WorldWideScience

Sample records for benzoate catabolite repression

  1. Nitrogen Catabolite Repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hofman-Bang, H Jacob Peider

    1999-01-01

    In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Da180, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence S' GATAA 3'. Gln3...

  2. Onset of carbon catabolite repression in Aspergillus nidulans

    NARCIS (Netherlands)

    Flipphi, M.; Vondervoort, van de P.J.I.; Ruijter, G.J.G.; Visser, J.; Arst Jr., H.N.; Felenbok, B.

    2003-01-01

    The role of hexose phosphorylating enzymes in the signaling of carbon catabolite repression was investigated in the filamentous fungus Aspergillus nidulans. A D-fructose non-utilizing, hexokinase-deficient (hxkA1, formerly designated frA1) strain was utilized to obtain new mutants lacking either glu

  3. Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli.

    Science.gov (United States)

    Isaacs, H; Chao, D; Yanofsky, C; Saier, M H

    1994-08-01

    Repression of tryptophanase (tryptophan indole-lyase) by glucose and its non-metabolizable analogue methyl alpha-glucoside has been studied employing a series of isogenic strains of Escherichia coli lacking cyclic AMP phosphodiesterase and altered for two of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), Enzyme I and Enzyme IIAGlc. Basal activity of tryptophanase was depressed mildly by inclusion of glucose in the growth medium, but inducible tryptophanase synthesis was subject to strong glucose repression in the parental strain, which exhibited normal PTS enzyme activities. Methyl alpha-glucoside was without effect in this strain. Loss of Enzyme I decreased sensitivity to repression by glucose but enhanced sensitivity to repression by methyl alpha-glucoside. Loss of Enzyme IIAGlc activity largely abolished repression by methyl alpha-glucoside but had a less severe effect on glucose repression. The repressive effects of both sugars were fully reversed by inclusion of cyclic AMP in the growth medium. Tryptophan uptake under the same conditions was inhibited weakly by glucose and more strongly by methyl alpha-glucoside in the parental strain. Inhibition by both sugars was alleviated by partial loss of Enzyme I. Inhibition by methyl alpha-glucoside appeared to be largely due to energy competition and was not responsible for repression of tryptophanase synthesis. Measurement of net production of cyclic AMP as well as intracellular concentrations of cyclic AMP revealed a good correlation with intensity of repression. The results suggest that while basal tryptophanase synthesis is relatively insensitive to catabolite repression, inducible synthesis is subject to strong repression by two distinct mechanisms, one dependent on enzyme IIAGlc of the PTS and the other independent of this protein. Both mechanisms are attributable to depressed rates of cyclic AMP synthesis. No evidence for a cyclic-AMP-independent mechanism of catabolite

  4. Nitrogen catabolite repression of asparaginase II in Saccharomyces cerevisiae.

    OpenAIRE

    Dunlop, P C; Meyer, G M; Roon, R J

    1980-01-01

    The biosynthesis of asparaginase II in Saccharomyces cerevisiae is subject to strong catabolite repression by a variety of nitrogen compounds. In the present study, asparaginase II synthesis was examined in a wild-type yeast strain and in strains carrying gdhA, gdhCR, or gdhCS mutations. The following effects were observed: (i) In the wild-type strain, the biosynthesis of asparaginase II was strongly repressed when either 10 mM ammonium sulfate or various amino acids (10 mM) served as the sou...

  5. Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Gao, Qingguo; Chen, Wanying;

    2013-01-01

    that the Pseudomonas aeruginosa catabolite repression control protein regulates the Pseudomonas quinolone signal quorum sensing, which further controls synthesis of virulence factor pyocyanin, biofilm formation and survival during infection models. Our study suggests that deregulation of the catabolite repression by P...

  6. What is the function of nitrogen catabolite repression in Saccharomyces cerevisiae?

    OpenAIRE

    Cooper, T. G.; Sumrada, R A

    1983-01-01

    In contrast to the previously held notion that nitrogen catabolite repression is primarily responsible for the ability of yeast cells to use good nitrogen sources in preference to poor ones, we demonstrate that this ability is probably the result of other control mechanisms, such as metabolite compartmentation. We suggest that nitrogen repression is functionally a long-term adaptation to changes in the nutritional environment of yeast cells.

  7. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast

    OpenAIRE

    Xiaoying Sun; Go Hirai; Masashi Ueki; Hiroshi Hirota; Qianqian Wang; Yayoi Hongo; Takemichi Nakamura; Yuki Hitora; Hidekazu Takahashi; Mikiko Sodeoka; Hiroyuki Osada; Makiko Hamamoto; Minoru Yoshida; Yoko Yashiroda

    2016-01-01

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4 + and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies...

  8. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Roca, Christophe Francois Aime; Haack, Martin Brian; Olsson, Lisbeth

    2004-01-01

    Two xylose-fermenting glucose-derepressed Saccharomyces cerevisiae strains were constructed in order to investigate the influence of carbon catabolite repression on xylose metabolism. S. cerevisiae CPB.CR2 (Deltamig1, XYL1, XYL2, XKS1) and CPB.MBH2 (Deltamig1, Deltamig2, XYL1, XYL2, XKS1) were...... of CPB.CR2, where the cells are assumed to grow under non-repressive conditions as they sense almost no glucose, invertase activity was lower during growth on xylose and glucose than on glucose only. The 3-fold reduction in invertase activity could only be attributed to the presence of xylose, suggesting...

  9. The MOX promoter in Hansenula polymorpha is ultrasensitive to glucose-mediated carbon catabolite repression.

    Science.gov (United States)

    Dusny, Christian; Schmid, Andreas

    2016-09-01

    Redesigning biology towards specific purposes requires a functional understanding of genetic circuits. We present a quantitative in-depth study on the regulation of the methanol-specific MOX promoter system (PMOX) at the single-cell level. We investigated PMOX regulation in the methylotrophic yeast Hansenula (Ogataea) polymorpha with respect to glucose-mediated carbon catabolite repression. This promoter system is particularly delicate as the glucose as carbon and energy source in turn represses MOX promoter activity. Decoupling single cells from population activity revealed a hitherto underrated ultrasensitivity of the MOX promoter to glucose repression. Environmental control with single-cell technologies enabled quantitative insights into the balance between activation and repression of PMOX with respect to extracellular glucose concentrations. While population-based studies suggested full MOX promoter derepression at extracellular glucose concentrations of ∼1 g L(-1), we showed that glucose-mediated catabolite repression already occurs at concentrations as low as 5 × 10(-4) g L(-1) These findings demonstrate the importance of uncoupling single cells from populations for understanding the mechanisms of promoter regulation in a quantitative manner.

  10. Different levels of catabolite repression optimize growth in stable and variable environments.

    Directory of Open Access Journals (Sweden)

    Aaron M New

    2014-01-01

    Full Text Available Organisms respond to environmental changes by adapting the expression of key genes. However, such transcriptional reprogramming requires time and energy, and may also leave the organism ill-adapted when the original environment returns. Here, we study the dynamics of transcriptional reprogramming and fitness in the model eukaryote Saccharomyces cerevisiae in response to changing carbon environments. Population and single-cell analyses reveal that some wild yeast strains rapidly and uniformly adapt gene expression and growth to changing carbon sources, whereas other strains respond more slowly, resulting in long periods of slow growth (the so-called "lag phase" and large differences between individual cells within the population. We exploit this natural heterogeneity to evolve a set of mutants that demonstrate how the frequency and duration of changes in carbon source can favor different carbon catabolite repression strategies. At one end of this spectrum are "specialist" strategies that display high rates of growth in stable environments, with more stringent catabolite repression and slower transcriptional reprogramming. The other mutants display less stringent catabolite repression, resulting in leaky expression of genes that are not required for growth in glucose. This "generalist" strategy reduces fitness in glucose, but allows faster transcriptional reprogramming and shorter lag phases when the cells need to shift to alternative carbon sources. Whole-genome sequencing of these mutants reveals that mutations in key regulatory genes such as HXK2 and STD1 adjust the regulation and transcriptional noise of metabolic genes, with some mutations leading to alternative gene regulatory strategies that allow "stochastic sensing" of the environment. Together, our study unmasks how variable and stable environments favor distinct strategies of transcriptional reprogramming and growth.

  11. Ethanol from Whey: Continuous Fermentation with a Catabolite Repression-Resistant Saccharomyces cerevisiae Mutant.

    Science.gov (United States)

    Terrell, S L; Bernard, A; Bailey, R B

    1984-09-01

    An alternative method for the conversion of cheese whey lactose into ethanol has been demonstrated. With the help of continuous-culture technology, a catabolite repression-resistant mutant of Saccharomyces cerevisiae completely fermented equimolar mixtures of glucose and galactose into ethanol. The first step in this process was a computer-controlled fed-batch operation based on the carbon dioxide evolution rate of the culture. In the absence of inhibitory ethanol concentrations, this step allowed us to obtain high biomass concentrations before continuous fermentation. The continuous anaerobic process successfully incorporated a cell-recycle system to optimize the fermentor productivity. Under conditions permitting a low residual sugar concentration (

  12. The Pasteur effect and catabolite repression in an oxidative yeast, Kluyveromyces lactis.

    Science.gov (United States)

    Royt, P W; MacQuillan, A M

    1979-01-01

    The presence of the Pasteur effect in Kluyveromyces lactis grown in glucose was shown by azide-stimulated glucose fermentation. Extracts from these cells contained ATP-sensitive phosphofructokinase activity. Cells grown on succinate oxidized glucose slowly at first without azide-stimulated rates of fermentation. Phosphofructokinase in these cells was ATP-insensitive. The activity of NAD+-isocitrate dehydrogenase in cell extracts did not require AMP activation. These results suggested the presence of a Pasteur effect in glucose-grown but not in succinate-grown K. lactis, mediated by (a) ATP inhibition of phosphofructokinase (b) possibly via feedback control of glucose transport, but not by AMP activation of isocitrate dehydrogenase. Azide inhibition of the Pasteur effect during growth of the cells did not lead to catabolite repression of respiratory activity. The results therefore suggest that the Pasteur effect does not inhibit the development of a Crabtree effect in oxidative yeasts.

  13. Pectin lyase overproduction by Penicillium griseoroseum mutants resistant to catabolite repression.

    Science.gov (United States)

    Lima, Juliana Oliveira; Pereira, Jorge Fernando; Araújo, Elza Fernandes de; Queiroz, Marisa Vieira de

    2017-02-09

    Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were also studied. The mutants were analyzed for pectinases production on pectinase-agar plates and five mutants and two sectors showing larger clearing zones than the wild type were selected for quantitative assay. Although PL production higher than the wild type has been found, phenotype instability was observed for most of the mutants and, after transfers to nonselective medium, the DG resistance was no longer present. Only mutants M03 and M04 were stable maintaining the DG-resistance phenotype. When growing for 120h in liquid medium containing glucose with or without pectin, both mutants showed higher PL production. In the presence of glucose as sole carbon source, the mutant M03 produced 7.8-fold more PL than the wild type. Due its phenotypic stability and PL overproduction, the mutant M03 presents potential for industrial applications.

  14. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs.

    Science.gov (United States)

    Fayyad-Kazan, Mohammad; Feller, A; Bodo, E; Boeckstaens, M; Marini, A M; Dubois, E; Georis, I

    2016-01-01

    Nitrogen catabolite repression (NCR) is a wide transcriptional regulation program enabling baker's yeast to downregulate genes involved in the utilization of poor nitrogen sources when preferred ones are available. Nowadays, glutamine and glutamate, the major nitrogen donors for biosyntheses, are assumed to be key metabolic signals regulating NCR. NCR is controlled by the conserved TORC1 complex, which integrates nitrogen signals among others to regulate cell growth. However, accumulating evidence indicate that the TORC1-mediated control of NCR is only partial, arguing for the existence of supplementary regulatory processes to be discovered. In this work, we developed a genetic screen to search for new players involved in NCR signaling. Our data reveal that the NADP-glutamate dehydrogenase activity of Gdh1 negatively regulates NCR-sensitive gene transcription. By determining the total, cytoplasmic and vacuolar pools of amino acids, we show that there is no positive correlation between glutamine/glutamate reservoirs and the extent of NCR. While our data indicate that glutamine could serve as initial trigger of NCR, they show that it is not a sufficient signal to sustain repression and point to the existence of yet unknown signals. Providing additional evidence uncoupling TORC1 activity and NCR, our work revisits the dogmas underlying NCR regulation.

  15. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast.

    Science.gov (United States)

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko

    2016-02-19

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4(+) and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast.

  16. Amino Acid Catabolism in Staphylococcus aureus and the Function of Carbon Catabolite Repression

    Science.gov (United States)

    Halsey, Cortney R.; Lei, Shulei; Wax, Jacqueline K.; Lehman, Mckenzie K.; Nuxoll, Austin S.; Steinke, Laurey; Sadykov, Marat

    2017-01-01

    ABSTRACT Staphylococcus aureus must rapidly adapt to a variety of carbon and nitrogen sources during invasion of a host. Within a staphylococcal abscess, preferred carbon sources such as glucose are limiting, suggesting that S. aureus survives through the catabolism of secondary carbon sources. S. aureus encodes pathways to catabolize multiple amino acids, including those that generate pyruvate, 2-oxoglutarate, and oxaloacetate. To assess amino acid catabolism, S. aureus JE2 and mutants were grown in complete defined medium containing 18 amino acids but lacking glucose (CDM). A mutation in the gudB gene, coding for glutamate dehydrogenase, which generates 2-oxoglutarate from glutamate, significantly reduced growth in CDM, suggesting that glutamate and those amino acids generating glutamate, particularly proline, serve as the major carbon source in this medium. Nuclear magnetic resonance (NMR) studies confirmed this supposition. Furthermore, a mutation in the ackA gene, coding for acetate kinase, also abrogated growth of JE2 in CDM, suggesting that ATP production from pyruvate-producing amino acids is also critical for growth. In addition, although a functional respiratory chain was absolutely required for growth, the oxygen consumption rate and intracellular ATP concentration were significantly lower during growth in CDM than during growth in glucose-containing media. Finally, transcriptional analyses demonstrated that expression levels of genes coding for the enzymes that synthesize glutamate from proline, arginine, and histidine are repressed by CcpA and carbon catabolite repression. These data show that pathways important for glutamate catabolism or ATP generation via Pta/AckA are important for growth in niches where glucose is not abundant, such as abscesses within skin and soft tissue infections. PMID:28196956

  17. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.

    Science.gov (United States)

    Pannuri, Archana; Vakulskas, Christopher A; Zere, Tesfalem; McGibbon, Louise C; Edwards, Adrianne N; Georgellis, Dimitris; Babitzke, Paul; Romeo, Tony

    2016-11-01

    Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status.

  18. Mutations in Escherichia coli that relieve catabolite repression of tryptophanase synthesis. Tryptophanase promoter-like mutations.

    Science.gov (United States)

    Ward, D F; Yudkin, M D

    1976-01-01

    From a strain lacking adenyl cyclase and the catabolite-sensitive gene activator protein, two mutants were isolated that can synthesize tryptophanase. Each mutation is extremely closely linked to the tryptophanase structural gene. The mutations differ from one another in the rate of synthesis of tryptophanase that they permit in the genetic background in which they were isolated; they differ from one another and also from the wild type in the maximum rate of synthesis of tryptophanase that they permit in a genetic background with intact adenyl cyclase and catabolite-sensitive gene activator protein. Both mutations appear to lie in the tryptophanase promoter.

  19. The interplay of StyR and IHF regulates substrate-dependent induction and carbon catabolite repression of styrene catabolism genes in Pseudomonas fluorescens ST

    Directory of Open Access Journals (Sweden)

    Leoni Livia

    2008-06-01

    Full Text Available Abstract Background In Pseudomonas fluorescens ST, the promoter of the styrene catabolic operon, PstyA, is induced by styrene and is subject to catabolite repression. PstyA regulation relies on the StyS/StyR two-component system and on the IHF global regulator. The phosphorylated response regulator StyR (StyR-P activates PstyA in inducing conditions when it binds to the high-affinity site STY2, located about -40 bp from the transcription start point. A cis-acting element upstream of STY2, named URE, contains a low-affinity StyR-P binding site (STY1, overlapping the IHF binding site. Deletion of the URE led to a decrease of promoter activity in inducing conditions and to a partial release of catabolite repression. This study was undertaken to assess the relative role played by IHF and StyR-P on the URE, and to clarify if PstyA catabolite repression could rely on the interplay of these regulators. Results StyR-P and IHF compete for binding to the URE region. PstyA full activity in inducing conditions is achieved when StyR-P and IHF bind to site STY2 and to the URE, respectively. Under catabolite repression conditions, StyR-P binds the STY1 site, replacing IHF at the URE region. StyR-P bound to both STY1 and STY2 sites oligomerizes, likely promoting the formation of a DNA loop that closes the promoter in a repressed conformation. We found that StyR and IHF protein levels did not change in catabolite repression conditions, implying that PstyA repression is achieved through an increase in the StyR-P/StyR ratio. Conclusion We propose a model according to which the activity of the PstyA promoter is determined by conformational changes. An open conformation is operative in inducing conditions when StyR-P is bound to STY2 site and IHF to the URE. Under catabolite repression conditions StyR-P cellular levels would increase, displacing IHF from the URE and closing the promoter in a repressed conformation. The balance between the open and the closed

  20. Arabinase induction and carbon catabolite repression in Aspergillus niger and Aspergillus nidulans.

    NARCIS (Netherlands)

    Veen, van der P.

    1995-01-01

    The first aim of this thesis was to get a better understanding of the properties and the induction features of arabinan degrading enzymes and enzymes involved in the intracellular L-arabinose catabolic pathway in Aspergillus niger. The second aim was to understand the which role carbon catabolite re

  1. Overexpression of a Gene Encoding a Catabolite Repression Element in Alternaria citri Causes Severe Symptoms of Black Rot in Citrus Fruit.

    Science.gov (United States)

    Katoh, H; Ohtani, K; Yamamoto, H; Akimitsu, K

    2007-05-01

    ABSTRACT A gene (AcCreA) encoding a catabolite repression element (CreA) with (two zinc fingers of the Cys(2)His(2) type was isolated from the postharvest fungal pathogen Alternaria citri. The AcCreA overexpression mutant AcOEC2 of A. citri showed normal growth on pectin medium and on segments of peel or the juice sac area from citrus fruit. Production of endopolygalacturonase, an essential virulence factor of this pathogen, was similar in AcOEC2 and the wild type in pectin-containing media. However, addition of glucose to the medium showed that carbon catabolite repression of endopolygalacturonase gene (Acpg1) expression, as well as endopolygalacturonase production, was lost in AcOEC2. The wild-type strain of A. citri causes rot mainly in the central axis of citrus fruit without development of rotting in the juice sac area; however, AcOEC2 caused severe black rot symptoms in both the central axis and juice sac areas. These results indicate that AcCreA-mediated catabolite repression controls the virulence or infection of this pathogen, and that the wild-type A. citri does not cause symptoms in the juice sac area due to carbon catabolite repression by sugars in the juice of the juice sac area.

  2. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.

    Science.gov (United States)

    del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Linares, Daniel M; Fernández, Maria; Martín, Maria Cruz; Alvarez, Miguel A

    2015-06-01

    Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains.

  3. The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy

    NARCIS (Netherlands)

    Stasyk, Olena G.; Van Zutphen, Tim; Kang, Huyn Ah; Stasyk, Oleh V.; Veenhuis, Marten; Sibirny, Andriy A.

    2007-01-01

    In the methanol-utilizing yeast Hansenula polymorpha, glucose and ethanol trigger the repression of peroxisomal enzymes at the transcriptional level, and rapid and selective degradation of methanol-induced peroxisomes by means of a process termed pexophagy. In this report we demonstrate that deficie

  4. Catabolite repression of the SirA regulatory cascade in Salmonella enterica.

    Science.gov (United States)

    Teplitski, Max; Goodier, Robert I; Ahmer, Brian M M

    2006-11-01

    Orthologs of the Salmonella BarA/SirA two-component system are required for virulence, motility, secondary metabolism and stress survival throughout the gamma-proteobacteria. BarA is a sensor kinase that responds to an unknown signal by phosphorylating the response regulator SirA. SirA increases the expression of genes within Salmonella pathogenicity island 1 (SPI1) that encode a type III secretion system (TTSS-1). SirA does this by directly activating the hilA and hilC regulatory genes encoded within SPI1. SirA also directly activates the csrB regulatory RNA gene. This RNA antagonizes the activity of the post-transcriptional regulatory protein CsrA that binds the mRNA of its targets to regulate SPI1, motility and secondary metabolism. A second regulatory RNA, csrC, is also strongly regulated by SirA, although gel mobility shift assays do not demonstrate a direct interaction. Additionally, we have determined that the sirA gene is activated by crp and cya. The effects of crp and cya were also observed on the downstream members of the SirA regulon, hilA, sopB, csrB, and csrC. However, gel mobility shift experiments and DNA sequence analysis suggest that the regulation of sirA by CRP is probably indirect. Although SirA does not regulate csrA, this gene was also under crp/cya control. Supplementation of a rich medium with phosphate diminished the catabolite control of the csr portion but not the virulence portion of the SirA regulon.

  5. Cyclic 3',5'-adenosine monophosphate and N-acetylglucosamine-6-phosphate as regulatory signals in catabolite repression of the lac operon in Escherichia coli.

    Science.gov (United States)

    Goldenbaum, P E; Broman, R L; Dobrogosz, W J

    1970-09-01

    When an Escherichia coli mutant lacking the enzyme N-acetyl-glucosamine-6-phosphate (AcGN6P) deacetylase is grown in a succinate-mineral salts medium and exposed to an exogenous source of N-acetylglucosamine, approximately 20 to 30 pmoles of AcGN6P per mug of cell dry weight will accumulate in these cells. This accumulation occurs within 2 to 4 min after the addition of N-acetylglucosamine and is coincident with the production of a severe permanent catabolite repression of beta-galactosidase synthesis. This repression does not occur if adenosine 3',5'-cyclic phosphate (cyclic AMP) is added to the cells before AcGN6P accumulates. An immediate derepression occurs when cyclic AMP is added to cells that have already accumulated a large AcGN6P pool. These findings are consistent with the view that low-molecular-weight carbohydrate metabolites and cyclic AMP play key roles in the catabolite repression phenomenon, and that metabolites such as AcGN6P may participate in the represion mechanism by influencing either the formation or degradation of cyclic AMP in E. coli.

  6. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    OpenAIRE

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T. G.

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupt...

  7. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans.

    Science.gov (United States)

    Kulmburg, P; Mathieu, M; Dowzer, C; Kelly, J; Felenbok, B

    1993-03-01

    The CREA repressor responsible for carbon catabolite repression in Aspergillus nidulans represses the transcription of the ethanol regulon. The N-terminal part of the CREA protein encompassing the two zinc fingers (C2H2 class family) and an alanine-rich region was expressed in Escherichia coli as a fusion protein with glutathione-S-transferase. Our results show that CREA is a DNA-binding protein able to bind to the promoters of both the specific trans-acting gene, alcR, and of the structural gene, alcA, encoding the alcohol dehydrogenase I. DNase I protection footprinting experiments revealed several specific binding sites in the alcR and in the alcA promoters having the consensus sequence 5'-G/CPyGGGG-3'. The disruption of one of these CREA-binding sites in the alcR promoter overlapping the induction target for the trans-activator ALCR results in a partially derepressed alc phenotype and derepressed alcR transcription, showing that this binding site is functional in vivo. Our data suggest that CREA represses the ethanol regulon by a double lock mechanism repressing both the trans-acting gene, alcR, and the structural gene, alcA.

  8. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    LENUS (Irish Health Repository)

    Browne, Patrick

    2010-11-25

    Abstract Background Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5\\' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate

  9. Yeast Carbon Catabolite Repression†

    Science.gov (United States)

    Gancedo, Juana M.

    1998-01-01

    Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated. PMID:9618445

  10. 大肠杆菌碳分解代谢抑制及混合C源共利用的研究进展%Carbon catabolite repression and co-utilization of mixed carbon sources in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    张旭; 李宜奎; 祁庆生

    2014-01-01

    The recent development in carbon catabolite repression( CCR) and its effect on carbon resource utilization are summarized.Meanwhile, the co-utilization of the mixed carbon sources in engineered Escherichia coli are analyzed and prospected.%总结了大肠杆菌中C源分解代谢( carbon catabolite repression,CCR)现象的原理及特点,综述并分析了如何通过对宿主菌进行基因工程改造以解除碳代谢抑制,以实现大肠杆菌利用多种C源。

  11. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Kordowska-Wiater, Monika; Targoński, Zdzisław

    2002-01-01

    Restricted glucose catabolite repressed mutants of P. stipiti CCY 39501 were selected using UV irradiation. Four mutants were obtained which assimilated glucose slower than the native strain of P. stipitis and the degree of glucose repression was about 2-fold lower for P5-90-133 and P5-200-16 mutants and about 10-fold lower for P5-80-7 and P5-80-35 mutants. P5-80-7 and P5-80-35 produced very small amounts of ethanol from glucose and xylose, whereas P5-90-133 and P5-200-16 fermented sugars at the wild-type level. These two mutants were selected for co-fermentation process with native strain of S. cerevisiae V30 or Ja(a), as well as with their respiratory deficient mutants. During co-culture process of P. stipitis mutants with native strains of S. cerevisiae the ethanol yields obtained ranged from 0.38 to 0.45 g/g, and this alcohol was produced mainly from glucose. But, when also xylose, besides glucose was fermented to ethanol during co-fermentation of both mutant strains, lower yields of ethanol (0.28-0.40 g/g) were obtained.

  12. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T G

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupted. Expression of the GDH1, PUT1, PUT2, and PUT4 genes also responded to DAL80 disruption, but much more modestly. Expression of GLN1 and GDH2 exhibited parallel responses to the provision of asparagine and glutamine as nitrogen sources but did not follow the regulatory responses noted above for the nitrogen catabolic genes such as DAL5. Steady-state mRNA levels of both genes did not significantly decrease when glutamine was provided as nitrogen source but were lowered by the provision of asparagine. They also did not respond to disruption of DAL80.

  13. Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase

    Directory of Open Access Journals (Sweden)

    Nahku Ranno

    2010-12-01

    Full Text Available Abstract Background The biotechnology industry has extensively exploited Escherichia coli for producing recombinant proteins, biofuels etc. However, high growth rate aerobic E. coli cultivations are accompanied by acetate excretion i.e. overflow metabolism which is harmful as it inhibits growth, diverts valuable carbon from biomass formation and is detrimental for target product synthesis. Although overflow metabolism has been studied for decades, its regulation mechanisms still remain unclear. Results In the current work, growth rate dependent acetate overflow metabolism of E. coli was continuously monitored using advanced continuous cultivation methods (A-stat and D-stat. The first step in acetate overflow switch (at μ = 0.27 ± 0.02 h-1 is the repression of acetyl-CoA synthethase (Acs activity triggered by carbon catabolite repression resulting in decreased assimilation of acetate produced by phosphotransacetylase (Pta, and disruption of the PTA-ACS node. This was indicated by acetate synthesis pathways PTA-ACKA and POXB component expression down-regulation before the overflow switch at μ = 0.27 ± 0.02 h-1 with concurrent 5-fold stronger repression of acetate-consuming Acs. This in turn suggests insufficient Acs activity for consuming all the acetate produced by Pta, leading to disruption of the acetate cycling process in PTA-ACS node where constant acetyl phosphate or acetate regeneration is essential for E. coli chemotaxis, proteolysis, pathogenesis etc. regulation. In addition, two-substrate A-stat and D-stat experiments showed that acetate consumption capability of E. coli decreased drastically, just as Acs expression, before the start of overflow metabolism. The second step in overflow switch is the sharp decline in cAMP production at μ = 0.45 h-1 leading to total Acs inhibition and fast accumulation of acetate. Conclusion This study is an example of how a systems biology approach allowed to propose a new regulation mechanism for

  14. Cyclic 3′,5′-Adenosine Monophosphate and N-Acetyl-glucosamine-6-Phosphate as Regulatory Signals in Catabolite Repression of the lac Operon in Escherichia coli1

    Science.gov (United States)

    Goldenbaum, Paul E.; Broman, Rodney L.; Dobrogosz, Walter J.

    1970-01-01

    When an Escherichia coli mutant lacking the enzyme N-acetyl-glucosamine-6-phosphate (AcGN6P) deacetylase is grown in a succinate-mineral salts medium and exposed to an exogenous source of N-acetylglucosamine, approximately 20 to 30 pmoles of AcGN6P per μg of cell dry weight will accumulate in these cells. This accumulation occurs within 2 to 4 min after the addition of N-acetylglucosamine and is coincident with the production of a severe permanent catabolite repression of β-galactosidase synthesis. This repression does not occur if adenosine 3′,5′-cyclic phosphate (cyclic AMP) is added to the cells before AcGN6P accumulates. An immediate derepression occurs when cyclic AMP is added to cells that have already accumulated a large AcGN6P pool. These findings are consistent with the view that low-molecular-weight carbohydrate metabolites and cyclic AMP play key roles in the catabolite repression phenomenon, and that metabolites such as AcGN6P may participate in the represion mechanism by influencing either the formation or degradation of cyclic AMP in E. coli. PMID:4319836

  15. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites.

    Science.gov (United States)

    Panozzo, C; Cornillot, E; Felenbok, B

    1998-03-13

    Carbon catabolite repression is mediated in Aspergillus nidulans by the negative acting protein CreA. The CreA repressor plays a major role in the control of the expression of the alc regulon, encoding proteins required for the ethanol utilization pathway. It represses directly, at the transcriptional level, the specific transacting gene alcR, the two structural genes alcA and aldA, and other alc genes in all physiological growth conditions. Among the seven putative CreA sites identified in the alcA promoter region, we have determined the CreA functional targets in AlcR constitutive and derepressed genetic backgrounds. Two different divergent CreA sites, of which one overlaps a functional AlcR inverted repeat site, are largely responsible for alcA repression. Totally derepressed alcA expression is achieved when these two CreA sites are disrupted in addition to another single site, which overlaps the functional palindromic induction target. The fact that derepression is always associated with alcA overexpression is consistent with a competition model between AlcR and CreA for their cognate targets in the same region of the alcA promoter. Our results also indicate that the CreA repressor is necessary and sufficient for the total repression of the alcA gene.

  16. 细菌碳代谢抑制作用的研究进展%Research Progress on Carbon Catabolite Repression Control in Bacteria

    Institute of Scientific and Technical Information of China (English)

    林文娜; 李亮; 王瑞; 韩云蕾; 代淑贤; 平淑珍; 金芜军; 燕永亮

    2011-01-01

    When exposed to a medium with multi-carbon sources, most bacteria can use one preferred carbon source and prevent the metabolism and utilization of other compounds through decreasing the expression of corresponding genes by repression protein of carbon metabolism. This is called as carbon catabolism repression and widespread in bacteria, which is one of the hotspot of microbe metabolizability research. Through selective utilization of the carbon sources, bacteria obtain high competition and adaptation ability in their living niches. The protein of catabolism repression could play a role through complicated regulation systems, including transcription of activation or repression and control translation of related genes. There are some differences between the class of acting proteins and mechanisms in different bacteria. This review summarized some kind of acting proteins and mechanisms of CRC,which contributed to convince the environment adaption and metabolic diversity and the molecular regulation of carbon metabolism in bacteria.%当生长介质中存在多种碳源时,细菌通常选择利用某一种优先碳源,同时在碳代谢抑制蛋白参与下抑制其他碳源的代谢和利用.这种碳代谢抑制现象广泛存在于细菌中,是当前微生物代谢研究的热点和前沿之一.通过对碳源的选择性优先利用,细菌可以在生存环境中保持高度的竞争力和环境适应能力.碳代谢抑制蛋白通过复杂的调控网络发挥作用,主要通过转录水平上的激活/抑制或者与RNA结合蛋白的翻译控制等方式进行.在不同微生物中,碳代谢抑制蛋白的种类及其作用机制存在一定的差异.综述了目前研究较为深入的几种细菌中的碳代谢抑制蛋白及其作用机制,将有助于深化微生物的环境适应性,代谢多样性和碳代谢分子调控的认识.

  17. Organic acid mediated repression of sugar utilization in rhizobia.

    Science.gov (United States)

    Iyer, Bhagya; Rajput, Mahendrapal Singh; Jog, Rahul; Joshi, Ekta; Bharwad, Krishna; Rajkumar, Shalini

    2016-11-01

    Rhizobia are a class of symbiotic diazotrophic bacteria which utilize C4 acids in preference to sugars and the sugar utilization is repressed as long as C4 acids are present. This can be manifested as a diauxie when rhizobia are grown in the presence of a sugar and a C4 acid together. Succinate, a C4 acid is known to repress utilization of sugars, sugar alcohols, hydrocarbons, etc by a mechanism termed as Succinate Mediated Catabolite Repression (SMCR). Mechanism of catabolite repression determines the hierarchy of carbon source utilization in bacteria. Though the mechanism of catabolite repression has been well studied in model organisms like E. coli, B. subtilis and Pseudomonas sp., mechanism of SMCR in rhizobia has not been well elucidated. C4 acid uptake is important for effective symbioses while mutation in the sugar transport and utilization genes does not affect symbioses. Deletion of hpr and sma0113 resulted in the partial relief of SMCR of utilization of galactosides like lactose, raffinose and maltose in the presence of succinate. However, no such regulators governing SMCR of glucoside utilization have been identified till date. Though rhizobia can utilize multitude of sugars, high affinity transporters for many sugars are yet to be identified. Identifying high affinity sugar transporters and studying the mechanism of catabolite repression in rhizobia is important to understand the level of regulation of SMCR and the key regulators involved in SMCR.

  18. Identification of a Transcriptional Repressor Involved in Benzoate Metabolism in Geobacter bemidjiensis ▿

    OpenAIRE

    2011-01-01

    Subsurface environments contaminated with aromatic compounds can be remediated in situ by Geobacter species. A transcription factor that represses expression of bamA, a benzoate-inducible gene, in Geobacter bemidjiensis during growth with acetate was identified. It is likely that this repressor also regulates other genes involved in aromatic compound metabolism.

  19. Novel targets of the CbrAB/Crc carbon catabolite control system revealed by transcript abundance in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Elisabeth Sonnleitner

    Full Text Available The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase, acsA (acetyl-CoA synthetase, bkdR (regulator of branched-chain amino acid catabolism and aroP2 (aromatic amino acid uptake protein. Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.

  20. (Benzoylaminomethyl 4-[(Benzoylaminomethoxy]benzoate

    Directory of Open Access Journals (Sweden)

    Ana Poceva Panovska

    2010-12-01

    Full Text Available In this note, two procedures for the synthesis of (benzoylaminomethyl 4-[(benzoylamino­methoxy]benzoate (3 are presented. The first procedure is carried out in dioxane/water using benzoylaminomethyl-4-hydroxybenzoate, while the second one employs a suspension of 4-hydroxy­benzoic acid in dioxane. In both procedures, benzamidomethyl triethylammonium chloride is used for the benzamidomethylation reaction.

  1. Repressive Tolerance

    DEFF Research Database (Denmark)

    Pedersen, Morten Jarlbæk

    2016-01-01

    to an administrative culture of repressive tolerance of organised interests: authorities listen but only reacts in a very limited sense. This bears in it the risk of jeopardising the knowledge transfer from societal actors to administrative ditto thus harming the consultation institutions’ potential for strengthening...

  2. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579

    Directory of Open Access Journals (Sweden)

    Buist Girbe

    2008-04-01

    Full Text Available Abstract Background The catabolite control protein CcpA is a transcriptional regulator conserved in many Gram-positives, controlling the efficiency of glucose metabolism. Here we studied the role of Bacillus cereus ATCC 14579 CcpA in regulation of metabolic pathways and expression of enterotoxin genes by comparative transcriptome analysis of the wild-type and a ccpA-deletion strain. Results Comparative analysis revealed the growth performance and glucose consumption rates to be lower in the B. cereus ATCC 14579 ccpA deletion strain than in the wild-type. In exponentially grown cells, the expression of glycolytic genes, including a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase that mediates conversion of D-glyceraldehyde 3-phosphate to 3-phospho-D-glycerate in one single step, was down-regulated and expression of gluconeogenic genes and genes encoding the citric acid cycle was up-regulated in the B. cereus ccpA deletion strain. Furthermore, putative CRE-sites, that act as binding sites for CcpA, were identified to be present for these genes. These results indicate CcpA to be involved in the regulation of glucose metabolism, thereby optimizing the efficiency of glucose catabolism. Other genes of which the expression was affected by ccpA deletion and for which putative CRE-sites could be identified, included genes with an annotated function in the catabolism of ribose, histidine and possibly fucose/arabinose and aspartate. Notably, expression of the operons encoding non-hemolytic enterotoxin (Nhe and hemolytic enterotoxin (Hbl was affected by ccpA deletion, and putative CRE-sites were identified, which suggests catabolite repression of the enterotoxin operons to be CcpA-dependent. Conclusion The catabolite control protein CcpA in B. cereus ATCC 14579 is involved in optimizing the catabolism of glucose with concomitant repression of gluconeogenesis and alternative metabolic pathways. Furthermore, the results point to metabolic control

  3. Vibrational Spectroscopy of Methyl benzoate

    CERN Document Server

    Maiti, Kiran Sankar

    2014-01-01

    Methyl benzoate (MB) is studied as a model compound for the development of new IR pulse schemes with possible applicability to biomolecules. Anharmonic vibrational modes of MB are calculated on different level (MP2, SCS, CCSD(T) with varying basis sets) ab-initio PESs using the vibrational self-consistent field (VSCF) method and its correlation corrected extensions. Dual level schemes, combining different quantum chemical methods for diagonal and coupling potentials, are systematically studied and applied successfully to reduce the computational cost. Isotopic substitution of {\\beta}-hydrogen by deuterium is studied to obtain a better understanding of the molecular vibrational coupling topology.

  4. Interaction of theobromine with sodium benzoate

    Energy Technology Data Exchange (ETDEWEB)

    Nishijo, J.; Yonetani, I.

    1982-03-01

    The interaction of theobromine with sodium benzoate was investigated by PMR spectroscopy. The interaction of theobromine with pentadeuterated benzoic acid (benzoic acid-d5) was examined in the same manner but to a lesser degree. Chemical shifts of theobromine protons were determined as a function of sodium benzoate concentration in deuterium oxide at 30 and 15 degrees. Signals of both methyl groups of theobromine underwent significant upfield shifts when sodium benzoate was added to a theobromine solution. This fact suggests that a complex is formed by vertical stacking or plane-to-plane stacking. The same results were obtained for benzoic acid-d5.

  5. SAGA complex components and acetate repression in Aspergillus nidulans.

    Science.gov (United States)

    Georgakopoulos, Paraskevi; Lockington, Robin A; Kelly, Joan M

    2012-11-01

    Alongside the well-established carbon catabolite repression by glucose and other sugars, acetate causes repression in Aspergillus nidulans. Mutations in creA, encoding the transcriptional repressor involved in glucose repression, also affect acetate repression, but mutations in creB or creC, encoding components of a deubiquitination system, do not. To understand the effects of acetate, we used a mutational screen that was similar to screens that uncovered mutations in creA, creB, and creC, except that glucose was replaced by acetate to identify mutations that were affected for repression by acetate but not by glucose. We uncovered mutations in acdX, homologous to the yeast SAGA component gene SPT8, which in growth tests showed derepression for acetate repression but not for glucose repression. We also made mutations in sptC, homologous to the yeast SAGA component gene SPT3, which showed a similar phenotype. We found that acetate repression is complex, and analysis of facA mutations (lacking acetyl CoA synthetase) indicates that acetate metabolism is required for repression of some systems (proline metabolism) but not for others (acetamide metabolism). Although plate tests indicated that acdX- and sptC-null mutations led to derepressed alcohol dehydrogenase activity, reverse-transcription quantitative real-time polymerase chain reaction showed no derepression of alcA or aldA but rather elevated induced levels. Our results indicate that acetate repression is due to repression via CreA together with metabolic changes rather than due to an independent regulatory control mechanism.

  6. Carbon catabolite repression and global control of the carbohydrate metabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Luesink, E.J.

    1998-01-01

    In view of the economic importance of fermented dairy products considerable scientific attention has been given to various steps of fermentation processes, including the L-lactate formation of lactic acid bacteria (de Vos, 1996). In particular, the carbohydrate metabolism of L. lactis has been the s

  7. Selection of Trichoderma mutants with enhanced cellulase production and resistant to catabolite repression

    Institute of Scientific and Technical Information of China (English)

    Szakacs G; Megyeri L; Kovacs K; Zacchi G

    2004-01-01

    @@ Due to high cost and relatively low efficiency of cellulase enzymes used for the saccharification of pretreated lignocelluloses, the improvement of cellulase secreting microorganisms is of vital importance. Trichoderma reesei QM 6a, an excellent source of cellulase was selected in the late 1960's at Natick Laboratories by its performance on pure cellulose (Solka Floc, Avicel) . QM 6a is the wild parent strain of best existing hypercellulolytic mutants such as Rut C30, VTT-D-80133,L27, CL-847 and others. Utilization of cheaper carbon sources (e. g. , pretreated wood or straw) both in enzyme production and in hydrolysis necessitates to investigate fungal species other than T. reesei.

  8. A novel mechanism controls anaerobic and catabolite regulation of the Escherichia coli tdc operon.

    Science.gov (United States)

    Sawers, G

    2001-03-01

    The tdc operon is subject to CRP-controlled catabolite repression. Expression of the operon is also induced anaerobically, although this regulation does not rely on direct control by either FNR or ArcA. Recently, the anaerobic expression of the tdc operon was found to be fortuitously induced in the presence of glucose by a heterologous gene isolated from the Gram-positive anaerobe Clostridium butyricum. The gene, termed tcbC, encoded a histone-like protein of 14.5 kDa. Using tdc-lacZ fusions, it was shown that TcbC did not activate tdc expression by functionally replacing any of the operon regulators. In vitro transcription analyses with RNA polymerase and CRP revealed that faithful CRP-dependent transcription initiation occurred only on supercoiled templates. No specific, CRP-dependent transcription initiation was observed on relaxed or linear DNA templates. Surprisingly, purified His-tagged TcbC activated transcription from a relaxed, circular template, but not from supercoiled or linear templates. Examination of the CRP binding site of the tdc promoter revealed that it was located 43.5 bp upstream of the transcription initiation site. Repositioning of the CRP site at -41.5 bp abolished activation by the TcbC protein and allowed CRP-dependent transcription to occur on linear, relaxed and supercoiled templates. TcbC bound DNA non-specifically; however, in topoisomerase I relaxation assays, it was demonstrated that TcbC imposed torsional constraints on negatively supercoiled DNA, which influenced the ability of the enzyme to relax the topoisomers. Taken together, these results strongly suggest that TcbC activates transcription of tdc by altering the local topological status of the tdc promoter and that, in the wild-type tdc promoter, the CRP binding site is misaligned to allow transcription to occur only under optimal conditions. Indeed, in vivo transcription analyses revealed that repositioning of the CRP binding site to -41.5 bp resulted in high-level, CRP

  9. Substrate uptake, phosphorus repression, and effect of seed culture on glycopeptide antibiotic production

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Singh, Kamaleshwar P.; Eliasson Lantz, Anna

    2010-01-01

    Actinomycetes, the soil borne bacteria which exhibit filamentous growth, are known for their ability to produce a variety of secondary metabolites including antibiotics. Industrial scale production of such antibiotics is typically carried out in a multi-substrate medium where the product formation...... may experience catabolite repression by one or more of the substrates. Availability of reliable process models is a key bottleneck in optimization of such processes. Here we present a structured kinetic model to describe the growth, substrate uptake and product formation for the glycopeptide...... antibiotic producer strain Amycolatopsis balhimycina DSM5908. The model is based on the premise that the organism is an optimal strategist and that the various metabolic pathways are regulated via key rate limiting enzymes. Further, the model accounts for substrate inhibition and catabolite repression...

  10. Nonfluorescent chlorophyll catabolites in loquat fruits (Eriobotrya japonica Lindl.).

    Science.gov (United States)

    Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio

    2014-10-29

    Nonfluorescent chlorophyll catabolites (NCCs) and nonfluorescent dioxobilane chlorophyll catabolites (NDCCs) are the terminal compounds of the chlorophyll degradation pathway that may display beneficial properties to human health related to their antioxidant properties, which were recently shown. A profile of NCCs/NDCC of the loquat fruit Eriobotrya japonica Lindl. is described. From the 13 known different NCC structures described to date, three have been identified in loquats. Two new structures not defined so far were characterized in loquat fruits: Ej-NCC2, which corresponds to the methyl ester at C13(2) of Bn-NCC1 and in very low amount Ej-NDCC1, the only NDCC found in loquats. Keto-enol tautomerism at the C13(1) position in NCCs is described for the first time as a regular process in chlorophyll catabolism, probably through a nonspecific mechanism since almost all the chlorophyll catabolites structures detected in fruits of loquat present keto and enol tautomers. The results obtained have been possible through a high-performance liquid chromatography coupled with electrospray ionization ion trap and quadropole time-of-flight mass spectrometry fitted with a powerful postprocessing software.

  11. 21 CFR 582.3733 - Sodium benzoate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium benzoate. 582.3733 Section 582.3733 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  12. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA

    NARCIS (Netherlands)

    Luesink, Evert J.; Herpen, René E.M.A. van; Grossiord, Benoît P.; Kuipers, Oscar P.; Vos, Willem M. de

    1998-01-01

    The Lactococcus lactis ccpA gene, encoding the global regulatory protein CcpA, was identified and characterized. Northern blot and primer extension analyses showed that the L. lactis ccpA gene is constitutively transcribed from a promoter that does not contain a cre sequence. Inactivation of the ccp

  13. Anaerobic degradation of benzoate by sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.P.; Adorno, M.A.T.; Moraes, E.M.; Varesche, M.B.A. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Biological Processes Laboratory

    2004-07-01

    Anaerobic processes are an efficient way to degrade aromatic compounds in industrial wastewater, such as phenol, cresol and benzoate. This study characterized the bacteria that degrades benzoate, an anaerobic degradation intermediate of several complex aromatic compounds. In particular, the study assessed the capacity to use benzoate with sulfate reducing bacteria in mesophilic conditions. Biofilm from polyurethane foam matrices of a fixed bed reactor was used as the cellular inoculum to treat industrial wastewater containing organic peroxide. Dilution techniques were used to purify the material and obtain cultures of cocci. The benzoate consumption capacity in sulfidogenic conditions was observed when the purified inoculum was applied to batch reactors with different benzoate/sulfate relations. Results indicate that purification was positive to bacteria that can degrade aromatic compounds. Desulfococcus multivorans bacteria was identified following the physiologic and kinetic experiments. The 0.6 benzoate/sulfate relation was considered ideal for complete consumption of carbon and total use of sulfur. 10 refs., 3 figs.

  14. Radiation and thermal polymerization of allyl(p-allylcarbonate) benzoate

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-V, D., E-mail: dlopez@siu.buap.m [Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Antiguo Edificio de la Fac. de Cs., Quimica. Av. San Claudio y Boulevard de la 14 sur, Col. San Manuel, Puebla, Pue., CP 72500 (Mexico); Herrera-G, A.M., E-mail: mherrera@uaeh.reduaeh.m [Centro de Inv. en Materiales y Metalurgia, UAEH. Km 4.5, C.U., CP 42184, Pachuca de S. Hidalgo (Mexico); Castillo-Rojas, S., E-mail: castillo@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 DF (Mexico)

    2011-03-15

    Bulk polymerization of novel allyl(p-allylcarbonate) benzoate was investigated using different sources of energy, such as gamma rays, ultraviolet rays as well as thermal polymerization. The poly(allyl(p-allylcarbonate) benzoate) obtained is a cross-linking, transparent, thermoset polycarbonate. Compositions of the monomer and the polycarbonate were analyzed by infrared spectroscopy, elemental analysis, and {sup 1}H NMR spectroscopy.

  15. Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869.

    Science.gov (United States)

    Jeong, Kyung Hun; Israr, Beenish; Shoemaker, Sharon P; Mills, David A; Kim, Jaehan

    2016-07-28

    Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite de-repressed (CCR) phenotype which has ability to consume fermentable sugar simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effect of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration has been reduced. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Moreover; utilization of other compounds were also observed along with hydrogen ion and lactic acid concentration simultaneously. It has been found that substrate preference changes significantly regarding to utilization of compounds in media. That could result into formation of two-carbon products. In particular, acetic acid present in the media as sodium acetate were consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

  16. Safety assessment of alkyl benzoates as used in cosmetics.

    Science.gov (United States)

    'Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2012-01-01

    The functions of alkyl benzoates in cosmetics include fragrance ingredients, skin-conditioning agents--emollient, skin-conditioning agents--miscellaneous, preservatives, solvents, and plasticizers. The Cosmetic Ingredient Review Expert Panel reviewed the relevant animal and human data and noted gaps in the available safety data for some of the alkyl benzoates. Similar structure activity relationships, biologic functions, and cosmetic product usage allowed the available data of many of the alkyl benzoates to be extended to the entire group. Carcinogenicity data were not available, but available data indicated that these alkyl benzoate cosmetic ingredients are not genotoxic. Also benzoic acid and tested component alcohols were not reproductive or developmental toxicants, are not genotoxic in almost all assays, and are not carcinogenic. These ingredients were determined to be safe in the present practices of use and concentration.

  17. Virulence of Pseudomonas syringae pv. tomato DC3000 is modulated through the Catabolite Repression Control protein Crc

    Science.gov (United States)

    Pseudomonas syringae (P.s.) infects diverse plant species and several P.s. pathovars have been used in the study of molecular events that occur during plant-microbe interactions. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing atten...

  18. Rapid and sustained systemic circulation of conjugated gut microbiol catabolites after single-dose black tea extract consumption

    NARCIS (Netherlands)

    Duynhoven, van J.P.M.; Hooft, van der J.J.J.; Dorsten, van F.A.; Peters, S.; Foltz, M.; Gomez-Roldan, V.; Vervoort, J.J.M.; Vos, de R.C.H.

    2014-01-01

    Gut microbial catabolites of black tea polyphenols (BTPs) have been proposed to exert beneficial cardiovascular bioactivity. This hypothesis is difficult to verify because the conjugation patterns and pharmacokinetics of these catabolites are largely unknown. The objective of our study was to identi

  19. Racism and Surplus Repression.

    Science.gov (United States)

    Johnson, Howard

    1983-01-01

    Explores the relationship between Herbert Marcuse's theory of "surplus repression" and Freud's theory of the "unconscious" with respect to latent, hidden, covert, or subliminal aspects of racism in the United States. Argues that unconscious racism, manifested in evasion/avoidance, acting out/projection, and attempted justification, perpetuates…

  20. Financial Liberalization Or Repression?

    OpenAIRE

    Ang, James

    2009-01-01

    While financial liberalization has always been advocated in developing countries, experiences with it do not always produce desirable outcomes. In order to evaluate the costs and benefits associated with financial liberalization and repression, this study highlights that the overall effectiveness of the reform programs depends on the relative strength of each financial sector policy implemented. Using India as a case study, the results indicate that interest rate controls, statutory liquidity...

  1. Synthesis and Crystal Structure of Tetranuclear Zinc Benzoate

    Institute of Scientific and Technical Information of China (English)

    YIN Ming-cai; WANG Chi-wei; AI Chang-chun; YUAN Liang-jie; SUN Ju-tang

    2004-01-01

    A tetranuclear zinc benzoate Zn4O(C6H5CO2)6 was synthesized and characterized by X-ray single crystal determination. It crystallizes in cubic, space group Ia-3d. Its crystal cell is very large, a=4.100 63(18) nm, V=68.953(5) nm3 and Z = 48. The structure is composed of discrete Zn4O(C6H5CO2)6 molecules. In each molecule, four zinc atoms are held together by a central oxygen atom, which results in the formation of a regular tetrahedron. All benzoate ligands coordinate to zinc atoms in a bidentate bridging mode. Each zinc atom is in a slightly distorted tetrahedral geometry, coordinated by three benzoate oxygen atoms and the central oxygen atom. The intermolecular interactions result in the formation of a three-dimensional supramolecular framework, with non-intersecting parallel channels.

  2. Rizatriptan benzoate influences the endogenous pain modulatory system in a rat model of migraine☆

    OpenAIRE

    Yao,Gang; Man, Yuhong; Luo, Xiangdan; Yu, Tingmin; Ji, Lin

    2012-01-01

    The present study utilized a nitroglycerin-induced rat model of migraine to detect the effects of rizatriptan benzoate on proenkephalin and substance P gene expression in the midbrain using real-time quantitative polymerase chain reaction and investigate whether rizatriptan benzoate can regulate the endogenous pain modulatory system. The results showed that rizatriptan benzoate significantly reduced expression of the mRNAs for proenkephalin and substance P. Rizatriptan benzoate may inhibit th...

  3. Rizatriptan benzoate influences the endogenous pain modulatory system in a rat model of migraine.

    Science.gov (United States)

    Yao, Gang; Man, Yuhong; Luo, Xiangdan; Yu, Tingmin; Ji, Lin

    2012-01-15

    The present study utilized a nitroglycerin-induced rat model of migraine to detect the effects of rizatriptan benzoate on proenkephalin and substance P gene expression in the midbrain using real-time quantitative polymerase chain reaction and investigate whether rizatriptan benzoate can regulate the endogenous pain modulatory system. The results showed that rizatriptan benzoate significantly reduced expression of the mRNAs for proenkephalin and substance P. Rizatriptan benzoate may inhibit the analgesic effect of the endogenous pain modulatory system.

  4. Rizatriptan benzoate influences the endogenous pain modulatory system in a rat model of migraine

    Institute of Scientific and Technical Information of China (English)

    Gang Yao; Yuhong Man; Xiangdan Luo; Tingmin Yu; Lin Ji

    2012-01-01

    The present study utilized a nitroglycerin-induced rat model of migraine to detect the effects of rizatriptan benzoate on proenkephalin and substance P gene expression in the midbrain using real-time quantitative polymerase chain reaction and investigate whether rizatriptan benzoate can regulate the endogenous pain modulatory system. The results showed that rizatriptan benzoate significantly reduced expression of the mRNAs for proenkephalin and substance P. Rizatriptan benzoate may inhibit the analgesic effect of the endogenous pain modulatory system.

  5. Thermoreversible biogels for intranasal delivery of rizatriptan benzoate

    Directory of Open Access Journals (Sweden)

    Chand Renuka

    2009-01-01

    Full Text Available The objective of the present study was to formulate and evaluate a thermoreversible formulation containing rizatriptan benzoate for intranasal administration. Chitosan and aqueous β-glycerolphosphate were mixed in cold condition to obtain chitosan-β-glycerolphosphate mixtures, which served as the thermoreversible systems. Rizatriptan benzoate was incorporated at a final strength of 25 mg/ml. Both in vitro release and ex vivo permeation of rizatriptan from gels were measured at 37º using Franz diffusion cells Formulations were tested in vivo in mice for reduction in locomotor activity using digital actophotometer and nasal mucosal tissues were examined histopathologically.

  6. 77 FR 31722 - New Animal Drugs; Change of Sponsor; Estradiol; Estradiol Benzoate and Testosterone Propionate...

    Science.gov (United States)

    2012-05-30

    ... COMPONENT E-C 522.1940 (progesterone and estradiol benzoate) with TYLAN (tylosin tartrate). COMPONENT E-S (progesterone and estradiol benzoate) with TYLAN (tylosin tartrate). 118-123 COMPONENT 200 (estradiol benzoate... and testosterone propionate) with TYLAN (tylosin tartrate). 200-221 COMPONENT TE-IS...

  7. Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence

    Directory of Open Access Journals (Sweden)

    Kimberly M. Carlson-Banning

    2016-11-01

    Full Text Available The biogeography of the gut is diverse in its longitudinal axis, as well as within specific microenvironments. Differential oxygenation and nutrient composition drive the membership of microbial communities in these habitats. Moreover, enteric pathogens can orchestrate further modifications to gain a competitive advantage toward host colonization. These pathogens are versatile and adept when exploiting the human colon. They expertly navigate complex environmental cues and interkingdom signaling to colonize and infect their hosts. Here we demonstrate how enterohemorrhagic Escherichia coli (EHEC uses three sugar-sensing transcription factors, Cra, KdpE, and FusR, to exquisitely regulate the expression of virulence factors associated with its type III secretion system (T3SS when exposed to various oxygen concentrations. We also explored the effect of mucin-derived nonpreferred carbon sources on EHEC growth and expression of virulence genes. Taken together, the results show that EHEC represses the expression of its T3SS when oxygen is absent, mimicking the largely anaerobic lumen, and activates its T3SS when oxygen is available through Cra. In addition, when EHEC senses mucin-derived sugars heavily present in the O-linked and N-linked glycans of the large intestine, virulence gene expression is initiated. Sugars derived from pectin, a complex plant polysaccharide digested in the large intestine, also increased virulence gene expression. Not only does EHEC sense host- and microbiota-derived interkingdom signals, it also uses oxygen availability and mucin-derived sugars liberated by the microbiota to stimulate expression of the T3SS. This precision in gene regulation allows EHEC to be an efficient pathogen with an extremely low infectious dose.

  8. [Excretion of normal and modified RNA catabolites and creatinine in the urine as a function of nutrition in children].

    Science.gov (United States)

    Schöch, G; Heller-Schöch, G; Müller, J; Clemens, P; Holtgrewe, A; Heddrich, M

    1983-05-01

    The urinary excretion of 5 modified and 2 unmodified RNA catabolites and of creatinine has been investigated in two children aged 71/2 and 6 years under different isocaloric diets over 5 days each (phase I-III) and compared with the excretion values during a 12-day and libitum food intake (phase 0). On a diet (phase I) extremely rich in nucleic acids (meat) there is only a slight increase of the modified RNA catabolites and a pronounced increase of creatinine in urine. On a protein-rich diet free from nucleic acids (phase II) the urinary RNA catabolites largely parallel the values seen under ad libitum food intake. On a diet virtually free of nucleic acids and protein (phase III) there is a markedly decreased excretion of modified RNA catabolites. It is concluded that modified RNA catabolites in the urine are mainly of endogenous origin. These "one-way catabolites" permit an assessment of the RNA turnover. Thus, they can serve as a new sensitive biochemical criterion for anabolic and catabolic situations, respectively.

  9. Phyllobilins--the abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll.

    Science.gov (United States)

    Kräutler, Bernhard

    2014-09-01

    The seasonal disappearance of the green plant pigment chlorophyll in the leaves of deciduous trees has long been a fascinating biological puzzle. In the course of the last two and a half decades, important aspects of the previously enigmatic breakdown of chlorophyll in higher plants were elucidated. Crucial advances in this field were achieved by the discovery and structure elucidation of tetrapyrrolic chlorophyll catabolites, as well as by complementary biochemical and plant biological studies. Phyllobilins, tetrapyrrolic, bilin-type chlorophyll degradation products, are abundant chlorophyll catabolites, which occur in fall leaves and in ripe fruit. This tutorial review outlines 'how' chlorophyll is degraded in higher plants, and gives suggestions as to 'why' the plants dispose of their valuable green pigments during senescence and ripening. Insights into chlorophyll breakdown help satisfy basic human curiosity and enlighten school teaching. They contribute to fundamental questions in plant biology and may have practical consequences in agriculture and horticulture.

