactivity was seen in the hypothalamus and olfactory bulb, regions previously reported to be enriched in PBR in rat brain. Analysis of plasma and brain extracts demonstrated that [{sup 18}F]-FEPPA was rapidly metabolized, but no lipophilic metabolites were observed in either preparation and only 5% radioactive metabolites were present in brain tissue extracts. Blocking studies to determine the extent of specific binding of [{sup 18}F]-FEPPA in rat brain were problematic due to large perturbations in circulating radiotracer and the lack of a reference region. Conclusions: Further evaluation of the potential of [{sup 18}F]-FEPPA will require the employment of rigorous kinetic models and/or appropriate animal models.

  18. Alterations in in-vivo benzodiazepine-receptor binding of C-11-Ro15-1788 (flumazepil)

    International Nuclear Information System (INIS)

    Yamasaki, T.; Inoue, O.; Shinoto, H.; Ito, T.; Hashimoto, K.; Suzuki, K.; Tateno, Y.

    1985-01-01

    Alterations of the central benzodiazepine - receptor function caused by the change of physiological or psychological conditions, were recognized in both animal and human studies. Before the human study, animal experiments using tritiated Ro15-1788 were carried out. The stress was produced by forcing the mice to swim in a water-basin at 16 0 C for 5 min. Within 3 min after the forced swimming, the tracer was injected. Brain radioactivities in stress-loaded mice increased over a period of 15 min after the intra-venous injection of tracers, while brain activities of carrier-added tracer decreased. In human study, approximately 5 mCi of C-11-Ro15-1788, which specific activity is 0.3-1.0 Ci/μmol, were intravenously injected to each case. Measurements of the brain activity were performed using positron-CT, with blood sample collection. 31 human studies were performed on. Cerebral cortex time activity curves in several volunteers in nervous and stressful state, showed the same pattern to that in the stress-loaded animal experiment. It is important that the significant different time course of cerebral activity after the injection of labelled Ro15-1788, was observed in stressful state, compared with control, in both human and animal study. From these results, it will be concluded the positron CT study using /sup 11/C-Ro15-1788 will become a new technic to detect the change of psychological conditions in human brain and to diagnose some kind of neuropsychiatric disease

  19. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands

    Science.gov (United States)

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2009-11-01

    Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.

  20. Killer Cell Immunoglobulin-like Receptors and their Ligands

    Directory of Open Access Journals (Sweden)

    Tajik N.

    2010-09-01

    Full Text Available The Natural killer (NK cells are a subset of lymphocytes comprising around 10% of total lymphocytes in peripheral blood. Due to their role in the innate response, NK cells provide a ‘first line of defense’ against infectious agents and cancer and are also thought to play a role in autoimmunity. The killer cell immunoglobulin-like receptors (KIR are regulatory surface molecules, found on NK cells and on a subset of T lymphocytes. The genes for KIR are present on chromosome 19 in the leukocyte receptor complex and show a major difference for both the type and number of KIR genes present among different ethnic groups. They have been divided into two groups of 2D or 3D, depending on the number of external immunoglobulin domains. The presence of a long cytoplasmic tail with two immune tyrosine-based inhibitory motifs (ITIM allows the transduction of inhibitory signals and characterizes the inhibitory KIRs (2DL and 3DL, whereas the presence of short cytoplasmic tails corresponds to the activating KIR receptors (2DS and 3DS.These polymorphic receptors interact with specific motifs on human leukocyte antigen (HLA class I molecules, modulate NK cytolytic activity. Some KIRs are known to interact with HLA-C molecules of target cells, HLA-Bw4 molecules and HLA-A3/11. For some KIRs the corresponding ligands are still unknown.

  1. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro.

    Science.gov (United States)

    Nishikawa, H; Hashino, A; Kume, T; Katsuki, H; Kaneko, S; Akaike, A

    2000-09-15

    This study was performed to examine the roles of the N-methyl-D-aspartate (NMDA) receptor/phencyclidine (PCP) channel complex in the protective effects of sigma-receptor ligands against glutamate neurotoxicity in cultured cortical neurons derived from fetal rats. A 1-h exposure of cultures to glutamate caused a marked loss of viability, as determined by Trypan blue exclusion. This acute neurotoxicity of glutamate was prevented by NMDA receptor antagonists. Expression of sigma(1) receptor mRNA in cortical cultures was confirmed by reverse transcription polymerase chain reaction (RT-PCR). sigma Receptor ligands with affinity for NMDA receptor channels including the PCP site, such as (+)-N-allylnormetazocine ((+)-SKF10,047), haloperidol, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane ((-)-PPAP), prevented glutamate neurotoxicity in a concentration-dependent manner. In contrast, other sigma-receptor ligands without affinity for NMDA receptors, such as carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), did not show neuroprotective effects. Putative endogenous sigma receptor ligands such as pregnenolone, progesterone, and dehydroepiandrosterone did not affect glutamate neurotoxicity. The protective effects of (+)-SKF10,047, haloperidol, and (-)-PPAP were not affected by the sigma(1) receptor antagonist rimcazole. These results suggested that a direct interaction with NMDA receptors but not with sigma receptors plays a crucial role in the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

  2. Biased ligands at G-protein-coupled receptors: promise and progress.

    Science.gov (United States)

    Violin, Jonathan D; Crombie, Aimee L; Soergel, David G; Lark, Michael W

    2014-07-01

    Drug discovery targeting G protein-coupled receptors (GPCRs) is no longer limited to seeking agonists or antagonists to stimulate or block cellular responses associated with a particular receptor. GPCRs are now known to support a diversity of pharmacological profiles, a concept broadly referred to as functional selectivity. In particular, the concept of ligand bias, whereby a ligand stabilizes subsets of receptor conformations to engender novel pharmacological profiles, has recently gained increasing prominence. This review discusses how biased ligands may deliver safer, better tolerated, and more efficacious drugs, and highlights several biased ligands that are in clinical development. Biased ligands targeting the angiotensin II type 1 receptor and the μ opioid receptor illustrate the translation of the biased ligand concept from basic biology to clinical drug development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, N.; Guilloteau, D.; Chalon, S. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Universite Francois Rabelais de Tours, 37 (France); Katsifis, A.; Mattner, F. [ANSTO, Sydney (Australia)

    2008-02-15

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [{sup 125}I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 {+-} 0.109 vs. 0.123 {+-} 0.012% I.D./g tissue; cortex: 0.385 {+-} 0.126 vs. 0.131 {+-} 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  4. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    International Nuclear Information System (INIS)

    Arlicot, N.; Guilloteau, D.; Chalon, S.; Katsifis, A.; Mattner, F.

    2008-01-01

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [ 125 I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [ 125 I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 ± 0.109 vs. 0.123 ± 0.012% I.D./g tissue; cortex: 0.385 ± 0.126 vs. 0.131 ± 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  5. Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat

    NARCIS (Netherlands)

    Gispen, W.H.; Adan, R.A.H.; Szklarczyk, A.W.; Oosterom, J.; Brakkee, J.H.; Nijenhuis, W.A.; Schaaper, W.M.; Meloen, R.H.

    1999-01-01

    Since the melanocortin MC3 and melanocortin MC4 receptors are the main melanocortin receptor subtypes expressed in rat brain, we characterized the activity and affinity of nine melanocortin receptor ligands using these receptors in vitro, as well as their activity in a well-defined

  6. Residues within the Transmembrane Domain of the Glucagon-Like Peptide-1 Receptor Involved in Ligand Binding and Receptor Activation: Modelling the Ligand-Bound Receptor

    Science.gov (United States)

    Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.

    2011-01-01

    The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452

  7. Quantitative Prediction of Multivalent Ligand-Receptor Binding Affinities for Influenza, Cholera, and Anthrax Inhibition.

    Science.gov (United States)

    Liese, Susanne; Netz, Roland R

    2018-03-05

    Multivalency achieves strong, yet reversible binding by the simultaneous formation of multiple weak bonds. It is a key interaction principle in biology and promising for the synthesis of high-affinity inhibitors of pathogens. We present a molecular model for the binding affinity of synthetic multivalent ligands onto multivalent receptors consisting of n receptor units arranged on a regular polygon. Ligands consist of a geometrically matching rigid polygonal core to which monovalent ligand units are attached via flexible linker polymers, closely mimicking existing experimental designs. The calculated binding affinities quantitatively agree with experimental studies for cholera toxin ( n = 5) and anthrax receptor ( n = 7) and allow to predict optimal core size and optimal linker length. Maximal binding affinity is achieved for a core that matches the receptor size and for linkers that have an equilibrium end-to-end distance that is slightly longer than the geometric separation between ligand core and receptor sites. Linkers that are longer than optimal are greatly preferable compared to shorter linkers. The angular steric restriction between ligand unit and linker polymer is shown to be a key parameter. We construct an enhancement diagram that quantifies the multivalent binding affinity compared to monovalent ligands. We conclude that multivalent ligands against influenza viral hemagglutinin ( n = 3), cholera toxin ( n = 5), and anthrax receptor ( n = 7) can outperform monovalent ligands only for a monovalent ligand affinity that exceeds a core-size dependent threshold value. Thus, multivalent drug design needs to balance core size, linker length, as well as monovalent ligand unit affinity.

  8. The future of type 1 cannabinoid receptor allosteric ligands.

    Science.gov (United States)

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  9. Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity

    NARCIS (Netherlands)

    Sprokholt, Joris K.; Hertoghs, Nina; Geijtenbeek, Teunis B. H.

    2016-01-01

    In this chapter we describe a fluorescent bead-binding assay, which is an efficient and feasible method to measure interaction between ligands and receptors on cells. In principle, any ligand can be coated on fluorescent beads either directly or via antibodies. Binding between ligand-coated beads

  10. Computational approaches to modeling receptor flexibility upon ligand binding: Application to interfacially activated enzymes

    DEFF Research Database (Denmark)

    Wade, R.C.; Sobolev, V.; Ortiz, A.R. .

    1998-01-01

    Receptors generally undergo conformational change upon ligand binding. We describe how fairly simple techniques may be used in docking and design studies to account for some of the changes in the conformations of proteins on ligand binding. Simulations of protein-ligand interactions that give...

  11. Regional specific binding of [11C]RO 15 1788 to central type benzodiazepine receptors in human brain: quantitative evaluation by PET

    International Nuclear Information System (INIS)

    Pappata, S.; Samson, Y.; Chavoix, C.; Prenant, C.; Maziere, M.; Baron, J.C.

    1988-01-01

    The central type benzodiazepine receptors were studied in 17 healthy human subjects with 11 C-RO 15 1788 and positron emission tomography (PET). The brain regional distribution of the tracer in eight control studies performed after injection of trace doses of 11 C-RO 15 1788 was consistent with that of benzodiazepine receptors. Saturation studies with co-injected cold RO 15 1788 in the remaining subjects showed a dose-dependent decrease of brain radiotracer until full inhibition of specific binding was achieved with doses above 0.1 mg/kg (four studies). Based on the results, a simple method to estimate the specifically bound 11 C-RO 15 1788 regionally in a single PET study is proposed, using the data from the full-saturation studies as a stable estimate of the nondisplaceable radioligand concentration. Using this method, it was found that quasiequilibrium between the estimated specifically bound and nondisplaceable components was achieved at times equal to or longer than 20 min after tracer administration. The validity of this method was partly supported by further results, showing a good agreement between the regional specific binding so calculated and postmortem data of receptor density

  12. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  13. Region-selective effects of neuroinflammation and antioxidant treatment on peripheral benzodiazepine receptors and NMDA receptors in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Biegon, A.; Alvarado, M.; Budinger, T.F.; Grossman, R.; Hensley, K.; West, M.S.; Kotake, Y.; Ono, M.; Floyd, R.A.

    2001-12-10

    Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hours after endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (2-3 fold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (>50 percent) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition ({approx}25 percent decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease.

  14. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed

  15. Benzodiazepines inhibit the acetylcholine receptor-operated potassium current (IK.ACh) by different mechanisms in guinea-pig atrial myocytes.

    Science.gov (United States)

    Okada, Muneyoshi; Mizuno, Wataru; Nakarai, Ryu; Matada, Takashi; Yamawaki, Hideyuki; Hara, Yukio

    2012-07-01

    The anticholinergic effects of 7 benzodiazepines, bromazepam, camazepam, chlordiazepoxide, diazepam, lorazepam, medazepam and triazolam, were compared by examining their inhibitory effects on the acetylcholine receptor-operated potassium current (I(K).(ACh)) in guinea-pig atrial myocytes. All of these benzodiazepines (0.3-300 µM) inhibited carbachol (1 µM)-induced I(K).(ACh) in a concentration-dependent manner. The ascending order of IC(50) values for carbachol-induced I(K).(ACh) was as follows; medazepam, diazepam, camazepam, triazolam, bromazepam, lorazepam and chlordiazepoxide (>300 µM). The compounds, except for bromazepam, also inhibited I(K).(ACh) activated by an intracellular loading of 100 µM guanosine 5'-[γ-thio]triphosphate (GTPγS) in a concentration-dependent manner. The ascending order of IC(50) values for GTPγS-activated I(K).(ACh) was as follows; medazepam, diazepam, camazepam, lorazepam, triazolam chlordiazepoxide (>300 µM) and bromazepam (>300 µM). To clarify the molecular mechanism of the inhibition, IC(50) ratio, the ratio of IC(50) for GTPγS-activated I(K).(ACh) to carbachol-induced I(K).(ACh), was calculated. The IC(50) ratio for camazepam, diazepam, lorazepam, medazepam and triazolam was close to unity, while it for chlordiazepoxide could not be calculated. These compounds would act on the GTP binding protein and/or potassium channel to achieve the anticholinergic effects in atrial myocytes. In contrast, since the IC(50) ratio for bromazepam is presumably much higher than unity judging from the IC(50) values (104.0 ± 30.0 µM for carbachol-induced I(K).(ACh) and >300 µM for GTPγS-activated I(K).(ACh), it would act on the muscarinic receptor. In summary, benzodiazepines had the anticholinergic effects on atrial myocytes through inhibiting I(K).(ACh) by different molecular mechanisms.

  16. PET and SPECT in medically non-refractory complex partial seizures. Temporal asymmetries of glucose consumption, Benzodiazepine receptor density

    International Nuclear Information System (INIS)

    Matheja, P.; Kuwert, T.; Wolf, K.; Schober, O.; Stodieck, S.R.G.; Diehl, B.; Ringelstein, E.B.; Schuierer, G.

    1998-01-01

    Aim: In contrast to medically refractory complex partial seizures (CPS), only limited knowledge exists on cerebral perfusion and metabolism in medically non-refractory CPS. The aim of this study was to investigate the frequency of temporal asymmetries in regional cerebral glucose consumption (rCMRGlc), regional cerebral blood flow (rCBF), and regional cerebral benzodiazepine receptor density (BRD) in this group of patients. Methods: The study included 49 patients with medically non-refractory cryptogenic CPS (age: 36.0±16.1 years). rCMRGlc was studied with F-18-FDG-PET (FDG), rCBF with Tc-99m-ECD-SPECT (ECD), and BRD with I-123-iomazenil-SPECT (IMZ). All studies were performed interictally and within four weeks in each patient. Duration of epilepsy ranged from 0.1 to 42 years (median 4.0 years). SPECT was performed with the triple-headed SPECT camera Multispect 3, PET with the PET camera ECAT EXACT 47. Using linear profiles, glucose consumption, as well as uptake of ECD and IMZ, were measured in four temporal regions of interest (ROIs), and asymmetry indices were calculated (ASY). The results were compared to 95% confidence intervals determined in control subjects. Results: Thirty-five of the 49 (71%) patients had at least one significantly elevated ASY; temporal rCMRGlc was asymmetrical in 41% of the patients, temporal BRD in 29%, and temporal rCBF in 24%. One patient had an asymmetry of all three variables, two of temporal rCMRGlc and BRD, three of temporal rCMRGlc and rCBF, and another four of rCBF and BRD. Fourteen patients had an isolated temporal asymmetry in rCMRGlc, seven in BRD, and four in rCBF. A discrepancy in lateralization between the three modalities was not observed. Conclusion: The majority of patients with medically non-refractory CPS have focal abnormalities of blood flow and metabolism in their temporal lobe. In this group of patients, FDG-PET demonstrates abnormalities with the highest frequency of the three modalities studied, followed by IMZ

  17. [11C]Flumazenil metabolite measurement in plasma is not necessary for accurate brain benzodiazepine receptor quantification

    International Nuclear Information System (INIS)

    Sanabria-Bohorquez, S.M.; Veraart, C.; Labar, D.; Bol, A.; Volder, A.G. de; Michel, C.; Leveque, P.

    2000-01-01

    In this work, a mathematical correction for metabolites has been validated which estimates the relative amount of [ 11 C]flumazenil ([ 11 C]FMZ) in the total plasma curve from the tissue kinetic data without the need for direct metabolite measurement in blood plasma samples. Kinetic data were obtained using a 90-min three-injection protocol on five normal volunteers. First, the relative amount of [ 11 C]FMZ in plasma was modelled by a two-parameter exponential function. The parameters were estimated either directly by fitting this model to the blood plasma metabolite measurements, or indirectly from the simultaneous fitting of tissue time activity curves from several brain regions with a non-linear FMZ kinetic model. Second, the direct and indirect metabolite corrections were fixed and the FMZ compartmental parameters were determined on a regional basis in the brain. The validation was performed by comparing the regional values of benzodiazepine receptor density B max and equilibrium dissociation constant K d obtained with the direct metabolite correction with those values obtained with the indirect correction. For B max , the correlation coefficient r 2 was above 0.97 for all subjects and the slope values of the linear regression were within the interval [0.97, 1.2]. For K d , r 2 was above 0.96, and the slope values of the linear regression were within the interval [0.99, 1.1]. Simulation studies were performed in order to evaluate whether this metabolite correction method could be used in a clinical protocol where only a single [ 11 C]FMZ injection and a linear compartmental model are used. The resulting [ 11 C]FMZ distribution volume estimates were found to be linearly correlated with the true values, with r 2 =1.0 and a slope value of 1.1. The mathematical metabolite correction proved to be a feasible and reliable method to estimate the relative amount of [ 11 C]FMZ in plasma and the compartmental model parameters for three-injection protocols. Although

  18. Key amino acid residue in Melanocortin-1 receptor (melanocyte α-MSH receptor) for ligand selectivity.

    Science.gov (United States)

    Yang, Yingkui; Chen, Min; Ventro, George; Harmon, Carroll M

    2017-10-15

    The melanocortin-1 receptor (MC1R) is a subtype of the melanocortin receptor family and NDP-α-MSH is a non-selective agonist for MC1R. The core sequence of NDP-α-MSH, His-Phe-Arg-Trp, is important for ligand binding and biological activities at the melanocortin receptor subtypes (MCRs). A recent study indicates that Trp 9 in NDP-α-MSH plays an important role in ligand selectivity. Deletion of Trp 9 in NDP-α-MSH (des-Trp 9 -NDP-α-MSH) resulted in loss of agonist activity at MC4R, although remains agonist activity at MC1R. The molecular basis for this receptor ligand selectivity is unknown. In this study we examined what region of the MC1R is responsible for des-NDP-α-MSH selectivity. Our results indicate that (1) substitution of TM3 of MC4R with the corresponding region of MC1R switches des-Trp 9 -NDP-α-MSH from no activity to agonist; (2) des-Trp 9 -NDP-α-MSH exhibits agonistic activity at the L133M mutation of the MC4R; and (3) substitution of non-conserved amino acid residue M128 in TM3 of MC1R significantly reduced des-Trp 9 -NDP-α-MSH agonist activity. Our results demonstrate that amino acid residue 128 in TM3 of MC1R, or amino acid residue L133 in TM3 of the MC4R, play crucial roles in ligand des-Trp 9 -NDP-α-MSH selectivity at MC1R or MC4R. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  20. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  1. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands.

    Science.gov (United States)

    Kržan, Mojca; Vianello, Robert; Maršavelski, Aleksandra; Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure.

  2. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  3. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

    Science.gov (United States)

    Klein, Daryl E; Nappi, Valerie M; Reeves, Gregory T; Shvartsman, Stanislav Y; Lemmon, Mark A

    2004-08-26

    The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

  4. Muscarinic acetylcholine receptors: location of the ligand binding site

    International Nuclear Information System (INIS)

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-01-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, 3 H-propylbenzilycholine mustard aziridinium ion ( 3 H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that 3 H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin

  5. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced 155 Eu: 3+ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor

  6. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    The urokinase plasminogen activator receptor (uPAR) is a membrane protein comprised of three extracellular domains. In order to study the importance of this domain organization in the ligand-binding process of the receptor we subjected a recombinant, soluble uPAR (suPAR) to specific proteolytic...

  7. Histamine receptor 2 modifies dendritic cell responses to microbial ligands.

    Science.gov (United States)

    Frei, Remo; Ferstl, Ruth; Konieczna, Patrycja; Ziegler, Mario; Simon, Tunde; Rugeles, Tulia Mateus; Mailand, Susanne; Watanabe, Takeshi; Lauener, Roger; Akdis, Cezmi A; O'Mahony, Liam

    2013-07-01

    The induction of tolerance and protective immunity to microbes is significantly influenced by host- and microbiota-derived metabolites, such as histamine. We sought to identify the molecular mechanisms for histamine-mediated modulation of pattern recognition receptor signaling. Human monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells, and plasmacytoid dendritic cells were examined. Cytokine secretion, gene expression, and transcription factor activation were measured after stimulation with microbial ligands and histamine. Histamine receptor 2 (H₂R)-deficient mice, histamine receptors, and their signaling pathways were investigated. Histamine suppressed MDDC chemokine and proinflammatory cytokine secretion, nuclear factor κB and activator protein 1 activation, mitogen-activated protein kinase phosphorylation, and T(H)1 polarization of naive lymphocytes, whereas IL-10 secretion was enhanced in response to LPS and Pam3Cys. Histamine also suppressed LPS-induced myeloid dendritic cell TNF-α secretion and suppressed CpG-induced plasmacytoid dendritic cell IFN-α gene expression. H₂R signaling through cyclic AMP and exchange protein directly activated by cyclic AMP was required for the histamine effect on LPS-induced MDDC responses. Lactobacillus rhamnosus, which secretes histamine, significantly suppressed Peyer patch IL-2, IL-4, IL-5, IL-12, TNF-α, and GM-CSF secretion in wild-type but not H₂R-deficient animals. Both host- and microbiota-derived histamine significantly alter the innate immune response to microbes through H₂R. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. Revisiting the Quinoxalinedione scaffold in the Construction of New Ligands for the Ionotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Demmer, Charles Sylvain; Rombach, David; Liu, Na

    2017-01-01

    of the study of 44 new analogs are compound 2m being a high affinity ligand for native AMPA receptors (IC50= 0.48 µM), analogs 2e,f,h,k,v all displayed selectivity for native NMDA receptors, compounds 2s,t,u are selective ligand for the GluK1 receptor. Most interestingly compound 2w was shown to be a GluK3...

  9. Complex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Nicholas J. Bessman

    2014-11-01

    Full Text Available The epidermal growth factor receptor (EGFR plays pivotal roles in development and is mutated or overexpressed in several cancers. Despite recent advances, the complex allosteric regulation of EGFR remains incompletely understood. Through efforts to understand why the negative cooperativity observed for intact EGFR is lost in studies of its isolated extracellular region (ECR, we uncovered unexpected relationships between ligand binding and receptor dimerization. The two processes appear to compete. Surprisingly, dimerization does not enhance ligand binding (although ligand binding promotes dimerization. We further show that simply forcing EGFR ECRs into preformed dimers without ligand yields ill-defined, heterogeneous structures. Finally, we demonstrate that extracellular EGFR-activating mutations in glioblastoma enhance ligand-binding affinity without directly promoting EGFR dimerization, suggesting that these oncogenic mutations alter the allosteric linkage between dimerization and ligand binding. Our findings have important implications for understanding how EGFR and its relatives are activated by specific ligands and pathological mutations.

  10. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  11. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  12. Application of NMR screening techniques for observing ligand binding with a protein receptor.

    Science.gov (United States)

    Shimotakahara, Sakurako; Furihata, Kazuo; Tashiro, Mitsuru

    2005-01-01

    Water ligand observed via gradient spectroscopy (WaterLOGSY), saturation transfer difference and NOE pumping NMR techniques were used to identify ligand binding with a receptor. Although these experiments were originally designed to observe ligands in complexes, their application is limited by the affinity of ligands towards target molecules. Here the improved WaterLOGSY pulse sequence was developed by incorporating the double pulsed field gradient spin-echo and gradient-tailored excitation WATERGATE sequences. The efficiency of these ligand-observed NMR screening techniques was investigated using the ribonuclease T1-inhibitor system. Copyright 2004 John Wiley & Sons, Ltd.

  13. 1,2,3-triazolyl amino acids as AMPA receptor ligands

    DEFF Research Database (Denmark)

    Stanley, Nathan J.; Pedersen, Daniel Sejer; Nielsen, Birgitte

    2010-01-01

    The central nervous system glutamate receptors are an important target for drug discovery. Herein we report initial investigations into the synthesis and glutamate receptor activity of 1,2,3-triazolyl amino acids. Two compounds were found to be selective AMPA receptor ligands, which warrant further...

  14. Structural determinants for selective recognition of peptide ligands for endothelin receptor subtypes ETA and ETB.

    Science.gov (United States)

    Lättig, Jens; Oksche, Alexander; Beyermann, Michael; Rosenthal, Walter; Krause, Gerd

    2009-07-01

    The molecular basis for recognition of peptide ligands endothelin-1, -2 and -3 in endothelin receptors is poorly understood. Especially the origin of ligand selectivity for ET(A) or ET(B) is not clearly resolved. We derived sequence-structure-function relationships of peptides and receptors from mutational data and homology modeling. Our major findings are the dissection of peptide ligands into four epitopes and the delineation of four complementary structural portions on receptor side explaining ligand recognition in both endothelin receptor subtypes. In addition, structural determinants for ligand selectivity could be described. As a result, we could improve the selectivity of BQ3020 about 10-fold by a single amino acid substitution, validating our hypothesis for ligand selectivity caused by different entrances to the receptors' transmembrane binding sites. A narrow tunnel shape in ET(A) is restrictive for a selected group of peptide ligands' N-termini, whereas a broad funnel-shaped entrance in ET(B) accepts a variety of different shapes and properties of ligands.

  15. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  16. Monitoring ligand-receptor interactions by photonic force microscopy

    International Nuclear Information System (INIS)

    Jeney, Sylvia; Mor, Flavio; Forro, Laszlo; Koszali, Roland; Moy, Vincent T

    2010-01-01

    We introduce a method for the acquisition of single molecule force measurements of ligand-receptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three-dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond, with the lifetime increasing tenfold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements, as tethers, longer than 200 nm, could be extracted from polystyrene beads.

  17. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands

    Science.gov (United States)

    Lewis, Stephanie N.; Garcia, Zulma; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2015-05-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40 %) when compared to docking with a single structure model (marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development.

  18. Benzodiazepine receptor and cerebral blood flow in early Alzheimer's disease. SPECT study using 123I-Iomazenil and 123I-IMP

    International Nuclear Information System (INIS)

    Kitamura, Shin; Koshi, Yasuhiko; Komiyama, Tasuku; Sakayori, Osamu; Komaba, Yuichi; Ohyama, Masashi; Mishina, Masahiro; Tsuganesawa, Toshikazu; Terashi, Akiro

    1996-01-01

    This study was designed to investigate benzodiazepine receptors (BZR) and cerebral blood flow (CBF) in patients with early Alzheimer's disease. Imaging of BZR and measurement of CBF were performed by SPECT using 123 I-Iomazenil (IMZ) and 123 I-IMP respectively, in seven patients with early Alzheimer's disease and five patients with unilateral left cerebral infarction as controls. The values for the normal cerebral hemisphere (ratio to the contralateral cerebellum) in patients with cerebral infarction were adopted as control values. In patients with Alzheimer's disease, the CBF (ratio to cerebellum) decreased significantly in the frontal cortex and the parietal cortex compared with the control values. There was no significant difference in late IMZ SPECT counts (ratio to cerebellum) and washout (the ratio of late-to-early IMZ SPECT counts) between patients with Alzheimer's disease and the controls. However, the late IMZ SPECT counts and washout decreased in one patient with moderate dementia. There was a significant correlation between the severity of dementia and the late IMZ SPECT counts in the temporal cortex and the parietal cortex. These results suggest that benzodiazepine binding sites are relatively well preserved in patients with early Alzheimer's disease, and reduction of the CBF is caused by neuronal dysfunction rather than by neuronal loss. IMZ SPECT study is useful and necessary for clarifying the pathophysiological state in Alzheimer's disease. (author)

  19. Multiple pathways of sigma(1) receptor ligand uptakes into primary cultured neuronal cells.

    Science.gov (United States)

    Yamamoto, H; Karasawa, J; Sagi, N; Takahashi, S; Horikomi, K; Okuyama, S; Nukada, T; Sora, I; Yamamoto, T

    2001-08-03

    Although many antipsychotics have affinities for sigma receptors, the transportation pathway of exogenous sigma(1) receptor ligands to intracellular type-1 sigma receptors are not fully understood. In this study, sigma(1) receptor ligand uptakes were studied using primary cultured neuronal cells. [(3)H](+)-pentazocine and [(3)H](R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), used as a selective sigma(1) receptor ligands, were taken up in a time-, energy- and temperature-dependent manner, suggesting that active transport mechanisms were involved in their uptakes. sigma(1) receptor ligands taken up into primary cultured neuronal cells were not restricted to agonists, but also concerned antagonists. The uptakes of these ligands were mainly Na(+)-independent. Kinetic analysis of [(3)H](+)-pentazocine and [(3)H]MS-377 uptake showed K(m) values (microM) of 0.27 and 0.32, and V(max) values (pmol/mg protein/min) of 17.4 and 9.4, respectively. Although both ligands were incorporated, the pharmacological properties of these two ligands were different. Uptake of [(3)H](+)-pentazocine was inhibited in the range 0.4-7.1 microM by all the sigma(1) receptor ligands used, including N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100), a selective sigma(1) receptor ligand. In contrast, the inhibition of [(3)H]MS-377 uptake was potently inhibited by haloperidol, characterized by supersensitivity (IC(50), approximately 2 nM) and was inhibited by NE-100 with low sensitivity (IC(50), 4.5 microM). Moreover, kinetic analysis revealed that NE-100 inhibited [(3)H]MS-377 uptake in a noncompetitive manner, suggesting that NE-100 acted at a site different from the uptake sites of [(3)H]MS-377. These findings suggest that there are at least two uptake pathways for sigma(1) receptor ligands in primary cultured neuronal cells (i.e. a haloperidol-sensitive pathway and another, unclear, pathway). In

  20. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2009-12-01

    Full Text Available Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses. The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.

  1. Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism

    Science.gov (United States)

    Menshykau, Denis; Iber, Dagmar

    2013-08-01

    The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by other proteins. Here, we show that the glial cell line-derived neurotrophic factor-RET regulatory interaction gives rise to a Schnakenberg-type Turing model that reproduces the observed budding of the ureteric bud from the Wolffian duct, its invasion into the mesenchyme and the observed branching pattern. The model also recapitulates all relevant protein expression patterns in wild-type and mutant mice. The lung and kidney models are both based on a particular receptor-ligand interaction and require (1) cooperative binding of ligand and receptor, (2) a lower diffusion coefficient for the receptor than for the ligand and (3) an increase in the receptor concentration in response to receptor-ligand binding (by enhanced transcription, more recycling or similar). These conditions are met also by other receptor-ligand systems. We propose that ligand-receptor-based Turing patterns represent a general mechanism to control branching morphogenesis and other developmental processes.

  2. Segregation of receptor-ligand complexes in cell adhesion zones: Phase diagrams and role of thermal membrane roughness

    OpenAIRE

    Rozycki, Bartosz; Lipowsky, Reinhard; Weikl, Thomas R.

    2010-01-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is likely caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, that bind to the receptors TCR and LFA1 in the cell membrane, the coexistence of domains ...

  3. The mammalian tachykinin ligand-receptor system: an emerging target for central neurological disorders.

    Science.gov (United States)

    Pantaleo, Nick; Chadwick, Wayne; Park, Sung-Soo; Wang, Liyun; Zhou, Yu; Martin, Bronwen; Maudsley, Stuart

    2010-11-01

    Our understanding of the complex signaling neurophysiology of the central nervous system has facilitated the exploration of potential novel receptor-ligand system targets for disorders of this most complex organ. In recent years, many relatively neglected receptor-ligand systems have been re-evaluated with respect to their ability to potently modulate discrete tracts in the central nervous system. One such system is the tachykinin (previously neurokinin) system. The multiple heptahelical G protein-coupled receptors and neuropeptide ligands that comprise this system may be significantly involved in more central nervous systems actions than previously thought, including sleep disorders, amyotrophic lateral sclerosis, Alzheimer's disease and Machado-Joseph disease. The development of our understanding of the role of the tachykinin receptor-ligand system in higher order central functions is likely to allow the creation of more specific and selective tachykinin-related neurotherapeutics.

  4. Ligands, cell-based models, and readouts required for Toll-like receptor action.

    LENUS (Irish Health Repository)

    Dellacasagrande, Jerome

    2012-02-01

    This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.

  5. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...

  6. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  7. Benzodiazepine receptors mediated anxiolytic-like effects of some 1,3,5-triaryl-4,5-dihydro-1h-pyrazole derivatives

    Directory of Open Access Journals (Sweden)

    Ozgur Devrim Can

    2016-06-01

    Results: In the hole-board tests, compounds 2g, 2h, 2k and 2s significantly increased total number of the head-dipping behavior and number of the explored holes. In the plus-maze tests, the same compounds increased the time spent in the open arms and the number of entries into the open arms. These findings indicated that these four compounds have anxiolytic-like effects. Reference drug diazepam (1 mg/kg, i.p also showed its anxiolytic activity in both of the tests, as expected. Conclusion: Benzodiazepine receptors mediated the anxiolytic-like effects of 2g, 2h, 2k and 2s coded 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivative compounds. [Cukurova Med J 2016; 41(2.000: 304-315

  8. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  9. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  10. A ligand channel through the G protein coupled receptor opsin.

    Directory of Open Access Journals (Sweden)

    Peter W Hildebrand

    Full Text Available The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7, and B (between TM5 and 6, respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all

  11. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko; Kusuoka, Hideo; Nakamura, Hironobu

    2000-01-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, 125 I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and 123 I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of 123 I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  12. Increased expression of mitochondrial benzodiazepine receptors following low-level light treatment facilitates enhanced protoporphyrin IX production in glioma-derived cells in vitro

    Science.gov (United States)

    Bisland, S. K.; Hassanali, N. S.; Johnson, C.; Wilson, B. C.

    2007-02-01

    This study investigates whether low level light treatment (LLLT) can enhance the expression of Peripheral-type mitochondrial benzodiazepine receptors (PBRs) on the glioma-derived tumour cell line, CNS-1, and by doing so promote the synthesis of protoporphyrin IX (PpIX) and increase the photodynamic therapy (PDT)-induced cell kill using 5-aminolevulinic acid (ALA). The endogenous photosensitizer, (PpIX) and related metabolites including coproporphyrin III are known to traffic via the PBRs on the outer mitochondrial membrane on their passage into or out of the mitochondria. Astrocyte-derived cells within the brain express PBRs, while neurons express the central-type of benzodiazepine receptor. CNS-1 cells were exposed to a range of differing low-level light protocols immediately prior to PDT. LLLT involved using broad-spectrum light or monochromatic laser light specific to 635 or 905 nm wavelength. Cells (5μ10 5) were exposed to a range of LLLT doses (0, 1 or 5 J/cm2) using a fixed intensity of 10 mW/cm2 and subsequently harvested for cell viability, immunofluorescence or western blot analysis of PBR expression. The amount of PpIX within the cells was determined using chemical extraction techniques. Results confirm the induction of PBR following LLLT is dependent on the dose and wavelength of light used. Broadspectrum light provided the greatest cell kill following PDT, although LLLT with 635 nm or 905 nm also increased cell kill as compared to PDT alone. All LLLT regimens increased PBR expression compared to controls with corresponding increases in PpIX production. These data suggest that by selectively increasing PBR expression in tumour cells, LLLT may facilitate enhanced cell kill using ALA-PDT without damaging surrounding normal brain.

  13. DMPD: Toll-like receptors, Notch ligands, and cytokines drive the chronicity of lunginflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18073395 Toll-like receptors, Notch ligands, and cytokines drive the chronicity of ...2007 Dec;4(8):635-41. (.png) (.svg) (.html) (.csml) Show Toll-like receptors, Notch ligands, and cytokines d...ors, Notch ligands, and cytokines drive the chronicity of lunginflammation. Authors Raymond T, Schaller M, H

  14. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis.

    Science.gov (United States)

    García-Vallejo, Juan J; van Kooyk, Yvette

    2009-07-01

    C-type lectin receptors (CLRs) have long been known as pattern-recognition receptors implicated in the recognition of pathogens by the innate immune system. However, evidence is accumulating that many CLRs are also able to recognize endogenous 'self' ligands and that this recognition event often plays an important role in immune homeostasis. In the present review, we focus on the human and mouse CLRs for which endogenous ligands have been described. Special attention is given to the signaling events initiated upon recognition of the self ligand and the regulation of glycosylation as a switch modulating CLR recognition, and therefore, immune homeostasis.

  15. Delta/Notch-Like EGF-Related Receptor (DNER Is Not a Notch Ligand.

    Directory of Open Access Journals (Sweden)

    Maxwell Greene

    Full Text Available Delta/Notch-like EGF-related receptor (DNER has been reported to act as a Notch ligand, despite lacking a Delta/Serrate/Lag (DSL binding domain common to all other known ligands. The established Notch ligand Delta-like 1 (DLL1, but not DNER, activated Notch1 in a luciferase assay, prevented the differentiation of myoblasts through Notch signaling, and bound Notch-fc in a cell-based assay. DNER is not a Notch ligand and its true function remains unknown.

  16. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  17. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong (Pitt); (Xiamen)

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  18. The role of endogenous epidermal growth factor receptor ligands in mediating corneal epithelial homeostasis.

    Science.gov (United States)

    Peterson, Joanne L; Phelps, Eric D; Doll, Mark A; Schaal, Shlomit; Ceresa, Brian P

    2014-05-01

    To provide a comprehensive study of the biological role and therapeutic potential of six endogenous epidermal growth factor receptor (EGFR) ligands in corneal epithelial homeostasis. Kinetic analysis and dose response curves were performed by using in vitro and in vivo wound-healing assays. Biochemical assays were used to determine receptor expression and activity. Human tears were collected and quantitatively analyzed by multianalyte profiling for endogenous EGFR ligands. Epidermal growth factor receptor ligands improved wound closure and activated EGFR, but betacellulin (BTC) was the most efficacious promoter of wound healing in vitro. In contrast, only epidermal growth factor (EGF) promoted wound healing in vivo. Human tears from 25 healthy individuals showed EGFR ligands at these average concentrations: EGF at 2053 ± 312.4 pg/mL, BTC at 207 ± 39.4 pg/mL, heparin-binding EGF at 44 ± 5.8 pg/mL, amphiregulin at 509 ± 28.8 pg/mL, transforming growth factor-α at 84 ± 19 pg/mL, and epiregulin at 52 ± 15 pg/mL. Under unwounded conditions, only EGF was present at concentrations near the ligand's Kd for the receptor, indicating it is the primary mediator of corneal epithelial homeostasis. Other ligands were present but at concentrations 11- to 7500-fold less their Kd, preventing significant ligand binding. Further, the high levels of EGF and its predicted binding preclude receptor occupancy by exogenous ligand and can explain the discrepancy between the in vitro and in vivo data. Therefore, therapeutic use of EGFR ligands may be unpredictable and impractical.

  19. Ligand binding and micro-switches in 7TM receptor structures

    DEFF Research Database (Denmark)

    Nygaard, Rie; Frimurer, Thomas M; Holst, Birgitte

    2009-01-01

    The past couple of years have seen several novel X-ray structures of 7 transmembrane (7TM) receptors in complex with antagonists and even with a peptide fragment of a G protein. These structures demonstrate that the main ligand-binding pocket in 7TM receptors is like a funnel with a partial 'lid...

  20. Potential applications for sigma receptor ligands in cancer diagnosis and therapy

    NARCIS (Netherlands)

    van Waarde, Aren; Rybczynska, Anna A.; Kuzhuppilly Ramakrishnan, Nisha; Ishiwata, Kiichi; Elsinga, Philip H.; Dierckx, Rudi A. J. O.

    2015-01-01

    Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to

  1. Non-ribose ligands for the human adenosine A1 receptor

    NARCIS (Netherlands)

    Klaasse, Elisabeth Cornelia

    2008-01-01

    This thesis describes new, non-ribose ligands for the human Adenosine A1 Receptor (hA1R). An introduction to the four adenosine receptors subtypes, their history and cloning, occurrence, functioning, trafficking and therapeutic potential is given in Chapter 1. The process of desensitization and

  2. Synthesis and evaluation of peptide and nucleic acid based Toll-like receptor ligands

    NARCIS (Netherlands)

    Weterings, Josephus Johannes

    2008-01-01

    Toll-like receptors (TLRs) are receptors that continuously scour their direct surroundings for pathogen associated molecular patterns (PAMPs) of bacterial, viral or fungal origin. TLRs can be found at cells that play a role in the immune system. Binding of the TLR with its corresponding ligand

  3. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Monine, Michael [Los Alamos National Laboratory; Posner, Richard [TRANSLATION GENOMICS RESAEARCH INSTITUTE; Savage, Paul [BYU; Faeder, James [UNIV OF PITTSBURGH; Hlavacek, William S [UNM

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  4. Flumazenil, a Benzodiazepine Receptor Anatagonist, in the Reversal of Conscious Sedation following Gastroscopy. A Placebo Controlled, Dose Finding Study

    Directory of Open Access Journals (Sweden)

    Lloyd Sutherland

    1991-01-01

    Full Text Available Tim double-blind, placebo controlled, study assessed the efficacy and safety of flumazenil, a benzodiazepine antagonist, in reversing diazepam-induced sedation in 60 patients undergoing endoscopy. Patients were randomly assigned to one of six treatment groups (placebo, 5, 10, 15, 20 or 25 μg/kg flumazenil. Patient psychomotor function was determined using four standard assessments – Trieger, digit substitution, track tracing and cancellation tests. Flumazenil was well tolerated by all patients. All doses of Flumazenil were superior to placebo in reversing sedation. No significant differences were detected between the various treatment groups. Forty-five minutes after the flumazenil infusion, there were no differences between flumazenil- and placebo-treated patients in psychomotor function. Flumazenil is a safe, effective medication which reverses diazepam-induced conscious sedation. For most patients 0.5 mg given intravenously will reverse sedation.

  5. PET and Hormone Receptor Ligands in Breast Cancer

    National Research Council Canada - National Science Library

    Gemignani, Mary

    2006-01-01

    .... To investigate this further, this project's objectives are: To evaluate the use of estrogen-like ligands labeled with positron emitters in preoperatively determining the ER status of breast cancer using PET...

  6. Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells

    Science.gov (United States)

    Baek, Sung Hee; Ohgi, Kenneth A.; Nelson, Charles A.; Welsbie, Derek; Chen, Charlie; Sawyers, Charles L.; Rose, David W.; Rosenfeld, Michael G.

    2006-01-01

    The androgen receptor not only mediates prostate development but also serves as a key regulator of primary prostatic cancer growth. Although initially responsive to selective androgen receptor modulators (SARMs), which cause recruitment of the nuclear receptor–corepressor (N-CoR) complex, resistance invariably occurs, perhaps in response to inflammatory signals. Here we report that dismissal of nuclear receptor–corepressor complexes by specific signals or androgen receptor overexpression results in recruitment of many of the cohorts of coactivator complexes that permits SARMs and natural ligands to function as agonists. SARM-bound androgen receptors appear to exhibit failure to recruit specific components of the coactivators generally bound by liganded nuclear receptors, including cAMP response element-binding protein (CBP)/p300 or coactivator-associated arginine methyltransferase 1 (CARM1) to the SARM-bound androgen receptor, although still causing transcriptional activation of androgen receptor target genes. SARM-bound androgen receptors use distinct LXXLL (L, leucine; X, any amino acid) helices in the p160 nuclear receptor interaction domains that may impose selective allosteric effects, providing a component of the molecular basis of differential responses to different classes of ligands by androgen receptor. PMID:16492776

  7. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  8. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H. (Biopharmaceuticals Div., Bagsvaerd (Denmark))

    1990-08-14

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the {alpha}-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor.

  9. Myeloperoxidase formation of PAF receptor ligands induces PAF receptor-dependent kidney injury during ethanol consumption.

    Science.gov (United States)

    Latchoumycandane, Calivarathan; Nagy, Laura E; McIntyre, Thomas M

    2015-09-01

    Cytochrome P450 2E1 (CYP2E1) induction and oxidative metabolism of ethanol in hepatocytes inflame and damage liver. Chronic ethanol ingestion also induces kidney dysfunction, which is associated with mortality from alcoholic hepatitis. Whether the kidney is directly affected by ethanol or is secondary to liver damage is not established. We found that CYP2E1 was induced in kidney tubules of mice chronically ingesting a modified Lieber-deCarli liquid ethanol diet. Phospholipids of kidney tubules were oxidized and fragmented in ethanol-fed mice with accumulation of azelaoyl phosphatidylcholine (Az-PC), a nonbiosynthetic product formed only by oxidative truncation of polyunsaturated phosphatidylcholine. Az-PC stimulates the inflammatory PAF receptor (PTAFR) abundantly expressed by neutrophils and kidney tubules, and inflammatory cells and myeloperoxidase-containing neutrophils accumulated in the kidneys of ethanol-fed mice after significant hysteresis. Decreased kidney filtration and induction of the acute kidney injury biomarker KIM-1 in tubules temporally correlated with leukocyte infiltration. Genetic ablation of PTAFR reduced accumulation of PTAFR ligands and reduced leukocyte infiltration into kidneys. Loss of this receptor in PTAFR(-/-) mice also suppressed oxidative damage and kidney dysfunction without affecting CYP2E1 induction. Neutrophilic inflammation was responsible for ethanol-induced kidney damage, because loss of neutrophil myeloperoxidase in MPO(-/-) mice was similarly protective. We conclude that ethanol catabolism in renal tubules results in a self-perpetuating cycle of CYP2E1 induction, local PTAFR ligand formation, and neutrophil infiltration and activation that leads to myeloperoxidase-dependent oxidation and damage to kidney function. Hepatocytes do not express PTAFR, so this oxidative cycle is a local response to ethanol catabolism in the kidney. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    Science.gov (United States)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  11. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE).

    Science.gov (United States)

    Syed, Aleem; Zhu, Qiaochu; Smith, Emily A

    2016-12-01

    The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion. Copyright © 2016. Published by Elsevier B.V.

  12. Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-07-01

    The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.

  13. The benzodiazepine diazepam potentiates responses of α1β2γ2 γ-aminobutyric acid type A receptors activated by either γ-aminobutyric acid or allosteric agonists

    Science.gov (United States)

    Li, Ping; Eaton, Megan M.; Steinbach, Joe Henry; Akk, Gustav

    2013-01-01

    Background The γ-aminobutyric acid type A receptor is target for several anesthetics, anticonvulsants, anxiolytics and sedatives. Neurosteroids, barbiturates and etomidate both potentiate responses to γ-aminobutyric acid (GABA) and allosterically activate the receptor. We examined the ability of a benzodiazepine, diazepam, to potentiate responses to allosteric agonists. Methods The γ-aminobutyric acid type A receptors were expressed in human embryonic kidney 293 cells, and studied using whole-cell and single-channel patch clamp. The receptors were activated by the orthosteric agonist GABA, and allosteric agonists pentobarbital, etomidate and alfaxalone. Results Diazepam is equally potent at enhancing responses to orthosteric and allosteric agonists. Diazepam EC50s were 25±4, 26±6, 33±6, and 26±3 nM for receptors activated by GABA, pentobarbital, etomidate, and alfaxalone, respectively (mean±S.D., 5–6 cells at each condition). Mutations to the benzodiazepine-binding site (α1(H101C), γ2(R144C), γ2(R197C)) reduced or removed potentiation for all agonists, and an inverse agonist at the benzodiazepine site reduced responses to all agonists. Single-channel data elicited by GABA demonstrate that in the presence of 1 μM diazepam the prevalence of the longest open-time component is increased from 13±7 (mean±S.D., n=5 patches) to 27±8 % (n=3 patches) and the rate of channel closing is decreased from 129±28 s−1 to 47±6 s−1 (mean±S.D.) Conclusions We conclude that benzodiazepines do not act by enhancing affinity of the orthosteric site for GABA but rather by increasing channel gating efficacy. The results also demonstrate the presence of significant interactions between allosteric activators and potentiators, raising a possibility of effects on dosage requirements or changes in side effects. PMID:23407108

  14. The Anticonvulsant Activity of a Flavonoid-Rich Extract from Orange Juice Involves both NMDA and GABA-Benzodiazepine Receptor Complexes

    Directory of Open Access Journals (Sweden)

    Rita Citraro

    2016-09-01

    Full Text Available The usage of dietary supplements and other natural products to treat neurological diseases has been growing over time, and accumulating evidence suggests that flavonoids possess anticonvulsant properties. The aim of this study was to examine the effects of a flavonoid-rich extract from orange juice (OJe in some rodent models of epilepsy and to explore its possible mechanism of action. The genetically audiogenic seizures (AGS-susceptible DBA/2 mouse, the pentylenetetrazole (PTZ-induced seizures in ICR-CD1 mice and the WAG/Rij rat as a genetic model of absence epilepsy with comorbidity of depression were used. Our results demonstrate that OJe was able to exert anticonvulsant effects on AGS-sensible DBA/2 mice and to inhibit PTZ-induced tonic seizures, increasing their latency. Conversely, it did not have anti-absence effects on WAG/Rij rats. Our experimental findings suggest that the anti-convulsant effects of OJe are likely mediated by both an inhibition of NMDA receptors at the glycine-binding site and an agonistic activity on benzodiazepine-binding site at GABAA receptors. This study provides evidences for the antiepileptic activity of OJe, and its results could be used as scientific basis for further researches aimed to develop novel complementary therapy for the treatment of epilepsy in a context of a multitarget pharmacological strategy.

  15. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    Science.gov (United States)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  16. A novel chemogenomics analysis of G protein-coupled receptors (GPCRs and their ligands: a potential strategy for receptor de-orphanization

    Directory of Open Access Journals (Sweden)

    Emmerich Michael TM

    2010-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors. Results We present a classification of GPCRs that is purely based on their ligands, complementing sequence-based phylogenetic classifications of these receptors. Targets were hierarchically classified into phylogenetic trees, for both sequence space and ligand (substructure space. The overall organization of the sequence-based tree and substructure-based tree was similar; in particular, the adenosine receptors cluster together as well as most peptide receptor subtypes (e.g. opioid, somatostatin and adrenoceptor subtypes. In ligand space, the prostanoid and cannabinoid receptors are more distant from the other targets, whereas the tachykinin receptors, the oxytocin receptor, and serotonin receptors are closer to the other targets, which is indicative for ligand promiscuity. In 93% of the receptors studied, de-orphanization of a simulated orphan receptor using the ligands of related receptors performed better than random (AUC > 0.5 and for 35% of receptors de-orphanization performance was good (AUC > 0.7. Conclusions We constructed a phylogenetic classification of GPCRs that is solely based on the ligands of these receptors. The similarities and differences with traditional sequence-based classifications were investigated: our ligand

  17. [Suicidal poisoning with benzodiazepines].

    Science.gov (United States)

    Chodorowski, Z; Sein Anand, J

    1997-01-01

    In the period from 1987 to 1996, 103 patients with suicidal benzodiazepines poisoning were treated, including 62 women and 41 men from 16 to 79 (mean 34) years old. 23 persons were poisoned only by benzodiazepines, in 80 remaining cases intoxications were mixed eg. including benzodiazepines and alcohol, tricyclic antidepressants, barbiturates, opioids, phenothiazines. The main causes of suicides were mainly depression, drug addiction and alcoholism. Nobody died in the benzodiazepines group, while mortality rate in the group of mixed poisoning was 4%. Prescribing benzodiazepines by physicians was quite often not justified and facilitated, among others, accumulation of the dose sufficient for suicide attempt. Flumazenil was efficient for leading out from coma in 86% of cases with poisoning only by benzodiazepines and 13% of cases with mixed intoxications mainly containing benzodiazepines and alcohol or carbamazepine.

  18. Mapping receptor-ligand interactions with synthetic peptide arrays: exploring the structure and function of membrane receptors.

    Science.gov (United States)

    Volkmer, Rudolf; Kretzschmar, Ines; Tapia, Victor

    2012-04-01

    Development of synthetic peptide array technology started in the early 1990s. The technique originally developed by Ronald Frank has become a powerful tool for high throughput approaches in biology and chemistry mapping protein interaction sites. In this review we focus on peptide arrays applied to investigate receptor-ligand interactions, such as peroxisomal membrane receptor proteins, the maltose importer machinery and receptor proteins recognizing short linear motifs of their partners. We present several systematic sets of peptide arrays useful for mapping protein-protein- or receptor-ligand binding sites. Besides a more technical description of the peptide array preparation we discuss in detail the reliability and improvement of mapping protein-protein interactions by synthetic peptide arrays. At least proteomic approaches for mapping protein-protein interactions by peptide arrays are shown especially for the case of protein interaction domains. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers

    International Nuclear Information System (INIS)

    Wellstein, Anton

    2012-01-01

    The intracellular anaplastic lymphoma kinase (ALK) fragment shows striking homology with members of the insulin receptor family and was initially identified as an oncogenic fusion protein resulting from a translocation in lymphoma and more recently in a range of cancers. The full-length ALK transmembrane receptor of ~220 kDa was identified based on this initial work. This tyrosine kinase receptor and its ligands, the growth factors pleiotrophin (PTN) and midkine (MK) are highly expressed during development of the nervous system and other organs. Each of these genes has been implicated in malignant progression of different tumor types and shown to alter phenotypes as well as signal transduction in cultured normal and tumor cells. Beyond its role in cancer, the ALK receptor pathway is thought to contribute to nervous system development, function, and repair, as well as metabolic homeostasis and the maintenance of tissue regeneration. ALK receptor activity in cancer can be up-regulated by amplification, overexpression, ligand binding, mutations in the intracellular domain of the receptor and by activity of the receptor tyrosine phosphatase PTPRz. Here we discuss the evidence for ligand control of ALK activity as well as the potential prognostic and therapeutic implications from gene expression and functional studies. An analysis of 18 published gene expression data sets from different cancers shows that overexpression of ALK, its smaller homolog LTK (leukocyte tyrosine kinase) and the ligands PTN and MK in cancer tissues from patients correlate significantly with worse course and outcome of the disease. This observation together with preclinical functional studies suggests that this pathway could be a valid therapeutic target for which complementary targeting strategies with small molecule kinase inhibitors as well as antibodies to ligands or the receptors may be used.

  20. Neuropeptide Receptor Ligands for the Treatment of Schizophrenia: Focus on Neurotensin and Tachykinins.

    Science.gov (United States)

    Griebel, Guy

    2015-01-01

    There is a wealth of evidence that various neuropeptides and their receptor ligands modulate schizophrenia- related behaviors in preclinical animal models, suggesting that neuropeptide systems may represent potential novel therapeutic targets for the treatment of schizophrenia. In particular, neurotensin and tachykinins have been the subject of significant research efforts, generating compelling preclinical data in the schizophrenia field. However, clinical studies with notably selective tachykinin NK3 receptor antagonists in schizophrenia have been disappointing, and they were unable to confirm the promising therapeutic potential from animal studies, thereby questioning the therapeutic utility of these compounds for this condition. This article reviews preclinical and clinical findings on ligands for neurotensin and tachykinin receptors in schizophrenia, and provides possible explanations for the failure so far to develop small-molecule neuropeptide ligands for the treatment of schizophrenia.

  1. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery.

    Science.gov (United States)

    Kruse, Andrew C; Weiss, Dahlia R; Rossi, Mario; Hu, Jianxin; Hu, Kelly; Eitel, Katrin; Gmeiner, Peter; Wess, Jürgen; Kobilka, Brian K; Shoichet, Brian K

    2013-10-01

    G protein-coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype-selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology.

  2. Discriminative stimulus properties of the benzodiazepine receptor inverse agonist methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM).

    Science.gov (United States)

    Kirby, L G; Rowan, G A; Smith, R L; Lucki, I

    1994-01-01

    The purpose of this study was to determine whether rats could be trained to discriminate the stimulus properties of the benzodiazepine (BZ) receptor inverse agonist DMCM from saline in a conditioned taste aversion paradigm. On a drug trial, water-deprived rats were injected with DMCM (0.55-0.6 mg/kg IP), allowed access to a 0.25% saccharin solution for 30 min, and then injected with LiCl. On non-drug trials, saline injections bracketed the drinking period. Conditioned controls were treated similarly with DMCM and saline on drug and non-drug trials, but received injections of saline instead of LiCl. At the completion of training, CMCM produced a 69% reduction of saccharin consumption on drug trials, compared with 23% for conditioned controls. The stimulus properties of DMCM were then measured by its ability to reduce the preference for saccharin over water in a two-bottle choice test. DMCM reduced saccharin preference in rats that received discrimination training from 68% to 19%, but did not alter saccharin preference in conditioned controls. Other compounds with varying activity at BZ receptors were evaluated for their ability to substitute for the discriminative stimulus effects of DMCM. Two BZ receptor inverse agonists, beta-CCE (10-18 mg/kg) and FG 7142 (3.2-18 mg/kg), substituted completely for DMCM. Partial substitution for DMCM was shown by the BZ receptor antagonist CGS 8216 (3.2-10 mg/kg) and the non-BZ convulsant pentylenetetrazol (10-20 mg/kg). The BZ receptor agonists chlordiazepoxide (0.32-5.0 mg/kg), diazepam (0.32-10 mg/kg), and alprazolam (0.1-3.2 mg/kg) and the BZ receptor antagonist flumazenil (1.0-32 mg/kg) failed to substitute for the DMCM stimulus. Pretreatment with flumazenil (1.0 mg/kg) blocked the stimulus effects of the training dose of DMCM and produced a shift to the right of the DMCM generalization curve. The pattern of compounds that substituted for the DMCM stimulus and the blockade of that stimulus by flumazenil indicate that the

  3. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Bokoch, Michael P; Zou, Yaozhong; Rasmussen, Søren Gøgsig Faarup

    2010-01-01

    extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known...... about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic...

  4. Photoaffinity ligand for dopamine D2 receptors: azidoclebopride

    International Nuclear Information System (INIS)

    Niznik, H.B.; Guan, J.H.; Neumeyer, J.L.; Seeman, P.

    1985-01-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [ 3 H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol

  5. Segregation of receptor-ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness

    Science.gov (United States)

    Różycki, B.; Lipowsky, R.; Weikl, T. R.

    2010-09-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is probably caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, which bind to the T-cell receptor (TCR) and the receptor LFA1 in the cell membrane, the coexistence of domains of the TCR-MHCp and LFA1-ICAM1 complexes in the cell adhesion zone has been observed for a wide range of ligand concentrations and affinities. For supported membranes with long and short ligands that bind to the same cell receptor CD2, in contrast, domain coexistence has been observed for a quite narrow ratio of ligand concentrations. In this paper, we determine detailed phase diagrams for cells adhering to supported membranes with a statistical-physical model of cell adhesion. We find a characteristic difference between the adhesion scenarios in which two types of ligands in a supported membrane bind (i) to the same cell receptor or (ii) to two different cell receptors, which helps us to explain the experimental observations. Our phase diagrams fully include thermal shape fluctuations of the cell membranes on nanometer scales, which lead to a critical point for the domain formation and to a cooperative binding of the receptors and ligands.

  6. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  7. Somatostatin receptors ligands in radionuclide diagnosis and therapy in oncology

    International Nuclear Information System (INIS)

    Cholewinski, W.; Tarkowska, A.

    2002-01-01

    Various tumors, referred to as either neuroendocrine or non-neuroendocrine, express a high number of somatostatin receptors. The presence of these receptors has been shown to be of clinical importance since radio-labeled somatostatin analogues have been used for tumor diagnosis and radiotherapy while non-radioactive analogues are applied for the treatment of tumour-associated symptoms. Recently, five different types of human somatostatin receptors have been identified and named sst1-sst5. Each sst is the product of single gene and the expression of receptor subtypes has been reported to be dependent on the origin and type of tumor. A great majority of studies on sst receptors are based on molecular in vitro identification methods such as the very sensitive RY-PCR technique. A majority of tumors predominantly express the sst2 receptor subtype while only few express other subtypes alone.The introduction of labeled somatostatin analogues, more resistant to degradation than somatostatin itself, enabled in vivo visualization of tumors with high expression of somatostatin receptors. Recently many new stable somatostatin analogues, such as octreotide, lanreotide, vapreotide and depreotide have been introduced as diagnostic tracers. Pharmacological studies have shown a high affinity of somatostatin to all receptor subtypes, whereas somatostatin analogues bind to different subtypes with different affinity. The first studies used radioiodinated octreotide as the radioligand. Presently, indium-labeled octreotide is considered the golden standard. However new technetium-labeled analogues have been already used in clinical investigations. High expression of somatostatin receptors presented by certain tumors can be used for a receptor-mediated radiotherapy. Such therapy with high doses of indium-labeled analogues or with yttrium-labeled somatostatin analogues has been reported to be a promising method of treatment not only in case of neuroendocrine tumors. (author)

  8. Receptor mapping in psychiatric patients with SPECT

    International Nuclear Information System (INIS)

    Schlegel, S.

    1997-01-01

    This paper summarizes some data of our studies with the single-photon-emission-computerized tomography (SPECT), focussing on the dopamine-D2- and the benzodiazepine receptor mapping. Benzodiazepine receptors: Central benzodiazepine receptors (BZr) can be visualized with iomazenil which is an analogue of the benzodiazepine antagonist flumazenil, labeled with 123-iodine. Since the involvement of the BZr system is discussed in the pathogenesis of anxiety and depression, patients with these disorders were investigated. A third study investigated the BZr-occupancy during benzodiazepine treatment (lorazepam). Results: (a) Patients with panic disorders had lower iomazenil uptake values compared to epileptic patients. (b) Depressed patients showed a positive correlation between severity of illness and frontal uptake. (c) BZr occupancy during lorazepam treatment was measurable, but not associated with lorazepam plasma levels. Dopamine-D2-receptors: With 123-I-iodobenzamide (IBZM), and iodine-labeled dopamine receptor ligand, the D2 receptor density can be measured by a semiquantitative approach (striatum/frontal cortex=ST/FC). Therefore, we investigated the D2-receptor occupancy during treatment with typical and atypical neuroleptics in relationship to dosages (normalized with different formulas of chlorpromazine equivalents), side effects, and prolactin plasma levels. Results: Dependent on the selected formula for chlorpromazine equivalents, the ST/FC ratio was correlated with dosages. Side effects and prolactin plasma levels showed a negative association with lower ST/FC ratios. (orig.) [de

  9. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120)

    DEFF Research Database (Denmark)

    Hudson, Brian D; Shimpukade, Bharat; Milligan, Graeme

    2014-01-01

    The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands...... at FFA4 by integrating molecular modeling, receptor mutagenesis, and ligand structure-activity relationship approaches in an iterative format. In doing so, residues required for binding of fatty acid and synthetic agonists to FFA4 have been identified. This has allowed for the refinement of a well...