  10. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  11. Financial repression and fiscal policy

    NARCIS (Netherlands)

    Gupta, KL; Lensink, R

    1997-01-01

    This paper develops a simulation model to assess the consequences of government's trying to raise revenues through financial repression in developing countries. The measures of financial repression studied are (1) government borrowing from the banking sector to finance its budget deficit (2) governm

  12. [Repression of the enzyme inducible syntheses in Escherichia coli K12 mutant with a deleted ptsH gene].

    Science.gov (United States)

    Gershanovich, V N; Il'ina, T S; Rusina, O Iu; Iurovitskaia, N V; Bol'shakova, T N

    1977-01-01

    The genome of lambda phage with thermosensitive repressor was integrated into the pts region of the E. coli chromosome. Such a lysogenic culture behaves as a pts mutant at 30 degrees. Heating of cells of this strain leads to the induction of lambda prophage and formation of deletions in the pts region. A mutant with a deletion covering ptsH gene was isolated after prophage induction. The deletion nature of pts mutation was confirmed in genetic and biochemical experiments. It was shown that the deletion is small and does not involve ptsI and lig genes. The isolated deltaptsH mutant possesses all characteristics of pts mutants: pleiotropic impairment of transport and utilization of a number of carbohydrates, repression of the enzyme inducible synthesis and resistance to catabolite repression with glucose. These data (together with earlier ones) allow us to conclude that the phosphorylated form of HPr is involved (in direct of indirect manner/ in activation of DNA transcription.

  13. Chlorophyll Catabolites in Senescent Leaves of the Plum Tree (Prunus domestica).

    Science.gov (United States)

    Erhart, Theresia; Mittelberger, Cecilia; Vergeiner, Clemens; Scherzer, Gerhard; Holzner, Barbara; Robatscher, Peter; Oberhuber, Michael; Kräutler, Bernhard

    2016-11-01

    In cold extracts of senescent leaves of the plum tree (Prunus domestica ssp. domestica), six colorless non-fluorescent chlorophyll catabolites (NCCs) were characterized, named Pd-NCCs. In addition, several minor NCC fractions were tentatively classified. The structure of the most polar one of the NCCs, named Pd-NCC-32, featured an unprecedented twofold glycosidation pattern. Three of the NCCs are also functionalized at their 3(2) -position by a glucopyranosyl group. In addition, two of these glycosidated NCCs carry a dihydroxyethyl group at their 18-position. In the polar Pd-NCC-32, the latter group is further glycosidated at the terminal 18(2) -position. Four other major Pd-NCCs and one minor Pd-NCC were identified with five NCCs from higher plants known to belong to the 'epi'-series. In addition, tentative structures were derived for two minor fractions, classified as yellow chlorophyll catabolites, which represented (formal) oxidation products of two of the observed Pd-NCCs. The chlorophyll catabolites in leaves of plum feature the same basic structural pattern as those found in leaves of apple and pear trees.

  14. ISOLATION AND CHARACTERIZATION OF A NOVEL BENZOATE- UTILIZING Serratia marcescens

    Directory of Open Access Journals (Sweden)

    ANTONIUS SUWANTO

    2003-01-01

    Full Text Available A new benzoate-utilizing strain, Serratia marcescens DS-8, isolated from the environment was characterized. The strain was enterobacilli, Gram negative, mesophilic, non ha lophilic, and aerobic bacterium that showed motile ovale-rod shaped cells. The isolate produced extracellular chitinase, protease, and prodigiosin (a red pigment pr oduced by several Serratia strains yielding bright red or pink colonies. A physiological assay using Microbact* test showed that the strain was closely related to Klebsiella ozaenae (49.85% and Serratia liquefaciens (24.42%, respectively. However, 16S rRNA sequence analysis indicated that the strain was closely related to S. marcescens DSM 30121 with similarity level of 98%. DS-8 strain was able to synthesize its own vitamins. Optimum growth in benzoate was obtained at pH between 7-8.5 and NaCl concentration of 1- 1.5% (w/v. The isolate could grow in benzoate-containing medium up to 10 mM. Other carbon sources that could support the growth of DS-8 were casamino acid, glutamate, glucose, acetate, potato star ch, and ethanol.

  15. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia

    Energy Technology Data Exchange (ETDEWEB)

    Warikoo, V.; McInerney, M.J.; Suflita, J.M. [and others

    1997-03-01

    Benzoate degradation by an anaerobic, syntrophic bacterium, strain SB, in coculture with Desulfovibrio strain G-11 reached a threshold value which depended on the amount of acetate added, and ranged from about 2.5 to 29.9 {mu}M. Increasing acetate concentrations also uncompetitively inhibited benzoate degradation. The apparent V{sub max} and K{sub m} for benzoate degradation decreased with increasing acetate concentration, but the benzoate degradation capacity (V{sub max}/K{sub m}) of cell suspensions remained comparable. The addition of an acetate-using bacterium to cocultures after the threshold was reached resulted in the degradation of benzoate to below the detection limit. Mathematical simulations showed that the benzoate threshold was not predicted by the inhibitory effect of acetate on benzoate degradation kinetics. With nitrate instead of sulfate as the terminal electron acceptor, no benzoate threshold was observed in the presence of 20 mM acetate even though the degradation capacity was lower with nitrate than with sulfate. When strain SB was grown with a hydrogen-using partner that had a 5-fold lower hydrogen utilization capacity, a 5 to 9-fold lower the benzoate degradation capacity was observed compared to SB/G-11 cocultures. The Gibb`s free energy for benzoate degradation was less negative in cell suspensions with threshold compared to those without threshold. These studies showed that the threshold was not a function of the inhibition of benzoate degradation capacity by acetate, or the toxicity of the undissociated form of acetate. Rather a critical or minimal Gibb`s free energy may exist where thermodynamic constraints preclude further benzoate degradation.

  16. Analisa Pengawet Natrium Benzoat Pada Manisan Buah Di Pasar Tradisional Kota Medan Tahun 2010.

    OpenAIRE

    Amalia Kurnia Sari P

    2011-01-01

    Preservative sodium benzoate chemical with formula of C7H5O2 This research was a descriptive survey researched that analyzed the content of sodium benzoate on the candied fruit. Fruit with total sampling 12 sample candied fruit consisting of three kinds of fruit, salak, mango and kedondong. Primary data from this research were obtained from laboratory test on sodium benzoate preservative substences contained in the candied fruit. Data obtained were analyzed descriptively. Na were Substance...

  17. Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway

    Directory of Open Access Journals (Sweden)

    José Julián Ríos

    2015-01-01

    Full Text Available Characterization of nonfluorescent chlorophyll catabolites (NCCs and dioxobilane-type nonfluorescent chlorophyll catabolite (DNCC in peel extracts of ripened lemon fruits (Citrus limon L. was performed by HPLC/ESI-high resolution-qTOF-MS method. Compounds were identified in samples on the basis of measured accurate mass, isotopic pattern, and characteristic fragmentation profile with an implemented software postprocessing routine. Three NCC structures already identified in other vegetal tissues were present in the lemon fruit peels (Cl-NCC1; Cl-NCC2; Cl-NCC4 while a new structure not defined so far was characterized (Cl-NCC3. This catabolite exhibits an exceptional arrangement of the peripheral substituents, allowing concluding that the preferences for the NCC modifications could be a species-related matter.

  18. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae.

    Science.gov (United States)

    ter Schure, E G; Silljé, H H; Vermeulen, E E; Kalhorn, J W; Verkleij, A J; Boonstra, J; Verrips, C T

    1998-05-01

    Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia into glutamine. Glutamine-limited continuous cultures were used to completely derepress the expression of GAP1, PUT4, GDH1 and GLN1. Following an ammonia pulse, the expression of GAP1, PUT4 and GDH1 decreased while the intracellular glutamine concentration remained constant, both in the cytoplasm and in the vacuole. Therefore, it was concluded that ammonia causes gene repression independent of the intracellular glutamine concentration. The expression of GLN1 was not decreased by an ammonia pulse but solely by a glutamine pulse. Analysis of the mRNA levels of ILV5 and HIS4 showed that the response of the two biosynthetic genes, GDH1 and GLN1, to ammonia and glutamine in the wild-type and gln1-37 was not due to changes in general transcription of biosynthetic genes. Ure2p has been shown to be an essential element for nitrogen-regulated gene expression. Deletion of URE2 in the gln1-37 background prevented repression of gene expression by ammonia, showing that the ammonia-induced repression is not caused by a general stress response but represents a specific signal for nitrogen catabolite regulation.

  19. 13²,17³-Cyclopheophorbide b enol as a catabolite of chlorophyll b in phycophagy by protists.

    Science.gov (United States)

    Kashiyama, Yuichiro; Yokoyama, Akiko; Shiratori, Takashi; Inouye, Isao; Kinoshita, Yusuke; Mizoguchi, Tadashi; Tamiaki, Hitoshi

    2013-08-19

    Both 13(2),17(3)-cyclopheophorbide a and b enols were produced along with ingestion of green microalgae containing chlorophylls a and b by a centrohelid protist (phycophagy). The results suggest that chlorophyll b as well as chlorophyll a were directly degraded to colored yet non-phototoxic catabolites in the protistan phycophagic process. Such a simple process by the predators makes a contrast to the much sophisticated chlorophyll degradation process of land plants and some algae, where phototoxicity of chlorophylls was cancelled through the multiple enzymatic steps resulting in colorless and non-phototoxic catabolites.

  20. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death

    Science.gov (United States)

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J.; Kräutler, Bernhard

    2009-01-01

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in ‘senescence associated’ dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212

  1. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...... and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression...

  2. The unified theory of repression.

    Science.gov (United States)

    Erdelyi, Matthew Hugh

    2006-10-01

    Repression has become an empirical fact that is at once obvious and problematic. Fragmented clinical and laboratory traditions and disputed terminology have resulted in a Babel of misunderstandings in which false distinctions are imposed (e.g., between repression and suppression) and necessary distinctions not drawn (e.g., between the mechanism and the use to which it is put, defense being just one). "Repression" was introduced by Herbart to designate the (nondefensive) inhibition of ideas by other ideas in their struggle for consciousness. Freud adapted repression to the defensive inhibition of "unbearable" mental contents. Substantial experimental literatures on attentional biases, thought avoidance, interference, and intentional forgetting exist, the oldest prototype being the work of Ebbinghaus, who showed that intentional avoidance of memories results in their progressive forgetting over time. It has now become clear, as clinicians had claimed, that the inaccessible materials are often available and emerge indirectly (e.g., procedurally, implicitly). It is also now established that the Ebbinghaus retention function can be partly reversed, with resulting increases of conscious memory over time (hypermnesia). Freud's clinical experience revealed early on that exclusion from consciousness was effected not just by simple repression (inhibition) but also by a variety of distorting techniques, some deployed to degrade latent contents (denial), all eventually subsumed under the rubric of defense mechanisms ("repression in the widest sense"). Freudian and Bartlettian distortions are essentially the same, even in name, except for motive (cognitive vs. emotional), and experimentally induced false memories and other "memory illusions" are laboratory analogs of self-induced distortions.

  3. Determination of Hammett Equation Rho Constant for the Hydrolysis of p-Nitrophenyl Benzoate Esters

    Science.gov (United States)

    Keenan, Sheue L.; Peterson, Karl P.; Peterson, Kelly; Jacobson, Kyle

    2008-01-01

    Seven p-nitrophenyl benzoate esters (p-nitrophenyl benzoate, p-nitrophenyl m-anisate, p-nitrophenyl p-anisate, p-nitrophenyl m-chlorobenzoate, p-nitrophenyl p-chlorobenzoate, p-nitrophenyl m-toluate, p-nitrophenyl p-toluate) were synthesized and characterized by students in a second-semester organic laboratory course. In a subsequent laboratory…

  4. 40 CFR 721.4060 - Alkylene glycol tereph-tha-late and substituted benzoate esters (generic name).

    Science.gov (United States)

    2010-07-01

    ... substituted benzoate esters (generic name). 721.4060 Section 721.4060 Protection of Environment ENVIRONMENTAL... substituted benzoate esters (generic name). (a) Chemical substance and significant new uses subject to... substituted benzoate esters (PMN P-89-596) is subject to reporting under this section for the significant...

  5. Formulation and evaluation of rizatriptan benzoate mouth disintegrating tablets.

    Science.gov (United States)

    Keny, R V; Desouza, Chrisma; Lourenco, C F

    2010-01-01

    The present investigation deals with development of mouth disintegrating tablets of rizatriptan benzoate to produce the intended benefits. Mouth disintegrating tablets of rizatriptan benzoate were prepared using superdisintegrants crospovidone, carboxymethylcellulose calcium, Indion 414 and Indion 234 using the direct compression method. The tablets prepared were evaluated for thickness, uniformity of weight, content uniformity, hardness, friability, wetting time, in vitro and in vivo disintegration time, mouth feel, in vitro drug release and assay by high performance liquid chromatography. The tablets disintegrated in vitro and in vivo within 4 to 7 s and 6 to 19 s, respectively. Almost 90% of drug was released from all formulations within 20 min. The drug release from the formulations followed first order kinetics. Stability studies of the tablets at 40+/-2 degrees /75%+/-5% RH for 1 mo showed non significant drug loss. The formulation containing combination of crospovidone and Indion 234 was found to give the best results. Apart from fulfilling all official and other specifications, the tablets exhibited higher rate of release.

  6. Formulation and evaluation of rizatriptan Benzoate mouth disintegrating tablets

    Directory of Open Access Journals (Sweden)

    Keny R

    2010-01-01

    Full Text Available The present investigation deals with development of mouth disintegrating tablets of rizatriptan benzoate to produce the intended benefits. Mouth disintegrating tablets of rizatriptan benzoate were prepared using superdisintegrants crospovidone, carboxymethylcellulose calcium, Indion 414 and Indion 234 using the direct compression method. The tablets prepared were evaluated for thickness, uniformity of weight, content uniformity, hardness, friability, wetting time, in vitro and in vivo disintegration time, mouth feel, in vitro drug release and assay by high performance liquid chromatography. The tablets disintegrated in vitro and in vivo within 4 to 7 s and 6 to 19 s, respectively. Almost 90% of drug was released from all formulations within 20 min. The drug release from the formulations followed first order kinetics. Stability studies of the tablets at 40±2 o /75%±5% RH for 1 mo showed non significant drug loss. The formulation containing combination of crospovidone and Indion 234 was found to give the best results. Apart from fulfilling all official and other specifications, the tablets exhibited higher rate of release.

  7. Lean production of taste improved lipidic sodium benzoate formulations.

    Science.gov (United States)

    Eckert, C; Pein, M; Breitkreutz, J

    2014-10-01

    Sodium benzoate is a highly soluble orphan drug with unpleasant taste and high daily dose. The aim of this study was to develop a child appropriate, individually dosable, and taste masked dosage form utilizing lipids in melt granulation process and tableting. A saliva resistant coated lipid granule produced by extrusion served as reference product. Low melting hard fat was found to be appropriate as lipid binder in high-shear granulation. The resulting granules were compressed to minitablets without addition of other excipients. Compression to 2mm minitablets decreased the dissolved API amount within the first 2 min of dissolution from 33% to 23%. The Euclidean distances, calculated from electronic tongue measurements, were reduced, indicating an improved taste. The reference product showed a lag time in dissolution, which is desirable for taste masking. Although a lag time was not achieved for the lipidic minitablets, drug release in various food materials was reduced to 2%, assuming a suitable taste masking for oral sodium benzoate administration.

  8. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lodi, T; Goffrini, P; Ferrero, I; Donnini, C

    1995-09-01

    Two mutants carrying different deletions of the IMP2 coding sequence of Saccharomyces cerevisiae, delta T1, which encodes a protein lacking the last 26 C-terminal amino acids, and delta T2, which completely lacks the coding region, were analysed for derepression of glucose-repressible maltose, galactose, raffinose and ethanol utilization pathways in response to glucose limitation. The role of the IMP2 gene product in the regulation of carbon catabolite repressible enzymes maltase, invertase, alcohol dehydrogenase, NAD-dependent glutamate dehydrogenase (NAD-GDH) and L-lactate:ferricytochrome-c oxidoreductase (L-LCR) was also analysed. The IMP2 gene product is required for the rapid glucose derepression of all above-mentioned carbon source utilization pathways and of all the enzymes except for L-LCR. NAD-GDH is regulated by IMP2 in the opposite way and, in fact, this enzyme was released at higher levels in both imp2 mutants than in the wild-type strain. Therefore, the product of IMP2 appears to be involved in positive and negative regulation. Both deletions result in growth and catalytic defects; in some cases partial modification of the gene product yielded more dramatic effects than its complete absence. Moreover, evidence is provided that the IMP2 gene product regulates galactose- and maltose-inducible genes at the transcriptional level and is a positive regulator of maltase, maltose permease and galactose permease gene expression.

  9. Radioiodinated methyl-branched fatty acids: Evaluation of catabolites formed in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Reske, S.N.; Kirsch, G.; Ambrose, K.R.; Blystone, S.L.; Goodman, M.M.

    1987-01-01

    Radioiodinated terminal iodophenyl-substituted long-chain fatty acids containing either racemic mono-methyl or geminal dimethyl-branching in the alkyl chain have been shown to exhibit delayed myocardial clearance properties which make these agents useful for the SPECT evaluation of myocardial fatty acid uptake patterns. Although the myocardial clearance rate of 15-(p-iodophenyl)-3-R,S- methylpentadecanoic acid (BMIPP) is considerably delayed, in comparison with the IPPA straight-chain analogue, analysis of the radioiodinated lipids present in the outflow tract of isolated rat hearts administered BMIPP have clearly demonstrated the presence of a polar metabolite. The synthesis of ..beta..-hydroxy fatty acids has been developed to allow investigation of the possible formation of ..beta..-hydroxy catabolites in vivo. The preparation of ..beta..-hydroxy BMIPP and ..beta..-hydroxy IPPA are described, and the possible significance of their formation in vivo discussed. 4 figs.

  10. Environmental fate of emamectin benzoate after tree micro injection of horse chestnut trees.

    Science.gov (United States)

    Burkhard, Rene; Binz, Heinz; Roux, Christian A; Brunner, Matthias; Ruesch, Othmar; Wyss, Peter

    2015-02-01

    Emamectin benzoate, an insecticide derived from the avermectin family of natural products, has a unique translocation behavior in trees when applied by tree micro injection (TMI), which can result in protection from insect pests (foliar and borers) for several years. Active ingredient imported into leaves was measured at the end of season in the fallen leaves of treated horse chestnut (Aesculus hippocastanum) trees. The dissipation of emamectin benzoate in these leaves seems to be biphasic and depends on the decomposition of the leaf. In compost piles, where decomposition of leaves was fastest, a cumulative emamectin benzoate degradation half-life time of 20 d was measured. In leaves immersed in water, where decomposition was much slower, the degradation half-life time was 94 d, and in leaves left on the ground in contact with soil, where decomposition was slowest, the degradation half-life time was 212 d. The biphasic decline and the correlation with leaf decomposition might be attributed to an extensive sorption of emamectin benzoate residues to leaf macromolecules. This may also explain why earthworms ingesting leaves from injected trees take up very little emamectin benzoate and excrete it with the feces. Furthermore, no emamectin benzoate was found in water containing decomposing leaves from injected trees. It is concluded, that emamectin benzoate present in abscised leaves from horse chestnut trees injected with the insecticide is not available to nontarget organisms present in soil or water bodies.

  11. Effect of Emamectin Benzoate on Root-Knot Nematodes and Tomato Yield.

    Directory of Open Access Journals (Sweden)

    Xingkai Cheng

    Full Text Available Southern root-knot nematode (Meloidogyne incognita is an obligate, sedentary endoparasite of more than 3000 plant species, that causes heavy economic losses and limit the development of protected agriculture of China. As a biological pesticide, emamectin benzoate has effectively prevented lepidopteran pests; however, its efficacy to control M. incognita remains unknown. The purpose of the present study was to test soil application of emamectin benzoate for management of M. incognita in laboratory, greenhouse and field trials. Laboratory results showed that emamectin benzoate exhibited high toxicity to M. incognita, with LC50 and LC90 values 3.59 and 18.20 mg L(-1, respectively. In greenhouse tests, emamectin benzoate soil application offered good efficacy against M. incognita while maintaining excellent plant growth. In field trials, emamectin benzoate provided control efficacy against M. incognita and resulted in increased tomato yields. Compared with the untreated control, there was a 36.5% to 81.3% yield increase obtained from all treatments and the highest yield was received from the highest rate of emamectin benzoate. The results confirmed that emamectin benzoate has enormous potential for the control of M. incognita in tomato production in China.

  12. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans.

    Science.gov (United States)

    Lennerz, Belinda S; Vafai, Scott B; Delaney, Nigel F; Clish, Clary B; Deik, Amy A; Pierce, Kerry A; Ludwig, David S; Mootha, Vamsi K

    2015-01-01

    Sodium benzoate is a widely used preservative found in many foods and soft drinks. It is metabolized within mitochondria to produce hippurate, which is then cleared by the kidneys. We previously reported that ingestion of sodium benzoate at the generally regarded as safe (GRAS) dose leads to a robust excursion in the plasma hippurate level [1]. Since previous reports demonstrated adverse effects of benzoate and hippurate on glucose homeostasis in cells and in animal models, we hypothesized that benzoate might represent a widespread and underappreciated diabetogenic dietary exposure in humans. Here, we evaluated whether acute exposure to GRAS levels of sodium benzoate alters insulin and glucose homeostasis through a randomized, controlled, cross-over study of 14 overweight subjects. Serial blood samples were collected following an oral glucose challenge, in the presence or absence of sodium benzoate. Outcome measurements included glucose, insulin, glucagon, as well as temporal mass spectrometry-based metabolic profiles. We did not find a statistically significant effect of an acute oral exposure to sodium benzoate on glucose homeostasis. Of the 146 metabolites targeted, four changed significantly in response to benzoate, including the expected rise in benzoate and hippurate. In addition, anthranilic acid, a tryptophan metabolite, exhibited a robust rise, while acetylglycine dropped. Although our study shows that GRAS doses of benzoate do not have an acute, adverse effect on glucose homeostasis, future studies will be necessary to explore the metabolic impact of chronic benzoate exposure.

  13. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    Science.gov (United States)

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA.

  14. Repression of mineral phosphate solubilizing phenotype in the presence of weak organic acids in plant growth promoting fluorescent pseudomonads.

    Science.gov (United States)

    Patel, Divya K; Murawala, Prayag; Archana, G; Kumar, G Naresh

    2011-02-01

    Two phosphate solubilizing bacteria (PSB), M3 and SP1, were obtained from the rhizosphere of mungbean and sweet potato, respectively and identified as strains of Pseudomonas aeruginosa. Their rock phosphate (RP) solubilizing abilities were found to be due to secretion high amount of gluconic acid. In the presence of malate and succinate, individually and as mixture, the P solubilizing ability of both the strains was considerably reduced. This was correlated with a nearly 80% decrease in the activity of the glucose dehydrogenase (GDH) but not gluconate dehydrogenase (GAD) in both the isolates. Thus, GDH enzyme, catalyzing the periplasmic production of gluconic acid, is under reverse catabolite repression control by organic acids in P. aeruginosa M3 and SP1. This is of relevance in rhizospheric conditions and is a new explanation for the lack of field efficacy of such PSB.

  15. Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose.

    Directory of Open Access Journals (Sweden)

    Shubha Gopal

    Full Text Available BACKGROUND: In the environment as well as in the vertebrate intestine, Listeriae have access to complex carbohydrates like maltodextrins. Bacterial exploitation of such compounds requires specific uptake and utilization systems. METHODOLOGY/PRINCIPAL FINDINGS: We could show that Listeria monocytogenes and other Listeria species contain genes/gene products with high homology to the maltodextrin ABC transporter and utilization system of B. subtilis. Mutant construction and growth tests revealed that the L. monocytogenes gene cluster was required for the efficient utilization of maltodextrins as well as maltose. The gene for the ATP binding protein of the transporter was located distant from the cluster. Transcription analyses demonstrated that the system was induced by maltose/maltodextrins and repressed by glucose. Its induction was dependent on a LacI type transcriptional regulator. Repression by glucose was independent of the catabolite control protein CcpA, but was relieved in a mutant defective for Hpr kinase/phosphorylase. CONCLUSIONS/SIGNIFICANCE: The data obtained show that in L. monocytogenes the uptake of maltodextrin and, in contrast to B. subtilis, also maltose is exclusively mediated by an ABC transporter. Furthermore, the results suggest that glucose repression of the uptake system possibly is by inducer exclusion, a mechanism not described so far in this organism.

  16. Preparation and Evaluation of Emamectin Benzoate Solid Microemulsion

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2016-01-01

    Full Text Available The solid microemulsions of emamectin benzoate with the same content of surfactants were prepared by a self-emulsifying method. Emulsifier 600# and emulsifier 700# (3/2, w/w screened from eleven kinds of commonly used surfactants displayed great emulsifying properties. The redispersed solution of the solid microemulsion presented aqueous microemulsion characteristic. The mean particle size and polydispersity index were 10.34 ± 0.10 nm and 0.283 ± 0.013, respectively. The solid microemulsion showed excellent storage stability and the bioassay compared with water dispersible granules against diamondback moths provided a proof of its improved biological activities. This formulation could significantly reduce surfactants and is perspective in plant protection for improving bioavailability and environmental friendliness.

  17. 2-(1,3-Benzoxazol-2-yl-1-phenylethenyl benzoate

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Ghorbani

    2011-10-01

    Full Text Available In the title molecule, C22H15NO3, the configuration about the ethylenic double bond is Z configuration and it is approximately coplanar with the adjacent phenyl ring and benzoxazole ring system as indicated by the C(H=C(O—Cphenyl—Cphenyl and Obenzoxazole—C—C(H=C(O torsion angles of 179.88 (15 and 5.7 (2°, respectively. The dihedral angle between the essentially planar (r.m.s. deviation = 0.080 Å 2-(1,3-benzoxazol-2-yl-1-phenylethenyl group and the benzoate phenyl ring is 61.51 (6°. A short intramolecular O...O non-bonded interaction of 2.651 (2 Å is present.

  18. Methyl 4-[N-(5-bromopyrimidin-2-ylcarbamoyl]benzoate

    Directory of Open Access Journals (Sweden)

    Hui-Ling Hu

    2012-08-01

    Full Text Available In the title compound, C13H10BrN3O3, the pyrimidine and benzene rings are twisted with an interplanar angle of 58.4 (1°. The secondary amide group adopts a cis conformation with an H—N—C—O torsion angle of 14.8 (1°. In the crystal, molecules are connected into inversion dimers via pairs of N—H...N hydrogen bonds, generating an R22(8 motif. The dimers are further connected through a C—Br...O interaction [3.136 (1 Å and 169.31 (1°] into a chain along [110]. Weak C—H...N hydrogen bonds between the methyl benzoate groups and pyrimidine rings are also observed in the crystal structure.

  19. Alkaline earth layered benzoates as reusable heterogeneous catalysts for the methyl esterification of benzoic acid

    Directory of Open Access Journals (Sweden)

    Swamy Arêa Maruyama

    2012-01-01

    Full Text Available This paper describes the synthesis and characterization of layered barium, calcium and strontium benzoates and evaluates the potential of these materials as catalysts in the synthesis of methyl benzoate. The methyl esterification of benzoic acid was investigated, where the effects of temperature, alcohol:acid molar ratio and amount of catalyst were evaluated. Ester conversions of 65 to 70% were achieved for all the catalysts under the best reaction conditions. The possibility of recycling these metallic benzoates was also demonstrated, evidenced by unaltered catalytic activity for three consecutive reaction cycles.

  20. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants

    DEFF Research Database (Denmark)

    Hollinshead, Whitney D.; Rodriguez, Sarah; Martin, Hector Garcia

    2016-01-01

    Background: Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps...... directed through the EDP (~20 % of glycolysis flux). Disrupting the EMPP by phosphofructokinase I (pfkA) knockout increased flux through OPPP (~60 % of glycolysis flux) and the native EDP (~14 % of glycolysis flux), while overexpressing edd and eda in this ΔpfkA mutant directed ~70 % of glycolytic flux...... in glycolysis intermediates, possibly suggesting metabolite channeling (metabolites in glycolysis are pass from enzyme to enzyme without fully equilibrating within the cytosol medium). Conclusions: We engineered E. coli to redistribute its native glycolytic flux. The replacement of EMPP by EDP did not improve E...

  1. Toxicity and residual efficacy of chlorantraniliprole, spinetoram, and emamectin benzoate to obliquebanded leafroller (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Sial, Ashfaq A; Brunner, Jay F

    2010-08-01

    Studies were conducted to determine the residual toxicity of spinetoram, chlorantraniliprole, and emamectin benzoate to obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Larvae were exposed to apple (Malus spp.) foliage collected at different intervals after an airblast sprayer application at the manufacturer-recommended field rate and half the field rate. A mortality of 100% was recorded at field rate applications of spinetoram, chlorantraniliprole, and emamectin benzoate through 59, 38, and 10 d after treatment (DAT), respectively. Significantly less foliage was consumed by C. rosaceana larvae surviving in the emamectin, chlorantraniliprole, and spinetoram treatments compared with those exposed to untreated foliage. Third-instar C. rosaceana exposed to fresh residues on terminal foliage showed 100% mortality after 5-d exposure to spinetoram residues and after 10-d exposure to chlorantraniliprole and emamectin benzoate. The effects of larval movement from foliage with fresh residues was examined by transferring neonate larvae from foliage treated with spinetoram, chlorantraniliprole, or emamectin benzoate to untreated foliage after various exposure intervals. An exposure of 1, 3, and 6 d was required for spinetoram, chlorantraniliprole, and emamectin benzoate to cause 100% mortality at the field rate, respectively. The higher the concentration of chlorantraniliprole and emamectin benzoate, the less exposure time was necessary to cause high levels of mortality in C. rosaceana neonates. Our results indicate that these novel insecticides are highly toxic to C. rosaceana larvae. Implications of these results for C. rosaceana management programs are discussed.

  2. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein.

    Science.gov (United States)

    Popovych, Nataliya; Tzeng, Shiou-Ru; Tonelli, Marco; Ebright, Richard H; Kalodimos, Charalampos G

    2009-04-28

    The cAMP-mediated allosteric transition in the catabolite activator protein (CAP; also known as the cAMP receptor protein, CRP) is a textbook example of modulation of DNA-binding activity by small-molecule binding. Here we report the structure of CAP in the absence of cAMP, which, together with structures of CAP in the presence of cAMP, defines atomic details of the cAMP-mediated allosteric transition. The structural changes, and their relationship to cAMP binding and DNA binding, are remarkably clear and simple. Binding of cAMP results in a coil-to-helix transition that extends the coiled-coil dimerization interface of CAP by 3 turns of helix and concomitantly causes rotation, by approximately 60 degrees , and translation, by approximately 7 A, of the DNA-binding domains (DBDs) of CAP, positioning the recognition helices in the DBDs in the correct orientation to interact with DNA. The allosteric transition is stabilized further by expulsion of an aromatic residue from the cAMP-binding pocket upon cAMP binding. The results define the structural mechanisms that underlie allosteric control of this prototypic transcriptional regulatory factor and provide an illustrative example of how effector-mediated structural changes can control the activity of regulatory proteins.

  3. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites.

    Science.gov (United States)

    Jaganath, Indu B; Mullen, William; Lean, Michael E J; Edwards, Christine A; Crozier, Alan

    2009-10-15

    The role of colonic microflora in the breakdown of quercetin-3-O-rutinoside (rutin) was investigated. An in vitro fermentation model was used and (i) 28 micromol of rutin and (ii) 55 micromol of quercetin plus 18 x 10(6) dpm of [4-(14)C]quercetin (60 nmol) were incubated with fresh fecal samples from three human volunteers, in the presence and absence of glucose. The accumulation of quercetin during in vitro fermentation demonstrated that deglycosylation is the initial step in the breakdown of rutin. The subsequent degradation of quercetin was dependent upon the interindividual composition of the bacterial microflora and was directed predominantly toward the production of either hydroxyphenylacetic acid derivatives or hydroxybenzoic acids. Possible catabolic pathways for these conversions are proposed. The presence of glucose as a carbon source stimulated the growth and production of bacterial microflora responsible for both the deglycosylation of rutin and the catabolism of quercetin. 3,4-Dihydroxyphenylacetic acid accumulated in large amounts in the fecal samples and was found to possess significant reducing power and free radical scavenging activity. This catabolite may play a key role in the overall antioxidant capacity of the colonic lumen after the ingestion of quercetin-rich foods.

  4. Neurodegeneration in Parkinson's disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins.

    Science.gov (United States)

    Anderson, George; Maes, Michael

    2014-04-01

    The biological underpinnings to the etiology and course of neurodegeneration in Parkinson's disease are an area of extensive research that has yet to produce an early biological marker or disease-slowing or preventative treatment. Recent conceptualizations of Parkinson's disease have integrated immuno-inflammation and oxidative and nitrosative stress occurring in depression, somatization and peripheral inflammation into the course of Parkinson's disease. We review the data showing the importance of immuno-inflammatory processes and oxidative and nitrosative stress in such classically conceived 'comorbidities', suggesting that lifetime, prodromal and concurrent depression and somatization may be intricately involved in the etiology and course of Parkinson's disease, rather than psychiatric comorbidities. This produces a longer term developmental perspective of Parkinson's disease, which incorporates tryptophan catabolites (TRYCATs), lipid peroxidation, sirtuins, cyclic adenosine monophosphate, aryl hydrocarbon receptor, and circadian genes. This integrates wider bodies of data pertaining to neuronal loss in Parkinson's disease, emphasizing how these interact with susceptibility genes to drive changes in mitochondria, blood-brain barrier permeability and intercellular signalling. We review this data here in the context of neurodegeneration in Parkinson's disease and to the future directions indicated for slowing disease progression.

  5. Ferricytochrome (c) directly oxidizes aminoacetone to methylglyoxal, a catabolite accumulated in carbonyl stress.

    Science.gov (United States)

    Sartori, Adriano; Mano, Camila M; Mantovani, Mariana C; Dyszy, Fábio H; Massari, Júlio; Tokikawa, Rita; Nascimento, Otaciro R; Nantes, Iseli L; Bechara, Etelvino J H

    2013-01-01

    Age-related diseases are associated with increased production of reactive oxygen and carbonyl species such as methylglyoxal. Aminoacetone, a putative threonine catabolite, is reportedly known to undergo metal-catalyzed oxidation to methylglyoxal, NH4(+) ion, and H2O2 coupled with (i) permeabilization of rat liver mitochondria, and (ii) apoptosis of insulin-producing cells. Oxidation of aminoacetone to methylglyoxal is now shown to be accelerated by ferricytochrome c, a reaction initiated by one-electron reduction of ferricytochrome c by aminoacetone without amino acid modifications. The participation of O2(•-) and HO (•) radical intermediates is demonstrated by the inhibitory effect of added superoxide dismutase and Electron Paramagnetic Resonance spin-trapping experiments with 5,5'-dimethyl-1-pyrroline-N-oxide. We hypothesize that two consecutive one-electron transfers from aminoacetone (E0 values = -0.51 and -1.0 V) to ferricytochrome c (E0 = 0.26 V) may lead to aminoacetone enoyl radical and, subsequently, imine aminoacetone, whose hydrolysis yields methylglyoxal and NH4(+) ion. In the presence of oxygen, aminoacetone enoyl and O2(•-) radicals propagate aminoacetone oxidation to methylglyoxal and H2O2. These data endorse the hypothesis that aminoacetone, putatively accumulated in diabetes, may directly reduce ferricyt c yielding methylglyoxal and free radicals, thereby triggering redox imbalance and adverse mitochondrial responses.

  6. A Floral Fragrance, Methyl Benzoate, is An Efficient Green Pesticide

    Science.gov (United States)

    Feng, Yan; Zhang, Aijun

    2017-02-01

    Over-reliance on synthetic pesticides in insect pest control has caused widespread public and scientific concerns for human health and the environment, especially since many insect pests have already developed resistances to conventional pesticides and Bt products. For this reason, there is a considerable interest in development of alternative control methods for insect pest management. Based on laboratory studies, we report that methyl benzoate (MB), a naturally-occurring compound in many plants, may possess toxicity against various stages of a variety of insect pests, including the brown marmorated stinkbug, Halyomorpha halys, diamondback moth, Plutella xylostella, and tobacco hornworm, Manduca sexta, as well as the spotted wing drosophila, Drosophila suzukii. Based on our laboratory toxicity data, MB was at least 5 to 20 times more toxic than the conventional pyrethroid (β-cyfluthrin), sulfur & pyrethrin mixture, and some organic commercial products available on the market against H. halys, P. xylostella, and M. sexta, eggs. Because MB is considered an environment-friendly, it has great potential to be used as an alternative tool to synthetic pesticide for insect pest management in crop production, thereby, reducing threats to natural ecosystems and human health caused by over-application of conventional synthetic pesticides.

  7. Synthesis and structure of linear hexanuclear manganese (Ⅱ) benzoate cluster

    Institute of Scientific and Technical Information of China (English)

    陈昌能; 陈久桐; 朱红平; 黄子祥; 刘秋田

    2001-01-01

    From a reaction system including benzoic acid and Mn(NO3)2 in alkali medium, two hexanuclear manganese benzoate cluster compounds have been synthesized. A compound [Et4N]2[Mn6(PhCOO)14] has been structurally characterized, which contains hexanuclear Mn11 moieties extending unlimitedly to form one-dimensional linear structure. Carboxyl oxygen atoms are bridged in variety of modes to the Mn atoms, forming an arrangement like a sinusoid for the Mn atoms. The structural parameters of these compounds were compared with the data obtained from EXAFS determination for the Mn cluster in the OEC of PS11, supporting that the coordination sphere of the Mn site in the OEC may contain carboxyl bridges. The possible combination modes between the carboxyl group and the Mn atoms have been suggested. The NMR signals exhibit widening and shift produced by the influence of the paramagnetic Mn" sites. The red-shift of the absorption in IR spectrum was observed to be attributed to the coordination of the carboxyl group to the Mn

  8. Synthesis and structure of linear hexanuclear manganese (II) benzoate cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    From a reaction system including benzoic acid and Mn(NO3)2 in alkali medium, two hexanuclear manganese benzoate cluster compounds have been synthesized. A compound [Et4N]2[Mn6(PhCOO)14] has been structurally characterized, which contains hexanuclear MnII moie-ties extending unlimitedly to form one-dimensional linear structure. Carboxyl oxygen atoms are bridged in variety of modes to the Mn atoms, forming an arrangement like a sinusoid for the Mn atoms. The structural parameters of these compounds were compared with the data obtained from EXAFS determination for the Mn cluster in the OEC of PSII, supporting that the coordination sphere of the Mn site in the OEC may contain carboxyl bridges. The possible combination modes between the carboxyl group and the Mn atoms have been suggested. The NMR signals exhibit widening and shift produced by the influence of the paramagnetic MnII sites. The red-shift of the absorption in IR spectrum was observed to be attributed to the coordination of the carboxyl group to the Mn atom, supporting the result of the study on crystal structure.

  9. Expression, purification and kinetic characterization of recombinant benzoate dioxygenase from Rhodococcus ruber UKMP-5M

    Directory of Open Access Journals (Sweden)

    Arezoo Tavakoli

    2016-09-01

    Full Text Available In this study, benzoate dioxygenase from Rhodococcus ruber UKMP-5M was catalyzed by oxidating the benzene ring to catechol and other derivatives. The benzoate dioxygenase (benA gene from Rhodococcus ruber UKMP-5M was then expressed, purified, characterized, The benA gene was amplified (642 bp, and the product was cloned into a pGEM-T vector.The recombinant plasmid pGEMT-benA was digested by double restriction enzymes BamHI and HindIII to construct plasmid pET28b-benA and was then ligated into Escherichia coli BL21 (DE3. The recombinant E. coli was induced with 0.5 mM isopropyl β-D-thiogalactoside (IPTG at 22˚C to produce benzoate dioxygenase. The enzyme was then purified by ion exchange chromatography after 8 purification folds. The resulting product was 25 kDa, determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE and western blotting. Benzoate dioxygenase activity was found to be 6.54 U/mL and the optimal pH and temperature were 8.5 and 25°C, respectively. Maximum velocity (Vmax and Michaelis constant (Km were 7.36 U/mL and 5.58 µM, respectively. The end metabolite from the benzoate dioxygenase reaction was cyclohexane dione, which was determined by gas chromatography mass spectrometry (GC-MS.

  10. Sodium benzoate and potassium sorbate preservatives in food stuffs in Iran.

    Science.gov (United States)

    Amirpour, Mansooreh; Arman, Azim; Yolmeh, Ahmad; Akbari Azam, Maryam; Moradi-Khatoonabadi, Zhila

    2015-01-01

    A high-performance liquid chromatography method was applied for the determination of the levels of benzoate and sorbate in 400 food samples, including pickled cucumbers, canned tomato pastes, sour cherry jams, soft drinks, fruit juices and dairy products (UF-Feta cheeses, Lighvan cheeses, lactic cheeses, yogurts and doogh). The results showed that 270 (67.5%) of all samples contained benzoate ranging from 11.9 to 288.5 mg kg(-1) in lactic cheese and fruit juice, respectively. The levels of sorbate in 98 (24.5%) of the samples were 20.1 to 284.3 mg kg(-1) in doogh and fruit juice, respectively. Moreover, benzoate was detected in all dairy products ranging from 11.9 mg kg(-1) in lactic cheese to 91.2 mg kg(-1) in UF-Feta cheese. A low concentration of benzoate could originate naturally, due to specific biochemical mechanisms during cheese, yogurt and doogh maturation. In conclusion, a minimum level for benzoate in dairy products should be defined in the legislation.

  11. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit.

    Science.gov (United States)

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-08-27

    The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles.

  12. Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Reveal a Split Path of Chlorophyll Breakdown in a Ripening Fruit

    Science.gov (United States)

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-01-01

    Abstract The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397

  13. Development and validation of UV spectrophotometric method to study stress degradation behaviour of rizatriptan benzoate.

    Science.gov (United States)

    Amolkumar, Kempwade; Ashok, Taranalli; Kiran, Jadhav

    2015-01-01

    Rizatriptan benzoate is a 5 HT 1B/1D receptor agonist which is prescribed for the treatment of migraine. In the present study new, simple, specific ultraviolet spectrophotometric method for rizatriptan benzoate was developed and validated. Forced degradation studies were carried out in acidic, alkaline and neutral pH conditions. The absorbance maxima peak was found to be 224 nm and linearity was observed in the concentration range of 0. 5-2. 5 µg . mL-1 with regression coefficient value of 0. 998 8. The method was validated and found to be precise. The percent recovery for rizatriptan benzoate was found to be 98. 576±0. 202. The bulk drug was found to be stable in neutral and acidic pH conditions but got degraded in 1 N NaOH solution.

  14. Development and Validation of UV Spectrophotometric Method to Study Stress Degradation Behaviour of Rizatriptan Benzoate

    Institute of Scientific and Technical Information of China (English)

    Kempwade Amolkumar; Taranalli Ashok; Jadhav Kiran

    2015-01-01

    Rizatriptan benzoate is a 5 HT 1B/1D receptor agonist which is prescribed for the treatment of mi-graine .In the present study new ,simple ,specific ultraviolet spectrophotometric method for rizatriptan benzo-ate was developed and validated .Forced degradation studies were carried out in acidic ,alkaline and neutral pH conditions .The absorbance maxima peak was found to be 224 nm and linearity was observed in the concentra-tion range of 0.5~2.5 μg・mL -1 with regression coefficient value of 0.998 8 .The method was validated and found to be precise .The percent recovery for rizatriptan benzoate was found to be 98.576 ± 0.202 .The bulk drug was found to be stable in neutral and acidic pH conditions but got degraded in 1 N NaOH solution .

  15. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  16. Development and Validation of HPTLC Method for the Estimation of Rizatriptan Benzoate in Bulk and Tablets.

    Science.gov (United States)

    Sundar, B Syama; Suneetha, A

    2010-11-01

    A new, simple high performance thin layer chromatographic method has been proposed for the determination of rizatriptan benzoate in a tablet dosage form. The drug was separated on aluminum plates precoated with silica gel 60 F(254) with dichloromethane-acetone-acetic acid 3:2:0.2(v/v/v) as mobilephase. Quantitative analysis was performed by densitometric scanning at 230 nm. The method was validated for linearity, accuracy, precision and robustness. The calibration plot was linear over the range 200-700 ng/band for rizatriptan benzoate. The method was successfully applied to the analysis of drug in bulk and marketed tablets.

  17. Fast determination of adenosine 5'-triphosphate (ATP) and its catabolites in royal jelly using ultraperformance liquid chromatography.

    Science.gov (United States)

    Zhou, Ling; Xue, XiaoFeng; Zhou, JinHui; Li, Yi; Zhao, Jing; Wu, LiMing

    2012-09-12

    To obtain insight into the metabolic regulation of adenosine 5'-triphosphate (ATP) in royal jelly and to determine whether ATP and its catabolites can be used as objective parameters to evaluate the freshness and quality of royal jelly (RJ), a rapid ultraperformance liquid chromatography (UPLC) method has been developed for feasible separation and quantitation of ATP and its catabolites in RJ, namely, adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), inosine monophosphate (IMP), inosine (HxR), and hypoxanthine (Hx). The analytes in the sample were extracted using 5% precooled perchloric acid. Chromatographic separation was performed on a Waters Acquity UPLC system with a Waters BEH Shield RP18 column and gradient elution based on a mixture of two solvents: solvent A, 50 mM phosphate buffer (pH 6.5); and solvent B, acetonitrile. The recoveries were in the range of 86.0-102.3% with RSD of no more than 3.6%. The correlation coefficients of six analytes were high (r(2) ≥ 0.9988) and within the test ranges. The limits of detection and quantification for the investigated compounds were lower, at 0.36-0.68 and 1.22-2.30 mg/kg, respectively. The overall intra- and interday RSDs were no more than 1.8%. The developed method was successfully applied to the analysis of the analytes in samples. The results showed that ATP in RJ sequentially degrades to ADP, AMP, IMP, HxR, and Hx during storage.

  18. Translational repression by PUF proteins in vitro.

    Science.gov (United States)

    Chritton, Jacqueline J; Wickens, Marvin

    2010-06-01

    PUF (Pumilio and FBF) proteins provide a paradigm for mRNA regulatory proteins. They interact with specific sequences in the 3' untranslated regions (UTRs) of target mRNAs and cause changes in RNA stability or translational activity. Here we describe an in vitro translation assay that reconstitutes the translational repression activity of canonical PUF proteins. In this system, recombinant PUF proteins were added to yeast cell lysates to repress reporter mRNAs bearing the 3'UTRs of specific target mRNAs. PUF proteins from Saccharomyces cerevisiae and Caenorhabditis elegans were active in the assay and were specific by multiple criteria. Puf5p, a yeast PUF protein, repressed translation of four target RNAs. Repression mediated by the HO 3'UTR was particularly efficient, due to a specific sequence in that 3'UTR. The sequence lies downstream from the PUF binding site and does not affect PUF protein binding. PUF-mediated repression was sensitive to the distance between the ORF and the regulatory elements in the 3'UTR: excessive distance decreased repression activity. Our data demonstrate that PUF proteins function in vitro across species, that different mRNA targets are regulated differentially, and that specific ancillary sequences distinguish one yeast mRNA target from another. We suggest a model in which PUF proteins can control translation termination or elongation.

  19. Toxic effects of pollutants on the Mineralization of 4-chlorophenol and Benzoate in methanogenic river sediment

    NARCIS (Netherlands)

    van Beelen P; van Vlaardingen PLA

    1993-01-01

    The toxic effects of pollutants on the mineralization of 2 mug/l [U-14C] 4-chlorophenol and benzoate were studied in microcosms with methanogenic sediment from the Rhine river. In contrast with studies using a high substrate concentration no lag time was observed and the half-lives for 4-chlorophen

  20. An Overview on the Effects of Sodium Benzoate as a Preservative in Food Products

    Directory of Open Access Journals (Sweden)

    Shahmohammadi

    2016-05-01

    Full Text Available Context Food spoilage has been a common problem throughout history, and much of the spoilage is caused the activity of microorganisms or enzymatic reactions during the storage of food. Thus, using chemical substances could prevent or delay food spoilage and this has led to the great success of these compounds in the treatment of human diseases. Sodium benzoate is one of the synthetic additives that are widely used in the food industry. Evidence Acquisition In this review we summarized the history and role of benzoate sodium in the food industry, its limited value in different food, other uses, pharmacokinetics, and its toxicity in animal studies. A literature search was carried out using MEDLINE, Scopus, Science Direct, and Scientific Information Databases (SID. Results Sodium benzoate is used in different industries as well as the food industry and it has adverse effects similar to other food additives. Conclusions Studies on natural ingredients in foods to find compounds with similar effects as benzoate with less adverse effects is necessary.

  1. Regulation of expression of the Aspergillus niger benzoate para-hydroxylase cytochrome P450 system

    NARCIS (Netherlands)

    Brink, J.M. van den; Punt, P.J.; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den

    2000-01-01

    Cytochrome P450 enzyme systems are found throughout nature and are involved in many different, often complex, bioconversions. In the endoplasmic reticulum of the filamentous fungus Aspergillus niger a cytochrome P450 enzyme system is present that is capable of the para-hydroxylation of benzoate. The

  2. Effects of sodium benzoate on storage stability of previously improved beverage from tamarind (Tamarindus indica L.).

    Science.gov (United States)

    Adeola, Abiodun A; Aworh, Ogugua C

    2014-01-01

    The effect of sodium benzoate on the quality attributes of improved tamarind beverage during storage was investigated. Tamarind beverages were produced according to a previously reported improved method, with or without chemical preservatives (100 mg/100 mL sodium benzoate). Tamarind beverage produced according to traditional processing method served as the control. The tamarind beverages were stored for 4 months at room (29 ± 2°C) and refrigerated (4-10°C) temperatures. Samples were analyzed, at regular intervals, for chemical, sensory, and microbiological qualities. Appearance of coliforms or overall acceptability score of 5.9 was used as deterioration index. The control beverages deteriorated by 2nd and 10th days at room and refrigerated temperatures, respectively. Improved tamarind beverage produced without the inclusion of sodium benzoate was stable for 3 and 5 weeks at room and refrigerated temperatures, respectively. Sodium benzoate extended the shelf life of the improved tamarind beverage to 6 and 13 weeks, respectively, at room and refrigerated temperatures.

  3. Ultrasound mediated alkaline hydrolysis of methyl benzoate – reinvestigation with crucial parameters

    NARCIS (Netherlands)

    Sivakumara, Manickam; Senthilkumar, Paramasivam; Majumdara, Sukti; Pandit, Aniruddha B.

    2002-01-01

    In the present work hydrolysis of methyl benzoate was carried out using aqueous sodium hydroxide solution at room temperature in the presence of ultrasound since otherwise the same reaction takes place at relatively high temperature. Also, the above hydrolysis reaction was investigated at a relative

  4. Photodegradation of emamectin benzoate and its influence on efficacy against the rice stem borer Chilo suppressalis

    Science.gov (United States)

    Emamectin benzoate is a novel insecticide with characteristics of translaminar movement into plant leaf tissue. The compound was derived from the avermectin family and improved with thermal stability, greater water solubility, and a broader spectrum of insecticidal activity than avermectin. To deter...

  5. Sodium Benzoate and Potassium Sorbate in Processed Meat Products Collected in Ho Chi Minh City, Vietnam

    Directory of Open Access Journals (Sweden)

    Yen T.H. Hoang

    2016-01-01

    Full Text Available Sodium benzoate and potassium sorbates are the two typical preservatives widely used in Vietnam and other countries. The maximum level (ML of sodium benzoate and potassium sorbate in processed meat products imposed by Ministry of Public Health is 1000 ppm. Although there are warnings about overusing of these preservatives that related to human health, many manufacturers do not follow the regulations. The aim of this study was to survey and consider the amounts and presence of these preservatives in processed meat products by using High-performance liquid chromatography (HPLC method. 90 samples of brands and no brands including Vietnamese pork rolls, pâtés, hams, sausages, and fermented pork rolls that available at markets in Ho Chi Minh City were analysed for these two preservatives. There was a preference for using sodium benzoate in all samples. Moreover, Vietnamese pork roll samples had the highest percentage of samples with preservatives concentrations exceeding the ML. Among 90 samples, sodium benzoate was detected in 52.2% of samples and 17.8% of them exceeded the ML, while potassium sorbate was found in 24.4% of samples and only 2.2% of them exceeded the regulated amount. 46.4% of Vietnamese pork rolls, 12.5% of pâtés, and 9.1% of fermented pork rolls had sodium benzoate exceeded the ML, whilst ham and sausage samples contained the concentrations inside the safety limits. Furthermore, only one sample of Vietnamese pork rolls and one sample of sausages had potassium sorbate concentrations surpassing the ML with the level of 1,717.57 mg/kg and 1,814.00 mg/kg, respectively. Furthermore, branded samples showed a significantly different result in compared with no branded samples. Of branded samples, exceeding sodium benzoate level ML was detected in 10% of samples and none of the samples found surpassing potassium sorbate limit amount. Nevertheless, 27.5% and 5% of unbranded samples had sodium benzoate and potassium sorbate higher than

  6. Effect of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes.

    Science.gov (United States)

    Pongsavee, Malinee

    2015-01-01

    Sodium benzoate is food preservative that inhibits microbial growth. The effects of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes were studied. Sodium benzoate concentrations of 0.5, 1.0, 1.5, and 2.0 mg/mL were treated in lymphocyte cell line for 24 and 48 hrs, respectively. Micronucleus test, standard chromosome culture technique, PCR, and automated sequencing technique were done to detect micronucleus, chromosome break, and gene mutation. The results showed that, at 24- and 48-hour. incubation time, sodium benzoate concentrations of 1.0, 1.5, and 2.0 mg/mL increased micronucleus formation when comparing with the control group (P sodium benzoate concentrations of 2.0 mg/mL increased chromosome break when comparing with the control group (P Sodium benzoate did not cause Ala40Thr (GCG→ACG) in superoxide dismutase gene. Sodium benzoate had the mutagenic and cytotoxic toxicity in lymphocytes caused by micronucleus formation and chromosome break.

  7. Effect of Sodium Benzoate Preservative on Micronucleus Induction, Chromosome Break, and Ala40Thr Superoxide Dismutase Gene Mutation in Lymphocytes

    Directory of Open Access Journals (Sweden)

    Malinee Pongsavee

    2015-01-01

    Full Text Available Sodium benzoate is food preservative that inhibits microbial growth. The effects of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes were studied. Sodium benzoate concentrations of 0.5, 1.0, 1.5, and 2.0 mg/mL were treated in lymphocyte cell line for 24 and 48 hrs, respectively. Micronucleus test, standard chromosome culture technique, PCR, and automated sequencing technique were done to detect micronucleus, chromosome break, and gene mutation. The results showed that, at 24- and 48-hour. incubation time, sodium benzoate concentrations of 1.0, 1.5, and 2.0 mg/mL increased micronucleus formation when comparing with the control group (P<0.05. At 24- and 48-hour. incubation time, sodium benzoate concentrations of 2.0 mg/mL increased chromosome break when comparing with the control group (P<0.05. Sodium benzoate did not cause Ala40Thr (GCG→ACG in superoxide dismutase gene. Sodium benzoate had the mutagenic and cytotoxic toxicity in lymphocytes caused by micronucleus formation and chromosome break.

  8. Investigation of comparative efficacy of eugenol and benzyl benzoate in therapy of sheep mange

    Directory of Open Access Journals (Sweden)

    Jezdimirović Milanka

    2010-01-01

    Full Text Available The acaricide efficacy, tolerance and safety of eugenol (10 and 20 % in the treatment of sarcoptic mange in sheep have been investigated. The results were compared with those corresponding for benzyl benzoate (25 %, which was applied to sheep in the same way. The treatment was applied on sheep three times in one-week intervals. Skin scrapings were sampled seven days after each treatment, as well as twenty-eight days following the third one. The changes on the skin were quantified and the mean recovery response (MRR was calculated. The clinical efficacy was assessed according to the MRR and the number of mites in the samples. Following the first treatment 10%eugenol was not significantly less efficacious in comparison with the higher concentration. Having been applied twice 20% eugenol was significantly more efficacious when compared to the lower concentration, which remained the same seven and twenty-eight days after the third application. The efficacy of 10% eugenol in the therapy of mange was significantly higher in comparison with benzyl benzoate following one, two or three administrations. The efficacy of benzyl benzoate four weeks after the third treatment was still significantly lower in comparison with 10% eugenol. The efficacy of 20% eugenol was significantly higher in comparison with its lower concentration as well as that of benzyl benzoate, following the second, and seven and twenty-eight days after the third one. No signs of local or systemic intolerance were observed in sheep treated with either 10 or 20% eugenol, or 25 % benzyl benzoate. .

  9. THERMAL DECOMPOSITION MECHANISM OF BARIUM BENZOATE%苯甲酸钡的热分解机理

    Institute of Scientific and Technical Information of China (English)

    张克立; 袁继兵; 袁良杰; 孙聚堂

    1999-01-01

    Barium benzoate was synthesized in semi-solid phase reaction. The complex was characterized by elemental analysis, IR, X-ray powder diffraction. It is layered structure, monoclinic system. The mechanism of thermal decomposition for barium benzoate was studied by using TG, DTA, IR and gas chromatography-mass spectrometer. The thermal decompositon of barium benzoate in nitrogen proceeded in one stage: it decomposed to form BaCO3 and organic compounds. The organic compounds obtained from decomposition reaction are mainly benzophenone, triphenylmethane and so on.

  10. Investigation of low levels of plasma valproic acid concentration following simultaneous administration of sodium valproate and rizatriptan benzoate.

    Science.gov (United States)

    Hokama, Nobuo; Hobara, Norio; Kameya, Hiromasa; Ohshiro, Susumu; Hobara, Narumi; Sakanashi, Matao

    2007-03-01

    Drug interaction between rizatriptan benzoate, an anti-migraine agent, and sodium valproate (VPA-Na), an anticonvulsant, was studied in rats. When rizatriptan benzoate was administered orally immediately after VPA-Na oral administration, the pharmacokinetic parameters, such as plasma valproic acid (VPA) and area under the plasma concentration-time curve up to 3 h (AUC(0-3)), were significantly decreased compared with those in the control group. However, when rizatriptan benzoate was administered intraperitoneally immediately after VPA-Na orally, these parameters were not changed. In addition, when benzoic acid was administered orally immediately after VPA-Na orally, these were significantly lower compared with the control values. Therefore, it might be possible that VPA transport by monocarboxylate transporter was competitively inhibited by rizatriptan benzoate and thus absorption of VPA was decreased.