  10. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    Science.gov (United States)

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  11. Therapeutic Potential of 5-HT2C Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Nanna H. Jensen

    2010-01-01

    Full Text Available Serotonin 2C receptors are G protein-coupled receptors expressed by GABAergic, glutamatergic, and dopaminergic neurons. Anatomically, they are present in various brain regions, including cortical areas, hippocampus, ventral midbrain, striatum, nucleus accumbens, hypothalamus, and amygdala. A large body of evidence supports a critical role of serotonin 2C receptors in mediating the interaction between serotonergic and dopaminergic systems, which is at the basis of their proposed involvement in the regulation of mood, affective behavior, and memory. In addition, their expression in specific neuronal populations in the hypothalamus would be critical for their role in the regulation of feeding behavior. Modulation of these receptors has therefore been proposed to be of interest in the search for novel pharmacological strategies for the treatment of various pathological conditions, including schizophrenia and mood disorders, as well as obesity. More precisely, blockade of serotonin 2C receptors has been suggested to provide antidepressant and anxiolytic benefit, while stimulation of these receptors may offer therapeutic benefit for the treatment of psychotic symptoms in schizophrenia and obesity. In addition, modulation of serotonin 2C receptors may offer cognitive-enhancing potential, albeit still a matter of debate. In the present review, the most compelling evidence from the literature is presented and tentative hypotheses with respect to existing controversies are outlined.

  12. Heart Failure Therapeutics on the Basis of a Biased Ligand of the Angiotensin-2 Type 1 Receptor Rationale and Design of the BLAST-AHF Study (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure)

    NARCIS (Netherlands)

    Felker, G. Michael; Butler, Javed; Collins, Sean P.; Cotter, Gad; Davison, Beth A.; Ezekowitz, Justin A.; Filippatos, Gerasimos; Levy, Phillip D.; Metra, Marco; Ponikowski, Piotr; Soergel, David G.; Teerlink, John R.; Violin, Jonathan D.; Voors, Adriaan A.; Pang, Peter S.

    The BLAST-AHF (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure) study is designed to test the efficacy and safety of TRV027, a novel biased ligand of the angiotensin-2 type 1 receptor, in patients with acute heart failure (AHF). AHF remains a major public health problem, and

  13. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  14. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2...

  15. Triton X-100 inhibits agonist-induced currents and suppresses benzodiazepine modulation of GABA(A) receptors in Xenopus oocytes

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Ebert, Bjarke; Klaerke, Dan

    2009-01-01

    Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na(+) and L-type Ca(2+) channels and GABA(A) receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its...... effects on gramicidin channel A appearance rate and lifetime in artificial lipid bilayers. In the present study, the pharmacological action of Triton-X 100 on GABA(A) receptors expressed in Xenopus laevis oocytes was examined. Triton-X 100 inhibited GABA(A) alpha(1)beta(3)gamma(2S) receptor currents...... in a noncompetitive, time- and voltage-dependent manner and increased the apparent rate and extent of desensitization at 10 muM, which is 30 fold below the critical micelle concentration. In addition, Triton X-100 induced picrotoxin-sensitive GABA(A) receptor currents and suppressed allosteric modulation...

  16. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    Energy Technology Data Exchange (ETDEWEB)

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric (NIH)

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  17. Different sensitivities to competitive inhibition of benzodiazepine receptor binding of {sup 11}C-iomazenil and {sup 11}C-flumazenil in rhesus monkey brain

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Osamu; Hosoi, Rie; Kobayashi, Kaoru [Osaka Univ., Suita (Japan). Medical School; Itoh, Takashi; Gee, A.; Suzuki, Kazutoshi

    2001-04-01

    The in vivo binding kinetics of {sup 11}C-iomazenil were compared with those of {sup 11}C-flumazenil binding in rhesus monkey brain. The monkey was anesthetized with ketamine and intravenously injected with either {sup 11}C-iomazenil or {sup 11}C-flumazenil in combination with the coadministration of different doses of non-radioactive flumazenil (0, 5 and 20 {mu}g/kg). The regional distribution of {sup 11}C-iomazenil in the brain was similar to that of {sup 11}C-flumazenil, but the sensitivity of {sup 11}C-iomazenil binding to competitive inhibition by non-radioactive flumazenil was much less than that of {sup 11}C-flumazenil binding. A significant reduction in {sup 11}C-flumazenil binding in the cerebral cortex was observed with 20 {mu}g/kg of flumazenil, whereas a relatively smaller inhibition of {sup 11}C-iomazenil binding in the same region was observed with the same dose of flumazenil. These results suggest that {sup 11}C-flumazenil may be a superior radiotracer for estimating benzodiazepine receptor occupancy in the intact brain. (author)

  18. Assessment of cerebral benzodiazepine receptor distribution in anxiety disorders by 123I-iomazenil-SPECT. Comparison to cerebral perfusion scintigraphy by 123I-IMP

    International Nuclear Information System (INIS)

    Uchiyama, Mayuki; Sue, Hironari; Fukumitsu, Nobuyoshi; Mori, Yutaka; Kawakami, Kenji

    1997-01-01

    123 I-Iomazenil ( 123 I-IMZ) and 123 I-IMP imaging were performed in 5 patients with anxiety disorder (PAD) and 6 normal volunteers (NV). On 123 I-IMZ delayed imaging, the 2 PAD showed abnormally decreased findings. In anxiety disorder, decreased accumulation on 123 I-IMZ delayed images was seen in left hippocampus and parahippocampal gyrus in one patient, in right frontal and temporal lobe and left occipital pole in the other. Compared with NV, PAD had lower 123 I-IMZ uptake on delayed image in right upper and left lower frontal cortices, indicating the involvement of the benzodiazepine receptor complex in anxiety disorder. Compared with grading for anxiety disorder with Hamilton anxiety scale (HAS) and delayed to early count ratios of 123 I-IMZ, negative correlation (R 123 I-IMP image, positive correlation (R>0.7) was recognized in the hippocampus, the parahippocampal gyrus, the lower outer temporal cortex and the lower frontal cortex. (author)

  19. Rapid and efficient radiosynthesis of [{sup 123}I]I-PK11195, a single photon emission computed tomography tracer for peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pimlott, Sally L. [Department of Clinical Physics, West of Scotland Radionuclide Dispensary, Western Infirmary, G11 6NT Glasgow (United Kingdom)], E-mail: s.pimlott@clinmed.gla.ac.uk; Stevenson, Louise [Department of Chemistry, WestCHEM, University of Glasgow, G12 8QQ Glasgow (United Kingdom); Wyper, David J. [Institute of Neurological Sciences, Southern General Hospital, G51 4TF Glasgow (United Kingdom); Sutherland, Andrew [Department of Chemistry, WestCHEM, University of Glasgow, G12 8QQ Glasgow (United Kingdom)

    2008-07-15

    Introduction: [{sup 123}I]I-PK11195 is a high-affinity single photon emission computed tomography radiotracer for peripheral benzodiazepine receptors that has previously been used to measure activated microglia and to assess neuroinflammation in the living human brain. This study investigates the radiosynthesis of [{sup 123}I]I-PK11195 in order to develop a rapid and efficient method that obtains [{sup 123}I]I-PK11195 with a high specific activity for in vivo animal and human imaging studies. Methods: The synthesis of [{sup 123}I]I-PK11195 was evaluated using a solid-state interhalogen exchange method and an electrophilic iododestannylation method, where bromine and trimethylstannyl derivatives were used as precursors, respectively. In the electrophilic iododestannylation method, the oxidants peracetic acid and chloramine-T were both investigated. Results: Electrophilic iododestannylation produced [{sup 123}I]I-PK11195 with a higher isolated radiochemical yield and a higher specific activity than achievable using the halogen exchange method investigated. Using chloramine-T as oxidant provided a rapid and efficient method of choice for the synthesis of [{sup 123}I]I-PK11195. Conclusions: [{sup 123}I]I-PK11195 has been successfully synthesized via a rapid and efficient electrophilic iododestannylation method, producing [{sup 123}I]I-PK11195 with a higher isolated radiochemical yield and a higher specific activity than previously achieved.

  20. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  1. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France); Boublik, Yvan [CNRS, UMR5237, Centre de Recherche de Biochimie Macromoléculaire (CRBM), 34293 Montpellier (France); Pérez, Efrèn [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Germain, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), BP 10142, 67404 Illkirch CEDEX (France); Lera, Angel R. de [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Bourguet, William, E-mail: bourguet@cbs.cnrs.fr [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France)

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  2. Histamine H3 receptor ligands in the group of (homo)piperazine derivatives.

    Science.gov (United States)

    Szczepanska, Katarzyna; Kuder, Kamil; Kiec-Kononowicz, Katarzyna

    2017-11-23

    Since its' discovery in 1983, followed by gene cloning in 1999, the histamine H3 receptor served as an outstanding target for drug discovery. The wide spectrum of possible therapeutic implications make H3R's one of the most researched areas in the vast GPCR ligands field - started from imidazole containing ligands, through various successful imidazole replacements, with recent introduction of Wakix® to pharmaceutical market. One of such replacements is piperazine moiety, a significant versatile scaffold in rational drug design for most of the GPCR ligands. Therefore, herein we review ligands built on piperazine, as well as its seven membered analogue azepine, that target H3R's and their potential therapeutical applications, in order to elucidate the current state of the art in this vast field. Due to a high level of structural divergence among compounds described herein, we decided to divide them into groups, where the key division element was the position of nitrogen basicity decreasing moieties in (homo)piperazine ring. Paying attention to a number of published structures and their overall high biological activity, one can realize that the (homo)piperazine scaffold bids a versatile template also for histamine H3 receptor ligands. With two possible substitution sites and therefore a number of possible structural combinations, piperazine derivatives stand as one of the largest group of high importance among H3R ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Benzodiazepines: are we overprescribing?

    Science.gov (United States)

    Schiralli, V; McIntosh, M

    1987-04-01

    The authors made a survey of benzodiazepine use in the Family Practice Units at Toronto General Hospital and report the findings. They have examined, among other factors, drugs used, reasons for use, and perceived withdrawal symptoms. The results indicated that 24.3% of respondents had taken benzodiazepines in the previous year, and 12.2% in the previous two weeks. There was no difference in the percentage of use of benzodiazepines by males and females. This study confirms that diazepam was the most common drug used in all age ranges. Finally, 6.1% of benzodiazepine users stated that they had attempted an overdose.

  4. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases.

    Science.gov (United States)

    Liang, Xiangxiu; Ma, Miaomiao; Zhou, Zhaoyang; Wang, Jinlong; Yang, Xinru; Rao, Shaofei; Bi, Guozhi; Li, Lin; Zhang, Xiaojuan; Chai, Jijie; Chen, She; Zhou, Jian-Min

    2018-03-15

    Arabidopsis heterotrimeric G proteins regulate diverse processes by coupling to single-transmembrane receptors. One such receptor is the FLS2 receptor kinase, which perceives bacterial flagellin epitope flg22 to activate immunity through a class of cytoplasmic kinases called BIK1/PBLs. Unlike animal and fungal heterotrimeric G proteins that are activated by a ligand-induced guanine nucleotide exchange activity of seven-transmembrane G protein-coupled receptors (GPCRs), plant heterotrimeric G proteins are self-activating. How plant receptors regulate heterotrimeric G proteins in response to external ligands remains unknown. Here we show that RGS1, a GTPase accelerating protein, maintains Arabidopsis G proteins in an inactive state in complex with FLS2. Activation of FLS2 by flg22 induces a BIK1/PBL-mediated phosphorylation of RGS1 at Ser428 and Ser431 and that promotes RGS1 dissociation from the FLS2-G protein complex. This relieves G proteins from the RGS1-mediated repression and enables positive regulation of immune signaling. We additionally show that RGS1 is similarly regulated by multiple immune receptors. Our results uncover ligand-induced de-repression as a mechanism for G protein signaling in plants that is distinct from previously reported mechanism underlying the activation of heterotrimeric G proteins in other systems.

  5. Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments

    Science.gov (United States)

    Richter, David; Moraga, Ignacio; Winkelmann, Hauke; Birkholz, Oliver; Wilmes, Stephan; Schulte, Markos; Kraich, Michael; Kenneweg, Hella; Beutel, Oliver; Selenschik, Philipp; Paterok, Dirk; Gavutis, Martynas; Schmidt, Thomas; Garcia, K. Christopher; Müller, Thomas D.; Piehler, Jacob

    2017-07-01

    The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.

  6. Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth Dong Nguyen

    Full Text Available The rapidly increasing number of high-resolution X-ray structures of G-protein coupled receptors (GPCRs creates a unique opportunity to employ comparative modeling and docking to provide valuable insight into the function and ligand binding determinants of novel receptors, to assist in virtual screening and to design and optimize drug candidates. However, low sequence identity between receptors, conformational flexibility, and chemical diversity of ligands present an enormous challenge to molecular modeling approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone and side-chain conformational space with Rosetta can be leveraged to meet this challenge. This study performs unbiased comparative modeling and docking methodologies using 14 distinct high-resolution GPCRs and proposes knowledge-based filtering methods for improvement of sampling performance and identification of correct ligand-receptor interactions. On average, top ranked receptor models built on template structures over 50% sequence identity are within 2.9 Å of the experimental structure, with an average root mean square deviation (RMSD of 2.2 Å for the transmembrane region and 5 Å for the second extracellular loop. Furthermore, these models are consistently correlated with low Rosetta energy score. To predict their binding modes, ligand conformers of the 14 ligands co-crystalized with the GPCRs were docked against the top ranked comparative models. In contrast to the comparative models themselves, however, it remains difficult to unambiguously identify correct binding modes by score alone. On average, sampling performance was improved by 10(3 fold over random using knowledge-based and energy-based filters. In assessing the applicability of experimental constraints, we found that sampling performance is increased by one order of magnitude for every 10 residues known to contact the ligand. Additionally, in the case of DOR, knowledge of a single specific

  7. Modulation of estrogen receptor α levels by endogenous and exogenous ligands

    Directory of Open Access Journals (Sweden)

    P. La Rosa

    2011-01-01

    Full Text Available ERα is a ligand-activated transcription factor, member of the nuclear receptor superfamily. Regulation of ERα levels is intrinsically required for its transcriptional activity and thus for the modulation of the physiological actions of the cognate hormone 17β-estradiol (E2. Indeed, ERα exogenous ligands that target this molecular circuitry are used as drugs in clinical practice. Interestingly, some natural and synthetic molecules, which human beings are commonly exposed to, interfere with the endocrine system and operate through ERα by selectively modifying its signalling. In addition, these molecules may also modulate ERα cellular content. Here, we report the recent advances in our understanding of how exogenous ERα ligands impact on receptor levels and change the physiological E2-dipendent modulation of specific cellular function.

  8. Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ian D. Tomlinson

    2007-01-01

    Full Text Available We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes.

  9. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud

    2003-01-01

    G protein-coupled receptors (GPCRs) constitute a large class of seven transmembrane proteins, which bind selectively agonists or antagonists with important consequences for cellular signaling and function. Comprehension of the molecular details of ligand binding is important for the understanding...

  10. A multistep continuous-flow system for rapid on-demand synthesis of receptor ligands

    DEFF Research Database (Denmark)

    Petersen, Trine P; Ritzén, Andreas; Ulven, Trond

    2009-01-01

    A multistep continuous-flow system for synthesis of receptor ligands by assembly of three variable building blocks in a single unbroken flow is described. The sequence consists of three reactions and two scavenger steps, where a Cbz-protected diamine is reacted with an isocyanate, deprotected, an......, and reacted further with an alkylating agent....

  11. Unnatural amino acids as probes of ligand-receptor interactions and their conformational consequences

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Ahern, Christopher A

    2013-01-01

    -edge synthetic and chemical biological approaches. Here we summarize recent advances in the use of site-directed incorporation of unnatural amino acids and chemical probes to study ligand-receptor interactions, determine the location of binding sites, and examine the downstream conformational consequences...

  12. Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands

    NARCIS (Netherlands)

    Löwenberg, Mark; Stahn, Cindy; Hommes, Daniel W.; Buttgereit, Frank

    2008-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressant agents. Unfortunately, they also produce serious side effects that limit their usage. This discrepancy is the driving force for the intensive search for novel GC receptor ligands with a better benefit-risk ratio as compared to

  13. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies.

    Science.gov (United States)

    Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah

    2016-07-01

    Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.

  14. Sigma Receptors in Oncology : Therapeutic and Diagnostic Applications of Sigma Ligands

    NARCIS (Netherlands)

    van Waarde, Aren; Rybczynska, Anna A.; K. Ramakrishnan, Nisha; Ishiwata, Kiichi; Elsinga, Philip H.; Dierckx, Rudi A. J. O.

    2010-01-01

    Sigma receptors (subtypes sigma-1 and sigma-2) are a unique class of binding sites expressed throughout the mammalian body. The endogenous ligand for these sites has not been identified, but steroid hormones (particularly progesterone), sphingolipid-derived amines and N,N-dimethyltryptamine can bind

  15. Serum aryl hydrocarbon receptor ligand activity is associated with insulin resistance and resulting type 2 diabetes.

    Science.gov (United States)

    Roh, Eun; Kwak, Soo Heon; Jung, Hye Seung; Cho, Young Min; Pak, Youngmi Kim; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu

    2015-06-01

    Dioxin or dioxin-like compounds are ligands of the aryl hydrocarbon receptor (AhR), which is a ligand-activated nuclear transcription factor. There are limited studies about the association of serum AhR ligand activities and T2DM. Our objective was to investigate the association of serum AhR ligand activities with T2DM and its related metabolic parameters. This case-control study involved 83 subjects with T2DM as well as age-, sex-, and body mass index (BMI)-matched subjects with impaired glucose tolerance (IGT, n = 130) and normal glucose tolerance (NGT, n = 83). Serum AhR ligand activities were measured using a cell-based AhR ligand assay and standardized as 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDDeq, pmol/l). The T2DM group had the highest AhR ligand activities compared to the IGT and NGT groups [median (interquartile range), 68.1 (53.1, 81.5), 60.2 (45.8, 75.1), and 53.3 (46.1, 63.7) pmol/l, respectively; P = 0.003]. In the multivariate analysis, the log2-transformed TCDDeq levels were significantly associated with the risk of T2DM after adjusting for age, sex, and BMI (odds ratio 2.26, 95 % confidence interval 1.34-3.82; P = 0.002). In nondiabetic subjects, serum AhR ligand activities showed a positive correlation with fasting glucose and insulin concentrations and the homeostasis model assessment of insulin resistance, but showed a negative correlation with adiponectin concentrations. Serum AhR ligand activities were higher in the T2DM group and were correlated with the parameters of insulin resistance. Further investigation is required to elucidate the causal relationship between AhR ligand activity and T2DM.

  16. CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk.

    Science.gov (United States)

    Peters, Nils; Opherk, Christian; Zacherle, Simone; Capell, Anja; Gempel, Petra; Dichgans, Martin

    2004-10-01

    Mutations in the NOTCH3 gene are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary angiopathy leading to strokes and dementia. Pathogenic mutations remove or insert cysteine residues within epidermal growth factor (EGF) repeats in the extracellular domain of the Notch3 receptor (N3ECD). Vascular smooth muscle cells (VSMC) are the predominant site of Notch3 expression in adults. In CADASIL patients, VSMC degenerate and N3ECD is deposited within the vasculature. However, the mechanisms underlying VSMC degeneration and N3ECD accumulation are still unknown. In this study, we investigated the consequences of three pathogenic Notch3 mutations on the biological activity of the receptor by analyzing ligand (Delta-/Jagged-)-induced signaling via RBP-Jk. Two mutations (R133C and C183R) that are located outside the putative ligand binding domain (LBD) of the receptor were found to result in normal Jagged1-induced signaling in A7r5 VSMC, whereas the third mutation (C455R located within the putative LBD) showed strongly reduced signaling activity. Ligand binding assays with soluble Delta1 and Jagged1 revealed that C455R interferes with ligand binding through disruption of the LBD which, as we show here, is located in EGF repeats 10/11 of Notch3. All mutant receptors including Notch3C455R were targeted to the cell surface but showed an elevated ratio between the unprocessed full-length 280-kDa receptor and S1-cleaved receptor fragments. Taken together, these data indicate that CADASIL-associated Notch3 mutations differ with respect to their consequences both on ligand binding and ligand-induced signaling through RBP-Jk, whereas they have similar effects on receptor maturation. Moreover, the data suggest that ligand-induced receptor shedding may not be required for N3ECD deposition in CADASIL. Copyright 2004 Elsevier Inc.

  17. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands.

    Science.gov (United States)

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-08-07

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.

  18. A python-based docking program utilizing a receptor bound ligand shape: PythDock.

    Science.gov (United States)

    Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi

    2011-09-01

    PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

  19. Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors.

    Science.gov (United States)

    Guo, Dong; Heitman, Laura H; IJzerman, Adriaan P

    2017-01-11

    Ligand-receptor binding kinetics is an emerging topic in the drug research community. Over the past years, medicinal chemistry approaches from a kinetic perspective have been increasingly applied to G protein-coupled receptors including the adenosine receptors (AR), which are involved in a plethora of physiological and pathological conditions. The study of ligand-AR binding kinetics offers room for detailed structure-kinetics relationships next to more traditional structure-activity relationships. Their combination may facilitate the triage of candidate compounds in hit-to-lead campaigns. Furthermore, kinetic studies also help in understanding AR allosterism. Allosteric modulation may yield a change in the activity and conformation of a receptor resulting from the binding of a compound at a site distinct from where the endogenous agonist adenosine binds. Hence, in this Review, we summarize available data and evidence for the binding kinetics of orthosteric and allosteric AR ligands. We hope this Review will raise awareness to consider the kinetic aspects of drug-target interactions on both ARs and other drug targets.

  20. A selection fit mechanism in BMP receptor IA as a possible source for BMP ligand-receptor promiscuity.

    Directory of Open Access Journals (Sweden)

    Stefan Harth

    Full Text Available BACKGROUND: Members of the TGF-β superfamily are characterized by a highly promiscuous ligand-receptor interaction as is readily apparent from the numeral discrepancy of only seven type I and five type II receptors available for more than 40 ligands. Structural and functional studies have been used to address the question of how specific signals can be deduced from a limited number of receptor combinations and to unravel the molecular mechanisms underlying the protein-protein recognition that allow such limited specificity. PRINCIPAL FINDINGS: In this study we have investigated how an antigen binding antibody fragment (Fab raised against the extracellular domain of the BMP receptor type IA (BMPR-IA recognizes the receptor's BMP-2 binding epitope and thereby neutralizes BMP-2 receptor activation. The crystal structure of the complex of the BMPR-IA ectodomain bound to the Fab AbD1556 revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface for BMP-2 interaction. Although the structural epitopes of BMPR-IA to both binding partners coincides, the structures of BMPR-IA in the two complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to the antibody and BMP-2 are almost identical. CONCLUSIONS: Comparing the structures of BMPR-IA bound to BMP-2 or bound to the Fab AbD1556 with the structure of unbound BMPR-IA shows that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability. The functional and structural analysis of the BMPR-IA binding antibody AbD1556 mimicking the BMP-2 binding epitope may thus pave the way for the design of low-molecular weight synthetic receptor binders/inhibitors.

  1. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  2. Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Murdoch, Hannah

    2014-01-01

    Analysis of the roles of the short chain fatty acid receptor, free fatty acid 3 receptor (FFA3), has been severely limited by the low potency of its endogenous ligands, the crossover of function of these on the closely related free fatty acid 2 receptor, and a dearth of FFA3-selective synthetic......, considerable care must be taken to define the pharmacological characteristics of specific compounds before useful predictions of their activity and their use in defining specific roles of FFA3 in either in vitro and in vivo settings can be made....

  3. Structural basis for AMPA receptor activation and ligand selectivity

    DEFF Research Database (Denmark)

    Hogner, A; Kastrup, Jette Sandholm Jensen; Jin, R

    2002-01-01

    Glutamate is the principal excitatory neurotransmitter within the mammalian CNS, playing an important role in many different functions in the brain such as learning and memory. In this study, a combination of molecular biology, X-ray structure determinations, as well as electrophysiology and bind......Glutamate is the principal excitatory neurotransmitter within the mammalian CNS, playing an important role in many different functions in the brain such as learning and memory. In this study, a combination of molecular biology, X-ray structure determinations, as well as electrophysiology...... correlation between domain closure and efficacy has been obtained from electrophysiology experiments undertaken on non-desensitising GluR2i(Q)-L483Y receptors expressed in oocytes, providing strong evidence that receptor activation occurs as a result of domain closure. The structural results, combined...

  4. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  5. Foreign or Domestic CARs: Receptor Ligands as Antigen-Binding Domains

    Directory of Open Access Journals (Sweden)

    Donald R. Shaffer

    2014-01-01

    Full Text Available Chimeric antigen receptors (CARs are increasingly being used in clinical trials to treat a variety of malignant conditions and recent results with CD19-specific CARs showing complete tumor regressions has sparked the interest of researchers and the public alike. Traditional CARs have been generated using single-chain variable fragments (scFv, often derived from murine monoclonal antibodies, for antigen specificity. As the clinical experience with CAR T cells grows, so does the potential for unwanted immune responses against the foreign transgene. Strategies that may reduce the immunogenicity of CAR T cells are humanization of the scFv and the use of naturally occurring receptor ligands as antigen-binding domains. Herein, we review the experience with alternatively designed CARs that contain receptor ligands rather than scFv. While most of the experiences have been in the pre-clinical setting, clinical data is also emerging.

  6. Benzodiazepine absetzen im Alter

    DEFF Research Database (Denmark)

    Wolter, Dirk

    2017-01-01

    Although viewed critically in geriatrics, benzodiazepine use is still common among old people. Before reducing the dosage the following questions must be considered: 1. Are there indications for benzodiazepine treatment and will discontinuation cause relevant rebound symptoms of the initial disor...

  7. Aqueous and Ethanolic Valeriana officinalis Extracts Change the Binding of Ligands to Glutamate Receptors

    Science.gov (United States)

    Del Valle-Mojica, Lisa M.; Cordero-Hernández, José M.; González-Medina, Giselle; Ramos-Vélez, Igmeris; Berríos-Cartagena, Nairimer; Torres-Hernández, Bianca A.; Ortíz, José G.

    2011-01-01

    The effects of two valerian extracts (aqueous and hydroalcoholic) were investigated through [3H]Glutamate ([3H]Glu) and [3H]Fluorowillardine ([3H]FW) receptor binding assays using rat synaptic membranes in presence of different receptor ligands. In addition, the extract stability was monitored spectrophotometrically. Both extracts demonstrated interaction with ionotropic glutamate receptors (iGluRs). However, the extracts displayed considerable differences in receptor selectivity. The hydroalcoholic extract selectively interacted with quisqualic acid (QA), group I metabotropic glutamate receptor (mGluR) ligand, while the aqueous extract did not alter the binding of QA. The stability of the extracts was examined during several weeks. Freshly prepared extract inhibited 38–60% of [3H]FW binding (AMPA). After 10 days, the aqueous extract inhibited 85% of [3H]FW binding while the hydroalcoholic extract markedly potentiated (200%) [3H]FW binding to AMPA receptors. Thus, our results showed that factors such as extraction solvent and extract stability determine the selectivity for glutamate receptor (GluR) interactions. PMID:21151614

  8. Synthesis of [[sup 123]I]tert-Butyl 8-iodo-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiaze pine 3-carboxylate, a potential SPECT imaging agent for diazepam-intensive (DI) benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoshu He; Matecka, Dorota; Ziqiang Gu; Rice, K.C.; Costa, B.R. de (National Inst. of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (United States)); Lee, K.S. (National Inst. of Mental Health, Washington, DC (United States)); Wong, Garry; Skolnick, Phil (National Inst. of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (United States). Lab. of Neuroscience)

    1994-01-01

    [[sup 123]I]tert-Butyl 8-iodo-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4]benzodiazepine 3-carboxylate ([[sup 123]I]3), a high affinity and selective radioligand for the diazepam insensitive (DI) benzodiazepine receptor was synthesized in 2 steps from tert-butyl 8-bromo-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiaz epine 3-carboxylate. (Author).

  9. A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor

    Directory of Open Access Journals (Sweden)

    Ruan Ke-He

    2005-11-01

    Full Text Available Abstract Background: Prostacyclin receptor (IP and thromboxane A2 receptor (TP belong to rhodopsin-type G protein-coupling receptors and respectively bind to prostacyclin and thromboxane A2 derived from arachidonic acid. Recently, we have determined the extracellular loop (eLP structures of the human TP receptor by 2-D 1H NMR spectroscopy using constrained peptides mimicking the individual eLP segments. The studies have identified the segment along with several residues in the eLP domains important to ligand recognition, as well as proposed a ligand recognition pocket for the TP receptor. Results: The IP receptor shares a similar primary structure in the eLPs with those of the TP receptor. Forty percent residues in the second eLPs of the receptors are identical, which is the major region involved in forming the ligand recognition pocket in the TP receptor. Based on the high homology score, the eLP domains of the IP receptor were constructed by the homology modeling approach using the NMR structures of the TP eLPs as templates, and then configured to the seven transmembrane (TM domains model constructed using the crystal structure of the bovine rhodopsin as a template. A NMR structure of iloprost was docked into the modeled IP ligand recognition pocket. After dynamic studies, the segments and residues involved in the IP ligand recognition were proposed. A key residue, Arg173 involved in the ligand recognition for the IP receptor, as predicted from the modeling, was confirmed by site-directed mutagenesis. Conclusion: A 3-D model of the human IP receptor was constructed by homology modeling using the crystal structure of bovine rhodopsin TM domains and the NMR structures of the synthetic constrained peptides of the eLP domains of the TP receptor as templates. This strategy can be applied to molecular modeling and the prediction of ligand recognition pockets for other prostanoid receptors.

  10. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    International Nuclear Information System (INIS)

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-01-01

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  11. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans

    Science.gov (United States)

    Zou, Wei; Shen, Ao; Dong, Xintong; Tugizova, Madina; Xiang, Yang K; Shen, Kang

    2016-01-01

    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.18345.001 PMID:27705746

  12. Imaging of peripheral-type benzodiazepine receptor in tumor: in vitro binding and in vivo biodistribution of N-benzyl-N-[(11)C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide.

    Science.gov (United States)

    Yamasaki, Tomoteru; Kumata, Katsushi; Yanamoto, Kazuhiko; Hatori, Akiko; Takei, Makoto; Nakamura, Yukio; Koike, Sachiko; Ando, Koichi; Suzuki, Kazutoshi; Zhang, Ming-Rong

    2009-10-01

    The aim of this study was to evaluate N-benzyl-N-[(11)C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([(11)C]DAC) as a novel peripheral-type benzodiazepine receptor (PBR) ligand for tumor imaging. [(11)C]DAC was synthesized by the reaction of a desmethyl precursor with [(11)C]CH(3)I. In vitro uptake of [(11)C]DAC was examined in PBR-expressing C6 glioma and intact murine fibrosarcoma (NFSa) cells. In vivo distribution of [(11)C]DAC was determined using NFSa-bearing mice and small-animal positron emission tomography (PET). [(11)C]DAC showed specific binding to PBR in C6 glioma cells, a standard cell line with high PBR expression. Specific binding of [(11)C]DAC was also confirmed in NFSa cells, a target tumor cell line in this study. Results of PET experiments using NFSa-bearing mice, showed that [(11)C]DAC was taken up specifically into the tumor, and pretreatment with PK11195 abolished the uptake. [(11)C]DAC was taken up into PBR-expressing NFSa. [(11)C]DAC is a promising PET ligand that can be used for imaging PBR in tumor-bearing mice.

  13. Different effects of 5-HT1A receptor agonists and benzodiazepine anxiolytics on the emotional state of naive and stressed mice: a study using the hole-board test.

    Science.gov (United States)

    Tsuji, M; Takeda, H; Matsumiya, T

    2000-10-01

    The effects of 5-HT(1A) receptor agonists on the emotional behavior of naive or stressed mice were examined and compared with those of benzodiazepine anxiolytics. Changes in the emotional state of mice were evaluated in terms of changes in exploratory activity, i.e. total locomotor activity, numbers and duration of rearing and head-dipping and latency to the first head-dipping, using an automatic holeboard apparatus. The 5-HT(1A) receptor full agonists flesinoxan (0.03-1 mg/kg, IP) and 8-OH-DPAT (0.03-1 mg/kg, IP), and the partial agonist buspirone (0.3-10 mg/kg, IP) dose-dependently decreased all of the exploratory behaviors. Significant decreases in both the number and duration of head-dips, and an increase in the latency to head-dipping were observed at 30 min after exposure to acute restraint stress (60 min). These emotional changes were scarcely improved by post-stress treatment with 5-HT(1A) receptor agonists, at doses that alone did not produce a significant behavioral effect. In contrast, pretreatment with flesinoxan (0.1-1 mg/kg, IP) or 8-OH-DPAT (0.1-1 mg/kg, IP) 24 h prior to exposure to stress dose-dependently suppressed the decrease in various exploratory behaviors that was observed immediately after the exposure to acute restraint stress. Moreover, pretreatment with buspirone (1-10 mg/kg, IP) 24 h prior to exposure to stress also significantly suppressed the decrease in rearing behavior and the increase in head-dip latency. However, changes in the emotional response to stress stimuli were not observed in mice that had been pretreated with the benzodiazepine anxiolytics diazepam (0.1-1 mg/kg, IP) and chlordiazepoxide (2-8 mg/kg, IP). The present study clearly demonstrates that the behavioral effects of 5-HT(1A) receptor agonists in both naive and stressed mice were quite different from those of benzodiazepine anxiolytics, as previously reported by us. Notably, 5-HT(1A) receptor agonists but not benzodiazepine anxiolytics protect against various

  14. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

    Science.gov (United States)

    Cawston, Erin E; Harikumar, Kaleeckal G; Miller, Laurence J

    2012-02-01

    Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle(28,31),d-Trp(30))CCK-26-32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Ligand-stimulated internalization was studied morphologically using fluorescent CCK and d-Trp-OPE. d-Trp-OPE occupation of Chinese hamster ovary cell receptors stimulated internalization into the same region as CCK. Arrestin-biased action was ruled out using morphological translocation of fluorescent arrestin 2 and arrestin 3, moving to the membrane in response to CCK, but not d-Trp-OPE. Possible roles of the carboxyl terminus were studied using truncated receptor constructs, eliminating the proline-rich distal tail, the serine/threonine-rich midregion, and the remainder to the vicinal cysteines. None of these constructs disrupted d-Trp-OPE-stimulated internalization. Possible contributions of transmembrane segments were studied using competitive inhibition with peptides that also had no effect. Intracellular regions were studied with a similar strategy using coexpressing cell lines. Peptides corresponding to ends of each loop region were studied, with only the peptide at the carboxyl end of the third loop inhibiting d-Trp-OPE-stimulated internalization but having no effect on CCK-stimulated internalization. The region contributing to this effect was refined to peptide 309-323, located below the recognized G protein-association motif. While a receptor in which this segment was deleted did internalize in response to d-Trp-OPE, it exhibited abnormal ligand binding and did not signal in response to CCK, suggesting an abnormal conformation and possible mechanism of internalization

  15. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H. [and others

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  16. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yongneng; Harrison, Chris B.; Freddolino, Peter L.; Schulten, Klaus; Mayer, Mark L. (UIUC); (NIH)

    2008-10-27

    NR3 subtype glutamate receptors have a unique developmental expression profile, but are the least well-characterized members of the NMDA receptor gene family, which have key roles in synaptic plasticity and brain development. Using ligand binding assays, crystallographic analysis, and all atom MD simulations, we investigate mechanisms underlying the binding by NR3A and NR3B of glycine and D-serine, which are candidate neurotransmitters for NMDA receptors containing NR3 subunits. The ligand binding domains of both NR3 subunits adopt a similar extent of domain closure as found in the corresponding NR1 complexes, but have a unique loop 1 structure distinct from that in all other glutamate receptor ion channels. Within their ligand binding pockets, NR3A and NR3B have strikingly different hydrogen bonding networks and solvent structures from those found in NR1, and fail to undergo a conformational rearrangement observed in NR1 upon binding the partial agonist ACPC. MD simulations revealed numerous interdomain contacts, which stabilize the agonist-bound closed-cleft conformation, and a novel twisting motion for the loop 1 helix that is unique in NR3 subunits.

  17. Membrane signalling complexes: implications for development of functionally selective ligands modulating heptahelical receptor signalling.

    Science.gov (United States)

    Piñeyro, Graciela

    2009-02-01

    Technological development has considerably changed the way in which we evaluate drug efficacy and has led to a conceptual revolution in pharmacological theory. In particular, molecular resolution assays have revealed that heptahelical receptors may adopt multiple active conformations with unique signalling properties. It is therefore becoming widely accepted that ligand ability to stabilize receptor conformations with distinct signalling profiles may allow to direct the stimulus generated by an activated receptor towards a specific signalling pathway. This capacity to induce only a subset of the ensemble of responses regulated by a given receptor has been termed "functional selectivity" (or "stimulus trafficking"), and provides the bases for a highly specific regulation of receptor signalling. Concomitant with these observations, heptahelical receptors have been shown to associate with G proteins and effectors to form multimeric arrays. These complexes are constitutively formed during protein synthesis and are targeted to the cell surface as integral signalling units. Herein we summarize evidence supporting the existence of such constitutive signalling arrays and analyze the possibility that they may constitute viable targets for developing ligands with "functional selectivity".

  18. Evidence that Argos is an antagonistic ligand of the EGF receptor.

    Science.gov (United States)

    Vinós, J; Freeman, M

    2000-07-20

    Argos, the inhibitor of the Drosophila epidermal growth factor (EGF) receptor, remains the only known extracellular inhibitor of this family of receptors in any organism. The functional domain of Argos includes an atypical EGF domain and it is not clear whether it binds to the EGF receptor or if it acts via a distinct receptor to reduce Egfr activity indirectly. Here we present two lines of evidence that strongly suggest that Argos directly interacts with the EGF receptor. First, Argos is unable to inhibit a chimeric receptor that contains an extracellular domain from an unrelated RTK, indicating the need for the EGF receptor extracellular domain. Second, Argos can inhibit the Drosophila EGF receptor even when expressed in human cells, implying that no other Drosophila protein is necessary for inhibition. We also report that Argos and the Drosophila activating ligand, Spitz, can influence mammalian RTK activation, albeit in a cell-type specific manner. This includes the first evidence that Argos can inhibit signalling in mammalian cells, raising the possibility of engineering an effective human EGF receptor/ErbB antagonist. Oncogene (2000) 19, 3560 - 3562

  19. Preparation and evaluation of an astatine-211-labeled sigma receptor ligand for alpha radionuclide therapy

    International Nuclear Information System (INIS)

    Ogawa, Kazuma; Mizuno, Yoshiaki; Washiyama, Kohshin; Shiba, Kazuhiro; Takahashi, Naruto; Kozaka, Takashi; Watanabe, Shigeki; Shinohara, Atsushi; Odani, Akira

    2015-01-01

    Introduction: Sigma receptors are overexpressed in a variety of human tumors, making them potential targets for radionuclide receptor therapy. We have previously synthesized and evaluated 131 I-labeled (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[ 131 I]pIV], which has a high affinity for sigma receptors. Therefore, (+)-[ 131 I]pIV significantly inhibited tumor cell proliferation in tumor-bearing mice. In the present study, we report the synthesis and the in vitro and in vivo characterization of (+)-[ 211 At]pAtV, an 211 At-labeled sigma receptor ligand, that has potential use in alpha-radionuclide receptor therapy. Methods: The radiolabeled sigma receptor ligand (+)-[ 211 At]pAtV was prepared using a standard halogenation reaction generating a 91% radiochemical yield with 98% purity after HPLC purification. The partition coefficient of (+)-[ 211 At]pAtV was measured. Cellular uptake experiments and in vivo biodistribution experiments were performed using a mixed solution of (+)-[ 211 At]pAtV and (+)-[ 125 I]pIV; the human prostate cancer cell line DU-145, which expresses high levels of the sigma receptors, and DU-145 tumor-bearing mice. Results: The lipophilicity of (+)-[ 211 At]pAtV was similar to that of (+)-[ 125 I]pIV. DU-145 cellular uptake and the biodistribution patterns in DU-145 tumor-bearing mice at 1 h post-injection were also similar between (+)-[ 211 At]pAtV and (+)-[ 125 I]pIV. Namely, (+)-[ 211 At]pAtV demonstrated high uptake and retention in tumor via binding to sigma receptors. Conclusion: These results indicate that (+)-[ 211 At]pAtV could function as an new agent for alpha-radionuclide receptor therapy.

  20. Preparation and evaluation of an astatine-211-labeled sigma receptor ligand for alpha radionuclide therapy.

    Science.gov (United States)

    Ogawa, Kazuma; Mizuno, Yoshiaki; Washiyama, Kohshin; Shiba, Kazuhiro; Takahashi, Naruto; Kozaka, Takashi; Watanabe, Shigeki; Shinohara, Atsushi; Odani, Akira

    2015-11-01

    Sigma receptors are overexpressed in a variety of human tumors, making them potential targets for radionuclide receptor therapy. We have previously synthesized and evaluated (131)I-labeled (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[(131)I]pIV], which has a high affinity for sigma receptors. Therefore, (+)-[(131)I]pIV significantly inhibited tumor cell proliferation in tumor-bearing mice. In the present study, we report the synthesis and the in vitro and in vivo characterization of (+)-[(211)At]pAtV, an (211)At-labeled sigma receptor ligand, that has potential use in alpha-radionuclide receptor therapy. The radiolabeled sigma receptor ligand (+)-[(211)At]pAtV was prepared using a standard halogenation reaction generating a 91% radiochemical yield with 98% purity after HPLC purification. The partition coefficient of (+)-[(211)At]pAtV was measured. Cellular uptake experiments and in vivo biodistribution experiments were performed using a mixed solution of (+)-[(211)At]pAtV and (+)-[(125)I]pIV; the human prostate cancer cell line DU-145, which expresses high levels of the sigma receptors, and DU-145 tumor-bearing mice. The lipophilicity of (+)-[(211)At]pAtV was similar to that of (+)-[(125)I]pIV. DU-145 cellular uptake and the biodistribution patterns in DU-145 tumor-bearing mice at 1h post-injection were also similar between (+)-[(211)At]pAtV and (+)-[(125)I]pIV. Namely, (+)-[(211)At]pAtV demonstrated high uptake and retention in tumor via binding to sigma receptors. These results indicate that (+)-[(211)At]pAtV could function as an new agent for alpha-radionuclide receptor therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Age dependent accumulation patterns of advanced glycation end product receptor (RAGE) ligands and binding intensities between RAGE and its ligands differ in the liver, kidney, and skeletal muscle.

    Science.gov (United States)

    Son, Myeongjoo; Chung, Wook-Jin; Oh, Seyeon; Ahn, Hyosang; Choi, Chang Hu; Hong, Suntaek; Park, Kook Yang; Son, Kuk Hui; Byun, Kyunghee

    2017-01-01

    Much evidence indicates receptor for advanced glycation end products (RAGE) related inflammation play essential roles during aging. However, the majority of studies have focused on advanced glycation end products (AGEs) and not on other RAGE ligands. In the present study, the authors evaluated whether the accumulation of RAGE ligands and binding intensities between RAGE and its ligands differ in kidney, liver, and skeletal muscle during aging. In C57BL/6 N mice aged 12 weeks, 12 months, and 22 months, ligands accumulation, binding intensities between RAGE and its ligands, activated macrophage infiltration, M1/M2 macrophage expression, glyoxalase-1expression, and signal pathways related to inflammation were evaluated. The RAGE ligands age-associated accumulation patterns were found to be organ dependent. Binding intensities between RAGE and its ligands in kidney and liver increased with age, but those in skeletal muscle were unchanged. Infiltration of activated macrophages in kidney and liver increased with age, but infiltration in the skeletal muscle was unchanged. M1 expression increased and M2 and glyoxalase-1 expression decreased with age in kidney and liver, but their expressions in skeletal muscle were not changed. These findings indicate patterns of RAGE ligands accumulation, RAGE/ligands binding intensities, or inflammation markers changes during aging are organs dependent.

  2. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain

    Directory of Open Access Journals (Sweden)

    Arden Perkins

    2014-10-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3ylethyl-9-isopropyl-2- (5-methylpyridin-3-yl-9H-purin-6-amine (GNF351. As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS to search for novel ligands. Here, we have developed an “agonist-optimized” homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307–329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand.

  3. New insights into the GABAA receptor structure and orthosteric ligand binding

    DEFF Research Database (Denmark)

    Sander, Tommy; Frølund, Bente Flensborg; Bruun, Anne Techau

    2011-01-01

    GABA(A) receptors (GABA(A) Rs) are ligand gated chloride ion channels that mediate overall inhibitory signaling in the CNS. A detailed understanding of their structure is important to gain insights in, e.g., ligand binding and functional properties of this pharmaceutically important target....... Homology modeling is a necessary tool in this regard because experimentally determined structures are lacking. Here we present an exhaustive approach for creating a high quality model of the a(1) ß(2) ¿(2) subtype of the GABA(A) R ligand binding domain, and we demonstrate its usefulness in understanding......, and its stability in molecular dynamics (MD) compared with that of the two homologous crystal structures. We then combined the model with extensive structure-activity relationships available from two homologous series of orthosteric GABA(A) R antagonists to create a detailed hypothesis for their binding...

  4. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  5. Strategy for improved [11C]DAA1106 radiosynthesis and in vivo peripheral benzodiazepine receptor imaging using microPET, evaluation of [11C]DAA1106

    International Nuclear Information System (INIS)

    Probst, Katrin C.; Izquierdo, David; Bird, Joseph L.E.; Brichard, Laurent; Franck, Dominic; Davies, John R.; Fryer, Tim D.; Richards, Hugh K.; Clark, John C.; Davenport, Anthony P.; Weissberg, Peter L.; Warburton, Elizabeth A.

    2007-01-01

    Introduction: The peripheral benzodiazepine receptor (PBR) has shown considerable potential as a clinical marker of neuroinflammation and tumour progression. [ 11 C]DAA1106 ([ 11 C]N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)-acetamide) is a promising positron emission tomography (PET) radioligand for imaging PBRs. Methods: A four-step synthetic route was devised to prepare DAA1123, the precursor for [ 11 C]DAA1106. Two robust, high yielding methods for radiosynthesis based on [ 11 C]-O-methylation of DAA1123 were developed and implemented on a nuclear interface methylation module, producing [ 11 C]DAA1106 with up to 25% radiochemical yields at end-of-synthesis based on [ 11 C]CH 3 I trapped. Evaluation of [ 11 C]DAA1106 for in vivo imaging was performed in a rabbit model with microPET, and the presence of PBR receptor in the target organ was further corroborated by immunohistochemistry. Results: The standard solution method produced 2.6-5.2 GBq (n=19) of [ 11 C]DAA1106, whilst the captive solvent method produced 1.6-6.3 GBq (n=10) of [ 11 C]DAA1106. Radiochemical purities obtained were 99% and specific radioactivity at end-of-synthesis was up to 200 GBq/μmol for both methods. Based on radiochemical product, shorter preparation times and simplicity of synthesis, the captive solvent method was chosen for routine productions of [ 11 C]DAA1106. In vivo microPET [ 11 C]DAA1106 scans of rabbit kidney demonstrated high levels of binding in the cortex. The subsequent introduction of nonradioactive DAA1106 (0.2 μmol) produced considerable displacement of the radioactive signal in this region. The presence of PBR in kidney cortex was further corroborated by immunohistochemistry. Conclusions: A robust, high yielding captive solvent method of [ 11 C]DAA1106 production was developed which enabled efficacious in vivo imaging of PBR expressing tissues in an animal model

  6. Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction.

    Science.gov (United States)

    Eble, Johannes A

    2018-02-15

    The dissociation constant describes the interaction between two partners in the binding equilibrium and is a measure of their affinity. It is a crucial parameter to compare different ligands, e.g., competitive inhibitors, protein isoforms and mutants, for their binding strength to a binding partner. Dissociation constants are determined by plotting concentrations of bound versus free ligand as binding curves. In contrast, titration curves, in which a signal that is proportional to the concentration of bound ligand is plotted against the total concentration of added ligand, are much easier to record. The signal can be detected spectroscopically and by enzyme-linked immunosorbent assay (ELISA). This is exemplified in a protocol for a titration ELISA that measures the binding of the snake venom-derived rhodocetin to its immobilized target domain of α2β1 integrin. Titration ELISAs are versatile and widely used. Any pair of interacting proteins can be used as immobilized receptor and soluble ligand, provided that both proteins are pure, and their concentrations are known. The difficulty so far has been to determine the dissociation constant from a titration curve. In this study, a mathematical function underlying titration curves is introduced. Without any error-prone graphical estimation of a saturation yield, this algorithm allows processing of the raw data (signal intensities at different concentrations of added ligand) directly by mathematical evaluation via non-linear regression. Thus, several titration curves can be recorded simultaneously and transformed into a set of characteristic parameters, among them the dissociation constant and the concentration of binding-active receptor, and they can be evaluated statistically. When combined with this algorithm, titration ELISAs gain the advantage of directly presenting the dissociation constant. Therefore, they may be used more efficiently in the future.

  7. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    Science.gov (United States)

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. submitter Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases

    CERN Document Server

    Altara, R; Brandao, R D; Zeidan, A; Booz, G W; Zouein, F A

    2016-01-01

    The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the deve...

  9. Quantitative autoradiography of ligands for dopamine receptors and transporters in brain of Göttingen minipig

    DEFF Research Database (Denmark)

    Minuzzi, Luciano; Olsen, Aage Kristian; Bender, Dirk

    2006-01-01

    the presence of DAT in rat and ferret brain. The distribution volume (Vd) of the selective DAT ligand [11C]NS2214 ([11C]Brasofensine) was mapped in groups of normal and MPTP-lesioned Göttingen miniature pigs. The in vivo pattern of Vd matched the distribution of SERT in vitro, and did not differ between...... the normal pigs and the lesioned animals with documented 60% DA depletions. However, the pattern of specific binding of the selective noradrenaline transporter ligand (S,S)-[11C]MeNER in a single Landrace pig showed that, of the three monoamine transporters, only DAT could not be detected in pig brain. We......The pig has been used as animal model for positron emission tomography (PET) studies of dopamine (DA) receptors and pharmacological perturbations of DA neurotransmission. However, the binding properties of DA receptors and transporters in pig brain have not been characterized in vitro. Therefore...

  10. Labeling of receptor ligands with bromine radionuclides. Progress report, March 1, 1981-February 28, 1982

    International Nuclear Information System (INIS)

    Welch, M.J.

    1981-10-01

    In recent years there has been an interest in the use of various radioisotopes of bromine as labels for radiopharmaceuticals. Although radioisotopes of iodine have been used extensively as radiopharmaceutical labels, there are several advantages associated with the use of radiobromine as a label, due primarily to increased stability of bonds to the radiohalide and smaller steric perturbation resulting from substitution of the radiohalide. Methods of attaching radiobromine to receptor ligands with the potential of mapping estrogen receptors in mammary tumors and uteri were studied. Two ligands were studied extensively in vitro and in animal models; preliminary studies were also carried out in humans. To date, the only radioisotope of bromine used was bromine-77. In addition, a series of model compounds were labeled with bromine-77 using a recently described method for rapid bromination; the scope and limitations of this new rapid radiobromination technique were evaluated

  11. Ligand-modulated conformational switching in a fully synthetic membrane-bound receptor

    Science.gov (United States)

    Lister, Francis G. A.; Le Bailly, Bryden A. F.; Webb, Simon J.; Clayden, Jonathan

    2017-05-01

    Signal transduction through G-protein-coupled receptors (GPCRs) involves binding to signalling molecules at the cell surface, which leads to global changes in molecular conformation that are communicated through the membrane. Artificial mechanisms for communication involving ligand binding and global conformational switching have been demonstrated so far only in the solution phase. Here, we report a membrane-bound synthetic receptor that responds to binding of a ligand by undergoing a conformational change that is propagated over several nanometres, deep into the phospholipid bilayer. Our design uses a helical foldamer core, with structural features borrowed from a class of membrane-active fungal antibiotics, ligated to a water-compatible, metal-centred binding site and a conformationally responsive fluorophore. Using the fluorophore as a remote reporter of conformational change, we find that binding of specific carboxylate ligands to a Cu(II) cofactor at the binding site perturbs the foldamer's global conformation, mimicking the conformational response of a GPCR to ligand binding.

  12. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  13. Development of sub-nanomolar dipeptidic ligands of neuropeptide FF receptors.

    Science.gov (United States)

    Gealageas, Ronan; Schneider, Séverine; Humbert, Jean-Paul; Bertin, Isabelle; Schmitt, Martine; Laboureyras, Emilie; Dugave, Christophe; Mollereau, Catherine; Simonnet, Guy; Bourguignon, Jean-Jacques; Simonin, Frédéric; Bihel, Frédéric

    2012-12-15

    Based on our earlier reported neuropeptide FF receptors antagonist (RF9), we carried out an extensive structural exploration of the N-terminus part of the amidated dipeptide Arg-Phe-NH(2) in order to establish a structure-activity relationships (SAR) study towards both NPFF receptor subtypes. This SAR led to the discovery of dipeptides (12, 35) with subnanomolar affinities towards NPFF1 receptor subtype, similar to endogenous ligand NPVF. More particularly, compound 12 exhibited a potent in vivo preventive effect on opioid-induced hyperalgesia at low dose. The significant selectivity of 12 toward NPFF1-R indicates that this receptor subtype may play a critical role in the anti-opioid activity of NPFF-like peptides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.

    Science.gov (United States)

    Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris

    2011-12-08

    The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.

  15. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E

    1999-01-01

    or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against......PA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site...

  16. Synthesis and preliminary pharmacological evaluation of a new putative radioiodinated AMPA receptor ligand for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ross, T.L.; Sihver, W.; Ermert, J.; Coenen, H.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neuroscience and Medicine (INM-5) - Nuclear Chemistry

    2013-11-01

    A new (radio)iodinated AMPA receptor ligand has been developed and pharmacologically evaluated in vitro and ex vivo using rodents. The new radioligand was directly labeled by electrophilic radioiodo-destannylation with iodine-131 in high radiochemical yields of 97% within 2 min. The new radioligand showed an excellent initial brain uptake of 2.1%ID/g at 10 min post injection, but a fast wash-out reduced the uptake by about 10-fold at 60 min post injection. Due to high nonspecific binding accompanied with a uniform distribution in brain tissue, however, the new radiotracer appears not suitable for AMPA receptor imaging in vivo.

  17. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L

    1991-01-01

    The purified urokinase plasminogen activator receptor (u-PAR) was cleaved into two fragments by mild chymotrypsin treatment. The smaller fragment (apparent Mr 16,000) possessed the ligand-binding capability, as shown by chemical cross-linking analysis. This fragment constituted the NH2-terminal...... part of the intact receptor, probably including the whole sequence 1-87, and contained N-linked carbohydrate. After detergent phase separation in the Triton X-114 system, the fragment was present in the water phase where its binding activity could be demonstrated in the absence of the rest...

  18. Synthesis and radiofluorination of putative NMDA receptor ligands

    International Nuclear Information System (INIS)

    Kronenberg, U.

    2011-01-01

    In the course of this work on the synthesis of radioligands for the NMDA receptor the authentic standards and labeling precursors of four compounds with an amidine structure was performed. Synthesis of the precursors followed reaction conditions given in the literature and was successful. The imidoesters used for the synthesis were obtained from their nitriles in a Pinner synthesis, while 2-hydroxybenzylamine was synthesized in a reduction of 2-hydroxybenzonitrile using borane as a reducing agent. After a coupling reaction of the amine and the imidoester in DMF using triethylamine as base the precursors were obtained in good yields and purified by crystallization from methanol. The cyclic standard compound was synthesized directly from 2-(bromomethyl)- benzonitrile and 2-hydroxybenzylamine in a ring closing reaction. Similar to the other precursors, crystallization from methanol produced a pure compound. The authentic standards were synthesized starting from salicylaldehyde. In a four step synthesis the desired ortho-fluoroethoxybenzylamine was obtained in good yield. Coupling of the amine with the respective imidoester or in the case of the cyclic compound 2-(bromomethyl)-benzonitrile gave the desired product which was then purified by column chromatography or by crystallization from ethanol and water. For the labeling procedure 1-bromo-2-[ 18 F]fluoroethane was synthesized following a previously published pathway starting from 1,2-dibromoethane. An alternative route of radiosynthesis for this prosthetic group was tested using ethyleneglycole- 1,2-ditosylate. The labeling reaction was performed on one of the precursors testing both DMF and DMSO as solvents and using NaOH as base. Yields of N-(2-fluoroethoxybenzyl)- cinnamamidine were about 78 % at 80 C after 30 minutes in DMSO. The desired product can now be synthesized in sufficient yields for in vitro and in vivo evaluation studies. Labeling on the cyclic precursor was attempted utilizing DMSO as solvent, but no

  19. Synthesis and radiofluorination of putative NMDA receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, U.

    2011-01-15

    In the course of this work on the synthesis of radioligands for the NMDA receptor the authentic standards and labeling precursors of four compounds with an amidine structure was performed. Synthesis of the precursors followed reaction conditions given in the literature and was successful. The imidoesters used for the synthesis were obtained from their nitriles in a Pinner synthesis, while 2-hydroxybenzylamine was synthesized in a reduction of 2-hydroxybenzonitrile using borane as a reducing agent. After a coupling reaction of the amine and the imidoester in DMF using triethylamine as base the precursors were obtained in good yields and purified by crystallization from methanol. The cyclic standard compound was synthesized directly from 2-(bromomethyl)- benzonitrile and 2-hydroxybenzylamine in a ring closing reaction. Similar to the other precursors, crystallization from methanol produced a pure compound. The authentic standards were synthesized starting from salicylaldehyde. In a four step synthesis the desired ortho-fluoroethoxybenzylamine was obtained in good yield. Coupling of the amine with the respective imidoester or in the case of the cyclic compound 2-(bromomethyl)-benzonitrile gave the desired product which was then purified by column chromatography or by crystallization from ethanol and water. For the labeling procedure 1-bromo-2-[{sub 18}F]fluoroethane was synthesized following a previously published pathway starting from 1,2-dibromoethane. An alternative route of radiosynthesis for this prosthetic group was tested using ethyleneglycole- 1,2-ditosylate. The labeling reaction was performed on one of the precursors testing both DMF and DMSO as solvents and using NaOH as base. Yields of N-(2-fluoroethoxybenzyl)- cinnamamidine were about 78 % at 80 C after 30 minutes in DMSO. The desired product can now be synthesized in sufficient yields for in vitro and in vivo evaluation studies. Labeling on the cyclic precursor was attempted utilizing DMSO as solvent

  20. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA, and cyto......We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA......, and cytosolic progesterone receptors (PR) measured by LBA were also studied. While ERc concentrations determined by LBA and EIA were highly correlated (r: 0.94), ERc values detected by LBA were approximately twice those found by EIA (median values of ERc: 155 vs. 64 fmol/mg cytosol protein, DCC vs. EIA......). The percentages of ERc positive tumors were 89% by LBA and 77% by EIA. The median fraction of total ER present as ERn was 63%. PR levels correlated positively with ERn concentrations (r: 0.73). We explore possible reasons why greater concentrations of ERc are determined by estradiol binding than by the ER-EIA kit...

  1. Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect.

    Science.gov (United States)

    Cotnoir-White, David; El Ezzy, Mohamed; Boulay, Pierre-Luc; Rozendaal, Marieke; Bouvier, Michel; Gagnon, Etienne; Mader, Sylvie

    2018-03-13

    There is currently an unmet need for versatile techniques to monitor the assembly and dynamics of ternary complexes in live cells. Here we describe bioluminescence resonance energy transfer with fluorescence enhancement by combined transfer (BRETFect), a high-throughput technique that enables robust spectrometric detection of ternary protein complexes based on increased energy transfer from a luciferase to a fluorescent acceptor in the presence of a fluorescent intermediate. Its unique donor-intermediate-acceptor relay system is designed so that the acceptor can receive energy either directly from the donor or indirectly via the intermediate in a combined transfer, taking advantage of the entire luciferase emission spectrum. BRETFect was used to study the ligand-dependent cofactor interaction properties of the estrogen receptors ERα and ERβ, which form homo- or heterodimers whose distinctive regulatory properties are difficult to dissect using traditional methods. BRETFect uncovered the relative capacities of hetero- vs. homodimers to recruit receptor-specific cofactors and regulatory proteins, and to interact with common cofactors in the presence of receptor-specific ligands. BRETFect was also used to follow the assembly of ternary complexes between the V2R vasopressin receptor and two different intracellular effectors, illustrating its use for dissection of ternary protein-protein interactions engaged by G protein-coupled receptors. Our results indicate that BRETFect represents a powerful and versatile technique to monitor the dynamics of ternary interactions within multimeric complexes in live cells.

  2. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Venu Gopal Jonnalagadda

    2014-05-01

    Full Text Available Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.

  3. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors.

    Directory of Open Access Journals (Sweden)

    John G Yamauchi

    2011-01-01

    Full Text Available We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC by developing sensor cells stably expressing a Ca(2+ permeable LGIC and a genetically encoded Förster (or fluorescence resonance energy transfer (FRET-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A serotonin receptors and a chimera of human α7/mouse 5-HT(3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

  4. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Zdzisław Chilmonczyk

    2015-08-01

    Full Text Available Serotonin (5-HT is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems, which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.

  5. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  6. Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masayuki Yarimizu

    2015-01-01

    Full Text Available Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP and UniProtKB, filtered them by removing sequence redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is based on support vector machines (SVMs, and we evaluated several input features suitable for tyrosine kinase for machine learning and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that obtained from general protein-protein interaction pair predictions.

  7. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  8. Two disparate ligand binding sites in the human P2Y1 receptor

    Science.gov (United States)

    Zhang, Dandan; Gao, Zhan-Guo; Zhang, Kaihua; Kiselev, Evgeny; Crane, Steven; Wang, Jiang; Paoletta, Silvia; Yi, Cuiying; Ma, Limin; Zhang, Wenru; Han, Gye Won; Liu, Hong; Cherezov, Vadim; Katritch, Vsevolod; Jiang, Hualiang; Stevens, Raymond C.; Jacobson, Kenneth A.; Zhao, Qiang; Wu, Beili

    2015-01-01

    In response to adenosine 5′-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7Å resolution, and with a non-nucleotide antagonist BPTU at 2.2Å resolution. The structures reveal two distinct ligand binding sites, providing atomic details of P2Y1R’s unique ligand binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which, however, is different in shape and location from the nucleotide binding site in previously determined P2Y12R structure. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects. PMID:25822790

  9. Benzodiazepine poisoning in elderly

    Directory of Open Access Journals (Sweden)

    Perković-Vukčević Nataša

    2016-01-01

    Full Text Available Background/Aim. Benzodiazepines are among the most frequently ingested drugs in self-poisonings. Elderly may be at greater risk compared with younger individuals due to impaired metabolism and increased sensitivity to benzodiazepines. The aim of this study was to assess toxicity of benzodiazepines in elderly attempted suicide. Methods. A retrospective study of consecutive presentations to hospital after self-poisoning with benzodiazepines was done. Collected data consisted of patient's characteristics (age, gender, benzodiazepine ingested with its blood concentrations at admission, clinical findings including vital signs and Glasgow coma score, routine blood chemistry, complications of poisoning, details of management, length of hospital stay and outcome. According the age, patients are classified as young (15-40-year old, middle aged (41-65-year old and elderly (older than 65. Results. During a 2-year observational period 387 patients were admitted because of pure benzodiazepine poisoning. The most frequently ingested drug was bromazepam, the second was diazepam. The incidence of coma was significantly higher, and the length of hospital stay significantly longer in elderly. Respiratory failure and aspiration pneumonia occurred more frequently in old age. Also, flumazenil was more frequently required in the group of elderly patients. Conclusion. Massive benzodiazepines overdose in elderly may be associated with a significant morbidity, including deep coma with aspiration pneumonia, respiratory failure, and even death. Flumazenil is indicated more often to reduce CNS depression and prevent complications of prolonged unconsciousness, but supportive treatment and proper airway management of comatose patients is the mainstay of the treatment of acute benzodiazepine poisoning.