  11. Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions

    Directory of Open Access Journals (Sweden)

    Lee Vincent D

    2006-01-01

    Full Text Available Abstract Background In an effort to identify alternate recombinant gene expression systems in Pseudomonas fluorescens, we identified genes encoding two native metabolic pathways that were inducible with inexpensive compounds: the anthranilate operon (antABC and the benzoate operon (benABCD. Results The antABC and benABCD operons were identified by homology to the Acinetobacter sp. anthranilate operon and Pseudomonas putida benzoate operon, and were confirmed to be regulated by anthranilate or benzoate, respectively. Fusions of the putative promoter regions to the E. coli lacZ gene were constructed to confirm inducible gene expression. Each operon was found to be controlled by an AraC family transcriptional activator, located immediately upstream of the first structural gene in each respective operon (antR or benR. Conclusion We have found the anthranilate and benzoate promoters to be useful for tightly controlling recombinant gene expression at both small (

  12. Repression-Sensitization and Health Behavior.

    Science.gov (United States)

    Gayton, William F.; And Others

    1978-01-01

    Examined relationship between repression-sensitization (R-S) and visits to prison infirmary for males during a one-year period. Main effect for R-S dimension was significant for total number of visits, number of medically justified visits, and number of medically unjustified visits. Sensitizers had significantly more visits than repressors.…

  13. Political Repression in U.S. History

    NARCIS (Netherlands)

    van Minnen, C.A.

    2009-01-01

    The authors of the essays in this book amass considerable historical evidence illustrating various forms of political repression and its relationship with democracy in the United States, from the late-eighteenth century to the present. They discuss efforts, made mostly but not only by government age

  14. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  15. Development and evaluation of tamarind seed xyloglucan-based mucoadhesive buccal films of rizatriptan benzoate.

    Science.gov (United States)

    Avachat, Amelia M; Gujar, Kishore N; Wagh, Kishor V

    2013-01-16

    Mucoadhesive buccal films were developed using tamarind seed xyloglucan (TSX) as novel mucoadhesive polysaccharide polymer for systemic delivery of rizatriptan benzoate through buccal route. Formulations were prepared based on 3(2) factorial design with concentrations of TSX and carbopol 934P (CP) as independent variables. Three dependent variables considered were tensile strength, bioadhesion force and drug release. DSC analysis revealed no interaction between drug and polymers. Ex vivo diffusion studies were carried out using Franz diffusion cell, while bioadhesive properties were evaluated using texture analyzer with porcine buccal mucosa as model tissue. Results revealed that bilayer film containing 4% (w/v) TSX and 0.5% (w/v) CP in the drug layer and 1% (w/v) ethyl cellulose in backing layer demonstrated diffusion of 93.45% through the porcine buccal mucosa. Thus, this study suggests that tamarind seed polysaccharide can act as a potential mucoadhesive polymer for buccal delivery of a highly soluble drug like rizatriptan benzoate.

  16. Comparison of ivermectin and benzyl benzoate lotion for scabies in Nigerian patients.

    Science.gov (United States)

    Sule, Halima M; Thacher, Tom D

    2007-02-01

    Few studies have compared ivermectin directly with topical agents in developing countries. We compared the effectiveness of oral ivermectin (200 microg/kg) with topical 25% benzyl benzoate and monosulfiram soap in 210 subjects of age 5 to 65 years with scabies. Subjects with persistent lesions after 2 weeks received a second course of treatment. All lesions had resolved after 2 weeks in 77 of 98 (79%) subjects treated with ivermectin and in 60 of 102 (59%) subjects treated topically (P = 0.003). The improvement in severity score was greater in the ivermectin group than in the topical treatment group (P topical treatment group (P = 0.04). Compared with topical benzyl benzoate and monosulfiram in the treatment of scabies, ivermectin was at least as effective and led to more rapid improvement.

  17. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    Science.gov (United States)

    Sathya, P.; Gopalakrishnan, R.

    2015-06-01

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker's microhardness tester. The Second Harmonic Generation (SHG) study revealed that the C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.

  18. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu [Crystal Research Lab, Department of Physics, Anna University, Chennai-600002 (India)

    2015-06-24

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that the C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.

  19. An Overview on the Effects of Sodium Benzoate as a Preservative in Food Products

    OpenAIRE

    Shahmohammadi; Javadi; Nassiri-Asl

    2016-01-01

    Context Food spoilage has been a common problem throughout history, and much of the spoilage is caused the activity of microorganisms or enzymatic reactions during the storage of food. Thus, using chemical substances could prevent or delay food spoilage and this has led to the great success of these compounds in the treatment of human diseases. Sodium benzoate is one of the synthetic additives that are widely used in the food industry. Evidenc...

  20. Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways

    OpenAIRE

    2012-01-01

    We have studied for the first time the transcriptional regulatory circuit that controls the expression of the box genes encoding the aerobic hybrid pathway used to assimilate benzoate via coenzyme A (CoA) derivatives in bacteria. The promoters responsible for the expression of the box cluster in the β-proteobacterium Azoarcus sp., their cognate transcriptional repressor, the BoxR protein, and the inducer molecule (benzoyl-CoA) have been characterized. The BoxR protein shows a significant sequ...

  1. Simultaneous determination of a quaternary mixture of oxomemazine, sodium benzoate, guaifenesin and paracetamol by chromatographic methods

    OpenAIRE

    Nehal F. Farid; Nariman A. El Ragehy; Maha A. Hegazy; Mohamed Abdelkawy; Fadia H. Metwally

    2014-01-01

    The aim of the present work was to develop simple, accurate, sensitive and selective methods for the simultaneous determination of oxomemazine (Ox), sodium benzoate (SB), guaifenesin (Gu), andparacetamol (Par). Two methods were described and validated for the simultaneous determination of the four drugs in syrup and suppositories. The first method was a reversed phase HPLC and UVdetection at 220 nm. The assay was performed using C 18 column and an isocratic elution using acetonitrile – methan...

  2. Development and validation of a specific stability indicating high performance liquid chromatographic method for rizatriptan benzoate.

    Science.gov (United States)

    Mallikarjuna Rao, B; Sangaraju, Sivaiah; Srinivasu, M K; Madhavan, P; Lalitha Devi, M; Rajendra Kumar, P; Chandrasekhar, K B; Arpitha, Ch; Satya Balaji, T

    2006-06-16

    A gradient, reversed-phase liquid chromatographic (RP-LC) method was developed for the quantitative determination of rizatriptan benzoate, used to treat relieves migraine headache symptoms. The developed method can be also employed for the related substance determination in bulk samples. Forced degradation studies were performed on bulk sample of rizatriptan benzoate using acid (0.5 N hydrochloric acid), base (0.1 N sodium hydroxide), oxidation (3.0% hydrogen peroxide), water hydrolysis, heat (60 degrees C) and photolytic degradation. Mild degradation of the drug substance was observed in base hydrolysis and considerable degradation observed during oxidative stress. The chromatographic method was fine tuned using the samples generated from forced degradation studies. Good resolution between the peaks corresponds to degradation products and the analyte was achieved on Agilent Zorbax SB-CN (250 mm x 4.6 mm, 5 microm) column. The mobile phase consists of a mixture of aqueous potassium di hydrogen ortho phosphate (pH 3.4), acetonitrile and methanol. The stress sample solutions were assayed against the qualified reference standard of rizatriptan benzoate and the mass balance in each case was close to 99.7% indicating that the developed method is stability indicating. Validation of the developed method was carried out as per ICH requirements.

  3. Bioavailability Enhancement of Rizatriptan Benzoate by Oral Disintegrating Strip: In vitro and In vivo Evaluation.

    Science.gov (United States)

    Bhagawati, S T; Chonkar, Ankita D; Dengale, Swapnil J; Reddy, Sreenivasa M; Bhat, Krishnamurthy

    2016-01-01

    Oral disintegrating strips containing rizatriptan benzoate, a selective 5-hydroxy tryptamine receptor agonist with anti migraine property, was developed using polyvinyl alcohol, sodium alginate and hydroxyl propyl methylcellulose as the base materials. The analytical and bioanalytical methods were developed and validated using HPLC (PDA and flouroscence detectors). The dissolution study performed on the strips revealed that all the five formulations, release the drug within eight minutes. Under ICH accelerated stability conditions, strips were stable at 40°C and 75% humidity for eight weeks. Furthermore, pharmacokinetic properties of oral strip were compared with rizatriptan benzoate marketed tablet. Oral disintegrating strip and tablet showed significantly higher bioavailability. Oral strip exhibited better pharmacokinetic parameters than rizatriptan marketed tablet. The Tmax, Cmax, AUC and t1/2 for oral strip were found to be 1.00 h, 64.13±19.46 ng/mL, 352.00±71.57 ng/mL/h and 3.09±1.03 h respectively, whereas, tablet showed 1.5 h, 38.00±13.43 ng/mL, 210.38± 40.37ng/mL/h and 1.66±0.31 h respectively. These findings confirm that the rizatriptan benzoate oral disintegrating strip is potentially a useful tool for an effective treatment of migraine with improved bioavailability, rapid onset of action and with increased patient compliance.

  4. Synthesis, structure and some properties of a manganese(II) benzoate containing diimine

    Science.gov (United States)

    Paul, Pranajit; Roy, Subhadip; Sarkar, Sanjoy; Chowdhury, Shubhamoy; Purkayastha, R. N. Dutta; Raghavaiah, Pallepogu; McArdle, Patrick; Deb, Lokesh; Devi, Sarangthem Indira

    2015-12-01

    A new monomeric manganese(II) benzoate complex containing nitrogen donor 2,2‧-bipyridine, [Mn(OBz)2(bipy)(H2O)] (OBz = benzoate, bipy = 2,2‧-bipyridine) has been synthesized from aqueous methanol medium and characterized by analytical, spectroscopic and single crystal X-ray diffraction studies. The compound exhibits moderate to appreciable antimicrobial activity. The complex crystallizes in space group P21/n. Mn(II) atom is ligated by two N atoms of bipyridine, three O atoms from a monodentate and a bidentate benzoate ligand and a water molecule forming distorted octahedral structure. The coordinated water molecule forms intramolecular hydrogen bonds and links the monomer molecules into hydrogen bonded dimer. The hydrogen bonded dimers are involved in intermolecular C-H···O and π-π stacking interactions. Density functional theory (DFT) computation was carried out to compute the frequencies of relevant vibrational modes and electronic properties, the results are in compliance with the experimentally obtained structural and spectral data.

  5. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.

    Science.gov (United States)

    Jockusch, Steffen; Turro, Nicholas J; Banala, Srinivas; Kräutler, Bernhard

    2014-02-01

    Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

  6. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essen......During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  7. The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Hufnagel, David A; Evans, Margery L; Greene, Sarah E; Pinkner, Jerome S; Hultgren, Scott J; Chapman, Matthew R

    2016-12-15

    The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenic E. coli (UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms through csgD The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion of cyaA resulted in reduced extracellular matrix production and biofilm formation. The catabolite repressor protein (CRP) positively regulated csgD transcription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaA and Δcrp did not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within the csgD-csgB intergenic region, and purified CRP could gel shift the csgD-csgB intergenic region. Additionally, we found that CRP binded upstream of kpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influence E. coli biofilms through transcriptional regulation of csgD IMPORTANCE The catabolite repressor protein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on the Escherichia coli chromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874-5893, 2004, https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibits E. coli biofilm formation, and ΔcyaA and Δcrp mutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406-3410, 2002, https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the c

  8. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis.

  9. Transthyretin represses neovascularization in diabetic retinopathy

    Science.gov (United States)

    Shao, Jun

    2016-01-01

    Purpose The apoptosis of human umbilical vein endothelial cells has been reportedly induced by the protein transthyretin (TTR). In human ocular tissue, TTR is generally considered to be secreted mainly by retinal pigment epithelial cells (hRPECs); however, whether TTR affects the development of neovascularization in diabetic retinopathy (DR) remains unclear. Methods Natural and simulated DR media were used to culture human retinal microvascular endothelial cells (hRECs). Hyperglycemia was simulated by increasing the glucose concentration from 5.5 mM up to 25 mM, while hypoxia was induced with 200 µM CoCl2. To understand the effects of TTR on hRECs, cell proliferation was investigated under natural and DR conditions. Overexpression of TTR, an in vitro wound-healing assay, and a tube formation assay were employed to study the repression of TTR on hRECs. Real-time fluorescence quantitative PCR (qRT-PCR) was used to study the mRNA levels of DR-related genes, such as Tie2, VEGFR1, VEGFR2, Angpt1, and Angpt2. Results The proliferation of hRECs was significantly decreased in the simulated hyperglycemic and hypoxic DR environments. The cells were further repressed by added exogenous or endogenous TTR only under hyperglycemic conditions. The in vitro migration and tube formation processes of the hRECs were inhibited with TTR; furthermore, in the hyperglycemia and hyperglycemia/hypoxia environments, the levels of Tie2 and Angpt1 mRNA were enhanced with exogenous TTR, while those of VEGFR1, VEGFR2, and Angpt1 were repressed. Conclusions In hyperglycemia, the proliferation, migration, and neovascularization of hRECs were significantly inhibited by TTR. The key genes for DR neovascularization, including Tie2, VEGFR1, VEGFR2, Angpt1, and Angpt2, were regulated by TTR. Under DR conditions, TTR significantly represses neovascularization by inhibiting the proliferation, migration and tube formation of hRECs. PMID:27746673

  10. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  11. Polycomb repressive complex 1 controls uterine decidualization

    OpenAIRE

    Fenghua Bian; Fei Gao; Kartashov, Andrey V.; Jegga, Anil G; Artem Barski; Das, Sanjoy K.

    2016-01-01

    Uterine stromal cell decidualization is an essential part of the reproductive process. Decidual tissue development requires a highly regulated control of the extracellular tissue remodeling; however the mechanism of this regulation remains unknown. Through systematic expression studies, we detected that Cbx4/2, Rybp, and Ring1B [components of polycomb repressive complex 1 (PRC1)] are predominantly utilized in antimesometrial decidualization with polyploidy. Immunofluorescence analyses reveale...

  12. Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil.

    Directory of Open Access Journals (Sweden)

    Ondrej Uhlik

    Full Text Available Bacteria were identified associated with biodegradation of aromatic pollutants biphenyl, benzoate, and naphthalene in a long-term polychlorinated biphenyl- and polyaromatic hydrocarbon-contaminated soil. In order to avoid biases of culture-based approaches, stable isotope probing was applied in combination with sequence analysis of 16 S rRNA gene pyrotags amplified from (13C-enriched DNA fractions. Special attention was paid to pyrosequencing data analysis in order to eliminate the errors caused by either generation of amplicons (random errors caused by DNA polymerase, formation of chimeric sequences or sequencing itself. Therefore, sample DNA was amplified, sequenced, and analyzed along with the DNA of a mock community constructed out of 8 bacterial strains. This warranted that appropriate tools and parameters were chosen for sequence data processing. (13C-labeled metagenomes isolated after the incubation of soil samples with all three studied aromatics were largely dominated by Proteobacteria, namely sequences clustering with the genera Rhodanobacter Burkholderia, Pandoraea, Dyella as well as some Rudaea- and Skermanella-related ones. Pseudomonads were mostly labeled by (13C from naphthalene and benzoate. The results of this study show that many biphenyl/benzoate-assimilating bacteria derive carbon also from naphthalene, pointing out broader biodegradation abilities of some soil microbiota. The results also demonstrate that, in addition to traditionally isolated genera of degradative bacteria, yet-to-be cultured bacteria are important players in bioremediation. Overall, the study contributes to our understanding of biodegradation processes in contaminated soil. At the same time our results show the importance of sequencing and analyzing a mock community in order to more correctly process and analyze sequence data.

  13. Ultrasonic Investigations of Molecular Interaction in Binary Mixtures of Benzyl Benzoate with Acetonitrile and Benzonitrile

    Directory of Open Access Journals (Sweden)

    N. Jaya Madhuri

    2011-01-01

    Full Text Available Ultrasonic velocity, density and viscosity have been measured in the binary mixtures of benzyl benzoate with acetonitrile, benzonitrile at three temperatures 30, 40 and 50 °C. From the experimental data, thermodynamic parameters like adiabatic compressibility, internal pressure, enthalpy, activation energy etc., were computed and the molecular interactions were predicted based on the variation of excess parameters in the mixture. Also theoretical evaluation of velocities was made employing the standard theories. CFT and NOMOTO were found to have an edge. All the three mixtures have shown out strong intermolecular interactions between the unlike molecules and endothermic type of chemical reaction.

  14. Two new terpenoid benzoates with antitumor activity from the roots of Ferula dissecta.

    Science.gov (United States)

    Huang, Jian; Han, Hong-Ying; Li, Guo-Yu; Wang, Hang-Yu; Zhang, Cui; Zhang, Ke; Tan, Yong; Li, Ping-Ya; Wang, Jin-Hui

    2013-01-01

    Two new sesquiterpene benzoates, syreiteate A (1) and syreiteate B (2), were isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. Their structures were elucidated by extensive spectroscopic methods including 1D ((1)H and (13)C) NMR, 2D (HSQC, HMBC, DQF-COSY, and NOESY) NMR, and ESI-TOF-MS. Their configurations were determined on the basis of the analysis of the coupling constants, NOESY correlations, and circular dichroism spectrum. Compounds 1 and 2 showed potent growth inhibitory activity against cervical cancer HeLa cell line with the IC50 values of 13.2 and 19.3 μM, respectively.

  15. Application of N-succinimidyl 4-[18F](fluoromethyl) benzoate to protein labeling

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    N-succinimidyl 4-[18F](fluoromethyl) benzoate for protein labeling was prepared (57%, EOB) in about 30min. Reaction conditions of S18FMB with IgG including pH of solutions, protein concentration, reaction temperature and time were studied. The optimal labeling conditions were: 0.2mg/mL IgG, pH = 7.8-8.5, 25℃, and reaction time 5min.Under these conditions the yield was about 80%. The 18F-labeled protein was purified by size exclusion chromatography.

  16. Unexpected red shift of C-H vibrational band of Methyl benzoate

    CERN Document Server

    Maiti, Kiran Sankar; Scheurer, Christoph

    2016-01-01

    The C-H vibrational bands become more and more important in the structural determination of biological molecules with the development of CARS microscopy and 2DIR spectroscopy. Due to the congested pattern, near degeneracy, and strong anharmonicity of the C-H stretch vibrations, assignment of the C-H vibrational bands are often misleading. Anharmonic vibrational spectra calculation with multidimensional potential energy surface interprets the C-H vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational spectra calculation and discuss the unexpected red shift of C-H vibrational band of Methyl benzoate.

  17. The Electrical Properties for Phenolic Isocyanate-Modified Bisphenol-Based Epoxy Resins Comprising Benzoate Group.

    Science.gov (United States)

    Lee, Eun Yong; Chae, Il Seok; Park, Dongkyung; Suh, Hongsuk; Kang, Sang Wook

    2016-03-01

    Epoxy resin has been required to have a low dielectric constant (D(k)), low dissipation factor (Df), low coefficient of thermal expansion (CTE), low water absorption, high mechanical, and high adhesion properties for various applications. A series of novel phenolic isocyanate-modified bisphenol-based epoxy resins comprising benzoate group were prepared for practical electronic packaging applications. The developed epoxy resins showed highly reduced dielectric constants (D(k)-3.00 at 1 GHz) and low dissipation values (Df-0.014 at 1 GHz) as well as enhanced thermal properties.

  18. Airborne contact urticaria due to sodium benzoate in a pharmaceutical manufacturing plant

    Energy Technology Data Exchange (ETDEWEB)

    Nethercott, J.R.; Lawrence, M.J.; Roy, A.M.; Gibson, B.L.

    1984-10-01

    Three workers exposed to airborne contact with sodium benzoate (SB) in a pharmaceutical plant developed transient urticaria related to skin contamination with SB. Patch test responses to SB and benzoic acid (BA), without occlusion, were similar to those of three previously unexposed controls in keeping with the nonimmunologic nature of the reaction. Sweating, which lowers skin pH and increases topical BA concentration, appeared to increase the susceptibility to urticaria in two of the three workers. Ventilation and hygiene control methods designed to reduce SB skin contamination eliminated the problem in the workplace. 10 references, 1 table.

  19. STUDY ON THE THERMODYNAMIC PROPERTIES OF ADSORPTION OF ETHYL BENZOATE AND DIETHYL PHTHALATE BY PHENOLIC RESIN ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    Zhong Wang; Zuo-qing Shi; Rong-fu Shi; Yun-ge Fan; Yi-zhong Yang

    2004-01-01

    This paper presents experimental observations on the adsorption of individual solutes by a simple thermodynamic framework, and the equilibrium adsorption of ethyl benzoate and diethyl phthalate on phenolic resin adsorbent in hexane solutions within the temperature range of 293-313 K. The experimental results show that the Freundlich adsorption law is applicable to the adsorption of ethyl benzoate and diethyl phthalate on the adsorbent, since all the correlative factors R' are larger than 0.99. The negative values of all the isosteric adsorption enthalpies for ethyl benzoate and diethyl phthalate indicate that they undergo exothermic processes, while their magnitudes (19-28 kJ/mol) manifest a hydrogen bonding sorption process. Other thermodynamic properties: the free energy changes and the entropy change associated with the adsorption have been calculated from the Gibbs adsorption equation and the Gibbs-Helmholtz equation.

  20. PH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1

    NARCIS (Netherlands)

    Duuren, J.B.J.H. van; Wijte, D.; Karge, B.; Martins dos Santos, V.A.; Yang, Y.; Mars, A.E.; Eggink, G.

    2012-01-01

    Pseudomonas putida KT2440-JD1 is able to cometabolize benzoate to cis, cis-muconate in the presence of glucose as growth substrate. P. putida KT2440-JD1 was unable to grow in the presence of concentrations above 50 mM benzoate or 600 mM cis, cis-muconate. The inhibitory effects of both compounds wer

  1. Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield

    NARCIS (Netherlands)

    Duuren, J.B.J.H. van; Wijte, D.; Leprince, A.; Karge, B.; Puchalka, J.; Wery, J.; Dos Santos, V.A.P.M.; Eggink, G.; Mars, A.E.

    2011-01-01

    Pseudomonas putida KT2440-JD1 was derived from P. putida KT2440 after N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-mutagenesis and exposure to 3-fluorobenzoate (3-FB). The mutant was no longer able to grow using benzoate as a sole carbon source, but co-metabolized benzoate to cis, cis-muconate during

  2. BEND3 mediates transcriptional repression and heterochromatin organization.

    Science.gov (United States)

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  3. ATRX represses alternative lengthening of telomeres.

    Science.gov (United States)

    Napier, Christine E; Huschtscha, Lily I; Harvey, Adam; Bower, Kylie; Noble, Jane R; Hendrickson, Eric A; Reddel, Roger R

    2015-06-30

    The unlimited proliferation of cancer cells requires a mechanism to prevent telomere shortening. Alternative Lengthening of Telomeres (ALT) is an homologous recombination-mediated mechanism of telomere elongation used in tumors, including osteosarcomas, soft tissue sarcoma subtypes, and glial brain tumors. Mutations in the ATRX/DAXX chromatin remodeling complex have been reported in tumors and cell lines that use the ALT mechanism, suggesting that ATRX may be an ALT repressor. We show here that knockout or knockdown of ATRX in mortal cells or immortal telomerase-positive cells is insufficient to activate ALT. Notably, however, in SV40-transformed mortal fibroblasts ATRX loss results in either a significant increase in the proportion of cell lines activating ALT (instead of telomerase) or in a significant decrease in the time prior to ALT activation. These data indicate that loss of ATRX function cooperates with one or more as-yet unidentified genetic or epigenetic alterations to activate ALT. Moreover, transient ATRX expression in ALT-positive/ATRX-negative cells represses ALT activity. These data provide the first direct, functional evidence that ATRX represses ALT.

  4. Thermodynamic and Acoustic Study on Molecular Interactions in Certain Binary Liquid Systems Involving Ethyl Benzoate

    Directory of Open Access Journals (Sweden)

    B. Nagarjun

    2013-01-01

    Full Text Available Speeds of sound and density for binary mixtures of ethyl benzoate (EB with N,N-dimethylformamide (NNDMF, N,N-dimethyl acetamide (NNDMAc, and N,N-dimethylaniline (NNDMA were measured as a function of mole fraction at temperatures 303.15, 308.15 K, 313.15 K, and 318.15 K and atmospheric pressure. From the experimental data, adiabatic compressibility (βad, intermolecular free length (Lf, and molar volume (V have been computed. The excess values of the above parameters were also evaluated and discussed in light of molecular interactions. Deviation in adiabatic compressibilities and excess intermolecular free length (LfE are found to be negative over the molefraction of ethyl benzoate indicating the presence of strong interactions between the molecules. The negative excess molar volume VE values are attributed to strong dipole-dipole interactions between unlike molecules in the mixtures. The binary data of Δβad, VE, and LfE were correlated as a function of molefraction by using the Redlich-Kister equation.

  5. Development and preventative effect against pine wilt disease of a novel liquid formulation of emamectin benzoate.

    Science.gov (United States)

    Takai, Kazuya; Suzuki, Toshio; Kawazu, Kazuyoshi

    2003-03-01

    Injection of the poorly water-soluble emamectin benzoate (EB) into pine trunks required the development of an efficient liquid formulation. For injection into big trees in forests a good rate of injection and a high active content were required. Tests on the viscosity and EB-solubilizing ability of 14 various solubilizers in diethylene glycol monobutyl ether (DGMBE) led to the selection of Sorpol SM-100PM as the solubilizer of the formulation. Relationships between the solubilizing ability and amounts of Sorpol SM-100PM and DGMBE relative to that of EB, and between the concentration of the latter and the viscosity or the injection rate of the formulation led to a novel 40 g litre(-1) emamectin benzoate formulation (Shot Wan Liquid Formulation), which was composed of EB (40), Sorpol SM-100PM (120), DGMBE (160) and distilled water (50 g litre(-1)) in methanol. Injection of this formulation at a dose of 10 g EB per unit volume of pine tree prevented over 90% of the trees from wilting caused by pine wood nematode, and this preventative effect continued for 3 years. Neither discolouration of the leaves nor injury around the injection hole on the trees was observed after injection of the formulation.

  6. Simultaneous Determination of Potassium Sorbate and Sodium Benzoate in Doogh Using High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    S. Sohrabvandi

    2015-09-01

    Full Text Available In this research, high performance liquid chromatography (HPLC as a simple and rapid technique was used for the determination of potassium sorbate and sodium benzoate in different brands of Doogh (typical Iranian drink based on fermented milk. The chromatographic separation was achieved with a C18 column (250 mm×4 I.D, 5 µm and one buffered mobile phase, acetate buffer (0.2 mol/L, pH4.4: acetonitrile (63:37 at a flow rate of 1 mL/min. The effluent was monitored at 235nm, respectively. The main affecting factors, such as Carrez solution amount, pH and centrifuge speed were optimized. Limits of detection (LODs were 1.823 for sorbic acid and 1.985 for benzoic acid. Relative standard deviations (RSDs for quintuplicate analyses were 4.4 for sorbic acid and 4.087 for benzoic acid. The method also showed good linearity in a range from 4 to 1000 mg/L with correlation coefficients (R2 of 0.990 for sorbic acid and 0.995 for benzoic acid. Recoveries for the two analytes were 80 for sorbic acid and 65 for benzoic acid. Comparing to the other techniques, the proposed method was significantly less time-consuming and had more acceptable accuracy, precision and interruption elimination in samples. The developed method was successfully used for the routine monitoring of benzoate and sorbate in Doogh.

  7. Secondary. cap alpha. -deuterium kinetic isotope effects in solvolyses of ferrocenylmethyl acetate and benzoate in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Sutic, D. (Univ. of Zagreb, Yugoslavia); Asperger, S.; Borcic, S.

    1982-12-17

    Secondary ..cap alpha..-deuterium kinetic isotope effects (KIE) in solvolyses of ferrocenyldideuteriomethyl acetate and benzoate were determined in 96% (v/v) ethanol, at 25/sup 0/C, as k/sub H//k/sub D/ = 1.24 and 1.26, respectively. The KIEs were also determined in the presence of 0.1 mol dm/sup -3/ lithium perchlorate: the k/sub H//k/ sub D/ values were 1.23 and 1.22 for acetate and benzoate complexes, respectively. The maximum KIE for the C-O bond cleavage of a primary substrate is as large as, or larger than, that of secondary derivatives, which is estimated to be 1.23 per deuterium. The measured KIE of about 12% per D therefore represents a strongly reduced effect relative to its maximum. The solvolyses exhibit ''a special salt effect''. This effect indicates the presence of solvent-separated ion pairs and the return to tight pairs. As the maximum KIE is expected in solvolyses involving transformation of one type of ion pair into another, the strongly reduced ..cap alpha..-D KIE supports the structure involving direct participation of electrons that in the ground state are localized at the iron atom. The alkyl-oxygen cleavage is accompanied by 10-15% acyl-oxygen cleavage.

  8. Formulation and evaluation of fast dissolving sublingual films of Rizatriptan Benzoate

    Directory of Open Access Journals (Sweden)

    Bhyan Bhupinder

    2012-03-01

    Full Text Available Rizatriptan Benzoate, a serotonin 5-HT1 receptor agonist is a new generation antimigraine drug which has oral bioavailability of 47% due to hepatic first pass metabolism. The present study investigated the possibility of developing Rizatriptan benzoate fast dissolving sublingual films allowing fast, reproducible drug dissolution in the oral cavity, thus bypassing first pass metabolism to provide rapid onset of action of the drug. The fast dissolving films were prepared by solvent casting method. Low viscosity grade of hydroxylpropyl methylcellulose (HPMC E 15 and maltodextrin were used in combination as film forming polymer, due to their hydrophilic nature and palatable taste. To decrease the disintegration time of formulations sodium starch glycolate was used as disintegrating agent. Glycerol, mannitol, aspartame and sodium lauryl sulphate were used as a cooling agent, sweetening agent and oral penetration enhancer respectively. All the films formulations (F1-F8 was evaluated for their thickness, weight variations, tensile strength, percentage elongation, folding endurance, surface pH, in-vitro disintegration, drug content, in-vitro drug release and ex-vivo permeation. Disintegration time showed by the formulations was found to be in range of 25-50 sec. Formulations F1 and F2 showed 90% in-vitro drug release within 7 min and 61% ex-vivo drug permeation within16 min. The film showed an excellent stability at least for 4 weeks when stored at 400 C and 75% in humidity.

  9. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus.

    Science.gov (United States)

    Ratnoglik, Suratno Lulut; Aoki, Chie; Sudarmono, Pratiwi; Komoto, Mari; Deng, Lin; Shoji, Ikuo; Fuchino, Hiroyuki; Kawahara, Nobuo; Hotta, Hak

    2014-03-01

    The development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still needed. Antiviral compounds in medicinal plants are potentially good targets to study. Morinda citrifolia is a common plant distributed widely in Indo-Pacific region; its fruits and leaves are food sources and are also used as a treatment in traditional medicine. In this study, using a HCV cell culture system, it was demonstrated that a methanol extract, its n-hexane, and ethyl acetate fractions from M. citrifolia leaves possess anti-HCV activities with 50%-inhibitory concentrations (IC(50)) of 20.6, 6.1, and 6.6 μg/mL, respectively. Bioactivity-guided purification and structural analysis led to isolation and identification of pheophorbide a, the major catabolite of chlorophyll a, as an anti-HCV compound present in the extracts (IC(50) = 0.3 μg/mL). It was also found that pyropheophorbide a possesses anti-HCV activity (IC(50) = 0.2 μg/mL). The 50%-cytotoxic concentrations (CC(50)) of pheophorbide a and pyropheophorbide a were 10.0 and 7.2 μg/mL, respectively, their selectivity indexes being 33 and 36, respectively. On the other hand, chlorophyll a, sodium copper chlorophyllin, and pheophytin a barely, or only marginally, exhibited anti-HCV activities. Time-of-addition analysis revealed that pheophorbide a and pyropheophorbide a act at both entry and the post-entry steps. The present results suggest that pheophorbide a and its related compounds would be good candidates for seed compounds for developing antivirals against HCV.

  10. Ivermectin alone or in combination with benzyl benzoate in the treatment of human immunodeficiency virus-associated scabies.

    Science.gov (United States)

    Alberici, F; Pagani, L; Ratti, G; Viale, P

    2000-05-01

    In order to establish a safe and reliable treatment for human immunodeficiency virus (HIV)-associated scabies, we have treated 60 episodes of scabies in this setting, occurring in 39 patients, with one of the following regimens: (i) topical treatment with benzyl benzoate solution; (ii) single-dose oral treatment with ivermectin alone; and (iii) combination therapy with benzyl benzoate solution and oral ivermectin, employing the same regimens as single-agent therapy. Patients were stratified according to the severity score of the disease and the outcome (eradication, relapse, failure). We found that both benzyl benzoate and ivermectin alone were quite effective in mild to moderate scabies, but they were both associated with an unacceptable rate of relapse and failure in severe or crusted scabies. In contrast, combined treatment produced an optimal rate of success, without significant treatment-related side-effects. Therefore, we consider that combination treatment with benzyl benzoate solution and oral ivermectin is preferable to single-agent therapy in crusted scabies occurring in HIV/acquired immune deficiency syndrome patients.

  11. Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate

    NARCIS (Netherlands)

    Duuren, van J.B.J.H.

    2011-01-01

    Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate P. putida KT2440 was used as biocatalyst given its versatile and energetically robust metabolism. Therefore, a mutant was generated and a process developed based on which a life cycle assessment

  12. Food preservatives sodium benzoate and propionic acid and colorant curcumin suppress Th1-type immune response in vitro.

    Science.gov (United States)

    Maier, Elisabeth; Kurz, Katharina; Jenny, Marcel; Schennach, Harald; Ueberall, Florian; Fuchs, Dietmar

    2010-07-01

    Food preservatives sodium benzoate and propionic acid and colorant curcumin are demonstrated to suppress in a dose-dependent manner Th1-type immune response in human peripheral blood mononuclear cells (PBMC) in vitro. Results show an anti-inflammatory property of compounds which however could shift the Th1-Th2-type immune balance towards Th2-type immunity.

  13. Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm, Helicoverpa zea.

    Science.gov (United States)

    López, Juan D; Latheef, M A; Hoffmann, W C

    2010-01-01

    Newly emerged corn earworm adults, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) require a carbohydrate source from plant or other exudates and nectars for dispersal and reproduction. Adults actively seek and forage at feeding sites upon eclosion in the habitat of the larval host plant or during dispersal to, or colonization of, a suitable reproductive habitat. This nocturnal behavior of H. zea has potential for exploitation as a pest management strategy for suppression using an adult feeding approach. This approach entails the use of a feeding attractant and stimulant in combination with a toxicant that when ingested by the adult will either reduce fecundity/fertility at sub-lethal dosages or kill the adult. The intent of this study was to assess reproductive inhibition and toxicity of emamectin benzoate on H. zea when ingested by the adults when mixed in ppm active ingredient (wt:vol) with 2.5 M sucrose as a feeding stimulant. Because the mixture has to be ingested to function, the effect of emamectin benzoate was also evaluated at sub-lethal and lethal concentrations on proboscis extension and gustatory response of H. zea in the laboratory. Feral males captured in sex pheromone-baited traps in the field were used for toxicity evaluations because they were readily available and were more representative of the field populations than laboratory-reared adults. Laboratory-reared female moths were used for reproduction effects because it is very difficult to collect newly emerged feral females from the field. Emamectin benzoate was highly toxic to feral H. zea males with LC(50) values (95% CL) being 0.718 (0.532-0.878), 0.525 (0.316-0.751), and 0.182 (0.06-0.294) ppm for 24, 48 and 72 h responses, respectively. Sub-lethal concentrations of emamectin benzoate did not significantly reduce proboscis extension response of feral males and gustatory response of female H. zea. Sublethal concentrations of emamectin benzoate significantly reduced percent larval hatch of

  14. Kinetically-defined component actions in gene repression.

    Directory of Open Access Journals (Sweden)

    Carson C Chow

    2015-03-01

    Full Text Available Gene repression by transcription factors, and glucocorticoid receptors (GR in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline] is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression.

  15. Scientific Opinion on the safety and efficacy of sodium benzoate as a silage additive for pigs, poultry, bovines, ovines, goats, rabbits and horses

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2012-07-01

    Full Text Available

    Sodium benzoate is intended for use as a technological additive to improve the ensiling process at a proposed dose of 2 400 mg/kg fresh matter, the eventual use of the silage being for pigs, poultry, bovines, ovines, goats, rabbits and horses. The application of sodium benzoate in the preparation of silage at the proposed dose was safe for the target animals. The proposed maximum dose of sodium benzoate is estimated to result in a comparable consumer exposure as does its use as preservative in other feedingstuffs and to make a minimal contribution to consumer exposure. The FEEDAP Panel concluded that sodium benzoate when used as a silage additive is safe for the consumer. Sodium benzoate is not considered as a skin irritant but may be mildly irritant to the eyes. As no data on sensitisation appear to be available, the FEEDAP Panel considered it prudent to treat sodium benzoate as a potential sensitiser. In the absence of information on particle size and dusting potential, a risk from inhalation cannot be excluded. The FEEDAP Panel concluded that there are no safety concerns for the environment resulting from the use of sodium benzoate as a silage additive. Based on a series of laboratory studies, sodium benzoate at the recommended dose was shown to have the potential to improve the production of silage by reducing pH and increasing the preservation of dry matter. This was demonstrated in a range of easy, moderately difficult and difficult to ensile forage materials. Sodium benzoate at concentrations between 250 and 2 500 mg/kg forage also has the potential to increase the aerobic stability of ensiled materials at a wide range of dry matter content.

  16. Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast

    DEFF Research Database (Denmark)

    Eudes, Aymerick; Mouille, Maxence; Robinson, David S.

    2016-01-01

    hydroxycinnamate esters; tropane alkaloids; and benzoate/caffeate alcohol esters. In some instances, the additional expression of Flavobacterium johnsoniae tyrosine ammonia-lyase (FjTAL) allowed the synthesis of p-coumarate conjugates and eliminated the need to supplement the culture media with 4-hydroxycinnamate......Background: BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad...... syntheses that consume petroleum-based precursors. However, identification of appropriate enzymes and validation of their functional expression in heterologous hosts is a prerequisite for the design and implementation of metabolic pathways in microbes for the synthesis of such target chemicals...

  17. Electro-optic and dynamic studies of biphenyl benzoate ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hemine, J., E-mail: hemine1@yahoo.f [Laboratoire de Physique de la Matiere Condensee, Universite Hassan II, Mohammedia-Casablanca, BP 146, F.S.T. Mohammedia (Morocco); Daoudi, A. [Universite Lille Nord de France, F-59000 Lille (France); ULCO, LDSMM, F-59140 Dunkerque (France); CNRS UMR8024, F-59140 Dunkerque (France); Legrand, C. [Universite Lille Nord de France, F-59000 Lille (France); ULCO, LEMCEL, F-62228 Calais (France); El kaaouachi, A.; Nafidi, A. [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences Ibnou Zohr, BP 28/S 80000 Agadir (Morocco); Ismaili, M.; Isaert, N. [Universite Lille Nord de France, F-59000 Lille (France); USTL, LDSMM, F-59655 Villeneuve d' Ascq (France); CNRS UMR8024, F-59655 Villeneuve d' Ascq (France); Nguyen, H.T. [Centre de Recherche Paul Pascal, Universite de Bordeaux 1, 33600 Pessac (France)

    2010-05-01

    We present electro-optic and dynamic properties on three homologous of biphenyl benzoate series of ferroelectric liquid crystals (FLCs) exhibiting the chiral smectic C phase (SmC*). The three compounds present high spontaneous polarization and show the SmC*-SmA*-N* phase sequence. Dielectric spectroscopy was used to provide the dynamics and dipolar ordering of the ferroelectric phase. The Goldstone relaxation mode was studied for sample cells on planar geometry without a DC bias voltage. The rotational viscosity corresponding to molecular motions in the SmC* phase was determined from dielectric measurements. The Arrhenius-type behavior of the rotational viscosity was found and the corresponding activation energies were evaluated.

  18. Spectroscopic studies on the interaction of sodium benzoate, a food preservative, with calf thymus DNA.

    Science.gov (United States)

    Zhang, Guowen; Ma, Yadi

    2013-11-01

    The interaction between sodium benzoate (SB) and calf thymus DNA in simulated physiological buffer (pH 7.4) using acridine orange (AO) dye as a fluorescence probe, was investigated by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopy along with DNA melting studies and viscosity measurements. An expanded UV-Vis spectral data matrix was resolved by multivariate curve resolution-alternating least squares (MCR-ALS) approach. The equilibrium concentration profiles and the pure spectra for SB, DNA and DNA-SB complex from the high overlapping composite response were simultaneously obtained. The results indicated that SB could bind to DNA, and hydrophobic interactions and hydrogen bonds played a vital role in the binding process. Moreover, SB was able to quench the fluorescence of DNA-AO complex through a static procedure. The quenching observed was indicative of an intercalative mode of interaction between SB and DNA, which was supported by melting studies, viscosity measurements and CD analysis.

  19. σ- versus π-Activation of Alkynyl Benzoates Using B(C6F53

    Directory of Open Access Journals (Sweden)

    Alexander Bähr

    2015-03-01

    Full Text Available We have prepared a range of alkynyl benzoates in high yields and have investigated their reactivities with the strong Lewis acid B(C6F53. In such molecules both σ-activation of the carbonyl and π-activation of the alkyne are possible. In contrast to the reactivity of propargyl esters with B(C6F53 which proceed via 1,2-addition of the ester and B(C6F53 across the alkyne, the inclusion of an additional CH2 spacer switches off the intramolecular cyclization and selective σ-activation of the carbonyl group is observed through adduct formation. This change in reactivity appears due to the instability of the species which would be formed through B(C6F53 activation of the alkyne.

  20. Simultaneous Determination of Sodium Benzoate Potassium Sor­bate and Natamycin Content in Iranian Yoghurt Drink (Doogh and the Associated Risk of Their Intake through Doogh Consumption

    Directory of Open Access Journals (Sweden)

    Zahra Esfandiari

    2013-08-01

    Full Text Available Background: Regarding the public health concerns over the use of food preservatives in yoghurt drink “Doogh", the aim of this study was the determination of sodium benzoate, potassium sorbate and natamycin in Doogh. Based on Iranian national standard, none of these preservatives are permitted to be used in Doogh.Methods: A total of 39 Doogh samples were analyzed through RP- HPLC in order to quantify sodium benzoate, potassium sorbate and natamaycin simultaneously. Exposure to each preservative is estimated by mean and maximum concentrations as the residue levels. The per capita Doogh consumption was calculated by the published data from official reports for Doogh annual production in Iran.Results: All samples were shown to contain sodium benzoate while natamaycin was detected in 10.25% of the samples and potassium sorbate was not detected in any of them. Sodium benzoate concentration extremely varied among the investigated samples ranged from 0.94 to 9.77 mg/l. Due to the result of the exposure estimation, no serious public health concern would exist regarding the mentioned preservatives.Conclusions: The detection of sodium benzoate in all Doogh samples could indicate the natural production of benzoic acid in yoghurt. Sodium benzoate may be formed through the interaction of the added food grade salt to the Doogh formula which contains benzoic acid. The results of exposure estimation show the lack of health risk within the usage of preservatives in spite of the national regulatory agencies does not permit the preservative use.

  1. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).

    Science.gov (United States)

    Hawkins, John S; Wong, Spencer; Peters, Jason M; Almeida, Ricardo; Qi, Lei S

    2015-01-01

    Clustered regularly interspersed short palindromic repeats (CRISPR) interference (CRISPRi) is a powerful technology for sequence-specifically repressing gene expression in bacterial cells. CRISPRi requires only a single protein and a custom-designed guide RNA for specific gene targeting. In Escherichia coli, CRISPRi repression efficiency is high (~300-fold), and there are no observable off-target effects. The method can be scaled up as a general strategy for the repression of many genes simultaneously using multiple designed guide RNAs. Here we provide a protocol for efficient guide RNA design, cloning, and assay of the CRISPRi system in E. coli. In principle, this protocol can be used to construct CRISPRi systems for gene repression in other species of bacteria.

  2. Repressive coping and alexithymia in idiopathic environmental intolerance

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Zachariae, Robert; Rasmussen, Alice;

    2010-01-01

    To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI).......To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI)....

  3. Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Villarruel, S. [Faculty of Exact Sciences, UNLP (Argentina); Giannuzzi, L.; Rivero, S. [Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata), 47 and 116 (Argentina); Pinotti, A., E-mail: acaimpronta@hotmail.com [Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata), 47 and 116 (Argentina); Faculty of Engineering, UNLP, La Plata 1900 (Argentina)

    2015-11-01

    This work was focused on: i) developing single and blend films based on carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVOH) studying their properties, ii) analyzing the interactions between CMC and PVOH and their modifications UV-induced in the presence of sodium benzoate (SB), and iii) evaluating the antimicrobial capacity of blend films containing SB with and without UV treatment. Once the blend films with SB were exposed to UV radiation, they exhibited lower moisture content as well as a greater elongation at break and rougher surfaces compared to those without treatment. Considering oxygen barrier properties, the low values obtained would allow their application as packaging with selective oxygen permeability. Moreover, the characteristics of the amorphous phase of the matrix prevailed with a rearrangement of the structure of the polymer chain, causing a decrease of the crystallinity degree. These results were supported by X-rays and DSC analysis. FT-IR spectra reflected some degree of polymer–polymer interaction at a molecular level in the amorphous regions. The incorporation of sodium benzoate combined with UV treatment in blend films was positive from the microbial point of view because of the growth inhibition of a wide spectrum of microorganisms. From a physicochemical perspective, the UV treatment of films also changed their morphology rendering them more insoluble in water, turning the functionalized blend films into a potential material to be applied as food packaging. - Highlights: • CMC:PVOH blend films were developed with the addition of sodium benzoate (SB). • Exposition to UV radiation was carried out with sodium benzoate as photoinitiator. • Blend films were exposed to UV radiation to modify their surface morphology. • Low O{sub 2} permeability of UV treated blends allow them to be used as selective packaging. • Efficacy of SB as an antimicrobial agent was examined with and without UV radiation.

  4. Yeast Interacting Proteins Database: YML064C, YPL111W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available both induction by arginine and nitrogen catabolite repression; disruption enhanc...inine and nitrogen catabolite repression; disruption enhances freeze tolerance Rows with this prey as prey R

  5. Efficacy of vinegar, sorbitol and sodium benzoate in mitigation of Salmonella contamination in betel leaf

    Directory of Open Access Journals (Sweden)

    Al Asmaul Husna

    2015-06-01

    Full Text Available The present study was undertaken to mitigate Salmonella from betel leaf in Mymensingh. A total of 35 betel leaf samples were collected from 2 baroujes and 5 local markets in Mymensingh. The samples were sub-divided into two groups: (i phosphate buffer solution (PBS washed, and (ii grinded sample. There was control and treated (with 1.5% vinegar, sorbitol, and sodium benzoate sub-groups in both groups. Mitigation of Salmonella was determined by comparing Total Viable Count (TVC and Total Salmonella Count (TSAC of control with treated groups. No bacterial growth was observed in the betel leaf samples collected directly from barouj level. At market level, when grinded, there was no growth of bacteria in Plate Count Agar (PCA and Salmonella- Shigella (SS or Xylose Lysine De-oxy-chocolate (XLD in both treated and untreated groups. But when the PBS washed samples were used, the TVC (mean log CFU±SD/mL of betel leaf ranged from 5.16±0.82 to 5.96±1.11, whereas the TSAC value ranged from 4.87±0.58 to 5.56±1.00 for untreated group. In vinegar, there was no growth, but when treated with sorbitol, the TVC (mean log CFU±SD/mL value reduced to 5.00±0.54 to 5.66±1.09, and TSAC (mean log CFU±SD/mL value reduced to 4.28±0.71 to 4.78±0.64. When treated with sodium benzoate, the TVC (mean log CFU±SD/mL value reduced to 5.06±0.53 to 5.75±1.02, and TSAC (mean log CFU±SD/mL value reduced to 4.34±0.79 to 4.92±0.64. Data of this study indicates that all the three chemicals were effective in terms of reducing bacterial load but vinegar (1.5% was found to be the most effective against Salmonella as well as some other bacteria when treated for 10 min.

  6. Dietary exposure of children and teenagers to benzoates, sulphites, butylhydroxyanisol (BHA) and butylhydroxytoluen (BHT) in Beirut (Lebanon).

    Science.gov (United States)

    Soubra, L; Sarkis, D; Hilan, C; Verger, Ph

    2007-02-01

    The acceptable daily intake (ADI) for a considered chemical is by definition the amount of that substance which can be ingested every day during the life time without appreciable health risk. The theoretical risk of exceeding the ADI for benzoates, sulphites, butylhydroxyanisol (BHA) and butylhydroxytoluen (BHT) has often been examined on the basis of worst case scenario. The aim of this paper is to assess the actual intake of the food additives listed above for a group of the Lebanese population (students aged between 9 and 18 years old) likely to be highly exposed to food additives through the consumption of processed foods. Dietary exposure was obtained by combining food consumption data with food additives levels determined by chemical analysis. Food products available in Lebanon and containing added benzoates, sulphites, BHA and BHT were identified. Overall 420 samples of foods and beverages were analysed. The determination of food additives residue levels was carried out according to the official methods adopted in "Lebanese Institute for agronomic research" (IRAL) on food as consumed. The acceptable daily intake (ADI) could be exceeded for sulphites and BHT by a fraction of the population, in particular within children of 9-13 years old. Among all food additive-containing foods, the highest contributors were: soft drinks to benzoates intake, nuts and canned juices to sulphites intake, bread and biscuits to BHA intake and chewing gum to BHT intake.

  7. Effects of heat shocks on microbial community structure and microbial activity of a methanogenic enrichment degrading benzoate.

    Science.gov (United States)

    Mei, R; Narihiro, T; Nobu, M K; Liu, W-T

    2016-11-01

    In anaerobic digesters, temperature fluctuation could lead to process instability and failure. It is still not well understood how digester microbiota as a whole respond to heat shock, and what specific organisms are vulnerable to perturbation or responsible for process recovery after perturbation. To address these questions, a mesophilic benzoate-degrading methanogenic culture enriched from digester was subjected to different levels of heat shock. Three types of methane production profiles after perturbation were observed in comparison to the control: uninhibited, inhibited with later recovery, and inhibited without recovery. These responses were correlated with the microbial community compositions based on the analyses of 16S rRNA and 16S rRNA gene. Specifically, the primary benzoate-degrading syntroph was highly affected by heat shock, and its abundance and activity were both crucial to the restoration of benzoate degradation after heat shock. In contrast, methanogens were stable regardless whether methane production was inhibited. Populations related to 'Candidatus Cloacimonetes' and Firmicutes showed stimulated growth. These observations indicated distinct physiological traits and ecological niches associated with individual microbial groups. The results obtained after exposure to heat shock can be critical to more comprehensive characterization of digester ecology under perturbations.

  8. Spectroscopic, optical, thermal, antimicrobial and density functional theory studies of 4-aminopyridinium 4-hydroxy benzoate hydrate crystal

    Science.gov (United States)

    Karthiga Devi, P.; Venkatachalam, K.; Poonkothai, M.

    2016-09-01

    The organic crystal 4-aminopyridinium 4-hydroxy benzoate hydrate was grown using slow evaporation method. Various characterization techniques such as single crystal X-ray diffraction, powder X-ray diffraction, FTIR, UV-visible-NIR spectroscopy and thermal analysis (TG-DSC) were employed to assay the structure and properties of the grown crystal. The antimicrobial evaluation of 4-aminopyridinium 4-hydroxy benzoate hydrate crystal was also performed against some bacteria and fungi. The minimum inhibitory concentration (MIC) values of 4-aminopyridinium 4-hydroxy benzoate hydrate were determined for bacterial and fungal strains. The assessment of optimized structure of the molecule and vibrational frequencies were done using DFT/B3LYP method with 6-31 G (d, p) basis set. The stability of the molecule, hyperconjugative interactions, delocalization of charges and intermolecular hydrogen bond were studied by applying natural bond orbital (NBO) analysis. TD-DFT method employing polarizable continuum model (PCM) was used to examine the electronic absorption spectrum. Evaluation of molecular electrostatic potential (MEP), Mulliken population charges and nonlinear optical (NLO) properties were also carried out. In addition, from the optimized geometry, frontier molecular orbitals analysis was executed.

  9. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2

    DEFF Research Database (Denmark)

    Pasini, Diego; Hansen, Klaus H; Christensen, Jesper;

    2008-01-01

    Polycomb group (PcG) proteins regulate important cellular processes such as embryogenesis, cell proliferation, and stem cell self-renewal through the transcriptional repression of genes determining cell fate decisions. The Polycomb-Repressive Complex 2 (PRC2) is highly conserved during evolution......, and its intrinsic histone H3 Lys 27 (K27) trimethylation (me3) activity is essential for PcG-mediated transcriptional repression. Here, we show a functional interplay between the PRC2 complex and the H3K4me3 demethylase Rbp2 (Jarid1a) in mouse embryonic stem (ES) cells. By genome-wide location analysis we...... found that Rbp2 is associated with a large number of PcG target genes in mouse ES cells. We show that the PRC2 complex recruits Rbp2 to its target genes, and that this interaction is required for PRC2-mediated repressive activity during ES cell differentiation. Taken together, these results demonstrate...

  10. A Dioxobilin-Type Fluorescent Chlorophyll Catabolite as a Transient Early Intermediate of the Dioxobilin-Branch of Chlorophyll Breakdown in Arabidopsis thaliana.

    Science.gov (United States)

    Süssenbacher, Iris; Hörtensteiner, Stefan; Kräutler, Bernhard

    2015-11-09

    Chlorophyll breakdown in higher plants occurs by the so called "PaO/phyllobilin" path. It generates two major types of phyllobilins, the characteristic 1-formyl-19-oxobilins and the more recently discovered 1,19-dioxobilins. The hypothetical branching point at which the original 1-formyl-19-oxobilins are transformed into 1,19-dioxobilins is still elusive. Here, we clarify this hypothetical crucial transition on the basis of the identification of the first natural 1,19-dioxobilin-type fluorescent chlorophyll catabolite (DFCC). This transient chlorophyll breakdown intermediate was isolated from leaf extracts of Arabidopsis thaliana at an early stage of senescence. The fleetingly existent DFCC was then shown to represent the direct precursor of the major nonfluorescent 1,19-dioxobilin that accumulated in fully senescent leaves.

  11. Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus.

    Science.gov (United States)

    Hartmann, Torsten; Zhang, Bo; Baronian, Grégory; Schulthess, Bettina; Homerova, Dagmar; Grubmüller, Stephanie; Kutzner, Erika; Gaupp, Rosmarie; Bertram, Ralph; Powers, Robert; Eisenreich, Wolfgang; Kormanec, Jan; Herrmann, Mathias; Molle, Virginie; Somerville, Greg A; Bischoff, Markus

    2013-12-13

    The tricarboxylic acid cycle (TCA cycle) is a central metabolic pathway that provides energy, reducing potential, and biosynthetic intermediates. In Staphylococcus aureus, TCA cycle activity is controlled by several regulators (e.g. CcpA, CodY, and RpiRc) in response to the availability of sugars, amino acids, and environmental stress. Developing a bioinformatic search for additional carbon catabolite-responsive regulators in S. aureus, we identified a LysR-type regulator, catabolite control protein E (CcpE), with homology to the Bacillus subtilis CcpC regulator. Inactivation of ccpE in S. aureus strain Newman revealed that CcpE is a positive transcriptional effector of the first two enzymes of the TCA cycle, aconitase (citB) and to a lesser extent citrate synthase (citZ). Consistent with the transcriptional data, aconitase activity dramatically decreased in the ccpE mutant relative to the wild-type strain. The effect of ccpE inactivation on citB transcription and the lesser effect on citZ transcription were also reflected in electrophoretic mobility shift assays where CcpE bound to the citB promoter but not the citZ promoter. Metabolomic studies showed that inactivation of ccpE resulted in increased intracellular concentrations of acetate, citrate, lactate, and alanine, consistent with a redirection of carbon away from the TCA cycle. Taken together, our data suggest that CcpE is a major direct positive regulator of the TCA cycle gene citB.

  12. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources.

    Science.gov (United States)

    Marozava, Sviatlana; Röling, Wilfred F M; Seifert, Jana; Küffner, Robert; von Bergen, Martin; Meckenstock, Rainer U

    2014-06-01

    For microorganisms that play an important role in bioremediation, the adaptation to swift changes in the availability of various substrates is a key for survival. The iron-reducing bacterium Geobacter metallireducens was hypothesized to repress utilization of less preferred substrates in the presence of high concentrations of easily degradable compounds. In our experiments, acetate and ethanol were preferred over benzoate, but benzoate was co-consumed with toluene and butyrate. To reveal overall physiological changes caused by different single substrates and a mixture of acetate plus benzoate, a nano-liquid chromatography-tandem mass spectrometry-based proteomic approach (nano-LC-MS/MS) was performed using label-free quantification. Significant differential expression during growth on different substrates was observed for 155 out of 1477 proteins. The benzoyl-CoA pathway was found to be subjected to incomplete repression during exponential growth on acetate in the presence of benzoate and on butyrate as a single substrate. Peripheral pathways of toluene, ethanol, and butyrate degradation were highly expressed only during growth on the corresponding substrates. However, low expression of these pathways was detected in all other tested conditions. Therefore, G. metallireducens seems to lack strong carbon catabolite repression under high substrate concentrations, which might be advantageous for survival in habitats rich in fatty acids and aromatic hydrocarbons.

  13. Identification, isolation and characterization of process-related impurities in Rizatriptan benzoate.

    Science.gov (United States)

    Raj, T Joseph Sunder; Bharathi, Ch; Kumar, M Saravana; Prabahar, Joseph; Kumar, P Naveen; Sharma, Hemant Kumar; Parikh, Kalpesh

    2009-01-15

    Three process-related impurities were observed in routine monitoring of the samples by HPLC. These impurities were identified by LC-MS. One of the impurities, Imp-3 [rizatriptan-2,5-dimer] was reported in literature. Other two impurities were isolated by preparative HPLC and characterized by NMR, Mass and IR. Pure impurities obtained by isolation were co-injected with Rizatriptan benzoate sample to confirm the retention times in HPLC. Structure elucidation of these impurities by spectral data has been discussed in detail. These impurities were identified as 4-(5-((1H-1,2,4-triazol-1-yl)methyl)-3-(2-(dimethylamino)ethyl)-1H-indol-1-yl)-4-(5-((1H-1,2,4-triazol-1-yl)methyl)-3-(2-(dimethylamino)ethyl)-1H-indol-2-yl)-N,N-dimethylbutan-1-amine [rizatriptan-1,2-dimer] and [4,4-bis-(5-((1H-1,2,4-triazol-1-yl)methyl)-3-(2-(dimethylamino)-ethyl)-1H-indol-2-yl)-N,N-dimethylbutan-1-amine [rizatriptan-2,2-dimer].