  10. Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jørgensen, M U; Emr, S D; Winther, Jakob R.

    1999-01-01

    Vp10p is a receptor that sorts several different vacuolar proteins by cycling between a late Golgi compartment and the endosome. The cytoplasmic tail of Vps10p is necessary for the recycling, whereas the lumenal domain is predicted to interact with the soluble ligands. We have studied ligand bind...

  11. Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Nikhil; Goldgur, Yehuda; Xu, Kai; Paavilainen, Sari; Nikolov, Dimitar B.; Himanen, Juha P. (MSKCC); (Turku)

    2010-09-08

    Eph receptors and their ephrin ligands are important mediators of cell-cell communication. They are divided in two subclasses based on their affinities for each other and on sequence conservation. Receptor-ligand binding within each subclass is fairly promiscuous, while binding cross the subclasses happens rarely. EphA4 is an exception to this general rule, since it has long been known to bind both A- and B-class ephrin ligands but the reason for this exceptional behavior has not been worked out at molecular level. Recent structural and biochemical studies on EphA4 ligand-binding domain alone and in complex with its ligands have addressed this question. However, the published structures of EphA4/ephrin complexes differ considerably from each other and strikingly different explanations for the exceptional promiscuity of EphA4 were proposed. To address these contradictory findings, we have determined a crystal structure of the EphA4 ligand-binding domain at 2.3 {angstrom} resolution and show that the receptor has an unprecedented ability to exist in two very different, well-ordered conformations even in the unbound state. Our results suggest that the ligand promiscuity of the Ephs is directly correlated with the structural flexibility of the ligand-binding surface of the receptor.

  12. Effects of cypermethrin on the ligand-independent interaction between androgen receptor and steroid receptor coactivator-1

    International Nuclear Information System (INIS)

    Pan, Chen; Liu, Ya-Peng; Li, Yan-Fang; Hu, Jin-Xia; Zhang, Jin-Peng; Wang, Hong-Mei; Li, Jing; Xu, Li-Chun

    2012-01-01

    The pyrethroid insecticide, cypermethrin has been considered as an environmental anti-androgen by interfering with the androgen receptor (AR) transactivation. In order to clarify the effects of cypermethrin on the ligand-independent interaction between the AR and SRC-1, the mammalian two-hybrid assay has been developed in the study. The AR N-terminal domain 1–660 amino acid residues were subcloned into the plasmid pVP16 to construct the vector pVP16-ARNTD. The SRC-1 C-terminal domain 989–1240 amino acid residues were subcloned into the plasmid pM to construct the vector pM-SRC-1. The fusion vectors pVP16-ARNTD, pM-SRC-1 and the pG5CAT Reporter Vector were cotransfected into the CV-1 cells. The AR AF1 interacted with SRC-1 in the absence of exogenous ligand 5α-dihydrotestosterone (DHT). Furthermore, DHT did not enhance the interaction between AR AF-1 and SRC-1 at the concentrations from 10 −10 M to 10 −8 M. Cypermethrin inhibited the interaction between the AR AF1 and SRC-1, and the significant reduction was detected at the concentration of 10 −5 M. It is suggested that the interaction between the AR AF1 and SRC-1 is ligand-independent. Cypermethrin inhibits AR activity by disrupting the ligand-independent AR–SRC-1 interaction.

  13. Synthesis of the possible receptor Ligand [125I]-spiperone for D2-dopamine receptor and in-vivo biodistribution

    International Nuclear Information System (INIS)

    Amin, A.M.; Shoukry, M.; Abd EL-Bary, A.

    2009-01-01

    The spiperone is a selective D2-dopamine receptor antagonist radioiodination of spiperone is of interest for dopamine (DA) receptor studies both in vivo and in vitro. The labeling of spiperone with iodine-125 was extremely done in a neutral ph 7, using chloramine-T as oxidizing agent via heating the reaction mixture at 70 C (degree) for 10 - 15 minutes producing radiochemical yield of 97 %. In vivo biodistribution studies showed that the initial brain uptake correlated fairly well with the brain uptake index and that the kinetics of the radioactivity specifically bound to the striatum were strongly influenced by the dopamine receptor binding affinity of the compound. The brain uptake of 125 I-Spiperone was high and equal to 3.5, 3.25,2.75 and 1.7 % per gram tissue at 5, 30, 60 and 120 minutes post injection, respectively. 125 I-Spiperone binds with high affinity to dopamine receptors in vivo. Specific binding is about 65% of the total binding as is displaced stereo-specifically by clozapine. 125 I-spiperone may prove to be a useful ligand in studies examining D2-dopamine receptors. Furthermore iodinated spiperone may be useful in radioreceptor assays of neuroleptic drug levels and, in a 123 I-labeled form, for imaging of dopamine receptors, in vivo, using single photon tomography.

  14. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  15. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation.

    Science.gov (United States)

    Peeters, M C; van Westen, G J P; Li, Q; IJzerman, A P

    2011-01-01

    G protein-coupled receptors (GPCRs) are the major drug target of medicines on the market today. Therefore, much research is and has been devoted to the elucidation of the function and three-dimensional structure of this large family of membrane proteins, which includes multiple conserved transmembrane domains connected by intra- and extracellular loops. In the last few years, the less conserved extracellular loops have garnered increasing interest, particularly after the publication of several GPCR crystal structures that clearly show the extracellular loops to be involved in ligand binding. This review will summarize the recent progress made in the clarification of the ligand binding and activation mechanism of class-A GPCRs and the role of extracellular loops in this process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  17. Ligand-Dependent Degradation of SRC-1 Is Pivotal for Progesterone Receptor Transcriptional Activity

    Science.gov (United States)

    Amazit, Larbi; Roseau, Audrey; Khan, Junaid A.; Chauchereau, Anne; Tyagi, Rakesh K.; Loosfelt, Hugues; Leclerc, Philippe; Lombès, Marc

    2011-01-01

    The progesterone receptor (PR), a ligand-activated transcription factor, recruits the primary coactivator steroid receptor coactivator-1 (SRC-1) gene promoters. It is known that PR transcriptional activity is paradoxically coupled to its ligand-dependent down-regulation. However, despite its importance in PR function, the regulation of SRC-1 expression level during hormonal exposure is poorly understood. Here we report that SRC-1 expression level (but not other p160 family members) is down-regulated by the agonist ligand R5020 in a PR-dependent manner. In contrast, the antagonist RU486 fails to induce down-regulation of the coactivator and impairs PR agonist-dependent degradation of SRC-1. We show that SRC-1 proteolysis is a proteasome- and ubiquitin-mediated process that, predominantly but not exclusively, occurs in the cytoplasmic compartment in which SRC-1 colocalizes with proteasome antigens as demonstrated by confocal imaging. Moreover, SRC-1 was stabilized in the presence of leptomycin B or several proteasomal inhibitors. Two degradation motifs, amino-acids 2–16 corresponding to a PEST motif and amino acids 41–136 located in the basic helix loop helix domain of the coactivator, were identified and shown to control the stability as well as the hormone-dependent down-regulation of the coactivator. SRC-1 degradation is of physiological importance because the two nondegradable mutants that still interacted with PR as demonstrated by coimmunoprecipitation failed to stimulate transcription of exogenous and endogenous target genes, suggesting that concomitant PR/SRC-1 ligand-dependent degradation is a necessary step for PR transactivation activity. Collectively our findings are consistent with the emerging role of proteasome-mediated proteolysis in the gene-regulating process and indicate that the ligand-dependent down-regulation of SRC-1 is critical for PR transcriptional activity. PMID:21273440

  18. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    Directory of Open Access Journals (Sweden)

    Vignir Isberg

    Full Text Available Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  19. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  20. Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors

    Directory of Open Access Journals (Sweden)

    Akiyoshi Takahashi

    2016-06-01

    Full Text Available This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs related to research published in “Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish” (Takahashi et al., 2016 [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR.

  1. Comparison of benzodiazepine receptor SPECT and 18F-FDG PET using a coincidence detection camera in patients with temporal lobe epilepsy: preliminary results

    International Nuclear Information System (INIS)

    Wissmeyer, M.; Geiger, L.; Luescher, D.; Krause, T.; Loevblad, K.; Donati, F.; Wielepp, J.P.

    2002-01-01

    Full text: The aim of this preliminary study was to compare the results of benzodiazepine receptor (BDR) SPECT using 123 I-Iomazenil with those of 18 F-FDG (FDG) PET obtained on a double-headed gamma camera with a coincidence detection system in patients with temporal lobe epilepsy (TLE). We evaluated 6 patients (4 female, 2 male; age range 26-54 years, average 43.5 years) with therapy-refractory TLE due to mesiotemporal sclerosis or other focal brain anomalies. To delineate the epileptogenic zone, clinical evaluation, ictal and interictal surface EEG using the international 10-20 system, brain MRI, interictal CBF SPECT using 99m Tc-ECD, BDR SPECT and FDG coincidence PET were performed. The CBF SPECT, BDR SPECT and coincidence PET scans were viewed independently by 2 observers considering the regional cerebral blood flow, BDR density and FDG uptake asymmetry in the temporal lobe visually as none (0), low (1), moderate (2) and high (3). Ictal and interictal EEG recordings located the epileptogenic focus in all patients in the temporal region. Both the BDR SPECT and the FDG coincidence PET located the epileptogenic focus correctly in circumscribed areas of the temporal lobe in all patients, whereas brain MRI revealed focal anomalies only in 5 of 6 cases . The lateralization to the right (n=4) and left hemisphere (n=2) by interictal CBF SPECT, BDR SPECT and FDG coincidence PET corresponded to the EEG findings in all patients. The visual consideration of the asymmetry revealed a slightly but not statistically significant higher value for the FDG coincidence PET (observer 1: mean 2.333, SD 0.516; observer 2: mean 2.000, SD 0.632) than for the BDR SPECT (observer 1: mean 1.667, SD 1.033; observer 2: mean 1.833, SD 0.753). Visual consideration of the interictal CBF SPECT revealed mean values of 2.000 for both observers. The inter-observer variability was higher in the BDR SPECT than in the FDG coincidence PET and the interictal CBF SPECT, but the difference was not

  2. Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception.

    Science.gov (United States)

    Wallach, J V

    2009-01-01

    While the endogenous hallucinogens, N,N-dimethyltryptamine, 5-hydroxy-N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyltryptamine, have been acknowledged as naturally occurring components of the mammalian body for decades, their biological function remains as elusive now as it was at the time of their discovery. The recent discovery of the trace amine associated receptors and the activity of DMT and other hallucinogenic compounds at these receptor sites leads to the hypothesis that the endogenous hallucinogens act as neurotransmitters of a subclass of these trace amine receptors. Additionally, while activity at the serotonin 5-HT2A receptor has been proposed as being responsible for the hallucinogenic affects of administered hallucinogens, in their natural setting the 5-HT2A receptor may not interact with the endogenous hallucinogens at all. Additionally 5-HT2A agonist activity is unable to account for the visual altering effects of many of the administered hallucinogens; these effects may be mediated by one of the endogenous hallucinogen trace amine receptors rather than the serotonin 5-HT2A receptor. Therefore, activity at the trace amine receptors, in addition to serotonin receptors, may play a large role in the sensory altering effects of administered hallucinogens and the trace amine receptors along with their endogenous hallucinogen ligands may serve an endogenous role in mediating sensory perception in the mammalian central nervous system. Thus the theory proposed states that these compounds act as true endogenous hallucinogenic transmitters acting in regions of the central nervous system involved in sensory perception.

  3. HLA-F and MHC class I open conformers are ligands for NK cell Ig-like receptors.

    Science.gov (United States)

    Goodridge, Jodie P; Burian, Aura; Lee, Ni; Geraghty, Daniel E

    2013-10-01

    Killer Ig-like receptors (KIRs) are innate immune receptors expressed by NK and T cells classically associated with the detection of missing self through loss of their respective MHC ligand. Some KIR specificities for allelic classical class I MHC (MHC-I) have been described, whereas other KIR receptor-ligand relationships, including those associated with nonclassical MHC-I, have yet to be clearly defined. We report in this article that KIR3DL2 and KIR2DS4 and the nonclassical Ag HLA-F, expressed as a free form devoid of peptide, physically and functionally interact. These interactions extend to include classical MHC-I open conformers as ligands, defining new relationships between KIR receptors and MHC-I. The data collectively suggest a broader, previously unrecognized interaction between MHC-I open conformers--including prototypical HLA-F--and KIR receptors, acting in an immunoregulatory capacity centered on the inflammatory response.

  4. Flumazenil in treatment benzodiazepine withdrawal syndrome: Case report

    Directory of Open Access Journals (Sweden)

    Ramah Aleksandar J.

    2015-01-01

    Full Text Available Background: Today in the world and in Serbia is growing number of people who are addicted to benzodiazepine. A particular problem is the process of detoxification and treatment of benzodiazepine withdrawal syndrome due to a recurrence of symptoms of anxiety disorder, availability of benzodiazepines, falling motivation. Standard procedures have often proved unsuccessful and the last decade, and the search for new protocols, including the flumazenil, benzodiazepine receptor antagonist, is actualized. Case report: The patient aged 48 years was admitted to the specialist psychiatric clinic, for treatment of benzodiazepine addiction. Anxiety disorder was diagnosed since adolescence perennial addiction on benzodiazepines and the initial withdrawal syndrome. Former motivated topical treatments for detoxification were unsuccessful. The presence of dual diagnosis, persistence of both disorders in perennial cycle, treatment resistance and actual motivation contributed to the decision to opt rapid detoxification from benzodiazepines by flumazenil application protocol, for hospital treatment by adjuvant therapy with lamotrigine. After discharge from hospital in stable condition it was with no signs of withdrawal syndrome and a rebound of anxiety symptoms. Lamotrigine medication continued including CBT, held during the one-year abstinence monitoring, with sufficient social functionality. Discussion: The efficacy and safety of flumazenil in the treatment of benzodiazepine withdrawal syndrome was investigated in numerous clinical trials, and the mechanism of action is complex, from the benzodiazepine antagonist to inverse agonist in certain circumstances, as well as 'up-regulation' receptors, which together leads to a reduction in symptoms of abstinence syndrome and anxiety in the longer term after treatment, thereby acting favorably to the adherence and remission. Conclusions: Flumazenil protocol is an efficient method in the treatment of the benzodiazepine

  5. ReFlexIn: a flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Simon Leis

    Full Text Available For many targets of pharmaceutical importance conformational changes of the receptor protein are relevant during the ligand binding process. A new docking approach, ReFlexIn (Receptor Flexibility by Interpolation, that combines receptor flexibility with the computationally efficient potential grid representation of receptor molecules has been evaluated on the retroviral HIV-1 (Human Immunodeficiency Virus 1 protease system. An approximate inclusion of receptor flexibility is achieved by using interpolation between grid representations of individual receptor conformations. For the retroviral protease the method was tested on an ensemble of protease structures crystallized in the presence of different ligands and on a set of structures obtained from morphing between the unbound and a ligand-bound protease structure. Docking was performed on ligands known to bind to the protease and several non-binders. For the binders the ReFlexIn method yielded in almost all cases ligand placements in similar or closer agreement with experiment than docking to any of the ensemble members without degrading the discrimination with respect to non-binders. The improved docking performance compared to docking to rigid receptors allows for systematic virtual screening applications at very small additional computational cost.

  6. Non-peptide oxytocin receptor ligands and hamster circadian wheel running rhythms.

    Science.gov (United States)

    Gannon, Robert L

    2014-10-17

    The synchronization of circadian rhythms in sleep, endocrine and metabolic functions with the environmental light cycle is essential for health, and dysfunction of this synchrony is thought to play a part in the development of many neurological disorders. There is a demonstrable need to develop new therapeutics for the treatment of neurological disorders such as depression and schizophrenia, and oxytocin is currently being investigated for this purpose. There are no published reports describing activity of oxytocin receptor ligands on mammalian circadian rhythms and that, then, is the purpose of this study. Non-peptide oxytocin receptor ligands that cross the blood brain barrier were systemically injected in hamsters to determine their ability to modulate light-induced phase advances and delays of circadian wheel running rhythms. The oxytocin receptor agonist WAY267464 (10 mg/kg) inhibited light induced phase advances of wheel running rhythms by 55%, but had no effect on light-induced phase delays. In contrast, the oxytocin receptor antagonist WAY162720 (10 mg/kg) inhibited light-induced phase delays by nearly 75%, but had no effect on light-induced phase advances. Additionally, WAY162720 was able to antagonize the inhibitory effects of WAY267464 on light-induced phase advances. These results are consistent for a role of oxytocin in the phase-delaying effects of light on circadian activity rhythms early in the night. Therefore, oxytocin may prove to be useful in developing therapeutics for the treatment of mood disorders with a concomitant dysfunction in circadian rhythms. Investigators should also be cognizant that oxytocin ligands may negatively affect circadian rhythms during clinical trials for other conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    Science.gov (United States)

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  8. Collagen Type I as a Ligand for Receptor-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Iris Boraschi-Diaz

    2017-05-01

    Full Text Available Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B, and LAIR-1 of the leukocyte receptor complex (LRC and mannose family receptor uPARAP/Endo180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  9. Collagen type I as a ligand for receptor-mediated signaling

    Science.gov (United States)

    Boraschi-Diaz, Iris; Wang, Jennifer; Mort, John S.; Komarova, Svetlana V.

    2017-05-01

    Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B and Lair-1 of the leukocyte receptor complex and mannose family receptor uPARAP/Endo 180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  10. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells.

    Science.gov (United States)

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A; Ackerman, Janet M; Yaswen, Paul; Vulpe, Chris D; Leitman, Dale C

    2016-05-01

    Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM, Yaswen P, Vulpe CD, Leitman DC. 2016. Parabens and human epidermal

  11. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  12. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    Science.gov (United States)

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  13. Structure-based identification of non-competitive ligands for two related class B G Protein-Coupled receptors

    NARCIS (Netherlands)

    de Graaf, C.; Rein, C; Giordanetto, F; Piwnica, D; Rognan, D.

    2011-01-01

    Despite the availability of X-ray crystal structure data for several members of the G-protein-coupled receptor (GPCR) superfamily, structure-based discovery of GPCR ligands has been exclusively restricted to classA (rhodopsin-like) receptors. Herein we report the identification, by a docking-based

  14. The relaxin family peptide receptors and their ligands : new developments and paradigms in the evolution from jawless fish to mammals

    NARCIS (Netherlands)

    Yegorov, Sergey; Bogerd, Jan; Good, Sara V

    2014-01-01

    Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4.

  15. Estrogen and progesterone receptor assay using I-125 estradiol and H-3 promegestone as ligands: Results in female mammary carcinoma

    International Nuclear Information System (INIS)

    Glaubitt, D.; Hienz, H.A.; Bettges, G.; Carmanns, B.; Lichtenberg, T.; Akademisches Lehrkrankenhaus, Krefeld

    1984-01-01

    The determination of estrogen and progesterone receptors in the cytosol of carcinoma of the female breast has predictive value as to the success treatment of the patient. An improved estrogen and progesterone receptor assay using 1-125 labelled estradiol and a H-3 tagged synthetic gestagen (H-3 promegestone) as ligands proved to be highly praticable, especially time-saving. (orig.)

  16. Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli

    Science.gov (United States)

    Liu, Yan; Mémet, Sylvie; Saban, Ricardo; Kong, Xiangpeng; Aprikian, Pavel; Sokurenko, Evgeni; Sun, Tung-Tien; Wu, Xue-Ru

    2015-01-01

    During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC. PMID:26549759

  17. Platelet-Activating Factor Receptor Ligands Protect Tumor Cells from Radiation-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Ildefonso Alves da Silva-Junior

    2018-02-01

    Full Text Available Irradiation generates oxidized phospholipids that activate platelet-activating factor receptor (PAFR associated with pro-tumorigenic effects. Here, we investigated the involvement of PAFR in tumor cell survival after irradiation. Cervical cancer samples presented higher levels of PAF-receptor gene (PTAFR when compared with normal cervical tissue. In cervical cancer patients submitted to radiotherapy (RT, the expression of PTAFR was significantly increased. Cervical cancer-derived cell lines (C33, SiHa, and HeLa and squamous carcinoma cell lines (SCC90 and SCC78 express higher levels of PAFR mRNA and protein than immortalized keratinocytes. Gamma radiation increased PAFR expression and induced PAFR ligands and prostaglandin E2 (PGE2 in these tumor cells. The blocking of PAFR with the antagonist CV3938 before irradiation inhibited PGE2 and increased tumor cells death. Similarly, human carcinoma cells transfected with PAFR (KBP were more resistant to radiation compared to those lacking the receptor (KBM. PGE2 production by irradiated KBP cells was also inhibited by CV3988. These results show that irradiation of carcinoma cells generates PAFR ligands that protect tumor cells from death and suggests that the combination of RT with a PAFR antagonist could be a promising strategy for cancer treatment.

  18. The roles of histamine and its receptor ligands in central nervous system disorders: An update.

    Science.gov (United States)

    Hu, Weiwei; Chen, Zhong

    2017-07-01

    The neurotransmitter histamine receives less attention compared with other biogenic amines, because of its moderate action in the central nervous system (CNS). However, recent evidence suggests that histamine plays an important role in multiple CNS disorders including insomnia, narcolepsy, Parkinson's diseases, schizophrenia, Alzheimer's disease, and cerebral ischemia. New insights are emerging into the potential roles of histamine receptors as targets for the treatment of these diseases. Although some histamine related agents have failed in clinical trials, current preclinical studies suggest that this neurotransmitter may still have extensive applications in treating CNS disorders, however, advanced studies are warranted. This review summarizes findings from animal models and clinical research on the role of histamine and its receptor ligands in the brain for treatment of CNS disorders. The development of novel histamine receptor ligands and gaining an in-depth understanding of their potential mechanisms are necessary stepping stones to unlock their wide-ranging applications in the clinical arena. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. NOP Receptor Ligands as Potential Agents for Inflammatory and Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Elaine C. Gavioli

    2011-01-01

    Full Text Available Nociceptin/orphanin FQ (N/OFQ is a seventeen-amino acid peptide that is the endogenous ligand of a G-protein-coupled receptor (NOP. Various immune cells express the precursor protein and secrete N/OFQ as well as display binding sites for this peptide. The functional capacity of NOP receptor was demonstrated in vitro and in vivo studies by the ability of N/OFQ to induce chemotaxis of immune cells, to regulate the expression of cytokines and other inflammatory mediators, and to control cellular and humoral immunity. In this context, N/OFQ could modulate the outcome of some inflammatory diseases, such as sepsis and autoimmune pathologies by mechanisms not clearly elucidated yet. In fact, human body fluid revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's diagnose. Preclinical studies pointed to the blockade of NOP receptor signaling as successful in treating these experimental conditions. Further preclinical and clinical studies are required to investigate the potential of NOP ligands in treating inflammatory diseases.

  20. An extracellular interactome of Immunoglobulin and LRR proteins reveals receptor-ligand networks

    Science.gov (United States)

    Özkan, Engin; Carrillo, Robert A.; Eastman, Catharine L.; Weiszmann, Richard; Waghray, Deepa; Johnson, Karl G.; Zinn, Kai; Celniker, Susan E.; Garcia, K. Christopher

    2013-01-01

    Extracellular domains of cell-surface receptors and ligands mediate cell-cell communication, adhesion, and initiation of signaling events, but most existing protein-protein “interactome” datasets lack information for extracellular interactions. We probed interactions between receptor extracellular domains, focusing on the Immunoglobulin Superfamily (IgSF), Fibronectin type-III (FnIII) and Leucine-rich repeat (LRR) families of Drosophila, a set of 202 proteins, many of which are known to be important in neuronal and developmental functions. Out of 20503 candidate protein pairs tested, we observed 106 interactions, 83 of which were previously unknown. We ‘deorphanized’ the 20-member subfamily of defective in proboscis IgSF proteins, showing that they selectively interact with an 11-member subfamily of previously uncharacterized IgSF proteins. Both subfamilies interact with a single common ‘orphan’ LRR protein. We also observed new interactions between Hedgehog and EGFR pathway components. Several of these interactions could be visualized in live-dissected embryos, demonstrating that this approach can identify physiologically relevant receptor-ligand pairs. PMID:23827685

  1. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands

    Science.gov (United States)

    Zidar, David A.; Violin, Jonathan D.; Whalen, Erin J.; Lefkowitz, Robert J.

    2009-01-01

    CCL19 and CCL21 are endogenous agonists for the seven-transmembrane receptor CCR7. They are equally active in promoting G protein stimulation and chemotaxis. Yet, we find that they result in striking differences in activation of the G protein-coupled receptor kinase (GRK)/ß-arrestin system. CCL19 leads to robust CCR7 phosphorylation and β-arrestin2 recruitment catalyzed by both GRK3 and GRK6 whereas CCL21 activates GRK6 alone. This differential GRK activation leads to distinct functional consequences. Although each ligand leads to β-arrestin2 recruitment, only CCL19 leads to redistribution of β-arrestin2-GFP into endocytic vesicles and classical receptor desensitization. In contrast, these agonists are both capable of signaling through GRK6 and β-arrestin2 to ERK kinases. Thus, this mechanism for “ligand bias” whereby endogenous agonists activate different GRK isoforms leads to functionally distinct pools of β-arrestin. PMID:19497875

  2. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    Science.gov (United States)

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. Characterization of chicken thrombocyte responses to Toll-like receptor ligands.

    Directory of Open Access Journals (Sweden)

    Michael St Paul

    Full Text Available Thrombocytes are the avian equivalent to mammalian platelets. In addition to their hemostatic effects, mammalian platelets rely in part on pattern recognition receptors, such as the Toll-like receptors (TLR, to detect the presence of pathogens and signal the release of certain cytokines. Ligands for TLRs include lipopolysaccharide (LPS, which is bound by TLR4, as well as unmethylated CpG DNA motifs, which are bound by TLR9 in mammals and TLR21 in chickens. Similar to mammalian platelets, avian thrombocytes have been shown to express TLR4 and secrete some pro-inflammatory cytokines in response to LPS treatment. However, the full extent of the contributions made by thrombocytes to host immunity has yet to be elucidated. Importantly, the mechanisms by which TLR stimulation may modulate thrombocyte effector functions have not been well characterized. As such, the objective of the present study was to gain further insight into the immunological role of thrombocytes by analyzing their responses to treatment with ligands for TLR4 and TLR21. To this end, we quantified the relative expression of several immune system genes at 1, 3, 8 and 18 hours post-treatment using real-time RT-PCR. Furthermore, production of nitric oxide and phagocytic activity of thrombocytes was measured after their activation with TLR ligands. We found that thrombocytes constitutively express transcripts for both pro- and anti-inflammatory cytokines, in addition to those associated with anti-viral responses and antigen presentation. Moreover, we found that both LPS and CpG oligodeoxynucleotides (ODN induced robust pro-inflammatory responses in thrombocytes, as characterized by more than 100 fold increase in interleukin (IL-1β, IL-6 and IL-8 transcripts, while only LPS enhanced nitric oxide production and phagocytic capabilities. Future studies may be aimed at examining the responses of thrombocytes to other TLR ligands.

  4. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Haas, Ann-Karin; Neumann, Susanne; Worth, Catherine L; Hoyer, Inna; Furkert, Jens; Rutz, Claudia; Gershengorn, Marvin C; Schülein, Ralf; Krause, Gerd

    2010-07-01

    The thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity. Guided by molecular modeling, we performed site-directed mutagenesis of 24 amino acids in this spatial region, followed by functional characterization of the mutant receptors in terms of expression and signaling, measured as cAMP accumulation. We found that mutations V421I, Y466A, T501A, L587V, M637C, M637W, S641A, Y643F, L645V, and Y667A located in several helices exhibit constitutive activity. Of note is mutation M637W at position 6.48 in transmembrane helix 6, which has a significant effect on the interaction of the receptor with the LMW agonist. In summary, we found that a high proportion of residues in several helices surrounding the allosteric binding site of LMW ligands in the TSHR when mutated lead to constitutively active receptors. Our findings of signaling-sensitive residues in this region of the transmembrane bundle may be of general importance as this domain appears to be evolutionarily retained among GPCRs.

  5. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  6. The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties

    NARCIS (Netherlands)

    Neels, J. G.; van den Berg, B. M.; Lookene, A.; Olivecrona, G.; Pannekoek, H.; van Zonneveld, A. J.

    1999-01-01

    The low density lipoprotein receptor-related protein (LRP) is a multifunctional endocytic cell-surface receptor that binds and internalizes a diverse array of ligands. The receptor contains four putative ligand-binding domains, generally referred to as clusters I, II, III, and IV. In this study,

  7. Agonist-selective effects of opioid receptor ligands on cytosolic calcium concentration in rat striatal neurons.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Hooper, Robert; Dun, Nae J; Undieh, Ashiwel S; Adler, Martin W; Benamar, Khalid; Brailoiu, Eugen

    2012-06-01

    Buprenorphine is an opioid receptor ligand whose mechanism of action is incompletely understood. Using Ca(2+) imaging, we assessed the effects of buprenorphine, β-endorphin, and morphine on cytosolic Ca(2+) concentration [Ca(2+)](i), in rat striatal neurons. Buprenorphine (0.01-1 μM) increased [Ca(2+)](i) in a dose-dependent manner in a subpopulation of rat striatal neurons. The effect of buprenorphine was largely reduced by naloxone, a non-selective opioid receptor antagonist, but not by μ, κ, δ or NOP-selective antagonists. β-Endorphin (0.1 μM) increased [Ca(2+)](i) with a lower amplitude and slower time course than buprenorphine. Similar to buprenorphine, the effect of β-endorphin was markedly decreased by naloxone, but not by opioid-selective antagonists. Morphine (0.1-10 μM), did not affect [Ca(2+)](i) in striatal neurons. Our results suggest that buprenorphine and β-endorphin act on a distinct type/subtype of plasmalemmal opioid receptors or activate intracellular opioid-like receptor(s) in rat striatal neurons. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Therapeutic role and ligands of medium- to long-chain fatty acid receptors

    Directory of Open Access Journals (Sweden)

    Takafumi eHara

    2014-06-01

    Full Text Available Medium- and long-chain free fatty acids (FFAs are energy source for whole body and biological metabolites and components. In these decades, some research groups have reported that the biological functions of medium- to long-chain FFAs are exerted through G-protein coupled receptor designated free fatty acid receptor (FFAR. As the medium- to long-chain FFAs-activated FFARs, FFA1 and FFA4 are reported to be expressed widely in whole body and regulate various physiological processes. FFA1 expressed in pancreatic β-cells has been shown to be involved in insulin secretion. FFA4 expressed in intestine, adipocytes and macrophages has been shown to be involved in incretin secretion, differentiation and anti-inflammatory effect, respectively. These physiological functions have been focused on the treatment of metabolic disorders. In addition, these receptors have been also reported to be expressed in several other tissues such as intestine for FFA1, and tongue and stomach for FFA4. The recent functional studies indicated that they also contributed to energy homeostasis. Further, the number of synthetic compounds of FFA1 and FFA4 strongly promoted the physiological characterization of the receptors and their own therapeutic utility. In this article, we will discuss the recent progress regarding the therapeutic potential of these receptors and its ligands.

  9. [Benzodiazepines and forensic aspects].