  14. High secondary [alpha]-deuterium kinetic isotope effect in the acetolysis and formolysis of dideuterioferrocenylmethyl benzoate

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, S. (Research Center of the Croatian Academy of Sciences and Arts, Zagreb (Croatia)); Kukric, Z.; Sutic, D. (Sarajevo Univ. (Yugoslavia). Faculty of Natural Sciences and Mathematics); Saunders, W.H. Jr. (Rochester Univ., NY (United States). Dept. of Chemistry)

    1992-02-01

    Acetolysis and formolysis of dideuterioferrocenylmethyl benzoate exhibit large secondary deuterium kinetic isotope effects and an abnormal temperature dependence. In the presence of LiClO[sub 4], which prevents the reversion from solvent-separated to contact ion-pairs, K[sub H]/K[sub D] at 25 [sup o]C amount to 1.53 [+-] 0.02 (acetolysis) and 1.48 [+-] 0.03 (formolysis). In the presence of LiClO[sub 4] the ratios of Arrhenius pre-exponential factors, A[sub H]/A[sub D], are significantly less than unity and amount to 0.49 [+-] 0.01 (acetolysis) and 0.38 [+-] 0.04 (formolysis). In the absence of LiClO[sub 4] the A[sub H]/A[sub D] ratios are much smaller (0.02 both in acetolysis and formolysis). We suggest that these surprisingly low values result from a change in rate-determining step over the temperature range, from formation of the solvent-separated ion-pair at low temperatures to reaction of the dissociated carbocation with solvent at the highest temperatures. Whether tunnelling plays any role in these solvolyses is discussed. (Author).

  15. 17beta-estradiol benzoate decreases the AHP amplitude in CA1 pyramidal neurons.

    Science.gov (United States)

    Kumar, Ashok; Foster, Thomas C

    2002-08-01

    Disruption of Ca(2+) homeostasis is hypothesized to mediate several electrophysiological markers of brain aging. Recent evidence indicates that estradiol can rapidly alter Ca(2+)-dependent processes in neurons through nongenomic mechanisms. In the current study, electrophysiological effects of 17beta-estradiol benzoate (EB) on the Ca(2+)-activated afterhyperpolarization (AHP) were investigated using intracellular sharp electrode recording in hippocampal slices from ovariectomized Fischer 344 female rats. The AHP amplitude was enhanced in aged (22-24 mo) compared with young (5-8 mo) rats and direct application of EB (100 pM) reduced the AHP in aged rats. The age-related difference was due, in part, to the increased AHP amplitude of aged animals, since an EB-mediated decrease in the AHP could be observed in young rats when the extracellular Ca(2+) was elevated to increase the AHP amplitude. In aged rats, bath application of EB occluded the ability of the L-channel blocker, nifedipine (10 microM), to attenuate the AHP. The results support a role for EB in modifying hippocampal Ca(2+)-dependent processes in a manner diametrically opposite that observed during aging, possibly through L-channel inhibition.

  16. Spectral Properties and Solubilization Location of 2'-Ethylhexyl 4-(N,N-Dimethylamino)benzoate in Micelles

    Institute of Scientific and Technical Information of China (English)

    Ning Ding; Xin-zhen Du; Chun Wang; Xiao-quan Lu

    2008-01-01

    Dual fluorescence and UV absorption of 2'-ethylhexyl 4-(N,N-dimethylamino)benzoate (EHDMAB) were investigated in cationic,non-ionic and anionic miceUes.When EHDMAB was solubilized in different micellss, the UV absorption of EHDMAB was enhanced.Twisted intramolecular charge transfer (TICT) emission with longer wavelength was observed in ionic micelles,whereas TICT emission with shorter wavelength was obtained in non-ionic micelles.In particular,dual fluorescence of EHDMAB was significantly quenched by the positively charged pyridinium ions arranged in the Stern layer of cationic micelles.UV radiation absorbed mainly decays via TICT emission and radiationless deactivation.The dimethylamino group of EHDMAB experiences different polar environments in ionic and non-ionic micelles according to the polarity dependence of TICT emission of EHDMAB in organic solvents.In terms of the molecular structures and sizes of EHDMAB and surfactants,each individual EHDMAB molecule should be buried in micelles with its dimethylamino group toward the polar head groups of different micelles and with its 2'-ethylhexyl chain toward the hydrophobic micellar core.Dynamic fluorescence quenching measurements of EHDMAB provide further support for the location of EHDMAB in different micelles.

  17. Simultaneous determination of a quaternary mixture of oxomemazine, sodium benzoate, guaifenesin and paracetamol by chromatographic methods

    Directory of Open Access Journals (Sweden)

    Nehal F. Farid

    2014-12-01

    Full Text Available The aim of the present work was to develop simple, accurate, sensitive and selective methods for the simultaneous determination of oxomemazine (Ox, sodium benzoate (SB, guaifenesin (Gu, andparacetamol (Par. Two methods were described and validated for the simultaneous determination of the four drugs in syrup and suppositories. The first method was a reversed phase HPLC and UVdetection at 220 nm. The assay was performed using C 18 column and an isocratic elution using acetonitrile – methanol – 35 mM KH2PO4 (20: 5: 75; by volume, pH was adjusted to 2.9 ± 0.1 as the mobile phase. The flow rate was 1.5 mL/min and separation was achieved in less than 15 min. The second method was a TLC- spectrodensitometric method, used to separate, identify and quantify the four drugs when present in combination. The drugs were applied on silica gel plates and development was made using methylene chloride- methanol- acetic acid- 33% ammonia (89: 8.4: 2: 0.6, by volume as a mobile phase. The bands of the four drugs were quantified by scanning spectrodensitometricaly at 270 nm. The suggested chromatographic methods were validated and applied successfully to the analysis of the syrup and suppositories.

  18. Molecular modeling of layered double hydroxide intercalated with benzoate, modeling and experiment.

    Science.gov (United States)

    Kovár, Petr; Pospísil, M; Nocchetti, M; Capková, P; Melánová, Klára

    2007-08-01

    The structure of Zn4Al2 Layered Double Hydroxide intercalated with benzencarboxylate (C6H5COO-) was solved using molecular modeling combined with experiment (X-ray powder diffraction, IR spectroscopy, TG measurements). Molecular modeling revealed the arrangement of guest molecules, layer stacking, water content and water location in the interlayer space of the host structure. Molecular modeling using empirical force field was carried out in Cerius(2) modeling environment. Results of modeling were confronted with experiment that means comparing the calculated and measured diffraction pattern and comparing the calculated water content with the thermogravimetric value. Good agreement has been achieved between calculated and measured basal spacing: d(calc) = 15.3 A and d(exp) = 15.5 A. The number of water molecules per formula unit (6H2O per Zn4Al2(OH)12) obtained by modeling (i.e., corresponding to the energy minimum) agrees with the water content estimated by thermogravimetry. The long axis of guest molecules are almost perpendicular to the LDH layers, anchored to the host layers via COO- groups. Mutual orientation of benzoate ring planes in the interlayer space keeps the parquet arrangement. Water molecules are roughly arranged in planes adjacent to host layers together with COO- groups.

  19. Determination of Benzoate Level in Canned Pickles and Pickled Cucumbers in Food Producing Factories in Markazi Province and those that their Products were Sold in Arak City, Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Delavar

    2012-11-01

    Full Text Available Background: Anecdotal information has suggested that sodium benzoate is used with more than permissible doses during production steps of food products especially pickles and pickled cucumbers in food producing factories in Markazi province and other food producing factories . The present study was done to evaluate factual concentration of sodium benzoate in these products. Methods: In this study, 8 samples from canned pickled cucumbers and 10 samples from canned pickles were randomly gathered from food production factories in Markazi province between March and September 2010. Also, 25 samples from canned pickled cucumbers and 15 samples from canned pickles and 7 samples of bulk cargo pickled cucumbers were collected from the other provinces in Arak city. Sodium benzoate level was determined in the samples using UV-VIS spectrophotometry method. The determined values were analyzed by N-par test using SPSS software version 16.0. Results: Sodium benzoate level was near zero in the samples of canned pickles and pickled cucumbers from producing factories. This was 200-400 PPM in 7 samples from bulk cargo pickled cucumbers which was higher than permissible dose. There was not a statistically significant difference between mean benzoate level of canned pickles and pickled cucumbers produced in Markazi providence factories and other food factories. Benzoate level was significantly higher than permissible dose in bulk cargo pickled cucumbers. Conclusion: Food products from production factories do not have higher than permissible level of sodium benzoate; however, this is higher in bulk cargo pickled cucumbers. Hence, stricter control on bulk cargo pickled cucumber products is recommended.

  20. CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    Science.gov (United States)

    Du, Dan; Qi, Lei S

    2016-01-04

    Targeted modulation of transcription is necessary for understanding complex gene networks and has great potential for medical and industrial applications. CRISPR is emerging as a powerful system for targeted genome activation and repression, in addition to its use in genome editing. This protocol describes how to design, construct, and experimentally validate the function of sequence-specific single guide RNAs (sgRNAs) for sequence-specific repression (CRISPRi) or activation (CRISPRa) of transcription in mammalian cells. In this technology, the CRISPR-associated protein Cas9 is catalytically deactivated (dCas9) to provide a general platform for RNA-guided DNA targeting of any locus in the genome. Fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in mammalian cells. Delivery of multiple sgRNAs further enables activation or repression of multiple genes. By using scaffold RNAs (scRNAs), different effectors can be recruited to different genes for simultaneous activation of some and repression of others. The CRISPRi and CRISPRa methods provide powerful tools for sequence-specific control of gene expression on a genome-wide scale to aid understanding gene functions and for engineering genetic regulatory systems.

  1. Percept-genetic signs of repression in histrionic personality disorder.

    Science.gov (United States)

    Rubino, I A; Saya, A; Pezzarossa, B

    1992-04-01

    Several types of perceptual distortions of two anxiety-arousing visual stimuli are coded as repression in the Defense Mechanism Test, a tachistoscopic, percept-genetic technique. Given the well-established correspondence between hysteria and repression, the study included a clinical validation of these variants of repression against the diagnosis of histrionic personality disorder. 41 subjects with evidence of this disorder on the Millon Clinical Multiaxial Inventory-II were compared with 41 nonhistrionic controls. Significantly more histrionics were coded for the type of repression in which the threatening figure is transformed into a harmless object (code 1:42), while animal- and statue-repressions, when combined (codes 1:1 and 1:2), were significantly more characteristic of the nonhistrionic group. As an unpredicted finding, significantly more histrionic subjects employed defensive strategies, currently coded as reaction formations (code 4:). Histrionic subjects without concomitant compulsive features were coded more frequently for introaggression (code 6:) compared both with nonhistrionic controls and with histrionic-compulsive subjects. The findings are discussed within the context of the available percept-genetic literature. It is suggested that the Defense Mechanism Test may be further employed to objectify and investigate the defense mechanisms of the DSM-III-R disorders.

  2. Ethical issues in the search for repressed memories.

    Science.gov (United States)

    Merskey, H

    1996-01-01

    Currently, concepts of repression and dissociation are in flux. It has been pointed out that there is no scientific evidence for the occurrence of repression and that the whole notion is anecdotal. Dissociation, which is offered as an alternative to repression, cannot logically be held to operate without a motive force, as Freud argued, or a weakness of the organism, as Janet proposed. The concepts have been applied particularly to the idea that early childhood experience could be repressed but recovered many years later. This claim is at variance with established knowledge concerning human memory. Practices of subtle and overt suggestion, employed in recovered-memory treatments, give rise to a false-memory syndrome in which individuals, who have undergone various levels of suggestion, accuse their parents and others of childhood sexual abuse. The common phenomenon of childhood sexual abuse is contaminated by many cases that may be regarded on strong grounds as being false and have been retracted in more than 1,000 instances. Repressed-memory (RM) treatment is also at variance with traditional psychotherapy, which does not encourage confrontation on the basis of uncorroborated information; moreover, many cases of RM therapy seem to result in deterioration. Unlike traditional psychotherapy, some RM practitioners strongly encourage patients to hate individuals in their family circle. The consequences of these developments, the need for informed consent, and the development of legislative initiatives to challenge RM therapy are noted. The impact of these therapies and proposed legislation upon regular psychotherapy and psychiatry is outlined.

  3. Suppression and repression: A theoretical discussion illustrated by a movie

    Directory of Open Access Journals (Sweden)

    Maria Lucia de Souza Campos Paiva

    2012-02-01

    Full Text Available The first translations of Freud's work into Portuguese have presented problems because they were not translated from the German language. More than a hundred years after the beginning of Psychoanalysis, there are still many discussions on Freud's metapsychology and a considerable difficulty in obtaining a consensus on the translation of some concepts. This paper refers back to Freud's concepts of primal repression, repression and suppression. In order to discuss such concepts, we have made use of a film, co-produced by Germans and Argentineans, which is named "The Song in me" (Das Lied in mir, released to the public in 2011 and directed by Florian Micoud Cossen. Through this motion picture, the following of Freud's concepts are analyzed, and the differentiation between them is discussed: suppression and repression, as well as the importance of their precise translation.

  4. Intragastric infusion of denatonium benzoate attenuates interdigestive gastric motility and hunger scores in healthy female volunteers.

    Science.gov (United States)

    Deloose, Eveline; Janssen, Pieter; Corsetti, Maura; Biesiekierski, Jessica; Masuy, Imke; Rotondo, Alessandra; Van Oudenhove, Lukas; Depoortere, Inge; Tack, Jan

    2017-03-01

    Background: Denatonium benzoate (DB) has been shown to influence ongoing ingestive behavior and gut peptide secretion.Objective: We studied how the intragastric administration of DB affects interdigestive motility, motilin and ghrelin plasma concentrations, hunger and satiety ratings, and food intake in healthy volunteers.Design: Lingual bitter taste sensitivity was tested with the use of 6 concentrations of DB in 65 subjects. A placebo or 1 μmol DB/kg was given intragastrically to assess its effect on fasting gastrointestinal motility and hunger ratings, motilin and ghrelin plasma concentrations, satiety, and caloric intake.Results: Women (n = 39) were more sensitive toward a lingual bitter stimulus (P = 0.005) than men (n = 26). In women (n = 10), intragastric DB switched the origin of phase III contractions from the stomach to the duodenum (P = 0.001) and decreased hunger ratings (P = 0.04). These effects were not observed in men (n = 10). In women (n = 12), motilin (P = 0.04) plasma concentrations decreased after intragastric DB administration, whereas total and octanoylated ghrelin were not affected. The intragastric administration of DB decreased hunger (P = 0.008) and increased satiety ratings (P = 0.01) after a meal (500 kcal) in 13 women without affecting gastric emptying in 6 women. Caloric intake tended to decrease after DB administration compared with the placebo (mean ± SEM: 720 ± 58 compared with 796 ± 45 kcal; P = 0.08) in 20 women.Conclusions: Intragastric DB administration decreases both antral motility and hunger ratings during the fasting state, possibly because of a decrease in motilin release. Moreover, DB decreases hunger and increases satiety ratings after a meal and shows potential for decreasing caloric intake. This trial was registered at clinicaltrials.gov as NCT02759926.

  5. Ameliorative effect of vitamin C against hepatotoxicity induced by emamectin benzoate in rats.

    Science.gov (United States)

    Khaldoun Oularbi, H; Richeval, C; Lebaili, N; Zerrouki-Daoudi, N; Baha, M; Djennas, N; Allorge, D

    2016-07-26

    In the present study, we aimed to assess the potential protective effect of ascorbic acid (AA) against emamectin benzoate (EMB)-induced hepatotoxicity. For this purpose, biochemical, histopathological and analytical investigations were performed. Male Wistar rats were distributed into three groups, that is, a control group, an EMB group given 10 mg EMB/kg body weight (BW) by gavage and an EMB + AA group given 10 mg EMB/kg BW and vitamin C intraperitoneally (200 mg/kg). The duration of the treatment was 28 days and the duration of the study was 42 days. There was a statistically significant increase of all hepatic biomarkers, that is, aspartate aminotransferase, alanine aminotransferase and gamma-glutamyltransferase activities, and glycemia, in EMB-treated group when compared with the control group. Light microscopic observations revealed variable signs of hepatotoxicity in the EMB group, which were represented by alteration of normal hepatic architecture, inflammatory cell infiltration, hepatocellular steatosis and foci of necrosis at 28 and 42 days post-treatment. However, co-treatment with vitamin C reduced EMB-related liver toxicity and diminished the abnormal biochemical and architectural damage. Emamectin B1a and B1b residues were detectable in all plasma samples of treated rats at 14, 21 and 28 days of treatment. The drug liver tissue concentration was significantly lower in EMB + AA group compared with EMB group at 28 and 42 days. In conclusion, the findings of the present study clearly indicate a significant protective action of vitamin C against EMB hepatotoxicity.

  6. Sensitive and selective spectrophotometric assay of rizatriptan benzoate in pharmaceuticals using three sulphonphthalein dyes

    Directory of Open Access Journals (Sweden)

    K.N. Prashanth

    2016-11-01

    Full Text Available Three simple, rapid, selective and sensitive spectrophotometric methods are described for the determination of rizatriptan benzoate (RTB in bulk drug and in tablets. The methods are based on the formation of intense yellow colored ion–pair complexes between RTB and sulphonphthalein acid dyes, namely, bromophenol blue (BPB, bromocresol purple (BCP, bromothymol blue (BTB in chloroform medium. The colored products are measured at 425 nm (RTB–BPB complex, RTB–BCP complex and 420 nm (RTB–BTB complex. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 90 min (methods A and B and over 12 h (method C. Beer’s law was obeyed in the concentration ranges of 0.8–16.0, 1.0–20.0 and 1.2–24 μg ml−1 with molar absorptivity values of 1.76 × 104, 1.96 × 104 and 1.63 × 104 l mol−1 cm−1 for BPB, BCP and BTB methods, respectively. The limits of quantification (LOQ were 0.39, 0.34 and 0.27 μg ml−1 for BPB, BCP and BTB methods, respectively. Other method validation parameters, such as precision, accuracy, robustness, ruggedness and selectivity, were satisfactory. The composition of the ion–pair was found to be 1:1 by Job’s method. The proposed methods were successfully applied to the determination of RTB in commercial tablets. No interference was observed from common tablet adjuvants. Statistical comparison of the results with the reference method showed excellent agreement and indicated no significant difference in accuracy and precision.

  7. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway.

    Science.gov (United States)

    Lei, X; Cui, K; Liu, Q; Zhang, H; Li, Z; Huang, B; Shi, D

    2016-02-01

    As the exact role for exogenous oestrogen in spermatogenesis is not fully understood, the aim of this study was to investigate the effect of estradiol benzoate (EB) exposure to male mice on their spermatogenesis and fertility. Sixty male mice aged 4 weeks were randomly divided into three groups, including a control group and two treatment groups. The mice of the control group were injected with 250 μl paraffin oil only by every other day subcutaneous injection for 4 weeks. Meantime, the mice of the treatment groups were injected with EB at the concentration of 5 or 10 mg/kg, respectively. Results showed that EB slowed down the body weight gains and generated testicular atrophy with spermatogenesis disorder compared with that of the control mice, and consequently induced their infertility. Moreover, the number of TUNEL-positive cells in the testis of EB-treated mice was significantly increased with the EB concentration rise. In comparison with controls, the mRNA expression level of pro-apoptosis factors (Fas, TNF, Cytochrome C, Apaf1, Chop, Caspase-3, Caspase-8, Caspase-9 and Caspase-12) and key genes in oestrogen receptor (ER) signalling pathway (ER α, ER β, Erk1/2, Hsp90 and DAX-1) were upregulated in the testes of the treatment groups. Furthermore, Western blotting results proved the protein expression level of Fas, TNF, Cytochrome C, Chop, Caspase-3, cleaved Caspase-3, Caspase-9, Erk1/2 and Hsp90 were upregulated, and the phosphorylation level of Erk1/2 was also increased. These results indicate that EB may impair spermatogenesis through influencing the apoptosis and ER signalling pathway.

  8. Political Repressions in USSR (Against Speculations, Perversion and Mystifications)

    OpenAIRE

    2012-01-01

    In the article the great numbers of political repressions, which were exaggerated by authors: R.A. Medvedev, A.I. Solzhenitsyn, O.G. Shatunovskoy, A.V. Antonov-Ovseenko in 80-90s are criticized. The author characterizes figures given in tens and even in hundreds of millions of victims as a statistical charlatanism.After checking up the KGB archives, and documents of division responsible for NKVD-MVD special settlements, the author spills the light on real numbers of political repressions in U...

  9. Repressive coping and alexithymia in ideopathic environmental intolerance

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Zachariae, Robert; Rasmussen, Alice;

    2010-01-01

    Objective To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI). Methods The study included participants who had previously...... participated in a general population-based study and reported symptoms of environmental intolerance (n = 787) and patients with IEI (n = 237). The participants completed questionnaires assessing IEI, namely, a measure of repressive coping combining scores on the Marlowe–Crowne Social Desirability Scale (MCSDS...

  10. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive......The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...... complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate....

  11. Ivermectin versus benzyl benzoate applied once or twice to treat human scabies in Dakar, Senegal : a randomized controlled trial

    OpenAIRE

    Ly, Fatimata; Caumes, Eric; Ndaw, Cheick Ahmet Tidiane; Ndiaye, Bassirou; Mahé, Antoine

    2009-01-01

    Objective To compare the effectiveness of oral ivermectin (IV) and two different modalities of topical benzyl benzoate (BB) for treating scabies in a community setting. Methods The trial included patients aged 5-65 years with scabies who attended the dermatology department at the Institut d'Hygiene Sociale in Dakar, Senegal. The randomized, open trial considered three treatments: a single application of 12.5% BB over 24 hours (BB1. group), two applications of BB, each over 24 hours (BB2 group...

  12. Crystal structure of ethyl 4-[(E-(4-hydroxy-3-methoxybenzylideneamino]benzoate: a p-hydroxy Schiff base

    Directory of Open Access Journals (Sweden)

    Jing Ling

    2016-07-01

    Full Text Available The title p-hydroxy Schiff base, C17H17NO4, was synthesized via the condensation reaction of benzocaine with vanillin. The benzylidine and benzoate rings are inclined to one another by 24.58 (8°, and the conformation about the C=N bond is E. In the crystal, molecules are linked by O—H...N hydrogen bonds, forming zigzag chains propagating along [010]. Adjacent chains are linked by C—H...π and weak offset π–π interactions [intercentroid distance = 3.819 (1 Å], forming sheets parallel to (10-2.

  13. PLASMID-ENCODED PHTHALATE CATABOLIC PATHWAY IN ARTHROBACTER KEYSERI 12B: BIOTRANSFORMATIONS OF 2-SUBSTITUTED BENZOATES AND THEIR USE IN CLONING AND CHARACTERIZATION OF PHTHALATE CATABOLISM GENES AND GENE PRODUCTS

    Science.gov (United States)

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates)...

  14. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    . In this report, we review the recent literature to deduce mechanisms underlying Polycomb and H3K9 methylation mediated repression, and describe the functional interplay with activating H3K4 methylation. We summarize recent data that indicate a close relationship between GC density of promoter sequences...

  15. Intellectual Performance as a Function of Repression and Menstrual Cycle.

    Science.gov (United States)

    Englander-Golden, Paula; And Others

    Performance on complex (Space Relations and Verbal Reasoning) and simple (Digit Symbol) tests was investigated as a function of Byrne's Repression-Sensitization (RS) dimension, phase of menstrual cycle and premenstrual-menstrual (PM) symptomatology in a group of females not taking oral contraceptives. Two control groups, consisting of males and…

  16. Financial repression, money growth, and seignorage: The Polish experience

    NARCIS (Netherlands)

    Aarle, B. van; Budina, N.

    1997-01-01

    Financial Repression, Money Growth and Seignorage: The Polish Experience. — A small analytical framework is developed to analyze the relation between reserve requirements, base money growth and seignorage revenues. From the analysis, the authors can derive of steady-state seignorage revenues as a fu

  17. miRNA-dependent translational repression in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    John Reich

    Full Text Available BACKGROUND: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary. METHODOLOGY/PRINCIPAL FINDINGS: Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed. CONCLUSIONS/SIGNIFICANCE: Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.

  18. PICKLE acts during germination to repress expression of embryonic traits

    Science.gov (United States)

    Li, Hui-Chun; Chuang, King; Henderson, James T.; Rider, Stanley Dean; Bai, Yinglin; Zhang, Heng; Fountain, Matthew; Gerber, Jacob; Ogas, Joe

    2008-01-01

    SUMMARY PICKLE (PKL) codes for a CHD3 chromatin remodeling factor that plays multiple roles in Arabidopsis growth and development. Previous analysis of the expression of genes that exhibit PKL-dependent regulation suggested that PKL acts during germination to repress expression of embryonic traits. In this study, we examined the expression of PKL protein to investigate when and where PKL acts to regulate development. A PKL:eGFP translational fusion is preferentially localized in the nucleus of cells, consistent with the proposed role for PKL as a chromatin remodeling factor. A steroid-inducible version of PKL - a fusion of PKL to the glucocorticoid receptor (PKL:GR) - was used to examine when PKL acts to repress expression of embryonic traits. We found that activation of PKL:GR during germination was sufficient to repress expression of embryonic traits in the primary roots of pkl seedlings whereas activation of PKL:GR after germination had little effect. In contrast, we observed that PKL is required continuously after germination to repress expression of PHERES1, a type I MADS box gene that is normally expressed during early embryogenesis in wild-type plants. Thus PKL acts at multiple points during development to regulate patterns of gene expression in Arabidopsis. PMID:16359393

  19. Migration of Chemotactic Bacteria Transverse to Flow in Response to a Benzoate Source Plume Created in a Saturated Sand-Packed Microcosm

    Science.gov (United States)

    Ford, R.; Boser, B.

    2012-12-01

    Bioremediation processes depend on contact between microbial populations and the groundwater contaminants that they biodegrade. Chemotaxis, the ability of bacteria to sense a chemical gradient and swim preferentially toward locations of higher concentration, can enhance the transport of bacteria toward contaminant sources that may not be readily accessible by advection and dispersion alone. A two-dimensional rectangular-shaped microcosm packed with quartz sand was used to quantify the effect of chemotaxis on the migration of bacteria within a saturated model aquifer system. Artificial groundwater was pumped through the microcosm at a rate of approximately 1 m/day. A plume of sodium benzoate was created by continuous injection into an upper port of the microcosm to generate a chemical gradient in the vertical direction transverse to flow. Chemotactic bacteria, Pseudomonas putida F1, or the nonchemotactic mutant, P. putida F1 CheA, were injected with a conservative tracer in a port several centimeters below the benzoate position. As the injectates traversed the one-meter length of the microcosm, samples were collected from a dozen effluent ports to determine vertical concentration distributions for the bacteria, benzoate and tracer. A moment analysis was implemented to estimate the center of mass, variance, and skewness of the concentration profiles. The transverse dispersion coefficient and the transverse dispersivity for chemotactic and nonchemotactic bacteria were also evaluated. Experiments performed with a continuous injection of bacteria showed that the center of mass for chemotactic bacteria was closer to the benzoate source on average than the nonchemotactic control (relative to the conservative tracer). These results demonstrated that chemotaxis can increase bacterial transport toward contaminants, potentially enhancing the effectiveness of in situ bioremediation. Experiments with 2 cm and 3 cm spacing between bacteria and benzoate injection locations were

  20. Induction of parturition in swine with prostaglandin F(2)alpha, estradiol benzoate and oxytocin.

    Science.gov (United States)

    Gall, M A; Day, B N

    1987-03-01

    Pregnant sows and gilts were administered either 0, 2.5, 5, 10 or 20 mg prostaglandin F(2)alpha (PGF(2)alpha) intramuscularly on Day 112 or 113 of gestation at 0800 h in an effort to induce parturition. The average interval from PGF(2)alpha injection to farrowing was 55.1 +/- 5.7, 29.4 +/- 3.1, 32.1 +/- 4.6, 27.8 +/- 1.8 and 26.9 +/- 1.1 h for 0, 2.5, 5, 10 and 20 mg, respectively. All PGF(2)alpha treatments increased (P gestation length was significantly shorter in treated gilts; however, no detrimental effect on pig performance or pig survivability was observed. A second trial evaluated the effect of a 10-mg dose of PGF(2)alpha on the induction of parturition in sows in order to obtain a majority of sows farrowing within normal working hours (0700 to 1700 h). The interval from injection to farrowing was decreased (P < 0.05) by PGF(2)alpha treatment (66.2 +/- 5.3 vs 28.1 +/- 2.2 h). Fifty-seven percent (P < 0.05) of PGF(2)alpha-treated sows farrowed between 0700 and 1700 h as compared to 13.6% for control sows. A third trial was conducted to examine a sequential treatment of PGF(2)alpha and oxytocin to control the time of parturition more precisely. Sows receiving only 10 mg of PGF(2)alpha farrowed on an average 31.1 +/- 1.4 h after injection. The injection of 40 IU oxytocin 24 to 28 h after PGF(2)alpha decreased (P < 0.05) the interval from PGF(2)alpha to farrowing (28.1 +/- 0.9 h). The addition of oxytocin increased (P < 0.05) the number of sows farrowing within 3 h of injection (33 vs 86% for PGF(2)alpha and PGF(2)alpha + oxytocin treatments, respectively). A fourth trial was designed to determine if the addition of exogenous estradiol benzoate (EB) to a sequential treatment of PGF(2)alpha and oxytocin would improve the predictability and synchronization of the induced parturition. Sows were assigned to receive either saline, 10 mg PGF(2)alpha + 40 IU oxytocin or 10 mg PGF(2)alpha + 5 mg EB + 40 IU oxytocin. The addition of EB reduced (P < 0.01) the variance in

  1. The modulatory effect of estradiol benzoate on superoxide dismutase activity in the developing rat brain

    Directory of Open Access Journals (Sweden)

    S. Pejic

    2003-05-01

    Full Text Available The sensitivity of copper,zinc (CuZn- and manganese (Mn-superoxide dismutase (SOD to exogenous estradiol benzoate (EB was investigated in Wistar rats during postnatal brain development. Enzyme activities were measured in samples prepared from brains of rats of both sexes and various ages between 0 and 75 days, treated sc with 0.5 µg EB/100 g body weight in 0.1 ml olive oil/100 g body weight, 48 and 24 h before sacrifice. In females, EB treatment stimulated MnSOD activity on days 0 (66.1%, 8 (72.7% and 15 (81.7%. In males, the stimulatory effect of EB on MnSOD activity on day 0 (113.6% disappeared on day 8 and on days 15 and 45 it became inhibitory (40.3 and 30.5%, respectively. EB had no effect on the other age groups. The stimulatory effect of EB on CuZnSOD activity in newborn females (51.8% changed to an inhibitory effect on day 8 (38.4% and disappeared by day 45 when inhibition was detected again (48.7%. In males, the inhibitory effect on this enzyme was observed on days 0 (45.0% and 15 (28.9%, and then disappeared until day 60 when a stimulatory effect was observed (38.4%. EB treatment had no effect on the other age groups. The sensitivity of MnSOD to estradiol differed significantly between sexes during the neonatal and prepubertal period, whereas it followed a similar pattern thereafter. The sensitivity of CuZnSOD to estradiol differed significantly between sexes during most of the study period. Regression analysis showed that the sensitivity of MnSOD to this estrogen tended to decrease similarly in both sexes, whereas the sensitivity of CuZnSOD showed a significantly different opposite tendency in female and male rats. These are the first reports indicating hormonal modulation of antioxidant enzyme activities related to the developmental process.

  2. Short communication: Use of a mixture of sodium nitrite, sodium benzoate, and potassium sorbate in aerobically challenged silages.

    Science.gov (United States)

    Knicky, Martin; Spörndly, Rolf

    2015-08-01

    Aerobic instability is still a common problem with many types of silages, particularly well-fermented silages. This study evaluated the effect of adding an additive mixture based on sodium nitrite, sodium benzoate, and potassium sorbate to a variety of crop materials on fermentation quality and aerobic stability of silages. Ensiling conditions were challenged by using a low packing density (104±4.3kg of dry matter/m(3)) of forage and allowing air ingression into silos (at 14 and 7 d before the end of the storage, for 8 h per event). Additive-treated silages were found to have significantly lower pH and reduced formation of ammonia-N, 2.3-butanediol, and ethanol compared with untreated control silages. Yeast growth was significantly reduced by additive treatment in comparison with untreated control silage. Consequently, additive-treated silages were considerably more aerobically stable (6.7 d) than untreated control silages (0.5 d). Overall, adding 5mL/kg of fresh crop of the additive based on sodium nitrite, sodium benzoate, and potassium sorbate reduced undesirable microorganisms in silages and thereby provided suitable ensiling conditions and prolonged aerobic stability, even under air-challenged laboratory ensiling conditions.

  3. Elucidation of the thermophilic phenol biodegradation pathway via benzoate during the anaerobic digestion of municipal solid waste.

    Science.gov (United States)

    Hoyos-Hernandez, Carolina; Hoffmann, Marieke; Guenne, Angeline; Mazeas, Laurent

    2014-02-01

    Anaerobic digestion makes it possible to valorize municipal solid waste (MSW) into biogas and digestate which are, respectively, a renewable energy source and an organic amendment for soil. Phenols are persistent pollutants present in MSW that can inhibit the anaerobic digestion process and have a toxic effect on microbiota if they are applied to soil together with digestate. It is then important to define the operational conditions of anaerobic digestion which allow the complete degradation of phenol. In this context, the fate of phenol during the anaerobic digestion of MSW at 55°C was followed using an isotopic tracing approach ((13)C6-phenol) in experimental microcosms with inoculum from an industrial thermophilic anaerobic digester. With this approach, it was possible to demonstrate the complete phenol biodegradation into methane and carbon dioxide via benzoate. Benzoate is known to be a phenol metabolite under mesophilic conditions, but in this study it was found for the first time to be a phenol degradation product at thermophilic temperature.

  4. Effectiveness of sodium benzoate as a freshwater low toxicity antifoulant when dispersed in solution and entrapped in silicone coatings.

    Science.gov (United States)

    Haque, Haroon; Cutright, Teresa J; Newby, Bi-Min Zhang

    2005-01-01

    The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l-1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41-52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.

  5. [Analysis of preservatives used in cosmetic products: salicylic acid, sodium benzoate, sodium dehydroacetate, potassium sorbate, phenoxyethanol, and parabens].

    Science.gov (United States)

    Ikarashi, Yoshiaki; Uchino, Tadashi; Nishimura, Tetsuji

    2010-01-01

    Preservatives are used to inhibit the growth of microorganisms in cosmetic products. The Japanese standards for cosmetics set restrictions on the maximum amount of each preservative added to cosmetics as per the purpose of use of cosmetics. For the investigation into the actual conditions of commonly used preservatives in commercial cosmetics, we analyzed parabens, phenoxyethanol, sodium benzoate, sodium dehydroacetate, salicylic acid, and potassium sorbate by high-performance liquid chromatography (HPLC). Twenty-one samples were obtained from cosmetic product manufacturers located in 14 prefectures in Japan. Among different acid- and salt-based preservatives, sodium benzoate was observed to have been used in many products. These acid- and salt-based preservatives were used with parabens in personal washing products, such as shampoo and soap. The labels of two of the cosmetic product samples displayed inaccurate ingredient information, that is, a preservative other than the one used in the corresponding product was listed on them. The amount of preservatives used did not exceed regulatory limits in any of the analyzed samples.

  6. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease.

    Science.gov (United States)

    Morris, Gerwyn; Berk, Michael; Carvalho, Andre; Caso, Javier R; Sanz, Yolanda; Walder, Ken; Maes, Michael

    2016-06-27

    There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.

  7. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design.

    Science.gov (United States)

    Kamankesh, Marzieh; Mohammadi, Abdorreza; Tehrani, Zohreh Modarres; Ferdowsi, Roohallah; Hosseini, Hedayat

    2013-05-15

    A new method based on dispersive liquid-liquid microextraction (DLLME) followed by high-performance liquid chromatography (HPLC) for determination of benzoate and sorbate salts in yogurt drinks was developed. The effective parameters in DLLME process, including volume of extraction and disperser solvents, pH and salt effect, were optimized using response surface methodology (RSM) based on central composite design. The yogurt drink samples were extracted using NaOH and Carrez solutions (potassium hexaferrocyanide and zinc acetate) were used for sedimentation of proteins. For DLLME, a mixture of extraction solvent (1-octanol) and disperser solvent (ethanol) was rapidly injected into the sample solution by syringe and cloudy solution is formed. Subsequently, the upper 1-octanol layer was analyzed by HPLC. The detection limits for benzoate and sorbate were 0.06 ng mL(-1) and 0.15 ng mL(-1), respectively. The relative standard deviations (RSD) for seven analyses were 4.96% for benzoate and 4.58% for sorbate. The proposed method demonstrated good linearity and high enrichment factor. A clean separation and good chromatogram is readily achieved without the presence of matrix interference. A comparison of this method with previous methods demonstrated that the proposed method is an accurate, rapid and reliable sample-pretreatment method that gives very good enrichment factors and detection limits for extracting and determining sorbate and benzoate in yogurt drink samples.

  8. The efficacy of emamectin benzoate against infestations of Lepeophtheirus salmonis on farmed Atlantic salmon (Salmo salar L in Scotland, 2002-2006.

    Directory of Open Access Journals (Sweden)

    Fiona Lees

    Full Text Available BACKGROUND: Infestations of the parasitic copepod Lepeophtheirus salmonis, commonly referred to as sea lice, represent a major challenge to commercial salmon aquaculture. Dependence on a limited number of theraputants to control such infestations has led to concerns of reduced sensitivity in some sea lice populations. This study investigates trends in the efficacy of the in-feed treatment emamectin benzoate in Scotland, the active ingredient most widely used across all salmon producing regions. METHODOLOGY/PRINCIPAL FINDINGS: Study data were drawn from over 50 commercial Atlantic salmon farms on the west coast of Scotland between 2002 and 2006. An epi-informatics approach was adopted whereby available farm records, descriptive epidemiological summaries and statistical linear modelling methods were used to identify factors that significantly affect sea lice abundance following treatment with emamectin benzoate (SLICE(R, Schering Plough Animal Health. The results show that although sea lice infestations are reduced following the application of emamectin benzoate, not all treatments are effective. Specifically there is evidence of variation across geographical regions and a reduction in efficacy over time. CONCLUSIONS/SIGNIFICANCE: Reduced sensitivity and potential resistance to currently available medicines are constant threats to maintaining control of sea lice populations on Atlantic salmon farms. There is a need for on-going monitoring of emamectin benzoate treatment efficacy together with reasons for any apparent reduction in performance. In addition, strategic rotation of medicines should be encouraged and empirical evidence for the benefit of such strategies more fully evaluated.

  9. 长期烫吸安钠咖对肝功能的影响%EFFECT OF LONG- TERM USE OF CAFFEINE SODIUM BENZOATE ON LIVER FUNCTION

    Institute of Scientific and Technical Information of China (English)

    黄永清; 张宪武; 王志纲

    2011-01-01

    目的:探讨长期烫吸安钠咖对肝功的影响.方法:应用MoDULAR P800仪器,对烫吸安钠咖组36例及正常对照组14例测定肝功情况,对结果进行比较分析.结果:与对照组比较,烫吸安钠咖组的总胆红素含量低,在统计学上存在显著性差异(P<0.01);谷丙转氨酶、肌酐含量高,在统计学上存在差异(P<0.05).结论:长期烫吸安钠咖对肝功有一定的影响.%Objective :To observe the effect of long - term use of caffeine sodium benzoate on liver function. Methods:To compare the liver function of long - term users of caffeine sodium benzoate with that of the control group by MoDULAR P800 made in USA. Results: Compared with the control, the bilirubin total in the long - term users of caffeine sodium benzoate was lower, showing significant difference (P < 0.01), the glutamate pyruvate transaminase, creatinine were higher(P < 0.05). Conclusion: Long - term use of caffeine sodium benzoate can influence the users' liver function to some extent.

  10. Political Repressions in USSR (Against Speculations, Perversion and Mystifications

    Directory of Open Access Journals (Sweden)

    Viktor N. Zemskov

    2012-12-01

    Full Text Available In the article the great numbers of political repressions, which were exaggerated by authors: R.A. Medvedev, A.I. Solzhenitsyn, O.G. Shatunovskoy, A.V. Antonov-Ovseenko in 80-90s are criticized. The author characterizes figures given in tens and even in hundreds of millions of victims as a statistical charlatanism.After checking up the KGB archives, and documents of division responsible for NKVD-MVD special settlements, the author spills the light on real numbers of political repressions in USSR. In his view, the total number of political victims does not exceed 2, 6 million people. This number implies over 800 thousand of death sentenced for political reasons, around 600 thousand political prisoners who died in labor camps, and about 1, 2 million people died in exile (including ‘Kulak Exile’ and during transportation (deported ethnic groups and others.

  11. An Updated GA Signaling 'Relief of Repression' Regulatory Model

    Institute of Scientific and Technical Information of China (English)

    Xiu-Hua Gao; Sen-Lin Xiao; Qin-Fang Yao; Yu-Juan Wang; Xiang-Dong Fu

    2011-01-01

    Gibberellic acid (GA)regulates many aspects of plant growth and development. The DELLA proteins act to restrain plant growth, and GA relieves this repression by promoting their degradation via the 26S proteasome pathway.The elucidation of the crystalline structure of the GA soluble receptor GID1 protein represents an important breakthrough for understanding the way in which GA is perceived and how it induces the destabilization of the DELLA proteins. Recent advances have revealed that the DELLA proteins are involved in protein-protein interactions within various environmental and hormone signaling pathways. In this review, we highlight our current understanding of the 'relief of repression" model that aims to explain the role of GA and the function of the DELLA proteins, incorporating the many aspects of cross-talk shown to exist in the control of plant development and the response to stress.

  12. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    Full Text Available BACKGROUND: The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity. METHODOLOGY: The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE. RESULTS: AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment. CONCLUSION: We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  13. Repressive coping and alexithymia in idiopathic environmental intolerance

    Science.gov (United States)

    Zachariae, Robert; Rasmussen, Alice; Johansen, Jeanne Duus; Elberling, Jesper

    2010-01-01

    Objective To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI). Methods The study included participants who had previously participated in a general population-based study and reported symptoms of environmental intolerance (n = 787) and patients with IEI (n = 237). The participants completed questionnaires assessing IEI, namely, a measure of repressive coping combining scores on the Marlowe–Crowne Social Desirability Scale (MCSDS) and the Taylor Manifest Anxiety Scale (TMAS), the Toronto Alexithymia Scale (TAS-20), and a negative affectivity scale (NAS). Multiple, hierarchical linear regression analyses were conducted using IEI variables as the dependent variables. Results The TMAS and MCSDS scores were independently associated with the IEI variables, but there was no evidence of a role of the repressive coping construct. While the total alexithymia score was unrelated to IEI, the TAS-20 subscale of difficulties identifying feelings (DIF) was independently associated with symptoms attributed to IEI. Negative affectivity was a strong independent predictor of the IEI variables and a mediator of the association between DIF and IEI. Conclusion Our results provide no evidence for a role of repressive coping in IEI, and our hypothesis of an association with alexithymia was only partly supported. In contrast, strong associations between IEI and negative emotional reactions, defensiveness and difficulties identifying feelings were found, suggesting a need for exploring the influence of these emotional reactions in IEI. PMID:21432559

  14. Snai1 represses Nanog to promote embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    F. Galvagni

    2015-06-01

    Full Text Available Embryonic stem cell (ESC self-renewal and pluripotency is maintained by an external signaling pathways and intrinsic regulatory networks involving ESC-specific transcriptional complexes (mainly formed by OCT3/4, Sox2 and Nanog proteins, the Polycomb repressive complex 2 (PRC2 and DNA methylation [1–8]. Among these, Nanog represents the more ESC specific factor and its repression correlates with the loss of pluripotency and ESC differentiation [9–11]. During ESC early differentiation, many development-associated genes become upregulated and although, in general, much is known about the pluripotency self-renewal circuitry, the molecular events that lead ESCs to exit from pluripotency and begin differentiation are largely unknown. Snai1 is one the most early induced genes during ESC differentiation in vitro and in vivo [12,13]. Here we show that Snai1 is able to directly repress several stemness-associated genes including Nanog. We use a ESC stable-line expressing a inducible Snai1 protein. We here show microarray analysis of embryonic stem cells (ESC expressing Snail-ER at various time points of induction with 4-OH. Data were deposited in Gene Expression Omnibus (GEO datasets under reference GSE57854 and here: http://epigenetics.hugef-research.org/data.php.

  15. Nitric oxide participates in plant flowering repression by ascorbate

    Science.gov (United States)

    Senthil Kumar, Rajendran; Shen, Chin-Hui; Wu, Pei-Yin; Suresh Kumar, Subbiah; Hua, Moda Sang; Yeh, Kai-Wun

    2016-01-01

    In Oncidium, redox homeostasis involved in flowering is mainly due to ascorbic acid (AsA). Here, we discovered that Oncidium floral repression is caused by an increase in AsA-mediated NO levels, which is directed by the enzymatic activities of nitrate reductase (NaR) and nitrite reducatase (NiR). Through Solexa transcriptomic analysis of two libraries, ‘pseudobulb with inflorescent bud’ (PIB) and ‘pseudobulb with axillary bud’ (PAB), we identified differentially expressed genes related to NO metabolism. Subsequently, we showed a significant reduction of NaR enzymatic activities and NO levels during bolting and blooming stage, suggesting that NO controlled the phase transition and flowering process. Applying AsA to Oncidium PLB (protocorm-like bodies) significantly elevated the NO content and enzyme activities. Application of sodium nitroprusside (-NO donor) on Arabidopsis vtc1 mutant caused late flowering and expression level of flowering-associated genes (CO, FT and LFY) were reduced, suggesting NO signaling is vital for flowering repression. Conversely, the flowering time of noa1, an Arabidopsis NO-deficient mutant, was not altered after treatment with L-galacturonate, a precursor of AsA, suggesting AsA is required for NO-biosynthesis involved in the NO-mediated flowering-repression pathway. Altogether, Oncidium bolting is tightly regulated by AsA-mediated NO level and downregulation of transcriptional levels of NO metabolism genes. PMID:27731387

  16. Revisiting the Master-Signifier, or, Mandela and Repression.

    Science.gov (United States)

    Hook, Derek; Vanheule, Stijn

    2015-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.

  17. Trans-inactivation: Repression in a wrong place.

    Science.gov (United States)

    Shatskikh, Aleksei S; Abramov, Yuriy A; Lavrov, Sergey A

    2016-08-19

    Trans-inactivation is the repression of genes on a normal chromosome under the influence of a rearranged homologous chromosome demonstrating the position effect variegation (PEV). This phenomenon was studied in detail on the example of brown(Dominant) allele causing the repression of wild-type brown gene on the opposite chromosome. We have investigated another trans-inactivation-inducing chromosome rearrangement, In(2)A4 inversion. In both cases, brown(Dominant) and In(2)A4, the repression seems to be the result of dragging of the euchromatic region of the normal chromosome into the heterochromatic environment. It was found that cis-inactivation (classical PEV) and trans-inactivation show different patterns of distribution along the chromosome and respond differently to PEV modifying genes. It appears that the causative mechanism of trans-inactivation is de novo heterochromatin assembly on euchromatic sequences dragged into the heterochromatic nuclear compartment. Trans-inactivation turns out to be the result of a combination of heterochromatin-induced position effect and the somatic interphase chromosome pairing that is widespread in Diptera.

  18. Revisiting the Master-Signifier, or, Mandela and Repression

    Science.gov (United States)

    Hook, Derek; Vanheule, Stijn

    2016-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or “empty”) signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664

  19. Repression and activation by multiprotein complexes that alter chromatin structure.

    Science.gov (United States)

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  20. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways.

    Science.gov (United States)

    Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael

    2016-04-01

    The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression.

  1. CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA.

    Science.gov (United States)

    Willias, Stephan P; Chauhan, Sadhana; Lo, Chien-Chi; Chain, Patrick S G; Motin, Vladimir L

    2015-01-01

    The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production, suggesting Csr

  2. Di-μ-iodido-bis(iodido{methyl 4-[(pyridin-2-ylmethylideneamino]benzoate-κ2N,N′}cadmium

    Directory of Open Access Journals (Sweden)

    Tushar S. Basu Baul

    2013-11-01

    Full Text Available The complete binuclear molecule of the title compound, [Cd2I4(C14H12N2O22], is generated by the application of a centre of inversion. The Cd—I bond lengths of the central core are close and uniformly longer than the exocyclic Cd—I bond. The coordination sphere of the CdII atom is completed by two N atoms of a chelating methyl 4-[(pyridin-2-ylmethylideneamino]benzoate ligand, and is based on a square pyramid with the terminal I atom in the apical position. The three-dimensional crystal packing is stabilized by C—H...O and C—H...π interactions, each involving the pyridine ring.

  3. Degradation of organic ultraviolet filter diethylamino hydroxybenzoyl hexyl benzoate in aqueous solution by UV/H2O2.

    Science.gov (United States)

    Gong, Ping; Yuan, Haixia; Zhai, Pingping; Dong, Wenbo; Li, Hongjing

    2015-07-01

    Steady-state and transient-state photolysis experiments were conducted to investigate the degradation of organic ultraviolet filter diethylamino hydroxybenzoyl hexyl benzoate (DHHB) in the aqueous solution by UV/H2O2. Results showed that the obvious degradation of DHHB was not observed under UV irradiation (λ = 254 nm), and the DHHB degradation was conducted due to the oxidation by hydroxyl radical (HO·). While the H2O2 concentration was between 0.05 and 0.10 mol L(-1), the highest DHHB degradation efficiency was obtained. The lower solution pH favored the transformation of DHHB, and the coexisting Cl(-) and NO3(-) ions slightly enhanced the conversion. The degradation of DHHB by HO· followed a pseudo-first-order kinetic model with different initial DHHB concentrations. By intermediate products during DHHB oxidation and laser flash photolysis spectra analysis, a primary degradation pathway was proposed.

  4. Novel 3-D Supramolecular Architectures Constructed from Zn2+ ions, Oxybis(4-benzoate) and Di(2-pyridyl)amine Ligands

    Institute of Scientific and Technical Information of China (English)

    TANG Long; LI Dong-Sheng; FU Feng; WANG Ji-Jiang; HU Huai-Ming; WANG Yao-Yu

    2007-01-01

    Using the V-shaped oba dianions as bridging ligands and dpa molecules as terminal ligands, a new 1D helical coordination-polymeric chain, [Zn(oba)(dpa)]n [oba=oxybis(4-benzoate), dpa=di(2-pyridyl)amine], was synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, UV-Vis and IR spectra, and TGA analysis. X-ray structural analysis revealed that, oba and dpa ligands played an important role in the self-assembly of the helical chains by providing potential supramolecular recognition sites for π-π aromatic stacking and hydrogen-bond interactions, resulting in the self-assembly of the (4,4) networks to give a 3-D supramolecular framework.The photoluminescence properties of the title compound were also investigated, showing intense blue photoluminescence properties at room temperature.

  5. Design, synthesis, molecular docking studies and in vitro screening of ethyl 4-(3-benzoylthioureido) benzoates as urease inhibitors.

    Science.gov (United States)

    Saeed, Aamer; Khan, Muhammad Siraj; Rafique, Hummera; Shahid, Mohammad; Iqbal, Jamshed

    2014-02-01

    Thioureas are exceptionally versatile building blocks towards the synthesis of wide variety of heterocyclic systems, which also possess extensive range of pharmacological activities. The substituted benzoic acids were converted into corresponding acid chlorides, these acid chlorides were then treated with potassium thiocyanate in acetone and then the reaction mixture was refluxed for 1-2h afford ethyl 4-(3-benzoylthioureido)benzoates thioureas in good yields. All the newly synthesized compounds were evaluated for their urease inhibitory activities and were found to be potent inhibitors of urease enzyme. Compounds 1f and 1g were identified as the most potent urease inhibitors (IC50 0.21 and 0.13 μM, respectively), and was 100-fold more potent than the standard inhibitors. Further molecular docking studies were carried out using the crystal structure of urease to find out the binding mode of the inhibitors with the enzyme.

  6. Growth and characterization of nonlinear optical single crystals: bis(cyclohexylammonium) terephthalate and cyclohexylammonium para-methoxy benzoate

    Indian Academy of Sciences (India)

    P Sathya; M Anantharaja; N Elavarasu; R Gopalakrishnan

    2015-09-01

    Bis(cyclohexylammonium) terephthalate (BCT) and cyclohexylammonium 4-methoxy benzoate (C4MB) single crystals were successfully grown by the slow evaporation solution growth technique. The harvested crystals were subjected to single-crystal X-ray diffraction, spectral, optical, thermal and mechanical studies in order to evaluate physiochemical properties. The Kurtz and Perry technique for second harmonic generation (SHG) study revealed that the powdered materials of BCT and C4MB exhibit SHG efficiency 0.2 times less and 1.3 times greater than that of standard reference material potassium dihydrogen phosphate. C4MB crystal exhibits high efficiency than BCT, because of methoxy group substituted in the para position of phenyl ring. With high SHG efficiency and thermal stability para substituted C4MB crystal will be a potential candidate for optical device fabrication.

  7. Administration of estradiol benzoate before insemination could skew secondary sex ratio toward males in Holstein dairy cows.

    Science.gov (United States)

    Emadi, S R; Rezaei, A; Bolourchi, M; Hovareshti, P; Akbarinejad, V

    2014-07-01

    The present study was conducted to investigate the effect of estradiol benzoate administration before insemination on secondary sex ratio (proportion of male calves at birth) in Holstein dairy cows. Cows (n = 1,647) were randomly assigned to 2 experimental groups by parity over a 1-yr period. Cows in the control group (n = 827; 232 primiparous and 595 multiparous cows) received 2 administrations of PGF2α (500 μg) 14 d apart, started at 30 to 35 d postpartum. Twelve d after the second PGF2α injection, cows received GnRH (100 μg), followed by administration of PGF2α 7 d later. Cows in the treatment group (n = 820; 238 primiparous and 582 multiparous cows) received the same hormonal administrations as the cows in the control group. Additionally, cows in the treatment group received estradiol benzoate (1 mg) 1 d after the third PGF2α injection. Estrus detection by visual observation was started 1 d after the third PGF2α injection and after estradiol administration in the control (for 6 d) and treatment (for 36 h) groups, respectively. Artificial insemination was carried out 12 h after observation of standing estrus. Exposure of cows to heat stress at conception was determined based on temperature-humidity index. Estrus detection rate was lower in primiparous than in multiparous cows (P heat stress diminished heat detection rate and fertility (P calves being male in Holstein dairy cows. Moreover, the results showed that cows exposed to heat stress around conception had diminished fertility and increased secondary sex ratio.

  8. Repression of death consciousness and the psychedelic trip

    Directory of Open Access Journals (Sweden)

    Varsha Dutta

    2012-01-01

    Full Text Available Death is our most repressed consciousness, it inheres our condition as the primordial fear. Perhaps it was necessary that this angst be repressed in man or he would be hurled against the dark forces of nature. Modern ethos was built on this edifice, where the ′denial of death′ while ′embracing one′s symbolic immortality′ would be worshipped, so this ideology simply overturned and repressed looking into the morass of the inevitable when it finally announced itself. Once this slowly pieced its way into all of life, ′death′ would soon become a terminology in medicine too and assert its position, by giving a push to those directly dealing with the dying to shy away from its emotional and spiritual affliction. The need to put off death and prolong one′s life would become ever more urgent. Research using psychedelics on the terminally ill which had begun in the 1950s and 1960s would coerce into another realm and alter the face of medicine; but the aggression with which it forced itself in the 1960s would soon be politically maimed, and what remained would be sporadic outpours that trickled its way from European labs and underground boot camps. Now, with the curtain rising, the question has etched itself again, about the use of psychedelic drugs in medicine, particularly psychedelic psychotherapy with the terminally ill. This study is an attempt to philosophically explore death anxiety from its existential context and how something that is innate in our condition cannot be therapeutically cured. Psychedelic use was immutably linked with ancient cultures and only recently has it seen its scientific revival, from which a scientific culture grew around psychedelic therapy. How much of what was threaded in the ritual and spiritual mores can be extricated and be interpreted in our own mechanized language of medicine is the question that nudges many.

  9. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  10. The HTLV-1 Tax Oncoprotein Represses Ku80 Gene Expression

    OpenAIRE

    Ducu, Razvan I.; Dayaram, Tajhal; Marriott, Susan J

    2011-01-01

    The HTLV-I oncoprotein Tax interferes with DNA double strand break repair. Since non-homologous end joining (NHEJ) is a major pathway used to repair DNA double strand breaks we examined the effect of Tax on this pathway, with particular interest in the expression and function of Ku80, a critical component of the NHEJ pathway. Tax expression decreased Ku80 mRNA and protein levels, and repressed transcription from the Ku80 promoter. Conversely, Ku80 mRNA increased following siRNA knockdown of T...

  11. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  12. CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA.

    Directory of Open Access Journals (Sweden)

    Stephan P Willias

    Full Text Available The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production

  13. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism

    DEFF Research Database (Denmark)

    Södersten, Erik; Feyder, Michael; Lerdrup, Mads

    2014-01-01

    Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. ...... and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease....

  14. Musashi mediates translational repression of the Drosophila hypoxia inducible factor

    Science.gov (United States)

    Bertolin, Agustina P.; Katz, Maximiliano J.; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M.; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-01-01

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3′ UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available. PMID:27141964

  15. Influence of flavone extract from cultivated saussurea on learning and memory in a mouse model of Alzheimer's disease A comparison with estradiol benzoate

    Institute of Scientific and Technical Information of China (English)

    Weiqiang Chen; Shuiming Gong; Yan Li; Ming Li; Zemin Yang; Lirong Zhang

    2011-01-01

    The present study established a mouse model of Alzheimer's disease, and investigated the effects of treatment with flavone extract from artificially cultivated saussurea. A positive control group was treated with estradiol benzoate, and learning and memory ability were examined in the 8-arm radial maze. The learning and recognition ability of mice with Alzheimer's disease treated with flavone extract was significantly improved and the number of hippocampal neurons was significantly increased in the flavone-treated and positive control groups compared with the model group. The results indicate that flavone extract from artificially cultivated saussurea can improve learning and memory deficits in mice with Alzheimer's disease, exerting effects similar to those of estradiol benzoate.

  16. Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance.

    Science.gov (United States)

    McMurry, Laura M; Levy, Stuart B

    2010-08-01

    The MarA protein of Escherichia coli can both activate and repress the initiation of transcription, depending on the position and orientation of its degenerate 20-bp binding site ("marbox") at the promoter. For all three known repressed genes, the marbox overlaps the promoter. It has been reported that MarA represses the rob promoter via an RNA polymerase (RNAP)-DNA-MarA ternary complex. Under similar conditions, we found a ternary complex for the repressed purA promoter also. These findings, together with the backwards orientation of repressed marboxes, suggested a unique interaction of MarA with RNAP in repression. However, no repression-specific residues of MarA could be found among 38 single-alanine replacement mutations previously shown to retain activation function or among mutants from random mutagenesis. Mutations Thr12Ala, Arg36Ala, Thr95Ile, and Pro106Ala were more damaging for activation than for repression, some up to 10-fold, so these residues may play a specific role in activation. We found that nonspecific binding of RNAP to promoterless regions of DNA was presumably responsible for the ternary complexes seen previously. When RNAP binding was promoter specific, MarA reduced RNAP access to the rob promoter; there was little or no ternary complex. These findings strongly implicate steric hindrance as the mechanism of repression of rob by MarA.

  17. One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium

    Directory of Open Access Journals (Sweden)

    Hamzeh Kiyani

    2013-10-01

    Full Text Available An efficient, green, and facile four-component reaction for the preparation of pyrano[2,3-c]pyrazole derivatives through the condensation reaction of aryl aldehydes, ethyl acetoacetate, malononitrile, and hydrazine hydrate or phenyl hydrazine in the presence of commercially available organocatalyst sodium benzoate under aqueous condition is reported. The products are produced with high yields and in shorter reaction times. It also is mild, safe, green and environmental friendly.

  18. Siderophore-Producing Bacteria from a Sand Dune Ecosystem and the Effect of Sodium Benzoate on Siderophore Production by a Potential Isolate

    Directory of Open Access Journals (Sweden)

    Teja Gaonkar

    2012-01-01

    Full Text Available Bioremediation in natural ecosystems is dependent upon the availability of micronutrients and cofactors, of which iron is one of the essential elements. Under aerobic and alkaline conditions, iron oxidizes to Fe+3 creating iron deficiency. To acquire this essential growth-limiting nutrient, bacteria produce low-molecular-weight, high-affinity iron chelators termed siderophores. In this study, siderophore-producing bacteria from rhizosphere and nonrhizosphere areas of coastal sand dunes were isolated using a culture-dependent approach and were assigned to 8 different genera with the predominance of Bacillus sp. Studies on the ability of these isolates to grow on sodium benzoate revealed that a pigmented bacterial culture TMR2.13 identified as Pseudomonas aeruginosa showed growth on mineral salts medium (MSM with 2% of sodium benzoate and produced a yellowish fluorescent siderophore identified as pyoverdine. This was inhibited above 54 μM of added iron in MSM with glucose without affecting growth, while, in presence of sodium benzoate, siderophore was produced even up to the presence of 108 μM of added iron. Increase in the requirement of iron for metabolism of aromatic compounds in ecosystems where the nutrient deficiencies occur naturally would be one of the regulating factors for the bioremediation process.

  19. Determination of Rizatriptan Benzoate by Potentiometric Titration%电位滴定法测定苯甲酸利扎曲普坦的含量

    Institute of Scientific and Technical Information of China (English)

    于小琴; 陈雅男; 臧晓红

    2016-01-01

    Objective To establish a potentiometric titration method for determination of rizatriptan benzoate. Methods The samples was dissolved in 40 mL of glacial acetic acid and 5 mL of acetic anhydride were titrated potentiometrically with 0.1 mol/L perchloric acid solution. And blank test calibration was performed for titration results.Results The content of rizatriptan benzoate was 100.21 %, withRSD of 0.2 %.ConclusionThis method can be simple and accurate, and suitable for the determination of rizatriptan benzoate.%目的:建立电位滴定法测定苯甲酸利扎曲普坦的含量的方法。方法以冰醋酸40 mL和醋酐5 mL溶解样品后,采用电位滴定法用高氯酸滴定液(0.1 mol/L)滴定,并将滴定结果用空白试验校正。结果测得的苯甲酸利扎曲普坦样品的含量为100.21%,RSD为0.2%。结论该方法操作简单、准确度高,适合苯甲酸利扎曲普坦含量的检测。

  20. Detection of emamectin benzoate tolerance emergence in different life stages of sea lice, Lepeophtheirus salmonis, on farmed Atlantic salmon, Salmo salar L.

    Science.gov (United States)

    Jones, P G; Hammell, K L; Gettinby, G; Revie, C W

    2013-03-01

    Emamectin benzoate has been used to treat sea lice, Lepeophtheirus salmonis, infestations on farmed Atlantic salmon, Salmo salar. Recent evidence suggests a reduction in effectiveness in some locations. A major challenge in the detection of tolerance emergence can be the typically low proportion of resistant individuals in a population during the early phases. The objectives of this study were to develop a method for determining differences in temporal development of tolerance between sea lice life stages and to explore how these differences might be used to improve the monitoring of treatment effectiveness in a clinical setting. This study examined two data sets based on records of sea lice abundance following emamectin benzoate treatments from the west coast of Scotland (2002-2006) and from New Brunswick, Canada (2004-2008). Life stages were categorized into two groups (adult females and the remaining mobile stages) to examine the trends in mean abundance and treatment effectiveness. Differences in emamectin benzoate effectiveness were found between the two groups by year and location, suggesting that an important part of monitoring drug resistance development in aquatic ectoparasites may be the need to focus on key life stages.

  1. Siderophore-producing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolate.

    Science.gov (United States)

    Gaonkar, Teja; Nayak, Pramoda Kumar; Garg, Sandeep; Bhosle, Saroj

    2012-01-01

    Bioremediation in natural ecosystems is dependent upon the availability of micronutrients and cofactors, of which iron is one of the essential elements. Under aerobic and alkaline conditions, iron oxidizes to Fe(+3) creating iron deficiency. To acquire this essential growth-limiting nutrient, bacteria produce low-molecular-weight, high-affinity iron chelators termed siderophores. In this study, siderophore-producing bacteria from rhizosphere and nonrhizosphere areas of coastal sand dunes were isolated using a culture-dependent approach and were assigned to 8 different genera with the predominance of Bacillus sp. Studies on the ability of these isolates to grow on sodium benzoate revealed that a pigmented bacterial culture TMR2.13 identified as Pseudomonas aeruginosa showed growth on mineral salts medium (MSM) with 2% of sodium benzoate and produced a yellowish fluorescent siderophore identified as pyoverdine. This was inhibited above 54 μM of added iron in MSM with glucose without affecting growth, while, in presence of sodium benzoate, siderophore was produced even up to the presence of 108 μM of added iron. Increase in the requirement of iron for metabolism of aromatic compounds in ecosystems where the nutrient deficiencies occur naturally would be one of the regulating factors for the bioremediation process.

  2. Modeling the efficacy of triplet antimicrobial combinations: yeast suppression by lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate as a case study.

    Science.gov (United States)

    Dai, Yumei; Normand, Mark D; Weiss, Jochen; Peleg, Micha

    2010-03-01

    The growth of four spoilage yeasts, Saccharomyces cerevisiae, Zygosaccharomyces bailii, Brettanomyces bruxellensis, and Brettanomyces naardenensis, was inhibited with three-agent (triplet) combinations of lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate. The inhibition efficacy was determined by monitoring the optical density of yeast cultures grown in microtiter plates for 7 days. The relationship between the optical density and the sodium benzoate and potassium sorbate concentrations followed a single-term exponential decay model. The critical effective concentration was defined as the concentration at which the optical density was 0.05, which became an efficacy criterion for the mixtures. Critical concentrations of sodium benzoate or potassium sorbate as a function of the lauric arginate and cinnamic acid concentrations were then fitted with an empirical model that mapped three-agent combinations of equal efficacy. The contours of this function are presented in tabulated form and as two- and three-dimensional plots. Triplet combinations were highly effective against all four spoilage yeasts at three practical pH levels, especially at pH 3.0. The triplet combinations were particularly effective for inhibiting growth of Z. bailii, and combinations containing potassium sorbate had synergistic activities. The equal efficacy concentration model also allowed tabulation of the cost of the various combinations of agents and identification of those most economically feasible.

  3. Synthesis, structure and temperature-depended 2D IR correlation spectroscopy of an organo-bismuth benzoate with 1,10-phenanthroline

    Science.gov (United States)

    Sun, Yan-Qiong; Zhong, Jie-Cen; Liu, Le-Hui; Qiu, Xing-Tai; Chen, Yi-Ping

    2016-11-01

    An organo-bismuth benzoate with phen as auxiliary ligand, [Bi(phen)(C6H5COO)(C6H4COO)] (1) (phen = 1,10-phenanthroline) has been hydrothermally synthesized from bismuth nitrate, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, PXRD, IR spectra, TG analyses, temperature-depended 2D-IR COS (two-dimensional infrared correlation spectroscopy). Interestingly, benzoate anions in 1 came from the desulfuration reaction of 2-mercaptonbenzoic acid under hydrothermal condition. Compound 1 is a discrete organo-bismuth compound with benzoate and phen ligands. The offset face-to-face π-π stacking interactions and C-H⋯O hydrogen bonds link the isolate complex into a 3D supramolecular network. The temperature-depended 2D-IR COS indicates that the stretching vibrations of Cdbnd C/Cdbnd N of aromatic rings and Cdbnd O bonds are sensitive to the temperature change.

  4. An assessment of detection canine alerts using flowers that release methyl benzoate, the cocaine odorant, and an evaluation of their behavior in terms of the VOCs produced.

    Science.gov (United States)

    Cerreta, Michelle M; Furton, Kenneth G

    2015-06-01

    In recent years, the high frequency of illicit substance abuse reported in the United States has made the development of efficient and rapid detection methods important. Biological detectors, such as canines (Canis familiaris), are valuable tools for rapid, on-site identification of illicit substances. However, research indicates that in many cases canines do not alert to the contraband, but rather to the volatile organic compounds (VOCs) that are released from the contraband, referred to as the "active odor." In 2013, canine accuracy and reliability were challenged in the Supreme Court case, State of Florida v. Jardines. In this case, it was stated that if a canine alerts to the active odor, and not the contraband, the canine's accuracy and selectivity could be questioned, since many of these compounds have been found in common household products. Specifically, methyl benzoate, the active odor of cocaine, has been found to be the most abundant compound produced by snapdragon flowers. Therefore, the purpose of this study is to evaluate the odor profiles of various species of snapdragon flowers to assess how significantly methyl benzoate contributes to the total VOC profile or fragrance that is produced. Particularly, this study examines the VOCs released from newly grown snapdragon flowers and determines its potential at eliciting a false alert from specially trained detection canines. The ability of detection canines to differentiate between cocaine and snapdragon flowers was determined in order to validate the field accuracy and discrimination power of these detectors. An optimized method using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to test the different types and abundances of compounds generated from snapdragon flowers at various stages throughout the plants' life cycle. The results indicate that although methyl benzoate is present in the odor profile of snapdragon flowers, other

  5. Tolerance and efficacy of emamectin benzoate and ivermectin for the treatment of Pseudocapillaria tomentosa in laboratory zebrafish (Danio rerio).

    Science.gov (United States)

    Collymore, Chereen; Watral, Virginia; White, Julie R; Colvin, Michael E; Rasmussen, Skye; Tolwani, Ravi J; Kent, Michael L

    2014-10-01

    Tolerance of adult zebrafish and efficacy of emamectin benzoate and ivermectin in eliminating Pseudocapillaria tomentosa infection were evaluated. In the tolerance study, behavioral changes, fecundity, histopathology, and mortality were evaluated for in-feed administration of emamectin (0.05, 0.10, and 0.25 mg/kg) and ivermectin (0.05 and 0.10 mg/kg). All doses of emamectin were well tolerated. Ivermectin 0.05 mg/kg administration resulted in mild behavioral changes and a transient decrease in fecundity. Ivermectin 0.10 mg/kg administration resulted in severe behavioral changes and some mortality. In the efficacy study, emamectin (0.05 and 0.25 mg/kg) and ivermectin (0.05 mg/kg) were evaluated for their efficacy in eliminating P. tomentosa infection. Emamectin reduced parasite burden in infected zebrafish, and ivermectin eliminated intestinal nematode infections. Despite a small margin of safety, ivermectin 0.05 mg/kg was effective at eliminating P. tomentosa infection in adult zebrafish. Higher doses or a longer course of treatment may be needed for complete elimination of P. tomentosa infection using emamectin. In this study, we propose two possible treatments for intestinal nematode infections in zebrafish.

  6. In vitro and in vivo metabolism of ethyl 4-[(2-hydroxy-1-naphthyl)azo]benzoate.

    Science.gov (United States)

    Bekce, Banu; Sener, Göksel; Oktav, Mehmet; Ulgen, Mert; Rollas, Sevim

    2005-01-01

    Azo compounds are extensively used for colouring food, drink, pharmaceuticals, cosmetics, textiles and printing inks. Publications in the literature have shown that azo dyes can pose threats to public health by metabolic and chemical oxidation and reduction reactions. In the present study, the in vivo and in vitro biotransformation of ethyl 4-[(2-hydroxy-1-naphthyl)azo]benzoate, an azo compound which is structurally similar to 1-phenylazo-2-naphthol was studied to investigate its in vivo and in vitro metabolic products. For the in vitro biotransformation study, rat liver microsomal preparations fortified with NADPH as a co-factor were used. Three unidentified metabolic products were observed. For the in vivo biotransformation study, a concentrated solution of this substrate was given orally to female rats. After the administration of substrate, blood samples of rats are taken at certain intervals. The blood plasma were obtained by centrifuging blood samples. The cold acetonitrile was added to plasma to precipitate plasma proteins and plasma was centrifuged. The supernatant was evaporated at room temperature. The residue was reconstituted with acetonitrile and examined by the HPLC. The unchanged substrate together with the corresponding reduction and acetylation products were detected in plasma. However, no initial hydrolysis occurred in the ester moiety.

  7. Synthesis, crystal structure, and fluorescence of two dimeric europium(Ⅲ) complexes with 2-(trifluoromethyl)benzoate

    Institute of Scientific and Technical Information of China (English)

    LI Yanqiu; LI Peizhou; LI Xia

    2008-01-01

    Two complexes [Eu2(2-TFMBA)6(2,2'-bipy)2].2H2O (1) and Eu2(2-TFMBA)6(1,10-phen)2 (2) (2-TFMBA=2-(Trifluoromethyl) benzoate; 2,2'-bipy=2,2'-bipyridine; 1,10-phen=1,10-phenanthroline) were synthesized by solvent method and determined by X-ray diffrac-tion analysis. Complex 1 crystallizes in monoclinic system with space group P21/c, whereas complex 2 crystallizes in triclinic system with space group P-1. Both are binuclear molecules with an inversion center. In complex 1, two center Eu3+ ions are linked together by four 2-TFMBA ligands in bidentate-bridging mode. Each Eu3+ion is eight-coordinated with six O atoms from five 2-TFMBA ligands and two N atoms from one 2,2'-bipy molecule. In complex 2, two center Eu3+ ions are linked together by four 2-TFMBA ligands in two modes, namely, bidentate-bridging and tridentate-bridging. Each Eu3+ ion is nine-coordinated with seven O atoms from five 2-TFMBA ligands and two N atoms from one 1,10-phen molecule. The two complexes both exhibited strong red fluorescence under ultraviolet light, and the 5D0→7Fj (j=0-4) transition emissions of Eu3+ ion were observed in their emission spectra.

  8. Application of Box-Behnken design to formulate and optimize multipolymeric fast dissolving film of rizatriptan benzoate

    Directory of Open Access Journals (Sweden)

    Dharmik M. Mehta

    2014-01-01

    Full Text Available The present investigation aims at formulation and optimization of multipolymeric fast dissolving film of rizatriptan benzoate. Three film forming polymers namely hydroxypropyl methylcellulose (HPMC, maltodextrin and polyvinylalcohol were explored using Box-Behnken experimental design to derive optimized fast dissolving film formulation using desirability function. Analysis of variance (ANOVA was performed for five dependent variables tensile strength, folding endurance, load at yield, percentage elongation and percentage drug release in 30 s (Q 30. Mathematical regression equations were derived by applying ANOVA and validated using checkpoint batches. Results of the experimental design exposed that the effect of independent factors HPMC and maltodextrin significantly influenced the mechanical properties and percentage drug release from the film. Optimized batch was derived based on set criteria using desirability function. Reponses of the optimized formulation were tensile strength (500 N/m 2, folding endurance (203, load at yield (15.06 N/m 2, percentage elongation (4.56% and Q 30 (60.03% falling under acceptable limits. High percentage drug release from the film in simulated saliva and simulated gastric fluid reveal fast dissolving characteristics. Fast dissolving dosage form can help patients with diseases like migraine.

  9. Analysis of citrates and benzoates used in poly(vinyl chloride) by supercritical fluid extraction and gas chromatography.

    Science.gov (United States)

    Guerra, R M; Marín, M L; Sánchez, A; Jiménez, A

    2002-03-15

    Supercritical fluid extraction (SFE) has been demonstrated to be a useful tool in the determination of additives in polymeric materials. This paper describes the determination of some citrates and benzoates in poly(vinyl chloride) blended with 33-34% of plasticizer using off-line SFE followed by gas chromatography. Experimental factors affecting SFE have been studied by gravimetric analysis, followed by analysis of the extracts using a gas chromatograph equipped with a flame ionization detector. The extraction process is governed by the solubility of the plasticizers in the supercritical fluid or by their diffusion through the polymer matrix, which depend on the pressure and temperature used. Maximum extraction (>99%) is obtained at pressures and temperatures higher than 40 MPa and 80 degrees C, respectively. Due to purge losses, the collection efficiency of plasticizers into a liquid solvent ranges from 85 to 90%. The applicability of the SFE method is demonstrated using real samples and comparing the results with those obtained by conventional Soxhlet extraction.

  10. Use of estradiol benzoate to induce ovulation in a short-term protocol for fixed-time AI in sheep

    Directory of Open Access Journals (Sweden)

    Caliê Castilho

    2015-06-01

    Full Text Available The aim of this study was to test the hormonal protocol for fixed-time artificial insemination (TAI with a progesterone vaginal device for six days applying equine chorionic gonadotropin (eCG or estradiol benzoate (EB as an ovulation inducer in ewes. On day 0 (D0, the ewes (n=31 received a device containing 0.33 g of intravaginal progesterone (CIDR® and were divided into three groups. The G-CT (control group used CIDR for nine days and upon withdrawal of the progesterone, were administered prostaglandin F2 alpha (PGF2? and eCG. In the eCG (G-eCG group, CIDR was administered for six days, instead of nine as in the G-CT group, followed by PGF2a and eCG after progesterone withdrawal. In the EB (G-EB group, CIDR was also administered for six days, but eCG was not applied, and EB was used to induce ovulation 24 hours after removing the CIDR and PGF2a application. TAI was realized in all groups 50 hours after CIDR withdrawal. The pregnancy rate in the G-eCG group (66% was higher (p 0.05 compared to the G-CT group (30%. It is possible to reduce the application time of the progesterone and use eCG for TAI in sheep; however, using EB resulted in a low ovulation rate in the sheep.

  11. Detection on emamectin benzoate-induced apoptosis and DNA damage in Spodoptera frugiperda Sf-9 cell line.

    Science.gov (United States)

    Wu, Xiwei; Zhang, Lei; Yang, Chao; Zong, Mimi; Huang, Qingchun; Tao, Liming

    2016-01-01

    Emamectin benzoate (EMB), an important macrocyclic lactone insecticide that belongs to the avermectin family and possesses excellent potency in controlling pests, is non-carcinogenic and non-mutagenic conducted in rats and mice, but EMB-induced cytotoxicity and genotoxicity in arthropod insect have been seldom reported yet. In the present paper, we quantified the cytotoxicity of EMB through the detections on cell viability, DNA damage, and cell apoptosis in Spodoptera frugiperda Sf-9 cells in vitro. The results showed that EMB caused a concentration- and time-dependent reduction on the viability of Sf-9 cells, and the median inhibitory concentrations (IC50) were 3.34μM at 72h of exposure. The dual acridine orange/ethidium bromide staining showed that exposure to EMB induced a significant time- and concentration-dependent increase on cell apoptosis. The alkaline comet assay revealed that EMB induced significant increases on single-strand DNA breaks, and the percentage of γH2AX-positive cells represented a time- and concentration-dependent formation of DNA double-strand breaks in Sf-9 cells. Interestingly, the similar cytotoxic actions of EMB also went for the human cancerous HeLa cells as a control cell group. Data demonstrated the potential cytotoxic effect of EMB on Sf-9 cells that was significantly greater than the effect of hydrogen peroxide at the same concentrations.

  12. Energetic domains and conformational analysis of human serum albumin upon co-incubation with sodium benzoate and glucose.

    Science.gov (United States)

    Taghavi, F; Moosavi-Movahedi, A A; Bohlooli, M; Habibi-Rezaei, M; Hadi Alijanvand, H; Amanlou, M; Sheibani, N; Saboury, A A; Ahmad, F

    2014-01-01

    Sodium benzoate (SB), a powerful inhibitor of microbial growth, is one of the most commonly used food preservative. Here, we determined the effects of SB on human serum albumin (HSA) structure in the presence or absence of glucose after 35 days of incubation under physiological conditions. The biochemical, biophysical, and molecular approaches including free amine content assay (TNBSA assay), fluorescence, and circular dichroism spectroscopy (CD), differential scanning calorimetry (DSC), and molecular docking and LIGPLOT studies were utilized for structural studies. The TNBSA results indicated that SB has the ability to bind Lys residues in HSA through covalent bonds. The docking and LIGPLOT studies also determined another specific site via hydrophobic interactions. The CD results showed more structural helicity for HSA incubated with SB, while HSA incubated with glucose had the least, and HSA incubated with glucose + SB had medium helicity. Fluorescence spectrophotometry results demonstrated partial unfolding of HSA incubated with SB in the presence or absence of glucose, while maximum partial unfolding was observed in HSA incubated with glucose. These results were confirmed by DSC and its deconvoluted thermograms. The DSC results also showed significant changes in HSA energetic structural domains due to HSA incubation with SB in the presence or absence of glucose. Together, our studies showed the formation of three different intermediates and indicate that biomolecular investigation are effective in providing new insight into safety determinations especially in health-related conditions including diabetes.

  13. Single and double hydrogen atom migrations in substituted alkyl benzoates: a study on the substituent effect using MIKE spectrometry

    Science.gov (United States)

    Tobita, Seiji; Tajima, Susumu; Ishihara, Yasuko; Kojima, Masahiro; Shigihara, Atsushi

    1994-03-01

    The substituent effect on the single and double hydrogen atom migrations is ionized ortho-, meta-, and para-substituted isobutyl (XC6H4COOC4H9) and isopropyl (XC6H4COOC3H7) benzoates is investigated by mass-analyzed ion kinetic energy spectrometry. The observed product ion ratios [XC6H4COOH]+/[XC6H4COOH2]+ show a general tendency: the compounds with an electron-donating substituent favour the formation of [XC6H4COOH]+ by single hydrogen atom migration (McLafferty rearrangement), while those with an electron-withdrawing substituent produce preferentially [XC6H4COOH2]+ through double hydrogen atom migration (McLaffery + 1 rearrangement). The thermochemical considerations combined with MO calculations show that the substituent effects observed are rationalized by the effects of substituent on the ionization energy (IE) and proton affinity (PA) of XC6H4COOH, i.e. the product ratios are determined by the difference of the product thermochemical stabilities which can be evaluated as IE(XC6H4COOH) + PA(XC6H4COOH).

  14. Characterization of Phenacoccus solenopsis (Tinsley) (Homoptera: Pseudococcidae) Resistance to Emamectin Benzoate: Cross-Resistance Patterns and Fitness Cost Analysis.

    Science.gov (United States)

    Afzal, M B S; Shad, S A

    2016-06-01

    Cotton mealybug Phenacoccus solenopsis (Tinsley) (Homoptera: Pseudococcidae) is a sucking pest of worldwide importance causing huge losses by feeding upon cotton in various parts of the world. Because of the importance of this pest, this research was carried out to select emamectin resistance in P. solenopsis in the laboratory to study cross-resistance, stability, realized heritability, and fitness cost of emamectin resistance. After selection from third generation (G3) to G6, P. solenopsis developed very high emamectin resistance (159.24-fold) when compared to a susceptible unselected population (Unsel pop). Population selected to emamectin benzoate conferred moderate (45.81-fold), low (14.06-fold), and no cross-resistance with abamectin, cypermethrin, and profenofos, respectively compared to the Unsel pop. A significant decline in emamectin resistance was observed in the resistant population when not exposed to emamectin from G7 to G13. The estimated realized heritability (h (2)) for emamectin resistance was 0.84. A high fitness cost was associated with emamectin resistance in P. solenopsis. Results of this study may be helpful in devising insecticide resistance management strategies for P. solenopsis.

  15. Simplified RP-HPLC method for multi-residue analysis of abamectin, emamectin benzoate and ivermectin in rice.

    Science.gov (United States)

    Xie, Xianchuan; Gong, Shu; Wang, Xiaorong; Wu, Yinxing; Zhao, Li

    2011-01-01

    A rapid, reliable and sensitive reverse-phase high-performance liquid chromatography method with fluorescence detection (RP-FLD-HPLC) was developed and validated for simultaneous analysis of the abamectin (ABA), emamectin (EMA) benzoate and ivermectin (IVM) residues in rice. After extraction with acetonitrile/water (2 : 1) with sonication, the avermectin (AVMs) residues were directly derivatised by N-methylimidazole (N-NMIM) and trifluoroacetic anhydride (TFAA) and then analysed on RP-FLD-HPLC. A good linear relationship (r(2 )> 0.99) was obtained for three AVMs ranging from 0.01 to 5 microg ml(-1), i.e. 0.01-5.0 microg g(-1) in rice matrix. The limit of detection (LOD) and the limit of quantification (LOQ) were between 0.001 and 0.002 microg g(-1) and between 0.004 and 0.006 microg g(-1), respectively. Recoveries were from 81.9% to 105.4% and precision less than 12.4%. The proposed method was successfully applied to routine analysis of the AVMs residues in rice.

  16. Synthesis and Biological Evaluation of 2-Hydroxy-3-[(2-aryloxyethylamino]propyl 4-[(Alkoxycarbonylamino]benzoates

    Directory of Open Access Journals (Sweden)

    Jan Tengler

    2013-01-01

    Full Text Available A series of twenty substituted 2-hydroxy-3-[(2-aryloxyethylamino]propyl 4-[(alkoxycarbonylamino]benzoates were prepared and characterized. As similar compounds have been described as potential antimycobacterials, primary in vitro screening of the synthesized carbamates was also performed against two mycobacterial species. 2-Hydroxy-3-[2-(2,6-dimethoxyphenoxyethylamino]-propyl 4-(butoxycarbonylaminobenzoate hydrochloride, 2-hydroxy-3-[2-(4-methoxyphenoxyethylamino]-propyl 4-(butoxycarbonylaminobenzoate hydrochloride, and 2-hydroxy-3-[2-(2-methoxyphenoxyethylamino]-propyl 4-(butoxycarbonylaminobenzoate hydrochloride showed higher activity against M. avium subsp. paratuberculosis and M. intracellulare than the standards ciprofloxacin, isoniazid, or pyrazinamide. Cytotoxicity assay of effective compounds was performed using the human monocytic leukaemia THP-1 cell line. Compounds with predicted amphiphilic properties were also tested for their effects on the rate of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. All butyl derivatives significantly stimulated the rate of PET, indicating that the compounds can induce conformational changes in thylakoid membranes resulting in an increase of their permeability and so causing uncoupling of phosphorylation from electron transport.

  17. Vibrational spectroscopy, intramolecular CH⋯O interaction and conformational analysis of 2,5-dimethyl-benzyl benzoate

    Science.gov (United States)

    Viana, Rommel B.; Ribeiro, Gabriela L. O.; Valencia, Leidy J.; Varela, Jaldyr J. G.; Viana, Anderson B.; da Silva, Albérico B. F.; Moreno-Fuquen, Rodolfo

    2016-12-01

    The aim of this study was to report the spectroscopic and electronic properties of 2,5-dimethyl-benzyl benzoate. FT-IR and Raman vibrational spectral analyses were performed, while a computational approach was used to elucidate the vibrational frequency couplings. The electronic properties were predicted using the Density Functional Theory, while the G3MP2 method was employed in the thermochemical calculation. A conformational analysis, frontier orbitals, partial atomic charge distribution and the molecular electrostatic potential were also estimated. Concerning to the dihedral angles in the ester group, a conformational analysis showed a barrier energy of 10 kcal mol-1, while other small barriers (below 0.6 kcal mol-1) were predicted within the potential surface energy investigation. Insights into the relative stability among the different positions of methyl groups in the phenyl ring demonstrated that the energy gaps were lower than 1 kcal mol-1 among the regioisomers. In addition, the Quantum Theory of Atoms in Molecules (QTAIM) was used to understand the intramolecular CH⋯O interaction in the title compound, while various methodologies were applied in the atomic charge distribution to evaluate the susceptibility to the population method.

  18. DNA content alterations in Tetrahymena pyriformis macronucleus after exposure to food preservatives sodium nitrate and sodium benzoate.

    Science.gov (United States)

    Loutsidou, Ariadni C; Hatzi, Vasiliki I; Chasapis, C T; Terzoudi, Georgia I; Spiliopoulou, Chara A; Stefanidou, Maria E

    2012-12-01

    The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.

  19. REST represses a subset of the pancreatic endocrine differentiation program

    DEFF Research Database (Denmark)

    Martin, David; Kim, Yung-Hae; Sever, Dror

    2015-01-01

    To contribute to devise successful beta-cell differentiation strategies for the cure of Type 1 diabetes we sought to uncover barriers that restrict endocrine fate acquisition by studying the role of the transcriptional repressor REST in the developing pancreas. Rest expression is prevented...... in neurons and in endocrine cells, which is necessary for their normal function. During development, REST represses a subset of genes in the neuronal differentiation program and Rest is down-regulated as neurons differentiate. Here, we investigate the role of REST in the differentiation of pancreatic...... endocrine cells, which are molecularly close to neurons. We show that Rest is widely expressed in pancreas progenitors and that it is down-regulated in differentiated endocrine cells. Sustained expression of REST in Pdx1(+) progenitors impairs the differentiation of endocrine-committed Neurog3...

  20. MYCN repression of Lifeguard/FAIM2 enhances neuroblastoma aggressiveness

    Science.gov (United States)

    Planells-Ferrer, L; Urresti, J; Soriano, A; Reix, S; Murphy, D M; Ferreres, J C; Borràs, F; Gallego, S; Stallings, R L; Moubarak, R S; Segura, M F; Comella, J X

    2014-01-01

    Neuroblastoma (NBL) is the most common solid tumor in infants and accounts for 15% of all pediatric cancer deaths. Several risk factors predict NBL outcome: age at the time of diagnosis, stage, chromosome alterations and MYCN (V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma-Derived Homolog) amplification, which characterizes the subset of the most aggressive NBLs with an overall survival below 30%. MYCN-amplified tumors develop exceptional chemoresistance and metastatic capacity. These properties have been linked to defects in the apoptotic machinery, either by silencing components of the extrinsic apoptotic pathway (e.g. caspase-8) or by overexpression of antiapoptotic regulators (e.g. Bcl-2, Mcl-1 or FLIP). Very little is known on the implication of death receptors and their antagonists in NBL. In this work, the expression levels of several death receptor antagonists were analyzed in multiple human NBL data sets. We report that Lifeguard (LFG/FAIM2 (Fas apoptosis inhibitory molecule 2)/NMP35) is downregulated in the most aggressive and undifferentiated tumors. Intringuingly, although LFG has been initially characterized as an antiapoptotic protein, we have found a new association with NBL differentiation. Moreover, LFG repression resulted in reduced cell adhesion, increased sphere growth and enhanced migration, thus conferring a higher metastatic capacity to NBL cells. Furthermore, LFG expression was found to be directly repressed by MYCN at the transcriptional level. Our data, which support a new functional role for a hitherto undiscovered MYCN target, provide a new link between MYCN overexpression and increased NBL metastatic properties. PMID:25188511

  1. Serum repressing efflux pump CDR1 in Candida albicans

    Directory of Open Access Journals (Sweden)

    Fan Jen-Chung

    2006-07-01

    Full Text Available Abstract Background In the past decades, the prevalence of candidemia has increased significantly and drug resistance has also become a pressing problem. Overexpression of CDR1, an efflux pump, has been proposed as a major mechanism contributing to the drug resistance in Candida albicans. It has been demonstrated that biological fluids such as human serum can have profound effects on antifungal pharmacodynamics. The aim of this study is to understand the effects of serum in drug susceptibility via monitoring the activity of CDR1 promoter of C. albicans. Results The wild-type C. albicans cells (SC5314 but not the cdr1/cdr1 mutant cells became more susceptible to the antifungal drug when the medium contained serum. To understand the regulation of CDR1 in the presence of serum, we have constructed CDR1 promoter-Renilla luciferase (CDR1p-RLUC reporter to monitor the activity of the CDR1 promoter in C. albicans. As expected, the expression of CDR1p-RLUC was induced by miconazole. Surprisingly, it was repressed by serum. Consistently, the level of CDR1 mRNA was also reduced in the presence of serum but not N-acetyl-D-glucosamine, a known inducer for germ tube formation. Conclusion Our finding that the expression of CDR1 is repressed by serum raises the question as to how does CDR1 contribute to the drug resistance in C. albicans causing candidemia. This also suggests that it is important to re-assess the prediction of in vivo therapeutic outcome of candidemia based on the results of standard in vitro antifungal susceptibility testing, conducted in the absence of serum.

  2. Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis.

    Science.gov (United States)

    Hiratsu, Keiichiro; Mitsuda, Nobutaka; Matsui, Kyoko; Ohme-Takagi, Masaru

    2004-08-13

    We reported previously that the carboxy-terminal 30 amino acids of SUPERMAN (SUPRD) function as a repression domain in Arabidopsis. In this study, we identified the peptide sequences in SUPRD that is both necessary and sufficient for repression of transcription. To our surprise, the hexapeptide DLELRL was sufficient, by itself, to confer the ability to repress transcription on a DNA-binding domain. A database search revealed that there are 32 TFIIIA-type zinc finger proteins in the Arabidopsis genome that contain a hexapeptide sequence similar or identical to that of DLELRL. These peptides acted as repression domains, suggesting that these zinc finger proteins might function as active repressors. Further mutational analysis within DLELRL revealed that an amphiphilic motif composed of six amino acids (XLxLXL) with preferences at the first and fifth positions is necessary and sufficient for strong repression. An assay of positional effects suggested that GAL4DB-DLELRL might function as a short-range repressor. A possible mechanism of the DLELRL-mediated repression is discussed.

  3. Repressive Coping, Emotional Adjustment, and Cognition in People Who Have Lost Loved Ones to Suicide

    Science.gov (United States)

    Parker, Holly A.; McNally, Richard J.

    2008-01-01

    Research indicates that a repressive coping style is psychologically protective against the stress of trauma, yet it is unclear whether this finding generalizes to suicide bereavement. Thus, we assessed cognitive ability and mental health among individuals who lost a loved one to suicide. The results indicate that repressive coping may be…

  4. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells

    DEFF Research Database (Denmark)

    Pasini, Diego; Cloos, Paul A C; Walfridsson, Julian

    2010-01-01

    The Polycomb group (PcG) proteins have an important role in controlling the expression of genes essential for development, differentiation and maintenance of cell fates. The Polycomb repressive complex 2 (PRC2) is believed to regulate transcriptional repression by catalysing the di- and tri-methy...

  5. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.

    Science.gov (United States)

    Matsuoka, Yu; Shimizu, Kazuyuki

    2013-10-20

    It is quite important to understand the basic principle embedded in the main metabolism for the interpretation of the fermentation data. For this, it may be useful to understand the regulation mechanism based on systems biology approach. In the present study, we considered the perturbation analysis together with computer simulation based on the models which include the effects of global regulators on the pathway activation for the main metabolism of Escherichia coli. Main focus is the acetate overflow metabolism and the co-fermentation of multiple carbon sources. The perturbation analysis was first made to understand the nature of the feed-forward loop formed by the activation of Pyk by FDP (F1,6BP), and the feed-back loop formed by the inhibition of Pfk by PEP in the glycolysis. Those together with the effect of transcription factor Cra caused by FDP level affected the glycolysis activity. The PTS (phosphotransferase system) acts as the feed-back system by repressing the glucose uptake rate for the increase in the glucose uptake rate. It was also shown that the increased PTS flux (or glucose consumption rate) causes PEP/PYR ratio to be decreased, and EIIA-P, Cya, cAMP-Crp decreased, where cAMP-Crp in turn repressed TCA cycle and more acetate is formed. This was further verified by the detailed computer simulation. In the case of multiple carbon sources such as glucose and xylose, it was shown that the sequential utilization of carbon sources was observed for wild type, while the co-consumption of multiple carbon sources with slow consumption rates were observed for the ptsG mutant by computer simulation, and this was verified by experiments. Moreover, the effect of a specific gene knockout such as Δpyk on the metabolic characteristics was also investigated based on the computer simulation.

  6. Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells

    Science.gov (United States)

    Nishiyama, Akira; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Amano, Tomokazu; Hoang, Hien G.; Binder, Bernard Y.; Tapnio, Richard; Bassey, Uwem; Malinou, Justin N.; Correa-Cerro, Lina S.; Yu, Hong; Xin, Li; Meyers, Emily; Zalzman, Michal; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Qian, Yong; Dudekula, Dawood; Sheer, Sarah; Cadet, Jean S.; Hirata, Tetsuya; Yang, Hsih-Te; Goldberg, Ilya; Evans, Michele K.; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2013-01-01

    Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes. PMID:23462645

  7. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age

    Science.gov (United States)

    Van Meter, Michael; Kashyap, Mehr; Rezazadeh, Sarallah; Geneva, Anthony J.; Morello, Timothy D.; Seluanov, Andrei; Gorbunova, Vera

    2014-01-01

    L1 retrotransposons are an abundant class of transposable elements which pose a threat to genome stability and may play a role in age-related pathologies such as cancer. Recent evidence indicates that L1s become more active in somatic tissues during the course of aging; the mechanisms underlying this phenomenon remain unknown, however. Here we report that the longevity regulating protein, SIRT6, is a powerful repressor of L1 activity. Specifically, SIRT6 binds to the 5′UTR of L1 loci, where it mono-ADP ribosylates the nuclear corepressor protein, KAP1, and facilitates KAP1 interaction with the heterochromatin factor, HP1α, thereby contributing to the packaging of L1 elements into transcriptionally repressive heterochromatin. During the course of aging, and also in response to DNA damage, however, we find that SIRT6 is depleted from L1 loci, allowing for the activation of these previously silenced retroelements. PMID:25247314

  8. Extremadura: Behind the material traces of Franco’s repression

    Directory of Open Access Journals (Sweden)

    Muñoz Encinar, Laura

    2014-12-01

    Full Text Available After the failed coup d’état of July 17th, 1936 and after the start of the Spanish Civil War that followed it, rebels carried out a repressive strategy based on the execution of thousands of people as a key tool of social control. The socialization of fear and terror through humiliation, killing and disappearance would become the main strategy employed throughout the war and the post-war period. In this context, perpetrators would exercise repressive practices on victims and their bodies. As a result, countless mass graves were opened in order to hide the bodies of victims. In the region of Extremadura, these mass graves have been investigated through the application of archeology and physical anthropology as disciplines of research and historical knowledge production. The exhumations, have given us a diachronic point of view of the repressive strategies developed, associated with different contexts between 1936 and 1946. Analyses of mass executions linked to rebels’ occupation of territories in this region, systematic rearguard killings in occupied areas, elimination procedures carried out in concentration camps and prisons and the fight against the armed guerrilla during the dictatorship, are the main contributions of this article.Tras el fracaso del golpe de Estado del 17 de julio de 1936 y el inicio de la Guerra Civil en España, se llevó a cabo, por parte de los sublevados, una estrategia represiva basada en la ejecución de miles de personas como principal herramienta de control social. La socialización del miedo y el terror a través de las vejaciones, ejecuciones y desapariciones será la principal estrategia utilizada, donde el uso de las víctimas y los cuerpos formará también parte de las prácticas represivas ideadas por los perpetradores. Como consecuencia, se abrieron incontables fosas comunes con el objetivo de ocultar los cadáveres de los represaliados. Estas fosas han sido investigadas en la Comunidad Autónoma de

  9. Safety and determination benzoic acid and sodium benzoate%苯甲酸和苯甲酸钠安全性与检测方法研究进展

    Institute of Scientific and Technical Information of China (English)

    李菊; 刘淑君; 黄雪琳

    2012-01-01

      As one of the acidic preservative,the abuse of benzoic acid and sodium benzoate is very dangerous. Because the residue of benzoic acid and sodium benzoate would do great harm to the human health even cause cancer after they were taken through the food and medicament. The researchers have dedicated many efforts to research for residue determination of benzoic acid and Sodium Benzoate. The security and methods for benzoic acid and sodium benzoate detection were summarized. this study was useful for the detecting technology of benzoic acid and sodium benzoate residues.%  苯甲酸和苯甲酸钠是一种酸性防腐剂,过量滥用很危险;因苯甲酸和苯甲酸钠被人体过量摄入后,会对人体健康造成极大危害,甚至致癌。该文对苯甲酸和苯甲酸钠残留安全性及检测方法进行综述,以期为苯甲酸和苯甲酸钠残留检测方法研究提供参考。

  10. Sensitive and selective methods for the determination of rizatriptan benzoate in pharmaceuticals using N-bromosuccinimide and two dyes

    Directory of Open Access Journals (Sweden)

    Kudige Nagaraj Prashanth

    2015-05-01

    Full Text Available One titrimetric and two spectrophotometric methods are described for the determination of rizatriptan benzoate (RTB in bulk drugs and in tablets. The methods use N-bromosuccinimide (NBS as an analytical reagent, janus green (JG and calmagite (CMG as auxiliary reagents. All the three methods are indirect in which the unreacted NBS is determined after the reaction between RTB and NBS is judged complete by iodometric back titration (method A or by reacting with a fixed amount of either janus green (method B or calmagite (method C followed by the measurement of absorbance at 620 nm (method B or 540 nm (method C. Titrimetry allows the determination of 1–10 mg of RTB and follows a reaction stoichiometry of 1:3 (RTB:NBS, whereas spectrophotometric methods are applicable over the concentration ranges of 0.5–8.0 μg ml−1 in method B and 1.5–30.0 μg ml−1 in method C. Method B with a calculated molar absorptivity of 3.03 × 104 L mol−1 cm−1 is the second most sensitive spectrophotometric method ever developed for RTB. The quality control/assurance parameters such as limits of detection (LOD, quantification (LOQ and Sandelle’s sensitivity values are also reported for the spectrophotometric method. The accuracy and precision of the methods were studied on intra-day and inter-day basis. No interference was observed from common pharmaceutical adjuvants. Statistical comparison of the results with a reference method showed excellent agreement, and indicates no significant difference in accuracy and precision. The reliability of the methods was further ascertained by recovery studies via standard addition procedures.

  11. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

    Science.gov (United States)

    Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada

    2013-06-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders.

  12. DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk

    Science.gov (United States)

    Cheong, Ana; Zhang, Xiang; Cheung, Yuk-Yin; Tang, Wan-yee; Chen, Jing; Ye, Shu-Hua; Medvedovic, Mario; Leung, Yuet-Kin; Prins, Gail S.; Ho, Shuk-Mei

    2016-01-01

    ABSTRACT Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease. PMID:27415467

  13. Sodium benzoate, a food preservative, affects the functional and activation status of splenocytes at non cytotoxic dose.

    Science.gov (United States)

    Yadav, Ashish; Kumar, Arvind; Das, Mukul; Tripathi, Anurag

    2016-02-01

    Sodium benzoate (SB) is a widely used food preservative due to its bacteriostatic and fungistatic properties. The acceptable daily intake of SB is 5 mg/kg-bw, however, it has been found to be used in the food commodities at relatively high levels (2119 mg/kg). Earlier studies on SB have shown its immunosuppressive properties, but comprehensive immunotoxicity data is lacking. Our studies have shown that SB was non cytotoxic in splenocytes up to 1000 μg/ml for 72 h, however at 2500 μg/ml it was found to be cytotoxic. Thus, 1000 μg/ml dose of SB was chosen for the subsequent experiments. SB significantly suppresses the proliferation of Con A and LPS stimulated splenocytes at 72 h, while allogenic response of T cells was significantly decreased after 96 h. SB did not affect the relative expression of CD3e or CD4 molecules following 72 h exposure, however, it downregulated the relative expression of CD8 co-receptor. Further, exposure of splenocytes to SB for 72 h led to reduced expression of CD28 and CD95, which play a vital role in T cell activation. SB also suppresses the relative expression of CD19, CD40 and CD95 receptors on B cells after 72 h. In addition to the functional responses, SB lowered the expression of IL4, IL6, IFNγ and IL17 cytokines in Con A stimulated splenocytes; and IL6, IFNγ and TNFα in LPS stimulated splenocytes following 48 h of exposure. Taken together, the present study is suggestive of the immunomodulatory potential of SB.

  14. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates ciliary neurotrophic factor in astrocytes and oligodendrocytes

    Science.gov (United States)

    Modi, Khushbu K.; Jana, Malabendu; Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that plays an important role in multiple sclerosis (MS). However, mechanisms by which CNTF expression could be increased in the brain are poorly understood. Recently we have discovered anti-inflammatory and immunomodulatory activities of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here, we delineate that NaB is also capable of increasing the mRNA and protein expression of CNTF in primary mouse astrocytes and oligodendrocytes and primary human astrocytes. Accordingly, oral administration of NaB and cinnamon led to the upregulation of astroglial and oligodendroglial CNTF in vivo in mouse brain. Induction of experimental allergic encephalomyelitis (EAE), an animal model of MS, reduced the level of CNTF in the brain, which was restored by oral administration of cinnamon. While investigating underlying mechanisms, we observed that NaB induced the activation of protein kinase A (PKA) and H-89, an inhibitor of PKA, abrogated NaB-induced expression of CNTF. The activation of cAMP response element binding (CREB) protein by NaB, the recruitment of CREB and CREB-binding protein to the CNTF promoter by NaB and the abrogation of NaB-induced expression of CNTF in astrocytes by siRNA knockdown of CREB suggest that NaB increases the expression of CNTF via the activation of CREB. These results highlight a novel myelinogenic property of NaB and cinnamon, which may be of benefit for MS and other demyelinating disorders. PMID:26399250

  15. EFFECT OF SODIUM BENZOATE ON THE QUALITY AND SENSORY PROPERTIES OF KUNUN-ZAKI SUPPLEMENTED WITH GROUNDNUT

    Directory of Open Access Journals (Sweden)

    Taiwo Aderinola

    2014-04-01

    Full Text Available The quality parameters of kunu-zaki supplemented with groundnut was investigated in this study. Millet, groundnut, ginger, dry red pepper and sugar were used for the production. After production, some samples were pasteurized at 700C for 30 minutes and stored at refrigerated (oC and ambient conditions (oC. A fresh control sample was also prepared at interval for comparison. Analyses were carried out to determine the chemical composition, microbiological and sensory qualities of product during storage over a period of twenty seven (27 days. Results showed that addition of groundnut improved chemical composition of the fresh samples. It could be attributed to the crude protein and the fat content in the added groundnut. The results were: moisture, 75.7%; crude protein, 13.06%; fat, 7.35%; ash, 0.39% and carbohydrate, 3.5%. The pH values for the fresh samples were: 3.31 (pasteurized refrigerated; 3.31 (pasteurized unrefrigerated; 3.57 (unpasteurized refrigerated; 3.64 (unpasteurized unrefrigerated and 3.93 for the Fresh sample. The results of the mineral element (mg/100g were: Ca, 152; Na, 0.19; Mg, 4.76; K, 2.74 and P, 123.22. There was no detection of the presence of the indicator organism – E coli. Results of the sensory evaluation of the product carried out using a five-man panel showed that there were no differences in the appearance, taste and flavor for the first day. However, the pasteurized refrigerated sample with the addition of sodium benzoate was better on the overall acceptability.

  16. A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.

    Science.gov (United States)

    Wontakal, Sandeep N; Guo, Xingyi; Smith, Cameron; MacCarthy, Thomas; Bresnick, Emery H; Bergman, Aviv; Snyder, Michael P; Weissman, Sherman M; Zheng, Deyou; Skoultchi, Arthur I

    2012-03-06

    Two mechanisms that play important roles in cell fate decisions are control of a "core transcriptional network" and repression of alternative transcriptional programs by antagonizing transcription factors. Whether these two mechanisms operate together is not known. Here we report that GATA-1, SCL, and Klf1 form an erythroid core transcriptional network by co-occupying >300 genes. Importantly, we find that PU.1, a negative regulator of terminal erythroid differentiation, is a highly integrated component of this network. GATA-1, SCL, and Klf1 act to promote, whereas PU.1 represses expression of many of the core network genes. PU.1 also represses the genes encoding GATA-1, SCL, Klf1, and important GATA-1 cofactors. Conversely, in addition to repressing PU.1 expression, GATA-1 also binds to and represses >100 PU.1 myelo-lymphoid gene targets in erythroid progenitors. Mathematical modeling further supports that this dual mechanism of repressing both the opposing upstream activator and its downstream targets provides a synergistic, robust mechanism for lineage specification. Taken together, these results amalgamate two key developmental principles, namely, regulation of a core transcriptional network and repression of an alternative transcriptional program, thereby enhancing our understanding of the mechanisms that establish cellular identity.

  17. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes.

    Science.gov (United States)

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md; Gregory, Brian; Samsel, Leigh; Zengel, Janice M; Lindahl, Lasse

    2013-12-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.

  18. Repressive coping, stigmatization, psychological distress, and quality of life among behavioral weight management participants.

    Science.gov (United States)

    Truong, Erin A K; Olson, KayLoni L; Emery, Charles F

    2016-08-01

    Repressive coping has been associated with elevated risk of disease and negative health outcomes in past studies. Although a prior study of healthy men found that repression was associated with lower body mass index (BMI), no study has examined repressive coping among obese individuals. This study examined the relationship of repressive coping with BMI and obesity-relevant psychosocial factors among 104 overweight and obese participants in a behavioral weight management program. Participants completed questionnaires assessing repressive coping, stigmatization, psychological distress, and quality of life. BMI was objectively measured. Repressors reported lower stigmatization, anxiety, and depression as well as higher emotional and weight-related quality of life. Repressors and non-repressors had equivalent BMI and reported similar impairment in physical quality of life, but stigmatization moderated the relationship between repressive coping and physical quality of life (b=0.31, p=0.039), reflecting better physical quality of life among non-repressors with lower stigmatization. Obese individuals who engage in repressive coping may tend to underreport psychological symptoms, social difficulties, and impairments in quality of life. Higher physical quality of life among non-repressors with lower stigmatization may reflect a combined influence of coping and social processes in physical quality of life among obese individuals.

  19. ZBTB7A suppresses melanoma metastasis by transcriptionally repressing MCAM

    Science.gov (United States)

    Liu, Xue-Song; Genet, Matthew D; Haines, Jenna E; Mehanna, Elie K; Wu, Shaowei; Chen, Hung-I Harry; Chen, Yidong; Qureshi, Abrar A; Han, Jiali; Chen, Xiang; Fisher, David E; Pandolfi, Pier Paolo; Yuan, Zhi-Min

    2015-01-01

    The excessive metastatic propensity of melanoma makes it the most deadly form of skin cancer, yet the underlying mechanism of metastasis remains elusive. Here, mining of cancer genome datasets discovered a frequent loss of chromosome 19p13.3 and associated down-regulation of the zinc finger transcription factor ZBTB7A in metastatic melanoma. Functional assessment of ZBTB7A-regulated genes identified MCAM, which encodes an adhesion protein key to melanoma metastasis. Using an integrated approach, it is demonstrated that ZBTB7A directly binds to the promoter and transcriptionally represses the expression of MCAM, establishing ZBTB7A as a bona fide transcriptional repressor of MCAM. Consistently, down-regulation of ZBTB7A results in marked upregulation of MCAM and enhanced melanoma cell invasion and metastasis. An inverse correlation of ZBTB7A and MCAM expression in association with melanoma metastasis is further validated with data from analysis of human melanoma specimens. Implications Together these results uncover a previously unrecognized role of ZBTB7A in negative regulation of melanoma metastasis and have important clinical implications. PMID:25995384

  20. DELLA proteins interact with FLC to repress flowering transition

    Institute of Scientific and Technical Information of China (English)

    Hongwei Guo

    2016-01-01

    Flowering is a highly orchestrated and extremely critical process in a plant’s life cycle. Previous study has demonstrated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) integrate the gibberellic acid (GA) signaling pathway and vernalization pathway in regulating flowering time, but detailed molecular mechanisms remain largely unclear. In GA signaling pathway, DELLA proteins are a group of master transcriptional regulators, while in vernalization pathway FLOWERING LOCUS C (FLC) is a core transcriptional repressor that down-regulates the expression of SOC1 and FT. Here, we report that DELLA proteins interact with FLC in vitro and in vivo, and the LHRI domains of DELLAs and the C-terminus of MADS domain of FLC are required for these interactions. Phenotypic and gene expression analysis showed that mutation of FLC reduces while over-expression of FLC enhances the GA response in the flowering process. Further, DELLA-FLC interactions promote the repression ability of FLC on its target genes. In summary, these findings report that the interaction between MADS box transcription factor FLC and GRAS domain regulator DELLAs may integrate various signaling inputs in flowering time control, and shed new light on the regulatory mechanism both for FLC and DELLAs in regulating gene expression.

  1. microRNAs-powerful repression comes from small RNAs

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally. miRNAs comprise one of the major non-coding RNA families, whose diverse bio- logical functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression. miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regu- lation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a new dimension to our understanding about the complex gene regulatory networks.

  2. microRNAs- powerful repression comes from small RNAs

    Institute of Scientific and Technical Information of China (English)

    MA Cong; LIU YuFei; HE Lin

    2009-01-01

    microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally, miRNAs comprise one of the major non-coding RNA families, whose diverse bio-logical functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression.miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regu-lation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a now dimension to our understanding about the complex gene regulatory networks.

  3. MarA-mediated transcriptional repression of the rob promoter.

    Science.gov (United States)

    Schneiders, Thamarai; Levy, Stuart B

    2006-04-14

    The Escherichia coli transcriptional regulator MarA affects functions that include antibiotic resistance, persistence, and survival. MarA functions as an activator or repressor of transcription utilizing similar degenerate DNA sequences (marboxes) with three different binding site configurations with respect to the RNA polymerase-binding sites. We demonstrate that MarA down-regulates rob transcripts both in vivo and in vitro via a MarA-binding site within the rob promoter that is positioned between the -10 and -35 hexamers. As for the hdeA and purA promoters, which are repressed by MarA, the rob marbox is also in the "backward" orientation. Protein-DNA interactions show that SoxS and Rob, like MarA, bind the same marbox in the rob promoter. Electrophoretic mobility shift analyses with a MarA-specific antibody demonstrate that MarA and RNA polymerase form a ternary complex with the rob promoter DNA. Transcription experiments in vitro and potassium permanganate footprinting analysis show that MarA affects the RNA polymerase-mediated closed to open complex formation at the rob promoter.

  4. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  5. Possible Roles for Polycomb Repressive Complex 2 in Cereal Endosperm

    Directory of Open Access Journals (Sweden)

    Kaoru eTonosaki

    2015-03-01

    Full Text Available The Polycomb Repressive Complex 2 (PRC2 is an evolutionarily conserved multimeric protein complex in both plants and animals. In contrast to animals, plants have evolved a range of different components of PRC2 and form diverse complexes that act in the control of key regulatory genes at many stages of development during the life cycle. A number of studies, particularly in the model species Arabidopsis thaliana, have highlighted the role of PRC2 and of epigenetic controls via parent-of-origin specific gene expression for endosperm development. However, recent research in cereal plants has revealed that although some components of PRC2 show evolutionary conservation with respect to parent-of-origin specific gene expression patterns, the identity of the imprinted genes encoding PRC2 components is not conserved. This disparity may reflect the facts that cereal plant genomes have undergone different patterns of duplication during evolution compared to Arabidopsis thaliana and that the endosperm development program is not identical in monocots and eudicots. In this context, we focus this review on the expression of imprinted PRC2 genes and their roles in endosperm development in cereals.

  6. Nuclear receptors in inflammation control: repression by GR and beyond.

    Science.gov (United States)

    Chinenov, Yurii; Gupte, Rebecca; Rogatsky, Inez

    2013-11-05

    Inflammation is a protective response of organisms to pathogens, irritation or injury. Primary inflammatory sensors activate an array of signaling pathways that ultimately converge upon a few transcription factors such as AP1, NFκB and STATs that in turn stimulate expression of inflammatory genes to ultimately eradicate infection and repair the damage. A disturbed balance between activation and inhibition of inflammatory pathways can set the stage for chronic inflammation which is increasingly recognized as a key pathogenic component of autoimmune, metabolic, cardiovascular and neurodegenerative disorders. Nuclear receptors (NRs) are a large family of transcription factors many of which are known for their potent anti-inflammatory actions. Activated by small lipophilic ligands, NRs interact with a wide range of transcription factors, cofactors and chromatin-modifying enzymes, assembling numerous cell- and tissue-specific DNA-protein transcriptional regulatory complexes with diverse activities. Here we discuss established and emerging roles and mechanisms by which NRs and, in particular, the glucocorticoid receptor (GR) repress genes encoding cytokines, chemokines and other pro-inflammatory mediators.

  7. Auto-phosphorylation Represses Protein Kinase R Activity

    Science.gov (United States)

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  8. Andrei Sakharov Prize Talk: Supporting Repressed Scientists: Continuing Efforts

    Science.gov (United States)

    Birman, Joseph L.

    2010-02-01

    Some years ago, Max Perutz asked ``By What Right Do We Scientists Invoke Human Rights?" My presentation will start with mentioning actions of the international community which relate to this question. Such action as the creation in 1919 of the International Research Council, and continuing on to the present with the UN sanctioned International Council of Scientific Unions [ICSU], and other Committees such as those formed by APS, CCS, NYAS, AAAS which give support to repressed scientists around the world now. My own work has attempted to combine my individual initiatives with work as a member and officer of these groups. Together with like minded colleagues who are deeply affected when colleagues are discharged from their positions, exiled, imprisoned and subject to brutal treatment, often after mock ``trials", we react. On visits in 1968 to conferences in Budapest, and then in 1969 to Moscow, Tallin and Leningrad I became personally and deeply touched by the lives of colleagues who were seriously constrained by living under dictatorships. I could move freely into and out of their countries,speak openly about my work or any other matter. They could not, under penalty of possibly serious punishment. Yet, I felt these people were like my extended family. If my grandparents had not left Eastern Europe for the USA in the late 189Os our situations could have been reversed. A little later in the 197O's, ``refusenik" and ``dissident" scientists in the USSR needed support. Colleagues like Andrei Sakharov, Naum Meiman, Mark Azbel, Yakov Alpert, Yuri Orlov and others were being punished for exercising their rights under the UN sanctioned international protocals on ``Universality of Science and Free Circulation of Scientists". Their own governments [which signed these agreements] ignored the very protections they had supported. On frequent trips to the USSR during the 7Os,and 8Os I also seized the opportunity for ``individual initiative" to help these colleagues. I asked for

  9. 超声法制备苯甲酸钠微胶囊的工艺研究%Research on Processing Technology of Sodium Benzoate Microcapsules by Ultrasound

    Institute of Scientific and Technical Information of China (English)

    章斌; 刘志聪; 侯小桢; 赖宣; 许淼鑫; 王士超

    2014-01-01

    以β-环糊精为壁材,以包埋率为指标,采用单因素试验和Box-Behnken 中心组合设计试验对超声法制备苯甲酸钠微胶囊的工艺进行优化。试验结果表明:超声法制备苯甲酸钠包合物的最佳工艺条件为芯/壁材比1∶7.17,超声包埋时间29.9 min,超声包埋功率180 W,此条件下的实际包埋率为80.5%,与模型预测值之间具有较好的拟合性。%Takeβ-cyclodextrin as wall material and embedding rate of sodium benzoate as main index, the single factor experiment and Box-Behnken response surface methodology for optimization of sodi-um benzoate microcapsules by ultrasound method is explored.The results show that the optimum process conditions for preparation of sodium benzoate clathrate by ultrasound method are as follows:the core/wall material ratio of 1∶7.17,the ultrasonic embedding time of 29.9 min,the ultrasonic embedding power of 180 W,the embedding rate can reach 80.5%,and the regression model is con-sistent with the predicted results.