    Science.gov (United States)

    Michel, L; Lang, J-P

    2003-01-01

    Adverse effects of benzodiazepines are well known since the first one was used in 1958 (chlordiazepoxide). The literature collects study-cases or rarely controlled studies concerning side effects or paradoxical reactions to benzodiazepines. They mostly described drowsiness and behavioral disinhibition, including increased well-being feeling but also hostility, rage access with feeling of invulnerability, serious crimes and sometimes homicides. Delusional, manic, confusional or depressive states are also pointed out. Rate for aggressive behaviour is 0.3 to 0.7% but distinction should be done between accidental or "idiosyncratic" reaction and voluntary sought disinhibition, clearly more frequent. No benzodiazepine has any specificity for these adverse effects but pharmacology, doses, associated drugs (or alcohol) and psychopathology interact to produce hazardous psychic states. Pharmacology: GABA induces a decrease in serotonin compound and vigilance. Pharmacokinetic: first dose effect or over-dose effect, short half-life, lipophily, affinity, digestive absorption, active metabolites interact. Psychopathology: age, alcohol association, psychological status (high initial level of hostility, impulsivity, frustration, personality disorder and depressive status). External conditions: chronic illness, affective and professional frustrations, physical or psychic exhaustion contribute also. Some benzodiazepines (flunitrazepam, diazepam, clorazepate, triazolam, alprazolam, lorazepam, for example) are more often concerned for pharmacokinetics characteristics but also prescription habits. Forensic aspects should be considered in case of homicide. Especially, reality of benzodiazepines consumption and awareness of the potential paradoxical reaction should be precisely evaluated. Special focus on voluntary induced disinhibition has to be done for forensic considerations. Relationship but also crime facilitations are sometimes consciously sought. Some benzodiazepines have already

  10. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  11. Synthesis and receptor binding affinity of new selective GluR5 ligands

    DEFF Research Database (Denmark)

    Bunch, L; Johansen, T H; Bräuner-Osborne, Hans

    2001-01-01

    Two hybrid analogues of the kainic acid receptor agonists, 2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA) and (2S,4R)-4-methylglutamic acid ((2S,4R)-4-Me-Glu), were designed, synthesized, and characterized in radioligand binding assays using cloned ionotropic and metabotropic...... glutamic acid receptors. The (S)-enantiomers of E-4-(2,2-dimethylpropylidene)glutamic acid ((S)-1) and E-4-(3,3-dimethylbutylidene)glutamic acid ((S)-2) were shown to be selective and high affinity GluR5 ligands, with Ki values of 0.024 and 0.39 microM, respectively, compared to Ki values at GluR2 of 3...

  12. Photoaffinity labeling of the erythropoietin receptor and its identification in a ligand-free form

    International Nuclear Information System (INIS)

    Hosoi, Takayuki; Sawyer, S.T.; Krantz, S.B.

    1991-01-01

    Pure human recombinant erythropoietin (EP) was acylated through a primary amino residue with a cross-linking reagent, N-[[3-[[4-[(p-azido-m-[ 125 I]iodophenyl)azo]benzoyl]amino]propanoyl]oxy]-succinimide (Denny-Jaffe reagent), which is photoreactive and cleavable at the azo residue. The resulting conjugated hormone (DJ-EP) was purified from unmodified EP by reverse-phase high-pressure liquid chromatography and maintained its capacity to bind to receptors for EP on erythroid progenitor cells. The receptor for EP was previously identified as two related proteins of 100 and 85 kDa molecular mass by chemical cross-linking to 125 I-EP. Recently, D'Andrea and co-workers cloned a cDNA that codes for a protein of 55-66 kDa, which is thought to be the EP receptor. In this report, cross-linking to the receptor through the monofunctional DJ-EP labeled the same 140- and 125-kDa molecular mass bands cross-linked with 125 I-EP and disuccinimidyl suberate. Furthermore, cleavage of the azo bond of the DJ-EP receptor complex by sodium dithionite demonstrated that proteins of 105 and 90 kDa were labeled in ligand-free form by DJ-EP. This result demonstrates that artifactual cross-linking of multiple proteins or other artifacts of cross-linking do not explain the difference in molecular mass of the EP receptor identified by cross-linking and the receptor identified by expression cloning

  13. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Trindade, Marlene; Power, Deborah M

    2014-12-01

    The secretin receptor (SCTR) is a member of Class 2 subfamily B1 GPCRs and part of the PAC1/VPAC receptor subfamily. This receptor has long been known in mammals but has only recently been identified in other vertebrates including teleosts, from which it was previously considered to be absent. The ligand for SCTR in mammals is secretin (SCT), an important gastrointestinal peptide, which in teleosts has not yet been isolated, or the gene identified. This study revises the evolutionary model previously proposed for the secretin-GPCRs in metazoan by analysing in detail the fishes, the most successful of the extant vertebrates. All the Actinopterygii genomes analysed and the Chondrichthyes and Sarcopterygii fish possess a SCTR gene that shares conserved sequence, structure and synteny with the tetrapod homologue. Phylogenetic clustering and gene environment comparisons revealed that fish and tetrapod SCTR shared a common origin and diverged early from the PAC1/VPAC subfamily group. In teleosts SCTR duplicated as a result of the fish specific whole genome duplication but in all the teleost genomes analysed, with the exception of tilapia (Oreochromis niloticus), one of the duplicates was lost. The function of SCTR in teleosts is unknown but quantitative PCR revealed that in both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) transcript abundance is high in the gastrointestinal tract suggesting it may intervene in similar processes to those in mammals. In contrast, no gene encoding the ligand SCT was identified in the ray-finned fishes (Actinopterygii) although it was present in the coelacanth (lobe finned fish, Sarcopterygii) and in the elephant shark (holocephalian). The genes in linkage with SCT in tetrapods and coelacanth were also identified in ray-finned fishes supporting the idea that it was lost from their genome. At present SCTR remains an orphan receptor in ray-finned fishes and it will be of interest in the future to establish why SCT was

  14. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  15. Synthesis of substituted [{sup 123}I]imidazo[1,2-a]pyridines as potential probes for the study of the peripheral benzodiazepine receptors using SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A.; Mattner, F.; Dikic, B.; Papazian, V. [Radiopharmaceuticals Div. R and D, ANSTO, Menai, NSW (Australia)

    2000-07-01

    The imidazo[1,2-a]pyridines N,N'-dimethyl-6-chloro-(4'-iodophenyl)imidazo[1,2-a]pyridine-3-acetamide 1. N,N'-diethyl-6-chloro-(4'-iodophenyl)imidazo[1,2-a]pyridine-3-acetamide 2, and N-methyl-6-chloro-(4'-iodophenyl)imidazo[1,2-a]pyridine-3-acetamide 3, are high affinity and selective ligands for the peripheral benzodiazepineodiazepine receptors (PBR). The [{sup 123}I]1-3 labelled analogues of these compounds were subsequently synthesised for the potential study of the PBR in vivo using SPECT. Radioiodination was achieved by iododestannylation reactions of the corresponding tributyl tin precursors with Na[{sup 123}I] in the presence of peracetic acid, chloramine-T or Iodogen. Purification of the crude product was achieved by semipreparative C-18 RP HPLC to give the products in radiochemical yields of 40-85%. The products were obtained in >97% chemical and radiochemical purity and with specific activities >80 GBq/{mu}mol. (orig.)

  16. The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, T.; Andersen, A.S.; Wiberg, F.C.; Rasmussen, J.S.; Schaeffer, L.; Balschmidt, P.; Moller, K.B.; Moller, N.P.H. (Novo Nordisk, Bagsvaerd (Denmark))

    1991-05-15

    To identify the region(s) of the insulin receptor and the insulin-like growth factor I (IGF-I) receptor responsible for ligand specificity (high-affinity binding), expression vectors encoding soluble chimeric insulin/IGF-I receptors were prepared. The chimeric receptors were expressed in mammalian cells and partially purified. Binding studies revealed that a construct comprising an IGF-I receptor in which the 68 N-terminal amino acids of the insulin receptor {alpha}-subunit had replaced the equivalent IGF-I receptor segment displayed a markedly increased affinity for insulin. In contrast, the corresponding IGF-I receptor sequence is not critical for high-affinity IGF-I binding. It is shown that part of the cysteine-rich domain determines IGF-I specificity. The authors have previously shown that exchanging exons 1, 2, and 3 of the insulin receptor with the corresponding IGF-I receptor sequence results in loss of high affinity for insulin and gain of high affinity for IGF-I. Consequently, it is suggested that the ligand specificities of the two receptors (i.e., the sequences that discriminate between insulin and IGF-I) reside in different regions of a binding site with common features present in both receptors.

  17. In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors

    International Nuclear Information System (INIS)

    Kawamura, Kazunori; Ishiwata, Kiichi; Tajima, Hisashi; Ishii, Shin-Ichi; Matsuno, Kiyoshi; Homma, Yoshio; Senda, Michio

    2000-01-01

    The potential of the 11 C-labeled selective sigma 1 receptor ligand 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine ([ 11 C]SA4503) was evaluated in vivo as a positron emission tomography (PET) ligand for mapping sigma 1 receptors in rats. SA4503 is known to have a high affinity (IC 50 17.4 nM) and a higher selectivity (sigma 1 /sigma 2 =103) for the sigma 1 receptor. A high and increasing brain uptake of [ 11 C]SA4503 was found. Pre-, co- and postinjection of cold SA4503 significantly decreased uptake of [ 11 C]SA4503 in the brain, spleen, heart, lung, and kidney in which sigma receptors are present as well as in the skeletal muscle. In the blocking study with one of four sigma receptor ligands including haloperidol, (+)-pentazocine, SA4503, and (-)-pentazocine (in the order of their affinity for sigma 1 receptor subtype), SA4503 and haloperidol significantly reduced the brain uptake of [ 11 C]SA4503 to approximately 30% of the control, but the other two benzomorphans did not. A high specific uptake of [ 11 C]SA4503 by the brain was also confirmed by ex vivo autoradiography (ARG) and PET. Ex vivo ARG showed a higher uptake in the vestibular nucleus, temporal cortex, cingulate cortex, inferior colliculus, thalamus, and frontal cortex, and a moderate uptake in the parietal cortex and caudate putamen. Peripherally, the blocking effects of the four ligands depended on their affinity for sigma 1 receptors. No 11 C-labeled metabolite was detected in the brain 30 min postinjection, whereas approximately 20% of the radioactivity was found as 11 C-labeled metabolites in plasma. These results have demonstrated that the 11 C-labeled sigma 1 receptor ligand [ 11 C]SA4503 has a potential for mapping sigma 1 receptors in the central nervous system and peripheral organs

  18. Ligand-induced dynamical change of G-protein-coupled receptor revealed by neutron scattering

    Science.gov (United States)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Mamontov, Eugene; Chu, Xiang-Qiang

    Light activation of the visual G-protein-coupled receptor rhodopsin leads to the significant change in protein conformation and structural fluctuations, which further activates the cognate G-protein (transducin) and initiates the biological signaling. In this work, we studied the rhodopsin activation dynamics using state-of-the-art neutron scattering technique. Our quasi-elastic neutron scattering (QENS) results revealed a broadly distributed relaxation rate of the hydrogen atom in rhodopsin on the picosecond to nanosecond timescale (beta-relaxation region), which is crucial for the protein function. Furthermore, the application of mode-coupling theory to the QENS analysis uncovers the subtle changes in rhodopsin dynamics due to the retinal cofactor. Comparing the dynamics of the ligand-free apoprotein, opsin versus the dark-state rhodopsin, removal of the retinal cofactor increases the relaxation time in the beta-relaxation region, which is due to the possible open conformation. Moreover, we utilized the concept of free-energy landscape to explain our results for the dark-state rhodopsin and opsin dynamics, which can be further applied to other GPCR systems to interpret various dynamic behaviors in ligand-bound and ligand-free protein.

  19. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    Full Text Available The primary gestagen of elephants is 5α-dihydroprogesterone (DHP, which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR. Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD, we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.

  20. Crystal structure of the urokinase receptor in a ligand-free form

    DEFF Research Database (Denmark)

    Xu, Xiang; Gårdsvoll, Henrik; Yuan, Cai

    2012-01-01

    . The crystal structure of human uPAR in its ligand-free state would clarify this issue, but such information remains unfortunately elusive. We now report the crystal structures of a stabilized, human uPAR (H47C/N259C) in its ligand-free form to 2.4 Å and in complex with amino-terminal fragment (ATF) to 3.2 Å...... represents one of the biologically active conformations of uPAR as defined by extensive biochemical studies. The domain boundary between uPAR DI-DII domains is more flexible than the DII-DIII domain boundary. Two important structural features are highlighted by the present uPAR structure. First, the DI......-DIII domain boundary may face the cell membrane. Second, loop 130-140 of uPAR plays a dynamic role during ligand loading/unloading. Together, these studies provide new insights into uPAR structure-function relationships, emphasizing the importance of the inter-domain dynamics of this modular receptor....

  1. The Affinity of Elongated Membrane-Tethered Ligands Determines Potency of T Cell Receptor Triggering

    Directory of Open Access Journals (Sweden)

    Bing-Mae Chen

    2017-07-01

    Full Text Available T lymphocytes are important mediators of adoptive immunity but the mechanism of T cell receptor (TCR triggering remains uncertain. The interspatial distance between engaged T cells and antigen-presenting cells (APCs is believed to be important for topological rearrangement of membrane tyrosine phosphatases and initiation of TCR signaling. We investigated the relationship between ligand topology and affinity by generating a series of artificial APCs that express membrane-tethered anti-CD3 scFv with different affinities (OKT3, BC3, and 2C11 in addition to recombinant class I and II pMHC molecules. The dimensions of membrane-tethered anti-CD3 and pMHC molecules were progressively increased by insertion of different extracellular domains. In agreement with previous studies, elongation of pMHC molecules or low-affinity anti-CD3 scFv caused progressive loss of T cell activation. However, elongation of high-affinity ligands (BC3 and OKT3 scFv did not abolish TCR phosphorylation and T cell activation. Mutation of key amino acids in OKT3 to reduce binding affinity to CD3 resulted in restoration of topological dependence on T cell activation. Our results show that high-affinity TCR ligands can effectively induce TCR triggering even at large interspatial distances between T cells and APCs.

  2. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands.

    Science.gov (United States)

    Gliemann, J

    1998-01-01

    The LDL receptor family members are endocytic receptors composed of repeated protein modules, including clusters of ligand binding LDL receptor class A (LA) repeats. The large (approximately 600 kDa) members LRP and megalin bind numerous structurally unrelated and often complex ligands at different combinations of sites. LRP is expressed in a wide but restricted set of cell types including hepatocytes, macrophages, smooth muscle cells, and neurons of the CNS. Megalin is expressed in various epithelia including proximal kidney tubules, intestine, and ependymal cells. The two receptors share a multitude of ligands, and their function in vivo is therefore to a large extent determined by their expression pattern. For example, both receptors can endocytose lipoproteins, but this function appears mainly relevant for LRP. In addition, LRP helps regulating urokinase receptor expression on the cell surface via ligand-mediated internalization followed by return of the naked urokinase receptor to the cell surface. Both receptors also have specialist functions. LRP is specific for binding of alpha2-macroglobulin-proteinase complexes and provides clearance of the complexes and of peptides, e.g. cytokines, associated with the complex. Megalin has important functions in vitamin B12 homeostasis since it specifically mediates uptake of the vitamin B12-transcobalamin complex and helps building a storage pool for the vitamin in the kidneys. Moreover, megalin binds cubilin, the recently identified receptor for B12-intrinsic factor complex, thus providing a mechanism for uptake of dietary vitamin B12. Finally, megalin specifically mediates uptake of apolipoprotein J/clusterin, a binding protein for the Abeta peptide implicated in Alzheimer's disease. The binding of multiple complex ligands that belong to distinct physiological systems provides a challenge in future studies aiming at elucidating the role of LRP and megalin in disease mechanisms.

  3. BENZODIAZEPINES IN PSYCHOTIC STATES

    OpenAIRE

    Ananth, Jambur; Solano, Olusegun

    1993-01-01

    SUMMARY Benzodiazepines are primarily used for the treatment of generalized anxiety disorder, insomnia and status epilepticus. These drugs can also be useful in hyperaroused states, catatonic stupor, manic episodes, and akathisia. This paper will review indications for their use in various psychotic conditions.

  4. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong; Choi, Mihwa; Cavey, Greg; Daugherty, Jennifer; Suino, Kelly; Kovach, Amanda; Bingham, Nathan C.; Kliewer, Steven A.; Xu, H.Eric (Van Andel); (U. of Texas-SMED)

    2010-11-10

    The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.

  5. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Tikhonova, Irina G

    2012-01-01

    of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation...... ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs....... of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC(50) values for inhibition of cAMP, 5.83 ± 0.11; Ca(2+) mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies...

  6. The structure and function of the glucagon-like peptide-1 receptor and its ligands

    Science.gov (United States)

    Donnelly, Dan

    2012-01-01

    Glucagon-like peptide-1(7-36)amide (GLP-1) is a 30-residue peptide hormone released from intestinal L cells following nutrient consumption. It potentiates the glucose-induced secretion of insulin from pancreatic beta cells, increases insulin expression, inhibits beta-cell apoptosis, promotes beta-cell neogenesis, reduces glucagon secretion, delays gastric emptying, promotes satiety and increases peripheral glucose disposal. These multiple effects have generated a great deal of interest in the discovery of long-lasting agonists of the GLP-1 receptor (GLP-1R) in order to treat type 2 diabetes. This review article summarizes the literature regarding the discovery of GLP-1 and its physiological functions. The structure, function and sequence–activity relationships of the hormone and its natural analogue exendin-4 (Ex4) are reviewed in detail. The current knowledge of the structure of GLP-1R, a Family B GPCR, is summarized and discussed, before its known interactions with the principle peptide ligands are described and summarized. Finally, progress in discovering non-peptide ligands of GLP-1R is reviewed. GLP-1 is clearly an important hormone linking nutrient consumption with blood sugar control, and therefore knowledge of its structure, function and mechanism of action is of great importance. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21950636

  7. The role of ephrins' receptors and ephrins' ligands in normal placental development and disease.

    Science.gov (United States)

    Chatzizacharias, Nikolaos A; Giaginis, Constantinos T; Agapitos, Emmanuel; Theocharis, Stamatios E

    2014-03-01

    Ephrin (Eph) receptors and their membrane-anchored ligands, the ephrins, participate in a wide spectrum of pathophysiological processes, regulating cellular adhesion, migration or chemo-repulsion and tissue/cell boundary formation. Recent evidence has further extended the role of Eph receptors and their ligands as critical regulators of vascular remodelling during embryogenesis. The role of Ephs/ephrins signalling in the angiogenic development of murine placentas and in the invasion of the maternal tissues and the development of the placental vasculature in humans has currently attracted considerable interest. A literature review summarising the most recent data in terms of the role of Ephs/ephrins in normal placental development and disease, highlighting on their expression status in the different cellular populations of the placental vascularity. Despite the fact that the role of Eph/ephrins signalling in normal placental development is still unclear, some studies tried to investigate their potential implication in placental pathologies, such as preeclampsia and placenta accreta. Even though no evidence for their direct implication occurred, their role is an interesting field for future research.

  8. QSAR study of selective ligands for the thyroid hormone receptor beta.

    Science.gov (United States)

    Liu, Huanxiang; Gramatica, Paola

    2007-08-01

    In this paper, an accurate and reliable QSAR model of 87 selective ligands for the thyroid hormone receptor beta 1 (TRbeta1) was developed, based on theoretical molecular descriptors to predict the binding affinity of compounds with receptor. The structural characteristics of compounds were described wholly by a large amount of molecular structural descriptors calculated by DRAGON. Six most relevant structural descriptors to the studied activity were selected as the inputs of QSAR model by a robust optimization algorithm Genetic Algorithm. The built model was fully assessed by various validation methods, including internal and external validation, Y-randomization test, chemical applicability domain, and all the validations indicate that the QSAR model we proposed is robust and satisfactory. Thus, the built QSAR model can be used to fast and accurately predict the binding affinity of compounds (in the defined applicability domain) to TRbeta1. At the same time, the model proposed could also identify and provide some insight into what structural features are related to the biological activity of these compounds and provide some instruction for further designing the new selective ligands for TRbeta1 with high activity.

  9. Stereochemistry of charged nitrogen-aromatic interactions and its involvement in ligand-receptor binding

    Science.gov (United States)

    Verdonk, Marcel L.; Boks, Gertjan J.; Kooijman, Huub; Kanters, Jan A.; Kroon, Jan

    1993-04-01

    Recently, new evidence was found for the involvement of charged nitrogen-aromatic interactions in ligand-receptor binding. In this study we report two favourable orientations of a phenyl ring with respect to a R-N+(CH3)3 group, based on crystal structure statistics from the Cambridge Structural Database. In the first orientation, the phenyl ring is situated in between the substituents at about 4.5 Å from the nitrogen atom, and the ring is approximately oriented on the sphere around the nitrogen atom. In the second orientation, the phenyl ring is situated in the same direction as one of the N-C bonds at about 6.0 Å from the nitrogen atom, and the ring is tilted with respect to the sphere around the nitrogen atom. The same two orientations were also found in the crystal structures of three ligand-receptor complexes, which implies that these orientations probably play a major role in molecular recognition mechanisms.

  10. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis.

    Science.gov (United States)

    Heldin, C-H; Lennartsson, J; Westermark, B

    2018-01-01

    Platelet-derived growth factor (PDGF) isoforms and their receptors have important roles during embryogenesis, particularly in the development of various mesenchymal cell types in different organs. In the adult, PDGF stimulates wound healing and regulates tissue homeostasis. However, overactivity of PDGF signalling is associated with malignancies and other diseases characterized by excessive cell proliferation, such as fibrotic conditions and atherosclerosis. In certain tumours, genetic or epigenetic alterations of the genes for PDGF ligands and receptors drive tumour cell proliferation and survival. Examples include the rare skin tumour dermatofibrosarcoma protuberance, which is driven by autocrine PDGF stimulation due to translocation of a PDGF gene, and certain gastrointestinal stromal tumours and leukaemias, which are driven by constitute activation of PDGF receptors due to point mutations and formation of fusion proteins of the receptors, respectively. Moreover, PDGF stimulates cells in tumour stroma and promotes angiogenesis as well as the development of cancer-associated fibroblasts, both of which promote tumour progression. Inhibitors of PDGF signalling may thus be of clinical usefulness in the treatment of certain tumours. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  11. Analysis of ligand-receptor cross-linked fragments by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Son, C.D. [University of Tennessee, Knoxville (UTK); Sargsyan, H. [City University of New York (CUNY); Hurst, Gregory {Greg} B [ORNL; Naider, F. [City University of New York (CUNY); Becker, J.M. [University of Tennessee, Knoxville (UTK)

    2005-01-01

    G-protein coupled receptors (GPCRs) are a class of integral membrane receptor proteins that are characterized by a signature seven-transmembrane (7-TM) configuration. The a-factor receptor (Ste2p) from Saccharomyces cerevisiae is a GPCR that, upon binding of a peptide ligand, transduces a signal to initiate a cascade of events leading to the mating of haploid yeast cells. This study summarizes the application of affinity purification and of matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) experiments using biotinylated photoactivatable a-factor analogs. Affinity purification and enrichment of biotinylated peptides by monomeric avidin beads resulted in mass spectrometric detection of specific signals corresponding to crosslinked fragments of Ste2p. Data obtained from cyanogen bromide (CNBr) fragments of receptor cross-linked to an a-factor analog with the photoaffinity group p-benzoyl-L-phenylalanine on position 1 were in agreement with the previous results reported by our laboratory suggesting the cross-linking between position 1 of a-factor and a region of Ste2p covering residues 251 294.

  12. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor

    International Nuclear Information System (INIS)

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao; Han, Xiang Hua; Lee, Dong-Ho; Lee, Hak-Ju; Hwang, Bang Yeon; Lee, Sung-Joon

    2012-01-01

    Highlights: ► Catalposide is a novel ligand for PPARα. ► Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid β-oxidation and synthesis. ► Catalposdie reduces hepatic triacylglycerides. ► Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPARα) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPARα agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPARα agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPARα. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPARα via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  13. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao [Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Han, Xiang Hua [College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Lee, Dong-Ho [Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Lee, Hak-Ju [Division of Green Business Management, Department of Forest Resources Utilization, Korean Forest Research Institute, Seoul 130-712 (Korea, Republic of); Hwang, Bang Yeon, E-mail: byhwang@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Lee, Sung-Joon, E-mail: junelee@korea.ac.kr [Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  14. Ligand-specific Deactivation Time Course of GluN1/GluN2D NMDA Receptors

    Energy Technology Data Exchange (ETDEWEB)

    K Vance; N Simorowski; S Traynelis; H Furukawa

    2011-12-31

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors that mediate a majority of excitatory synaptic transmission. One unique property of GluN1/GluN2D NMDA receptors is an unusually prolonged deactivation time course following the removal of L-glutamate. Here we show, using x-ray crystallography and electrophysiology, that the deactivation time course of GluN1/GluN2D receptors is influenced by the conformational variability of the ligand-binding domain (LBD) as well as the structure of the activating ligand. L-glutamate and L-CCG-IV induce significantly slower deactivation time courses compared with other agonists. Crystal structures of the isolated GluN2D LBD in complex with various ligands reveal that the binding of L-glutamate induces a unique conformation at the backside of the ligand-binding site in proximity to the region at which the transmembrane domain would be located in the intact receptors. These data suggest that the activity of the GluN1/GluN2D NMDA receptor is controlled distinctively by the endogenous neurotransmitter L-glutamate.

  15. Cloning, ligand-binding, and temporal expression of ecdysteroid receptors in the diamondback moth, Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Tang Baozhen

    2012-10-01

    Full Text Available Abstract Background The diamondback moth, Plutella xylostella (L. (Lepidoptera: Plutellidae, is a devastating pest of cruciferous crops worldwide, and has developed resistance to a wide range of insecticides, including diacylhydrazine-based ecdysone agonists, a highly selective group of molt-accelerating biopesticides targeting the ecdysone receptors. Result In this study, we cloned and characterized the ecdysone receptors from P. xylostella, including the two isoforms of EcR and a USP. Sequence comparison and phylogenetic analysis showed striking conservations among insect ecdysone receptors, especially between P. xylostella and other lepidopterans. The binding affinity of ecdysteroids to in vitro-translated receptor proteins indicated that PxEcRB isoform bound specifically to ponasterone A, and the binding affinity was enhanced by co-incubation with PxUSP (Kd =3.0±1.7 nM. In contrast, PxEcRA did not bind to ponasterone A, even in the presence of PxUSP. The expression of PxEcRB were consistently higher than that of PxEcRA across each and every developmental stage, while the pattern of PxUSP expression is more or less ubiquitous. Conclusions Target site insensitivity, in which the altered binding of insecticides (ecdysone agonists to their targets (ecdysone receptors leads to an adaptive response (resistance, is one of the underlying mechanisms of diacylhydrazine resistance. Given the distinct differences at expression level and the ligand-binding capacity, we hypothesis that PxEcRB is the ecdysone receptor that controls the remodeling events during metamorphosis. More importantly, PxEcRB is the potential target site which is modified in the ecdysone agonist-resistant P. xylostella.

  16. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-09-01

    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  17. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and......A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co......-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated...... gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic...

  18. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis.

    Science.gov (United States)

    Kanatli, Irem; Akkaya, Bahar; Uysal, Hilmi; Kahraman, Sevim; Sanlioglu, Ahter Dilsad

    2017-02-01

    Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.

    Science.gov (United States)

    Angulo, Jesús; Enríquez-Navas, Pedro M; Nieto, Pedro M

    2010-07-12

    The direct evaluation of dissociation constants (K(D)) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor-ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of K(D), as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor-ligand dissociation constants (K(D)) from single-ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein-ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein-ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein-ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well-studied protein-ligand systems: the binding of the saccharides GlcNAc and GlcNAcbeta1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L-tryptophan to bovine serum albumin (BSA). In all cases, the

  20. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor regulating C. elegans development and lifespan

    Science.gov (United States)

    Mahanti, Parag; Bose, Neelanjan; Bethke, Axel; Judkins, Joshua C.; Wollam, Joshua; Dumas, Kathleen J.; Zimmerman, Anna M.; Campbell, Sydney L.; Hu, Patrick J.; Antebi, Adam; Schroeder, Frank C.

    2014-01-01

    SUMMARY Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin-D and liver-X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase, HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs. PMID:24411940

  1. CORCEMA evaluation of the potential role of intermolecular transferred NOESY in the characterization of ligand-receptor complexes

    Science.gov (United States)

    Curto, Ernest V.; Moseley, Hunter N. B.; Krishna, N. Rama

    1996-10-01

    We report a theoretical characterization of the intermolecular transferred NOESY (inter-TrNOESY) between ligands and receptor macromolecules that bind reversibly, using a COmplete Relaxation and Conformational Exchange MAtrix (CORCEMA) theory developed in our laboratory. We examine the dependence of inter-TrNOESY on the dissociation constant, off-rate, ligand-to-receptor ratio, and distance variations between protons of interacting species within the complex. These factors are analyzed from simulations on two model systems: (i) neuraminidase complexed to a transition-state analogue; and (ii) thermolysin complexed to a leucine-based inhibitor. The latter case utilizes a three-state model of interaction to simulate the effect of hinge-bending motions on the inter-TrNOESY. Our calculations suggest a potential role for inter-TrNOESY (when observable) and CORCEMA analysis in properly docking the ligand within the active site, and in refining the conformation of the ligand-receptor (active-site) complex. These findings have implications on the structure-based design of ligands (e.g., inhibitors) reversibly binding to receptors (e.g., enzymes).

  2. Charge-based interactions of mammalian sperm with oocytes: inhibition of fertilization of mouse oocytes by ligands of macrophage scavenger receptor(s).

    Science.gov (United States)

    Kim, J G; Rock, J A; Murphy, A A; Parthasarathy, S

    1997-12-01

    To determine whether anionic ligands for the macrophage scavenger receptor inhibit the fertilization of mouse oocytes by mouse spermatozoa. In vitro study of sperm binding and two-cell embryo formation in the presence of scavenger receptor ligands. Sperm-oocyte interaction may be mediated by sulfated sugars. In this study, we tested other nonsulfated anionic ligands for the scavenger receptor for their ability to affect fertilization. The only common feature of these ligands is their anionic nature. Oocytes and sperm from mice were used. Binding of sperm to oocytes and subsequent formation of two-cell embryos were determined. Fucoidin, polyinosinic acid, oxidized low-density lipoprotein, acetyl low-density lipoprotein, and malondialdehyde-modified LDL inhibited the binding and fertilization of mouse sperm to mouse oocytes. Addition of fresh sperm to oocytes previously treated with sperm in the presence of these agents restored the binding and fertilization. These results show that charge-based interactions analogous to the interactions of the scavenger receptor with its ligands may play an important role in mammalian fertilization.

  3. Lipid domain formation and ligand-receptor distribution in lipid bilayer membranes investigated by atomic force microscopy

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Mouritsen, O.G.; Jørgensen, K.

    2002-01-01

    A novel experimental technique, based on atomic force microscopy (AFM), is proposed to visualize the lateral organization of membrane systems in the nanometer range. The technique involves the use of a ligand-receptor pair, biotin-avidin, which introduces a height variation on a solid-supported l......A novel experimental technique, based on atomic force microscopy (AFM), is proposed to visualize the lateral organization of membrane systems in the nanometer range. The technique involves the use of a ligand-receptor pair, biotin-avidin, which introduces a height variation on a solid...

  4. Synthetic Peptide Ligands of the Antigen Binding Receptor Induce Programmed Cell Death in a Human B-Cell Lymphoma

    Science.gov (United States)

    Renschler, Markus F.; Bhatt, Ramesh R.; Dower, William J.; Levy, Ronald

    1994-04-01

    Peptide ligands for the antigen binding site of the surface immunoglobulin receptor of a human B-cell lymphoma cell line were identified with the use of filamentous phage libraries displaying random 8- and 12-amino acid peptides. Corresponding synthetic peptides bound specifically to the antigen binding site of this immunoglobulin receptor and blocked the binding of an anti-idiotype antibody. The ligands, when conjugated to form dimers or tetramers, induced cell death by apoptosis in vitro with an IC50 between 40 and 200 nM. This effect was associated with specific stimulation of intracellular protein tyrosine phosphorylation.

  5. Nuclear localization and function of polypeptide ligands and their receptors: a new paradigm for hormone specificity within the mammary gland?