  10. Transcription analysis of stx1, marA, and eaeA genes in Escherichia coli O157:H7 treated with sodium benzoate.

    Science.gov (United States)

    Critzer, Faith J; Dsouza, Doris H; Golden, David A

    2008-07-01

    Expression of the multiple antibiotic resistance (mar) operon causes increased antimicrobial resistance in bacterial pathogens. The activator of this operon, MarA, can alter expression of >60 genes in Escherichia coli K-12. However, data on the expression of virulence and resistance genes when foodborne pathogens are exposed to antimicrobial agents are lacking. This study was conducted to determine transcription of marA (mar activator), stx1 (Shiga toxin 1), and eaeA (intimin) genes of E. coli O157:H7 EDL933 as affected by sodium benzoate. E. coli O157:H7 was grown in Luria-Bertani broth containing 0 (control) and 1% sodium benzoate at 37 degrees C for 24 h, and total RNA was extracted. Primers were designed for hemX (209 bp; housekeeping gene), marA (261 bp), and eaeA (223 bp) genes; previously reported primers were used for stx1. Tenfold dilutions of RNA were used in a real-time one-step reverse transcriptase PCR to determine transcription levels. All experiments were conducted in triplicate, and product detection was validated by gel electrophoresis. For marA and stx1, real-time one-step reverse transcriptase PCR products were detected at a 1-log-greater dilution in sodium benzoate-treated cells than in control cells, although cell numbers for each were similar (7.28 and 7.57 log CFU/ml, respectively). This indicates a greater (albeit slight) level of their transcription in treated cells than in control cells. No difference in expression of eaeA was observed. HemX is a putative uroporphyrinogen III methylase. The hemX gene was expressed at the same level in control and treated cells, validating hemX as an appropriate housekeeping marker. These data indicate that stx1 and marA genes could play a role in pathogen virulence and survival when treated with sodium benzoate, whereas eaeA expression is not altered. Understanding adaptations of E. coli O157:H7 during antimicrobial exposure is essential to better understand and implement methods to inhibit or control

  11. Practical synthesis of methyl (E)-2-(3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl)-3-oxopropyl)benzoate, a key intermediate of Montelukast

    Institute of Scientific and Technical Information of China (English)

    Liang He; Yang Hui Guo; Ya Ping Wang; Xiang Jing Wang; Ji Zhang; Wen Sheng Xiang

    2012-01-01

    A novel and practical synthetic route is presented for the preparation of methyl-(E)-2-(3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl)-3-oxopropyl)benzoate,the key intermediate of Montelukast,a leukotriene antagonist.The main diarylpropane framework was prepared via a polarity conversation reaction resulting in an acyl anion equivalent followed by a nucleophilic substitution reaction.The overall yield of this approach was 61%.This method is simple for operation and suitable for industrial production.

  12. The reproductive performance of dairy cows with anovulatory anoestrus that were injected with either gonadotrophin-releasing hormone or oestradiol benzoate as part of a re-treatment process after insemination

    Directory of Open Access Journals (Sweden)

    B.V.E. Segwagwe

    2007-05-01

    Full Text Available This experiment compared the reproductive performance of synchronised anoestrous dairy cows that were treated initially with a combination of progesterone and oestradiol benzoate and then with either gonadotrophin-releasing hormone (GnRH or oestradiol benzoate to resynchronise returns to service. It was hypothesised that injecting anoestrous dairy cows with GnRH 12-15 days after insemination and coinciding with the time of insertion of a controlled intravaginal progesterone-releasing (CIDR device would increase conception rates to the preceding 1st insemination compared with oestradiol benzoate treated cows; both GnRH and oestradiol benzoate would resynchronising the returns to service of those cows that did not conceive to the preceding insemination. Groups of cows in 11 herds were presented for a veterinary examination after they had not been seen in oestrus postpartum. Those cows diagnosed with anovulatory anoestrus (n = 1112 by manual rectal palpation and / or ultrasonography were enrolled in the trial. Each enrolled cow was injected with 2mg oestradiol benzoate i.m. on Day -10, (where Day 0 was the 1st day of the planned insemination concurrently with vaginal insertion of a CIDR device. The device inserted was withdrawn on Day -2 and then each cow injected i.m. with 1 mg of oestradiol benzoate on Day -1 unless it was in oestrus. Observation for oestrus preceded each insemination. Every cow that had been inseminated on Days -1,0,1 or 2 was presented for treatment for resynchrony on Day 14 (n=891. They were divided into 2 groups; those with an even number were each injected i.m. with 250 µg of a GnRH agonist (Treatment group n = 477; each of the cows with an odd number injected i.m. with 1mg of oestradiol benzoate (control group, n = 414. Each GnRH or oestradiol benzoate injection preceded reinsertion of a CIDR device previously inserted from Days -10 to -2. It was withdrawn on Day 22, 24 hours before injecting 1mg oestradiol benzoate

  13. De-repression of RaRF-mediated RAR repression by adenovirus E1A in the nucleolus.

    Science.gov (United States)

    Um, Soo-Jong; Youn, Hye Sook; Kim, Eun-Joo

    2014-02-21

    Transcriptional activity of the retinoic acid receptor (RAR) is regulated by diverse binding partners, including classical corepressors and coactivators, in response to its ligand retinoic acid (RA). Recently, we identified a novel corepressor of RAR called the retinoic acid resistance factor (RaRF) (manuscript submitted). Here, we report how adenovirus E1A stimulates RAR activity by associating with RaRF. Based on immunoprecipitation (IP) assays, E1A interacts with RaRF through the conserved region 2 (CR2), which is also responsible for pRb binding. The first coiled-coil domain of RaRF was sufficient for this interaction. An in vitro glutathione-S-transferase (GST) pull-down assay was used to confirm the direct interaction between E1A and RaRF. Further fluorescence microscopy indicated that E1A and RaRF were located in the nucleoplasm and nucleolus, respectively. However, RaRF overexpression promoted nucleolar translocation of E1A from the nucleoplasm. Both the RA-dependent interaction of RAR with RaRF and RAR translocation to the nucleolus were disrupted by E1A. RaRF-mediated RAR repression was impaired by wild-type E1A, but not by the RaRF binding-defective E1A mutant. Taken together, our data suggest that E1A is sequestered to the nucleolus by RaRF through a specific interaction, thereby leaving RAR in the nucleoplasm for transcriptional activation.

  14. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids.

    Science.gov (United States)

    Turner, James M A; Mahadevaiah, Shantha K; Ellis, Peter J I; Mitchell, Michael J; Burgoyne, Paul S

    2006-04-01

    Transcriptional silencing of the sex chromosomes during male meiosis (MSCI) is conserved among organisms with limited sex chromosome synapsis, including mammals. Since the 1990s the prevailing view has been that MSCI in mammals is transient, with sex chromosome reactivation occurring as cells exit meiosis. Recently, we found that any chromosome region unsynapsed during pachytene of male and female mouse meiosis is subject to transcriptional silencing (MSUC), and we hypothesized that MSCI is an inevitable consequence of this more general meiotic silencing mechanism. Here, we provide direct evidence that asynapsis does indeed drive MSCI. We also show that a substantial degree of transcriptional repression of the sex chromosomes is retained postmeiotically, and we provide evidence that this postmeiotic repression is a downstream consequence of MSCI/MSUC. While this postmeiotic repression occurs after the loss of MSUC-related proteins at the end of prophase, other histone modifications associated with transcriptional repression have by then become established.

  15. The contentious fans: the impact of repression, media coverage, grievances and aggressive play on supporters’ violence

    NARCIS (Netherlands)

    Braun, R.; Vliegenthart, R.

    2008-01-01

    This article poses the question of which macro-sociological explanations best predict the level of soccer supporters’ violence. By conceptualizing supporters’ violence as a form of contentious violence, four possible explanations are proposed: repression, media attention, unemployment and aggressive

  16. Repression of insulin gene expression by adenovirus type 5 E1a proteins.

    OpenAIRE

    1987-01-01

    Insulin gene transcription relies on enhancer and promoter elements which are active in pancreatic beta cells. We showed that adenovirus type 5 infection of HIT T-15 cells, a transformed hamster beta cell line, represses insulin gene transcription and mRNA levels. Using expression plasmids transiently introduced into HIT T-15 cells, we showed that adenovirus type 5 E1a transcription regulatory proteins repress insulin enhancer-promoter element activity as assayed with a surrogate xanthine-gua...

  17. Mechanisms of repression in dystopian science fiction: Fahrenheit 451 and Neuromancer

    OpenAIRE

    2015-01-01

    Louis Althusser who is a Marxist thinker argues the totalitarian state systems and how they govern the states by using Ideological and Repressive State Apparatuses. Ray Bradbury’s Fahrenheit 451 and William Gibson’s Neuromancer are two dystopian science fiction novels that discuss the oppression and repression of the state in technologically advanced societies. However, the citizens of the novels live in poor conditions and they have to obey the rules of the state and corporations in order...

  18. Effects of estradiol benzoate on 5'-iodothyronine deiodinase activities in female rat anterior pituitary gland, liver and thyroid gland

    Directory of Open Access Journals (Sweden)

    Lisbôa P.C.

    1997-01-01

    Full Text Available There is little information on the possible effects of estrogen on the activity of 5'-deiodinase (5'-ID, an enzyme responsible for the generation of T3, the biologically active thyroid hormone. In the present study, anterior pituitary sonicates or hepatic and thyroid microsomes from ovariectomized (OVX rats treated or not with estradiol benzoate (EB, 0.7 or 14 µg/100 g body weight, sc, for 10 days were assayed for type I 5'-ID (5'-ID-I and type II 5'-ID (5'-ID-II, only in pituitary activities. The 5'-ID activity was evaluated by the release of 125I from deiodinated 125I rT3, using specific assay conditions for type I or type II. Serum TSH and free T3 and free T4 were measured by radioimmunoassay. OVX alone induced a reduction in pituitary 5'-ID-I (control = 723.7 ± 67.9 vs OVX = 413.9 ± 26.9; P<0.05, while the EB-treated OVX group showed activity similar to that of the normal group. Thyroid 5'-ID-I showed the same pattern of changes, but these changes were not statistically significant. Pituitary and hepatic 5'-ID-II did not show major alterations. The treatment with the higher EB dose (14 µg, contrary to the results obtained with the lower dose, had no effect on the reduced pituitary 5'-ID-I of OVX rats. However, it induced an important increment of 5'-ID-I in the thyroid gland (0.8 times higher than that of the normal group: control = 131.9 ± 23.7 vs ovx + EB 14 µg = 248.0 ± 31.2; P<0.05, which is associated with increased serum TSH (0.6-fold vs OVX, P<0.05 but normal serum free T3 and free T4. The data suggest that estrogen is a physiological stimulator of anterior pituitary 5'-ID-I and a potent stimulator of the thyroid enzyme when employed at high doses

  19. Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4.

    Science.gov (United States)

    Kim, Eun-Hye; Kim, In-Hye; Ha, Jung-Ah; Choi, Kwang-Tae; Pyo, Suhkneung; Rhee, Dong-Kwon

    2013-07-01

    Ginseng is known to have antistress effects. Previously, red ginseng (RG) was shown to repress stress-induced peptidyl arginine deiminase type IV (PADI4) via estrogen receptor β (ERβ) in the brain, thus inhibiting brain cell apoptosis. Moreover, tumor necrosis factor (TNF)-α plays a critical role in immobilization (IMO) stress. However, the signaling pathway of RG-mediated repressesion of inflammation is not completely understood. In this study, we determined how RG modulated gene expression in stressed brain cells. Since secretion of TNF-α is modulated via TNF-α converting enzyme (TACE) and nuclear factor (NF)-κB, we examined the inflammatory pathway in stressed brain cells. Immunohistochemistry revealed that TACE was induced by IMO stress, but RG repressed TACE induction. Moreover, PADI4 siRNA repressed TACE expression compared to the mock transfected control suggesting that PADI4 was required for TACE expression. A reporter assay also revealed that H2O2 oxidative stress induced NF-κB in neuroblastoma SK-N-SH cells, however, RG pretreatment repressed NF-κB induction. These findings were supported by significant induction of nitric oxide and reactive oxygen species (ROS) by oxidative stress, which could be repressed by RG administration. Taken together, RG appeared to repress stress-induced PADI4 via TACE and NF-κB in brain cells thus preventing production of ROS and subsequently protecting brain cells from apoptosis.

  20. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.

    Directory of Open Access Journals (Sweden)

    Ingrid E B Lawhorn

    Full Text Available The CRISPR (clustered regularly interspaced short palindromic repeats platform has been developed as a general method to direct proteins of interest to gene targets. While the native CRISPR system delivers a nuclease that cleaves and potentially mutates target genes, researchers have recently employed catalytically inactive CRISPR-associated 9 nuclease (dCas9 in order to target and repress genes without DNA cleavage or mutagenesis. With the intent of improving repression efficiency in mammalian cells, researchers have also fused dCas9 with a KRAB repressor domain. Here, we evaluated different genomic sgRNA targeting sites for repression of TP53. The sites spanned a 200-kb distance, which included the promoter, transcript sequence, and regions flanking the endogenous human TP53 gene. We showed that repression up to 86% can be achieved with dCas9 alone (i.e., without use of the KRAB domain by targeting the complex to sites near the TP53 transcriptional start site. This work demonstrates that efficient transcriptional repression of endogenous human genes can be achieved by the targeted delivery of dCas9. Yet, the efficiency of repression strongly depends on the choice of the sgRNA target site.

  1. Estudio de las Propiedades Anticorrosivas del Benzoato de Hierro (III en Pinturas Base Solvente Study of Anticorrosive Properties of the Iron (III Benzoate in Solvent Based Paints

    Directory of Open Access Journals (Sweden)

    Guillermo Blustein

    2006-01-01

    Full Text Available La acción inhibidora del benzoato de hierro en electrodos de acero SAE 1010 en contacto con una suspensión acuosa fue estudiada mediante ensayos electroquímicos. Paralelamente, la eficiencia anticorrosiva de este producto incorporado a cubiertas orgánicas base solvente fue evaluada mediante ensayos de envejecimiento acelerado (cámara de niebla salina y de humedad. La evolución del comportamiento protector de la cubierta aplicada sobre paneles de acero pintados e inmersos en una solución 0.5M de NaClO4 fue periódicamente monitoreada por espectroscopía de impedancia electroquímica. Los resultados obtenidos indican que las pinturas formuladas con benzoato férrico presentan una capacidad anticorrosiva comparable a las formuladas con fosfato de cinc.This study investigated the inhibitory action of iron benzoate on SAE 1010 steel electrodes in aqueous suspensions using electrochemical assays. The anticorrosive efficiency of this product added to organic solvent-based coatings was also evaluated by means of accelerated weathering tests (salt spray cabinet and humidity chamber. The evolution of the protective behavior of the coating applied on steel panels and immersed in 0.5M NaClO4 solution was periodically checked by electrochemical impedance spectroscopy. The results obtained showed that paints formulated with ferric benzoate provide anticorrosive protection similar to those formulated with zinc phosphate.

  2. Nociceptive behaviors were induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus in conscious adult rats and reduced by morphine and rizatriptan benzoate.

    Science.gov (United States)

    Dong, Zhao; Jiang, Lei; Wang, Xiaohui; Wang, Xiaolin; Yu, Shengyuan

    2011-01-12

    The trigeminovascular nociception induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus in anesthetized animals has been widely used as a model for investigation of the pathophysiology of vascular headache such as migraine. However, little is known whether pain behaviors can be induced using this model in conscious animals. Thus, to establish a new model of trigeminovascular nociception in conscious animals and to examine the effects of morphine and rizatriptan benzoate on nociceptive behaviors in this new model, we electrically stimulated the dura mater surrounding the superior sagittal sinus. We found that grooming and head-flick activities were altered partially in a frequency-dependent way and that frequencies ranging from 10 to 20 Hz more easily provoked these behaviors. Moreover, we also demonstrated that these behaviors were reduced by morphine and rizatriptan benzoate. Thus, this new model will provide a useful and appropriate tool to directly assess changes in the intensity of pain for further investigation of pathophysiological mechanisms of migraine in conscious animals.

  3. Fixation of chiral smectic liquid crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate using UV curing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Afrizal,, E-mail: rizalunj04@yahoo.com; Nurdelima,; Umeir [Faculty of Mathemathics and Natural Science, University of State Jakarta, Jakarta (Indonesia); Hikam, Muhammad; Soegiyono, Bambang [Department of Materials Science, University of Indonesia, Depok (Indonesia); Riswoko, Asep [Center for Material Technology, BPPT, Jl. MH.Thamrin 8 Jakarta (Indonesia)

    2014-03-24

    Chiral Smectic Liquid Crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate has been synthesized using method of steglich esterification at room temperature. The mesomorphic behavior of chiral smectic at 55°C that showed schlieren texture in POM analysis. Fixation of structure chiral smectic liquid crystal by means of photopolymerization of monomer (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate under UV irradiation which called UV curing techniques. The curing process using UV 3 lamps 100 volt at 60°C for an hour. The product of photopolymerization could be seen by analysis of FTIR spectra both monomer and polymer. FTIR spectra of monomer, two peaks for ester carbonyl and C-C double bond groups appeared at 1729.09 cm-1and 3123.46 cm{sup −1}. After UV curing process, peak for the carbonyl group at 1729.09 cm{sup −1} decreased and a new peak at 1160.21 cm{sup −1} appeared due to the carbonyl group attached to a C-C bond group and then peak at 3123.46 cm{sup −1} for C-C double bond group was disappeared.

  4. Microbial evolution during storage of seasoned olives prepared with organic acids with potassium sorbate, sodium benzoate, and ozone used as preservatives.

    Science.gov (United States)

    Arroyo López, F N; Durán Quintana, M C; Garrido Fernández, A

    2006-06-01

    The effect of potassium sorbate, sodium benzoate, and ozone in combination with citric, lactic, and acetic acids on the microbial population of seasoned table olives of the olive 'Aloreña' cultivar was studied in both fresh (FF) and stored fruits (SF). The inactivation/growth curves were modeled and the biological parameters estimated, with yeast used as the target microorganism. Regardless of the acid added, potassium sorbate showed a general inactivation effect on yeasts in the products prepared from both FF and SE Sodium benzoate had a rapid inactivation effect with FF, but with SF, it was effective only in the presence of acetic acid. A strain of Issatchenkia occidentalis was found that was resistant to the combination of this preservative with citric or lactic acids. In FF, ozone showed an initial marked inhibition against yeasts, but later, yeasts were again able to grow. In SF, ozone was a strong inactivating agent when it replaced any of the traditional preservatives. Lactic acid bacteria were always absent in products prepared from FF, and apparently were not affected by the different preservative agents in those prepared from SF. The behavior of yeasts and lactic acid bacteria populations in commercial products were similar to those found in experimental treatments.

  5. Inhibitor effects of sodium benzoate on corrosion resistance of Al6061-B4C composites in NaCl and H3BO3 solutions

    Science.gov (United States)

    Rafi-ud-din; Shafqat, Q. A.; Shahzad, M.; Ahmad, Ejaz; Asghar, Z.; Rafiq, Nouman; Qureshi, A. H.; Syed, Waqar adil; asim Pasha, Riffat

    2016-12-01

    Sodium benzoate (SB) is used for the first time to inhibit the corrosion of Al6061-B4C composites in H3BO3 and NaCl solutions. Al6061100-x -x wt% B4C (x = 0, 5, and 10) composites are manufactured by a powder metallurgy route. The corrosion inhibition efficiency of SB is investigated as a function of the volume fractions of B4C particles by using potentiodynamic polarization and electrochemical impedance techniques. Without the use of an inhibitor, an increase of the B4C particles in the composite decreases the corrosion resistance of Al6061-B4C composites. It is found that SB is an efficient corrosion inhibitor for Al6061-B4C composites in both investigated solutions. The corrosion inhibition efficiency of SB increases with an increase in B4C content. Since SB is an adsorption type inhibitor, it is envisaged that an extremely thin layer of molecules adsorbs onto the surface and suppresses the oxidation and reduction. It is found that the inhibitor effect of SB is more pronounced in a H3BO3 environment than in NaCl solution. Further, the mechanism of corrosion inhibition by SB is illustrated by using optical and scanning electron microscopy of corroded samples. It is found that the adsorption of benzoate ions on the Al surface and its bonding with Al3+ ions forms a hydrophobic layer on top of the exposed Al surface, which enhances the protection against dissolved boride ions.

  6. Basic Pentacysteine Proteins Repress Abscisic Acid Insensitive4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development.

    Science.gov (United States)

    Mu, Ying; Zou, Meijuan; Sun, Xuwu; He, Baoye; Xu, Xiumei; Liu, Yini; Zhang, Lixin; Chi, Wei

    2017-01-30

    Plant transcription factors generally act in complex regulatory networks that function at multiple levels to govern plant developmental programs. Dissection of the interconnections among different classes of transcription factors can elucidate these regulatory networks and thus improve our understanding of plant development. Here, we investigated the molecular and functional relationships of the transcription factors ABSCISIC ACID INSENSITIVE 4 (ABI4) and members of the BASIC PENTACYSTEINE (BPC) family in lateral root (LR) development of Arabidopsis thaliana Genetic analysis showed that BPCs promote LR development by repressing ABI4 expression. Molecular analysis showed that BPCs bind to the ABI4 promoter and repress ABI4 transcription in roots. BPCs directly recruit the Polycomb Repressive Complex 2 (PRC2) to the ABI4 locus and epigenetically repress ABI4 expression by catalyzing the trimethylation of histone H3 at lysine 27. In addition, BPCs and ABI4 coordinate their activities to fine-tune the levels of PIN-FORMED1, a component of the auxin signaling pathway, and thus modulate LR formation. These results establish a functional relationship between two universal and multiple-role transcription factors and provide insight into the mechanisms of the transcriptional regulatory networks that affect Arabidopsis organogenesis.

  7. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available BACKGROUND: Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha. METHODOLOGY/PRINCIPAL FINDINGS: To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function. CONCLUSION/SIGNIFICANCE: Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  8. Natural memory beyond the storage model: Repression, trauma, and the construction of a personal past

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2010-11-01

    Full Text Available Naturally occurring memory processes show features which are difficult to investigate by conventional cognitive neuroscience paradigms. Distortions of memory for problematic contents are described both by psychoanalysis (internal conflicts and research on post-traumatic stress disorder (external traumata. Typically, declarative memory for these contents is impaired – possibly due to repression in the case of internal conflicts or due to dissociation in the case of external traumata – but they continue to exert an unconscious pathological influence: neurotic symptoms or psychosomatic disorders after repression or flashbacks and intrusions in post-traumatic stress disorder after dissociation. Several experimental paradigms aim at investigating repression in healthy control subjects. We argue that these paradigms do not adequately operationalize the clinical process of repression, because they rely on an intentional inhibition of random stimuli (suppression. Furthermore, these paradigms ignore that memory distortions due to repression or dissociation are most accurately characterized by a lack of self-referential processing, resulting in an impaired integration of these contents into the self. This aspect of repression and dissociation cannot be captured by the concept of memory as a storage device which is usually employed in the cognitive neurosciences. It can only be assessed within the framework of a constructivist memory concept, according to which successful memory involves a reconstruction of experiences such that they fit into a representation of the self. We suggest several experimental paradigms that allow for the investigation of the neural correlates of repressed memories and trauma-induced memory distortions based on a constructivist memory concept.

  9. Design, synthesis and in vitro antibacterial activities of methyl-4-((substituted phenyl) [6H-indolo (2,3-b)quinoxalin-6-yl]methyl-amino)benzoate derivatives

    Institute of Scientific and Technical Information of China (English)

    Yellajyosula Lakshmi Narasimha Murthy; Nagalakshmi Karthikeyan; Govindh Boddeti; Bhagavathula S. Diwakar; E. Rajendra Singh

    2011-01-01

    A series of new methyl-4-((substituted phenyl) [6H-indolo (2,3-b)quinoxalin-6yllmethylamino)benzoate derivatives have been synthesized and assayed for their antibacterial activity on 9 different bacterial strains. Among the screened compounds 2e-2g exhibited potent inhibitory activity compared to standard drug employed, worth further investigation.

  10. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation.

    Science.gov (United States)

    Hao, Yu-Jun; Song, Qing-Xin; Chen, Hao-Wei; Zou, Hong-Feng; Wei, Wei; Kang, Xu-Sheng; Ma, Biao; Zhang, Wan-Ke; Zhang, Jin-Song; Chen, Shou-Yi

    2010-10-01

    Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.

  11. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    Science.gov (United States)

    Zhang, Chen U; Blauwkamp, Timothy A; Burby, Peter E; Cadigan, Ken M

    2014-08-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA.

  12. Plant stem cell maintenance involves direct transcriptional repression of differentiation program.

    Science.gov (United States)

    Yadav, Ram Kishor; Perales, Mariano; Gruel, Jérémy; Ohno, Carolyn; Heisler, Marcus; Girke, Thomas; Jönsson, Henrik; Reddy, G Venugopala

    2013-01-01

    In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.

  13. The Fos expression in rat brain following electrical stimulation of dura mater surrounding the superior sagittal sinus changed with the pre-treatment of rizatriptan benzoate.

    Science.gov (United States)

    Wang, Xiaolin; Yu, Shengyuan; Dong, Zhao; Jiang, Lei

    2011-01-07

    Fos expression in the brain was systematically investigated by means of immunohistochemical staining after electrical stimulation of the dura mater surrounding the superior sagittal sinus in conscious rats. Fos-like immunoreactive neurons are distributed mainly in the upper cervical spinal cord, spinal trigeminal nucleus caudal part, raphe magnus nucleus, periaqueductal gray, ventromedial hypothalamic nucleus, and mediodorsal thalamus nucleus. With the pre-treatment of intraperitoneal injection of rizatriptan benzoate, the number of Fos-like immunoreactive neurons decreased in the spinal trigeminal nucleus caudal part and raphe magnus nucleus, increased in the periaqueductal gray, and remained unchanged in the ventromedial hypothalamic nucleus and mediodorsal thalamus nucleus. These results provide morphological evidence that the nuclei described above are involved in the development and maintenance of the trigeminovascular headache.

  14. Effect of sodium benzoate on DNA breakage, micronucleus formation and mitotic index in peripheral blood of pregnant rats and their newborns

    Directory of Open Access Journals (Sweden)

    Cetin Saatci

    2016-11-01

    Full Text Available Sodium benzoate (SB is one of the most widely used additives in food products in the world. The aim of this study was to assess the effect of three different concentrations of SB on the DNA breakage in liver cells and on the micronuclei formation and the mitotic index in lymphocytes of pregnant rats and their fetuses, as well as to evaluate the effects of SB on the fetus development. The results showed that general genomic injuries were present in almost all the liver cell samples obtained from the SB group compared with the control (non-treated group. This indicates that SB usage may cause DNA damage and increase micronuclei formation. We recommend that pregnant women should avoid consuming foodstuffs containing SB as an additive.

  15. Excess parameters for binary mixtures of ethyl benzoate with 1-propanol, 1-butanol and 1-pentanol at T=303, 308, 313, 318, and 323 K

    Energy Technology Data Exchange (ETDEWEB)

    Sreehari Sastry, S., E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Babu, Shaik, E-mail: babu.computers@gmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Vishwam, T., E-mail: vishwam@gitam.edu [Department of Engineering Physics, Gitam University, Hyderabad Campus, Andhra Pradesh 502 239 (India); Parvateesam, K., E-mail: kps27031966@gmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Sie Tiong, Ha., E-mail: hast@utar.edu.my [Faculty of Science, Department of Chemical Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak (Malaysia)

    2013-07-01

    Various thermo–acoustic parameters, such as excess isentropic compressibility (K{sub s}{sup E}), excess molar volume (V{sup E}), excess free length (L{sub f}{sup E}), excess Gibb's free energy (ΔG{sup *E}), and excess Enthalpy (H{sup E}), have been calculated from the experimentally determined data of density, viscosity and speed of sound for the binary mixtures of ethyl benzoate+1-propanol, or +1-butanol, or +1-pentanol over the entire range of composition at different temperatures (303, 308, 313, 318 and 323 K). The excess functions have been fitted to the Redlich–Kister type polynomial equation. The deviations for excess thermo–acoustic parameters have been explained on the basis of the intermolecular interactions present in these binary mixtures.

  16. Identification of the novel synthetic cannabimimetic 8-quinolinyl 4-methyl-3-(1-piperidinylsulfonyl)benzoate (QMPSB) and other designer drugs in herbal incense.

    Science.gov (United States)

    Blakey, Karen; Boyd, Sue; Atkinson, Sarah; Wolf, Jenna; Slottje, Pim M; Goodchild, Katrina; McGowan, Jenny

    2016-03-01

    The identification and structural elucidation of the novel synthetic cannabimimetic 8-quinolinyl 4-methyl-3-(1-piperidinylsulfonyl)benzoate (QMPSB) by GC-MS, LC-MS and NMR is reported. QMPSB was identified in Queensland, Australia on plant material packaged as herbal incense. The identification of QMPSB was initially hampered due to trans-esterification occurring in the extraction solvent. An investigation of the trans-esterification of QMPSB in methanol and ethanol was conducted and analytical data for the respective methyl and ethyl esters are reported. Analytical data is presented for two other compounds detected on seized plant material packaged as herbal incense: the synthetic cannabimimetic 1-[(N-methylpiperidin-2-yl)methyl]-3-(4-methyl-1-naphthoyl)indole (MAM-1220) and the JWH-081 analogue 1-(cyclohexylmethyl)-3-(4-methoxy-1-naphthoyl)indole (CHM-081).

  17. Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B.

    1996-01-01

    The MIG1 gene was disrupted in a haploid laboratory strain (B224) and in an industrial polyploid strain (DGI 342) of Saccharomyces cerevisiae. The alleviation of glucose repression of the expression of MAL genes and alleviation of glucose control of maltose metabolism were investigated in batch...... cultivations on glucose-maltose mixtures. In the MIG1-disrupted haploid strain, glucose repression was partly alleviated; i.e., maltose metabolism was initiated at higher glucose concentrations than in the corresponding wild-type strain. In contrast, the polyploid Delta mig1 strain exhibited an even more...... of glucose repression of the SUC genes. The disruption of MIG1 was shown to bring about pleiotropic effects, manifested in changes in the pattern of secreted metabolites and in the specific growth rate....

  18. A transient reversal of miRNA-mediated repression controls macrophage activation.

    Science.gov (United States)

    Mazumder, Anup; Bose, Mainak; Chakraborty, Abhijit; Chakrabarti, Saikat; Bhattacharyya, Suvendra N

    2013-11-01

    In mammalian macrophages, the expression of a number of cytokines is regulated by miRNAs. Upon macrophage activation, proinflammatory cytokine mRNAs are translated, although the expression of miRNAs targeting these mRNAs remains largely unaltered. We show that there is a transient reversal of miRNA-mediated repression during the early phase of the inflammatory response in macrophages, which leads to the protection of cytokine mRNAs from miRNA-mediated repression. This derepression occurs through Ago2 phosphorylation, which results in its impaired binding to miRNAs and to the corresponding target mRNAs. Macrophages expressing a mutant, non-phosphorylatable AGO2--which remains bound to miRNAs during macrophage activation--have a weakened inflammatory response and fail to prevent parasite invasion. These findings highlight the relevance of the transient relief of miRNA repression for macrophage function.

  19. An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    Science.gov (United States)

    Du, Dan; Qi, Lei S

    2016-01-04

    CRISPR interference/activation (CRISPRi/a) technology provides a simple and efficient approach for targeted repression or activation of gene expression in the mammalian genome. It is highly flexible and programmable, using an RNA-guided nuclease-deficient Cas9 (dCas9) protein fused with transcriptional regulators for targeting specific genes to effect their regulation. Multiple studies have shown how this method is an effective way to achieve efficient and specific transcriptional repression or activation of single or multiple genes. Sustained transcriptional modulation can be obtained by stable expression of CRISPR components, which enables directed reprogramming of cell fate. Here, we introduce the basics of CRISPRi/a technology for genome repression or activation.

  20. LC-MS/MS Analysis and Pharmacokinetics of Sodium (±-5-Bromo-2-(α-hydroxypentyl Benzoate (BZP, an Innovative Potent Anti-Ischemic Stroke Agent in Rats

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-04-01

    Full Text Available A rapid, sensitive and selective liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS method was developed and validated for the simultaneous determination of sodium (±-5-Bromo-2-(α-hydroxypentyl benzoate (BZP and its active metabolite 3-butyl-6-bromo-1(3H-isobenzofuranone (Br-NBP in rat plasma using potassium 2-(1-hydroxypentyl-benzoate (PHPB and l-3-n-butylphthalide (NBP as internal standards (IS. Chromatographic separation was achieved on a Hypersil GOLD C18 column using a gradient elution of ammonium acetate and methanol at a flow rate of 0.2 mL/min. Good linearity was achieved within the wide concentration range of 5–10,000 ng/mL. The intra-day and inter-day precision was less than 8.71% and the accuracy was within −8.53% and 6.38% in quality control and the lower limit of quantitation samples. BZP and Br-NBP were stable during the analysis and the storage period. The method was successfully applied to pharmacokinetic studies of BZP in Sprague-Dawley rats for the first time. After a single intravenous administration of BZP at the dose of 0.75 mg/kg, the plasma concentration of BZP and Br-NBP declined rapidly and the AUC0-t of BZP was significantly greater in female rats compared to male rats (p < 0.05. The data presented in this study serve as a firm basis for further investigation of BZP in both preclinical and clinical phases.

  1. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism.

    Directory of Open Access Journals (Sweden)

    Erik Södersten

    2014-09-01

    Full Text Available Polycomb group (PcG proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq in combination with expression analysis by RNA-sequencing (RNA-seq showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.

  2. The Dialectic of Repression. Michel Foucault and the Birth of Penal Institutions

    Directory of Open Access Journals (Sweden)

    Alessandro Pandolfi

    2016-12-01

    Full Text Available The essay aims to highlight the role of the repression in the course taught by Michel Foucault at the Collège de France Théories et institutions pénales of 1971-1972 and in the texts in which, during the same years, Foucault elaborates the genealogy of the modern penal system. During the 1971-72 course Foucault represents repression as a political device that beside the use of violence, simultaneously brings into play new tactics, new relationships, new balance of power, and above all, anticipates the institutions and the fundamental practices criminal law of modernity.

  3. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Chandler, Ronald L. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Fritz, David T. [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Mortlock, Douglas P. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Rogers, Melissa B., E-mail: rogersmb@umdnj.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States)

    2010-02-05

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  4. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    DEFF Research Database (Denmark)

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam

    2016-01-01

    initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP).......Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus...

  5. Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding.

    Science.gov (United States)

    Balan, Nicolae; Osborn, Kay; Sinclair, Alison J

    2016-03-01

    Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part, this is mediated through downregulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. This repression is achieved through a reduction in CIITA promoter activity, initiated by the EBV transcription and replication factor, Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence-specific elements in promoters, enhancers and the replication origin (ZREs), and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here, we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter.

  6. Life in the cold: a proteomic study of cold-repressed proteins in the antarctic bacterium pseudoalteromonas haloplanktis TAC125.

    Science.gov (United States)

    Piette, Florence; D'Amico, Salvino; Mazzucchelli, Gabriel; Danchin, Antoine; Leprince, Pierre; Feller, Georges

    2011-06-01

    The proteomes expressed at 4°C and 18°C by the psychrophilic Antarctic bacterium Pseudoalteromonas haloplanktis were compared using two-dimensional differential in-gel electrophoresis with special reference to proteins repressed by low temperatures. Remarkably, the major cold-repressed proteins, almost undetectable at 4°C, were heat shock proteins involved in folding assistance.

  7. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression.

    Science.gov (United States)

    Yang, Yong-Jin; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2010-01-01

    Parafibromin, a component of the RNA polymerase II-associated PAF1 complex, is a tumor suppressor linked to hyperparathyroidism-jaw tumor syndrome and sporadic parathyroid carcinoma. Parafibromin induces cell cycle arrest by repressing cyclin D1 via an unknown mechanism. Here, we show that parafibromin interacts with the histone methyltransferase, SUV39H1, and functions as a transcriptional repressor. The central region (128-227 amino acids) of parafibromin is important for both the interaction with SUV39H1 and transcriptional repression. Parafibromin associated with the promoter and coding regions of cyclin D1 and was required for the recruitment of SUV39H1 and the induction of H3 K9 methylation but not H3 K4 methylation. RNA interference analysis showed that SUV39H1 was critical for cyclin D1 repression. These data suggest that parafibromin plays an unexpected role as a repressor in addition to its widely known activity associated with transcriptional activation. Parafibromin as a part of the PAF1 complex might downregulate cyclin D1 expression by integrating repressive H3 K9 methylation during transcription.

  8. The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer.

    Science.gov (United States)

    Yu, J; Cao, Q; Yu, J; Wu, L; Dallol, A; Li, J; Chen, G; Grasso, C; Cao, X; Lonigro, R J; Varambally, S; Mehra, R; Palanisamy, N; Wu, J Y; Latif, F; Chinnaiyan, A M

    2010-09-30

    The neuronal repellent SLIT2 is repressed in a number of cancer types primarily through promoter hypermethylation. SLIT2, however, has not been studied in prostate cancer. Through genome-wide location analysis we identified SLIT2 as a target of polycomb group (PcG) protein EZH2. The EZH2-containing polycomb repressive complexes bound to the SLIT2 promoter inhibiting its expression. SLIT2 was downregulated in a majority of metastatic prostate tumors, showing a negative correlation with EZH2. This repressed expression could be restored by methylation inhibitors or EZH2-suppressing compounds. In addition, a low level of SLIT2 expression was associated with aggressive prostate, breast and lung cancers. Functional assays showed that SLIT2 inhibited prostate cancer cell proliferation and invasion. Thus, this study showed for the first time the epigenetic silencing of SLIT2 in prostate tumors, and supported SLIT2 as a potential biomarker for aggressive solid tumors. Importantly, PcG-mediated repression may serve as a precursor for the silencing of SLIT2 by DNA methylation in cancer.

  9. Functional conservation of a glucose-repressible amylase gene promoter from Drosophila virilis in Drosophila melanogaster.

    Science.gov (United States)

    Magoulas, C; Loverre-Chyurlia, A; Abukashawa, S; Bally-Cuif, L; Hickey, D A

    1993-03-01

    Previous studies have demonstrated that the expression of the alpha-amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the alpha-amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.

  10. Repressive Adaptive Style and Self-Reported Psychological Functioning in Adolescent Cancer Survivors

    Science.gov (United States)

    Erickson, Sarah J.; Gerstle, Melissa; Montague, Erica Q.

    2008-01-01

    Low levels of posttraumatic stress disorder (PTSD), posttraumatic stress symptoms (PTSS), and psychosocial distress have been reported in pediatric cancer survivors. One explanation is the relatively high prevalence of the repressive adaptive style (low distress, high restraint) in this population. We investigated the relationship between this…

  11. Sucrose-induced translational repression of plant bZIP-type transcription factors

    NARCIS (Netherlands)

    Wiese, A.; Elzinga, N.; Wobbes, B.; Smeekens, S.

    2005-01-01

    Sugars as signalling molecules exert control on the transcription of many plant genes. Sugar signals also alter mRNA and protein stability. Increased sucrose concentrations specifically repress translation of the S-class basic region leucine zipper (bZIP) type transcription factor AtbZIP11/ATB2. Thi

  12. Epigenetic repression of male gametophyte-specific genes in the Arabidopsis sporophyte

    DEFF Research Database (Denmark)

    Hoffmann, Robert D; Palmgren, Michael Broberg

    2013-01-01

    -regulated in the sporophyte has yet to be established. In this study, we have performed a bioinformatics analysis of publicly available genome-wide epigenetics data of several sporophytic tissues. By combining this analysis with DNase I footprinting data, we assessed means by which the repression of pollen-specific genes...

  13. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.

    Science.gov (United States)

    Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R

    2006-11-01

    The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.

  14. Personality and Psychopathology in African Unaccompanied Refugee Minors: Repression, Resilience and Vulnerability

    Science.gov (United States)

    Huemer, Julia; Volkl-Kernstock, Sabine; Karnik, Niranjan; Denny, Katherine G.; Granditsch, Elisabeth; Mitterer, Michaela; Humphreys, Keith; Plattner, Belinda; Friedrich, Max; Shaw, Richard J.; Steiner, Hans

    2013-01-01

    Examining personality and psychopathological symptoms among unaccompanied refugee minors (URMs), we measured intra-individual dimensions (repression and correlates thereof) usually associated with resilience. Forty-one URMs completed the Weinberger Adjustment Inventory (WAI), assessing personality, and the Youth Self-Report (YSR), describing…

  15. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  16. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    Science.gov (United States)

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  17. Financial Repression as a Policy Choice: The Case of Ukraine, 1992—2000

    Directory of Open Access Journals (Sweden)

    Robert S. Kravchuk

    2004-10-01

    Full Text Available By their nature, instruments of financial repression distort interest rates, foreign exchange rates, patterns of investment, and the economic incentives of both borrowers and lenders. In order to deal with the economic pathologies introduced by the government’s own credit and financial policies, governments inevitably find that they must intervene further, to ration credit and impose controls, generally on prices, wages, interest rates, foreign exchange rates and other transactions. Not only did Ukraine exhibit all of the symptoms of financial repression in the 1990s, but the basic policy instruments of financial repression also became too familiar in Ukraine. In fact, to one extent or another, in the 1990s Ukraine employed several of these measures (often in combination as means to suppress the effects of excessive amounts of state consumption, the resultant inflation, and its own credit policies. In the long run, economic growth will suffer, however, because repression reduces the capacity of the financial system to respond to the needs of firms and households in the real economy.

  18. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  19. Sleep paralysis in adults reporting repressed, recovered, or continuous memories of childhood sexual abuse.

    Science.gov (United States)

    McNally, Richard J; Clancy, Susan A

    2005-01-01

    Sleep paralysis typically occurs as individuals awaken from rapid eye movement sleep before motor paralysis wanes. Many episodes are accompanied by tactile and visual hallucinations, often of threatening intruders in the bedroom. Pendergrast [Victims of Memory: Incest Accusations and Shattered Lives, HarperCollins, London, 1996] proposed that individuals who report repressed or recovered memories of childhood sexual abuse (CSA) may misinterpret episodes of sleep paralysis as reemerging fragments of dissociated ("repressed") memories of CSA. To investigate this issue, we administered a sleep paralysis questionnaire to people reporting either repressed (n = 18), recovered (n = 14), or continuous (n = 36) memories of CSA, or to a control group reporting no history of CSA (n = 16). The prevalence of sleep paralysis was: repressed memory group (44%), recovered memory group (43%), continuous memory group (47%), and control group (13%). Among the six individuals in the recovered memory group who had experienced sleep paralysis, one interpreted it as related to sexual abuse (i.e., a rate of 17%). All other participants who had reported sleep paralysis embraced other interpretations (e.g., saw a ghost). Dissociation and depressive symptoms were more common among those who had experienced sleep paralysis than among those who denied having experienced it.

  20. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Yoshimitsu, Makoto; Hachiman, Miho [Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ikeda, Masanori [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  1. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor

    DEFF Research Database (Denmark)

    Herranz, Nicolás; Pasini, Diego; Díaz, Víctor M

    2008-01-01

    The transcriptional factor Snail1 is a repressor of E-cadherin gene (CDH1) expression essential for triggering epithelial-mesenchymal transition (EMT). Snail1 represses CDH1 directly binding its promoter and inducing the synthesis of Zeb1 repressor. In this article we show that repression of CDH1...... by Snail1, but not by Zeb1, is dependent on the activity of the Polycomb repressive complex 2 (PRC2). ES cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumour cells, interference of PRC2 activity prevents the ability of Snail1 to down......-regulate CDH1 and partially de-represses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to CDH1 promoter and the tri-methylation of lysine 27 in the histone 3. Moreover, Snail1 interacts with Suz12 and Ezh2 as shown by coimmunoprecipitation experiments...

  2. Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide

    DEFF Research Database (Denmark)

    Riising, Eva Madi; Vacher-Comet, Itys; Leblanc, Benjamin Olivier;

    2014-01-01

    Polycomb group (PcG) proteins are required for normal differentiation and development and are frequently deregulated in cancer. PcG proteins are involved in gene silencing; however, their role in initiation and maintenance of transcriptional repression is not well defined. Here, we show that knoc...

  3. Decitabine represses osteoclastogenesis through inhibition of RANK and NF-κB.

    Science.gov (United States)

    Guan, Hanfeng; Mi, Baoguo; Li, Yong; Wu, Wei; Tan, Peng; Fang, Zhong; Li, Jing; Zhang, Yong; Li, Feng

    2015-05-01

    DNA methylation is essential for maintenance of stable repression of gene transcription during differentiation and tumorigenesis. Demethylating reagents including decitabine could release the repression, leading to perturbed transcription program. Recently others and we showed that, in B cell lymphomas, decitabine repressed B cell specific gene transcription and activated NF-κB signaling, causing decreased expression of translocated oncogenes including MYC and attenuated tumor cell proliferation. During osteoclastogenesis, changes in DNA methylation occurred in numerous genes, implicating important roles for DNA methylation in osteoclastogenesis. In the present study, we found that decitabine inhibited osteoclastogenesis. The inhibitory effect could be at least partially attributed to reduced expression of multiple osteoclast specific genes including RANK by decitabine. Moreover, decitabine inhibited activity of NF-κB, AP-1 and extracellular signal-regulated kinase (ERK), but not PI3K/Akt pathway. In vivo, using ovariectomized mouse as a model, we observed that decitabine reduced the osteoclast activity and bone loss. In conclusion, our findings demonstrated that decitabine was an inhibitor of osteoclastogenesis by repression of osteoclast specific transcription program including the RANK, NF-κB and AP-1 pathways. DNA methylation might be indispensable for osteoclastogenesis. The use of decitabine could represent a novel strategy in treatment of diseases associated with increased osteoclast activity.

  4. Yeast Interacting Proteins Database: YNL189W, YPL111W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ession responds to both induction by arginine and nitrogen catabolite repression; disruption enhances freeze... catabolite repression; disruption enhances freeze tolerance Rows with this prey as prey Rows with this prey...ginase, responsible for arginine degradation, expression responds to both induction by arginine and nitrogen

  5. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  6. Transcriptional repression in normal human keratinocytes by wild-type and mutant p53.

    Science.gov (United States)

    Alvarez-Salas, L M; Velazquez, A; Lopez-Bayghen, E; Woodworth, C D; Garrido, E; Gariglio, P; DiPaolo, J A

    1995-05-01

    Wild-type p53 is a nuclear phosphoprotein that inhibits cell proliferation and represses transcriptionally most TATA box-containing promoters in transformed or tumor-derived cell lines. This study demonstrates that p53 alters transcription of the long control region (LCR) of human papillomavirus type 18 (HPV-18). Wild-type and mutant p53 143Val to Ala repressed the HPV-18 LCR promoter in normal human keratinocytes, the natural host cell for HPV infections. Repression by wild-type p53 was also observed in C-33A cells and in an HPV-16-immortalized cell line with an inducible wild-type p53. However, when C-33A cells were cotransfected with the HPV-18 LCR and mutant 143Val to Ala, repression did not occur. Mutant p53 135Cys to Ser did not induce repression in either normal human keratinocytes or in the C-33A line; although like 143Val to Ala, it is thought to affect the DNA binding activity of the wild-type protein. The ability of mutant p53 143Val to Ala to inactivate the HPV early promoter in normal cells (by approximately 60% reduction) suggests that this mutant may be able to associate with wild-type p53 and interact with TATA box-binding proteins. Therefore, these results demonstrate that the transcriptional activities of p53 mutants may be dependent upon the cell type assayed and the form of its endogenous p53. Furthermore, normal human keratinocytes represent an alternative model for determining the activities of p53 mutants.

  7. ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12.

    Science.gov (United States)

    Caldara, Marina; Minh, Phu Nguyen Le; Bostoen, Sophie; Massant, Jan; Charlier, Daniel

    2007-10-19

    In Escherichia coli L-arginine is taken up by three periplasmic binding protein-dependent transport systems that are encoded by two genetic loci: the artPIQM-artJ and argT-hisJQMP gene clusters. The transcription of the artJ, artPIQM and hisJQMP genes and operons is repressed by liganded ArgR, whereas argT, encoding the LAO (lysine, arginine, ornithine) periplasmic binding protein, is insensitive to the repressor. Here we characterize the repressible Esigma70 P artJ, P artP and P hisJ promoters and demonstrate that the cognate operators consist of two 18 bp ARG boxes separated by 3 bp. Determination of the energy landscape of the ArgR-operator contacts by missing contact probing and mutant studies indicated that each box of a pair contributes to complex formation in vitro and to the repressibility in vivo, but to a different extent. The organization of the ARG boxes and promoter elements in the control regions of the uptake genes is distinct from that of the arginine biosynthetic genes. The hisJQMP operon is the first member of the E. coli ArgR regulon, directly repressed by liganded ArgR, where none of the core promoter elements overlaps the ARG boxes. Single round in vitro transcription assays and DNase I footprinting experiments indicate that liganded ArgR inhibits P artJ and P artP promoter activity by steric exclusion of the RNA polymerase. In contrast, ArgR-mediated repression of P hisJ by inhibition of RNA polymerase binding appears to occur through topological changes of the promoter region.

  8. Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LAC9 (K1GAL4) [corrected

    OpenAIRE

    Zachariae, W; Kuger, P; Breunig, K D

    1993-01-01

    In the budding yeast Kluyveromyces lactis glucose repression of genes involved in lactose and galactose metabolism is primarily mediated by LAC9 (or K1GAL4) the homologue of the well-known Saccharomyces cerevisiae transcriptional activator GAL4. Phenotypic difference in glucose repression existing between natural strains are due to differences in the LAC9 gene (Breunig, 1989, Mol.Gen.Genet. 261, 422-427). Comparison between the LAC9 alleles of repressible and non-repressible strains revealed ...

  9. 中心组合设计优化复凝聚法制备甲维盐微囊工艺%Optimization of Technology for Complex Coacervation on Emamectin Benzoate Microcapsule Preparation by Center Composite Design

    Institute of Scientific and Technical Information of China (English)

    陈效忠; 李守君; 李晓凤; 王玉峰; 于莲; 慎爱民; 江欣; 苏瑾; 宗希明

    2012-01-01

    [Aims] Optimized the preparation technology of emamectin-benzoate microcapsule. [Methods] Emamectin-benzoate was encapsulated into microcapsules using gelatin and arabic gum as coating materials by complex coacervation. Mass concentration of the emamectin-benzoate was analysed by UV spectrophotometry and the entrapment rate was reckoned. The entrapment rate was used as index, and the preparation technology was optimized by CCD. [Results] The optimum technology conditions of emamectin benzoate microcapsule was set up. The stirred rate was 600 r/min, the reaction temperature was 47 ℃, the reaction time was 107 min and the entrapment rate was 74.27%. [Conclusions] The deviation between predictive value of CCD and measured value was little, optimize method was feasible, and the entrapment rate was higher than before.%[目的]优化甲维盐微囊制备工艺.[方法]实验以明胶和阿拉伯胶为壁材,采用复凝聚法制备甲维盐微囊.用紫外分光光度法测定甲维盐含量,计算包封率.以包封率为指标,通过中心组合设计对制备工艺进行优化.[结果]复凝聚法制备甲维盐微囊的最佳工艺为600 r/min,47℃,反应107 min,包封率为74.27%.[结论]CCD预测值与实际测量值偏差小,优化方法可行,且包封率较高.

  10. Impact of Equine Chorionic Gonadotropin Associated with Temporary Weaning, Estradiol Benzoate, or Estradiol Cypionate on Timed Artificial Insemination in Primiparous Bos Indicus Cows

    Directory of Open Access Journals (Sweden)

    Andre Luis Bastos Souza

    Full Text Available The study aimed to determine the impact of equine chorionic gonadotropin (eCG associated with different timed artificial insemination (TAI protocols on the pregnancy rate (PR in Bos indicus cows previously treated with progesterone. Five hundred and fifty-seven primiparous cows were subjected to the following treatments: on day 0 (d0, GeCGTW (group equine Chorionic Gonadotropin+Temporary Weaning;n=178 received 0,558 g intravaginal progesterone (P4+1.0 mg of estradiol benzoate (EB (IM; on d8 (P4 removal+0,075 mg D-cloprostenol + 400 IU eCG + TW for 48 h; on d10, TAI + calves return to dam; GeCGEB (group equine Chorionic Gonadotropin+Estradiol benzoate; n=176 the same as GeCGTW without TW + application of 1.0 mg of EB on d9; GeCGEC (group equine Chorionic Gonadotropin+Estradiol Cypionate; n=203, the same as GeCGTW without TW+1.5 mg EC (IM. On d35, post TAI, pregnancy diagnosis (PD was performed. Non-pregnant animals remained under clean-up bulls for 90 days. After this period, the animals were subjected to PD using ultrasound. The PR of TAI was 51.1%, 47.1%, and 47.8% for GeCGTW, GeCGEB24, and GeCGEC (P>0.05 respectively. The PR under clean-up bulls was 88.3%, 47.3%, and 31.1% (P<0.05. The final PR (TAI+clean-up bulls of the groups was 94.4%, 72.1%, and 64.0%, respectively (P<0.05. It was concluded that no differences in PR among the protocols related to TAI were detected; PR in the GeCGTW protocol under clean-up bulls was higher compared to others (P<0.05; the overall PR of cows subjected to TAI+clean-up bulls was significantly higher in GeCGTW than in the other groups.

  11. Antifungal Activity of Diglycerin Ester of Fatty Acids against Yeasts and Its Comparison with Those of Sucrose Monopalmitate and Sodium Benzoate.

    Science.gov (United States)

    Shimazaki, Aiko; Sakamoto, Jin J; Furuta, Masakazu; Tsuchido, Tetsuaki

    2016-01-01

    The antifungal activities of diglycerin monoester of fatty acids (DGCs), which have been employed as food emulsifiers, were examined against three yeasts, Saccharomyces cerevisiae, Candida albicans and Candida utilis and were compared with those of sucrose monoester of palmitic acid (SC16) as another type of emulsifier and sodium benzoate (SB) as a weak acid food preservative. When the minimum growth inhibitory concentrations (MICs) of diglycerin monolaurate (DGC12) against these yeasts were determined 2 d after incubation in YM broth at pH5.0, they were relatively low, being 0.01% (w/v), for both S. cerevisiae and C. utilis, whereas was high, being 4.0% (w/v), for C. albicans. On the contrary, the MICs of sucrose monopalmitate (SC16) were high, being 3.0 and 4.0% (w/v), for the former two yeasts, respectively, but 0.6% (w/v) for the last yeast. In contrast to these emulsifiers, the MICs of sodium benzoate (SB) were similar independently upon the yeast strain, being in order 0.4, 0.3 and 0.5% (w/v), for the above yeasts, respectively. The anti-yeast activities of DGC12 and SC16 were gradually increased with a decrease in pH, in a manner similar to that of SB, except for the action of SC16 on C. albicans, for which the activity was more effective at pHs 5.0 and 6.0 than at pHs 4.0 and 7.0. Among DGCs tested having different fatty acid moieties in the molecule, lauroyl ester (DGC12) was more effective than myristoyl and palmitoyl esters against S. cerevisiae and C. utilis. The inhibitory effect of DGC12 on the yeast growth depended upon both the cell density and the strength of aeration during the treatment. Further, DGC12 was found to kill S. cerevisiae and C. utilis cells at a rather low concentration of 0.005% (w/v) in 50mM acetate buffer at pH5.0, although, against C. albicans cells, only slight fungicidal activity was demonstrated at a high concentration of 0.5% (w/v). The results obtained support the effectiveness of practical application of DGC12 to acidic

  12. 苯甲酸钠对草履虫的毒性作用研究%Research on the Toxicity of Sodium Benzoate against Paramecium

    Institute of Scientific and Technical Information of China (English)

    刘俊; 李霖; 张晓燕

    2011-01-01

    The acute and chronic toxicity of sodium benzoate (SB) against paramecium was studied in this article. The one-hour acute toxicity experiment showed that the higher SB concentration was, the greater was the toxic effect. LC50 was 14.14g·L^-1 while the maximum totally-lethal concentration and minimum lethal con-centration was 19g·L^-1 and 8g·L^-1, respectively. The chronic toxicity experiment indicated that there existed significant dose-response-effect as well as time-response effect between the population growth rate and SB concentration. When the SB concentration was less than the minimum lethal concentration, an increased population growth rate was observed with the higher SB concentration when treated with a certain range of SB con- centration within a certain time. This promotion effect of sodium benzoate on the reproduction of paramecium might be due to the effect of environmental estrogens.%本文研究了苯甲酸钠对草履虫的急性和慢性毒性作用。结果表明:1h急性毒性实验显示,浓度越大,死亡率越高。1h急性毒性作用LC50为14.14g·L^-1,绝对致死剂量为19g·L^-1,最小致死剂量为8g·L^-1。慢性毒性实验显示,种群增长率与苯甲酸钠浓度间具有显著的反应-剂量效应和反应-时间效应,在小于绝对致死剂量情况下,一定时间、一定浓度范围内呈现出浓度越大,种群增长率越高的现象。苯甲酸钠对草履虫生殖的促进作用有可能是环境雌激素的效应。

  13. 甲维盐与苏云金杆菌复配对黄野螟增效作用研究%Studies on the Synergistic Effects of Emamectin--benzoate and Bacillus thuringiensis on Heortia vitessoides Moore

    Institute of Scientific and Technical Information of China (English)

    王玲; 郑礼飞; 陈志云; 李东文; 曹春雷; 李奕震

    2012-01-01

    The synergistic effects of Emamectin--benzoate, Bacillus thuringiensis, and their mixtures on Heortza wtessoides were tested in the laboratory by the leaf--dipping method. The results showed that the LC50 of Emamectin--benzoate and Bacillus thuringiensis were 0. 0000001286mg/L and 0. 0006943385mg/L, respectively. The mixture of Emamectin--benzoate and Bacillus thuringiensis with ratio of 8 : 2, 7 : 3 or 6:4 had remarkable synergistic effects.%采用浸叶法测定了两种农药对黄野螟的增效作用及两种药剂复配的适宜配比。结果表明:甲维盐和苏云金杆菌对黄野螟的制剂LC50值分别是0.0000001286mg/L和0.0006943385mg/L,前者毒力大于后者;两者以重量比为8∶2、7:3和6:4混配时的增效作用最明显。

  14. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.

    Directory of Open Access Journals (Sweden)

    Yoav Atsmon-Raz

    Full Text Available We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant [Formula: see text] for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants [Formula: see text]and [Formula: see text], respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I class, and the non-conjugators play the role of the susceptible (S class.

  15. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.

    Science.gov (United States)

    Atsmon-Raz, Yoav; Raz, Yoav; Tannenbaum, Emmanuel David

    2014-01-01

    We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT) has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant [Formula: see text] for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants [Formula: see text]and [Formula: see text], respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I) class, and the non-conjugators play the role of the susceptible (S) class.

  16. MYC Association with Cancer Risk and a New Model of MYC-Mediated Repression

    Science.gov (United States)

    Cole, Michael D.

    2014-01-01

    MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase. PMID:24985129

  17. The personality construct of hardiness, III: Relationships with repression, innovativeness, authoritarianism, and performance.

    Science.gov (United States)

    Maddi, Salvatore R; Harvey, Richard H; Khoshaba, Deborah M; Lu, John L; Persico, Michele; Brow, Marnie

    2006-04-01

    Previous research has established hardiness as a dispositional factor in preserving and enhancing performance and health despite stressful circumstances. The present four studies continue this construct-validational process by (a) introducing a shortened version of the hardiness measure and (b) testing hypotheses concerning the relationship between hardiness and repressive coping, right-wing authoritarianism, innovative behavior, and billable hours (a measure of consulting effectiveness). Results of these studies suggest the adequate reliability and validity of the Personal Views Survey III-R, which is the shortened, 18-item measure of hardiness. Further, results support the hypothesis that the relationship of hardiness is negative with repressive coping and right-wing authoritarianism and positive with innovative behavior and billable hours. Hardiness also appears unrelated to socially desirable responding.

  18. Military westernization and state repression in the post-Cold War era.

    Science.gov (United States)

    Swed, Ori; Weinreb, Alexander

    2015-09-01

    The waves of unrest that have shaken the Arab world since December 2010 have highlighted significant differences in the readiness of the military to intervene in political unrest by forcefully suppressing dissent. We suggest that in the post-Cold War period, this readiness is inversely associated with the level of military westernization, which is a product of the acquisition of arms from western countries. We identify two mechanisms linking the acquisition of arms from western countries to less repressive responses: dependence and conditionality; and a longer-term diffusion of ideologies regarding the proper form of civil-military relations. Empirical support for our hypothesis is found in an analysis of 2523 cases of government response to political unrest in 138 countries in the 1996-2005 period. We find that military westernization mitigates state repression in general, with more pronounced effects in the poorest countries. However, we also identify substantial differences between the pre- and post-9/11 periods.

  19. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  20. Terrorism and state repression: strategy and norms in France and the UK

    Directory of Open Access Journals (Sweden)

    Frank Foley

    2016-04-01

    Full Text Available This article approaches the question of whether terrorism “works” and argues that an examination of some of terrorism’s more “modest” effects can contribute to the way we analyse its overall effectiveness and strategic impact. The article looks at whether terrorist violence has brought “disorientation” to European societies and led states to launch repressive counterterrorist operations. Its main empirical focus is a comparison of Britain’s and France’s responses to contemporary jihadist terrorism. It examines the extent to which we can understand these cases from a rational choice perspective, before going on to argue that a state’s responses to terrorism are filtered through certain domestic societal norms in each country that determine whether or not terrorist violence leads to a repressive response from governments. This has implications for the way we analyse the interaction between terrorists and the state, as well as the effectiveness of terrorism itself.

  1. Repression and solidary cultures of resistance: Irish political prisoners on protest.

    Science.gov (United States)

    O'Hearn, Denis

    2009-09-01

    Social activists and especially insurgents have created solidary cultures of resistance in conditions of high risk and repression. One such instance is an episode of contention by Irish political prisoners in the late 1970s. The "blanketmen" appropriated and then built a solidary culture within spaces that had been under official control. Their ability to maintain such a collective response was enhanced by an intensifying cycle of protest and violent reprisal, including extreme stripping of their material environment, in which the prisoners gained considerable initiative. This study uses interviews and contemporary writings by prisoners, prison authorities, visitors, and movement activists to examine how the dynamic of protest and repression transformed insurgent prison culture--through material, emotional, and perceptive changes--and the importance of leadership in the transformation. Special attention is given to prisoner activities in appropriated spaces that reinforced the culture of resistance: promoting the Irish language, cultural production, and the production of propaganda.

  2. Cinema e contraluz: limiares da repressão na cultura midiática argentina

    Directory of Open Access Journals (Sweden)

    Márcio Serelle

    2014-12-01

    Full Text Available This paper examines the backlighting technique used in Argentine movies (mainly Valentín, Kamchatka, and The Secret in Their Eyes, seen as a kind of narrative composition in which events related to dictatorships and other forms of repression operate in the dark, but strongly affect the fate of the characters. Starting from a brief overview of the internationalization of the Argentine film industry, which, as early as the mid-1980s, had already articulated conventional dramatic structures and political denunciation, this study analyzes how part of the cinema of this century represents the violence of authoritarian states. Be it through imaginative investment, metalanguage, or allegory, these narratives renounce graphic images of the violence of repressive apparatuses and create dramaturgical compositions of highly effective communication. Thus, this work discusses the reflective capacity of these films as it pertains to the relationship between the fictional, mediatic and social contexts.

  3. Ditadura, repressão e música no Chile

    Directory of Open Access Journals (Sweden)

    Camargo, Cássio Michel dos Santos

    2011-01-01

    Full Text Available Este trabalho tem como objetivo analisar o processo de constituição da ditadura Pinochet, a repressão e o combate às representações culturais oriundas do Movimento da Nova Canção Chilena, especificamente a música. Também analisa o conceito de ditadura fazendo um pequeno panorama histórico da América e o período de crise institucional do governo Allende. A imposição do golpe militar por Pinochet; salienta os motivos da constituição do Movimento Nova Canção; destaca o processo de institucionalização da repressão pelo governo e, por fim, analisa condição clandestina da produção musical no Chile frente às perseguições do regime ditatorial

  4. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression

    DEFF Research Database (Denmark)

    Kalisz, Mark; Winzi, Maria Karin; Bisgaard, Hanne Cathrine;

    2012-01-01

    TGFß signaling patterns the primitive streak, yet little is known about transcriptional effectors that mediate the cell fate choices during streak-like development in mammalian embryos and in embryonic stem (ES) cells. Here we demonstrate that cross-antagonistic actions of EVEN-SKIPPED HOMEOBOX 1...... (EVX1) and GOOSECOID (GSC) regulate cell fate decisions in streak-like progenitors derived from human ES cells exposed to BMP4 and/or activin. We found that EVX1 repressed GSC expression and promoted formation of posterior streak-like progeny in response to BMP4, and conversely that GSC repressed EVX1...... expression and was required for development of anterior streak-like progeny in response to activin. Chromatin immunoprecipitation assays showed that EVX1 bound to the GSC 5'-flanking region in BMP4 treated human ES cells, and band shift assays identified two EVX1 binding sites in the GSC 5'-region...

  5. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress.

    Science.gov (United States)

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-08-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.

  6. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress.

    Directory of Open Access Journals (Sweden)

    Andreas Czech

    2013-08-01

    Full Text Available Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA. An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP:tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.

  7. 苯甲酸降解途径及转化生产粘康酸的研究进展%Research Progress in Benzoate Degradation Pathways and Transformation for cis,cis-Muconic Acid

    Institute of Scientific and Technical Information of China (English)

    谢能中; 黄艳燕; 李检秀; 郭铃; 李亿; 王青艳; 陈东; 杜奇石; 黄日波

    2014-01-01

    苯甲酸是多种芳香化合物生物代谢的重要中间物,对微生物降解苯甲酸的生物化学和遗传学研究,有利于阐明芳香化合物的生物降解机制,分离和培育出降解谱广和降解性能高的菌株应用于废水处理、环境修复和生物转化。苯甲酸的儿茶酚邻位裂解(ortho-cleavage)途径会产生粘康酸,后者是一种潜在的平台化合物,用于生产新型功能树脂、生物塑料、食品添加剂等产品。本文综述了微生物降解苯甲酸和转化生产粘康酸的研究和进展,并提出该领域研究今后的发展方向,为后续研究提供有价值的参考。%Benzoate is a model aromatic compound,which is also an important intermediate of a variety of aromatic compounds. Studying microbial degradation of benzoate provides knowledge on the metabolic mechanism of other aromatic compounds,facilitates the screen of efficient bacteria for wastewater treatment,environmental remediation and biotransforma-tion.Benzoate can be metabolized via catechol by means of the ortho-cleavage pathway to yield cis,cis-muconic acid,which is suggested to be an interesting platform chemical for the pro-duction of new functional resins,bio-plastics and food additives.In this paper,various benzoate degradation pathways and cis,cis-muconic acid production by biotransformation of benzoate are reviewed, and guidelines for developing high performance microbial cell factory for cis,cis-muconic acid production are also proposed.

  8. Metallo-porphyrazines with eight [5-thiopentyl 3,4,5-tris(benzyloxy)benzoate] groups: Synthesis, characterization, aggregation, and solubility behavior

    Science.gov (United States)

    Gonca, Ergün

    2017-02-01

    Metal-free and metallo-porphyrazines having eight 5-hydroxypentylthio units at the peripheral positions have been prepared from 2,3-bis(5-hydroxypentylthio)maleonitrile. By the esterification reaction of magnesium hydroxy-porphyrazine with 3,4,5-tris(benzyloxy)benzoic acid in dicyclohexylcarbodiimide and toluene-p-sulfonic acid, the reactivity of the hydroxypentyl units was indicated. On the other hand, iron porphyrazine derivatives with eight [5-thiopentyl 3,4,5-tris(benzyloxy)benzoate] groups attached to the periphery positions were synthesized. By the reaction of metal-free porphyrazine with iron (II) acetate and further processing with HCl solution, FePzCl was obtained. Finally, by reacting FePzCl with pyridine or pyrazine, [FePz(py)2] and [FePz(pyz)]n complexes were prepared, respectively. The characterizations of target complexes were carried out by utilizing different spectroscopic methods such as FT-IR, UV-vis, mass, 1H NMR, and 13C NMR together with elemental analysis.

  9. Crystal structures of (E-4-[1-(2-carbamothioylhydrazinylideneethyl]phenyl acetate and (E-4-[1-(2-carbamothioylhydrazinylideneethyl]phenyl benzoate

    Directory of Open Access Journals (Sweden)

    Vijayan Viswanathan

    2017-01-01

    Full Text Available In the title compounds, C11H13N3O2S, (I, and C16H15N3O2S, (II, the thiosemicarbazone group adopts an extended conformation. The acetate ester (I crystallizes with two independent molecules in the asymmetric unit. In the benzoate ester (II, the planes of the two aryl rings are inclined to one another by 46.70 (7°. In both compounds, there is a short intramolecular N—H...N contact present, forming an S(5 ring motif. In the crystals of both compounds, molecules are linked via pairs of N—H...S hydrogen bonds, forming dimers with R22(8 ring motifs. The dimers are linked by N—H...S and N—H...O hydrogen bonds, forming slabs parallel to (01-1. In (I, there are N—H...π and C—H...π interactions present within the slabs, while in (II, there are only N—H...π interactions present.

  10. Study of the photochemical transformation of 2-ethylhexyl 4-(dimethylamino)benzoate (OD-PABA) under conditions relevant to surface waters.

    Science.gov (United States)

    Calza, P; Vione, D; Galli, F; Fabbri, D; Dal Bello, F; Medana, C

    2016-01-01

    We studied the aquatic environmental fate of 2-ethylhexyl 4-(dimethylamino)benzoate (OD-PABA), a widespread sunscreen, to assess its environmental persistence and photoinduced transformation. Direct photolysis is shown to play a key role in phototransformation, and this fast process is expected to be the main attenuation route of OD-PABA in sunlit surface waters. The generation of transformation products (TPs) was followed via HPLC/HRMS. Five (or four) TPs were detected in the samples exposed to UVB (or UVA) radiation, respectively. The main detected TPs of OD-PABA, at least as far as HPLC-HRMS peak areas are concerned, would involve a dealkylation or hydroxylation/oxidation process in both direct photolysis and indirect phototransformation. The latter was simulated by using TiO2-based heterogeneous photocatalysis, involving the formation of nine additional TPs. Most of them resulted from the further degradation of the primary TPs that can also be formed by direct photolysis. Therefore, these secondary TPs might also occur as later transformation intermediates in natural aquatic systems.

  11. Self-assembly and UV-curing Property of Polymerized Lyotropic Liquid Crystal Monomer of Sodium 3,4,5-tris(11-acryloxyundecyloxy)benzoate

    Institute of Scientific and Technical Information of China (English)

    Yu-qin Bai; Jin-bao Guo; Ying Wang; Jie Wei

    2013-01-01

    A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris (11-acryloxyundecyloxy)benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification,acylation and finally neutralization.The chemical structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis.The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated.The assemblies were characterized by polarized optical microscope and X-ray diffraction.The results show that a solution containing 80∶20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92∶8 with inverted hexagonal (HⅡ) phase,which was in accordance with the theoretical calculation of critical packing parameter.It suggests that the concentration of the monomer was the key factor to influence assembly structure.Additionally,the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated.The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method.Meanwhile,the La and HⅡI phase nanostructures were both retained after polymerization.

  12. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples.

    Science.gov (United States)

    Madrakian, Tayyebeh; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles (Fe3O4/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe3O4 nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5-100.0 μmol L(-1) with a detection limit of 0.09 μmol L(-1) under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical.

  13. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA.

    Science.gov (United States)

    Gutteridge, J M

    1987-05-01

    Hydroxyl radicals (OH.) in free solution react with scavengers at rates predictable from their known second-order rate constants. However, when OH. radicals are produced in biological systems by metal-ion-dependent Fenton-type reactions scavengers do not always appear to conform to these established rate constants. The detector molecules deoxyribose and benzoate were used to study damage by OH. involving a hydrogen-abstraction reaction and an aromatic hydroxylation. In the presence of EDTA the rate constant for the reaction of scavengers with OH. was generally higher than in the absence of EDTA. This radiomimetic effect of EDTA can be explained by the removal of iron from the detector molecule, where it brings about a site-specific reaction, by EDTA allowing more OH. radicals to escape into free solution to react with added scavengers. The deoxyribose assay, although chemically complex, in the presence of EDTA appears to give a simple and cheap method of obtaining rate constants for OH. reactions that compare well with those obtained by using pulse radiolysis.

  14. Food additives: Sodium benzoate, potassium sorbate, azorubine, and tartrazine modify the expression of NFκB, GADD45α, and MAPK8 genes.

    Science.gov (United States)

    Raposa, B; Pónusz, R; Gerencsér, G; Budán, F; Gyöngyi, Z; Tibold, A; Hegyi, D; Kiss, I; Koller, Á; Varjas, T

    2016-09-01

    It has been reported that some of the food additives may cause sensitization, inflammation of tissues, and potentially risk factors in the development of several chronic diseases. Thus, we hypothesized that expressions of common inflammatory molecules - known to be involved in the development of various inflammatory conditions and cancers - are affected by these food additives. We investigated the effects of commonly used food preservatives and artificial food colorants based on the expressions of NFκB, GADD45α, and MAPK8 (JNK1) from the tissues of liver. RNA was isolated based on Trizol protocol and the activation levels were compared between the treated and the control groups. Tartrazine alone could elicit effects on the expressions of NFκB (p = 0.013) and MAPK8 (p = 0.022). Azorubine also resulted in apoptosis according to MAPK8 expression (p = 0.009). Preservatives were anti-apoptotic in high dose. Sodium benzoate (from low to high doses) dose-dependently silenced MAPK8 expression (p = 0.004 to p = 0.002). Addition of the two preservatives together elicited significantly greater expression of MAPK8 at half-fold dose (p = 0.002) and at fivefold dose (p = 0.008). This study suggests that some of the food preservatives and colorants can contribute to the activation of inflammatory pathways.

  15. Toughening of Epoxy Resin with Solid Amine Terminated Poly (ethy-lene glycol) Benzoate and Effect of Red Mud Waste Particles

    Institute of Scientific and Technical Information of China (English)

    B.C.Samanta; T.Maity; S.Dalai; A.K.Banthia

    2008-01-01

    An investigation was carried out to modify the toughness of triethylene tetramine cured DGEBA (diglycidyl ether of bisphenol-A) resin using solid amine terminated poly (ethylene glycol) benzoate (ATPEGB) as modifier with and without red mud waste particles. The solid ATPEGB modifier synthesized from the acid catalyzed esterification reaction of poly (ethylene glycol) (PEG) and 4-amino benzoic acid was characterized by Fourier transform infrared spectroscopy (FT-IR) and 1H-NMR (nuclear magnetic resonance) spectroscopies, viscosity measurements, and solubility parameter calculation. The unfilled and red mud waste filled modified epoxy networks were evaluated with impact, adhesive, tensile, flexural and thermal properties by differential scanning calorimetry (DSC), thermogravimetric (TG) and dynamic mechanical analysis (DMA). The effect of modifier concentration and red mud waste particles on toughening behavior was also investigated. The optimum properties were obtained at 12.5 phr (parts per hundred parts of resin) concentration of the modifier. The ATPEGB modified cured epoxy was thermally stable up to 315℃. The morphology on fracture surfaces of cured epoxy was also analyzed by scanning electron microscopy (SEM).

  16. Phase transition from focal conic to cubic smectic blue phase in partially fluorinated cyano-phenyl alkyl benzoate ester doped with ultrahigh twisting power chiral dopant

    CERN Document Server

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    Blue phase liquid crystal (BPLC) has important applications in adaptive lenses and phase modulators due to its polarization-independent property. During our efforts for development of the new materials, we found a novel phenomenology of phase transition, from focal conic smectic to smectic blue phase in a partially fluorinated cyanophenyl alkyl benzoate ester based nematic liquid crystal (LCM-5773) doped by ultra-high twisting power [H.T.P~160 um^-1] chiral dopant (R5011/3 wt%). Polarized optical microscopy (POM) investigations revealed focal conic and fan-shaped textures typical for columnar mesophases. These focal conic domains (FCDs) are squeezed under electric field and finally at a critical electric field they undergo a dark state. When the electric field is withdrawn, the FCDs are regrown in a one dimensional array with smaller domain size. Interestingly, we have observed the domain size of the FCDs can grow several times by decreasing the cooling rate (0.02 degrees(C)/min.) ten times without any change...

  17. The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments.

    Science.gov (United States)

    Dolfing, Jan; Novak, Igor

    2015-02-01

    The sequence of redox reactions in the natural environment generally follows the electron affinity of the electron acceptors present and can be rationalized by the redox potentials of the appropriate half-reactions. Answering the question how halogenated aromatics fit into this sequence requires information on their Gibbs free energy of formation values. In 1992 Gibbs free energy data for various classes of halogenated aromatic compounds were systematically explored for the first time based on Benson's group contribution method. Since then more accurate quantum chemical calculation methods have become available. Here we use these methods to estimate enthalpy and Gibbs free energy of formation values of all chlorinated and brominated phenols. These data and similar state-of-the-art datasets for halogenated benzenes and benzoates were then used to calculate two-electron redox potentials of halogenated aromatics for standard conditions and for pH 7. The results underline the need to take speciation into consideration when evaluating redox potentials at pH 7 and highlight the fact that halogenated aromatics are excellent electron acceptors in aqueous environments.

  18. Investigating the Effects of Financial Repression on Private Investment in Agriculture Sector

    Directory of Open Access Journals (Sweden)

    Abdolmajid Jalaee

    2014-09-01

    Full Text Available One of the present phenomena that virtually explain weaknesses in financial systems of different countries is financial repression. Financial repression encompasses the different interferences of governments in financial markets through determining the ceiling interest on bank deposits, high rates of legal reserves, and the government’s interference in distribution of bank credits,which prevents the efficient performance of financial market for better allocating resources and funds. On the other hand, investment in agricultural sector enjoys a significant importance due to the growth of production and employment in this sector and rooting for the same notions in other economic sectors. Regarding the fact that the subject matter of the current paper is of utmost importance, it tries to investigate the impacts of financial repression on investments in agricultural sector. In order to realize this objective, measures such as the size of the government in economy, the measure for financial intermediation of banks, and the ratio of savings to GDP (Gross Domestic Product were utilized as the factors for financial repression. The regression results of ARDL showed that the effects from the measures of government size in economy and financial intermediation of banks had a negative and significant impact on private investment in agricultural sector. This means that the bigger the size of government in economy the less the willingness of the private sector for investing in agriculture. Moreover, regarding the fact that the majority of banks in Iran are governmental, the measure for financial intermediation of banks had a negative and significant impact on private investment of agricultural sector.

  19. The purge of spanish education during franquism (1936-1975. The institutionalization of a repression

    Directory of Open Access Journals (Sweden)

    Carlos de Pablo Lobo

    2007-09-01

    Full Text Available Work on the trial against Spanish teaching profession because of politic reasons, from the beginning of the Spanish Civil War (1936-1939 to the end of the General Francisco Franco dictatorship (1939-1975. It includes a legislation research and it also studies the reasons, institutions and the different periods in which the course is going through. Key words: Repression, Purge, Spanish teaching, Civil War, Elementary education, Franquism, Education methods. 

  20. From sensorimotor inhibition to Freudian repression: insights from psychosis applied to neurosis

    Directory of Open Access Journals (Sweden)

    Ariane eBazan

    2012-11-01

    Full Text Available First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud’s mental apparatus, we propose that the messages of discharge of the motor neurones, mobilised to direct perception, also called indications of reality, are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organisation in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it – i.e. inhibition of an action – gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world or processing language structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called phantoms, which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor

  1. Multi-Faceted Characterization of a Novel LuxR-Repressible Promoter Library for Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Susanna Zucca

    Full Text Available The genetic elements regulating the natural quorum sensing (QS networks of several microorganisms are widely used in synthetic biology to control the behaviour of single cells and engineered bacterial populations via ad-hoc constructed synthetic circuits. A number of novel engineering-inspired biological functions have been implemented and model systems have also been constructed to improve the knowledge on natural QS systems. Synthetic QS-based parts, such as promoters, have been reported in literature, to provide biological components with functions that are not present in nature, like modified induction logic or activation/repression by additional molecules. In this work, a library of promoters that can be repressed by the LuxR protein in presence of the QS autoinducer N-3-oxohexanoyl-L-homoserine lactone (AHL was reported for Escherichia coli, to expand the toolkit of genetic parts that can be used to engineer novel synthetic QS-based systems. The library was constructed via polymerase chain reaction with highly constrained degenerate oligonucleotides, designed according to the consensus -35 and -10 sequences of a previously reported constitutive promoter library of graded strength, to maximize the probability of obtaining functional clones. All the promoters have a lux box between the -35 and -10 regions, to implement a LuxR-repressible behaviour. Twelve unique library members of graded strength (about 100-fold activity range were selected to form the final library and they were characterized in several genetic contexts, such as in different plasmids, via different reporter genes, in presence of a LuxR expression cassette in different positions and in response to different AHL concentrations. The new obtained regulatory parts and corresponding data can be exploited by synthetic biologists to implement an artificial AHL-dependent repression of transcription in genetic circuits. The target transcriptional activity can be selected among the

  2. A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation

    OpenAIRE

    Wontakal, Sandeep N.; Guo, Xingyi; Smith, Cameron; MacCarthy, Thomas; Emery H Bresnick; Bergman, Aviv; Snyder, Michael P.; Weissman, Sherman M.; Zheng, Deyou; Skoultchi, Arthur I.

    2012-01-01

    Two mechanisms that play important roles in cell fate decisions are control of a “core transcriptional network” and repression of alternative transcriptional programs by antagonizing transcription factors. Whether these two mechanisms operate together is not known. Here we report that GATA-1, SCL, and Klf1 form an erythroid core transcriptional network by co-occupying >300 genes. Importantly, we find that PU.1, a negative regulator of terminal erythroid differentiation, is a highly integrated...

  3. CUTTING THE HEAD OF THE ROARING MONSTER": HOMOSEXUALITY AND REPRESSION IN AFRICA

    OpenAIRE

    Essien, Kwame; Aderinto, Saheed

    2009-01-01

    This paper examines how a proposed conference of gays and lesbians in 2006 in Ghana created tensions and repercussions from the social, cultural, religious and political factors, which worked to repress same-sex discourse in the country. The new wave of homophobic expression that ensued is partly a product of the new globalization and also a manifestation of the clash between what is considered "African" and "un-African" social and sexual behavior. This study shows that the government of Ghan...

  4. Inducing Alignment: The Dynamic Impact of Repression and Mobilizing Structures on Population Support

    Science.gov (United States)

    2009-12-01

    Sociological Theory, 21(1), 44–68. Retrieved January 25, 2009, from JSTOR database , http://www.jstor.org/sTable/3108608 Eisenstadt, M., & White, J. (2005...Retrieved January 24, 2009, from JSTOR database , http://www.jstor.org/sTable/174207 Hess, D., & Martin, B. (2006). Repression, backfire, and the...once-deadliest region. The Christian Science Monitor, 1. Retrieved September 27, 2008, from ProQuest National Newspapers Core database . (Document ID

  5. From sensorimotor inhibition to freudian repression: insights from psychosis applied to neurosis.

    Science.gov (United States)

    Bazan, Ariane

    2012-01-01

    First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud's mental apparatus, we propose that the messages of discharge of the motor neurons, mobilized to direct perception, also called "indications of reality," are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organization in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it - i.e., inhibition of an action - gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world, or processing language, structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of) the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called "phantoms," which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor fragments.

  6. Critical role of TCF-1 in repression of the IL-17 gene.

    Directory of Open Access Journals (Sweden)

    Jian Ma

    Full Text Available Overwhelming activation of IL-17, a gene involved in inflammation, leads to exaggerated Th17 responses associated with numerous autoimmune conditions, such as experimental autoimmune encephalomyelitis (EAE. Here we show that TCF-1 is a critical factor to repress IL-17 gene locus by chromatin modifications during T cell development. Deletion of TCF-1 resulted in increased IL-17 gene expression both in thymus and peripheral T cells, which led to enhanced Th17 differentiation. As a result, TCF-1(-/- mice were susceptible to Th17-dependent EAE induction. Rag1(-/- mice reconstituted with TCF-1(-/- T cells were also susceptible to EAE, indicating TCF-1 is intrinsically required to repress IL-17. However, expression of wild-type TCF-1 or dominant negative TCF-1 did not interfere with Th17 differentiation in mature T cells. Furthermore, expression of TCF-1 in TCF-1(-/- T cells could not restore Th17 differentiation to wild-type levels, indicating that TCF-1 cannot affect IL-17 production at the mature T cell stage. This is also supported by the normal up-regulation or activation in mature TCF-1(-/- T cells of factors known to regulate Th17 differentiation, including RORγt and Stat3. We observed hyperacetylation together with trimethylation of Lys-4 at the IL-17 locus in TCF-1(-/- thymocytes, two epigenetic modifications indicating an open active state of the gene. Such epigenetic modifications were preserved even when TCF-1(-/- T cells migrated out of thymus. Therefore, TCF-1 mediates an active process to repress IL-17 gene expression via epigenetic modifications during T cell development. This TCF-1-mediated repression of IL-17 is critical for peripheral T cells to generate balanced immune responses.

  7. The B-type lamin is required for somatic repression of testis-specific gene clusters

    Science.gov (United States)

    Shevelyov, Y. Y.; Lavrov, S. A.; Mikhaylova, L. M.; Nurminsky, I. D.; Kulathinal, R. J.; Egorova, K. S.; Rozovsky, Y. M.; Nurminsky, D. I.

    2009-01-01

    Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of diverse species. The genes coordinately misexpressed in diverse diseases are also found in similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression of large multigenic regions both in normal development and in its pathological disruptions. Studies on individual loci suggest that silent clusters of coregulated genes are embedded in repressed chromatin domains, often localized to the nuclear periphery. To test this model at the genome-wide scale, we studied transcriptional regulation of large testis-specific gene clusters in somatic tissues of Drosophila. These gene clusters showed a drastic paucity of known expressed transgene insertions, indicating that they indeed are embedded in repressed chromatin. Bioinformatics analysis suggested the major role for the B-type lamin, LamDmo, in repression of large testis-specific gene clusters, showing that in somatic cells as many as three-quarters of these clusters interact with LamDmo. Ablation of LamDmo by using mutants and RNAi led to detachment of testis-specific clusters from nuclear envelope and to their selective transcriptional up-regulation in somatic cells, thus providing the first direct evidence for involvement of the B-type lamin in tissue-specific gene repression. Finally, we found that transcriptional activation of the lamina-bound testis-specific gene cluster in male germ line is coupled with its translocation away from the nuclear envelope. Our studies, which directly link nuclear architecture with coordinated regulation of tissue-specific genes, advance understanding of the mechanisms underlying both normal cell differentiation and developmental disorders caused by lesions in the B-type lamins and interacting proteins. PMID:19218438

  8. Active repression by RARγ signaling is required for vertebrate axial elongation.

    Science.gov (United States)

    Janesick, Amanda; Nguyen, Tuyen T L; Aisaki, Ken-ichi; Igarashi, Katsuhide; Kitajima, Satoshi; Chandraratna, Roshantha A S; Kanno, Jun; Blumberg, Bruce

    2014-06-01

    Retinoic acid receptor gamma 2 (RARγ2) is the major RAR isoform expressed throughout the caudal axial progenitor domain in vertebrates. During a microarray screen to identify RAR targets, we identified a subset of genes that pattern caudal structures or promote axial elongation and are upregulated by increased RAR-mediated repression. Previous studies have suggested that RAR is present in the caudal domain, but is quiescent until its activation in late stage embryos terminates axial elongation. By contrast, we show here that RARγ2 is engaged in all stages of axial elongation, not solely as a terminator of axial growth. In the absence of RA, RARγ2 represses transcriptional activity in vivo and maintains the pool of caudal progenitor cells and presomitic mesoderm. In the presence of RA, RARγ2 serves as an activator, facilitating somite differentiation. Treatment with an RARγ-selective inverse agonist (NRX205099) or overexpression of dominant-negative RARγ increases the expression of posterior Hox genes and that of marker genes for presomitic mesoderm and the chordoneural hinge. Conversely, when RAR-mediated repression is reduced by overexpressing a dominant-negative co-repressor (c-SMRT), a constitutively active RAR (VP16-RARγ2), or by treatment with an RARγ-selective agonist (NRX204647), expression of caudal genes is diminished and extension of the body axis is prematurely terminated. Hence, gene repression mediated by the unliganded RARγ2-co-repressor complex constitutes a novel mechanism to regulate and facilitate the correct expression levels and spatial restriction of key genes that maintain the caudal progenitor pool during axial elongation in Xenopus embryos.

  9. From Sensorimotor Inhibition to Freudian Repression: Insights from Psychosis Applied to Neurosis

    Science.gov (United States)

    Bazan, Ariane

    2012-01-01

    First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud’s mental apparatus, we propose that the messages of discharge of the motor neurons, mobilized to direct perception, also called “indications of reality,” are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organization in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it – i.e., inhibition of an action – gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world, or processing language, structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of) the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called “phantoms,” which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor fragments

  10. Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    T Sabari Sankar

    2009-03-01

    Full Text Available In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS-repressed locus is the bgl (aryl-beta,D-glucoside operon of E. coli. This locus is "cryptic," as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli.

  11. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  12. Insomnia symptoms and repressive coping in a sample of older Black and White women

    Directory of Open Access Journals (Sweden)

    Pierre-Louis Jessy

    2007-01-01

    Full Text Available Abstract Background This study examined whether ethnic differences in insomnia symptoms are mediated by differences in repressive coping styles. Methods A total of 1274 women (average age = 59.36 ± 6.53 years participated in the study; 28% were White and 72% were Black. Older women in Brooklyn, NY were recruited using a stratified, cluster-sampling technique. Trained staff conducted face-to-face interviews lasting 1.5 hours acquiring sociodemographic data, health characteristics, and risk factors. A sleep questionnaire was administered and individual repressive coping styles were assessed. Fisher's exact test and Spearman and Pearson analyses were used to analyze the data. Results The rate of insomnia symptoms was greater among White women [74% vs. 46%; χ2 = 87.67, p 1,1272 = 304.75, p s = -0.43, p s = -0.18, p Conclusion Relationships between ethnicity and insomnia symptoms are jointly dependent on the degree of repressive coping, suggesting that Black women may be reporting fewer insomnia symptoms because of a greater ability to route negative emotions from consciousness. It may be that Blacks cope with sleep problems within a positive self-regulatory framework, which allows them to deal more effectively with sleep-interfering psychological processes to stressful life events and to curtail dysfunctional sleep-interpreting processes.

  13. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Djupedal, Ingela; Wang, Jingwen [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Kylsten, Per [School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Swoboda, Peter [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Ekwall, Karl, E-mail: Karl.Ekwall@ki.se [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden)

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  14. Repression of hla by rot is dependent on sae in Staphylococcus aureus.

    Science.gov (United States)

    Li, Dongmei; Cheung, Ambrose

    2008-03-01

    The regulatory locus sae is a two-component system in Staphylococcus aureus that regulates many important virulence factors, including alpha-toxin (encoded by hla) at the transcriptional level. The SarA homologs Rot and SarT were previously shown to be repressors of hla in selected S. aureus backgrounds. To delineate the interaction of rot and sae and the contribution of sarT to hla expression, an assortment of rot and sae isogenic single mutants, a rot sae double mutant, and a rot sae sarT markerless triple mutant were constructed from wild-type strain COL. Using Northern blot analysis and transcriptional reporter gene green fluorescent protein, fusion, and phenotypic assays, we found that the repression of hla by rot is dependent on sae. A rot sae sarT triple mutant was not able to rescue the hla defect of the rot sae double mutant. Among the three sae promoters, the distal sae P3 promoter is the strongest in vitro. Interestingly, the sae P3 promoter activities correlate with hla expression in rot, rot sae, and rot sae sarT mutants of COL. Transcriptional study has also shown that rot repressed sae, especially at the sae P3 promoter. Collectively, our data implicated the importance of sae in the rot-mediated repression of hla in S. aureus.

  15. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oliveira Ana

    2009-01-01

    Full Text Available Abstract Background In the yeast Saccharomyces cerevisiae, the presence of high levels of glucose leads to an array of down-regulatory effects known as glucose repression. This process is complex due to the presence of feedback loops and crosstalk between different pathways, complicating the use of intuitive approaches to analyze the system. Results We established a logical model of yeast glucose repression, formalized as a hypergraph. The model was constructed based on verified regulatory interactions and it includes 50 gene transcripts, 22 proteins, 5 metabolites and 118 hyperedges. We computed the logical steady states of all nodes in the network in order to simulate wildtype and deletion mutant responses to different sugar availabilities. Evaluation of the model predictive power was achieved by comparing changes in the logical state of gene nodes with transcriptome data. Overall, we observed 71% true predictions, and analyzed sources of errors and discrepancies for the remaining. Conclusion Though the binary nature of logical (Boolean models entails inherent limitations, our model constitutes a primary tool for storing regulatory knowledge, searching for incoherencies in hypotheses and evaluating the effect of deleting regulatory elements involved in glucose repression.

  16. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  17. sRNA Antitoxins: More than One Way to Repress a Toxin

    Directory of Open Access Journals (Sweden)

    Jia Wen

    2014-08-01

    Full Text Available Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.

  18. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  19. Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae.

    Science.gov (United States)

    Shao, Yi; Bassler, Bonnie L

    2014-06-01

    Type VI secretion is critical for Vibrio cholerae to successfully combat phagocytic eukaryotes and to survive in the presence of competing bacterial species. V. cholerae type VI secretion system genes are encoded in one large and two small clusters. In V. cholerae, type VI secretion is controlled by quorum sensing, the cell-cell communication process that enables bacteria to orchestrate group behaviours. The quorum-sensing response regulator LuxO represses type VI secretion genes at low cell density and the quorum-sensing regulator HapR activates type VI secretion genes at high cell density. We demonstrate that the quorum regulatory small RNAs (Qrr sRNAs) that function between LuxO and HapR in the quorum-sensing cascade are required for these regulatory effects. The Qrr sRNAs control type VI secretion via two mechanisms: they repress expression of the large type VI secretion system cluster through base pairing and they repress HapR, the activator of the two small type VI secretion clusters. This regulatory arrangement ensures that the large cluster encoding many components of the secretory machine is expressed prior to the two small clusters that encode the secreted effectors. Qrr sRNA-dependent regulation of the type VI secretion system is conserved in pandemic and non-pandemic V. cholerae strains.

  20. Photoperiodic control of the floral transition through a distinct polycomb repressive complex.

    Science.gov (United States)

    Wang, Yizhong; Gu, Xiaofeng; Yuan, Wenya; Schmitz, Robert J; He, Yuehui

    2014-03-31

    Polycomb group (PcG) complexes such as PRC1 mediate transcriptional repression. Here, we show that the plant-specific EMBRYONIC FLOWER1 (EMF1), LIKE HETEROCHROMATIN PROTEIN1, and a histone H3 lysine-4 demethylase form a distinct PcG complex, termed EMF1c, that plays PRC1-like roles and is crucial for regulation of the florigen gene FLOWERING LOCUS T (FT) in Arabidopsis. Long-day photoperiods promote FT expression activation in leaf veins specifically at dusk through the photoperiod pathway to induce Arabidopsis flowering. We found that before dusk and at night, a vascular EMF1c directly represses FT expression to prevent photoperiod-independent flowering, whereas at dusk EMF1 binding to FT chromatin is disrupted by the photoperiod pathway, leading to proper FT activation. Furthermore, a MADS-domain transcription factor and potent floral repressor binds EMF1 to repress FT expression. Our study reveals that the vascular EMF1c integrates inputs from several flowering-regulatory pathways to synchronize flowering time to environmental cues.

  1. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness.

    Directory of Open Access Journals (Sweden)

    Mari Ekman

    Full Text Available Recent work has uncovered a role of the microRNA (miRNA miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to

  2. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness.

    Science.gov (United States)

    Ekman, Mari; Bhattachariya, Anirban; Dahan, Diana; Uvelius, Bengt; Albinsson, Sebastian; Swärd, Karl

    2013-01-01

    Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to matrix remodeling and

  3. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon.

  4. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position.

    Science.gov (United States)

    Shen, Manli; Mattox, William

    2012-01-01

    SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.

  5. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression.

    Science.gov (United States)

    Kagale, Sateesh; Rozwadowski, Kevin

    2011-02-01

    Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.

  6. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, E.S.S. de [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Vasques, L.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Stabellini, R.; Krepischi, A.C.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Pereira, L.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-10-17

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.

  7. Synthesis, Crystal Structure and Thermal Stability of a Saturated Dimeric Ce(Ⅲ)-chelated Complex Based on Benzoate and 1,10-Phenanthroline Ligands

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The title complex, [Ce(BA)3phen]2 (BA = benzoate, phen = 1,10-phenanthroline),was prepared by the reaction of Ce(NO3)3·6H2O, benzoic acid and 1,10-phenanthroline. The complex was characterized by single-crystal X-ray diffraction, elemental analysis, IR spectra and TG-DTG techniques. The results show that the crystal is of triclinic, space group P(1) with a =10.912(2), b = 11.962(3), c = 12.474(3)(A), a = 104.889(3), β = 93.523(3), γ = 113.332(3)°,C66H46Ce2N4O12, Mr = 1366.90, V= 1420.2(6) (A)3, Z = 1, Dc = 1.598 g/cm3,μ = 1.652 mm-1, S =1.024 and F(000) = 682. The final R = 0.0391 and wR = 0.0947 for 4878 observed reflections with I > 2σ(1). The structure of the title complex consists of two Ce(C6H5COO)3(C12H8N2) units,forming a binuclear molecule. Each Ce(Ⅲ) is coordinated by two O atoms of one bidentate chelating carboxylate group, five O atoms of two bidentate bridging and two tridentate chelating-bridging carboxylate groups, and two N atoms of one 1,10-phenanthroline molecule to complete a distorted monocapped square antiprism geometry. Its thermogravimetric analysis was determined by TG-DTG techniques.

  8. Toxic effects of sub-chronic exposure of male albino rats to emamectin benzoate and possible ameliorative role of Foeniculum vulgare essential oil.

    Science.gov (United States)

    El-Sheikh, El-Sayed A; Galal, Azza A A

    2015-05-01

    Emamectin benzoate (EB) is an avermectin insecticide used extensively in pest control on vegetable and field crops. Few studies have been done for evaluating adverse effects of EB. In the current study, we evaluated the toxic effects of EB on male rats and the possible ameliorative role of fennel essential oil (FEO). Thirty two male rats were randomly divided into 4 equal groups. All groups were treated orally with distilled water (control group), 0.5mlFEOkg(-1) BW (FEO group), 2.5mgEBkg(-1) BW (EB group), and 0.5mlFEOkg(-1) BW+2.5mgEBkg(-1) BW (FEO+EB group) for 28 days. The obtained results showed that EB treatment resulted in a significant decrease in body weight, body weight gain, RBC count, Hb concentration, % PCV, MCV and MCHC. Moreover, EB significantly decreased total leukocyte, lymphocyte, monocyte and platelet count but significantly increased granulocyte count. EB markedly decreased total protein, albumin, globulin, IgG and IgM concentrations with a significant increase in TNF-α secretion. EB had a negative impact on the liver as it significantly increased ALT, ALP, and MDA, while decreasing SOD activity. Regarding to the histopathological examination, EB treatment induced coagulative necrosis and blood vessels congestion of the liver in treated rats. Furthermore, it resulted in depletion and necrosis of the white pulp of the spleen in treated rats. The co-administration of FEO with EB, however, improved the majority of parameters studied, suggesting that FEO is an important substance in decreasing toxic effects of EB.

  9. Biological effects of the anti-parasitic chemotherapeutant emamectin benzoate on a non-target crustacean, the spot prawn (Pandalus platyceros Brandt, 1851) under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada); Ikonomou, Michael G. [Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, P.O. Box 6000, Sidney, BC, V8L 4B2 (Canada); Buday, Craig [Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC, V7H 1V2 (Canada); Jordan, Jameson; Rehaume, Vicki; Cabecinha, Melissa [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada); Dubetz, Cory; Chamberlain, Jon [Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, P.O. Box 6000, Sidney, BC, V8L 4B2 (Canada); Pittroff, Sabrina; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada); Aggelen, Graham van [Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC, V7H 1V2 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada)

    2012-02-15

    The potential impact of commercial salmon aquaculture along the coast of British Columbia on the health of non-target marine wildlife is of growing concern. In the current initiative, the biological effects on gene expression within spot prawn (Pandalus platyceros) exposed to the sea lice controlling agent, emamectin benzoate (EB; 0.1-4.8 mg/kg sediment), were investigated. A mean sediment/water partitioning coefficient (K{sub p}) was determined to be 21.81 and significant levels of EB were detected in the tail muscle tissue in all exposed animals. Animals selected for the experiment did not have eggs and were of similar weight. Significant mortality was observed within 8 days of EB treatment at concentrations between 0.1 and 0.8 mg/kg and there was no effect of EB on molting. Twelve spot prawn cDNA sequences were isolated from the tail muscle either by directed cloning or subtractive hybridization of control versus EB exposed tissues. Three of the transcripts most affected by EB exposure matched sequences encoding the 60S ribosomal protein L22, spliceosome RNA helicase WM6/UAP56, and the intracellular signal mediator histidine triad nucleotide binding protein 1 suggesting that translation, transcription regulation, and apoptosis pathways were impacted. The mRNA encoding the molting enzyme, {beta}-N-acetylglucosaminidase, was not affected by EB treatment. However, the expression of this transcript was extremely variable making it unsuitable for effects assessment. The results suggest that short-term exposure to EB can impact biological processes within this non-target crustacean.

  10. Structural and spectroscopic characterization of 1-(diaminomethylene) thiouron-1-ium benzoate and bis(1-(diaminomethylene)thiouron-1-ium) phthalate trihydrate

    Science.gov (United States)

    Perpétuo, Genivaldo Julio; Janczak, Jan

    2016-02-01

    Two single crystals of 1-(diaminomethylene) thiouron-1-ium benzoate (1) and bis(1-(diaminomethylene)thiouron-1-ium) phthalate trihydrate (2) were grown using a solution growth technique. The compound 1 crystallises in the centrosymmetric P21/c space group of the monoclinic system, whereas the compound 2 in the centrosymmetric Pbcn space group of orthorhombic system. The solid-state organisation of 1 and 2 has been analysed with respect to cation-anion and hydrogen bonding interactions. The oppositely charged units interact via almost linear hydrogen bonds with the graphs of R22(8) and R21(6) forming molecular complexes. In the crystal 1 the R22(8) motif is formed by donation to the carboxylate group from amine group joined to C1 and from imine group and R21(6) motif is formed by donation to the O2 from amine group joined to C2 and from imine group, whereas in crystal 2 the graphs are formed oppositely. Interactions between the hydrogen-bonded molecular complexes in 1 lead to formation of layered 2D structure, whereas in 2, due to presence of hydrated water molecules lead to formation of 3D hydrogen-bonded supramolecular network. The obtained deuterated analogues of 1 and 2 crystallise similar as H-compound in the monoclinic and orthorhombic system with quite similar lattice parameters. The compounds were also characterised by the FT-IR and Raman spectroscopies. The characteristic bands of the functional and skeletal groups are discussed.

  11. Food additives such as sodium sulphite, sodium benzoate and curcumin inhibit leptin release in lipopolysaccharide-treated murine adipocytes in vitro.

    Science.gov (United States)

    Ciardi, Christian; Jenny, Marcel; Tschoner, Alexander; Ueberall, Florian; Patsch, Josef; Pedrini, Michael; Ebenbichler, Christoph; Fuchs, Dietmar

    2012-03-01

    Obesity leads to the activation of pro-inflammatory pathways, resulting in a state of low-grade inflammation. Recently, several studies have shown that the exposure to lipopolysaccharide (LPS) could initiate and maintain a chronic state of low-grade inflammation in obese people. As the daily intake of food additives has increased substantially, the aim of the present study was to investigate a potential influence of food additives on the release of leptin, IL-6 and nitrite in the presence of LPS in murine adipocytes. Leptin, IL-6 and nitrite concentrations were analysed in the supernatants of murine 3T3-L1 adipocytes after co-incubation with LPS and the food preservatives, sodium sulphite (SS), sodium benzoate (SB) and the spice and colourant, curcumin, for 24 h. In addition, the kinetics of leptin secretion was analysed. A significant and dose-dependent decrease in leptin was observed after incubating the cells with SB and curcumin for 12 and 24 h, whereas SS decreased leptin concentrations after 24 h of treatment. Moreover, SS increased, while curcumin decreased LPS-stimulated secretion of IL-6, whereas SB had no such effect. None of the compounds that were investigated influenced nitrite production. The food additives SS, SB and curcumin affect the leptin release after co-incubation with LPS from cultured adipocytes in a dose- and time-dependent manner. Decreased leptin release during the consumption of nutrition-derived food additives could decrease the amount of circulating leptin to which the central nervous system is exposed and may therefore contribute to an obesogenic environment.

  12. Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Khushbu K Modi

    Full Text Available This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB in attenuating oxidative stress and protecting memory and learning in an animal model of Alzheimer's disease (AD. NaB, but not sodium formate, was found to inhibit LPS-induced production of reactive oxygen species (ROS in mouse microglial cells. Similarly, NaB also inhibited fibrillar amyloid beta (Aβ- and 1-methyl-4-phenylpyridinium(+-induced microglial production of ROS. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on ROS production by mevalonate, and geranylgeranyl pyrophosphate, but not cholesterol, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the antioxidant effect of NaB. Furthermore, we demonstrate that an inhibitor of p21rac geranylgeranyl protein transferase suppressed the production of ROS and that NaB suppressed the activation of p21rac in microglia. As expected, marked activation of p21rac was observed in the hippocampus of subjects with AD and 5XFAD transgenic (Tg mouse model of AD. However, oral feeding of cinnamon (Cinnamonum verum powder and NaB suppressed the activation of p21rac and attenuated oxidative stress in the hippocampus of Tg mice as evident by decreased dihydroethidium (DHE and nitrotyrosine staining, reduced homocysteine level and increased level of reduced glutathione. This was accompanied by suppression of neuronal apoptosis, inhibition of glial activation, and reduction of Aβ burden in the hippocampus and protection of memory and learning in transgenic mice. Therefore, cinnamon powder may be a promising natural supplement in halting or delaying the progression of AD.

  13. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate.

    Science.gov (United States)

    Lin, Wen-Ying; Sohma, Yoshiro; Hwang, Tzyh-Chang

    2016-09-01

    Cystic fibrosis (CF) is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a phosphorylation-activated but ATP-gated chloride channel. Previous studies suggested that VX-770 [ivacaftor, N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide], a CFTR potentiator now used in clinics, increases the open probability of CFTR by shifting the gating conformational changes to favor the open channel configuration. Recently the chloride channel blocker and CFTR potentiator 5-nitro-2-(3-phenylpropylamino) benzoate (NPPB) has been reported to enhance CFTR activity by a mechanism that exploits the ATP hydrolysis-driven, nonequilibrium gating mechanism unique to CFTR. Surprisingly however, NPPB increased the activity of nonhydrolytic G551D-CFTR, the third most common disease-associated mutation. Here, we further investigated the mechanism of NPPB's effects on CFTR gating by assessing its interaction with well-studied VX-770. Interestingly, once G551D-CFTR was maximally potentiated by VX-770, NPPB further increased its activity. However, quantitative analysis of this drug-drug interaction suggests that this pharmacologic synergism is not due to independent actions of NPPB and VX-770 on CFTR gating; instead, our data support a dependent mechanism involving two distinct binding sites. This latter idea is further supported by the observation that the locked-open time of a hydrolysis-deficient mutant K1250A was shortened by NPPB but prolonged by VX-770. In addition, the effectiveness of NPPB, but not of VX-770, was greatly diminished in a mutant whose second nucleotide-binding domain was completely removed. Interpreting these results under the framework of current understanding of CFTR gating not only reveals insights into the mechanism of action for different CFTR potentiators but also brings us one step forward to a more complete schematic for CFTR gating.

  14. Endocytosis of a maltose permease is induced when amylolytic enzyme production is repressed in Aspergillus oryzae.

    Science.gov (United States)

    Hiramoto, Tetsuya; Tanaka, Mizuki; Ichikawa, Takanori; Matsuura, Yuka; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya

    2015-09-01

    In the filamentous fungus Aspergillus oryzae, amylolytic enzyme production is induced by the presence of maltose. Previously, we identified a putative maltose permease (MalP) gene in the maltose-utilizing cluster of A. oryzae. malP disruption causes a significant decrease in α-amylase activity and maltose consumption, indicating that MalP is a maltose transporter required for amylolytic enzyme production in A. oryzae. Although the expression of amylase genes and malP is repressed by the presence of glucose, the effect of glucose on the abundance of functional MalP is unknown. In this study, we examined the effect of glucose and other carbon sources on the subcellular localization of green fluorescence protein (GFP)-tagged MalP. After glucose addition, GFP-MalP at the plasma membrane was internalized and delivered to the vacuole. This glucose-induced internalization of GFP-MalP was inhibited by treatment with latrunculin B, an inhibitor of actin polymerization. Furthermore, GFP-MalP internalization was inhibited by repressing the HECT ubiquitin ligase HulA (ortholog of yeast Rsp5). These results suggest that MalP is transported to the vacuole by endocytosis in the presence of glucose. Besides glucose, mannose and 2-deoxyglucose also induced the endocytosis of GFP-MalP and amylolytic enzyme production was inhibited by the addition of these sugars. However, neither the subcellular localization of GFP-MalP nor amylolytic enzyme production was influenced by the addition of xylose or 3-O-methylglucose. These results imply that MalP endocytosis is induced when amylolytic enzyme production is repressed.

  15. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guangyun [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Jilin Province Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun (China); Shi, Yuling [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Wu, Zhao-Hui, E-mail: zwu6@uthsc.edu [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  16. I-mfa domain proteins specifically interact with SERTA domain proteins and repress their transactivating functions.

    Science.gov (United States)

    Kusano, Shuichi; Shiimura, Yuki; Eizuru, Yoshito

    2011-09-01

    The I-mfa domain proteins I-mfa and HIC are considered to be candidate tumor suppressor genes and have been shown to be involved in transcriptional regulation. We show here that I-mfa and HIC specifically interact with SEI-1 through their C-terminal I-mfa domains in vivo. This interaction affects the intracellular localization of I-mfa and requires the region of SEI-1 between 30 and 90 amino acids, which includes its SERTA domain, and results in repression of its intrinsic transcriptional activity. I-mfa also decreases the levels of the SEI-1·DP-1 complex and endogenous Fbxw7 mRNA, the expression of which is coregulated by E2F·DP-1 and SEI-1 in an interaction-dependent manner in vitro. In addition, I-mfa also specifically interacts with other SERTA domain-containing proteins, including SEI-2, SEI-3, SERTAD3 and SERTAD4, through its I-mfa domain in vivo. This interaction also affects the intracellular localization of I-mfa and represses the intrinsic transcriptional activities of SEI-2 and SERTAD3, which are also involved in the E2F-dependent transcription. These data reveal for the first time that I-mfa domain proteins interact with SERTA domain proteins and negatively regulate their transcriptional activity. Because SEI-1, SEI-2 and SERTAD3, whose intrinsic transcriptional activities are repressed by I-mfa, are suggested to be oncogenes, I-mfa domain proteins may be involved in their oncogenic functions by negatively regulating their transcriptional activities.

  17. Repression of androgen receptor transcription through the E2F1/DNMT1 axis.

    Directory of Open Access Journals (Sweden)

    Conrad David Valdez

    Full Text Available Although androgen receptor (AR function has been extensively studied, regulation of the AR gene itself has been much less characterized. In this study, we observed a dramatic reduction in the expression of androgen receptor mRNA and protein in hyperproliferative prostate epithelium of keratin 5 promoter driven E2F1 transgenic mice. To confirm an inhibitory function for E2F1 on AR transcription, we showed that E2F1 inhibited the transcription of endogenous AR mRNA, subsequent AR protein, and AR promoter activity in both human and mouse epithelial cells. E2F1 also inhibited androgen-stimulated activation of two AR target gene promoters. To elucidate the molecular mechanism of E2F-mediated inhibition of AR, we evaluated the effects of two functional E2F1 mutants on AR promoter activity and found that the transactivation domain appears to mediate E2F1 repression of the AR promoter. Because DNMT1 is a functional intermediate of E2F1 we examined DNMT1 function in AR repression. Repression of endogenous AR in normal human prostate epithelial cells was relieved by DNMT1 shRNA knock down. DNMT1 was shown to be physically associated within the AR minimal promoter located 22 bps from the transcription start site; however, methylation remained unchanged at the promoter regardless of DNMT1 expression. Taken together, our results suggest that DNMT1 operates either as a functional intermediary or in cooperation with E2F1 inhibiting AR gene expression in a methylation independent manner.

  18. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α.

    Science.gov (United States)

    Bhalla, Kavita; Liu, Wan-Ju; Thompson, Keyata; Anders, Lars; Devarakonda, Srikripa; Dewi, Ruby; Buckley, Stephanie; Hwang, Bor-Jang; Polster, Brian; Dorsey, Susan G; Sun, Yezhou; Sicinski, Piotr; Girnun, Geoffrey D

    2014-10-01

    Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1-mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis.

  19. Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis.

    Science.gov (United States)

    Sosanya, Natasha M; Brager, Darrin H; Wolfe, Sarah; Niere, Farr; Raab-Graham, Kimberly F

    2015-01-01

    Changes in ion channel expression are implicated in the etiology of epilepsy. However, the molecular leading to long-term aberrant expression of ion channels are not well understood. The mechanistic/mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates activity-dependent protein synthesis in neurons. mTOR is overactive in epilepsy, suggesting that excessive protein synthesis may contribute to the neuronal pathology. In contrast, we found that mTOR activity and the microRNA miR-129-5p reduce the expression of the voltage-gated potassium channel Kv1.1 in an animal model of temporal lobe epilepsy (TLE). When mTOR activity is low, Kv1.1 expression is high and the frequency of behavioral seizures is low. However, as behavioral seizure activity rises, mTOR activity increases and Kv1.1 protein levels drop. In CA1 pyramidal neurons, the reduction in Kv1.1 lowers the threshold for action potential firing. Interestingly, blocking mTOR activity with rapamycin reduces behavioral seizures and temporarily keeps Kv1.1 levels elevated. Overtime, seizure activity increases and Kv1.1 protein decreases in all animals, even those treated with rapamycin. Notably, the concentration of miR-129-5p, the negative regulator of Kv1.1 mRNA translation, increases by 21days post-status epilepticus (SE), sustaining Kv1.1 mRNA translational repression. Our results suggest that following kainic-acid induced status epilepticus there are two phases of Kv1.1 repression: (1) an initial mTOR-dependent repression of Kv1.1 that is followed by (2) a miR-129-5p persistent reduction of Kv1.1.

  20. Influence of repressive coping style on cortical activation during encoding of angry faces.

    Directory of Open Access Journals (Sweden)

    Astrid Veronika Rauch

    Full Text Available BACKGROUND: Coping plays an important role for emotion regulation in threatening situations. The model of coping modes designates repression and sensitization as two independent coping styles. Repression consists of strategies that shield the individual from arousal. Sensitization indicates increased analysis of the environment in order to reduce uncertainty. According to the discontinuity hypothesis, repressors are sensitive to threat in the early stages of information processing. While repressors do not exhibit memory disturbances early on, they manifest weak memory for these stimuli later. This study investigates the discontinuity hypothesis using functional magnetic resonance imaging (fMRI. METHODS: Healthy volunteers (20 repressors and 20 sensitizers were selected from a sample of 150 students on the basis of the Mainz Coping Inventory. During the fMRI experiment, subjects evaluated and memorized emotional and neutral faces. Subjects performed two sessions of face recognition: immediately after the fMRI session and three days later. RESULTS: Repressors exhibited greater activation of frontal, parietal and temporal areas during encoding of angry faces compared to sensitizers. There were no differences in recognition of facial emotions between groups neither immediately after exposure nor after three days. CONCLUSIONS: The fMRI findings suggest that repressors manifest an enhanced neural processing of directly threatening facial expression which confirms the assumption of hyper-responsivity to threatening information in repression in an early processing stage. A discrepancy was observed between high neural activation in encoding-relevant brain areas in response to angry faces in repressors and no advantage in subsequent memory for these faces compared to sensitizers.

  1. Nrf2-dependent repression of interleukin-12 expression in human dendritic cells exposed to inorganic arsenic.

    Science.gov (United States)

    Macoch, Mélinda; Morzadec, Claudie; Génard, Romain; Pallardy, Marc; Kerdine-Römer, Saadia; Fardel, Olivier; Vernhet, Laurent

    2015-11-01

    Inorganic arsenic, a well-known Nrf2 inducer, exerts immunosuppressive properties. In this context, we recently reported that the differentiation of human blood monocytes into immature dendritic cells (DCs), in the presence of low and noncytotoxic concentrations of arsenic, represses the ability of DCs to release key cytokines in response to different stimulating agents. Particularly, arsenic inhibits the expression of human interleukin-12 (IL-12, also named IL-12p70), a major proinflammatory cytokine that controls the differentiation of Th1 lymphocytes. In the present study, we determined if Nrf2 could contribute to these arsenic immunotoxic effects. To this goal, human monocyte-derived DCs were first differentiated in the absence of metalloid and then pretreated with arsenic just before DC stimulation with lipopolysaccharide (LPS). Under these experimental conditions, arsenic rapidly and stably activates Nrf2 and increases the expression of Nrf2 target genes. It also significantly inhibits IL-12 expression in activated DCs, at both mRNA and protein levels. Particularly, arsenic reduces mRNA levels of IL12A and IL12B genes which encodes the p35 and p40 subunits of IL-12p70, respectively. tert-Butylhydroquinone (tBHQ), a reference Nrf2 inducer, mimics arsenic effects and potently inhibits IL-12 expression. Genetic inhibition of Nrf2 expression markedly prevents the repression of both IL12 mRNA and IL-12 protein levels triggered by arsenic and tBHQ in human LPS-stimulated DCs. In addition, arsenic significantly reduces IL-12 mRNA levels in LPS-activated bone marrow-derived DCs from Nrf2+/+ mice but not in DCs from Nrf2-/- mice. Finally, we show that, besides IL-12, arsenic significantly reduces the expression of IL-23, another heterodimer containing the p40 subunit. In conclusion, our study demonstrated that arsenic represses IL-12 expression in human-activated DCs by specifically stimulating Nrf2 activity.