    International Nuclear Information System (INIS)

    Clevenger, Charles V

    2003-01-01

    The specific effects triggered by polypeptide hormone/growth factor stimulation of mammary cells were considered mediated solely by receptor-associated signaling networks. A compelling body of new data, however, clearly indicates that polypeptide ligands and/or their receptors are transported into the nucleus, where they function directly to regulate the expression of specific transcription factors and gene loci. The intranuclear function of these complexes may contribute to the explicit functions associated with a given ligand, and may serve as new targets for pharmacologic intervention

  6. Solubilization of rat brain phencyclidine receptors in an active binding form that is sensitive to N-methyl-D-aspartate receptor ligands.

    Science.gov (United States)

    Ambar, I; Kloog, Y; Sokolovsky, M

    1988-07-01

    Phencyclidine (PCP) receptors were successfully solubilized from rat forebrain membranes with 1% sodium cholate. Approximately 58% of the initial protein and 20-30% of the high-affinity PCP binding sites were solubilized. The high affinity toward PCP-like drugs, the stereo-selectivity of the sites, and the sensitivity to N-methyl-D-aspartate (NMDA) receptor ligands were preserved. Binding of the potent PCP receptor ligand N-[3H][1-(2-thienyl)cyclohexyl] piperidine ([3H]TCP) to the soluble receptors was saturable (KD = 35 nM), and PCP-like drugs inhibited [3H]TCP binding in a rank order of potency close to that observed for the membrane-bound receptors; the most potent inhibitors were TCP (Ki = 31 nM) and the anticonvulsant MK-801 (Ki = 50 nM). The NMDA receptor antagonist 2-amino-5-phosphonovaleric acid inhibited binding of [3H]TCP to the soluble receptors; glutamate or NMDA diminished this inhibition in a dose-dependent manner. Taken together, the results indicate that the soluble PCP receptor preparation contains the glutamate recognition sites and may represent a single receptor complex for PCP and NMDA, as suggested by electrophysiological data. The successful solubilization of the PCP receptors in an active binding form should now facilitate their purification.

  7. sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures.

    Science.gov (United States)

    Shimazu, S; Katsuki, H; Takenaka, C; Tomita, M; Kume, T; Kaneko, S; Akaike, A

    2000-01-28

    We investigated the potential neuroprotective effects of several sigma receptor ligands in organotypic midbrain slice cultures as an excitotoxicity model system. When challenged with 100-microM N-methyl-D-aspartate (NMDA) for 24 h, dopaminergic neurons in midbrain slice cultures degenerated, and this was prevented by (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5, 10-imine (MK-801; 1-10 microM). Concomitant application of ifenprodil (1-10 microM) or haloperidol (1-10 microM), both of which are high-affinity sigma receptor ligands, significantly attenuated the neurotoxicity of 100 microM NMDA. The sigma(1) receptor-selective ligand (+)-N-allylnormetazocine ((+)-SKF 10047; 1-10 microM) was also effective in attenuating the toxicity of NMDA. The effect of R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane hydrochloride ((-)-PPAP), a sigma receptor ligand with negligible affinity for the phencyclidine site of NMDA receptors, was also examined. (-)-PPAP (3-100 microM) caused a concentration-dependent reduction of NMDA cytotoxicity, with significant protection at concentrations of 30 and 100 microM. In contrast, (+)-SKF 10047 (10 microM) and (-)-PPAP (100 microM) showed no protective effects against cell death induced by the Ca(2+) ionophore ionomycin (1-3 microM). These results indicate that sigma receptor ligands attenuate the cytotoxic effects of NMDA on midbrain dopaminergic neurons, possibly via inhibition of NMDA receptor functions.

  8. Bio-nanocapsule-based scaffold improves the sensitivity and ligand-binding capacity of mammalian receptors on the sensor chip.

    Science.gov (United States)

    Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés D; Kuroda, Shun'ichi

    2016-06-01

    Mammalian receptors are recognized as target molecules for drug discovery, and chemical libraries have been screened for both potential antagonists and agonists mainly by ligand-binding assays using immobilized receptors. A bio-nanocapsule (BNC) of approximately 30 nm that displays a tandem form of the protein A-derived immunoglobulin G (IgG) Fc-binding Z domains (denoted as ZZ-BNC) has been developed for both clustering and oriented immobilization of IgGs on the solid phase of immunosensors. In this study, human IgG1 Fc-fused vascular endothelial growth factor (VEGF) receptor was immobilized through ZZ-BNC on the sensor chip of quartz crystal microbalance (ZZ-BNC-coating). When compared with direct adsorption and protein A-coating, the sensor chip showed higher sensitivity (∽46- and ∽165-fold, respectively) and larger ligand-binding capacity (∽4- and ∽18-fold, respectively). Furthermore, the number of VEGF molecules bound to its receptor increased from 0.20 (direct adsorption) to 2.06 by ZZ-BNC-coating, strongly suggesting that ZZ-BNC reduced the steric hindrance near ligand recognition sites through oriented immobilization. Similarly, the sensitivity and ligand-binding capacity of leptin and prolactin receptors were both enhanced at a level comparable to that observed for the VEGF receptor. Thus, the combination of ZZ-BNC and Fc-fused receptors could significantly improve the function of ligand-binding assays. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation

    Directory of Open Access Journals (Sweden)

    Byron Carpenter

    2017-12-01

    Full Text Available Adenosine receptors (ARs comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs. ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR, making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.

  10. The effect of GABA receptor ligands in experimental spina bifida occulta.

    Science.gov (United States)

    Briner, W

    2001-01-01

    The pathophysiology behind spina bifida and other neural tube defects (NTDs) is unclear. Folic acid is one variable, but other factors remain. Studies suggest that substances active at the GABA receptor may produce NTDs. To test this hypothesis pregnant rats were exposed to either the GABA a agonist muscimol (1, 2 or 4 mg/kg), the GABA a antagonist bicuculline (.5, 1, or 2 mg/kg), the GABA b agonist baclofen (15, 30, 60 mg/kg), or the GABA b antagonist hydroxysaclofen (1, 3, or 5 mg/kg) during neural tube formation. Normal saline was used as a control and valproic acid (600 mg/kg) as a positive control. The embryos were analyzed for the presence of a spina bifida like NTD. After drug administration the pregnancies were allowed to proceed to the 21st day of gestation. Then embryos were removed and skeletons staining and cleared. Vertebral arch closure was measured. Results indicate that the GABAa receptor agonist muscimol, the GABAa receptor antagonist bicuculline, and the GABAb agonist baclofen produced NTDs characterized by widening of the vertebral arch. Oppositely the GABAb antagonist hydroxysaclofen produced narrowing of the vertebral arches. The findings indicate that GABA a or b ligands are capable of altering neural formation. GABA may play a greater than appreciated role in neural tube formation and may be important in NTDs. The narrowing of the vertebral arch produced by the GABA b antagonist hydroxysalcofen suggests that GABA b receptor may play an undefined role in neural tube closure that differs from the GABA a receptor.

  11. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand.

    Science.gov (United States)

    Watson, Brittany M; Oliveria, John Paul; Nusca, Graeme M; Smith, Steven G; Beaudin, Sue; Dua, Benny; Watson, Rick M; Assayag, Evelynne Israël; Cormier, Yvon F; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses. © 2015 S. Karger AG, Basel.

  12. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes.

    Directory of Open Access Journals (Sweden)

    Greta E Weiss

    2015-02-01

    Full Text Available During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite's life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1 an early heparin-blockable interaction which weakly deforms the erythrocyte, 2 EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite's actin-myosin motor, 3 a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4 an AMA1-RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine.

  13. (/sup 3/H)-(Thr4,Gly7)OT: a highly selective ligand for central and peripheral OT receptors

    Energy Technology Data Exchange (ETDEWEB)

    Elands, J.; Barberis, C.; Jard, S.

    1988-01-01

    Oxytocin receptors in rat hippocampal synaptic plasma membranes were compared with mammary gland and uterine oxytocin receptors. For this purpose, a highly specific oxytocic agonist (Thr4,Gly7)oxytocin was tritiated. We demonstrated that this ligand labels oxytocin receptors selectively. Scatchard analyses revealed a high affinity for all the oxytocin receptors investigated, with equilibrium dissociation constants between 1.0 and 2.0 nM. Binding appeared to take place at a single population of receptor sites. Competition experiments confirmed the high affinity of arginine vasopressin for hippocampal oxytocin receptors but also revealed that mammary gland and uterine oxytocin receptors do not discriminate more efficiently between oxytocin and arginine vasopressin. This lack in specificity is not affected by applying different concentrations of Mg ions.

  14. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells.

    LENUS (Irish Health Repository)

    O'Callaghan, G

    2012-02-03

    Fas ligand (FasL\\/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E(2) (PGE(2)), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE(2) increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E(2)-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE(2) positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE(2).

  15. 4-Phenyl quinoline derivatives as potential serotonin receptor ligands with antiproliferative activity.

    Science.gov (United States)

    Joshi, Pranaya V; Sayed, Alim A; RaviKumar, Ameeta; Puranik, Vedavati G; Zinjarde, Smita S

    2017-08-18

    Antagonists of signaling receptors are often effective non-toxic therapeutic agents. Over the years, there have been evidences describing the role of serotonin or 5-hydroxytryptamine (5-HT) in development of cancer. Although there are reports on the antiproliferative effects of some serotonin receptor antagonists, there are very few investigations related to understanding their structure-activity relationships. In this study, we report the screening of a library of 4-phenyl quinoline derivatives for their antiproliferative activities. Preliminary docking studies indicated that these ligands had the ability to bind to two of the serotonin receptors, 5-HT 1B and 5-HT 2B . The results of the in silico experiments were validated by performing in vitro studies on MCF-7 breast cancer cell line. The ethylpiperazine derivatives showed maximum toxicity against this cancer cell line. The compounds inhibited Calcium ion efflux (induced by serotonin) and ERK activation. One of the most active 4-phenyl quinoline derivatives (H3a) also induced apoptosis, thereby, suggesting the use of this scaffold as a potential anticancer drug. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction.

    Science.gov (United States)

    Moffett, Ashley; Colucci, Francesco

    2015-09-01

    Allogeneic individuals co-exist during pregnancy in eutherian mammals. Maternal and fetal cells intermingle at the site of placental attachment in the uterus, where the arteries are remodeled to supply the fetus with oxygen and nutrients. This access by placental cells to the maternal supply line determines the growth and birth weight of the baby and is subject to stabilizing selection. Invading placental trophoblast cells express human leukocyte antigen class I ligands (HLA-E, HLA-G, and HLA-C) for receptors on maternal uterine natural killer (NK) and myelomonocytic cells, CD94/NKG2, leukocyte immunoglobulin-like receptor (LILR), and killer immunoglobulin receptor (KIR). Of these, only the KIR/HLA-C system is highly polymorphic. Different combinations of maternal KIR and fetal HLA-C variants are correlated with low birth weight and pre-eclampsia or high birth weight and obstructed labor, the two extremes of the obstetric dilemma. This situation has arisen because of the evolution of bipedalism and subsequently, in the last million years, larger brains. At this point, the human system began to reach a balance between KIR A and KIR B haplotypes and C1 and C2 epitopes of HLA-C alleles that reflects a functional compromise between the competing demands of immunity and reproduction. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    Directory of Open Access Journals (Sweden)

    Whitney K. Petrie

    2013-01-01

    Full Text Available Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene, the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

  18. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Directory of Open Access Journals (Sweden)

    Jens Tiefenbach

    2010-03-01

    Full Text Available Nuclear receptors (NRs belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio. The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1 respond as expected to endogenous zebrafish hormones and cofactors, 2 facilitate efficient receptor and cofactor purification, 3 respond robustly to NR hormones and drugs and 4 yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  19. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Science.gov (United States)

    Tiefenbach, Jens; Moll, Pamela R; Nelson, Meryl R; Hu, Chun; Baev, Lilia; Kislinger, Thomas; Krause, Henry M

    2010-03-22

    Nuclear receptors (NRs) belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio). The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1) respond as expected to endogenous zebrafish hormones and cofactors, 2) facilitate efficient receptor and cofactor purification, 3) respond robustly to NR hormones and drugs and 4) yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  20. Synthesis of the sup 11 C-labelled. beta. -adrenergic receptor ligands atenolol, metoprolol and propanolol

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, G.; Ulin, J.; Laangstroem, B. (Uppsala Univ. (Sweden). Dept. of Organic Chemistry)

    1989-01-01

    The {sup 11}C-labelled {beta}-adrenergic receptor ligands atenolol 1, metoprolol 2 and propranolol 3 have been synthesized by an N-alkylation reaction using (2-{sup 11}C)isopropyl iodide. The labelled isopropyl iodide was prepared in a one-pot reactor system from ({sup 11}C)carbon dioxide and obtained in 40% radiochemical yield within 14 min reaction time. The total reaction times for compounds 1-3, counted from the start of the isopropyl iodide synthesis and including purification were 45-55 min. The products were obtained in 5-15% radiochemical yields and with radiochemical purities higher than 98%. The specific activity ranged from 0.4 to 4 GBq/{mu}mol. In a typical experiment starting with 4 GBq around 75 MBq of product was obtained. (author).

  1. Development of Fluorinated Non-Peptidic Ghrelin Receptor Ligands for Potential Use in Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Rareş-Petru Moldovan

    2017-04-01

    Full Text Available The ghrelin receptor (GhrR is a widely investigated target in several diseases. However, the current knowledge of its role and distribution in the brain is limited. Recently, the small and non-peptidic compound (S-6-(4-bromo-2-fluorophenoxy-3-((1-isopropylpiperidin-3-ylmethyl-2-methylpyrido[3,2-d]pyrimidin-4(3H-one ((S-9 has been described as a GhrR ligand with high binding affinity. Here, we describe the synthesis of fluorinated derivatives, the in vitro evaluation of their potency as partial agonists and selectivity at GhrRs, and their physicochemical properties. These results identified compounds (S-9, (R-9, and (S-16 as suitable parent molecules for 18F-labeled positron emission tomography (PET radiotracers to enable future investigation of GhrR in the brain.

  2. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor.

    Science.gov (United States)

    Delanoue, Renald; Meschi, Eleonora; Agrawal, Neha; Mauri, Alessandra; Tsatskis, Yonit; McNeill, Helen; Léopold, Pierre

    2016-09-30

    Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients. Copyright © 2016, American Association for the Advancement of Science.

  3. Effect of adrenergic receptor ligands on metaiodobenzylguanidine uptake and storage in neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Babich, J.W. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States)]|[Department of Radiology, Harvard Medical School, Boston, Massachusetts (United States); Graham, W. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Fischman, A.J. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States)]|[Department of Radiology, Harvard Medical School, Boston, Massachusetts (United States)

    1997-05-01

    The effects of adrenergic receptor ligands on uptake and storage of the radiopharmaceutical [{sup 125}I]metaiodobenzylguanidine (MIBG) were studied in the human neuroblastoma cell line SK-N-SH. For uptake studies, cells were with varying concentrations of {alpha}-agonist (clonidine, methoxamine, and xylazine), {alpha}-antagonist (phentolamine, tolazoline, phenoxybenzamine, yohimbine, and prazosin), {beta}-antagonist (propranolol, atenolol), {beta}-agonist (isoprenaline and salbutamol), mixed {alpha}/{beta} antagonist (labetalol), or the neuronal blocking agent guanethidine, prior to the addition of [{sup 125}I]MIBG (0.1 {mu}M). The incubation was continued for 2 h and specific cell-associated radioactivity was measured. For the storage studies, cells were incubated with [{sup 125}I]MIBG for 2 h, followed by replacement with fresh medium with or without drug (MIBG, clonidine, or yohimbine). Cell-associated radioactivity was measured at various times over the next 20 h. Propanolol reduced [{sup 125}I]MIBG uptake by approximately 30% (P<0.01) at all concentrations tested, most likely due to nonspecific membrane changes. In conclusion, the results of this study establish that selected adrenergic ligands can significantly influence the pattern of uptake and storage of MIBG in cultured neuroblastoma cells, most likely through inhibition of uptake or through noncompetitive inhibition. The potential inplications of these findings justify further study. (orig./VHE). With 4 figs., 1 tab.

  4. The structure and function of the glucagon-like peptide-1 receptor and its ligands.

    Science.gov (United States)

    Donnelly, Dan

    2012-05-01

    Glucagon-like peptide-1(7-36)amide (GLP-1) is a 30-residue peptide hormone released from intestinal L cells following nutrient consumption. It potentiates the glucose-induced secretion of insulin from pancreatic beta cells, increases insulin expression, inhibits beta-cell apoptosis, promotes beta-cell neogenesis, reduces glucagon secretion, delays gastric emptying, promotes satiety and increases peripheral glucose disposal. These multiple effects have generated a great deal of interest in the discovery of long-lasting agonists of the GLP-1 receptor (GLP-1R) in order to treat type 2 diabetes. This review article summarizes the literature regarding the discovery of GLP-1 and its physiological functions. The structure, function and sequence-activity relationships of the hormone and its natural analogue exendin-4 (Ex4) are reviewed in detail. The current knowledge of the structure of GLP-1R, a Family B GPCR, is summarized and discussed, before its known interactions with the principle peptide ligands are described and summarized. Finally, progress in discovering non-peptide ligands of GLP-1R is reviewed. GLP-1 is clearly an important hormone linking nutrient consumption with blood sugar control, and therefore knowledge of its structure, function and mechanism of action is of great importance. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. High-Affinity Ligands Can Trigger T Cell Receptor Signaling Without CD45 Segregation

    Directory of Open Access Journals (Sweden)

    Mohammad Ameen Al-Aghbar

    2018-04-01

    Full Text Available How T cell receptors (TCRs are triggered to start signaling is still not fully understood. It has been proposed that segregation of the large membrane tyrosine phosphatase CD45 from engaged TCRs initiates signaling by favoring phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs in the cytoplasmic domains of CD3 molecules. However, whether CD45 segregation is important to initiate triggering is still uncertain. We examined CD45 segregation from TCRs engaged to anti-CD3 scFv with high or low affinity and with defined molecular lengths on glass-supported lipid bilayers using total internal reflection microscopy. Both short and elongated high-affinity anti-CD3 scFv effectively induced similar calcium mobilization, Zap70 phosphorylation, and cytokine secretion in Jurkat T cells but CD45 segregated from activated TCR microclusters significantly less for elongated versus short anti-CD3 ligands. In addition, at early times, triggering cells with both high and low affinity elongated anti-CD3 scFv resulted in similar degrees of CD3 co-localization with CD45, but only the high-affinity scFv induced T cell activation. The lack of correlation between CD45 segregation and early markers of T cell activation suggests that segregation of CD45 from engaged TCRs is not mandatory for initial triggering of TCR signaling by elongated high-affinity ligands.

  6. AMP and adenosine are both ligands for adenosine 2B receptor signaling.

    Science.gov (United States)

    Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M

    2018-01-15

    Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ligand fishing using new chitosan based functionalized Androgen Receptor magnetic particles.

    Science.gov (United States)

    Marszałł, Michał Piotr; Sroka, Wiktor Dariusz; Sikora, Adam; Chełminiak, Dorota; Ziegler-Borowska, Marta; Siódmiak, Tomasz; Moaddel, Ruin

    2016-08-05

    Superparamagnetic nanoparticles with chemically modified chitosan has been proposed as a potential support for the immobilization of the androgen receptor (AR). The study involved comparison of different AR carriers like commercially available magnetic beads coated with silica (BcMag) and chitosan coated nanoparticles with different amount of amino groups. The immobilization was carried out through covalent immobilization of the AR through the terminal amino group or through available carboxylic acids. The initial characterization of the AR coated magnetic beads was carried out with dihydrotestosterone, a known AR ligand. Subsequently, chitosan modified nanporticles with long-distanced primary amino groups (Fe3O4CS-(NH2)3) (upto 8.34mM/g) were used for further study to isolate known AR ligands (bicalutamide, flutamide, hydroxyflutamide and levonogestrel) from a mixture of tested compounds in ammonium acetate buffer [10mM, pH 7.4]. The results showed that the selected nanoparticles are a promising semi-quantitative tool for the identification of high affinity compounds to AR and might be of special importance in the identification of novel agonists or antiandrogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Role of Killer Immunoglobulin-Like Receptor and Ligand Matching in Donor Selection

    Directory of Open Access Journals (Sweden)

    Meral Beksaç

    2012-01-01

    Full Text Available Despite all efforts to improve HLA typing and immunosuppression, it is still impossible to prevent severe graft versus host disease (GVHD which can be fatal. GVHD is not always associated with graft versus malignancy and can prevent stem cell transplantation from reaching its goals. Overall T-cell alloreactivity is not the sole mechanism modulating the immune defense. Innate immune system has its own antigens, ligands, and mediators. The bridge between HLA and natural killer (NK cell-mediated reactions is becoming better understood in the context of stem cell transplantation. Killer immunoglobulin-like receptors (KIRs constitute a wide range of alleles/antigens segregated independently from the HLA alleles and classified into two major haplotypes which imprints the person's ability to suppress or to amplify T-cell alloreactivity. This paper will summarize the impact of both activating and inhibitory KIRs and their ligands on stem cell transplantation outcome. The ultimate goal is to develop algorithms based on KIR profiles to select donors with maximum antileukemic and minimum antihost effects.

  9. Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer.

    Science.gov (United States)

    Chen, Zhong; Lan, Xun; Wu, Dayong; Sunkel, Benjamin; Ye, Zhenqing; Huang, Jiaoti; Liu, Zhihua; Clinton, Steven K; Jin, Victor X; Wang, Qianben

    2015-09-16

    Glucocorticoids (GCs) have been widely used as coadjuvants in the treatment of solid tumours, but GC treatment may be associated with poor pharmacotherapeutic response or prognosis. The genomic action of GC in these tumours is largely unknown. Here we find that dexamethasone (Dex, a synthetic GC)-regulated genes in triple-negative breast cancer (TNBC) cells are associated with drug resistance. Importantly, these GC-regulated genes are aberrantly expressed in TNBC patients and are associated with unfavourable clinical outcomes. Interestingly, in TNBC cells, Compound A (CpdA, a selective GR modulator) only regulates a small number of genes not involved in carcinogenesis and therapy resistance. Mechanistic studies using a ChIP-exo approach reveal that Dex- but not CpdA-liganded glucocorticoid receptor (GR) binds to a single glucocorticoid response element (GRE), which drives the expression of pro-tumorigenic genes. Our data suggest that development of safe coadjuvant therapy should consider the distinct genomic function between Dex- and CpdA-liganded GR.

  10. Neonatal BCG vaccination influences cytokine responses to Toll-like receptor ligands and heterologous antigens.

    Science.gov (United States)

    Freyne, B; Donath, S; Germano, S; Gardiner, K; Casalaz, D; Robins-Browne, R M; Amenyogbe, N; Messina, N L; Netea, M G; Flanagan, K L; Kollmann, T; Curtis, N

    2018-02-03

    Bacille Calmette-Guérin (BCG) vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain but long-term modulation of the innate immune response (trained immunity) may be involved. Whole blood, collected 7 days post randomisation from 212 neonates enrolled in a randomised trial of neonatal BCG vaccination, was stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. BCG-vaccinated infants had increased production of IL-6 in unstimulated samples and decreased production of IL-1ra, IL-6, and IL-10 and the chemokines MIP-1α, MIP-1β, MCP-1 following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterised by decreased anti-inflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine if there is an association between these findings and the beneficial non-specific (heterologous) effects of BCG vaccine on all-cause mortality.

  11. Binding-Site Compatible Fragment Growing Applied to the Design of β2-Adrenergic Receptor Ligands.

    Science.gov (United States)

    Chevillard, Florent; Rimmer, Helena; Betti, Cecilia; Pardon, Els; Ballet, Steven; van Hilten, Niek; Steyaert, Jan; Diederich, Wibke E; Kolb, Peter

    2018-02-08

    Fragment-based drug discovery is intimately linked to fragment extension approaches that can be accelerated using software for de novo design. Although computers allow for the facile generation of millions of suggestions, synthetic feasibility is however often neglected. In this study we computationally extended, chemically synthesized, and experimentally assayed new ligands for the β 2 -adrenergic receptor (β 2 AR) by growing fragment-sized ligands. In order to address the synthetic tractability issue, our in silico workflow aims at derivatized products based on robust organic reactions. The study started from the predicted binding modes of five fragments. We suggested a total of eight diverse extensions that were easily synthesized, and further assays showed that four products had an improved affinity (up to 40-fold) compared to their respective initial fragment. The described workflow, which we call "growing via merging" and for which the key tools are available online, can improve early fragment-based drug discovery projects, making it a useful creative tool for medicinal chemists during structure-activity relationship (SAR) studies.

  12. The Hemoglobin Receptor Protein of Porphyromonas gingivalis Inhibits Receptor Activator NF-κB Ligand-Induced Osteoclastogenesis from Bone Marrow Macrophages

    OpenAIRE

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-01-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent f...

  13. Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index.

    Science.gov (United States)

    Schäcke, Heike; Rehwinkel, Hartmut; Asadullah, Khusru; Cato, Andrew C B

    2006-08-01

    Glucocorticoids are highly effective in the therapy of inflammatory and autoimmune disorders. Their beneficial action is restricted because of their adverse effects upon prolonged usage. Topical glucocorticoids that act locally have been developed to significantly reduce systemic side effects. Nonetheless, undesirable cutaneous effects such as skin atrophy persist from the use of topical glucocorticoids. There is therefore a high medical need for drugs as effective as glucocorticoids but with a reduced side-effect profile. Glucocorticoids function by binding to and activating the glucocorticoid receptor that positively or negatively regulates the expression of specific genes. Several experiments suggest that the negative regulation of gene expression by the glucocorticoid receptor accounts for its anti-inflammatory action. This occurs through direct or indirect binding of the receptor to transcription factors such as activator protein-1, nuclear factor-kappaB or interferon regulatory factor-3 that are already bound to their regulatory sites. The positive action of the receptor occurs through homodimer binding of the receptor to discrete nucleotide sequences and this possibly contributes to some of the adverse effects of the hormone. Glucocorticoid receptor ligands that promote the negative regulatory action of the receptor with reduced positive regulatory function should therefore show improved therapeutic potential. A complete separation of the positive from the negative regulatory activities of the receptor has so far not been possible because of the interdependent nature of the two regulatory processes. Nevertheless, considerable improvement in the therapeutic action of glucocorticoid receptor ligands is being achieved through the use of key molecular targets for screening novel glucocorticoid receptor ligands.

  14. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system.

    Science.gov (United States)

    Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick

    2006-06-01

    Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.

  15. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells.

    Science.gov (United States)

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi; Shah, Khalid

    2015-06-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. © The Author (2015). Published by Oxford University Press on

  16. Systematic screening of Drosophila deficiency mutations for embryonic phenotypes and orphan receptor ligands.

    Directory of Open Access Journals (Sweden)

    Ashley P Wright

    2010-08-01

    Full Text Available This paper defines a collection of Drosophila deletion mutations (deficiencies that can be systematically screened for embryonic phenotypes, orphan receptor ligands, and genes affecting protein localization. It reports the results of deficiency screens we have conducted that have revealed new axon guidance phenotypes in the central nervous system and neuromuscular system and permitted a quantitative assessment of the number of potential genes involved in regulating guidance of specific motor axon branches. Deficiency "kits" that cover the genome with a minimum number of lines have been established to facilitate gene mapping. These kits cannot be systematically analyzed for phenotypes, however, since embryos homozygous for many deficiencies in these kits fail to develop due to the loss of key gene products encoded within the deficiency. To create new kits that can be screened for phenotype, we have examined the development of the nervous system in embryos homozygous for more than 700 distinct deficiency mutations. A kit of approximately 400 deficiency lines for which homozygotes have a recognizable nervous system and intact body walls encompasses >80% of the genome. Here we show examples of screens of this kit for orphan receptor ligands and neuronal antigen expression. It can also be used to find genes involved in expression, patterning, and subcellular localization of any protein that can be visualized by antibody staining. A subset kit of 233 deficiency lines, for which homozygotes develop relatively normally to late stage 16, covers approximately 50% of the genome. We have screened it for axon guidance phenotypes, and we present examples of new phenotypes we have identified. The subset kit can be used to screen for phenotypes affecting all embryonic organs. In the future, these deficiency kits will allow Drosophila researchers to rapidly and efficiently execute genome-wide anatomical screens that require examination of individual embryos at

  17. Identification of Peptidic Antagonists of Vascular Endothelial Growth Factor Receptor 1 by Scanning the Binding Epitopes of Its Ligands.

    Science.gov (United States)

    Wang, Lei; Zhou, Lingyu; Reille-Seroussi, Marie; Gagey-Eilstein, Nathalie; Broussy, Sylvain; Zhang, Tianyu; Ji, Lili; Vidal, Michel; Liu, Wang-Qing

    2017-08-10

    Cancer angiogenesis is mainly initiated by vascular endothelial growth factors (VEGFs). On the basis of the reported crystal structures of three natural ligands (VEGF-A, -B, and PlGF) with the major receptors VEGFR-1 and VEGFR-2, we scanned receptor-binding epitopes of these ligands by designing linear and cyclic peptides with the aim to disrupt the VEGF-A/VEGFR-1 interaction, which is implicated in cancer development. The ability of peptides to inhibit this interaction was evaluated by an ELISA-based assay. Several peptides, especially those mimicking loop 1 (L1) of these ligands that binds primarily to domain D3 of VEGFRs, have demonstrated higher inhibition for VEGF-A/VEGFR-1 binding. They have also shown inhibitory effects on VEGF-induced tube formation in HUVECs (human umbilical vein endothelial cells). These results validate the domain D3 of VEGFRs as an efficient target for the design of VEGFR antagonists.

  18. Affinity Labeling of Membrane Receptors Using Tissue-Penetrating Radiations

    Directory of Open Access Journals (Sweden)

    Franklin C. Wong

    2013-01-01

    Full Text Available Photoaffinity labeling, a useful in vivo biochemical tool, is limited when applied in vivo because of the poor tissue penetration by ultraviolet (UV photons. This study investigates affinity labeling using tissue-penetrating radiation to overcome the tissue attenuation and irreversibly label membrane receptor proteins. Using X-ray (115 kVp at low doses (<50 cGy or Rad, specific and irreversible binding was found on striatal dopamine transporters with 3 photoaffinity ligands for dopamine transporters, to different extents. Upon X-ray exposure (115 kVp, RTI-38 and RTI-78 ligands showed irreversible and specific binding to the dopamine transporter similar to those seen with UV exposure under other conditions. Similarly, gamma rays at higher energy (662 keV also affect irreversible binding of photoreactive ligands to peripheral benzodiazepine receptors (by PK14105 and to the dopamine (D2 membrane receptors (by azidoclebopride, respectively. This study reports that X-ray and gamma rays induced affinity labeling of membrane receptors in a manner similar to UV with photoreactive ligands of the dopamine transporter, D2 dopamine receptor (D2R, and peripheral benzodiazepine receptor (PBDZR. It may provide specific noninvasive irreversible block or stimulation of a receptor using tissue-penetrating radiation targeting selected anatomic sites.

  19. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jacob Lauwring, E-mail: jla@mb.au.dk [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Schrøder, Tenna Juul; Christensen, Søren [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Strandbygård, Dorthe [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Pallesen, Lone Tjener [Aarhus University, Ole Worms Allé 3, 8000 Aarhus C (Denmark); García-Alai, Maria Marta [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; Jong, Inge E. M. de; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Uppalanchi, Srinivas; Sakumudi, Durga Rao; Eradi, Pradheep [GVK BioScience, Plot No. 28 A, IDA Nacharam, Hyderabad 500 076 (India); Watson, Steven P., E-mail: jla@mb.au.dk [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Thirup, Søren, E-mail: jla@mb.au.dk [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark)

    2014-02-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.

  20. GluVII:06--a highly conserved and selective anchor point for non-peptide ligands in chemokine receptors

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Schwartz, Thue W

    2006-01-01

    A majority of small molecule non-peptide ligands for chemokine receptors in general are characterized by the presence of one or two centrally located, positively charged nitrogen atoms and these compounds are also often of relatively similar elongated overall structure with terminal aromatic...