  2. Role of ND10 nuclear bodies in the chromatin repression of HSV-1.

    Science.gov (United States)

    Gu, Haidong; Zheng, Yi

    2016-04-05

    Herpes simplex virus (HSV) is a neurotropic virus that establishes lifelong latent infection in human ganglion sensory neurons. This unique life cycle necessitates an intimate relation between the host defenses and virus counteractions over the long course of infection. Two important aspects of host anti-viral defense, nuclear substructure restriction and epigenetic chromatin regulation, have been intensively studied in the recent years. Upon viral DNA entering the nucleus, components of discrete nuclear bodies termed nuclear domain 10 (ND10), converge at viral DNA and place restrictions on viral gene expression. Meanwhile the infected cell mobilizes its histones and histone-associated repressors to force the viral DNA into nucleosome-like structures and also represses viral transcription. Both anti-viral strategies are negated by various HSV countermeasures. One HSV gene transactivator, infected cell protein 0 (ICP0), is a key player in antagonizing both the ND10 restriction and chromatin repression. On one hand, ICP0 uses its E3 ubiquitin ligase activity to target major ND10 components for proteasome-dependent degradation and thereafter disrupts the ND10 nuclear bodies. On the other hand, ICP0 participates in de-repressing the HSV chromatin by changing histone composition or modification and therefore activates viral transcription. Involvement of a single viral protein in two seemingly different pathways suggests that there is coordination in host anti-viral defense mechanisms and also cooperation in viral counteraction strategies. In this review, we summarize recent advances in understanding the role of chromatin regulation and ND10 dynamics in both lytic and latent HSV infection. We focus on the new observations showing that ND10 nuclear bodies play a critical role in cellular chromatin regulation. We intend to find the connections between the two major anti-viral defense pathways, chromatin remodeling and ND10 structure, in order to achieve a better

  3. Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Helene Persak

    2014-02-01

    Full Text Available In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  4. Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD.

    Science.gov (United States)

    Eade, Colleen R; Hung, Chien-Che; Bullard, Brian; Gonzalez-Escobedo, Geoffrey; Gunn, John S; Altier, Craig

    2016-08-01

    Salmonella spp. are carried by and can acutely infect agricultural animals and humans. After ingestion, salmonellae traverse the upper digestive tract and initiate tissue invasion of the distal ileum, a virulence process carried out by the type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). Salmonellae coordinate SPI-1 expression with anatomical location via environmental cues, one of which is bile, a complex digestive fluid that causes potent repression of SPI-1 genes. The individual components of bile responsible for SPI-1 repression have not been previously characterized, nor have the bacterial signaling processes that modulate their effects been determined. Here, we characterize the mechanism by which bile represses SPI-1 expression. Individual bile acids exhibit repressive activity on SPI-1-regulated genes that requires neither passive diffusion nor OmpF-mediated entry. By using genetic methods, the effects of bile and bile acids were shown to require the invasion gene transcriptional activator hilD and to function independently of known upstream signaling pathways. Protein analysis techniques showed that SPI-1 repression by bile acids is mediated by posttranslational destabilization of HilD. Finally, we found that bile acids function synergistically to achieve the overall repressive activity of bile. These studies demonstrate a common mechanism by which diverse environmental cues (e.g., certain short-chain fatty acids and bile acids) inhibit SPI-1 expression. These data provide information relevant to Salmonella pathogenesis during acute infection in the intestine and during chronic infection of the gallbladder and inform the basis for development of therapeutics to inhibit invasion as a means of repressing Salmonella pathogenicity.

  5. An electrochemical sensor for rizatriptan benzoate determination using Fe{sub 3}O{sub 4} nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe{sub 3}O{sub 4} nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5–100.0 μmol L{sup −1} with a detection limit of 0.09 μmol L{sup −1} under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. - Highlights: • Simple and sensitive Fe{sub 3}O{sub 4}/MWCNTs/GCE for rizatriptan benzoate determination • The surface morphology of nanocomposite was characterized by SEM and EDS. • Rizatriptan benzoate was measured at 0.09 μmol L{sup −1} with good sensitivity and selectivity. • The electrode has been successfully applied in serum and pharmaceutical samples. • The nanocomposite had excellent electrocatalytic activity and biocompatibility.

  6. A grande repressão de 1932 em São Paulo.

    Directory of Open Access Journals (Sweden)

    Marcos Tarcisio Florindo

    2015-06-01

    Full Text Available O presente artigo analisa a grande repressão política e social que acompanhou o desenrolar da revolução constitucionalista de 1932 na cidade de São Paulo e avalia o impacto das práticas de contenção nas organizações atingidas, sobretudo os sindicatos e partidos dirigidos por militantes da revolução social. As fontes principais para a elaboração do texto são os documentos produzidos pelo DEOPS/SP.

  7. Bureau-repression: Administrative Sanction and Social Control in Modern Spain

    Directory of Open Access Journals (Sweden)

    Pedro Oliver Olmo

    2015-12-01

    Full Text Available This paper explains the creation of an intelligible suggestion for better understanding the administrative sanction in many disciplines in social sciences: the bureau-repression. The coining of this concept is due especially to the repression to which social protestors and demonstrators have been subject since the birth of the 15-M movement in Spain. However, bureau-repression had already begun being exercised in the years following the Transition, and it has developed in parallel to the stage of Security State that characterizes the state system of social control. A detailed analysis of the administrative sanction is performed for many benefits which such sanction provides for those in power, who use it both to silence voices from the street and to dispose of elements which are harmful for the neoliberal system (disadvantaged groups or immigrants. In short, the reader will find the underlying political and repressive background which, at first glance, is usually a monetary fine, and will discover that there are ways to avoid this dense surveillance exercised over the governed people (bureau-resistance. Este artículo explica la creación de una sugerencia inteligible para una mejor comprensión de la sanción administrativa en muchas disciplinas de las ciencias sociales: la burorrepresión. Este término nació especialmente a raíz de la represión que han sufrido los manifestantes de las protestas sociales desde el nacimiento del movimiento 15-M en España. Sin embargo, la burorrepresión ya había comenzado a ejercerse en los años que siguieron a la Transición, y se ha desarrollado de forma paralela al estado de seguridad que caracteriza el sistema estatal de control social. Se realiza un análisis detallado de la sanción administrativa, desarrollada en beneficio de los que están en el poder, quienes la usan tanto para silenciar las voces de la calle como para deshacerse de elementos que sean perjudiciales para el sistema neoliberal

  8. Greves, sindicatos e repressão policial no Rio de Janeiro (1954-1964)

    OpenAIRE

    Marcelo Badaró Mattos

    2004-01-01

    Este artigo apresenta parte dos resultados de uma pesquisa sobre as greves e a repressão aos sindicatos no Rio de Janeiro entre 1954 e 1964. Seu objetivo central é rediscutir a relação entre Estado, empresários e trabalhadores organizados no período em questão a partir da dimensão de conflito explicitada nos momentos de greve. Pretendeu-se também apresentar dados mais completos que os anteriormente disponíveis sobre o total e as características das greves, bem como explorar o potencial da doc...

  9. Molecular Determinants for PspA-Mediated Repression of the AAA Transcriptional Activator PspF

    OpenAIRE

    Elderkin, Sarah; Bordes, Patricia; Jones, Susan; Rappas, Mathieu; Buck, Martin

    2005-01-01

    The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the σ54 subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of σ54 AAA activators in that it lacks an N-terminal regulatory domain and is instead negatively regulated by another regulatory protein, PspA. PspA therefore represses its own exp...

  10. Repression of telomere-associated genes by microglia activation in neuropsychiatric disease.

    Science.gov (United States)

    Kronenberg, Golo; Uhlemann, Ria; Schöner, Johanna; Wegner, Stephanie; Boujon, Valérie; Deigendesch, Nikolas; Endres, Matthias; Gertz, Karen

    2016-11-28

    Microglia senescence may promote neuropsychiatric disease. This prompted us to examine the relationship between microglia activation states and telomere biology. A panel of candidate genes associated with telomere maintenance, mitochondrial biogenesis, and cell-cycle regulation were investigated in M1- and M2-polarized microglia in vitro as well as in MACS-purified CD11b+ microglia/brain macrophages from models of stroke, Alzheimer's disease, and chronic stress. M1 polarization, ischemia, and Alzheimer pathology elicited a strikingly similar transcriptomic profile with, in particular, reduced expression of murine Tert. Our results link classical microglia activation with repression of telomere-associated genes, suggesting a new mechanism underlying microglia dysfunction.

  11. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    OpenAIRE

    Aidan J Peterson; Mallin, Daniel R.; Francis, Nicole J.; Ketel, Carrie S.; Stamm, Joyce; Voeller, Rochus K.; Kingston, Robert E.; Jeffrey A Simon

    2004-01-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH int...

  12. HPLC测定布洛芬口服溶液中苯甲酸钠、安赛蜜含量%Content Determination of Sodium Benzoate and Acesulfame in Ibuprofen Oral Solution by HPLC

    Institute of Scientific and Technical Information of China (English)

    黎艳刚; 段峰; 郭丽蓉; 程飞; 王真; 杨武亮

    2013-01-01

    目的:建立HPLC测定布洛芬口服溶液中苯甲酸钠和安赛蜜含量的方法.方法:采用HPLC测定,色谱条件为J'sphere ODS-H80色谱柱(4.6 mm×250 mm,4.0 μm),流动相0.02 mol·L-1乙酸铵-甲醇(85∶ 15),流速1 mL· min-1,柱温30℃,检测波长230 nm,进样量10 μL.结果:苯甲酸钠和安赛蜜可有效分离,安赛蜜、苯甲酸钠线性范围依次为15.75 ~110.25,7.8~47.8 μg;平均回收率依次为100.51%(RSD 0.79%),100.42%(RSD 1.56%).结论:该方法灵敏、简便、重复性好,可为布洛芬口服溶液中苯甲酸钠和安赛蜜的含量测定提供参考.%Objective: To establish a HPLC method for simultaneously determining the content of sodium benzoate and acesulfame in ibuprofen oral solution. Method: The content of sodium benzoate and acesulfame was determined by HPLC, chromatographic conditions were as follows; J'sphere ODS-H80 column ( 4. 6 mm × 250 mm, 4.0 μm) , the mobile phase of methanol-0. 02 mol·L-1ammonium acetate (15:85) , column temperature 30 ℃ , the flow rate of 1. 0 mL · min-1 , detection wavelength 230 nm, the injection volume 10 μL. Result: Acesulfame showed a good linear relationship at the range of 15.75-110.25 μg, the average recovery of it was 100. 51% with RSD 0. 79% . Sodium benzoate showed a good linear relationship at the range of 7. 847. 8 μg, the average recovery was 100.42% with RSD 1.56%. Conclusion: This method was sensitive, simple and reproducible, it could provide a reference for determining the content of sodium benzoate and acesulfame in ibuprofen oral solution.

  13. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28

    Science.gov (United States)

    Murphy, Kristin E.; Shylo, Natalia A.; Alexander, Katherine A.; Churchill, Angela J.; Copperman, Cecilia; García-García, María J.

    2016-01-01

    KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity. PMID:27658112

  14. Regional repression of a Drosophila POU box gene in the endoderm involves inductive interactions between germ layers.

    Science.gov (United States)

    Affolter, M; Walldorf, U; Kloter, U; Schier, A F; Gehring, W J

    1993-04-01

    An induction process occurring between the mesodermal and the endodermal germ layers has recently been described in the regulation of the Drosophila homeotic gene labial (lab). We report here that proper spatial regulation of the Drosophila POU box gene pdm-1 products also involves interaction between these two germ layers. pdm-1 transcripts are initially present in both the anterior and the posterior endodermal midgut primordia. Upon fusion of the two primordia, transcripts disappear from two regions in the endoderm, a central domain and an anterior domain. The anterior repression domain of pdm-1 is independent of the expression of known homeotic genes and genes encoding secreted signalling molecules in the visceral mesoderm, both for its positioning and its repression. Repression in the central domain requires both the homeotic gene Ultrabithorax (Ubx) and the decapentaplegic (dpp) gene, which encodes a secreted protein. Both of these genes are also required for lab induction. However, the analysis of pdm-1 expression in various mutant backgrounds indicates that the regulation of lab and pdm-1 across germ layers is controlled by different genetic cascades. Our study indicates that dpp is not the signal that dictates central pdm-1 repression across germ layers and suggests that in the same midgut region, different signalling pathways result in the differential activation or repression of potential transcription factors.

  15. Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Michael Anthony Ruiz

    Full Text Available Glucose-induced augmented vascular endothelial growth factor (VEGF production is a key event in diabetic retinopathy. We have previously demonstrated that downregulation of miR-200b increases VEGF, mediating structural and functional changes in the retina in diabetes. However, mechanisms regulating miR-200b in diabetes are not known. Histone methyltransferase complex, Polycomb Repressive Complex 2 (PRC2, has been shown to repress miRNAs in neoplastic process. We hypothesized that, in diabetes, PRC2 represses miR-200b through its histone H3 lysine-27 trimethylation mark. We show that human retinal microvascular endothelial cells exposed to high levels of glucose regulate miR-200b repression through histone methylation and that inhibition of PRC2 increases miR-200b while reducing VEGF. Furthermore, retinal tissue from animal models of diabetes showed increased expression of major PRC2 components, demonstrating in vivo relevance. This research established a repressive relationship between PRC2 and miR-200b, providing evidence of a novel mechanism of miRNA regulation through histone methylation.

  16. Norepinephrine causes epigenetic repression of PKCε gene in rodent hearts by activating Nox1-dependent reactive oxygen species production.

    Science.gov (United States)

    Xiong, Fuxia; Xiao, Daliao; Zhang, Lubo

    2012-07-01

    Heart disease is the leading cause of death in the United States. Recent studies demonstrate that fetal programming of PKCε gene repression results in ischemia-sensitive phenotype in the heart. The present study tests the hypothesis that increased norepinephrine causes epigenetic repression of PKCε gene in the heart via Nox1-dependent reactive oxygen species (ROS) production. Prolonged norepinephrine treatment increased ROS production in fetal rat hearts and embryonic ventricular myocyte H9c2 cells via a selective increase in Nox1 expression. Norepinephrine-induced ROS resulted in an increase in PKCε promoter methylation at Egr-1 and Sp-1 binding sites, leading to PKCε gene repression. N-acetylcysteine, diphenyleneiodonium, and apocynin blocked norepinephrine-induced ROS production and the promoter methylation, and also restored PKCε mRNA and protein to control levels in vivo in fetal hearts and in vitro in embryonic myocyte cells. Accordingly, norepinephrine-induced ROS production, promoter methylation, and PKCε gene repression were completely abrogated by knockdown of Nox1 in cardiomyocytes. These findings provide evidence of a novel interaction between elevated norepinephrine and epigenetic repression of PKCε gene in the heart mediated by Nox1-dependent oxidative stress and suggest new insights of molecular mechanisms linking the heightened sympathetic activity to aberrant cardioprotection and increased ischemic vulnerability in the heart.

  17. Nitric oxide inhibits larval settlement in Amphibalanus amphitrite cyprids by repressing muscle locomotion and molting

    KAUST Repository

    Zhang, Gen

    2015-08-28

    Nitric oxide (NO) is a universal signaling molecule and plays a negative role in the metamorphosis of many biphasic organisms. Recently, the NO/NO (cyclic guanosine monophosphate) signaling pathway was reported to repress larval settlement in the barnacle Amphibalanus amphitrite. To understand the underlying molecular mechanism, we analyzed changes in the proteome of A. amphitrite cyprids in response to different concentrations of the NO donor sodium nitroprusside (SNP; 62.5, 250 and 1000 μM) using a label-free proteomics method. Compared with the control, the expression of 106 proteins differed in all three treatments. These differentially expressed proteins were assigned to 13 pathways based on KEGG pathway enrichment analysis. SNP treatment stimulated the expression of heat shock proteins and arginine kinase, which are functionally related to NO synthases, increased the expression levels of glutathione transferases for detoxification, and activated the iron-mediated fatty acid degradation pathway and the citrate cycle through ferritin. Moreover, NO repressed the level of myosins and cuticular proteins, which indicated that NO might inhibit larval settlement in A. amphitrite by modulating the process of muscle locomotion and molting.

  18. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment.

    Science.gov (United States)

    Read, Martin L; Lewy, Greg D; Fong, Jim C W; Sharma, Neil; Seed, Robert I; Smith, Vicki E; Gentilin, Erica; Warfield, Adrian; Eggo, Margaret C; Knauf, Jeffrey A; Leadbeater, Wendy E; Watkinson, John C; Franklyn, Jayne A; Boelaert, Kristien; McCabe, Christopher J

    2011-10-01

    Pituitary tumor transforming gene (PTTG)-binding factor (PBF or PTTG1IP) is a little characterized proto-oncogene that has been implicated in the etiology of breast and thyroid tumors. In this study, we created a murine transgenic model to target PBF expression to the thyroid gland (PBF-Tg mice) and found that these mice exhibited normal thyroid function, but a striking enlargement of the thyroid gland associated with hyperplastic and macrofollicular lesions. Expression of the sodium iodide symporter (NIS), a gene essential to the radioiodine ablation of thyroid hyperplasia, neoplasia, and metastasis, was also potently inhibited in PBF-Tg mice. Critically, iodide uptake was repressed in primary thyroid cultures from PBF-Tg mice, which could be rescued by PBF depletion. PBF-Tg thyroids exhibited upregulation of Akt and the TSH receptor (TSHR), each known regulators of thyrocyte proliferation, along with upregulation of the downstream proliferative marker cyclin D1. We extended and confirmed findings from the mouse model by examining PBF expression in human multinodular goiters (MNG), a hyperproliferative thyroid disorder, where PBF and TSHR was strongly upregulated relative to normal thyroid tissue. Furthermore, we showed that depleting PBF in human primary thyrocytes was sufficient to increase radioiodine uptake. Together, our findings indicate that overexpression of PBF causes thyroid cell proliferation, macrofollicular lesions, and hyperplasia, as well as repression of the critical therapeutic route for radioiodide uptake.

  19. Manipulating the sensitivity of signal-induced repression: quantification and consequences of altered brinker gradients.

    Directory of Open Access Journals (Sweden)

    Lucia Gafner

    Full Text Available Traditionally, the analysis of gene regulatory regions suffered from the caveat that it was restricted to artificial contexts (e.g. reporter constructs of limited size. With the advent of the BAC recombineering technique, genomic constructs can now be generated to test regulatory elements in their endogenous environment. The expression of the transcriptional repressor brinker (brk is negatively regulated by Dpp signaling. Repression is mediated by small sequence motifs, the silencer elements (SEs, that are present in multiple copies in the regulatory region of brk. In this work, we manipulated the SEs in the brk locus. We precisely quantified the effects of the individual SEs on the Brk gradient in the wing disc by employing a 1D data extraction method, followed by the quantification of the data with reference to an internal control. We found that mutating the SEs results in an expansion of the brk expression domain. However, even after mutating all predicted SEs, repression could still be observed in regions of maximal Dpp levels. Thus, our data point to the presence of additional, low affinity binding sites in the brk locus.

  20. Repression of Seed Maturation Genes by a Trihelix Transcriptional Repressor in Arabidopsis Seedlings[W

    Science.gov (United States)

    Gao, Ming-Jun; Lydiate, Derek J.; Li, Xiang; Lui, Helen; Gjetvaj, Branimir; Hegedus, Dwayne D.; Rozwadowski, Kevin

    2009-01-01

    The seed maturation program is repressed during germination and seedling development so that embryonic genes are not expressed in vegetative organs. Here, we describe a regulator that represses the expression of embryonic seed maturation genes in vegetative tissues. ASIL1 (for Arabidopsis 6b-interacting protein 1-like 1) was isolated by its interaction with the Arabidopsis thaliana 2S3 promoter. ASIL1 possesses domains conserved in the plant-specific trihelix family of DNA binding proteins and belongs to a subfamily of 6b-interacting protein 1-like factors. The seedlings of asil1 mutants exhibited a global shift in gene expression to a profile resembling late embryogenesis. LEAFY COTYLEDON1 and 2 were markedly derepressed during early germination, as was a large subset of seed maturation genes, such as those encoding seed storage proteins and oleosins, in seedlings of asil1 mutants. Consistent with this, asil1 seedlings accumulated 2S albumin and oil with a fatty acid composition similar to that of seed-derived lipid. Moreover, ASIL1 specifically recognized a GT element that overlaps the G-box and is in close proximity to the RY repeats of the 2S promoters. We suggest that ASIL1 targets GT-box–containing embryonic genes by competing with the binding of transcriptional activators to this promoter region. PMID:19155348

  1. Soviet Government and Repressions against Priests in Vladikavkaz (1920-1930s

    Directory of Open Access Journals (Sweden)

    Svetlana A. Khabulova

    2012-12-01

    Full Text Available The article deals with a repressive character of interrelations between the Soviet Government and Priesthood in Vladikavkaz in 1920-30s. The Church and the Believers experienced the most tragic time when the totalitarian regime came into being in the country in 1920-1930s. The author has proved that the clergy and believers considered by Authorities as a hotbed of opposition and dissidence were subjected to prosecutions. The prosecutions against the Church paved the way for a new political regime, bringing about fear, snitching and spy mania. The human values were replaced by new regime values, the national identity was destroyed and thousands of believers were eliminated.As a result, a good number of cultural values was destroyed. The major part of Russian Intelligentsia was kicked out of the country and deprived of their rights to vote. However, people have managed to preserve religion despite the anti-Church prosecutions of 1920–1930s.It is concluded that that the Soviet Authorities tried to influence on the Church through juridical regulations. Besides, the history of repressions towards the religious communities in Vladikavkaz has been traced.

  2. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.

    Science.gov (United States)

    Wong, Piu; Hattangadi, Shilpa M; Cheng, Albert W; Frampton, Garrett M; Young, Richard A; Lodish, Harvey F

    2011-10-20

    It is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA polymerase II (Pol II) occupancy, and multiple posttranslational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac, and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels, in particular, H3K79me2 and H4K16ac, were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, whereas gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data map the epigenetic landscape of terminal erythropoiesis and suggest that control of transcription elongation regulates gene expression during terminal erythroid differentiation.

  3. miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases

    Directory of Open Access Journals (Sweden)

    Izuho Hatada

    2013-07-01

    Full Text Available Members of the microRNA-29 (miR-29 family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1 and thymine DNA glycosylase (TDG. Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.

  4. SUMOylation regulates the transcriptional repression activity of FOG-2 and its association with GATA-4.

    Directory of Open Access Journals (Sweden)

    José Perdomo

    Full Text Available Friend of GATA 2 (FOG-2, a co-factor of several GATA transcription factors (GATA-4, -5 and 6, is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K324, 471, 915, 955 [corrected]. Three of these residues are part of the characteristic SUMO consensus site (ψKXE, while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2's nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status.

  5. A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis.

    Science.gov (United States)

    Abdou, Houssein S; Bergeron, Francis; Tremblay, Jacques J

    2014-12-01

    Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production.

  6. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions.

    Science.gov (United States)

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability.

  7. A common bacterial metabolite elicits prion-based bypass of glucose repression

    Science.gov (United States)

    Garcia, David M; Dietrich, David; Clardy, Jon; Jarosz, Daniel F

    2016-01-01

    Robust preference for fermentative glucose metabolism has motivated domestication of the budding yeast Saccharomyces cerevisiae. This program can be circumvented by a protein-based genetic element, the [GAR+] prion, permitting simultaneous metabolism of glucose and other carbon sources. Diverse bacteria can elicit yeast cells to acquire [GAR+], although the molecular details of this interaction remain unknown. Here we identify the common bacterial metabolite lactic acid as a strong [GAR+] inducer. Transient exposure to lactic acid caused yeast cells to heritably circumvent glucose repression. This trait had the defining genetic properties of [GAR+], and did not require utilization of lactic acid as a carbon source. Lactic acid also induced [GAR+]-like epigenetic states in fungi that diverged from S. cerevisiae ~200 million years ago, and in which glucose repression evolved independently. To our knowledge, this is the first study to uncover a bacterial metabolite with the capacity to potently induce a prion. DOI: http://dx.doi.org/10.7554/eLife.17978.001 PMID:27906649

  8. DEWAX-mediated transcriptional repression of cuticular wax biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Suh, Mi Chung; Go, Young Sam

    2014-06-06

    The aerial parts of plants are covered with a cuticular wax layer, which is the first barrier between a plant and its environment. Although cuticular wax deposition increases more in the light than in the dark, little is known about the molecular mechanisms underlying the regulation of cuticular wax biosynthesis. Recently DEWAX (Decrease Wax Biosynthesis) encoding an AP2/ERF transcription factor was found to be preferentially expressed in the epidermis and induced by darkness. Wax analysis of the dewax knockout mutant, wild type, and DEWAX overexpression lines (OX) indicates that DEWAX is a negative regulator of cuticular wax biosynthesis. DEWAX represses the expression of wax biosynthetic genes CER1, LACS2, ACLA2, and ECR via direct interaction with their promoters. Cuticular wax biosynthesis is negatively regulated twice a day by the expression of DEWAX; throughout the night and another for stomata closing. Taken together, it is evident that DEWAX-mediated negative regulation of the wax biosynthetic genes plays role in determining the total wax loads produced in Arabidopsis during daily dark and light cycles. In addition, significantly higher levels of DEWAX transcripts in leaves than stems suggest that DEWAX-mediated transcriptional repression might be involved in the organ-specific regulation of total wax amounts on plant surfaces.

  9. Authoritarianism, control and vigilance: Jacob Gorender on the aim of the repression (1940-1980

    Directory of Open Access Journals (Sweden)

    Lucileide Costa Cardoso

    2013-12-01

    Full Text Available The purpose of the article is to demonstrate through analysis of documents of repressive nature, the elements highlighted by the Military Justice to establish the trace of persecution of the intellectuals among other social sectors which dared to challenge the Dictatorship. The complete mapping, involving the combat strategies against the “communism”, including the knowledge of the political parties and their military staff, was accumulated by police and military sectors along the 20th century. We intended to follow, through these records, the political trajectory of the intellectual Jacob Gorender. As a journalist, he got involved in the discussion about the Brazilian participation in the World War II, joined the FEB in 1943. Before that, however, Gorender became a communist, recruited by Mario Alves in 1942. In the early 60’s, he acted as a militant and coordinator of PCB, when he decided to join PCBR, founded in 1968. The historian, in the beginning of the 1964 Strike, with his life already devastated by the Information and Security Community, experienced marginalization, imprisonment, torture and censorship of his writings among other abuses that also reached his closest friends, political companions and family members. The crossing of this amount of information with the memorial documents helps to understand the political repression tricks and the different Revolutionary projects in course.

  10. EBV reactivation as a target of luteolin to repress NPC tumorigenesis.

    Science.gov (United States)

    Wu, Chung-Chun; Fang, Chih-Yeu; Hsu, Hui-Yu; Chuang, Hsin-Ying; Cheng, Yu-Jhen; Chen, Yen-Ju; Chou, Sheng-Ping; Huang, Sheng-Yen; Lin, Su-Fang; Chang, Yao; Tsai, Ching-Hwa; Chen, Jen-Yang

    2016-04-05

    Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx. Although a combination of radiotherapy with chemotherapy is effective for therapy, relapse and metastasis after remission remain major causes of mortality. Epstein-Barr virus (EBV) is believed to be one of causes of NPC development. We demonstrated previously that EBV reactivation is important for the carcinogenesis of NPC. We sought, therefore, to determine whether EBV reactivation can be a target for retardation of relapse of NPC. After screening, we found luteolin is able to inhibit EBV reactivation. It inhibited EBV lytic protein expression and repressed the promoter activities of two major immediate-early genes, Zta and Rta. Furthermore, luteolin was shown to reduce genomic instability induced by recurrent EBV reactivation in NPC cells. EBV reactivation-induced NPC cell proliferation and migration, as well as matrigel invasiveness, were also repressed by luteolin treatment. Tumorigenicity in mice, induced by EBV reactivation, was decreased profoundly following luteolin administration. Together, these results suggest that inhibition of EBV reactivation is a novel approach to prevent the relapse of NPC.

  11. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, William Ka Kei, E-mail: wukakei@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Volta, Viviana [Molecular Histology and Cellular Growth Unit, DiBiT-San Raffaele Scientific Institute (Italy); Dipartimento di Scienze dell' Ambiente e della Vita (DiSAV), University of Eastern Piedmont (Italy); Cho, Chi Hin, E-mail: chcho@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Wu, Ya Chun; Li, Hai Tao [Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Yu, Le [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Li, Zhi Jie [Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Sung, Joseph Jao Yiu, E-mail: joesung@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong)

    2009-09-04

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of {sup 35}S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  12. Melanie Klein and Repression: an examination of some unpublished Notes of 1934.

    Science.gov (United States)

    Hinshelwood, R D

    2006-01-01

    Fifteen pages of unpublished Notes were found in the Melanie Klein Archives dating from early 1934, a crucial moment in Klein's development. She was at this time, 1934, moving away from child analysis, whilst also rethinking and revising her allegiance to Karl Abraham's theory of the phases of libidinal development. These Notes, entitled "Early Repression Mechanism," show Klein struggling to develop what became her characteristic theories of the depressive position and the paranoid-schizoid position. Although these Notes are precursors of the paper Klein gave later to the IPA Congress in 1934, they also show the origins of the emphasis she and her followers eventually gave to "splitting" rather than repression. The Notes give us an insight into the way that she worked clinically at the time. We see Klein's confidence develop as she diverged from the classical theories and technique. Her ideas were based on close attention to the detail of her clinical material, rather than attacking theoretical problems directly. The Notes show her method of struggling to her own conclusions, and they offer us a chance to grasp the roots of the subsequent controversy over Kleinian thought.

  13. Pax6 represses androgen receptor-mediated transactivation by inhibiting recruitment of the coactivator SPBP.

    Directory of Open Access Journals (Sweden)

    Julianne Elvenes

    Full Text Available The androgen receptor (AR has a central role in development and maintenance of the male reproductive system and in the etiology of prostate cancer. The transcription factor Pax6 has recently been reported to act as a repressor of AR and to be hypermethylated in prostate cancer cells. SPBP is a transcriptional regulator that previously has been shown to enhance the activity of Pax6. In this study we have identified SPBP to act as a transcriptional coactivator of AR. We also show that Pax6 inhibits SPBP-mediated enhancement of AR activity on the AR target gene probasin promoter, a repression that was partly reversed by increased expression of SPBP. Enhanced expression of Pax6 reduced the amount of SPBP associated with the probasin promoter when assayed by ChIP in HeLa cells. We mapped the interaction between both AR and SPBP, and AR and Pax6 to the DNA-binding domains of the involved proteins. Further binding studies revealed that Pax6 and SPBP compete for binding to AR. These results suggest that Pax6 represses AR activity by displacing and/or inhibiting recruitment of coactivators to AR target promoters. Understanding the mechanism for inhibition of AR coactivators can give rise to molecular targeted drugs for treatment of prostate cancer.

  14. Repression of class I transcription by cadmium is mediated by the protein phosphatase 2A

    Science.gov (United States)

    Zhou, Lei; Le Roux, Gwenaëlle; Ducrot, Cécile; Chédin, Stéphane; Labarre, Jean; Riva, Michel; Carles, Christophe

    2013-01-01

    Toxic metals are part of our environment, and undue exposure to them leads to a variety of pathologies. In response, most organisms adapt their metabolism and have evolved systems to limit this toxicity and to acquire tolerance. Ribosome biosynthesis being central for protein synthesis, we analyzed in yeast the effects of a moderate concentration of cadmium (Cd2+) on Pol I transcription that represents >60% of the transcriptional activity of the cells. We show that Cd2+ rapidly and drastically shuts down the expression of the 35S rRNA. Repression does not result from a poisoning of any of the components of the class I transcriptional machinery by Cd2+, but rather involves a protein phosphatase 2A (PP2A)-dependent cellular signaling pathway that targets the formation/dissociation of the Pol I–Rrn3 complex. We also show that Pol I transcription is repressed by other toxic metals, such as Ag+ and Hg2+, which likewise perturb the Pol I–Rrn3 complex, but through PP2A-independent mechanisms. Taken together, our results point to a central role for the Pol I–Rrn3 complex as molecular switch for regulating Pol I transcription in response to toxic metals. PMID:23640330

  15. Citrullination of histone H3 interferes with HP1-mediated transcriptional repression.

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    2012-09-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune disease associated with abnormal expression of a subset of cytokines, resulting in inappropriate T-lymphocyte activation and uncontrolled immune response. A key issue in the field is the need to understand why these cytokines are transcriptionally activated in the patients. Here, we have examined several transcription units subject to pathological reactivation in MS, including the TNFα and IL8 cytokine genes and also several Human Endogenous RetroViruses (HERVs. We find that both the immune genes and the HERVs require the heterochromatin protein HP1α for their transcriptional repression. We further show that the Peptidylarginine Deiminase 4 (PADI4, an enzyme with a suspected role in MS, weakens the binding of HP1α to tri-methylated histone H3 lysine 9 by citrullinating histone H3 arginine 8. The resulting de-repression of both cytokines and HERVs can be reversed with the PADI-inhibitor Cl-amidine. Finally, we show that in peripheral blood mononuclear cells (PBMCs from MS patients, the promoters of TNFα, and several HERVs share a deficit in HP1α recruitment and an augmented accumulation of histone H3 with a double citrulline 8 tri-methyl lysine 9 modifications. Thus, our study provides compelling evidence that HP1α and PADI4 are regulators of both immune genes and HERVs, and that multiple events of transcriptional reactivation in MS patients can be explained by the deficiency of a single mechanism of gene silencing.

  16. Cell type-specific translational repression of Cyclin B during meiosis in males.

    Science.gov (United States)

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I.

  17. Translational repression determines a neuronal potential in Drosophila asymmetric cell division.

    Science.gov (United States)

    Okabe, M; Imai, T; Kurusu, M; Hiromi, Y; Okano, H

    2001-05-01

    Asymmetric cell division is a fundamental strategy for generating cellular diversity during animal development. Daughter cells manifest asymmetry in their differential gene expression. Transcriptional regulation of this process has been the focus of many studies, whereas cell-type-specific 'translational' regulation has been considered to have a more minor role. During sensory organ development in Drosophila, Notch signalling directs the asymmetry between neuronal and non-neuronal lineages, and a zinc-finger transcriptional repressor Tramtrack69 (TTK69) acts downstream of Notch as a determinant of non-neuronal identity. Here we show that repression of TTK69 protein expression in the neuronal lineage occurs translationally rather than transcriptionally. This translational repression is achieved by a direct interaction between cis-acting sequences in the 3' untranslated region of ttk69 messenger RNA and its trans-acting repressor, the RNA-binding protein Musashi (MSI). Although msi can act downstream of Notch, Notch signalling does not affect MSI expression. Thus, Notch signalling is likely to regulate MSI activity rather than its expression. Our results define cell-type-specific translational control of ttk69 by MSI as a downstream event of Notch signalling in asymmetric cell division.

  18. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs.

    Science.gov (United States)

    Bowman, Christopher John; Ayer, Donald E; Dynlacht, Brian David

    2014-12-01

    Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.

  19. Greves, sindicatos e repressão policial no Rio de Janeiro (1954-1964

    Directory of Open Access Journals (Sweden)

    Marcelo Badaró Mattos

    2004-01-01

    Full Text Available Este artigo apresenta parte dos resultados de uma pesquisa sobre as greves e a repressão aos sindicatos no Rio de Janeiro entre 1954 e 1964. Seu objetivo central é rediscutir a relação entre Estado, empresários e trabalhadores organizados no período em questão a partir da dimensão de conflito explicitada nos momentos de greve. Pretendeu-se também apresentar dados mais completos que os anteriormente disponíveis sobre o total e as características das greves, bem como explorar o potencial da documentação policial, aberta à consulta nos últimos anos.This article presents some conclusions on strikes and police repression to trade unions in Rio de Janeiro. The central question is the relation between State, capitalists and organized workers in that moment, with special attention to the conflict dimension expressed by strikes. The article tries to show more complete data about strike numbers and characteristics, as well as to explore the recently opened police documents.

  20. Repression of cardiac hypertrophy by KLF15: underlying mechanisms and therapeutic implications.

    Directory of Open Access Journals (Sweden)

    Joost J Leenders

    Full Text Available The Kruppel-like factor (KLF family of transcription factors regulates diverse cell biological processes including proliferation, differentiation, survival and growth. Previous studies have shown that KLF15 inhibits cardiac hypertrophy by repressing the activity of pivotal cardiac transcription factors such as GATA4, MEF2 and myocardin. We set out this study to characterize the interaction of KLF15 with putative other transcription factors. We first show that KLF15 interacts with myocardin-related transcription factors (MRTFs and strongly represses the transcriptional activity of MRTF-A and MRTF-B. Second, we identified a region within the C-terminal zinc fingers of KLF15 that contains the nuclear localization signal. Third, we investigated whether overexpression of KLF15 in the heart would have therapeutic potential. Using recombinant adeno-associated viruses (rAAV we have overexpressed KLF15 specifically in the mouse heart and provide the first evidence that elevation of cardiac KLF15 levels prevents the development of cardiac hypertrophy in a model of Angiotensin II induced hypertrophy.

  1. Cyclic stretch of Embryonic Cardiomyocytes Increases Proliferation, Growth, and Expression While Repressing Tgf-β Signaling

    Science.gov (United States)

    Banerjee, Indroneal; Carrion, Katrina; Serrano, Ricardo; Dyo, Jeffrey; Sasik, Roman; Lund, Sean; Willems, Erik; Aceves, Seema; Meili, Rudolph; Mercola, Mark; Chen, Ju; Zambon, Alexander; Hardiman, Gary; Doherty, Taylor A; Lange, Stephan; del Álamo, Juan C.; Nigam, Vishal

    2014-01-01

    Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-β (Tgf-β) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-β expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-β inhibitor resulted in increased EMCM size. Functionally, Tgf-β signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS. PMID:25446186

  2. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Xiaoyun Han

    2016-11-01

    Full Text Available In Aspergillus nidulans, the nitrogen metabolite repression regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in Aspergillus flavus has notbeen previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of nitrogen metabolite repression and the nitrogen metabolism network in fungi.

  3. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Jun Miao

    Full Text Available Translational control of gene expression plays an essential role in development. In malaria parasites, translational regulation is critical during the development of specialized transition stages between the vertebrate host and mosquito vector. Here we show that a Pumilio/FBF (Puf family RNA-binding protein, PfPuf2, is required for the translation repression of a number of transcripts in gametocytes including two genes encoding the transmission-blocking vaccine candidates Pfs25 and Pfs28. Whereas studies to date support a paradigm of Puf-mediated translation regulation through 3' untranslated regions (UTRs of target mRNAs, this study, for the first time, identifies a functional Puf-binding element (PBE in the 5'UTR of pfs25. We provide both in vitro and in vivo evidence to demonstrate that PfPuf2 binds to the PBEs in pfs25 and pfs28 to mediate translation repression. This finding provides a renewed view of Pufs as versatile translation regulators and sheds light on their functions in the development of lower branches of eukaryotes.

  4. A general strategy for cellular reprogramming: the importance of transcription factor cross-repression.

    Science.gov (United States)

    Crespo, Isaac; Del Sol, Antonio

    2013-10-01

    Transcription factor cross-repression is an important concept in cellular differentiation. A bistable toggle switch constitutes a molecular mechanism that determines cellular commitment and provides stability to transcriptional programs of binary cell fate choices. Experiments support that perturbations of these toggle switches can interconvert these binary cell fate choices, suggesting potential reprogramming strategies. However, more complex types of cellular transitions could involve perturbations of combinations of different types of multistable motifs. Here, we introduce a method that generalizes the concept of transcription factor cross-repression to systematically predict sets of genes, whose perturbations induce cellular transitions between any given pair of cell types. Furthermore, to our knowledge, this is the first method that systematically makes these predictions without prior knowledge of potential candidate genes and pathways involved, providing guidance on systems where little is known. Given the increasing interest of cellular reprogramming in medicine and basic research, our method represents a useful computational methodology to assist researchers in the field in designing experimental strategies.

  5. Preclinical pharmacokinetics, tissue distribution and plasma protein binding of sodium (±-5-bromo-2-(α-hydroxypentyl benzoate (BZP, an innovative potent anti-ischemic stroke agent

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-08-01

    Full Text Available Sodium (±-5-bromo-2-(α-hydroxypentyl benzoate (BZP is a potential cardiovascular drug and exerts potent neuroprotective effect against transient and long-term ischemic stroke in rats. BZP could convert into 3-butyl-6-bromo-1(3H-isobenzofuranone (Br-NBP in vitro and in vivo. However, the pharmacokinetic profiles of BZP and Br-NBP still have not been evaluated. For the purpose of investigating the pharmacokinetic profiles, tissue distribution and plasma protein binding of BZP and Br-NBP, a rapid, sensitive and specific method based on liquid chromatography coupled to mass spectrometry (LC-MS/MS has been developed for determination of BZP and Br-NBP in biological samples. The results indicated that BZP and Br-NBP showed a short elimination half-life, and pharmacokinetic profile in rats (3, 6 and 12 mg/kg; i.v. and beagle dogs (1, 2 and 4 mg/kg; i.v.gtt were obtained after single dosing of BZP. After multiple dosing of BZP, there was no significant accumulation of BZP and Br-NBP in the plasma of rats and beagle dogs. Following i.v. single dose (6 mg/kg to rats, BZP and Br-NBP were distributed rapidly into all tissues examined, with the highest concentrations of BZP and Br-NBP in lung and kidney, respectively. The brain distribution of Br-NBP in middle cerebral artery occlusion (MCAO rats was more than in normal rats (P<0.05. The plasma protein binding degree of BZP at three concentrations (8000, 20000 and 80000 ng/mL from rat, beagle dog and human plasma were 98.1~98.7%, 88.9~92.7% and 74.8%~83.7% respectively. In conclusion, both BZP and Br-NBP showed short half-life, good dose-linear pharmacokinetic profile, wide tissue distribution and different degree protein binding to various species plasma. This was the first preclinical pharmacokinetic investigation of BZP and Br-NBP in both rats and beagle dogs, which provided vital guidance for further preclinical research and the subsequent clinical trials.

  6. Efficiency of fixed-time artificial insemination using a progesterone device combined with GnRH or estradiol benzoate in Nellore heifers

    Directory of Open Access Journals (Sweden)

    Vinícius Antônio Pelissari Poncio

    2015-10-01

    Full Text Available he use of estrogens in artificial insemination protocols for cattle is the least expensive and most efficient method currently available. However, the trend to prohibit the use of estrogens for this purpose has made it necessary to find alternatives that replace estrogens without compromising the reproductive performance of the animals. The objective of this study was to evaluate conception rates in Bos indicus beef heifers treated with a progesterone device (P4 combined with GnRH or an estradiol ester. On day 0, pubertal Nellore heifers (n = 100 received an intravaginal device containing 1 g P4 and were randomly divided into two groups. The GnRH group (n = 49 received an intramuscular injection of 100 µg GnRH, while the E2 group (n = 51 received 2 mg estradiol benzoate (EB. The P4 device was removed after 5 (GnRH group or 8 days (E2 group, followed by an injection of 125 µg of the PGF2α, analog cloprostenol. On that occasion, the E2 group received an additional injection of 300 IU eCG. Twenty-four hours later, the GnRH group received a second injection of 125 µg cloprostenol, while the E2 group received 1 mg EB. The heifers were inseminated 72 (GnRH group or 54 hours (E2 group after removal of the P4 device. At the time of insemination, the GnRH group received additionally an injection of 100 µg GnRH. Estrus was monitored during the period of cloprostenol injection until the time of artificial insemination and pregnancy was diagnosed 40 days after insemination by transrectal ultrasonography. The data were analyzed by Fisher’s exact test. The pregnancy rate was 38.8% and 31.4% in the GnRH and E2 groups, respectively (P>0.05. The ovarian condition of the heifers (estrus or anestrus tended to influence (P=0.07 pregnancy rates in the GnRH group, but not in the E2 group. At the time of artificial insemination, 33.3% of heifers in the GnRH group showed signs of estrus versus 88.2% in the E2 group (P<0.05. However, the time of estrus

  7. Alternative solvent-based methyl benzoate vortex-assisted dispersive liquid-liquid microextraction for the high-performance liquid chromatographic determination of benzimidazole fungicides in environmental water samples.

    Science.gov (United States)

    Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2014-11-01

    Vortex-assisted dispersive liquid-liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high-performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5-39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01-0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4-110.9% with the relative standard deviation water samples.

  8. Transforming growth factor-β1 signaling represses testicular steroidogenesis through cross-talk with orphan nuclear receptor Nur77.

    Science.gov (United States)

    Park, Eunsook; Song, Chin-Hee; Park, Jae-Il; Ahn, Ryun-Sup; Choi, Hueng-Sik; Ko, CheMyong; Lee, Keesook

    2014-01-01

    Transforming growth factor- β1 (TGF-β1) has been reported to inhibit luteinizing hormone (LH) mediated-steroidogenesis in testicular Leydig cells. However, the mechanism by which TGF-β1 controls the steroidogenesis in Leydig cells is not well understood. Here, we investigated the possibility that TGF-β1 represses steroidogenesis through cross-talk with the orphan nuclear receptor Nur77. Nur77, which is induced by LH/cAMP signaling, is one of major transcription factors that regulate the expression of steroidogenic genes in Leydig cells. TGF-β1 signaling inhibited cAMP-induced testosterone production and the expression of steroidogenic genes such as P450c17, StAR and 3β-HSD in mouse Leydig cells. Further, TGF-β1/ALK5 signaling repressed cAMP-induced and Nur77-activated promoter activity of steroidogenic genes. In addition, TGF-β1/ALK5-activated Smad3 repressed Nur77 transactivation of steroidogenic gene promoters by interfering with Nur77 binding to DNA. In primary Leydig cells isolated from Tgfbr2flox/flox Cyp17iCre mice, TGF-β1-mediated repression of cAMP-induced steroidogenic gene expression was significantly less than that in primary Leydig cells from Tgfbr2flox/flox mice. Taken together, these results suggest that TGF-β1/ALK5/Smad3 signaling represses the expression of steroidogenic genes via the suppression of Nur77 transactivation in testicular Leydig cells. These findings may provide a molecular mechanism involved in the TGF-β1-mediated repression of testicular steroidogenesis.

  9. MAF2 Is Regulated by Temperature-Dependent Splicing and Represses Flowering at Low Temperatures in Parallel with FLM.

    Directory of Open Access Journals (Sweden)

    Chiara A Airoldi

    Full Text Available Plants enter their reproductive phase when the environmental conditions are favourable for the successful production of progeny. The transition from vegetative to reproductive phase is influenced by several environmental factors including ambient temperature. In the model plant Arabidopsis thaliana, SHORT VEGETATIVE PHASE (SVP is critical for this pathway; svp mutants cannot modify their flowering time in response to ambient temperature. SVP encodes a MADS-box transcription factor that directly represses genes that promote flowering. SVP binds DNA in complexes with other MADS-box transcription factors, including FLOWERING LOCUS M (FLM, which acts with SVP to repress the floral transition at low temperatures. Small temperature changes post-transcriptionally regulate FLM through temperature-dependent alternative splicing (TD-AS. As ambient temperature increases, the predominant FLM splice isoform shifts to encode a protein incapable of exerting a repressive effect on flowering. Here we characterize a closely related MADS-box transcription factor, MADS AFFECTING FLOWERING2 (MAF2, which has independently evolved TD-AS. At low temperatures the most abundant MAF2 splice variant encodes a protein that interacts with SVP to repress flowering. At increased temperature the relative abundance of splice isoforms shifts in favour of an intron-retaining variant that introduces a premature termination codon. We show that this isoform encodes a protein that cannot interact with SVP or repress flowering. At lower temperatures MAF2 and SVP repress flowering in parallel with FLM and SVP, providing an additional input to sense ambient temperature for the control of flowering.

  10. Effects of sodium benzoate on liver and kidney in rats%苯甲酸钠多次给药对大鼠肝肾功能的影响

    Institute of Scientific and Technical Information of China (English)

    李锦玉; 李荣欣; 李京路; 毕红征

    2015-01-01

    目的:研究食品防腐剂苯甲酸钠多次给药对大鼠肝肾功能的影响。方法:选取50只健康SPF级SD大鼠,分为5组,每组10只,苯甲酸钠低、中、高剂量组分别灌胃给予苯甲酸钠(0.1、0.2、0.4 g/kg),阳性对照组给予山梨酸钾(0.2 g/kg),空白对照组给予生理盐水,1次/d,连续4周。检测末次给药后大鼠血清学指标(ALT、AST、ALP、GGT、TP、ALB、TBIL、BUN、Cre、UA),并观察肝肾组织病理学改变。结果:与空白对照组相比,苯甲酸钠低、中、高剂量组大鼠的各项血清生化学指标均有一定的异常,高剂量组最为显著(P均<0.05)。苯甲酸钠高剂量组大鼠肝脏出现了明显病理学异常,各组大鼠肾脏均未见病理学改变。结论:苯甲酸钠多次给药对大鼠肝肾,尤其是肝脏有一定的损害。%Aim:To study the effects of sodium benzoate on liver and kidney in rats .Methods: Fifty healthy SD rats were allocated into 5 groups and treated with sodium benzoate (0.1,0.2,0.4 g/kg),potassium sorbate(0.2 g/kg) and normal saline by gavage for 4 weeks.The serum indicators such as ALT , AST, ALP, GGT, TP, ALB, TBIL, BUN,Cre, and UA were determined and the liver and renal histology of the rats was observed .Results:Rats in each dose group of sodium ben-zoate had abnormal serum biochemical indicators , especially in high dose group .Furthermore, rats in sodium benzoate high dose group showed obvious pathological abnormalities in liver .Rats in all groups showed no pathological changes in kidneys . Conclusion:The frequent use of sodium benzoate could do harms to the kidney and liver especially to the liver in rats .

  11. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  12. ZEB1 limits adenoviral infectability by transcriptionally repressing the Coxsackie virus and Adenovirus Receptor

    Directory of Open Access Journals (Sweden)

    Lacher Markus D

    2011-07-01

    Full Text Available Abstract Background We have previously reported that RAS-MEK (Cancer Res. 2003 May 1;63(9:2088-95 and TGF-β (Cancer Res. 2006 Feb 1;66(3:1648-57 signaling negatively regulate coxsackie virus and adenovirus receptor (CAR cell-surface expression and adenovirus uptake. In the case of TGF-β, down-regulation of CAR occurred in context of epithelial-to-mesenchymal transition (EMT, a process associated with transcriptional repression of E-cadherin by, for instance, the E2 box-binding factors Snail, Slug, SIP1 or ZEB1. While EMT is crucial in embryonic development, it has been proposed to contribute to the formation of invasive and metastatic carcinomas by reducing cell-cell contacts and increasing cell migration. Results Here, we show that ZEB1 represses CAR expression in both PANC-1 (pancreatic and MDA-MB-231 (breast human cancer cells. We demonstrate that ZEB1 physically associates with at least one of two closely spaced and conserved E2 boxes within the minimal CAR promoter here defined as genomic region -291 to -1 relative to the translational start ATG. In agreement with ZEB1's established role as a negative regulator of the epithelial phenotype, silencing its expression in MDA-MB-231 cells induced a partial Mesenchymal-to-Epithelial Transition (MET characterized by increased levels of E-cadherin and CAR, and decreased expression of fibronectin. Conversely, knockdown of ZEB1 in PANC-1 cells antagonized both the TGF-β-induced down-regulation of E-cadherin and CAR and the reduction of adenovirus uptake. Interestingly, even though ZEB1 clearly contributes to the TGF-β-induced mesenchymal phenotype of PANC-1 cells, TGF-β did not seem to affect ZEB1's protein levels or subcellular localization. These findings suggest that TGF-β may inhibit CAR expression by regulating factor(s that cooperate with ZEB1 to repress the CAR promoter, rather than by regulating ZEB1 expression levels. In addition to the negative E2 box-mediated regulation the minimal

  13. Phenotypic characterization of glucose repression mutants of Saccharomyce cerevisiae usinge experiments with C-13-labelled glucose

    DEFF Research Database (Denmark)

    Vijayendran, Raghevendran; Gombert, A.K.; Christensen, B.

    2004-01-01

    In the field of metabolic engineering and functional genomics, methods for analysis of metabolic fluxes in the cell are attractive as they give an overview of the phenotypic response of the cells at the level of the active metabolic network. This is unlike several other high-throughput experimental...... glucose. Through GC-MS analysis of the C-13 incorporated into the amino acids of cellular proteins, it was possible to obtain quantitative information on the function of the central carbon metabolism in the different mutants. Traditionally, such labelling data have been used to quantify metabolic fluxes...... and the reference strain CEN.PK113-7D. Principal components analysis of the summed fractional labelling data show that deleting the genes HXK2 and GRR1 results in similar phenotype at the fluxome level, with a partial alleviation of glucose repression on the respiratory metabolism. Furthermore, deletion...

  14. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns.

    Science.gov (United States)

    Zhang, Linlin; Reed, Robert D

    2016-06-15

    Butterfly eyespot colour patterns are a key example of how a novel trait can appear in association with the co-option of developmental patterning genes. Little is known, however, about how, or even whether, co-opted genes function in eyespot development. Here we use CRISPR/Cas9 genome editing to determine the roles of two co-opted transcription factors that are expressed during early eyespot determination. We found that deletions in a single gene, spalt, are sufficient to reduce or completely delete eyespot colour patterns, thus demonstrating a positive regulatory role for this gene in eyespot determination. Conversely, and contrary to previous predictions, deletions in Distal-less (Dll) result in an increase in the size and number of eyespots, illustrating a repressive role for this gene in eyespot development. Altogether our results show that the presence, absence and shape of butterfly eyespots can be controlled by the activity of two co-opted transcription factors.

  15. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Westergaard, Steen Lund; Soberano de Oliveira, Ana Paula; Bro, Christoffer

    2007-01-01

    in repression of a wide range of genes involved to utilization of alternative carbon sources. In this work, we applied a systems biology approach to study the interaction between these two pathways. Through genome-wide transcription analysis of strains with disruption of HXK2, GRR1, MIG1, the combination of MIG......1 and MIG2, and the parentel strain, we identified 393 genes to have significantly changed expression levels. To identify co-regulation patterns in the different strains we applied principal component analysis. Disruption of either GRR1 or HXK2 were both found to have profound effects...... reporter metabolites, and found that there is a high degree of consistency between the identified reporter metabolites and the physiological effects observed in the different mutants . Our systems biology approach points to close interaction between the two pathways, and our metabolism driven analysis...

  16. Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection.

    Science.gov (United States)

    Shuai-Cheng, Wu; Ben-Dong, Fu; Xiu-Ling, Chu; Jian-Qing, Su; Yun-Xing, Fu; Zhen-Qiang, Cui; Dao-Xiu, Xu; Zong-Mei, Wu

    2016-11-01

    Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.

  17. Teaching microbial physiology using glucose repression phenomenon in baker's yeast as an examplele

    DEFF Research Database (Denmark)

    Vijayendran, Raghavendran; Nielsen, Jens; Olsson, Lisbeth

    2005-01-01

    The yeast Saccharomyces cerevisiae has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled S. cerevisiae to grow in fermentative mode on sugars by switc......The yeast Saccharomyces cerevisiae has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled S. cerevisiae to grow in fermentative mode on sugars...... by switching off the genes responsible for respiration even under aerobic conditions. This phenomenon is referred to as the Crabtree effect. The present review focuses on glucose repression in S. cerevisiae from a physiological perspective. Physiological studies presented involve batch and chemostat...

  18. An X11alpha/FSBP complex represses transcription of the GSK3beta gene promoter.

    LENUS (Irish Health Repository)

    Lau, Kwok-Fai

    2010-08-04

    X11alpha is a neuronal adaptor protein that interacts with the amyloid precursor protein (APP) through a centrally located phosphotyrosine binding domain to inhibit the production of Abeta peptide that is deposited in Alzheimer\\'s disease brains. X11alpha also contains two C-terminal postsynaptic density-95, large discs, zona occludens 1 (PDZ) domains, and we show here that through its PDZ domains, X11alpha interacts with a novel transcription factor, fibrinogen silencer binding protein. Moreover, we show that an X11alpha\\/fibrinogen silencer binding protein complex signals to the nucleus to repress glycogen synthase kinase-3beta promoter activity. Glycogen synthase kinase-3beta is a favoured candidate kinase for phosphorylating tau in Alzheimer\\'s disease. Our findings show a new function for X11alpha that may impact on Alzheimer\\'s disease pathogenesis.

  19. Repression versus sensitization in response to media violence as predictors of cognitive avoidance and vigilance.

    Science.gov (United States)

    Krahé, Barbara; Möller, Ingrid; Berger, Anja; Felber, Juliane

    2011-02-01

    Repression and sensitization as situational modes of coping with anxiety were examined as predictors of trait measures of cognitive avoidance and vigilance. In this study, 303 undergraduates saw a violent film clip to elicit anxiety. Increases in skin conductance level (SCL) and state anxiety (STA) from baseline were measured to identify repressors (high SCL, low STA) and contrast them with sensitizers (low SCL, high STA) and genuinely low anxious individuals (low SCL, low STA). State anger was also recorded. Trait measures of vigilance and cognitive avoidance were collected 2 weeks earlier. Significant SCL × STA interactions indicated that repressors scored higher on cognitive avoidance and lower on vigilance compared to sensitizers and low anxious participants. Repressors were less likely than sensitizers to report gaze avoidance during the clip. The anger by SCL interaction was nonsignificant, suggesting that repressors and sensitizers differ specifically in the processing of anxiety rather than negative affect in general.

  20. Iron repressible outer membrane proteins of Moraxella bovis and demonstration of siderophore-like activity.

    Science.gov (United States)

    Fenwick, B; Rider, M; Liang, J; Brightman, A

    1996-02-01

    Moraxella bovis (strain Epp 63), grown in RPMI 1640 medium supplemented with desferrioxamine mesylate (0.05 mg/ml) resulted in cell free culture supernatants with an increased chromeazurol-S response indicating the presence of high affinity iron binding ligand(s). Supernatants of cultures where growth occurred in tryptic soy broth, RPMI 1640, or RPMI 1640-desferrioxamine supplemented with ferrous sulfate (10 micrograms/ml) were negative on the chromeazurol-S test. Growth of M. bovis in RPMI 1640 or RPMI 1640-desferrioxamine medium induced the expression of previously unrecognized outer membrane proteins whose expression was repressed when the medium was supplemented with iron and which were not produced when growth occurred in tryptic soy broth.