  1. Combining Stochastic Deformation/Relaxation and Intermolecular Contacts Analysis for Extracting Pharmacophores from Ligand-Receptor Complexes.

    Science.gov (United States)

    Hatmal, Ma'mon M; Taha, Mutasem O

    2018-04-23

    We previously combined molecular dynamics (classical or simulated annealing) with ligand-receptor contacts analysis as a means to extract valid pharmacophore model(s) from single ligand-receptor complexes. However, molecular dynamics methods are computationally expensive and time-consuming. Here we describe a novel method for extracting valid pharmacophore model(s) from a single crystallographic structure within a reasonable time scale. The new method is based on ligand-receptor contacts analysis following energy relaxation of a predetermined set of randomly deformed complexes generated from the targeted crystallographic structure. Ligand-receptor contacts maintained across many deformed/relaxed structures are assumed to be critical and used to guide pharmacophore development. This methodology was implemented to develop valid pharmacophore models for PI3K-γ, RENIN, and JAK1. The resulting pharmacophore models were validated by receiver operating characteristic (ROC) analysis against inhibitors extracted from the CHEMBL database. Additionally, we implemented pharmacophores extracted from PI3K-γ to search for new inhibitors from the National Cancer Institute list of compounds. The process culminated in new PI3K-γ/mTOR inhibitory leads of low micromolar IC 50 s.

  2. Crystal structure-based virtual screening for novel fragment-like ligands of the human histamine H1 receptor

    NARCIS (Netherlands)

    de Graaf, C.; Kooistra, A.J.; Vischer, H.F.; Katritch, V; Kuijer, M.; Shiroishi, M; Shimamura, T; Iwata, S; Stevens, R.C.; de Esch, I.J.P.; Leurs, R.

    2011-01-01

    The recent crystal structure determinations of druggable class A G protein-coupled receptors (GPCRs) have opened up excellent opportunities in structure-based ligand discovery for this pharmaceutically important protein family. We have developed and validated a customized structure-based virtual

  3. Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT7 Receptor

    DEFF Research Database (Denmark)

    Herth, Matthias M; Andersen, Valdemar L; Hansen, Hanne D

    2015-01-01

    We have investigated several oxindole derivatives in the pursuit of a 5-HT7 receptor PET ligand. Herein the synthesis, chiral separation, and pharmacological profiling of two possible PET candidates toward a wide selection of CNS-targets are detailed. Subsequent (11)C-labeling and in vivo evaluat...

  4. Strong and selective glomerular localization of CD134 ligand and TNF receptor-1 in proliferative lupus nephritis

    NARCIS (Netherlands)

    Aten, J.; Roos, A.; Claessen, N.; Schilder-Tol, E. J.; ten Berge, I. J.; Weening, J. J.

    2000-01-01

    CD134 (OX40) is a member of the tumor necrosis factor (TNF) receptor (TNFR) family that can be expressed on activated T lymphocytes. Interaction between CD134 and its ligand (CD134L) is involved in costimulation of T and B lymphocyte activation, and in T cell adhesion to endothelium. To examine the

  5. Skeletal changes in osteoprotegerin and receptor activator of nuclear factor-κb ligand mRNA levels in primary hyperparathyroidism

    DEFF Research Database (Denmark)

    Stilgren, L.S.; Rettmer, E.; Eriksen, E. F.

    2004-01-01

    The effect of parathyroid hormone (PTH) on the production of osteoprotegerin (OPG) and ligand of receptor activator of NF-kappaB (RANKL) in human bone is incompletely understood. Most in vitro studies indicate that PTH decreases OPG and increases RANKL production. In primary hyperparathyroidism....... In addition, locally produced RANKL appears to affect bone turnover in the hyperparathyroid state....

  6. Binding mode analyses of NAP derivatives as mu opioid receptor selective ligands through docking studies and molecular dynamics simulation.

    Science.gov (United States)

    Wang, Huiqun; Zaidi, Saheem A; Zhang, Yan

    2017-04-15

    Mu opioid receptor selective antagonists are highly desirable because of their utility as pharmacological probes for receptor characterization and functional studies. Furthermore, the mu opioid receptors act as an important target in drug abuse and addiction treatment. Previously, we reported NAP as a novel lead compound with high selectivity and affinity towards the mu opioid receptor. Based on NAP, we have synthesized its derivatives and further characterized their binding affinities and selectivity towards the receptor. NMP and NGP were identified as the two most selective MOR ligands among NAP derivatives. In the present study, molecular modeling methods were applied to assess the dual binding modes of NAP derivatives, particularly on NMP and NGP, in three opioid receptors, in order to analyze the effects of structural modifications on the pyridyl ring of NAP on the binding affinity and selectivity. The results indicated that the steric hindrance, electrostatic, and hydrophobic effects caused by the substituents on the pyridyl ring of NAP contributed complimentarily on the binding affinity and selectivity of NAP derivatives to three opioid receptors. Analyses of these contributions provided insights on future design of more potent and selective mu opioid receptor ligands. Published by Elsevier Ltd.

  7. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...... truncation variants, the amino-terminal third of the SRCR region was shown to be crucial for the binding of haptoglobin.hemoglobin complexes. By Western blotting of the CD163 variants, a panel of ten monoclonal antibodies was mapped to SRCR domains 1, 3, 4, 6, 7, and 9, respectively. Only the two antibodies...... to CD163 demonstrated that optimal ligand binding requires physiological plasma calcium concentrations, and an immediate ligand release occurs at the low calcium concentrations measured in acidifying endosomes. In conclusion, SRCR domain 3 of CD163 is an exposed domain and a critical determinant...

  8. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABAA receptors expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Hammer, Harriet; Ebert, Bjarke; Jensen, Henrik S.

    2015-01-01

    by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α1,2,3,5β2γ2S GABAARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20...... for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non-selective modulation exerted by clobazam, N-desmethylclobazam and clonazepam at the α1β2γ2S, α2β2γ2S, α3β2γ2S and α5β2γ2S GABAARs indicate that the observed clinical differences between clobazam and 1...

  9. Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands.

    Science.gov (United States)

    Monczor, Federico; Fernandez, Natalia

    2016-11-01

    H 1 and H 2 histamine receptor antagonists, although developed many decades ago, are still effective for the treatment of allergic and gastric acid-related conditions. This article focuses on novel aspects of the pharmacology and molecular mechanisms of histamine receptors that should be contemplated for optimizing current therapies, repositioning histaminergic ligands for new therapeutic uses, or even including agonists of the histaminergic system in the treatment of different pathologies such as leukemia or neurodegenerative disorders. In recent years, new signaling phenomena related to H 1 and H 2 receptors have been described that make them suitable for novel therapeutic approaches. Crosstalk between histamine receptors and other membrane or nuclear receptors can be envisaged as a way to modulate other signaling pathways and to potentiate the efficacy of drugs acting on different receptors. Likewise, biased signaling at histamine receptors seems to be a pharmacological feature that can be exploited to investigate nontraditional therapeutic uses for H 1 and H 2 biased agonists in malignancies such as acute myeloid leukemia and to avoid undesired side effects when used in standard treatments. It is hoped that the molecular mechanisms discussed in this review contribute to a better understanding of the different aspects involved in histamine receptor pharmacology, which in turn will contribute to increased drug efficacy, avoidance of adverse effects, or repositioning of histaminergic ligands. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Target-selective phototherapy using a ligand-based photosensitizer for type 2 cannabinoid receptor.

    Science.gov (United States)

    Zhang, Shaojuan; Jia, Ningyang; Shao, Pin; Tong, Qin; Xie, Xiang-Qun; Bai, Mingfeng

    2014-03-20

    Phototherapy is a powerful, noninvasive approach for cancer treatment, with several agents currently in clinical use. Despite the progress and promise, most current phototherapy agents have serious side effects as they can lead to damage to healthy tissue, even when the photosensitizers are fused to targeting molecules due to nonspecific light activation of the unbound photosensitizer. To overcome these limitations, we developed a phototherapy agent that combines a functional ligand and a near infrared phthalocyanine dye. Our target is type 2 cannabinoid receptor (CB2R), considered an attractive therapeutic target for phototherapy given it is overexpressed by many types of cancers that are located at a surface or can be reached by an endoscope. We show that our CB2R-targeted phototherapy agent, IR700DX-mbc94, is specific for CB2R and effective only when bound to the target receptor. Overall, this opens up the opportunity for development of an alternative treatment option for CB2R-positive cancers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand

    Science.gov (United States)

    Zhang, Xianjun; Zhao, Fei; Wu, Yiran; Yang, Jun; Han, Gye Won; Zhao, Suwen; Ishchenko, Andrii; Ye, Lintao; Lin, Xi; Ding, Kang; Dharmarajan, Venkatasubramanian; Griffin, Patrick R.; Gati, Cornelius; Nelson, Garrett; Hunter, Mark S.; Hanson, Michael A.; Cherezov, Vadim; Stevens, Raymond C.; Tan, Wenfu; Tao, Houchao; Xu, Fei

    2017-05-01

    The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.

  12. Serotoninergic receptors in brain tissue: properties and identification of various 3H-ligand binding sites in vitro

    International Nuclear Information System (INIS)

    Leysen, J.E.

    1981-01-01

    In vitro binding studies to serotoninergic receptors were performed using 3 H-LSD, 3 H-5-HT and 3 H-spiperone. An overwiew is given on findings using these three ligands with respect to the following: localization of specific binding sites, in various animal species, the regional distribution in the brain and periphery, the subcellular and cellular distribution. Properties of the binding sites, influence of the composition of the assay medium, binding kinetic properties, receptor regulation in vivo. Identity of the binding sites, differences between site for various 3 H-ligands, pharmacological specificity of the membranous binding sites, chemical composition of the macromolecular complex constituting the binding site. Function of the receptor. Binding affinities of 44 compounds were measured in binding assays using 3 H-spiperone and 3 H-LSD with rat frontal cortex membrane preparations and using 3 H-5-HT and 3 H-LSD with rat hippocampal membrane preparations

  13. Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sun; Li, Shu-Xing; Bren, Nina; Cheng, Kevin; Gomoto, Ryan; Chen, Lin; Sine, Steven M.

    2013-09-01

    To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Å2 (1 Å=0.1 nm) of surface area, within which Arg36 and Phe32 from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr184 from loop-C of α7, while Asp30 of α-btx forms a hydrogen bond with the hydroxy group of Tyr184. These inter-residue interactions diverge from those in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr184 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.

  14. Maximum Likelihood Detection With Ligand Receptors for Diffusion-Based Molecular Communications in Internet of Bio-Nano Things.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2018-03-01

    Molecular Communication (MC) is a bio-inspired communication technique that uses molecules as a method of information transfer among nanoscale devices. MC receiver is an essential component having profound impact on the communication system performance. However, the interaction of the receiver with information bearing molecules has been usually oversimplified in modeling the reception process and developing signal detection techniques. In this paper, we focus on the signal detection problem of MC receivers employing receptor molecules to infer the transmitted messages encoded into the concentration of molecules, i.e., ligands. Exploiting the observable characteristics of ligand-receptor binding reaction, we first introduce a Maximum Likelihood (ML) detection method based on instantaneous receptor occupation ratio, as aligned with the current MC literature. Then, we propose a novel ML detection technique, which exploits the amount of time the receptors stay unbound in an observation time window. A comprehensive analysis is carried out to compare the performance of the detectors in terms of bit error probability. In evaluating the detection performance, emphasis is given to the receptor saturation problem resulting from the accumulation of messenger molecules at the receiver as a consequence of intersymbol interference. The results reveal that detection based on receptor unbound time is quite reliable even in saturation, whereas the reliability of detection based on receptor occupation ratio substantially decreases as the receiver gets saturated. Finally, we also discuss the potential methods of implementing the detectors.

  15. Engagement of Platelet Toll-Like Receptor 9 by Novel Endogenous Ligands Promotes Platelet Hyper-Reactivity and Thrombosis

    Science.gov (United States)

    Panigrahi, Soumya; Ma, Yi; Hong, Li; Gao, Detao; West, Xiaoxia Z.; Salomon, Robert G.; Byzova, Tatiana V.; Podrez, Eugene A.

    2012-01-01

    Rationale A prothrombotic state and increased platelet reactivity are common in pathophysiological conditions associated with oxidative stress and infections. Such conditions are associated with an appearance of altered-self ligands in circulation that can be recognized by Toll-like receptors (TLR). Platelets express a number of TLR, including TLR9, however, the role of TLR in platelet function and thrombosis is poorly understood. Objective To investigate the biological activities of carboxy(alkylpyrrole) protein adducts (CAPs), an altered self-ligand generated in oxidative stress, on platelet function and thrombosis. Methods and Results In this study we show that CAPs represent novel unconventional ligands for TLR9. Furthermore, using human and murine platelets, we demonstrate that CAPs promote platelet activation, granule secretion, and aggregation in vitro and thrombosis in vivo via the TLR9/MyD88 pathway. Platelet activation by TLR9 ligands induces IRAK1 and AKT phosphorylation, and is Src kinase dependent. Physiological platelet agonists act synergistically with TLR9 ligands by inducing TLR9 expression on the platelet surface. Conclusions Our study demonstrates that platelet TLR9 is a functional platelet receptor that links oxidative stress, innate immunity, and thrombosis. PMID:23071157

  16. Development of a screening assay for ligands to the estrogen receptor based on magnetic microparticles and LC-MS

    Science.gov (United States)

    Choi, Yongsoo; van Breemen, Richard B.

    2009-01-01

    A high throughput screening assay for the identification of ligands to pharmacologically significant receptors was developed based on magnetic particles containing immobilized receptors followed by liquid chromatography—mass spectrometry (LC-MS). This assay is suitable for the screening of complex mixtures such as botanical extracts. For proof-of-principle, estrogen receptor-α (ER-α) and ER-β were immobilized on magnetic particles functionalized with aldehyde or carboxylic acid groups. Alternatively, biotinylated ER was immobilized onto streptavidin-derivatized magnetic particles. The ER that was immobilized using the streptavidin-biotin chemistry showed higher activity than that immobilized on aldehyde or carboxylic acid functionalized magnetic particles. Immobilized ER was incubated with extracts of Trifolium pratense L. (red clover) or Humulus lupulus L. (hops). As a control for non-specific binding, each botanical extract was incubated with magnetic particles containing no ER. After magnetic separation of the particles containing bound ligands from the unbound components in the extract, the particles were washed, ligands were released using methanol, and then the ligands were identified using LC-MS. The estrogens genistein and daidzein were identified in the red clover extract, and the estrogen 8-prenylnaringenin was identified in the hop extract. These screening results are consistent with those obtained using previous screening approaches. PMID:18220538

  17. Up-regulation of osteopontin expression by aryl hydrocarbon receptor via both ligand-dependent and ligand-independent pathways in lung cancer.

    Science.gov (United States)

    Chuang, Cheng-Yen; Chang, Han; Lin, Pinpin; Sun, Shih-Jung; Chen, Po-Hung; Lin, Yu-Ying; Sheu, Gwo-Tarng; Ko, Jiunn-Liang; Hsu, Shih-Lan; Chang, Jinghua Tsai

    2012-01-15

    The secreted glycol-phosphoprotein OPN not only plays important roles in immune responses and tissue remodeling but is also intimately involved in tumorigenesis. It is up-regulated in various cancers and correlated with poor prognosis. It is evident by enhancing growth and migration of cancer cells. However, the mechanisms that participate in up-regulation of OPN in lung cancer are largely unknown. Up-regulation of aryl hydrocarbon receptor (AhR), a transcription factor activated by xenobiotics, has been observed in lung cancer as well as premalignant lesions. In this study we demonstrated that AhR positively regulates OPN expression in lung cancer. We observed positive correlation of OPN and AhR expression in lung cancer specimen. Knockdown or overexpression of AhR exhibited down- or up-regulation of OPN expression in lung cancer cells. We identified an OPN promoter region between positions -268 and +435 that was activated by both ligand-independent and ligand-activated AhR. However, this region does not contain AhR response element/dioxin response element (DRE/XRE). Further truncations and internal deletions of the promoter revealed that the ligand-independent and ligand-activated AhR function through different regions of OPN promoter. The region between -268 and -100 was required for ligand-independent AhR activity. This region contains several cis-elements including AP2, C/EBP, SP1 and AP1 sites. On the other hand, the ligand-activated AhR up-regulates OPN activity through two regions of OPN promoter; one contains NFκB site at +137 and the other is between positions -100 and +126. This study suggested that both overexpression of un-induced AhR (in cases of non-smokers with high level of AhR) and ligand-activated AhR (such as smokers) contribute to up-regulation of OPN that in turn leads to lung tumorigenesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Towards a Novel Class of Multitarget-Directed Ligands: Dual P2X7–NMDA Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Olga Karoutzou

    2018-01-01

    Full Text Available Multi-target-directed ligands (MTDLs offer new hope for the treatment of multifactorial complex diseases such as Alzheimer’s Disease (AD. Herein, we present compounds aimed at targeting the NMDA and the P2X7 receptors, which embody a different approach to AD therapy. On one hand, we are seeking to delay neurodegeneration targeting the glutamatergic NMDA receptors; on the other hand, we also aim to reduce neuroinflammation, targeting P2X7 receptors. Although the NMDA receptor is a widely recognized therapeutic target in treating AD, the P2X7 receptor remains largely unexplored for this purpose; therefore, the dual inhibitor presented herein—which is open to further optimization—represents the first member of a new class of MTDLs.

  19. Nicotine facilitates nicotinic acetylcholine receptor targeting to mitochondria but makes them less susceptible to selective ligands.

    Science.gov (United States)

    Uspenska, Kateryna; Lykhmus, Olena; Gergalova, Galyna; Chernyshov, Volodymyr; Arias, Hugo R; Komisarenko, Sergiy; Skok, Maryna

    2017-08-24

    Several nicotinic acetylcholine receptor (nAChR) subtypes are expressed in mitochondria to regulate the internal pathway of apoptosis in ion channel-independent manner. However, the mechanisms of nAChR activation in mitochondria and targeting to mitochondria are still unknown. Nicotine has been shown to favor nAChR pentamer assembly, folding, and maturation on the way of biosynthesis. The idea of the present work was to determine whether nicotine affects the content, glycosylation, and function of mitochondrial nAChRs. Experiments were performed in isolated liver mitochondria from mice, that either consumed or not nicotine with the drinking water (200μL/L) for 7days. Mitochondria detergent lysates were studied by sandwich or lectin ELISA for the presence and carbohydrate composition of different nAChR subunits. Intact mitochondria were examined by flow cytometry for the binding of fluorescently labeled α-cobratoxin and were tested in functional assay of cytochrome c release under the effect of either Ca 2+ or wortmannin in the presence or absence of nAChR-selective ligands, including PNU-282987 (1nM), dihydro-β-erythroidine (DhβE, 1μM), PNU-120596 (0.3, 3, or 10μM) and desformylflustrabromine hydrochloride (dFBr, 0.001, 0.3, or 1μM). It was found that nicotine consumption increased the ratio of mitochondrial vs non-mitochondrial nAChRs in the liver, enhanced fucosylation of mitochondrial nAChRs, but prevented the binding of α-cobratoxin and the cytochrome c release-attenuating effects of nAChR-specific agonists, antagonists, or positive allosteric modulators. It is concluded that nicotine consumption in vivo favors nAChR glycosylation and trafficking to mitochondria but makes them less susceptible to the effects of specific ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders.

    Science.gov (United States)

    Di Giovanni, Giuseppe; De Deurwaerdère, Philippe

    2016-01-01

    The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Role of the VEGF ligand to receptor ratio in the progression of mismatch repair-proficient colorectal cancer

    International Nuclear Information System (INIS)

    Eppenberger, Manuela; Zlobec, Inti; Baumhoer, Daniel; Terracciano, Luigi; Lugli, Alessandro

    2010-01-01

    The VEGF family of ligands and receptors are intimately involved in tumor angiogenesis, lymphangiogenesis and metastasis. The evaluation of VEGF ligand/receptor ratios may provide a more profound understanding of the involvement of these proteins in colorectal tumour progression. The aim of this study was to elucidate the role of the VEGF ligand/receptor ratios on tumour progression and metastasis in patients with mismatch repair-proficient colorectal cancer. Immunohistochemistry for VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGFR1, VEGFR2 and VEGF3 was carried out on 387 mismatch repair-proficient colorectal cancers using a tissue microarray. Evaluation of immunoreactivity was performed semi-quantitatively and the ligand/receptor expression ratio was obtained. An increased VEGF-A/VEGFR1 ratio, VEGF-A and VEGFR1 was linked to the presence of peritumoral lymphocytic inflammation at the invasive front (p = 0.032; p = 0.005; p = 0.032, respectively). VEGFR1 expression was related to poorer outcome in multivariable analysis with pT stage, pN stage, vascular invasion, and post-operative therapy. A higher ratio of VEGF-A/VEGFR2 was linked to advanced TNM stage (p = 0.005) while VEGF-A and VEGFR2 were elevated in tumours with an infiltrating tumour growth pattern (p = 0.006; p = 0.014; p = 0.006). No effect of VEGF-A/VEGFR2, VEGF-A or VEGFR2 on survival time was noted. Our findings highlight an involvement of VEGF-A, VEGR1 and VEGFR2 in events occurring at the invasive tumour front and a potential prognostic role of VEGFR1 expression in mismatch repair-proficient colorectal cancers. The VEGF-A ligand to VEGFR1 or VEGFR2 ratio may represent an alternative evaluation system for identifying patients with poorer clinical outcome

  2. Role of the VEGF ligand to receptor ratio in the progression of mismatch repair-proficient colorectal cancer

    Directory of Open Access Journals (Sweden)

    Terracciano Luigi

    2010-03-01

    Full Text Available Abstract Background The VEGF family of ligands and receptors are intimately involved in tumor angiogenesis, lymphangiogenesis and metastasis. The evaluation of VEGF ligand/receptor ratios may provide a more profound understanding of the involvement of these proteins in colorectal tumour progression. The aim of this study was to elucidate the role of the VEGF ligand/receptor ratios on tumour progression and metastasis in patients with mismatch repair-proficient colorectal cancer. Methods Immunohistochemistry for VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGFR1, VEGFR2 and VEGF3 was carried out on 387 mismatch repair-proficient colorectal cancers using a tissue microarray. Evaluation of immunoreactivity was performed semi-quantitatively and the ligand/receptor expression ratio was obtained. Results An increased VEGF-A/VEGFR1 ratio, VEGF-A and VEGFR1 was linked to the presence of peritumoral lymphocytic inflammation at the invasive front (p = 0.032; p = 0.005; p = 0.032, respectively. VEGFR1 expression was related to poorer outcome in multivariable analysis with pT stage, pN stage, vascular invasion, and post-operative therapy. A higher ratio of VEGF-A/VEGFR2 was linked to advanced TNM stage (p = 0.005 while VEGF-A and VEGFR2 were elevated in tumours with an infiltrating tumour growth pattern (p = 0.006; p = 0.014; p = 0.006. No effect of VEGF-A/VEGFR2, VEGF-A or VEGFR2 on survival time was noted. Conclusions Our findings highlight an involvement of VEGF-A, VEGR1 and VEGFR2 in events occurring at the invasive tumour front and a potential prognostic role of VEGFR1 expression in mismatch repair-proficient colorectal cancers. The VEGF-A ligand to VEGFR1 or VEGFR2 ratio may represent an alternative evaluation system for identifying patients with poorer clinical outcome.

  3. Biased ligand quantification in drug discovery: from theory to high throughput screening to identify new biased μ opioid receptor agonists.

    Science.gov (United States)

    Winpenny, David; Clark, Mellissa; Cawkill, Darren

    2016-04-01

    Biased GPCR ligands are able to engage with their target receptor in a manner that preferentially activates distinct downstream signalling and offers potential for next generation therapeutics. However, accurate quantification of ligand bias in vitro is complex, and current best practice is not amenable for testing large numbers of compound. We have therefore sought to apply ligand bias theory to an industrial scale screening campaign for the identification of new biased μ receptor agonists. μ receptor assays with appropriate dynamic range were developed for both Gαi -dependent signalling and β-arrestin2 recruitment. Δlog(Emax /EC50 ) analysis was validated as an alternative for the operational model of agonism in calculating pathway bias towards Gαi -dependent signalling. The analysis was applied to a high throughput screen to characterize the prevalence and nature of pathway bias among a diverse set of compounds with μ receptor agonist activity. A high throughput screening campaign yielded 440 hits with greater than 10-fold bias relative to DAMGO. To validate these results, we quantified pathway bias of a subset of hits using the operational model of agonism. The high degree of correlation across these biased hits confirmed that Δlog(Emax /EC50 ) was a suitable method for identifying genuine biased ligands within a large collection of diverse compounds. This work demonstrates that using Δlog(Emax /EC50 ), drug discovery can apply the concept of biased ligand quantification on a large scale and accelerate the deliberate discovery of novel therapeutics acting via this complex pharmacology. © 2016 The British Pharmacological Society.

  4. New Quinoxaline Derivatives as Potential MT1 and MT2 Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Saioa Ancizu

    2012-06-01

    Full Text Available Ever since the idea arose that melatonin might promote sleep and resynchronize circadian rhythms, many research groups have centered their efforts on obtaining new melatonin receptor ligands whose pharmacophores include an aliphatic chain of variable length united to an N-alkylamide and a methoxy group (or a bioisostere, linked to a central ring. Substitution of the indole ring found in melatonin with a naphthalene or quinoline ring leads to compounds of similar affinity. The next step in this structural approximation is to introduce a quinoxaline ring (a bioisostere of the quinoline and naphthalene rings as the central nucleus of future melatoninergic ligands.

  5. Unusual linkage patterns of ligands and their cognate receptors indicate a novel reason for non-random gene order in the human genome

    Directory of Open Access Journals (Sweden)

    Lercher Martin J

    2005-11-01

    Full Text Available Abstract Background Prior to the sequencing of the human genome it was typically assumed that, tandem duplication aside, gene order is for the most part random. Numerous observers, however, highlighted instances in which a ligand was linked to one of its cognate receptors, with some authors suggesting that this may be a general and/or functionally important pattern, possibly associated with recombination modification between epistatically interacting loci. Here we ask whether ligands are more closely linked to their receptors than expected by chance. Results We find no evidence that ligands are linked to their receptors more closely than expected by chance. However, in the human genome there are approximately twice as many co-occurrences of ligand and receptor on the same human chromosome as expected by chance. Although a weak effect, the latter might be consistent with a past history of block duplication. Successful duplication of some ligands, we hypothesise, is more likely if the cognate receptor is duplicated at the same time, so ensuring appropriate titres of the two products. Conclusion While there is an excess of ligands and their receptors on the same human chromosome, this cannot be accounted for by classical models of non-random gene order, as the linkage of ligands/receptors is no closer than expected by chance. Alternative hypotheses for non-random gene order are hence worth considering.

  6. Novel Chemical Strategies for Labeling Small Molecule Ligands for Androgen, Progestin, and Peroxisome Proliferator-Activated Receptors for Imaging Prostate and Breast Cancer and the Heart

    Energy Technology Data Exchange (ETDEWEB)

    Katzenellenbogen, John, A.

    2007-04-19

    Summary of Progress The specific aims of this project can be summarized as follows: • Aim 1: Prepare and evaluate radiolabeled ligands for the peroxisome proliferator-activated receptor (PPAR), a new nuclear hormone receptor target for tumor imaging and hormone therapy. • Aim 2: Prepare steroids labeled with a cyclopentadienyl tricarbonyl technetium or rhenium unit. • Aim 3: Prepare and evaluate other organometallic systems of novel design as ligand mimics and halogenated ligands for nuclear hormone receptor-based tumor imaging. As is described in detail below, we made excellent progress on all three of these aims; the highlights of our progress are the following: • we have prepared the first fluorine-18 labeled analogs of ligands for the PPAR receptor and used these in tissue distribution studies in rats • we have developed three new methods for the synthesis of cyclopentadienyltricarbonyl rhenium and technetium (CpRe(CO)3 and CpTc(CO)3) systems and we have adapted these to the synthesis of steroids labeled with these metals, as well as ligands for other receptor systems • we have prepared a number of fluorine-18 labeled steroidal and non-steroidal androgens and measured their tissue distribution in rats • we have prepared iodine and bromine-labeled progestins with high progesterone receptor binding affinity • we have prepared inorganic metal tricarbonyl complexes and steroid receptor ligands in which the metal tricarbonyl unit is an integral part off the ligand core.

  7. Novel Chemical Strategies for Labeling Small Molecule Ligands for Androgen, Progestin, and Peroxisome Proliferator-Activated Receptors for Imaging Prostate and Breast Cancer and the Heart

    International Nuclear Information System (INIS)

    Katzenellenbogen, John A.

    2007-01-01

    Summary of Progress The specific aims of this project can be summarized as follows: Aim 1: Prepare and evaluate radiolabeled ligands for the peroxisome proliferator-activated receptor γ (PPARγ), a new nuclear hormone receptor target for tumor imaging and hormone therapy. Aim 2: Prepare steroids labeled with a cyclopentadienyl tricarbonyl technetium or rhenium unit. Aim 3: Prepare and evaluate other organometallic systems of novel design as ligand mimics and halogenated ligands for nuclear hormone receptor-based tumor imaging. As is described in detail in the report, we made excellent progress on all three of these aims; the highlights of our progress are the following: (1) we have prepared the first fluorine-18 labeled analogs of ligands for the PPARγ receptor and used these in tissue distribution studies in rats; (2) we have developed three new methods for the synthesis of cyclopentadienyltricarbonyl rhenium and technetium (CpRe(CO)3 and CpTc(CO)3) systems and we have adapted these to the synthesis of steroids labeled with these metals, as well as ligands for other receptor systems; (3) we have prepared a number of fluorine-18 labeled steroidal and non-steroidal androgens and measured their tissue distribution in rats; (4) we have prepared iodine and bromine-labeled progestins with high progesterone receptor binding affinity; and (5) we have prepared inorganic metal tricarbonyl complexes and steroid receptor ligands in which the metal tricarbonyl unit is an integral part off the ligand core

  8. Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

    International Nuclear Information System (INIS)

    Ahmed, Asif; Nagarajan, Shanthi; Doddareddy, Munikumar Reddy; Cho, Yong Seo; Pae, Ae Nim

    2011-01-01

    Serotonin or 5-hydroxytryptamine subtype 2C (5-HT 2C ) receptor belongs to class A amine subfamily of Gprotein- coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (β2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification

  9. Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Asif; Nagarajan, Shanthi; Doddareddy, Munikumar Reddy; Cho, Yong Seo; Pae, Ae Nim [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2011-06-15

    Serotonin or 5-hydroxytryptamine subtype 2C (5-HT{sub 2C}) receptor belongs to class A amine subfamily of Gprotein- coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (β2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.

  10. Involvement of the prostatic steroid-binding protein in the transfer of ligand to the dioxin receptor.

    Science.gov (United States)

    Söderkvist, P; Poellinger, L

    1987-09-01

    The prostatic steroid-binding protein (PSP) represents a highly abundant protein in the rat prostate which binds carcinogens reversibly and with high affinity. The biological role of PSP and the toxicological implications of the carcinogen-protein interaction are unclear. In this report, we have attempted to examine a possible role of PSP in the transfer of ligands to the dioxin receptor. PSP was purified from the rat ventral prostate and labeled in vitro with 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (dioxin). Dioxin-labeled PSP was then incubated with rat liver cytosol in the presence or absence of a 200-fold excess of nonradioactive competitor, 2,3,7,8-tetrachlorodibenzofuran. After 2 h of incubation, a complete in vitro transfer of ligand from PSP to the rat hepatic dioxin receptor was observed, as assessed by velocity sedimentation analysis of specific dioxin binding. These results indicate that a high abundance carcinogen-binding protein, such as PSP, may be of importance in the cellular transfer of dioxin receptor ligands, thereby eliciting a receptor-mediated biochemical and/or toxic response.

  11. Identification of endogenous surrogate ligands for human P2Y12 receptors by in silico and in vitro methods

    International Nuclear Information System (INIS)

    Nonaka